UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"ESTUDIO SOBRE LA UTILIZACIÓN DE EMULSIONES EN IMPRIMACIÓN Y TRATAMIENTOS ASFÁLTICOS"

Por:

RAMOS MERILES JULIA NICELIA

Diciembre de 2012

TARIJA-BOLIVIA

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"ESTUDIO SOBRE LA UTILIZACIÓN DE EMULSIONES EN IMPRIMACIÓN Y TRATAMIENTOS ASFÁLTICOS"

Por:

RAMOS MERILES JULIA NICELIA

Proyecto de Ingeniería civil II presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO" como requisito para optar el grado académico de Licenciatura en Ingeniería Civil.

Diciembre de 2012

TARIJA-BOLIVIA

V°B°

Ing. Jhonny Mario Orgaz Fernández

DOCENTE GUÍA

PROYECTO DE GRADO

TROTLET	O DE GRADO
Msc. Ing. Luis Alberto Yurquina F. DECANO FAC. DE CIENCIAS Y TECNOLOGIA	Msc. Ing. Lic. Clovis Gustavo Succi Aguirre VICE DECANO FAC. DE CIENCIAS Y TECNOLOGIA
APROBADO POR:	
TRIBUNAL:	
Ing. Laura Karina	a Soto Salgado
Ing. Fernando Erne	esto Mur Lagraba

Ing. Eusebio Ortega Alvarado

El tribunal calificador del presente proyecto, no se solidarizan con los términos, la forma, los modos y las expresiones empleadas en la elaboración del presente trabajo siendo los mismos únicamente responsabilidad del autor

DEDICATORIA

A Dios, por darme la oportunidad de vivir y por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y por haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía durante todo el periodo de estudio.

A mi madre Elisea Meriles, por darme la vida, quererme mucho, creer en mí y por su incondicional apoyo perfectamente mantenido a través del tiempo, todo esto te lo debo a ti. ¡Te quiero mucho!

A mi padre Ariel Ramos, que aunque en el cielo se encuentra.....siempre su recuerdo estará presente en mi mente y corazón, dándome la fortaleza y motivo para seguir superándome.

A mis hermanas, Yanet, Yenny y Mabelí, que de alguna manera lograron que mis ánimos por seguir adelante y surgir se alimentaran cada día más.

A mis sobrinos, para que vean en mí un ejemplo a seguir.

A Néstor, por haber confiado en mí y haber sabido entenderme y apoyarme en todo momento, te quiero mucho.

AGRADECIMIENTOS

A DIOS, por ser mi principal guía, por darme la fuerza necesaria para salir adelante y lograr alcanzar esta meta.

A mi familia quien confió en mí y me brindo palabras de exhortación y entusiasmo para llegar hasta el final y procurar ser mejor cada día. A mi Docente Guía, Ing. Jhonny Orgaz que con paciencia supo transmitir sus conocimientos, colaborando de esta forma para la elaboración de este proyecto.

Al Ing. Hugo Camponovo Ulloa, gerente general del Consorcio Empresas Unidas, quien me prestó toda la colaboración para el desarrollo de este trabajo. A todos aquellos docentes de la Universidad Autónoma "Juan Misael Saracho", quienes son los portadores de mis conocimientos, que con agrado, supieron darme una acertada orientación.

En fin, a todas aquellas personas que de una u otra forma, y de manera desinteresada, me brindaron toda la ayuda necesaria con la finalidad de lograr el desarrollo de un buen trabajo.

Gracias!!

PENSAMIENTO

La esperanza no es la convicción de que las cosas saldrán bien, sino la certidumbre de que algo tiene sentido, sin importar su resultado final. *Autor anónimo*

ÍNDICE

DEDICATORIA
AGRADECIMIENTO
PENSAMIENTO
RESUMEN

CAPÍTULO I

ESTUDIO SOBRE LA UTILIZACIÓN DE EMULSIONES EN IMPRIMACIÓN Y TRATAMIENTOS ASFÁLTICOS

1.1	General	lidades	22
1.2	Anteced	dentes	23
1.3	Justifica	ación	25
1.4	Objetiv	OS	27
	1.4.1	Objetivo General	27
	1.4.2	Objetivos Específicos	27
1.5	Alcance.		28
1.6	Metodol	ogía y Medios	29
	1.6.1	Metodología	29
	1.6.2	Medios	31
		<u>CAPÍTULO II</u>	
		ASPECTOS GENERALES DE LAS EMULSIONES	
2.1	Generali	dades	33
2.2	Definició	ốn	34
2.3	Tipos De	Emulsiones	35
	2.3.1 E	Emulsiones Aniónicas	35
	2.3.2 E	Emulsiones Catiónicas	37
2.4	Composi	ción de las Emulsiones Asfálticas	39
	2.4.1 F	El Cemento Asfaltico	40

2.4.2 El Agua.	41
2.4.3 El Emulsificante	42
2.4.3.1 Los Emulsificantes Aniónicos	44
2.4.3.2 Los Emulsificantes Catiónicos	44
2.5 Rompimiento y Curado de las Emulsiones Asfálticas	46
2.5.1 Rotura	46
2.5.2 Curado	48
2.5.3 Factores que Afectan la Rotura y el Curado	49
2.6 Requisitos de Calidad para Emulsiones Asfálticas	50
2.7 Elaboración de Emulsiones Asfálticas	51
2.7.1 Equipo de Emulsificación.	52
2.7.2 Proceso de Emulsificación.	52
2.8 Propiedades Básicas de las Emulsiones	54
2.8.1 Estabilidad en el Almacenamiento	54
2.8.2 Estabilidad de la Emulsión Ante los Agregados Pétreos	56
2.8.3 Características del Residuo.	56
2.9 Almacenamiento, Manipulación y Muestreo	57
2.9.1 Almacenamiento de Emulsiones Asfálticas	57
2.9.2 Manipulación de Emulsiones Asfálticas	58
2.10 Ensayos de Emulsiones	62
2.11 Selección de Emulsiones Asfálticas del Tipo y Grado Correctos	67
2.11.1 Usos Generales de las Emulsiones	68
<u>CAPÍTULO III</u>	
UTILIZACIÓN DE EMULSIONES EN IMPRIMACIÓN Y TRATA ASFÁLTICOS	MIENTOS
3.1 Tratamientos Superficiales	72
3.1.1 Usos de los Tratamientos de Superficie	73
3.1.2 Materiales para Tratamientos de Superficie	74
3.1.2.1 Emulsión Asfáltica.	75

3.1.2.2 Agregados	/6
3.1.3 Tipos de Tratamientos y Sellados	79
3.1.3.1 Tratamiento Superficial Simple	79
3.1.3.2 Tratamientos Superficiales Múltiples	83
3.1.3.3 Cape Seal	84
3.1.3.4 Sellado Doble (Sandwich Seal)	84
3.1.3.5 Sellado de Arena (Sand Seal)	85
3.1.3.6 Lechada Asfáltica (Slurry Seal)	85
3.1.3.7 Micro-Aglomerado (Micro-Surfacing)	92
3.1.3.8 Riego de Sellado (Seal Coat)	98
3.1.3.9 Riego Pulverizado (Fog Seal)	98
3.1.4 Construcción de Tratamientos Superficiales	99
3.1.4.1 Distribuidor de Asfalto	99
3.1.4.2 Distribuidor de Agregados	101
3.1.4.3 Compactadores	103
3.1.4.4 Barredoras Mecánicas	104
3.1.4.5 Camiones	104
3.1.4.6 Secuencia de las Operaciones	105
3.1.4.7 Precauciones	106
3.1.4.8 Verificación de la Distribución Unitaria de Aplicación	107
3.2 Riegos de Imprimación.	108
3.3 Dosificación de Tratamientos Superficiales	110
3.3.1 Consideraciones Previas.	110
3.3.2 Métodos de Diseño	111
3.3.1.1 Determinación del Índice Laminar	114.
3.3.1.2 Factor de Tráfico.	114
3.3.1.3 Métodos Empíricos de Dosificación	115
3.3.1.4 Método de Mc. Leod.	115

CAPÍTULO IV

APLICACIÓN PRÁCTICA

4.1 Ubicación del Tramo en Estudio.	118
4.1.1 Antecedentes	118
4.2 Caracterización de los Materiales Pétreos para Tratamientos	120
4.2.1 Ensayos de Caracterización	120
4.2.1.1 Ensayo de Granulometría	120
4.2.1.2 Ensayo de Peso Específico y Absorción de Agregado	125
4.2.1.3 Resistencia al Desgaste (Maquina de los Ángeles)	128
4.2.1.4 Peso Unitario Suelto	131
4.2.1.5 Índice de Lajosidad o Laminaridad	133
4.3 Caracterización de las Emulsiones Asfálticas	134
4.3.1 Ensayos de Caracterización	134
4.3.1.1 Peso Específico.	134
4.3.1.2 Carga de las Partículas	136
4.3.1.3 Viscosidad Saybolt Furol	137
4.3.1.4 Tamizado de la Emulsión Asfáltica	140
4.3.1.5 Sedimentación a los 5 Días	141
4.3.1.6 Residuo por Destilación	143
4.3.1.7 Penetración	145
4.3.1.8 Ductilidad	147
4.3.1.9 Solubilidad en Tetracloruro de Carbono	150
4.4 Control de Calidad de la Mezcla Agregado- Emulsión Asfáltica	152
4.4.1 Ensayo de recubrimiento y adherencia	152
4.5 Ejecución de la Imprimación y el Tratamiento Superficial con Emulsión	Asfáltica
(CRS-2h)	153
4.5.1 Planeamiento	153
4.5.2 Abastecimiento de Material	154
4.5.3 Imprimación de la Base	156

4.5.4 Preparación del Sustrato para el tratamiento superficial triple
4.5.5 Dosificación del Ligante y Agregado
4.5.5.1 Diseño Tratamiento Superficial Triple con Emulsión Asfáltica – Método de Mc
Leod
4.5.5.2 Diseño Tratamiento Superficial Triple con Emulsión Asfáltica – Método
Directo (Stratura Asfaltos-Ex Ipiranga)
4.5.6 Aplicación Mecánica del Ligante
4.5.7 Aplicación Mecánica del Árido
4.5.8 Compactación
4.5.9 Ejecución del Baño Diluido
4.5.10 Juntas
4.5.11 Aplicación Manual
4.5.12 Limpieza Final
4.5.13 Control Tecnológico
4.5.13.1 Materiales
4.5.13.2 Tasa del Ligante
4.5.13.3 Tasa del Árido
4.6 Comparación Técnico-Económica del Uso de Emulsiones y Asfaltos Diluidos
para Riegos de Imprimación
4.6.1 Comparación Técnica
4.6.2 Comparación Económica
4.6.2.1Costo Unitario de Aplicación de Riego de Imprimación con
Emulsión Asfáltica183
4.6.2.2 Costo Unitario de Aplicación de Riego de Imprimación con
Asfalto Diluido Mc-30
4.7 Control Y Protección Ambiental
4.7.1 Medidas De Mitigación Y Seguridad Ocupacional187
4.8 Análisis de los resultados
4.8.1 Sobre el Agregado Pétreo
4.8.2 Sobre la Emulsión Asfáltica

4.8.3 Sobre la Dosificación	191
4.8.4Sobre el Proceso de Ejecución en Imprimac	ión y Tratamiento Superficial
Triple	191
4.8.3 Costos Unitarios	193
<u>CAPÍTULO V</u> CONCLUSIONES Y RECOMEND	
5.1 Introducción	195
5.2 Conclusiones	195
5.3 Recomendaciones	196
<u>BIBLIOGRAFÍA</u>	105
Ribliografía	197

ÍNDICE DE FIGURAS

Fig.2.1 Esquema del proceso de destilación	33
Fig. 2.2 Diagrama esquemático de una emulsión	35
Fig.2. 3 Emulsión Aniónica	36
Fig.2. 4 Glóbulo de Cemento Asfaltico Cubierto De Moléculas Del Agente	
Emulsionante	36
Fig. 2.5 Situación del Glóbulo de Asfalto en la Emulsión Aniónica Terminada	37
Fig.2. 6 Esquema Sumersión de los Radicales en el Glóbulo de Asfalto	38
Fig. 2.7 Representación Esquemática de las Emulsiones Aniónica y Catiónica	43
Fig.2. 8 Orientación del Emulsificante en el Glóbulo del Ligante	4
Fig. 2.9 Proceso Inicial de Rompimiento de una Emulsión	47
Fig.2.10 Planta para Producir Emulsión Asfáltica	51
Fig. 2.11 Ensayo de Destilación para Emulsiones Asfálticas	64
Fig. 2.12 Ensayo de Tamiz.	65
Fig. 2.13 Ensayo de Viscosidad Saybolt-Furol	65
Fig. 3.1 Partículas Planas Quedan Sumergidas Cuando se Emplea el Asfalto	
Necesario para Retener a las Partículas Cubicas	79
Fig. 3.2 Equipo para Lechada Asfáltica	86
Fig. 3.3 Diagrama de una Típica Mezcladora para Lechadas Asfálticas	86
Fig. 3.4 Ejecución del Slurry Seal.	92
Fig. 3.5 Acabado Final del Slurry Seal.	92
Fig. 3.6 Angulo Correcto de Inclinación de los Picos.	100
Fig. 3.7 La altura de la Barra de Riego debe Ajustarse para una Adecuada	
Cobertura	100
Fig. 3.8 Distribuidor de Agregados (adosado a la parte trasera del camion)	102
Fig. 3.9 Compactador Sobre Rodillo Neumático Y Liso.	103
Fig. 3.10 Barredora Mecánica	104
Fig. 3.11 Secuencia de Operación Constructiva.	106
Fig. 3.12 Ejecución de la Imprimación.	109
Fig. 4.1 Tramo Canaletas- Entre Ríos.	119

Fig. 4.2 Ubicación Tramo de Estudio (Canaletas- Entre Ríos)	119
Fig. 4.3 Ensayo de Caracterización de Agregados	121
Fig. 4.3.a Juego de Tamices a Emplearse y Agregado Destinado para Nuestro	
Estudio	121
Fig. 4.3.b Proceso de Tamizado del Agregado y Separación de Muestras Según l	as
Aberturas de los Tamices	122
Fig. 4.4 Ensayo de Peso Específico y Absorción de Agregados	126
Fig. 4.4.a Muestra utilizada	126
Fig. 4.4.b Pesaje de la Muestra.	126
Fig. 4.4.c Saturación de la muestra durante 24 horas	126
Fig. 4.4.d Secado del Agregado Saturado en Agua Durante 24 Horas	126
Fig. 4.4.e Peso Sumergido en Agua.	127
Fig. 4.5 Tambor para Medir la Resistencia al Desgaste de los Agregados	128
Fig. 4.5.a Equipo para el Desgaste de los Ángeles.	129
Fig. 4.5.b Tamizado y Pesaje de la Muestra	129
Fig. 4.5. c Colocación de la Muestra y las Esferas dentro del Tambor	129
Fig. 4.5.d Muestra Resultante y Esferas Utilizadas en el Ensayo de Abrasión	129
Fig. 4.5.e Tamizado de la Muestra Resultante y Pesaje del Agregado Retenido en	ı la
Malla N°12	130
Fig. 4.6 Ensayo de Peso Específico Suelto.	131
Fig. 4.7 Ensayo de Laminaridad del Agregado Pétreo	133
Fig. 4.8 Ensayo de Peso Específico de la Emulsión Asfáltica.	135
Fig. 4.8.a Llenado de los picnometros con la emulsión	135
Fig. 4.8.b Tapado de los picnometros.	135
Fig. 4.8.c Picnometros Completamente Llenos.	135
Fig. 4.8.d Pesaje de los Picnometros con la Muestra.	135
Fig. 4.9 Ensayo de Viscosidad Saybolt-Furol de la Emulsión Asfáltica	138
Fig. 4.9.a Muestra a ser utilizada para el ensayo	138
Fig.4.9.b Muestra sumergida en agua a una temperatura de 71°C	. 138
Fig. 4.9.c Colocación del matraz en el viscosímetro	138

Fig. 4.9.d Vaciado de la muestra en el viscosímetro	138
Fig. 4.9.e Viscosímetro lleno con la muestra de emulsión.	138
Fig. 4.9.f Cronometraje y vaciado de la muestra a través del orificio del viscosín	metro
saybolt-furol	139
Fig. 4.10 Pesaje del Tamiz N°20 Para la Realización del Ensayo	140
Fig. 4.10.a Lavado de la Muestra y Pesaje del Material Retenido en el Tamiz	140
Fig. 4.11 Ensayo de Sedimentación.	142
Fig. 4.11.a Probetas Llenas de Muestra de Emulsión	142
Fig. 4.11.b Identificación de Frascos para cada una de las Muestras	142
Fig. 4.11.c Separación de Muestras Superiores e Inferiores Correspondientes A	55
Grs	142
Fig.4.12 Pesaje del Equipo de Destilación y la Emulsión	144
Fig. 4.12.a Pesaje del Alambique y los Accesorios	144
Fig. 4.12.b Pesaje de la Muestra de Emulsión	144
Fig. 4.13 Destilación de la Muestra.	144
Fig. 4.14 Ensayo de Penetración.	146
Fig. 4.14.a Vaciado del Residuo en los Recipientes	146
Fig.4.14.b Aparato de Penetración.	146
Fig. 4.14.c Colocación de la Aguja del Penetrómetro en la Superficie de la	
Muestra	146
Fig.4.14.d Cronometraje del Tiempo de Penetración	146
Fig. 4.15 Preparación de los Moldes para el Ensayo de Ductilidad	148
Fig. 4.15.a Untado de los Moldes con la Mezcla de Glicerina y Talco	148
Fig.4.15.b Vaciado de la Muestra Dentro de los Moldes	148
Fig. 4.15.c Moldes Llenos de la Muestra	148
Fig. 4.15.d Placa y Moldes con la Muestra Llevados a Baño de Agua	148
Fig. 4.15.e Preparación de la Maquina Probadora de Ductilidad	149
Fig.4.15.f Ensayo de Ductilidad.	149
Fig. 4.16 Ensayo de Solubilidad	151
Fig. 4.16.a Pesaje del Matraz y la Muestra para el Ensayo	151

Fig. 4.16.b Añadido del Tetracloruro de Carbono a la Muestra	151
Fig. 4.17 Emulsión CRS-2h.	154
Fig. 4.18 Árido para el Tratamiento Superficial Triple	155
Fig. 4.19 Base Nueva	156
Fig.4. 20 Imprimación de la Base	158
Fig.4.21 Limpieza de la Superficie a Regar	158
Fig. 4.22 Esparcidor del Ligante	167
Fig. 4.23 Control de la Temperatura del Ligante.	167
Fig. 4.24 Ejecución del Regado de la Emulsión	168
Fig. 4.25 Regado de la Emulsión	168
Fig. 4.26 Preparación del Distribuidor del Árido	169
Fig. 4.27 Control de la Caja Adosada al Camión de Agregados	170
Fig. 4.28 Esparcido del Agregado	170
Fig. 4.29 Equipo de Compactación.	172
Fig. 4.30 Compactación de la Superficie	172
Fig. 4.31 Ejecución del Baño Diluido.	173
Fig. 4.32 Realizado de Juntas Transversales.	174
Fig. 4.33 Esparcimiento del Árido y el Ligante Manualmente	175
Fig.4.34 Control de la Tasa de Agregado en Obra	176

ÍNDICE DE TABLAS

TABLA 2.1 ESPECIFICACIONES PARA EMULSIONES ANIÓNICAS (AASHTO
T 140 -70)50
TABLA 2.2 ESPECIFICACIONES PARA EMULSIONES CATIÓNICAS
(AASHTO T-208)50
TABLA 2.3 TEMPERATURAS DE ALMACENAMIENTO PARA EMULSIONES
ASFÁLTICAS58
TABLA 2.4 GUÍA DE LAS CONDICIONES EXIGIDAS ENTANQUES
DESAGOTADOS ANTES DE LA CARGA CON EMULSIÓN ASFÁLTICA60
TABLA 2.5 POSIBLES CAUSAS DE CONTAMINACIÓN DE MATERIAL
ASFÁLTICO O DE MUESTRAS, Y PRECAUCIONES RECOMENDADAS61
TABLA 2. 5a – VEHÍCULOS Y TRANSPORTISTAS61
TABLA 2.5 b – EQUIPAMIENTO Y TANQUE DE ALMACENAMIENTO DE
LA PLANTA DE MEZCLADO61
TABLA 2.5 c – MUESTRAS NO REPRESENTATIVAS O
CONTAMINADAS 62
TABLA 2.6 USOS GENERALES DE LAS EMULSIONES71
TABLA 3.1 TRATAMIENTOS DE SUPERFICIE Y RIEGOS DE SELLADO CON
EMULSIONES ASFÁLTICAS
TABLA 3.2 TEMPERATURAS SUGERIDAS PARA EL RIEGO, PARA VÁRIOS
GRADOS DE EMULSIÓN ASFÁLTICA79
TABLA 3.3 CANTIDADES DE ASFALTO Y AGREGADO PARA
TRATAMIENTOS SUPERFICIALES SIMPLES
TABLA 3.4 CANTIDADES DE ASFALTO Y AGREGADO PARA
TRATAMIENTOS SUPERFICIALES DOBLES
TABLA 3.5 CANTIDADES DE ASFALTO Y AGREGADO PARA
TRATAMIENTOS SUPERFICIALES TRIPLES
TABLA 3.6 GRANULOMETRÍAS PARA LECHADAS ASFÁLTICAS87
TABLA 3.7 GRANULOMETRÍAS PARA MICRO-AGLOMERADOS96

TABLA 3.8 FACTORES DE TRÁFICO	115
TABLA 3.9 FACTOR DE PERDIDA DEL ÁRIDO	116
TABLA 3.10 VALORES DE CORRECCION POR TEXTURA DE LA	
CALZADA	117
TABLA 4.1 REQUISITOS DE GRADACIÓN DE AGREGADOS PARA	
TRATAMIENTOS SUPERFICIALES TRIPLES	121
TABLA 4.2 RESULTADOS ANALISIS GRANULOMÉTRICO	122
TABLA 4.3 RESULTADOS PESO ESPECÍFICO Y ABSORCIÓN DEL	
AGREGADO GRUESO	127
TABLA 4.4 RESULTADOS RESISTENCIA AL DESGASTE DE LOS	
ÁNGELES	130
TABLA 4.5 RESULTADOS PESO UNITARIO SUELTO	132
TABLA 4.6 RESULTADOS INDICE DE LAMINARIDAD	134
TABLA 4.7 RESULTADOS ENSAYO PESO ESPECÍFICO 25°C (T=25°C)	136
TABLA 4.8 RESULTADOS ENSAYO CARGA DE LAS PARTÍCULAS	137
TABLA 4.9 RESULTADOS ENSAYO VISCOSIDAD SAYBOLT FUROL	
(AASHTO T-72)	139
TABLA 4.10 RESULTADOS ENSAYO TAMIZADO DE LA EMULSIÓN	
ASFÁLTICA	141
TABLA 4.11 RESULTADOS ENSAYO DE SEDIMENTACIÓN A LOS 5	
DÍAS	142
TABLA 4.12 RESULTADOS ENSAYO DEL RESIDUO DE DESTILACIÓN	145
TABLA 4.13 RESULTADOS ENSAYO DE PENETRACION	147
TABLA 4.14 RESULTADOS ENSAYO DE DUCTILIDAD	150
TABLA 4.15 RESULTADOS ENSAYO DE SOLUBILIDAD EN	
TETRACLORURO DE CARBONO	152
TABLA 4.16 RESULTADOS ENSAYO DE RECUBRIMIENTO Y ADHEREN	ICIA
AGREGADO – EMULSIÓN	153
TABLA 4.17 CONTROL DE TASAS PARA IMPRIMACIÓN BITUMINOSA.	157

TABLA 4.18 RESULTADO FINAL DOSIFICACIÓN AGREGADO-LIGANTE
(METODO MC LEOD)164
TABLA 4.16 DOSIFICACIÓN DEL LIGANTE Y AGREGADOS
TABLA 4.17 DE CONTROLES EN OBRA DE TASAS DEL LIGANTE166
TABLA 4.18 DE CONTROL EN OBRA DE TASAS DEL AGREGADO155
TABLA 4.19 DOSIFICACIÓN DE AGREGADOS MÉTODO DIRECTO164
TABLA 4.19 a- AGREGADO
TABLA 4.19 b- OBSERVACIONES
TABLA 4.19 c- TASAS AGREGADOS-LIGANTE
TABLA 4.19 d- OBSERVACIONES
TABLA 4.20 RESULTADO FINAL DOSIFICACIÓN AGREGADO-LIGANTE
(MÉTODO DIRECTO
TABLA 4.21 CONTROL DE TASAS PARA TRATAMIENTO SUPERFICIAL
TRIPLE - PRIMERA CAPA
TABLA 4.22 CONTROL DE TASAS PARA TRATAMIENTO SUPERFICIAL
TRIPLE - SEGUNDA CAPA
TABLA 4.23 CONTROL DE TASAS PARA TRATAMIENTO SUPERFICIAL
TRIPLE - TERCERA CAPA
TABLA 4.24 CONTROL DE TASAS PARA TRATAMIENTO SUPERFICIAL
TRIPLE - BAÑO DILUIDO

ÍNDICE ANEXOS

ANEXO I ESPECIFICACIONES TÉCNICAS DEL PROYECTO

Imprimación Bituminosa	A-1
Tratamientos Bituminosos (Tratamiento Superficial Triple)	A-8
ANEXO II GUÍAS DE ENSAYO DE AGREGADOS	
Análisis Granulométrico de Agregados Gruesos y Finos A.A.S.H.T.O. T-27	A-17
Resistencia al Desgaste de los Agregados de Tamaños Menores de 37.5 Mm (1½") po
medio de la Maquina de los Ángeles A.A.S.H.T.O. T – 96	A-23
Peso Específico y Absorción de Agregados Gruesos A.A.S.H.T.O. T – 85	A-29
Ensayo de Adherencia Árido-Ligante A.A.S.H.T.O. T 182- 84	A-35
ANEXO III GUÍAS DE ENSAYO A EMULSIONES ASFALTICAS	
Destilación de Emulsiones Asfálticas A.A.S.H.T.O. T59 – 97	A-37
Tamizado de las Emulsiones Asfálticas A.A.S.H.T.O. T59 – 97	A-44
Viscosidad Saybolt de Emulsiones Asfálticas A.A.S.T.H.O T59 – 97	A-47
Solubilidad del Cemento Asfaltico en Tetracloruro de Carbono A.A.S.H.T.O	
Т 44	A-53
Ductilidad de los Materiales Asfalticos A.A.S.H.T.O. T 51	A-59
Penetración de los Materiales Asfalticos A.A.S.H.T.O T – 49	A-65
Sedimentación en las Emulsiones Asfálticas A.A.S.H.T.O T-59	A-75
Carga de las Partículas de las Emulsiones Asfálticas A.A.S.H.T.O .T-59	A-78
ANEXO IV COSTOS UNITARIOS	
Imprimación Bituminosa con Emulsión Asfáltica CRS-2h	A-81
Tratamiento Superficial Triple con Emulsión Asfáltica CRS-2h	A-82