UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL "DPTO. DE HIDRÁULICA Y OBRAS SANITARIAS"

"DISEÑO HIDRÁULICO DE UNA PLANTA DE TRATAMIENTO PARA EL REUSO DEL AGUA RESIDUAL DOMÉSTICA EN RIEGO DE ÁREAS VERDES EN EL PARQUE MIRADOR HÉROES DE LA INDEPENDENCIA (SENAC)"

POR:

AYDA YISELL AGUIAR FERNÁNDEZ

Proyecto presentado a consideración de la **UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO"**, como requisito para optar el grado académico de Licenciatura en Ingeniería Civil

SEMESTRE II / GESTIÓN 2016 TARIJA-BOLIVIA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE HIDRÁULICA Y OBRAS SANITARIAS

"DISEÑO HIDRÁULICO DE UNA PLANTA DE TRATAMIENTO
PARA EL REUSO DEL AGUA RESIDUAL DOMÉSTICA EN RIEGO
DE ÁREAS VERDES EN EL PARQUE MIRADOR HÉROES DE LA
INDEPENDENCIA (SENAC)"

POR:

AYDA YISELL AGUIAR FERNÁNDEZ

SEMESTRE II / GESTIÓN 2016 TARIJA-BOLIVIA

V° B° Ing. Juan Carlos Loza Vélez

DOCENTE CIV-502

M.Sc. Ing. Ernesto Álvarez Gozalvez	M.Sc. Ing. Silvana Paz Ramírez
DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA	VICEDECANA FACULTAD DE CIENCIAS Y TECNOLOGÍA
TRIBUNAL:	
Ing. Moisés Po	erales Avilés
Ing. Jaime Zer	nteno Benítez
	1 (0 1)
Ing. Alberto Cal	deron Orellana

ADVERTENCIA

El docente y el tribunal evaluador del Proyecto de Ingeniería Civil no se solidarizan con los términos, la forma, los modos y las expresiones empleadas en la elaboración del presente trabajo, siendo las mismas únicamente responsabilidades del autor.

DEDICATORIA

Con todo mi amor a mi madre Aida Fernández, por su sacrificio, esfuerzo, amor y dedicación para darme una carrera para mi futuro y por creer en mi capacidad para conseguir mis sueños, agradecida por todas tus palabras de aliento y la ayuda que siempre me has brindado ha sido sumamente importante, sobre todo estando ahí a mi lado en los momentos y situaciones más difíciles sosteniendo mi mano para alcanzar este objetivo.

No fue sencillo culminar con éxito este proyecto, sin embargo, siempre fuiste motivadora y perseverante para que logre mis sueños.

Y a mí angelito que me ha acompañado en esta última etapa, llegaste para cambiar y alegrar nuestras vidas.

AGRADECIMIENTO

A Dios, Padre Celestial que me dio salud, fuerza y fe para creer lo que me parecía imposible terminar.

A mi familia en general, que siempre ha estado acompañándome en el transitar de mi vida, acrecentando mi ser con sus consejos, su paciencia y su infinito cariño, que nunca me permitieron decaer para que siga adelante, sea perseverante y cumpla con mis ideales.

A mis amigos, compañeros y docentes presentes y pasados, quienes sin esperar nada a cambio compartieron su conocimiento, alegrías y tristezas; y a todas aquellas personas que durante estos años estuvieron a mi lado apoyándome y lograron que este sueño se haga realidad.

A todos ustedes

¡GRACIAS TOTALES!

Los sueños parecen al principio imposibles, luego improbables, y luego, cuando nos comprometemos, se vuelven inevitables.

Mahatma Ghandi

ÍNDICE DE CONTENIDO

CAPITULO I	1
1.1 SELECCIÓN Y DEFINICIÓN DEL TEMA DEL PROYECTO	1
1.1.1 ANTECEDENTES PRELIMINARES DEL TEMA	2
1.2 ÁREA DE ESTUDIO	3
1.3 PLANTEAMIENTO DEL PROBLEMA	4
1.3.1 FORMULACIÓN DEL PROBLEMA:	5
1.3.2 SISTEMATIZACIÓN DEL PROBLEMA	5
1.4 OBJETIVOS DEL PROYECTO	6
1.4.1 OBJETIVO GENERAL:	6
1.4.2 OBJETIVOS ESPECÍFICOS.	6
1.5 JUSTIFICACIÓN DEL PROYECTO	6
1.5.1 JUSTIFICACIÓN ACADÉMICA	7
1.5.2 JUSTIFICACIÓN TÉCNICA	7
1.5.3 JUSTIFICACIÓN SOCIAL	7
1.5.4 JUSTIFICACIÓN INSTITUCIONAL	7
1.6 MARCO DE REFERENCIA	8
1.6.1 MARCO TEÓRICO	8
1.6.2 MARCO CONCEPTUAL	23
1.6.3 MARCO ESPACIAL	25
1.6.4 MARCO TEMPORAL	26
CAPÍTULO II	27
2.1 CARACTERÍSTICAS DEL AGUA RESIDUAL DOMÉSTICA	27
2.1.1 CARACTERIZACIÓN DE LOS LÍQUIDOS CLOACALES	27
2.1.2 El LIQUÍDO CLOACAL: CARACTERISTICAS SEGÚN SU ORI	GEN28
2.1.3 CARACTERÍSTICAS DE LAS AGUAS RESIDUALES:	29
2.1.4 CARACTERIZACIÓN BACTERIOLÓGICA DEL AGUA:	29
2.1.5 CARACTERIZACIÓN FÍSICO-OUÍMICA DEL AGUA:	30

2.2	TIPOS DE DISPOSICIÓN FINAL DEL AGUA RESIDUAL DOMÉSTICA	31
2.3	RE USO DEL AGUA EN RIEGO	33
2	2.3.1 GENERALIDADES DEL REUSO	34
2	2.3.2 AGUAS RESIDUALES Y REUSO	35
2	2.3.3 TRATAMIENTO DE LAS AGUAS RESIDUALES:	37
2.4	CALIDAD DEL AGUA PARA RIEGO	40
2	2.4.1 NORMAS INTERNACIONALES	40
2	2.4.2 NORMAS DE CALIDAD VIGENTES.	43
2	2.4.3 RE USO DE AGUAS RESIDUALES PARA RIEGO DE PARQUES, JA	ARDINES
	PÚBLICOS Y CAMPOS DEPORTIVOS	45
2.5	EXPERIENCIAS EN EL USO DE AGUA RESIDUAL DOMÉSTICA CON	I FINES
	DE RIEGO	47
2.6	TIPOS DE TRATAMIENTO DE AGUAS RESIDUALES	51
2	2.6.1 PROCESOS UNITARIOS DE LA DEPURACIÓN DEL AGUA:	51
2	2.6.2 TECNOLOGÍAS DE TRATAMIENTO	54
2.7	CONSIDERACIONES AMBIENTALES Y NORMATIVA BOLIVIANA	64
2	2.7.1 LEY 1333 REGLAMENTO EN MATERIA DE CONTAMINACION H	ÍDRICA
		66
CA	PÍTULO III	69
3.1	PARÁMETROS DE CONTROL PARA EL TRATAMIENTO DE AGUAS	
	RESIDUALES	70
3	3.1.1 CARACTERIZACIÓN DE LOS SÓLIDOS TOTALES EN LAS AGUA	S
	RESIDUALES	70
3	3.1.2 GRASAS Y ACEITES	72
3	3.1.3 DEMANDA QUÍMICA DE OXIGENO (DQO)	73
3	3.1.4 DEMANDA BIOQUÍMICA DE OXIGENO (DBO)	74
	PARTES DE LA PLANTA DE TRATAMIENTO A DISEÑAR	
3	3.2.1 PRE TRATAMIENTO	77
3	3.2.2 TRATAMIENTO PRIMARIO	80

3.2.3 TRATAMIENTO SECUNDARIO	83
3.2.4 LECHOS DE SECADO	85
CAPÍTULO IV	88
4.1 CROQUIS DE PLANTA	88
4.2 CÁLCULO DEL CAUDAL REQUERIDO (NECESIDADES HÍDR	
JARDÍN)	89
4.3 JUSTIFICACIÓN DE LA ELECCIÓN DE TRATAMIENTO BIOL	ÓGICO102
4.4 ELECCIÓN Y DISEÑO DE LA ADUCCIÓN	103
4.5 CROQUIS DE LA PLANTA DE TRATAMIENTO	111
4.6 PRE-TRATAMIENTO	112
4.6.3 DESGRASADOR	130
4.7 TRATAMIENTO PRIMARIO	134
4.7.1 CÁMARA SÉPTICA	134
4.8 TRATAMIENTO SECUNDARIO	142
4.9 DISEÑO DEL TANQUE DE REGULACIÓN	159
4.10 DISEÑO DE TUBERÍA BY PASS	161
4.11 EFICIENCIA	162
4.12 ELECCIÓN Y DISEÑO DE LA CONDUCCIÓN AL CÁRCAMO	164
CONCLUSIONES	175
RECOMENDACIONES	178
BIBLIOGRAFÍA	180
ANEXO 1	186
ANEXO 2 DATOS DE EVAPOTRASPIRACIÓN Y PRECIPITACIÓN	MEDIA .192
EVAPOTRASPIRACIÓN	192
PRECIPITACIÓN MEDIA	196
ANEXO 3	200
ELECCIÓN DE LA ADUCCIÓN Δz= 3,5m	200
ELECCIÓN DE LA ADUCCIÓN Δz= 4,5m	
ELECCIÓN DE LA ADUCCIÓN Δz= 5,5m	205

ELECCIÓN DE LA ADUCCIÓN Δz= 6,5m	208
ELECCIÓN DE LA ADUCCIÓN Δz= 7,5m	211
ANEXO 4	215
ELECCIÓN DE LA CONDUCCIÓN	215
ALTERNATIVA 1 TANQUE ARRIBA	215
CAUDAL 6,17 l/s	215
CAUDAL 3,09 l/s	218
ALTERNATIVA 2 TANQUE ABAJO	220
CAUDAL 3,09 l/s	220
ANEXO 5 DISEÑO DEL CÁRCAMO Y DEL SISTEMA DE RIEGO	223
ANEXO 6	228
ANEXO 7	229
ANEXO 8 RESULTADOS DE LABORATORIO	239
FOTOGRAFÍAS DE LA EXTRACCIÓN DE LAS MUESTRAS	241

ÍNDICE DE ILUSTRACIONES

Ilustración 1.1 Vista satelital del área de estudio Parque Mirador Héroes de la	
Independencia2	2
Ilustración 1.2 Vista satelital del área de Parque Mirador Héroes de la Independencia	sin
relieve	ļ
Ilustración 1.3 Vista de una Planta de Tratamiento	3
Ilustración 1.4 Tamiz 14	ļ
Ilustración 1.5 Esquema de Rejas en una Planta de Tratamiento	;
Ilustración 1.6 Esquema de un Microfiltro	5
Ilustración 1.7 La Coagulación - Floculación en el Proceso de Tratamiento17	7
Ilustración 1.8 Sistema de Lodos Activados)
Ilustración 1.9 Filtro Percolador)
Ilustración 1.10 Esquema de una Planta de Tratamiento de Aguas Residuales22	2
	20
Ilustración 2.1 Distribución de los sólidos contenidos en el agua residual urbana típica	
Ilustración 2.2 Ejemplos combinación de procesos unitarios de depuración:54	
Ilustración 2.3 Esquema del fango activado)
Ilustración 4.1 Croquis del Proyecto88	3
Ilustración 4.2 Esquema de la Evapotranspiración; Necesidades de agua de las plantas	s. 89
Ilustración 4.3 Curva de necesidades de lavados98	}
Ilustración 4.4 Curva de Necesidades de Lavados99)
Ilustración 4.5 Croquis sistema de Aducción	3
Ilustración 4.6 Esquema de la tubería de aducción (diámetro calculado)107	7
Ilustración 4.7 Croquis de los componentes de la Planta de Tratamiento111	
Ilustración 4.8 Vista en planta de un sistema de PRE-TRATAMIENTO112	2
Ilustración 4.9 Imágenes de dos cámaras de rejas	ļ
Ilustración 4.10 Cámara de rejas: planta, cortes longitudinal y transversal123	
Ilustración 4.11 Imagen de un desarenador de una planta de tratamiento de re uso de a	iguas
residuales 124	L

Ilustración 4.12 Imagen de un desgrasador en planta de tratamiento	130
Ilustración 4.13 Esquema de un Reactor Anaerobio de Flujo Ascendente (RALF)	142
Ilustración 4.14 Esquema de un lecho de secado	153
Ilustración 4.15 Croquis del sistema de Conducción	164
Ilustración 4.16 Esquema de la tubería de Conducción (diámetro calculado)	168
Ilustración 4.17 Esquema de la tubería de Conducción (diámetro calculado)	171

ÍNDICE DE TABLAS

Tabla 1. 1 Coordenadas del área de estudio
Tabla 2.1 Principales cultivos empleados para re uso de aguas residuales domésticas*36
Tabla 2.2 Directrices recomendadas sobre la calidad microbiológica de las aguas residuales
empleadas43
Tabla 2.3 Recomendaciones de la OMS para la reutilización de aguas residuales en riego agrícola
Tabla 2.4 Normativa de la Agencia de protección ambiental (EE. UU) sobre la reutilización
de aguas residuales para uso agrícola45
Tabla 2.5 Recomendaciones de la OMS para el riego de campos deportivos y de zonas
verdes con acceso público46
Tabla 2.6 Normas de la Agencia de Protección Ambiental para el riego de parques, campos
deportivos, zonas verdes y otros usos46
Tabla 2.7 Sistema de Tratamiento y Disposición final de las aguas residuales en los casos
estudiados50
Tabla 2.8 Calidad microbiológica de las aguas residuales empeladas para riego en los
casos estudiados51
Tabla 2.9 Periodo de supervivencia para los diferentes microorganismos en Lodos61
Tabla 3.1 Criterio de Diseño de desarenadores.
80
Tabla 3.2 Valores de la Tasa de acumulación de lodo
82
Tabla 3.3 Recomendaciones para tipo de lodo digerido
86
Tabla 4.1 El valor del coeficiente de especie es clave para la determinación del coeficiente
del jardín91
Tabla 4.2 Valores Del Coeficiente De Densidad

Tabla 4.3 Valores Del Coeficiente De Microclima
Tabla 4.4 Tabla de Valores obtenidos para calcular el Coeficiente de Jardín94
Tabla 4.5 Relación DBO5/ DQO
Tabla 4.6 Elección de Alternativas para el diseño de la aducción104
Tabla 4.7 Tabla diseñada por el programa Aquasystems (Diámetro asumido por el
programa)105
Tabla 4.8 Recomendaciones para el Diseño
Tabla 4.9 Valores más comunes que adopta el coeficiente (β)121
Tabla 4.10 Criterio de Diseño de desarenadores
Tabla 4.11 Carga de diseño reactores (RAFA)145
Tabla 4.12 Tiempo de retención en bio digestores RAFA
Tabla 4.13 Áreas típicas requeridas para Lecho de secado abierto155
Tabla 4.14 Eficiencia de remoción en tipos de tratamiento
Tabla 4.15 Eficiencia de remoción en sistemas de tratamiento
Tabla 4.16 Tabla de Remoción de la demanda Bioquímica del Oxigeno163
Tabla 4.17 Elección de Alternativas para el diseño de la Conducción165
Tabla 4.18 Tabla diseñada por el programa Aquasystems (Diámetro asumido por el
programa)166
Tabla A.1 Clasificación de los cuerpos de agua según su aptitud de uso187
Tabla A.2 Valores máximos admisibles de parámetros en cuerpos receptores188
Tabla A.3 Límites permisibles para descargas liquidas en mg/l191
Tabla A.4 Evapotranspiración total (mm)
Tabla A.5 Precipitación Media (mm)
Tabla A.6 Datos del aspersor
Tabla A.7 Tubería clase 9
Tabla A.8 Tubería esquema 40
Tabla A.9 tabla de los tirantes medidos en el colector de la calle 6 Barrio Méndez Arcos
Tabla A.10 Cálculo del caudal medio diario en el colector de la calle 6 Barrio Méndez
Arcos