

Containerized Docker

Application Lifecycle with

Microsoft Platform and Tools

White paper

PUBLISHED BY

Cesar de la Torre

Microsoft Corp.

Cesar de la Torre
Microsoft Corp.

DevDiv, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 201 6 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any

form or by any means without the written permission of the publisher.

This book is provided òas-isó and expresses the authorõs views and opinions. The views, opinions and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the òTrademarksó webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective

owners.

Author:

Cesar de la Torre, Sr. PM, .NET product team, Microsoft

Participants and reviewers:

 John Gossman, Partner Software Eng, Azure product team, Microsoft

Jeffrey Richter, Partner Software Eng, Azure product team, Microsoft

Steve Lasker, Sr. PM, Visual Studio product team, Microsoft

Michael Friis, Product Manager, Docker Inc

Glenn Condron, Sr. PM, .NET product team, Microsoft

David Carmona, Principal PM Lead, .NET product team, Microsoft

Mark Fussell, Principal PM Lead, Azure Service Fabric product team, Microsoft

Anand Chandramohan, Sr. Product Manager, Azure team, Microsoft

Scott Hunter, Partner Director PM, .NET product group, Microsoft

i

Contents
Section 1: Summary .. 1

Purpose .. 1

Who should use this guide ... 1

How you can use this guide .. 1

Section 2: Introduction to containers and Docker .. 2

What are containers?.. 2

What is Docker?.. 3

Comparing Docker containers with virtual machines ... 4

What is Container as a Service?... 5

Basic Docker definitions ... 5

Basic Docker taxonomy: containers, images, and registries .. 7

Section 3: Introduction to the Docker application lifecycle .. 8

Containers as the foundation for DevOps collaboration ... 8

Introduction to a generic E2E Docker application lifecycle workflow .. 9

Benefits from DevOps for containerized applications ... 10

Section 4: Introduction to the Microsoft platform and tools for containerized applications 11

Vision ... 11

Section 5: Architecting and developing containerized applications with Docker and Azure 14

Vision ... 14

Architecting Docker applications ... 14

Common container design principles... 14

Container equals a process .. 14

Monolithic applications .. 15

Monolithic application deployed as a container ... 16

Publishing a single Docker container app to Azure App Service .. 17

State and data in Docker applications ... 18

Service-oriented architecture applications ... 19

Microservices, multiple services per app and service orientation approaches .. 20

Docker clusters in Microsoft Azure ... 22

Azure Container Service .. 23

Development environment for Docker apps ... 25

Development tools choices: IDE or editor.. 25

ii

Language and framework choices .. 25

Inner-loop development workflow for Docker apps .. 26

Workflow for building a single app inside a Docker container using Visual Studio Code and

Docker CLI ... 26

Using Visual Studio Tools for Docker (Visual Studio on Windows) ... 35

Using PowerShell commands in Dockerfile to setup Windows Containers (Docker standard based)

 ... 37

Section 6: Docker ap plication DevOps workflow with Microsoft tools ... 38

Steps in the outer-loop DevOps workflow for a Docker application ... 39

Step 1. Inner loop development workflow ... 39

Step 2. SCC integration and management with Visual Studio Team Services and Git 39

Step 3. Build, CI, Integrate and Test with VSTS and Docker .. 40

Step 4. Continuous Delivery (CD), Deploy .. 45

Step 5. Run and manage ... 49

Step 6. Monitor and diagnose .. 49

Section 7: Running, managing and monitoring Docker production environments 50

Running composed and microservices-based applications in production environments 50

Intro to orchestrators, schedulers, and container clusters .. 50

Managing production Docker environments .. 51

Azure Container Service and management tools .. 51

Azure Service Fabric .. 52

Monitoring containerized application services ... 53

Microsoft Application Insights .. 53

Microsoft Operations Management Suite (OMS) ... 54

Section 8: Conclusions ... 56

Key takeaways .. 56

1 Summary

S E C T I O N

1

Summary

Enterprises are increasingly adopting containers. The enterprise is realizing the benefits of cost

savings, solution to deployment problems , and DevOps and production operations improvements

that containers provide. Over the last years, Microsoft has been rapidly releasing container

innovations to the Windows and Linux ecosystems ð partnering with industry leaders like Docker and

Mesosphere to deliver container solutions that help companies build and deploy applications at cloud

speed and scale, whatever their choice of platform or tools.

Building containerized applications in an enterprise environment means more than just developing

and running applications in containers. It means that you need to have an end-to-end lifecycle so you

are capable of delivering applications through Continuo us Integration, Testing, Continuous

Deployment to containers, and release management supporting multiple environments, while having

solid production management and monitoring systems.

Within the DevOps context, containers enable continuit y in the CI/CD model as they create a clear

boundary between developers by providing containerized apps with all the required environment

configuration, and ITOps that builds a generic environment to run app specific content. This is all

enabled through Microsoft tools and services for containerized Docker applications.

Purpose
This guide provides end-to-end guidance on the Docker application development lifecycle with

Microsoft tools and services while providing an introduction to Docker development concepts for

readers who might be new to the Docker ecosystem. This way, anyone can understand the global

picture and start planning development projects based on Docker and Microsoft technologies/cloud .

Who should use this guide

The audience for this guide is mainly Development Leads, Architects, and IT Operations people who

are new to Docker-based application development and would like to learn how to implement the

whole Docker application lifecycle with Microsoft technologies and services in the cloud.

A secondary audience is technical decision makers who are already familiar to Docker but who would

like to know the Microsoft portfolio of products, services , and technologies for the end -to-end Docker

application lifecycle.

How you can use this guide

If you are new to Docker, it is recommended to start from the beginning and read the initial

introduction to Docker containing the definition of fundamental Docker terms, including containers,

images, registry, clusters, orchestrators, and Docker itself.

On the other hand, if you are already familiar with Docker and you just want to know what Microsoft

has to offer about it , it is recommended to start with the section òIntroduction to the Microsoft

platform and tools for Containerized Applicationsó and continue from there.

2 Introduction to Containers and Docker

S E C T I O N

2

Introduction to containers
and Docker

What are containers?
Containerization is an approach to software development in which an application and its versioned set

of dependencies plus its environment configuration abstracted as deployment manifest files are

packaged altogether (the container image), tested as a unit and finally deployed (the container or

image instance) to the host Operating System (OS).

Similar to real-life shipping/freight containers (goods transported in bulk by ship, train, truck or

aircraft), software containers are simply a standard unit of software that behaves the same on the

outside regardless of what code, language and software/framework dependencies are included on the

inside. This enables developers and IT Professionals to transport them across environments with none

or little modification in the implementation regardless of the different configuration for each

environment.

Containers isolate applications from each other on a shared operating system (OS). This approach

standardizes application program delivery, allowing apps to run as Linux or Windows containers on

top of the host OS (Linux or Windows). Because containers share the same OS kernel (Linux or

Windows), they are significantly lighter than virtual machine (VM) images.

When running regular containers, the isolation is not as strong as when using plain VMs. If you need

further isolation than the standard isolation provided in regular containers (like in regular Docker

images), then, Microsoft offers and additional choice whic h is Hyper-V containers. In this case, each

container runs inside of a special virtual machine. This provides kernel level isolation between each

Hyper-V container and the container host. Therefore, Hyper-V containers provide better isolation, with

a little more overhead.

However, Hyper-V containers are less lightweight than regular Docker containers.

With a container oriented approach, you can eliminate most of the issues that arise when having

inconsistent environment setups and the problems that come with them. The bottom line is that when

running an app or service inside a container you avoid the issues that come with inconsistent

environments.

Another important benefit when using containers is the ability to quickly instance any container. For

instance, that allows to scale-up fast by instantly instancing a specific short term task in the form of a

container. From an application point of view, instantiating an image (the container), should be treated

in a similar way than instantiating a process (like a service or web app), although when running

multiple instances of the same image across multiple host servers, you typically want each container

(image instance) to run in a different host server /VM in different fault domains , for reliability .

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/management/hyperv_container

3 Introduction to Containers and Docker

In short and as the main takeaways, the main benefits provided by containers are Isolation, Portability,

Agility , Scalability and Control across the whole application lifecycle workflow. But the most important

benefit is the isolation provided between Dev and Ops.

What is Docker?
Docker is an open-source project for automating the deployment of applications as portable, self -

sufficient containers that can run on any cloud or on-premises. Docker is also a company promoting

and evolving this technology with a tight collaboration with cloud, Linux and Windows vendors, like

Microsoft.

Docker is becoming the standard unit of deployment and is emerging as the de-facto standard

implementation for containers as it is being adopted by most software platform and cloud vendors

(Microsoft Azure, Amazon AWS, Google, etc.).

Figure 2-1. Docker deploys containers at all layers of the hybrid cloud

In regards supported Operating Systems, Docker containers can natively run on Linux and Windows.

You can use MacOS as another development environment alternative where you can edit code or run

the Docker CLI, but containers do not run directly on MacOS. When targeting Linux containers, you

will need a Linux host (typically a Linux VM) to run Linux containers. This applies to MacOS and

Windows development machines.

To host containers, and provide additional developer tools, Docker ships Docker for Mac and Docker

for Windows. These products install the necessary VM to host Linux containers.

Related to Windows Containers, there are two types or runtimes:

Windows Server Containers ð provide application isolation through process and namespace

isolation technology. A Window s Server container shares a kernel with the container host and all

containers running on the host.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://www.docker.com/company/contact
https://blogs.msdn.microsoft.com/stevelasker/2016/05/26/docker-containers-as-the-new-binaries-of-deployment/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

4 Introduction to Containers and Docker

Hyper -V Containers ð expands on the isolation provided by Windows Server Containers by running

each container in a highly optimized virtual machine. In this configuration the kernel of the container

host is not shared with the Hyper-V Containers providing better isolation .

Comparing Docker containers with virtual machines

Virtual Machines

Virtual machines include the application, the

required libraries/bin aries, and a full guest

operating system. Full virtualization is a lot

heavier than containerization.

Docker Containers

Containers include the application and all of its

dependencies but share the OS kernel with

other containers, running as isolated processes

in user space on the host operating system

(except in òHyper-V containersó where each

container runs inside of a special virtual machine

per container).

Figure 2-2. Comparison of traditional virtual machines to Docker containers

From an application architecture point of view, each Docker container is usually a single process which

could be a whole app (monolithic app) or a single service or microservice. The benefits you get when

your application or service process runs inside a Docker container is that it is also includes all its

dependencies, so its deployment on any environment that supports Docker is usually assured to be

done right .

Since Docker containers are sandboxes running on the same shared OS kernel it provides very

important benefits . They are easy to deploy and start fast. As a side effect of running on the same

kernel, you get less isolation than VMs but also using far fewer resources. Because of that, containers

start fast.

Docker also is a way to package up an app/service and push it out in a reliable and reproducible way.

So, you can say that Docker is a technology, but also a philosophy and a process.

Coming back to the containerõs benefits, when using Docker, you wonõt get the typical developerõs

statement òit works on my machineó. But you can simply say òit runs on Dockeró because the packaged

Docker application can be executed on any supported Docker environment and it will run the way it

was intended to do it on all the deployment targets (Dev/QA/Staging/Production, etc.).

5 Introduction to Containers and Docker

What is Container as a Service?

Container as a Service (CaaS) is an IT managed and secured application environment of infrastructure

and content provided as a service (elastic and pay as you go, similar to the basic cloud principles),

with no upfront infras tructure design, implementation and investment per project , where developers

can (in a self-service way) build, test and deploy applications and IT operations can run, manage and

monitor those applications in production.

From its original principles, it is partially similar to Platform as a Service (PaaS) in the way that

resources are provided òas a serviceó from a pool of resources. Whatõs different in this case is that the

unit of software is now measurable and based on containers. Images (per version) are immutable.

In regards host OS related updates, it usually can be responsibility of the person /organization owning

the container image; however the service provider might also help to update the Linux/Windows

kernel and Docker engine version at the host level.

Either PaaS or CaaS can be supported in public clouds (like Microsoft Azure, Amazon AWS, Google,

etc.) or on-premises.

Basic Docker definitions

The following are the basic definitions anyone needs to understand before getting deeper into

Docker. For further definitions, an extensive Docker Glossary is provided by Docker here:

https://docs.docker.com/v1.11/engine/reference/glossary/

Docker image : Docker images are the basis of containers. An Image is an ordered collection of root

filesystem changes and the corresponding execution parameters for use within a container runtime.

An image typically contains a union of layered filesystems stacked on top of each other. An image

does not have state and it never changes as itõs deployed to various environments.

Container : A container is a runtime instance of a Docker image. A Docker container consists of: A

Docker image, an execution environment and a standard set of instructions. When scaling a service,

you would instance multiple containers from the same image. Or, in a batch job, instance multiple

containers from the same image, passing different parameters to each instance. A container òcontainsó

something singular, a single process, like a service or web app. It is a 1:1 relationship.

Tag: A tag is a label applied to a Docker image in a repository. Tags are how various images in a

repository are distinguished from each other. They are commonly used to distinguish between

multiple versions of the same image.

Dockerfile : A Dockerfile is a text document that contains instructions to build a Docker image.

Build : build is the process of building Docker images using a Dockerfile. The build uses a Dockerfile

and a òcontextó. The context is the set of files in the directory in which the image is built. Builds can be

done with commands like òdocker buildó or òdocker-composeó which incorporates additional

information such as the image name and tag.

Repository : A collection of related images, differentiated by a tag that would differentiate the

historical version of a specific image. Some repos contain multiple variations of a specific image, such

as the SDK, runtime/fat, thin tags. As Windows containers become more prevalent, a single repo can

contain platform variants, such as a Linux and Windows image.

https://docs.docker.com/v1.11/engine/reference/glossary/

6 Introduction to Containers and Docker

Registry : A Registry is a hosted service containing repositories of images which responds to the

Registry API. The default registry (from Docker as an organization) can be accessed using a browser at

Docker Hub or using the Docker search command. Therefore, a Registry usually contains many

Repositories from multiple teams. As companies will want to keep their images private, and network

close to their deployment infrastructure, companies will instance private registries in their

environment to maintain their apps and control over their base images.

Docker Hub : The Docker Hub is a centralized public resource for working with Docker and its

components. It provides the following services: Docker image hosting, User authentication,

Automated image builds plus work -flow tools such as build triggers and web hooks, Integration with

GitHub and Bitbucket. Docker Hub is the public instance of a registry. Equivalent to the public GitHub

compared to GitHub enterprise where customers store their code in their own environment.

Azure Container Registry : Centralized public resource for working with Docker Images and its

components in Azure, a registry network-close to your deployment s with control over access, making

possible to use your Azure Active Directory groups and permissions.

Docker Trusted Registry : Docker Trusted Registry (DTR) is the enterprise-grade image storage

solution from Docker. You install it behind your firewall so that you can securely store and manage

the Docker images you use in your applications. Docker Trusted Registry is a sub-product included as

part of the Docker Datacenter product.

Docker for Windows and Mac : The local development tools for building, running and testing

containers locally. òDocker for xó, indicates the target developer machine. Docker for Windows

provides both Windows and Linux container development environments.

òDocker for Windows and Macó deprecates òDocker Toolboxó which was based on Oracle VirtualBox.

Docker for Windows is now based on Hyper-V VMs (Linux or Windows). Docker for Mac is based on

Apple Hypervisor framework and xhyve hypervisor which provides a Docker-ready virtual machine on

Mac OS X.

Compose : Compose is a tool for defining and running multi container applications. With compose,

you define a multi -container application in a single file , then spin your application up in a single

command which does everything that needs to be done to get it running. Docker-compose.yml files

are used to build and run multi container applications, defining the build information as well the

environment information for interconnecting the collection of containers.

Cluster : A Docker cluster pools together multiple Docker hosts and exposes them as a single virtual

Docker host so it is able to scale-up to many hosts very easily. Examples of Docker clusters can be

created with Docker Swarm, Mesosphere DC/OS, Google Kubernetes and Azure Service Fabric. If using

Docker Swarm you typically call that òa swarmó instead of òa clusteró.

Orchestrator : A Docker Orchestrator simplifies management of clusters and Docker hosts. These

Orchestrators enable users to manage their images, containers and hosts through a user interface,

either a CLI or UI. This interface allows users to administer container networking, configurations, load

balancing, service discovery, High Availability, Docker host management and a much more.

An orchestrator is responsible for running, distributing, scaling and healing workloads across a

collection of nodes. Typically, Orchestrator products are the same products providing the cluster

infrastructure like Mesosphere DC/OS, Kubernetes, Docker Swarm and Azure Service Fabric.

https://docs.docker.com/registry/
https://hub.docker.com/
https://docs.docker.com/docker-trusted-registry/overview/
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://github.com/mist64/xhyve

7 Introduction to Containers and Docker

Basic Docker taxonomy: containers, images, and registr ies

Figure 2-3 shows how each basic component in Docker relates to each other as well as the multiple

Registry offerings from vendors.

Figure 2-3. Taxonomy of Docker terms and concepts

As mentioned in the definitions section, a container is one or more runtime instances of a Docker

image that usually will contain a single app/service. The container is considered the live artifact being

executed in a development machine or the cloud or server.

An image is an ordered collection of root filesystem changes and the corresponding execution

parameters for use within a container runtime. An image typically contains a union of layered

filesystems (deltas) stacked on top of each other. An image does not have state and it never changes.

A registry is a service containing repositories of images from one or more development teams.

Multiple development teams may also instance multiple registries. The default registry for Docker is

the public "Docker Hub" but you will likely have your own private registry network close to your

orchestrator to manage and secure your images, and reduce network latency when deploying images.

The beauty of the images and the registry resides on the possibility for you to store static and

immutable application bit s including all their de pendencies at OS and frameworks level so they can be

versioned and deployed in multiple environments providing a consistent deployment unit .

You should use a private registry (an example of use of Azure Container Registry) if you want to:

¶ Tightly control where your images are being stored

¶ Reduce network latency between the registry and the deployment nodes

¶ Fully own your images distribution pipeline

¶ Integrate image storage and distribution tightly into your in -house development workflow

8 Introduct ion to Docker Application Lifecycle

S E C T I O N

3

Introduction to the Docker
application lifecycle

Containers as the foundation for DevOps

collaboration
The lifecycle of containerized applications is like a journey which starts with the developer. The

developer chooses and begins with containers and Docker because it eliminates frictions in

deployments and with IT Operations, which ultimately helps them to be more agile, more productive

end-to-end, faster. Then by the very nature of the Containers and Docker technology, developers are

able to easily share their software and dependencies with IT Operations and production environments

while eliminating the typical òit works on my machineó excuse. Containers solve application conflicts

between different environments. Indirectly, Containers and Docker bring developers and IT Ops closer

together. It makes easier for them to collaborate effectively. Adopting the container workflow

provides many customers with the continuous theyõve sought, but had to implement complex release

build and config as code management systems.

Figure 3-1. Main workloads per òpersonasó in the lifecycle for containerized Docker applications

With Docker Containers, developers own whatõs inside the container (application/service and

dependencies to frameworks/components) and how the containers/services behave together as an

application composed by a collection of services. The interdependencies of the multiple containers are

defined with a docker-compose.yml file, or what could be called a deployment manifest. Meanwhile,

IT Operation teams (IT Pros and IT management) can focus on the management of production

9 Introduction to Docker Application Lifecycle

environments, infrastructure, scalability, monitoring and ultimately making sure the applications are

delivering right for the end -users, without having to know the contents of the various containers.

Hence the "container" name because of the analogy to shipping containers in real -life. In a similar way

than the shipping company gets the contents from a -b without knowing or caring about the contents,

in the same way developers own the contents within a container.

Developers on the left of the image 1.1 are writing code and running their code in Docker containers

locally using Docker for Windows/Mac. They define their operating environment with a dockerfile that

specifies the base OS they run on, and the build steps for building their code into a Docker image.

They define how the one or more images will inter -operate using a deployment manifest like a

docker-compose.yml file. As they complete their local development, they push their application code

plus the Docker configuration files to the code repository of their choice (i.e. Git repos).

The DevOps pillar defines the build -CI-pipelines using the dockerfile provided in the code repo. The

CI system pulls the base container images from the Docker registries theyõve configured and builds

the Docker images. The images are then validated and pushed to the Docker registry used for the

deployments to multiple environments .

Operation teams on the right are managing deployed applications and infrastructure in produ ction

while monitoring the environment and applications so they provide feedback and insights to the

development team about how the application must be improved . Container apps are typically run in

production using Container Orchestrators.

The two teams are collaborating through a foundational platform (Docker containers) that provides a

separation of concerns as a contract, while greatly improving the two teamsõ collaboration in the

application lifecycle. The developer owns the container contents, itõs operating environment and the

container interdependencies. While ops takes the built images, the manifest and runs the images in

their orchestration system.

Intro duction to a generic E2E Docker application lifecycle workflow

From a different perspective, the more detailed workflow for a Docker application lifecycle can be

represented as in Figure 3.2. In this case the diagram focuses on specific DevOps activities and assets.

Figure 3-2. High level workflow for the Docker containerized application lifecycle

10 Introduction to Docker Application Lifecycle

It all starts from the developer who starts writing code in the inner-loop workflow . Inner-loop defines

everything that happens before pushing code into the code -repository (Source Control system, like

Git). Once committed, the repo trigger s CI (Continues Integration) and the rest of the workflow .

That mentioned initial inner -loop basically consists on typical steps like òCodeó, òRunó, òTestó, òDebugó,

plus additional steps right before òRunningó the app locally because the developer wants to run and

test the app as a Docker container. That inner-loop workflow will be explained in the following

sections.

Taking a step back and looking the E2E workflow, the Development-Operations workflow is more than

a technology or a tool set. Itõs a mindset that requires cultural evolution. It is people, process and the

right tools to make your application lifecycle faster and more predictable. Organizations that adopt a

containerized workflow typically restructure their orgs to represent people and process that match the

containerized workflow.

Practicing DevOps can help teams respond faster together to competitive pressures by replacing error

prone manual processes with automation for improved traceability and repeatable workflows.

Organizations can also manage environments more efficiently and enable cost savings with a

combination of on -premises and cloud resources, as well as tightly integrated tooling.

When implementing your DevOps workflow for Docker applications, youõll see that Dockerõs

technologies are present in almost every stage of the workflow, from your development box while

working in the inner -loop (code, run, debug), to the build, test CI phase, and of course at the

production/staging environments and when deploying your containers to those environments.

Improvement of quality practices helps to identify defects early in the development cycle, which

reduces the cost of fixing them. By including the environment and dependencies in the image,

adopting a philosophy of deploying the same image across multiple en vironments, you adopt a

discipline of extracting the environment specific configurations making deployments more reliable.

Rich data obtained through effective instrumentation (Monitoring and Diagnostics) provides insight

into performance issues and user behavior to guide future priorities and investments.

DevOps should be considered a journey, not a destination. It should be implemented incrementally

through appropriately scoped projects, from which to demonstrate success, learn, and evolve.

Benefits fro m DevOps for containerized applications

The most important benefits provided by a solid DevOps workflow are:

¶ Deliver better quality software faster and with better compliance

¶ Drive continuous improvement and adjustments earlier and more economically

¶ Increase transparency and collaboration among stakeholders involved in delivering and

operating software

¶ Control costs and utilize provisioned resources more effectively while minimizing security risks

¶ Plug and play well with many of your existing DevOps investments, including investments in

open source

11 Microsoft Platform and Tools for Docker

S E C T I O N

4

Introduction to the
Microsoft platform and
tools for containerized
applications

Vision

Create an adaptable, enterprise-grade, containerized application lifecycle that

spans your development, IT operations, and production management.

Figure 4-1. Main pillars in lifecycle for Containerized Docker Applications with Microsoft Platform & Tools

Figure 4-1 shows the main pillars in the lifecycle of Docker apps classified by the type of work

delivered by multiple teams (app-development, DevOps infrastructure processes and IT Management

and Operations). Usually, in the enterprise, the profiles of òthe personaó responsible for each area are

different. So are their skills.

12 Microsoft Platform and Tools for Docker

A containerized Docker lifecycle workflow can be initially prescriptive based on òby default product

choicesó so it makes it easier for developers to get started faster, but it is fundamental that under the

covers there must be an open framework so it will be a flexible workflow capable of adjusting to th e

different contexts from each organization/enterprise. The workflow infrastructure (components and

products) must be flexible enough to cover the environment that each company will have in the

future, even being capable of swapping development or DevOps products to others. This flexibility,

openness and broad choice of technologies in the platform and infrastructure are precisely the

Microsoft priorities for containerized Docker applications, as explained in the following sections.

As shown in figure 4-2, the intention of the Microsoft DevOps for Containerized Docker applications is

to provide an open DevOps workflow so you can choose what products to use for each phase

(Microsoft or third -party) while providing a simplified workflow which provides òby-default-productsó

already connected, so you can quickly get started with your enterprise-level DevOps workflow for

Docker apps.

Figure 4-2. Open DevOps workflow to any technology

The Microsoft platform and tools for containerized Docker applications, as defined in Figure 4-2, has

the following components:

¶ Platform for Docker Apps development . The development of a service, or collection of

services that make up an òappó. The development platform provides all the work a developer

requires prior to pushing their code to a shared code repo. Developing services, deployed as

containers, are very similar to the development of the same apps or services without Docker.

You continue to use your preferred language (.NET, Node.js, Go, etc.) and preferred editor or

IDE like Visual Studio or Visual Studio Code. However, rather than consider Docker a

deployment target, you develop your services in the Docker environment. You build, run, test,

debug your code in containers locally, providing the target environment at developme nt time.

By providing the target environment locally, Docker containers enable what will drastically

help you improve your Development and Operations lifecycle. Visual Studio and Visual Studio

Code have extensions to integrate the container build, run, test your .NET, .NET Core and

Node.js applications.

¶ DevOps for Docker Apps . Developers creating Docker applications can leverage Visual

Studio Team Services (VSTS) or any other third party product like Jenkins, to build out a

comprehensive automated application lifecycle management (ALM).

With VSTS, developers can create container-focused DevOps for a fast, iterative process that

covers source-code control from anywhere (VSTS-Git, GitHub, any remote Git repository or

Subversion), continuous integration (CI), internal unit tests, inter container/service integration

tests, continuous delivery CD, and release management (RM). Developers can also automate

their Docker application releases into Azure Container Service, from development to staging

and production environments.

13 Microsoft Platform and Tools for Docker

¶ IT production management and monitoring .

Management - IT can manage production applications and services in several ways:

o Azure portal. If using OSS orchestrators, Azure Container Service (ACS) plus cluster

management tools like Docker Datacenter and Mesosphere Marathon help you to set

up and maintain your Docker environments. If using Azure Service Fabric, the Service

Fabric Explorer tool allows you to visualize and configure your cluster.

o Docker tools. You can manage your container applications using familiar tools. Thereõs

no need to change your existing Docker management practices to move container

workloads to the cloud. Use the application management tools youõre already familiar

with and connect via the standard API endpoints for the orchestrator of your choice.

You can also use other third party tools to manage your Docker applications like

Docker Datacenter or even CLI Docker tools.

o Open source tools. Because ACS expose the standard API endpoints for the

orchestration engine, the most popular tools are compatible with Azure Container

Service and, in most cases, will work out of the boxñincluding visualizers, monitoring,

command line tools, and even future tools as they become available.

Monitoring - While running production environments, you can monitor every angle with:

o Operations Management Suite (OMS). The òOMS Container Solutionó can manage and

monitor Docker hosts and containers by showing information about where your

containers and container hosts are, which containers are running or failed, and

Docker daemon and container logs. It also shows performance metrics such as CPU,

memory, network and storage for the container and hosts to help you troubleshoot

and find noisy neighbor containers .

o Application Insights. You can monitor produc tion Docker applications by simply

setting up its SDK into your services so you can get telemetry data from the

applications.

Microsoft therefore offers a com plete foundation for an end -to-end Containerized Docker application

lifecycle. However, it is a collection of products and technologies which allow you to optionally

select and integrate with existing tools and processes . The flexibility in a broad approach and the

strength in the depth of capabilities place Microsoft in a strong position for containerized Docker

application development.

14 Architecting and developing Docker applications

S E C T I O N

5

Architecting and
developing containerized
applications with Docker
and Microsoft Azure

Vision
Architect and design scalable solutions with Docker in mind.

There are many great-fit use cases for containers, not just fo r microservices oriented architectures but

also when you simply have regular services or web applications to run and you want to reduce

frictions between development and production environment deployments.

Architecting Docker applications

In the first section of this document you already got the fundamental concepts regarding containers

and Docker. That information is the basic level of information to get started. But enterprise

applications can be complex and composed by multiple services instead of a single service/container.

For those optional use cases, you need to know further architectural approaches like Service

Orientation and the more advanced Microservices concepts and container orchestration concepts. The

scope of this document is not limited to microservices but to any Docker application lifecycle,

therefore, it does not drill down deeply into microservices architecture because you can also use

containers and Docker with regular Service Orientation, background tasks/jobs or even with

monolithic application deployment approaches.

However, before getting into the application lifecycle and DevOps, it is important to know what and

how you are going to design and construct your application and what are the design choices.

Common container design principles

Container equals a process

In the container model, a container represents a single process. By defining a container as a process

boundary, you start to create the primitives used to scale, or batch off processes. When running a

15 Architecting and developing Dock er applications

Docker container, youõll see an ENTRYPOINT definition. This defines the process and the lifetime of

the container. When the process completes, the container lifecycle ends. There are long running

processes, like web servers and short lived processes like batch jobs, which may have been

implemented as Azure WebJobs. If the process fails, the container ends, and the orchestrator takes

over. If the orchestrator was told to keep 5 instances running, and one fails. The orchestrator will

instance another container to replace the failed process. In a batch job, the process is started with

parameters. When the process completes, the work is complete.

You may find a scenario where you may want multiple processes running in a single container. In any

architecture document, thereõs never a òneveró, nor is there always an òalwaysó. For scenarios requiring

multi ple processes, a common pattern is to use http://supervisord.org/

Monolithic applications
In this scenario, you are building a single and monolithic Web Application or Service and deploying as

a container. Within th e application it might not be monolithic but structured in several libraries,

components or even layers (Application layer, Domain layer, Data access layer, etc.). Externally it is a

single container like a single process, single web application or single service.

In order to manage this model you

deploy a single container to represent

the application. To scale, just add a few

more copies with a load balancer in front.

The simplicity comes from managing a

single deployment in a single container

or VM.

Following the container principal of a

container does one thing, and does it in

one process, the monolithic pattern is in

conflict. You can include multiple

components/libraries or internal layers

within each container, as illustrated in

Figure 5-1.

The downside of this approach comes if/when the application grows , requiring it to scale. If the entire

application scaled, itõs not really a problem. However, in most cases, a few parts of the application are

the choke points requiring scaling, while other components are used less.

Using the typical eCommerce example; what you likely need is to scale the product information

component. Many more customers browse products than purchase. More customers use their basket

than use the payment pipeline. Fewer customers add comments or view their purchase history. And

you likely only have a handful of employees, in a single region, that need to manage the content and

marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.

In addition to the scale everything problem, changes to a single component require complete

retesting of the entire application, and a complete redeployment of all the instances.

Figure 5-1. Monolithic application architecture example

https://docs.docker.com/engine/reference/builder/#/entrypoint
https://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/
http://supervisord.org/

16 Architecting and developing Dock er applications

The monolithic approach is common, and many organizations are developing with thi s architectural

approach. Many are having good enough results, while others are hitting limits. Many designed their

applications in this model, because the tools and infrastructure were too difficult to build service

oriented architectures (SOA), and didnõt see the need. Until the app grew.

From an infrastructure perspective, each server can run many applications within the same host and

have an acceptable ratio of efficiency in your resources usage, as shown in Figure 5-2.

Deploying monolithic applicatio ns in Microsoft Azure can be achieved using dedicated VMs to each

instance. Using Azure VM Scale Sets, you can easily scale the VMs. Azure App Services can run

monolithic applications and easily scale instances without having to manage the VMs. Since 2016,

Azure App Services can run single instances of Docker containers as well, simplifying the deployment.

And using Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the

Azure balancer, as shown in the Figure 5-3, you can manage scaling.

The deployment to the various hosts can be managed with traditiona l deployment techniques. The

Docker hosts can be managed with commands like òdocker runƨ performed manually, through

automation such as Continuous Delivery (CD) pipelines, to be explained later in this document.

Monolithic app lication deployed as a container

There are benefits of using containers to manage monolithic deployments. Scaling the instances of

containers is far faster and easier than deploying additional VMs. While VM Scale Sets are a great

feature to scale VMs, which are required to host your Docker containers, they take time to instance.

When deployed as app instances, the configuration of the app is managed as part of the VM.

Figure 5-2. Host running multiple apps/containers

Figure 5-3. Multiple hosts scaling-out a single Docker application

apps/containers

https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

17 Architecting and developing Dock er applications

Deploying updates as Docker images are far faster and network efficient. The Vn instances can be

instanced on the same hosts as your Vn-1 instances, eliminating additional costs of additional VMs.

Docker Images typically start in seconds, speeding rollouts. Tearing down a Docker instance is as easy

as òdocker stop ó command, typically completing in less than a second.

As containers are inherently immutable, by design, you never worry about corrupted VMs as update

script forgot to account for some specific configuration or file left on disk.

While monolithic apps can benefit from Docker, weõre only touching on the tips of the benefits. The

larger benefits of managing containers comes from deploying with container orchestrators which

manage the various instances and lifecycle of each container instance. Breaking up the monolithic

application into sub systems which can be scaled, developed and deployed individually are your entry

point into the realm of microservices.

Publishing a single Docker container app to Azure App Service

Either if you want to get a quick validation of a container deployed to Azure or because the app is

simply a single container app, Azure App Services provides a great way to provide scalable single

container services.

Using Azure App Service is very simple and easy to get started as it provides great git integration to

take your code, build it in Visual Studio and directly deploy it to Azure. But, traditionally (with no

Docker), if you needed other capabilities/frameworks/dependencies that arenõt supported in App

Services you needed to wait for it until the Azure team updates those dependencies in App S ervice or

switched to other services like Servie Fabric, Cloud Services or even plain VMs where you have further

control and you can install a required

component /framework for your

application.

Now (announced at Microsoft Connect

2016, November 2016) and as shown in

Figure 5-4 when using Visual Studio

2017, containers support in Azure App

Service gives you the ability to include

whatever you want in your app

environment. If you added a

dependency to your app, since you are

running it in a container, you get the

capability of including those

dependencies in your dockerfile or

Docker image.

As also shown in figure 5-4, the publish flow pushes an image through a Container Registry which can

be the Azure Container Registry (a registry near to your deployments in Azure and secured by Azure

Active Directory groups and accounts) or any other Docker Registry like Docker Hub or on-premises

registries.

Figure 5-4. Publishing a Container to Azure App Service from Visual Studio

apps/containers

18 Architecting and developing Dock er applications

State and data in Docker applications
A primitive of containers are immutability. When comparing to a VM, they donõt disappear as a

common occurrence. A VM may fail in various forms from dead processes, overloaded CPU, a full or

failed disk. However, we expect the VM to be available and RAID drives are commonplace to assure

drive failures maintain data.

However, containers are thought to be instances of processes. A process doesnõt maintain durable

state. While a container can write to its local storage, assuming that instance will be around

indefinitely would be equivalent to assuming a single copy memory will be durabl e. Containers, like

processes, should be assumed to be duplicated, killed or when managed with a container

orchestrator, they may get moved.

Docker uses a feature known as an overlay file system to implement a copy-on-write process that

stores any updated information to the root file system of a container, compared to the original image

on which it is based. These changes are lost if the container is subsequently deleted from the system.

A container therefore does not have persistent storage by default. While itõs possible to save the state

of a container, designing a system around this would be in conflict with the premise of container

architecture.

To manage persistent data in Docker applications, there are common solutions:

- Data volumes which mount to the host as noted above

- Data volume containers which provide shared storage across containers, using an external

container that may cycle

- Volume Plugins which mount volumes to remote locations, providing long term persistence

- Remote data sources like SQL, NO-SQL databases or cache services like Redis.

- Azure Storage which provides geo distributable PaaS storage, providing the best of containers

as long term persistence.

Data volumes are specially-designated director ies within one or more containers that bypasses the

Union File System. Data volumes are designed to persist data, independent of the containerõs life

cycle. Docker therefore never automatically delete volumes when you remove a container, nor will it

ògarbage collectó volumes that are no longer referenced by a container. The data in any volume can

be freely browsed and edited by the host operating system, and is just another reason to use data

volumes sparingly.

Data volume container . A data volume container is an improvement over regular data volumes. It is

essentially a dormant container that has one or more data volumes created within it (as described

above). The data volume container provides access to containers from a central mount point. The

benefit of this method of access is that it abstracts the location of the original data, making the data

container a logical mount point. It also allows "application" containers accessing the data container

volumes to be created and destroyed while keeping the data persistent in a dedicated container.

As shown in the Figure 5-5, regular Docker volumes can be placed on storage out of the containers

themselves but within the host server/VM physical boundaries. Docker volumes donõt have the

ability to use a volume from one host server/VM to another .

https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/#/creating-and-mounting-a-data-volume-container
https://docs.docker.com/engine/tutorials/dockervolumes/#/mount-a-shared-storage-volume-as-a-data-volume
https://azure.microsoft.com/en-us/documentation/services/storage/
https://docs.docker.com/v1.8/reference/glossary#union-file-system
https://docs.docker.com/v1.8/userguide/dockervolumes/

19 Architecting and developing Dock er applications

Figure 5-5. Data Volumes and external data sources for containers apps/containers

Due to the inability to manage data shared between containers that run on separate physical hosts, it

is not recommended to use volumes for business data unless the Docker host is a fixed host/VM,

because when using Docker containers in an orchestrator, containers are expected to be moved from

one to another host depending on the optimizations to be performed by the cluster.

Therefore, regular data volumes are a good mechanism to work with trace files, temporal files or any

similar concept that wonõt impact the business data consistency if/when your containers are moved

across multiple hosts.

Volume Plugins like Flocker provide data across all hosts in a cluster. While not all volume plugins are

created equally, volume plugins typically provide externalized persistent reliable storage from the

immutable containers.

Remote data source s and cache like SQL DB, DocDB or a remote cache like Redis would be the same

as developing without containers. This is one of the preferred, and proven ways to store business

application data.

Service-oriented architecture applications
Service-oriented architectu re (SOA) was an overused term and meant so many different things to

different people . But as minimum and common denominator, SOA or Service Orientation mean that

you structure the architecture of your application by decomposing it in multiple services (mos t

commonly as Http services) that can be classified in different types like sub-systems or in other cases

as tiers.

Those services can nowadays be deployed as Docker containers so it also solves deployment issues as

all the dependencies are included within the container image. However, when you need to scale-out

Service Oriented applications, you might have challenges if you are deploying based on single

instances. This is where a Docker clustering software or orchestrator will help you out, as explained in

later sections when describing microservices approaches.

At the end of the day, the container clustering solutions are useful for both, a traditional SOA

architecture or for a more advanced microservices architecture where each microservice owns its data

model and thanks to multiple databases you can also scale-out the data tier instead of working with

https://clusterhq.com/flocker/

