UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL

"DETERMINACIÓN DEL ESFUERZO CORTANTE EN FUNCIÓN DE LA DENSIDAD APLICADO A SUELOS COHESIVOS"

Por:

BARRERA ROMERO KATHERINE LORENA

Proyecto de Grado presentado a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para obtener grado académico de Licenciatura en Ingeniería Civil.

JULIO DE 2013

TARIJA – BOLIVIA

A ₀ R ₀	
Ing. Trinic DOCE	dad Baldiviezo NTE GUIA
Ing. Alberto Yurquina DECANO FACULTAD DE CIENCIAS Y TECNOLOGIA	Lic. Gustavo Succi. VICE DECANO FACULTAD DE CIENCIAS Y TECNOLOGIA
APROBADO POR:	
TRIBUNAL:	
In	ng. Ada López
Ing	g. Oscar Chávez

El tribunal calificador del presente trabajo no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo esta responsabilidad de la autora

El tribunal calificador del presente trabajo no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo esta responsabilidad de la autora

DEDICATORIA

A Dios:

Por haberme dado la vida, una familia maravillosa, por no haberme abandonado en ningún momento, por brindarme paciencia en momentos difíciles, y por haberme permitido realizar un logro más en mi vida.

A Mamá:

Por el apoyo incondicional en todas las decisiones que he tomado a lo largo de estos años, y por ser el motivo de seguir adelante.

A mis Docentes:

Porque me enseñaron más que números y letras, por compartirme sus conocimientos, su paciencia y su motivación que han sido fundamentales para mi formación y realización de este trabajo.

A mis compañeros:

Por hacerme más amena la estadía en la universidad, a mis compañeros de laboratorio porque juntos llegamos hasta este punto, y no podía faltar Carlos Subia, técnico en el laboratorio de Suelos de la universidad, con su ayuda logre concluir este trabajo.

"Si uno avanza confiadamente en la dirección de sus sueños y deseos para llevar la vida que ha imaginado, se encontrará con un éxito inesperado."

ÍNDICE

CAP. I	INTRODUCCIÓN
1.1 Genera	ılidades1
1.2 Justifie	cación2
1.3 Identif	ficación del problema
1.4 Hipóte	esis3
1.5 Objeti	vos4
1.5.1	General4
1.5.2	Específicos
1.6 Alcand	ce del estudio5
1.7 Metod	lología del estudio
CAP. II	FUNDAMENTOS DE LA MECANICA DE SUELOS
2.1 Gene	eralidades
2.1.1	Formacion del suelo9
2.2 Carac	eterísticas de los suelos
2.2.1	Forma de sus partículas
2.2.2	Peso específico relativo

	2.2.4	Contenido de Humedad	14
	2.2.5	Límites de Atterberg.	15
2.3	Clasi	ficación de suelos	18
2.4	Comp	pactación de los suelos	25
2.5	Densi	idades	29
2.6	Suelo	os Cohesivos	32
	2.6.1	Arcillas	32
CA	P. III	ESFUERZO Y RESISTENCIA AL CORTE	
3.1	Introd	ucción	39
3.2	Esfuer	zos y resistencia al corte	40
	3.2.1	Angulo de fricción interna.	47
	3.2.2	Cohesión	48
3.3	Teoría	s de falla	51
	3.3.1	Circulo de Mohr.	54
	3.3.2	Envolvente de falla	55
3.4	Esfuer	zos efectivos.	56
3.5	Medic	ión de la resistencia al cortante	60
CA	P. IV	CARACTERIZACION Y ANALISIS DE CORRELACIÓN	
4.1	Criterio	o de selección de muestras	63
	4.1.1	Ubicación	63

4.2 Perfil Geologico	67
4.3 Criterios generales.	70
4.4 Caracterización geotécnica de la zona	72
4.4.1 Resumen de resultados	75
4.5 Determinación del Esfuerzo Cortante en laboratorio	76
4.5.1 Características de la Resistencia al corte	76
4.5.2 Cálculo del esfuerzo máximo de corte por el círculo de Mohr	85
4.6 Correlación de resultados	88
4.6.1 Evaluación del esfuerzo cortante vs la densidad	88
CAP V CONCLUSIONES Y RECOMEDACIONES	
5.1 Conclusiones.	101
5.2 Recomendaciones	103
BIBLIOGRAFIA	
ANEXOS	
Anexo 1: Memoria de laboratorios	
Anexo 2: Memoria de cálculos	

ÍNDICE DE ILUSTRACIONES FIGURAS

2.1 Detalle de cribas.	13
2.2 Curva de distribución Granulométrica.	14
2.3 Esquema de casagrande y ranurador	15
2.4 Pasta de suelo antes y después de la prueba de LL	16
2.5 Carta de plasticidad.	18
2.6 Esquema de molde y martillo para la compactación	28
2.7 Principios de compactación	30
2.8 Equipo del cono de arena.	31
3.1 Concepto mecánico de fricción.	40
3.2 Capilares entre dos granos de arena.	49
3.3Capilares entre dos láminas de arcilla	50
3.4 Dirección de los esfuerzos principales en la falla de un talud	54
3.5 Envolvente de falla y circulo de Mohr	55
3.6 Esfuerzo cortante vs. Deformación horizontal	58
3.7 Envolventes de falla.	58
4.1 Zona A	64
4.2 Zona B	65
4.3 Zona C	66
4.4 Perfil geológico de los estratos de la zona "A"	67
4.5 Perfil geológico de los estratos de la zona "B"."	68
4.6 Perfil geológico de los estratos de la zona "C"	69
4.7 Extracción de Suelo en las Zonas de Muestreo	
4.8 Detalle gráfico de los apiques Zona "A"	72
4.9 Detalle gráfico de los apiques Zona "B"	73
4.10 Detalle gráfico de los apiques Zona "C"74	
4.11 Líneas de falla en el círculo de Mohr con la hipótesis de falla de Co	ulomb85

4.13 Esfuerzo Cortante vs. Densidad91
4.14 Esfuerzo Cortante vs. % Humedad93
4.15 Esfuerzo Cortante vs. Densidad95
4.16 Esfuerzo Cortante vs. % Humedad97
4.17Esfuerzo Cortante vs. Densidad99
TABLAS
2.1 Limites de tamaño para suelos
2.2 Tamaños de mallas, Norma ASTM
2.3 Clasificación de materiales según la AASTHO
2.4 Sistema Unificado de Clasificación, Símbolos de grupo para suelos tipo
grava23
2.5 Sistema Unificado de Clasificación, Símbolos de grupo para suelos
arenosos
2.6 Sistema Unificado de Clasificación, Símbolos de grupo para suelos limosos y
arcillosos
2.7 Especificaciones para la prueba de Proctor T-99 de la AASTHO y D-698 de la
ASTM
Tabla 4.1 Resumen Técnico del estudio de suelos75
Tabla 4.2 Resumen de Esfuerzos cortantes con muestras inalteradas76
Tabla 4.3 Resumen de Esfuerzos cortantes con muestras alteradas Zona A77
Tabla 4.4 Resumen de Esfuerzos cortantes con muestras alteradas Zona B80
Tabla 4.5 Resumen de Esfuerzos cortantes con muestras alteradas Zona C82
Tabla 4.6 Resumen de Esfuerzos cortantes máximos en suelo inalterado
Tabla 4.7 Resumen de Esfuerzos cortantes máximos en suelo alterado87
Tabla 4.8 Esfuerzo cortante máximo - % de humedad89

 $4.12\ Esfuerzo\ Cortante\ vs.\ \%\ Humedad...89$

- Tabla 4.9 Esfuerzo cortante máximo Densidad..91
- Tabla 4.10 Esfuerzo cortante máximo % de humedad...93
- Tabla 4.11 Esfuerzo cortante máximo Densidad..95
- Tabla 4.12 Esfuerzo cortante máximo % de humedad...97
- Tabla 4.13 Esfuerzo cortante máximo Densidad..99