UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

ANÁLISIS DE LA INFLUENCIA DEL TIPO DE RODADURA EN LA DEFORMACIÓN DE LOS PAVIMENTOS EN LA RED VIAL DEPARTAMENTAL

POR:

JUAN JOSÉ SALINAS MAMANI

Tesis de Grado presentado a consideración de la UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO", como requisito para optar el Grado Académico de Licenciatura en Ingeniería Civil.

JUNIO 2013 TARIJA – BOLIVIA

Ing. MSc. Luis Alberto Yurquina Flores DECANO FACULTAD CIENCIAS Y TECNOLOGÍA	Lic. MSc. Gustavo Succi Aguirre VICEDECANO FACULTAD CIENCIAS Y TECNOLOGÍA
APROBADA POR:	
TRIBUNAL:	
Ing. Johnny G	Orgáz Fernández
Ing. Fernando	E. Mur Lagraba
Ing. Oscar N	1. Chávez Calla

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo éstas responsabilidad del autor.

DEDICATORIA

A mis padres, Francisco y Marcelina, a mis hermanos (as) por el esfuerzo y ayuda incalculable e incondicional, por guiarme en el camino de la superación y ser la constante motivación en la conclusión del presente trabajo.

AGRADECIMIENTO

Al Dios de la Biblia creador de todas las cosas, por regalarme esta bendición de alcanzar una profesión, sin su voluntad y misericordia nada es realidad.

A mis padres, por el apoyo y amor incondicional que me dieron, por los consejos y deseos llenos de esperanza que me supieron brindar a lo largo de estos años.

A mis hermanos (as): Fredesvinda, Jorge, Ángel y María Esther, por su comprensión y apoyo incondicional en los momentos difíciles de la vida.

A mis sobrinos (as), cada uno de mis amigos/as y personas que me brindaron el granito de arena para la realización de este trabajo.

PENSAMIENTO

"El principio de la sabiduría es el temor de Dios; los insensatos desprecian la sabiduría y la enseñanza"

Proverbios 1:7.

ÍNDICE

Advertencia

Dedicatoria	
Agradecimiento	
Pensamiento	
Resumen	
1	Página
INTRODUCCIÓN	
1. Justificación.	1
2. Objetivos.	2
2.1. Objetivo general	2
2.2. Objetivos específicos	2
3. Alcance	3
CAPÍTULO I REVISIÓN BIBLIOGRAFICA	
1.1. ASPECTOS GENERALES DE LOS PAVIMENTOS	
1.1.1. Definición.	4
1.1.2. Tipos de pavimentos.	4
1.1.2.1. Pavimentos flexibles	5
1.1.2.2. Pavimentos rígidos o de concreto hidráulico	5
1.1.3. Componentes de los pavimentos	6
1.1.3.1. Pavimentos flexibles	6
1.1.3.1.1. Capa subrasante.	6
1.1.3.1.2. Capa sub-base	7
1.1.3.1.3. Capa base	8
1.1.3.1.4. Capa de rodadura	8
1.1.3.2. Pavimentos rígidos.	9
1.1.3.2.1. Losa de concreto hidráulico	9
1.1.3.2.2. Pavimento de concreto hidráulico simple	9
1.1.3.2.3. Pavimento de concreto hidráulico con refuerzo simple	10
1.1.3.2.4. Pavimento de concreto hidráulico con refuerzo continuo	10

P	ágina
1.1.4. Tráfico	10
1.1.4.1. Introducción	10
1.1.4.2. Volumen de tráfico o tránsito	11
1.1.5. Tipos de capas de rodadura	12
1.1.5.1. Tratamientos superficiales	. 12
1.1.5.1.1. Tratamiento superficial simple	12
1.1.5.1.2. Tratamiento superficial doble	13
1.1.5.1.3. Tratamiento superficial triple	. 13
1.1.5.2. Arena – asfalto	. 13
1.1.5.3. Macadam asfáltico	. 13
1.1.5.4. Concretos asfálticos	. 14
1.1.5.5. Sellos asfálticos	. 14
1.1.5.5.1. Lechada asfáltica	. 15
1.1.5.5.2. Microaglomerados	. 15
1.2. ESFUERZO Y DEFORMACIÓN EN LOS PAVIMENTOS	
1.2.1. Fatiga de los materiales	. 16
1.2.2. Comportamiento de los suelos	. 18
1.2.2.1. Leyes de comportamiento mecánico de los suelos	. 18
1.2.2.1.1. Análisis en el laboratorio (ensayos triaxiales)	. 18
1.2.2.1.2. Ensayos de placa	20
1.2.2.1.3. Obtención del módulo elástico a partir del CBR	. 21
1.2.2.1.4. Límites de deformación elástica para un suelo en función del número	
de ciclos	. 22
1.2.2.1.5. Gravas no tratadas	. 23
1.2.2.1.5.1. Ensayo de laboratorio (triaxial)	. 24
1.2.2.1.5.2. Ensayo de placa	. 24
1.2.3. Esfuerzo – deformación en materiales con ligantes hidráulicos	25
1.2.3.1. Curva esfuerzo – deformación – definición del módulo E	28
1.2.3.2. Ensayos de fatiga.	. 29
1.2.4. Esfuerzo – deformación en materiales asfálticos	. 30

Pág	gina
1.2.4.1. Módulo de deformación.	30
1.2.4.2. Influencia de la temperatura y de la frecuencia	32
1.2.4.3. Ensayos de fatiga.	34
1.2.4.4. Influencia de la temperatura	35
1.2.4.5. Ensayo de tracción directa.	36
1.3. DIMENSIONAMIENTO RACIONAL DE PAVIMENTOS	
1.3.1. Introducción.	38
1.3.2. Aplicación de modelos.	38
1.3.2.1. Modelación en un pavimento flexible	38
1.3.2.1.1. Fatiga en los materiales del pavimento	41
1.3.3. Modelación de un pavimento rígido o hidráulico	45
1.3.3.1. Aplicación de modelos en materiales hidráulicos	49
1.3.3.2. Criterios para el dimensionamiento	50
1.3.4. Diseño avanzado por métodos racionales	55
1.3.5. Valoración de los modelos.	57
CAPÍTULO II	
ANALISIS DE LA INFLUENCIA DE TIPOS DE RODADURA EN LA DEFORMACIÓN DE LOS PAVIMENTOS	
2.1. Parámetros de los análisis	58
2.1.1. Tránsito	58
2.1.2. Periodo de diseño	61
2.1.3. Los datos climáticos y del ambiente	62
2.1.4. Parámetros descriptivos de los materiales	62
2.1.4.1. Suelo soporte o subrasante	65
2.1.4.2. Aproximación del módulo a partir del CBR	65
2.1.4.3. Capa base y capa sub-base	66
2.1.4.4. Gravas no tratadas	67
2.1.4.5. Materiales para pavimentos asfálticos	67
2.2. Programa de apoyo kenpav	69
2.3. Características de cada tipo de rodadura	71
2.3.1. Tratamientos superficiales	72

Pá	gina
2.3.2. Carpeta asfáltica.	73
2.3.3. Carpeta de hormigón o concreto.	74
2.4. Deformación para cada tipo de rodadura	75
2.4.1. Deformaciones plásticas.	76
2.4.1.1. Tipos de roderas	77
2.4.2. Canalizaciones (blandones)	80
2.4.3. Baches profundos.	81
2.4.4. Ondulaciones.	82
2.4.5. Daños en los pavimentos rígidos	83
2.4.5.1. Deformaciones	84
2.4.5.2. Grietas	84
2.5. Análisis de influencia, tipo de rodadura vs. Deformación	86
2.5.1. Análisis y aplicación	88
2.5.2. Pavimentos flexibles, tratamientos superficiales	92
2.5.3. Pavimentos flexibles carpetas asfálticas	99
2.5.4. Datos y resultados de los pavimentos flexibles	102
2.5.4.1. Tratamientos superficiales	102
2.5.4.2. Carpetas asfálticas	103
2.5.5. Pavimento rígido o hidráulico	104
2.5.5.1. Datos y resultados de los pavimentos rígidos	111
2.6. Valoración de los resultados.	113
2.6.1 Pavimentos flexibles	114
2.6.2. Pavimentos rígidos	115
CAPÍTULO III	
CONCLUSIONES Y RECOMENDACIONES	
3.1. Conclusiones.	118
3.2. Recomendaciones	120
BIBLIOGRAFÍA	122
ANEXOS	

ÍNDICE DE FIGURAS

Pág	gina
Figura 1 Componentes de un pavimento flexible	4
Figura 2 Componentes de un pavimento rígido	5
Figura 3 Curva de Wohler	17
Figura 4 Definición de diferentes módulos de deformación	19
Figura 5 Ensayo de placa (dos cargas)	21
Figura 6 Variación del modelo sobre el espesor de una capa de grava no tratada	25
Figura 7 Ensayos para los materiales con ligantes hidráulicos	26
Figura 8 Comparación entre los resultados de diferentes ensayos (R_C, R_T, R_F, R_{TB})	27
Figura 9 Ensayo de compresión de un material tratado con ligantes hidráulicos	28
Figura 10 Influencia de la frecuencia de las cargas en el módulo de un material bituminoso.	33
Figura 11 Selección de la frecuencia.	33
Figura 12 Deformación admisible a $N=10^6$ ciclos en función de la temperatura	36
Figura 13 Modelo de Boussinesq	40
Figura 14 Estructura multicapa de un pavimento flexible	42
Figura 15 Esquema del modelo de Westergaard	46
Figura 16 Esquema del modelo de Burmister	48
Figura 17 Montaje de un ensaye de módulo dinámico en mezclas asfálticas	63
Figura 18 Esquema de los montajes en flexión y tensión indirecta para la determinación de la resistencia a la tensión de concretos hidráulicos y materiales estabilizados.	63
Figura 19 Ilustración de una cámara triaxial y el concepto de módulo de resilencia	
Figura 20 Menú del programa	70
Figura 21 Deformaciones permanentes (roderas) en pavimentos flexibles	
Figura 22 Deformación de la subrasante	
Figura 23 Deformación de la capa de rodadura	
Figura 24 Aspecto superficial de canalizaciones en pavimentos flexibles	
Figura 25 Aspecto superficial de un bache profundo en pavimentos flexibles	81
Figura 26 Aspecto superficial de ondulaciones en pavimentos flexibles	82

	Pági	na
Figura 27 Deformaciones en pavimentos rígidos		84
Figura 28 Tipos de agrietamiento por fatiga considerados en pavimentos r	ígidos 8	85
Figura 29 Deformaciones en Pavimentos Rígidos y Flexibles		87
Figura 30 Se muestra parte de la carretera Iscayachi-Tojo-Carretas		88

ÍNDICE DE TABLAS

I	Página
Tabla 1 Valores de la frecuencia y del periodo dependiendo de la velocidad	
del vehículo y del tipo de revestimiento	34
Tabla 2 Valores del módulo dependiendo de la frecuencia para una grava	
bitumen tipo III a 15 °C	34
Tabla 3 Valores del módulo y ε_0 , dependiendo de la estructura	. 37
Tabla 4 Coeficiente kd para las calzadas en concreto	51
Tabla 5 Características de los Pasadores	54
Tabla 6 Características de los materiales.	55
Tabla 7 Clasificación del transito a partir del número acumulado de	
vehículos pesados	. 61
Tabla 8 Determinación del coeficiente de agresividad media para todos los	
materiales y tránsito bajo	61
Tabla 9 Deformación Admisible en función del Tránsito	66
Tabla 10 Valores del Módulo de Young de Capas de Gravas no tratadas	. 68
Tabla 11 Módulo de Young	. 90
Tabla 12 Clasificación de tránsito pesado.	91

ÍNDICE DE ANEXOS

Anexo A. Datos necesarios para realizar la práctica

Anexo B. Tablas resumen para el diseño de pavimentos método racional