UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS AGRÍCOLAS Y FORESTALES CARRERA DE INGENIERÍA AGRONÓMICA

INTRODUCCIÓN IN VITRO DE LA MANDARINA CLEOPATRA (Citrus reshni Hort. ex. Tanaka) A PARTIR DE EMBRIONES NUCELARES Y SEGMENTOS NODALES PARA LA PRODUCCIÓN DE PORTA INJERTOS.

Por:

BANEZA MALDONADO GAITE

Tesis presentada a consideración de la "UNIVERSIDAD AUTÓNOMO JUAN MISAEL SARACHO", como requisito para optar al grado académico de Licenciatura en Ingeniería Agronómica.

Gestión - 2018 TARIJA – BOLIVIA

	Enrique Zenteno López
PROFE	ESOR GUIA
M. Sc. Ing. Freddy Castro Salinas DECANO a.i. FACULTAD DE CIENCIAS AGRICOLAS Y FORESTALES	M.Sc. Ing.Luis Arandia Mendivil VICEDECANO a.i . FACULTAD DE CIENCIAS AGRICOLAS Y FORESTALES
APROBADA POR: TRIBUNALES	
_	um Torrico Aparicio BUNAL
=	rko Sfarcich Ruiz BUNAL

M. Sc. Ing. Edwin Dellmis Florez Segovia **TRIBUNAL**

El tribunal calificador del presente trabajo no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo esta responsabilidad del autor.

DEDICATORIA

Esta tesis se la dedico a Dios quien supo guiarme por el buen camino darme fuerzas, salud y sabiduría para seguir adelante y no desfallecer en el intento.

A mis padres José Luis Maldonado Gareca y Adela Gaite Aguirre, a mis hermanos Nataly Maldonado Gaite y Pablo Luis Maldonado Gaite que gracias a su apoyo, comprensión, amor, ayuda en los momentos difíciles y coraje para conseguir mis objetivos siendo ellos el pilar fundamental en mi vida.

AGRADECIMIENTOS

Dios, tu amor y bondad no tienen fin, me permites sonreír ante todos mis logros que son el resultado de tu ayuda, sabiduría para entender las adversidades de la vida, entendimiento y paciencia a lo largo de mi formación y sobre todo humildad.

Agradezco a mis padres por el infinito apoyo por hacer de mí una persona con valores.

A mis docentes por ser parte de mi formación académica en especial al Ing. Victor Enrique Zenteno Lopez, al Ing. Jaime Pantoja Cunioli, al Ing Jorge Cardozo Tejerina, al Ing Fidel Ibarra Martinez, al Ing Henry Esnor Valdez H, a la Ing Lola Zenteno Reyes, al Ing Kaleb Nuñez Cespedes y al Ing. Vladimir Ortiz Mendez.

A mis amigos y compañeros por estar ahí en todo momento.

ÍNDICE

CAPÍTULO I

	INTRODUCCIÓN PÁG		
1.1 An	TECEDENTES	1	
1.2 Jus	.2 Justificación		
1.3 PR	OBLEMA	3	
1.4 HI	PÓTESIS	3	
1.5 OE	BJETIVOS	3	
1.5.1	Objetivo General	3	
1.5.2	Objetivos Especificos	4	
	CAPÍTULO II		
	MARCO TEORICO		
2.1	HISTORIA	5	
2.1.1	Importancia económica y distribución geográfica	5	
2.1.2	Importancia de la utilización y elección de patrones en la citricultura	7	
2.2	ORIGEN DE LA MANDARINA	8	
2.3	DESCRIPCIÓN DE LA PLANTA	8	
2.3.1	Planta	8	
2.3.2	Descripción botánica	9	
2.3.3	Etimología del nombre	9	
2.4	EL FRUTO	10	
2.5	ADAPTACIÓN CLIMÁTICA DE LA MANDARINA	10	
2.6	PROPAGACIÓN DE LA MANDARINA	11	
2.6.1	Mandarina cleopatra (Citrus reshni Hort. ex Tanaka)	11	
2.6.2	Porta injertos	12	
2.6.2.1	Ventajas de un patrón o porta injerto	13	
2.7	CULTIVO IN VITRO.	13	

2.7.1	Características generales del cultivo in vitro	14
2.7.2	Propagación de tejidos vegetales en cultivo in vitro	15
2.8	TÉCNICA DE CULTIVO DE TEJIDOS	15
2.9	MEDIOS DE CULTIVO.	16
2.9.1	Composición del medio de cultivo Murashige Skoog 1962	16
2.9.2	Compuestos inorgánicos	17
2.9.2.1	Macronutrientes	17
2.9.2.2	Micronutrientes	18
2.9.3	Compuestos orgánicos	18
2.9.3.1	Aminoácidos	18
2.9.3.2	Vitaminas	19
2.9.3.3	Azucares	19
2.9.3.4	Carbohidratos	20
2.10	REGULADORES DE CRECIMIENTO	20
2.10.1	Auxinas	20
2.10.2	Citoquininas	21
2.10.3	Giberelinas	22
2.11	MATERIAL DE SOPORTE	23
2.11.1	Medios solidos	23
2.11.2	Medios líquidos	24
2.12	VENTAJAS Y DESVENTAJAS DE LA TÉCNICA DE CULTIVO IN VITRO	24
2.12.1	Ventajas	24
2.12.2	Desventajas	25
2.13	MICROPROPAGACIÓN	25
2.13.1	Etapas de la micropropagación	26
2.13.1.	1 Etapa 0	26
2.13.1.	2 Etapa 1	27
2.13.1.	3 Etapa 2	27
2.13.1.	4 Etapa 3 y 4	28
2.14	EMBRIOGÉNESIS SOMÁTICA DE LA MANDARINA CLEOPATRA	29

2.15	SEGMENTOS NODALES	29
2.16	EMBRIONIA NUCELAR	30
2.16.1	Usos de la embrionia nucelar	31
2.17	PREPARACIÓN DE LA PLANTA MADRE	32
2.17.1	Introducción del material in vitro	32
2.17.2	Medio de cultivo	32
2.17.3	M&S: Murashige y Skoog	33
	CAPÍTULO III	
	MATERIALES Y METODOS	
3.1	LOCALIZACIÓN	34
3.2	Material	34
3.2.1	Material vegetal	34
3.3	MATERIAL DE LABORATORIO	35
3.4	METODOLOGÍA	37

Diseño experimental.....

Variables

PROCEDIMIENTO.....

Variables

37

37

38

42

3.4.1

3.5

3.6

3.7

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1.	SEGMENTOS NODALES – PRIMER	44
ENS	SAYO	
4.1.1	EVALUACIÓN DE LA REGENERACIÓN DE SEGMENTOS NODALES	44
4.1.2.	Análisis de la varianza	44
4.1.3	Prueba de medias	45
4.1.3.1	Análisis de regeneración de segmentos nodales	45
4.2	EVALUACIÓN DE LA CONTAMINACIÓN DE SEGMENTOS NODALES EN LA FASE DE INTRODUCCIÓN	46
4.2.3	Análisis de varianza	47
4.2.3.1	Análisis de medias de diferencia de segmentos nodales	47
4.2.3.2	Análisis de diferencia de medias de los tratamientos de contaminación	47
4.2.3.3	Análisis de porcentaje de contaminación en segmentos nodales	48
4.3	EVALUACIÓN LONGITUDINAL DE BROTES EN SEGMENTOS NODALES	49
4.3.3.1	Análisis de la varianza de longitud de brotes	49
4.3.3.2	Análisis de diferencia de medias tratamientos de longitud de brotes	50
4.4	EMBRIONES NUCELARES - SEGUNDO ENSAYO	51
4.4.1	EVALUACIÓN DE LA REGENERACIÓN DE EMBRIONES NUCELARES	51
4.4.2	Análisis de varianza.	52
4.4.3	Prueba de medias de diferencia significativa de embriones nucelares	52
4.4.3.1	Evaluación de contaminación en embriones nucelares	53
4.4.3.2	Análisis de varianza	54

4.4.3.3	Análisis de medias de diferencias significativas	54
4.5.	Evaluación longitudinal de embriones	55
nuc	leares	
4.5.1.	Análisis de varianza	56
4.5.1.1.	Análisis de diferencias significativas en longitud de	56
	brotes	
4.6.		58
DIS	SCUSIÓN	
	CAPÍTULO V	
	CONCLUSIONES Y RECOMENDACIONES	
5.1.	Conclusiones	60
5.2.		62
REG	COMENDACIONES	
	BIBLIOGRAFIA	

ÍNDICE DE FIGURAS

Figura Nº1	Producción mundial de cítricos	5
Figura N°2	Exportación mundial de cítricos	6
Figura N°3	Porcentaje de regeneración del primer ensayo	46
Figura N°4	Porcentaje de contaminación del primer	48
Figura N°5	Crecimiento longitudinal de brotes de los segmentos	50
	nodales.	
Figura N°6	Porcentaje de contaminación de los embriones	53
	nucelares	
Figura N°7	Análisis de diferencia de medias de tratamientos de longitud	57
	de plántulas	

INDICE DE TABLAS

TABLA Nº1	Composición del medio de cultivo Murashige Skoog 1962	16
TABLA N°2	Medios de cultivo para el establecimiento de mandarina	39
	Cleopatra (Citrus reshni Hort. ex Tanaka)	
TABLA N°3	Análisis de regeneración de segmentos nodales	44
TABLA N°4	Cuadro ANOVA	44
TABLA N°5	Medias de diferencia significativa de cuadro de	45
	regeneración	
TABLA N° 6	Diferencia de medias de tratamientos de regeneración	45
TABLA N°7	Análisis de contaminación de segmentos nodales	46
TABLA N° 8	Cuadro de ANOVA	47
TABLA N°9	Medias de diferencia significativa de cuadro de	47
	contaminación	
TABLA N° 10	Diferencia de medias de tratamientos de contaminación	48
TABLA N° 11	Análisis de longitud de brotes en segmentos nodales	49
TABLA N° 12	CUADRO DE ANOVA	49
TABLA N°13	Análisis de diferencia de medias tratamientos de longitud	50
	de brotes	
TABLA N°14	Análisis de medias de diferencia significativas en longitud	50
	de brotes	
TABLA N°15	Análisis de la germinación in vitro de embriones	51
	nucelares	
TABLA N°16	CUADRO DE ANOVA	52

TABLA N°17	Medias de diferencia significativa de cuadro de	52
	regeneración	
TABLA N°18	Diferencia de medias tratamientos en regeneración	52
TABLA N°19	Resultados de contaminación en embriones nucelares	53
TABLA N°20	CUADRO DE ANOVA	54
TABLA N°21	Media de diferencia significativa en contaminación	54
TABLA N°22	Análisis de medias de diferencia de medias de tratamientos	54
	de contaminación.	
TABLA N°23	Análisis de longitud de plántulas	55
TABLA N° 24	CUADRO DE ANOVA	56
TABLA N°25	Prueba de diferencias significativas	56
TABLA N°26	Análisis de diferencia de medias de tratamientos de	56
	longitud	

ÍNDICE DE ANEXOS

ANEXO 1	Equipos del laboratorio para realizar el trabajo de
	Investigación.
ANEXO 2	Elección de la planta madre (mandarina Cleopatra) para
	segmentos nodales.
ANEXO 3	Selección de las semillas de mandarina cleopatra para la
	extracción de embriones nucelares.
ANEXO 4	Material seleccionado y listo para la esterilización.
ANEXO 5	Preparación del medio de cultivo.
ANEXO 6	Esterilización de los medios de cultivo en la autoclave.
ANEXO 7	Extracción de los segmentos nodales.
ANEXO 8	Introducción de la mandarina Cleopatra (segmentos nodales) y
	(embriones nucelares).
ANEXO 9	Procedimiento de la introducción de explantes.
ANEXO 10	Explantes en el medio de cultivo.
ANEXO 11	Evaluación de muestras contaminadas.

Evaluación de la regeneración de los explantes a los 15 días.

Evaluación longitudinal de los explantes a los 20 y 30 días.

ANEXO 12

ANEXO 13

ANEXO 14 Evaluación final en longitud de los explantes a los 60 días.