1.- GENERALIDADES:

1.1.-INTRODUCCIÓN

Los principales mecanismos de degradación que se controlan en los métodos de diseño de pavimentos flexibles son la fatiga y la acumulación de la deformación permanente. Éstos se controlan en las capas asfálticas y en la subrasante dejando a un lado el papel que juegan las capas granulares (compuestos por materiales granulares no ligados) en su generación. Es decir, los métodos de diseño de pavimentos flexibles subestiman la importancia que tienen las capas granulares como elemento estructural y funcional, y suponen que, cumpliendo ciertos requisitos de "calidad" en ensayos de caracterización de agregados pétreos, las capas granulares no experimentarán comportamientos deficientes bajo cargas cíclicas.

Múltiples estudios desarrollados desde la década de los 60 han demostrado que las capas granulares contribuyen en gran parte a la acumulación de la deformación permanente. Por tal motivo, la ingeniería de pavimentos han venido desarrollando investigaciones con el fin de entender el complejo comportamiento elastoplástico que experimentan materiales granulares bajo diversas trayectorias de cargas cíclicas y condiciones del medio ambiente número de investigaciones realizadas, el comportamiento elastoplástico de tales materiales aún no ha sido totalmente entendido. En nuestro país han sido muy pocas investigaciones sobre el tema, debido principalmente la falta de equipos apropiados para llevar acabo mediciones de laboratorio e in situ, así como a los escasez de investigaciones. Incluso la bibliografía sobre el tema es muy poca y no ha sido ampliamente presentada en ningún libro sobre pavimentos o memoria técnicas.

En el presente trabajo de investigación se pretende determinar el comportamiento resiliente y la deformación permanente de los materiales granulares que conforman las capas subbase y base del pavimento, esto se lo realizara a través de una correlación mediante el CBR que se obtenga de cada material o suelo, así también se determinará la deformación mediante el método de Hogg Simplificado, ya que este método nos facilitará en conocer el comportamiento del suelo.

Si los alcances y las limitaciones de dichas metodologías y tendencias, haciendo énfasis en el comportamiento de materiales granulares que conforman capas base y sub base. Lo que también se presentará el modo que han sido estudiados el comportamiento resiliente y la resistencia de los materiales granulares respectivamente.

1.2.- JUSTIFICACIÓN:

Este trabajo de investigación se lo quiere realizar porque una estructura de pavimento debe ser diseñada de tal manera que las cargas impuestas por el tránsito no generen deformaciones permanentes excesivas. En el caso de las estructuras flexibles, la deformación permanente total es la suma de la deformación vertical producida en cada una de las capas del pavimento debido al paso de los vehículos. Esta acumulación de la deformación en el tiempo puede generar fallas funcionales o estructurales.

Mediante esta investigación se quieren mostrar que gran parte de la acumulación de la deformación que experimentan estructuras de pavimentos flexibles bajo cargas que son aplicados al pavimento, se produce debido a que las capas de base y subbase pueden estar compuestas por materiales granulares no tratados y es por esto que es recomendable tener un previo conocimiento del comportamiento que tienen los materiales granulares.

Lo que se quiere conseguir con este tipo de investigación es; determinar en forma adecuada y certera los parámetros dinámicos como el MR y la deformación permanente para los materiales que conforma la estructura de pavimento, ya sea rígido o flexible, ha sido un estudio de varios años en el cual todavía no se evidencia el comportamiento elastoplástico y más aún si se habla de materiales parcialmente saturados. Los diseños realizados por métodos empíricos y/o mecanicistas se hace necesario extrapolar las condiciones de los materiales y determinar así las condiciones de los suelos que conformen la estructura. Por estas razones, desarrollar en este trabajo de forma experimental el análisis de las propiedades mecánicas para suelos de capa subbase y base granulares materiales propios que se encuentran en nuestro departamento (TARIJA), materiales que utilizó SEDECA en sus proyectos de ejecución y permitir

compararlo con los parámetros que usan los métodos de diseño empíricos y mecánicos, contribuirá de cierta forma a reducir la incertidumbre y realizar diseños más cercanos a las condiciones reales de los materiales y las estructuras de pavimento.

1.3.- DISEÑO TEÓRICO.

1.3.1.- PLANTEAMIENTO DEL PROBLEMA

1.3.1.1.- Situación Problemica

Los métodos de diseños de pavimento como AASHTO (2002), SHELL (1978), métodos mecanicistas, entre otros, relacionan el módulo resiliente como el principal parámetro para el diseño de la estructura multicapa. El módulo resiliente (MR) proporciona en el diseño una adecuada selección del material que redunda en el dimensionamiento estructural.

Sin embargo, este parámetro no es una constante en los suelos, ya que se encuentra directamente relacionado con factores como: número de aplicaciones de esfuerzo, magnitud del esfuerzo, método de compactación, humedad y tipo de material. Por esta razón no existe un valor único de MR y hay un rango de variación para cada suelo. Un gran número de repeticiones de carga genera una suma de deformaciones que puede llevar al material a la falla creando el colapso de la estructura. En los pavimentos flexibles, se dice que las deformaciones mayores se presentan en la subrasante debido a que es la capa con menor rigidez (Rondón Quintana, et al, 2012). Dicho esto, la deformación plástica alcanzada puede llegar a ser excesiva, por lo que evaluar esta propiedad es importante a la hora de caracterizar los materiales de pavimento.

Los métodos de diseño de pavimento como los mencionados anteriormente, se han basado en formulaciones empíricas y en retroalimentación de estudios ejecutados, que de forma posterior son ajustados a los requerimientos generales para cada proyecto. Estos diseños son alimentados con parámetros generales de caracterización físicomecánica, producto de estudios de materiales en laboratorio y que finalmente son definidos como ecuaciones generales, tendencias o extrapolaciones de comportamiento teórico de dichos materiales, ya que caracterizar de forma adecuada los materiales que

conforman el pavimento se vuelve una tarea dispendiosa, debido a que la determinación de dichas propiedades requiere de equipos que logren simular las condiciones reales, lo que lo hace en algunos casos costoso. Debido a esto, son pocas las investigaciones realizadas que caractericen el comportamiento de estas propiedades en materiales cohesivos con presencia de material friccionante.

En Tarija el método de diseño de pavimentos flexibles es empírico. En este tipo de metodologías, cambios en el tiempo de las condiciones de tránsito o del clima de la zona del estudio pueden hacer que métodos de este tipo de pierdan confiabilidad en la predicción de dimensionamiento de pavimentos. Lo delicado de esta situación es que en Tarija las condiciones de tránsito clima son cambiantes, el transporte de la carretera de agrava debido los pesos máximos permitidos en muchas ocasiones son excedidos y esto afecta en la estructura de los pavimentos.

1.3.1.2.- Problema

Los materiales granulares en su comportamiento elastoplástico dentro de las capas del pavimento sufrirán una degradación en su compactación, cuando estos sean afectados en su módulo de resiliencia y capacidad de deformación?

1.3.2.- OBJETIVOS DE LA INVESTIGACIÓN

1.3.2.1.- Objetivo General

Analizar el comportamiento resiliente, mediante la correlación de CBR y deformación permanente por el Método de Hogg Simplificado, de los materiales granulares en pavimento flexible de la capa subbase y base aplicados a materiales que utiliza SEDECA en sus proyectos en ejecución. De manera que al momento de elegir los materiales, se tenga el conocimiento previo sobre su comportamiento en la estructura del pavimento.

1.3.2.2.- Objetivos Específicos

> Estudiar los materiales granulares en capas de subbase y base del pavimento flexibles.

- Estudiar su evaluación de los materiales granulares, en lo que respecta su módulo resiliente y deformación.
- Ubicar y tomar muestras de los materiales que serán parte del estudio de investigación.
- Realizar los ensayos de caracterización de las muestras que servirán para la investigación.
- ➤ Determinar el módulo resiliente mediante la correlación de CBR y la deformación permanente de los materiales granulares que son parte de la investigación, mediante el Método Hogg Simplificado.
- Analizar los resultados que se obtuvieron del módulo resiliente y la deformación permanente, para cada una de las muestras establecidas de materiales granulares que fueron utilizados para la capa subbase y base, de los proyectos ejecución que realizó SEDECA.

1.3.3.- HIPÓTESIS

Si se realiza un análisis del comportamiento resiliente y la deformación permanente de los materiales granulares, entonces este análisis nos permitirá que al momento de elegir los materiales granulares para el diseño de pavimentos, se tenga el conocimiento previo sobre el comportamiento de estos materiales granulares de estudio (materiales granulares que utiliza SEDECA en sus proyectos de ejecución), lo cual será muy beneficioso en cuanto el diseño y una mejor calidad de pavimento para la utilización en proyectos.

1.3.4.- DEFINICIÓN DE VARIABLES

1.3.4.1.- Variables independientes

En esta investigación las variables independientes serán los materiales granulares ya que estos materiales serán parte de la investigación mediante varios ensayos que se

6

realizaran en laboratorio, estos materiales granulares serán materiales que utilizó

SEDECA en sus proyectos de ejecución.

1.3.4.2.- Variables dependientes

Las variables dependientes de esta investigación serán el módulo resiliente y la

deformación permanente de los materiales granulares.

1.4.- DISEÑO METODOLÓGICO

1.4.1.- COMPONENTES

Unidad: La unidad del proyecto de investigación serán los pavimentos.

Población: Los materiales granulares en pavimentos.

Muestra: Materiales granulares que se utilizó en los proyectos de SEDECA.

Muestreo: La investigación se realizó con materiales granulares los cuales son:

materiales que utiliza SEDECA en sus proyectos de ejecución. Por lo cual se trabajó

con materiales de distintos bancos y material de río que utilizó SEDECA en pavimento

flexible, para la capa subbase y base de sus proyectos de ejecución, como ser en los

tramos de; Santa Ana – Yesera, San Andrés – San Pedro de Sola, Tolomosa – Pampa

Redonda, Erquiz Sud – Cruce cadillar y Concepción - Chocloca – juntas.

1.4.2.- MÉTODOS Y TÉCNICAS EMPLEADAS

1.4.2.1.- **MÉTODOS**

1.4.2.1.1.-Deductivo

Con la investigación del proyecto en cuanto al módulo de resiliente y la deformación

permanente de los materiales granulares se llegará obtener resultados mediante

fórmulas.

Una vez realizado los ensayos necesarios, para determinar el módulo resiliente se

realizará mediante el Método Hogg simplificado, por el cual el módulo resiliente se

determinará realizando una correlación en función del CBR que se obtenga de

materiales granulares que son parte del estudio.

La deformación permanente de los materiales granulares en estudio una vez realizada también los ensayos correspondientes se determinara la deformación mediante el Método de Hogg simplificado.

1.4.2.1.2-.Inductivo

En este proyecto se quiere analizar el módulo de resiliencia como también deformación permanente que tienen los materiales granulares debido a la compactación que se realiza en estos materiales y a las cargas cíclicas que se presentan en los pavimentos.

1.4.2.2.-TÉCNICAS

1.4.2.2.1. Ensayos

Se realizaron varios ensayos para el proyecto de investigación, para caracterizar los materiales granulares y cuantificar su calidad de los mismos es por medio de los siguientes ensayos:

- ✓ Análisis granulométrico
- ✓ Proctor T-180
- ✓ Californian Bearing Ratio CBR
- ✓ Desgaste en la máquina de los ángeles
- ✓ Equivalente de arena

1.4.2.3. **MEDIOS**

1.4.2.3.1. Instrumentos

✓ Instrumentos para la extracción del material

Para la extracción de los materiales granulares de distintos bancos como ser 5 bancos.

Se utilizará los siguientes instrumentos:

- Pala
- Pico
- ❖ Bolsa para guardar el material extraído

✓ Instrumentos para el análisis granulométrico

Para el análisis granulométrico se realizara por tamizado. El análisis granulométrico por tamices es un proceso mecánico mediante el cual se separan las partículas de un suelo en sus diferentes tamaños, denominado a la fracción menor (Tamiz No 200) como limo, Arcilla. Se lleva a cabo utilizando tamices en orden decreciente. La cantidad de suelo retenido indica el tamaño de la muestra, esto solo separa una porción de suelo entre dos tamaños

✓ Instrumentos para el ensayo proctor T-180

La compactación se realizará en un molde de proctor de acuerdo al material que se compactara, debido a que son materiales granulares se utilizará un molde T-180.

El método está basado en la determinación de las densidades secas de varias probetas del material en estudio, compactadas en idénticas condiciones pero con contenido de humedades diferentes. Para cada contenido de humedad se alcanza una determinada densidad.

✓ Instrumentos para el ensayo CBR

La finalidad de este ensayo, es determinar la capacidad de soporte (CBR) de suelos y agregados compactados en laboratorio, con una humedad óptima y niveles de compactación variables. Este método sirve para evaluar la calidad relativa del suelo para sub-rasante, sub-base y base del pavimento.

✓ Instrumentos para el ensayo desgaste en la máquina de los Ángeles

El objetivo de la prueba de desgaste por medio de la máquina de los ángeles es determinar la resistencia a la trituración o abrasión de los materiales granulares la resistencia a la trituración o abrasión de los materiales granulares utilizados en pavimentos.

Para determinar la resistencia se hace actuar una carga abrasiva sobre la muestra del material que se desea analizar. La carga la proveerán unas esferas metálicas estandarizadas que al interactuar con la muestra del material dentro de la máquina de

los ángeles alteraran su composición granulométrica triturando el material, como resultado se tendrá una pérdida de material con respecto a su masa inicial que determinara la calidad del mismo ante el desgaste o abrasión.

✓ Equivalente de arena

Al volumen determinado del suelo o agregado fino se le adiciona una pequeña cantidad de solución floculante, mezclándolos en un cilindro de plástico graduado y agitándolos para que las partículas de arena pierdan la cobertura arcillosa. La muestra es entonces irrigada, usando una cantidad adicional de solución floculante, para forzar al material arcilloso a quedar en suspensión encima de la arena.

Después de un periodo de sedimentación, se determinan las alturas de la arcilla floculada y de la arena en el cilindro. El "equivalente de arena" es la relación entre la altura de arena y la altura de arcilla, expresada en porcentaje

1.4.3.- ALCANCE DE LA INVESTIGACIÓN

El alcance que tendrá este proyecto es el de realizar un análisis del comportamiento del módulo de resilencia y la deformación permanente que tendrá los materiales granulares en pavimentos, aplicados a materiales que utiliza SEDECA en sus proyectos en ejecución, por lo cual en el proyecto se analizara los materiales granulares que conforman las capas del pavimento como ser sub-base y base, es por esto las muestras de los materiales granulares serán analizados mediante varios ensayos en laboratorio lo cual serán muestras de materiales de canto rodado (material de rio) y bancos de los proyectos que ejecuto SEDECA, es decir materiales que se utilizaron en varios tramos. Se sabe que los materiales granulares en su comportamiento dentro de las capas del pavimento, estas sufren degradación en cuanto a su compactación lo cual afecta al módulo de resilencia y deformación, en base a esto se hará un análisis de los materiales granulares de modo que nos permita que al momento de elegir materiales para el diseño de pavimentos, se tenga el conocimiento previo sobre el comportamiento de estos materiales en la estructura del pavimento, el

módulo resiliente y la deformación permanente se la llegará a determinar según el Método Hogg Simplificado, el cual es un método que nos facilita la evaluación de suelos y pavimentos, esto se debe a correlaciones que considera dicho método. Al tener los resultados de esta investigación de hará un análisis sobre los datos obtenidos, para verificar el comportamiento de los materiales granulares en cuanto a su módulo de resilencia y deformación en la estructura de pavimento.

- ➤ De manera resumida los resultados teóricos y experimentales de estudios llevados a cabo para evaluar el comportamiento resiliente de materiales granulares empleados para conformar capas de base y sub-base en estructuras de pavimentos flexibles. Se hace énfasis en los resultados para evaluar el módulo resiliente, ya que la mayoría de los estudios en esta área se ha concentrado en su medición y evaluación.
- La deformación permanente en materiales granulares, en donde el principal factor que influye en dicha deformación es la magnitud de las cargas cíclicas. Se analiza que la deformación permanente en un material granular se incrementa proporcionalmente al aumentar la magnitud del esfuerzo cíclico, y disminuye cuando se eleva la presión de confinamiento. Dependiendo de la amplitud de esfuerzo cíclico, las capas granulares experimentan comportamientos diferentes.
- Las muestras serán llevadas a laboratorio para verificar ciertas características mecánicas y su clasificación mediante ensayos, las muestras son materiales que utilizo SEDECA en capas subbase y base de pavimento en sus proyectos de ejecución.
- ➢ Para los ensayos de laboratorio como ser: Granulometría, Compactación Modificada (T-180), Límite Líquido, Límite Plástico, Relación Soporte De California (CBR), Desgaste de Los Ángeles, y Equivalente De Arena. Se realizara una cantidad representativa de ensayos, de manera que se pueda analizar y compara los resultados, definiendo de esta manera resultados para cada ensayo, para la secuencia del estudio para una mayor confiabilidad de los

- resultados obtenidos se debe realizar los ensayos con una mayor precisión y responsabilidad.
- ➤ Para una mejor interpretación de resultados se realizarán gráficas de cada uno de los ensayos a una escala determinada, donde se podrá identificar la densidad máxima, humedad óptima en los ensayos de proctor modificado (t-180), y los ciclos de ensayo relación soporte california (CBR)
- ➤ Para tener una mejor interpretación de resultados, de cómo el módulo resiliente tiene correlación en función del CBR del material granular se realizaran gráficas para su mejor entendimiento al igual que la deformación del material en función del CBR.
- Dependiendo del material en estudio, se tomará en cuenta algunos de los factores más importantes son: parámetros de compactación (peso volumétrico y contenido de agua); método de compactación; número de aplicaciones de carga; magnitud del esfuerzo; tipo y contenido de estabilizador; tipo y contenido de modificadores; temperatura; etc. Así entonces, la definición del valor para el módulo de resiliencia de cada uno de los materiales utilizados en la estructuración de un pavimento debe tomar en cuenta los factores mencionados. En este proyecto de investigación, se deberá determinar el valor del módulo resiliente para cada muestra que formó parte de la investigación.
- Una vez elaborada la práctica de los materiales de estudio en laboratorio y lo que se quiere investigar, es decir el módulo de resiliencia de los materiales de granulares, como también la deformación permanente en pavimentos obteniendo los resultados se tendrá que hacer un análisis de dichos resultados y además de tener conclusiones y recomendación de la investigación realizada.

2.1.-DEFINICIÓN Y CLASIFICACIÓN DE PAVIMENTOS

Un pavimentos puede definirse como la capa o conjunto de capas de materiales apropiados, comprendidas entre el nivel superior de terracerías y la superficie de rodamiento uniforme, y de color y textura apropiados, resistente a la acción del tránsito a la del interperismo y otros agentes perjudiciales; así como de transmitir

adecuadamente los esfuerzos a la subrasante, de modo que ésta no se deforme de manera perjudicial.

La clasificación de pavimentos está sujeta a las limitaciones inherentes a las técnicas de clasificación históricamente, los pavimentos han sido divididos en dos categorías (1) flexibles y (2) rígidos.

➤ Pavimentos flexibles: consisten de una superficie de desgaste o carpeta relativamente delgada construida sobre unas capas(base y sub-base), apoyándose este conjunto sobre la subrasante compactada, de manera que la subbase y superficie de desgaste o carpeta son los componentes estructurales de este tipo de pavimento(ver figura 2.1)

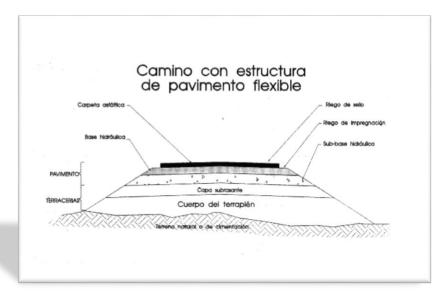


Figura 2.1: Estructura de Pavimento Flexible

Fuente: generalidades y definiciones sobre pavimentos

➤ Pavimentos rígidos: consisten en una losa de concreto y pueden o no tener una capa sub-base entre la losa y la subrasante (ver en la figura 2.2).

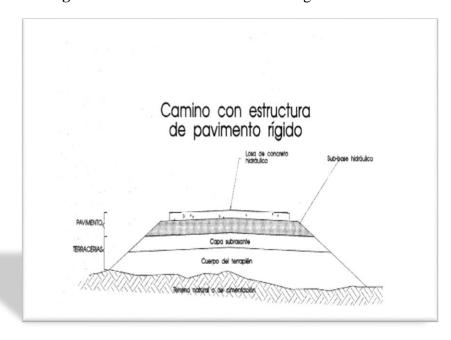


Figura 2.2: Estructura de Pavimento Rígido

Fuente: generalidades y definiciones sobre pavimentos

Aparte de los pavimentos ya citados existe actualmente pavimento flexible a cuya base se le ha dado una rigidez alta por la adición de cemento o asfalto.

De lo anterior se desprende que, en general, un pavimento está formado por diversas capas de mejor calidad y mayor costo cuanto más cercanas se encuentran a la superficie de rodamiento; ello es, principalmente por la mayor intensidad de los esfuerzos que le son transmitidos.

Algunos autores consideran que los pavimentos se diferencian y definen en términos de los materiales que están constituidos y de cómo se estructuran esos materiales. Mientras que otros consideran que la diferencia esencial es la manera que distribuyen las cargas sobre la subrasante.

2.2.-FUNCIONAMIENTO Y MATERIALES DE LAS DISTINTAS CAPAS DEL PAVIMENTO FLEXIBLE

2.2.1.- Sub-base

Para muchos, una de las principales funciones de esta capa en un pavimento flexible es de carácter económico. Se trata de formar el espesor requerido del pavimento con el material más barato posible. Todo el espesor podría construirse con un material de alta calidad, como el usado en la capa base, pero prefiere hacer aquella más delgada y sustituirse en parte por una sub-base de menor calidad, aun cuando esto traiga consigo un aumento en el espesor total del pavimento, pues naturalmente cuanto menor sea la calidad del material colocado será mayor el espesor necesario para soportar los esfuerzos transmitidos.

Sus funciones son la de resistir las cargas de tránsito y transmitirlas adecuadamente a las terracerías.

Otra función consiste en servir de transición entre el material de base, generalmente granular más o menos grueso y la propia subrasante. La sub-base, más fina que la base, actúa como filtro de esta e impide su incrustación en la subrasante.

La sub base, más fina que la base, actúa como filtro de esta e impide su incrustación en la subrasante.

La sub base también se coloca para absorber deformaciones perjudiciales en la subrasante, por ejemplo cambios volumétricos asociados de cambios de humedad, impidiendo que se reflejen en la superficie del pavimento.

Otra función de esta capa es la de actuar como den para desalojar el agua que infiltre a través de las capas superiores, y para impedir la ascensión capilar hacia la base, de agua procedente de la terracería.

2.2.2.- Base

Hasta cierto punto existe en la base una función económica análoga a la comentada para el caso de la sub-base, pues permite reducir el espesor de la carpeta que viene a ser la capa más costosa. Pero la función fundamental de esta capa consiste en

proporcionar un elemento resistente que transmitan a la sub-base y a la subrasante los esfuerzos producidos por el tránsito en una intensidad apropiada. La base en muchos casos debe también drenar el agua que se introduzca a través de la carpeta o por los acotamientos del pavimento, así como impedir la ascensión capilar.

2.2.3.- Carpeta

La carpeta debe ser proporcionar una superficie de rodamiento adecuada con textura y color convenientes y resistir los efectos abrasivos del tráfico hasta donde sea posible ya que estará en contacto directo con él; además debe impedir hasta cierta medida el paso del agua a las capas inferiores.¹

2.3.- CAPAS GRANULARES DE BASE Y SUB-BASE

Este trabajo consiste en el suministro, extensión, humedecimiento, mezcla, conformación y compactación de un material granular aprobado, el cual conformara parte de la estructura de un pavimento; de acuerdo con lo indicado en los documentos del proyecto, ajustándose a las cotas y los alineamientos horizontal y vertical y a las secciones transversales típicas, dentro de las tolerancias estipuladas y de conformidad con todos los requisitos de la presente sección.

Se definen tres clases de capas granulares para base que se denominan clase A(BG-A), clase B(BG-B) y clase C (BG-C); También se definen tres clases de capas granulares para subbase que se denominan clase A (SBG-A), clase B (SBG-B), clase C (SBG-C).Los tipos (base o subbase) y clases (A, B o C) de capas granulares por emplear en cada caso se establecerán en los documentos técnicos del proyecto, en función de la importancia de la vía, del nivel de tránsito, del tipo de pavimento y de la posición de la capa dentro de pavimento.

Salvo de los documentos técnicos del proyecto establezcan en otra cosa, la correspondencia entre las clases de capas granulares, el tipo de pavimento y de las categorías de transito será la indicada en la tabla siguiente:

_

¹ **Fuente** :Generalidades y definiciones sobre los pavimentos

Tabla 2.1 Correspondencia entre clases de capas granulares, el tipo de pavimento y las categorías de transito

Tipo de Capa	Categ	Categorías de Tránsito				
Tipo de Capa	T0 – T1	T2 – T3	T4 - T5			
Pavimento Asfáltico	•	•	•			
Base Granular	BG_C	BG_B	BG_A			
Subbase Granular	SBG_C	SBG_B	SBG_A			
Pavimento de Losas de Concreto de Cemento Pórtland						
Base Granular	BG_B	BG_A	NA			
Subbase Granular	SBG_C	SBG B	SBG A			

Fuente: bases y subbases (especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y del espacio público en Bogotá D.D.)

2.4.- MATERIALES GRANULARES

Las capas que se construyan en acuerdo a esta sección deberán estar constituidas por materiales de tipo granular. Dependiendo de su uso y de lo que indiquen los documentos del proyecto, pueden corresponder a materiales en estado natural o podrán estar compuestos por mezclas de agregados naturales con agregados provenientes de trituración de piedras de cantera o de grava natural.

Todos los materiales granulares, independientemente de su procedencia, deberán encontrarse exentos de materias vegetales, basura, terrones de arcilla un otras sustancias incorporadas que pueden resultar ambientalmente nocivas o inconvenientes para el buen comportamiento de la capas del pavimento.

La naturaleza de los materiales deberá ser tal que ellos puedan ser adecuadamente humedecidos y compactados para formar una capa firme y estable.

El uso total o parcial de escorias u otros productos inertes de desecho industrial, o de materiales provenientes de capas recicladas de cualquier tipo en la construcción de una capa granular, deberá ser objeto de una especificación particular.

El constructor es el responsable de los materiales que suministre para la ejecución de los trabajos y deberá realizar todos los ensayos que sean necesarios, en adición de los que taxativamente se exigen en esta sección, para garantizarles al instituto de desarrollo urbano la calidad e inalterabilidad de los agregados por utilizar.

2.4.1.- Base Granular

Las características de los agregados pétreos que se empleen en la construcción de la base granular, en acuerdo con la presente sección, deberán llenar los requisitos que se indican en la siguiente tabla:

Tabla 2.2 Requisitos de los agregados para bases granulares

Ensayo		Norma de	Clase de Base Granular			
		Ensayo	BG_C	BG_B	BG_A	
Petrografía						
Análisis petrográfico		ASTM C-295	Reportar	Reportar	Reportar	
Dureza						
Desgaste Los Ángeles (Gradación A)	- En seco, 500 revoluciones, % máximo - En seco, 100 revoluciones, % máximo - Después de 48 horas de inmersión, 500 revoluciones, % máximo (1) - Relación húmedo/seco, 500 revoluciones, máximo		INV E-218	35 7 (RO) 55 (RO) 2 (RO)	30 6 (RO) 50 (RO) 2 (RO)	30 6 (RO) 45 2
Micro Deval, % máximo	- Agregado Grueso (FT)		ASTM D-6928	30	25	20
10% de finos	- Valor en seco, kN mínimo - Relación húmedo/seco, % mínimo		BS 812 PART 111	60 (RO) 75 (RO)	75 (RO) 75 (RO)	100 75
Durabilidad						
Pérdidas en ensayo de solidez en sulfatos, % máximo - Sulfato de Magnesio		INV E-220	18	18	18	
Limpieza						
Límite Líquido, % máximo		INV E-125	25	25	25	
Índice de Plasticidad, % máximo		INV E-126	3	No plástico	No plástico	
Equivalente de Arena, % mínimo		INV E-133	25	25	25	
Valor de Azul de Metileno, máximo		EN-933-9	8	8	8	
Terrones de arcilla y partículas deleznables, % máximo		INV E-211	2	2	2	
Geometría de las Partículas						
Partículas Fractur		- 1 cara	INVE-227	60	85	85
Mecánicamente, % mínimo - 2 caras			40	60	60	
Indice de Aplanamiento, % máximo (2)		INV E-230	35	35	35	
Índice de Alargamiento, % máximo (3)		INV E-230	35	35	35	
Angularidad del Agregado Fino, % mínimo (RO)		AASHTO T-304	35	35	35	
Capacidad de Soporte						
CBR, % mínimo - Referido al 100 % de la densidad seca máxima, según el ensayo INV E-142 (AASHTO T 180), método D, después de 4 días de inmersión.		INV E-148	80	100	100	

Fuente: bases y subbases (especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y del espacio público en Bogotá D.D.

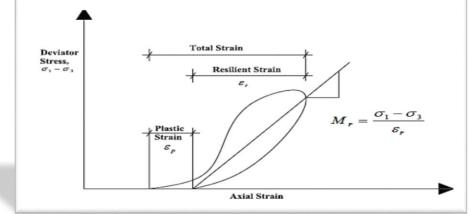
2.4.2.- Sub-base Granular

Las características de los agregados pétreos que se empleen en la construcción de la subbase granular, en acuerdo con la presente sección, deberán llenar los requisitos que se indican en la siguiente tabla ²

 Tabla 2.3 Requisitos de los Agregados Subbases Granulares

Ensayo		Norma de Ensayo	Clase de Subbase Granular			
			SBG_C	SBG_B	SBG_A	
Petrografía						
Análisis petrográfico		ASTM C-295	Reportar	Reportar	Reportar	
Dureza						
Desgaste Los Ángeles (Gradación A)	- En seco, 100 re	En seco, 500 revoluciones, % máximo En seco, 100 revoluciones , % máximo Después de 48 horas de inmersión, 500		40 8 (RO)	35 7 (RO)	35 7 (RO)
	revoluciones, % máximo (1) - Relación húmedo/seco, 500 revoluciones,		INV E-218	60 (RO)	55 (RO)	55
	máximo			2 (RO)	2 (RO)	2
Micro Deval, % máximo	- Agregado Grues	so (FT)	ASTM D-6928	35	30	30
10% de finos	- Valor en seco, kN mínimo - Relación húmedo/seco, % mínimo		BS 812 PART 111	40 (RO) 65 (RO)	50 (RO) 70 (RO)	60 (RO) 75 (RO)
Durabilidad						
Pérdidas en ensayo de solidez en sulfatos, % máximo		- Sulfato de Magnesio	INV E-220	18	18	18
Limpieza						
Límite Líquido, % máximo		INV E-125	25	25	25	
Índice de Plasticidad, % máximo		INV E-126	6	3	3	
Equivalente de Arena, % mínimo		INV E-133	20	20	20	
Valor de Azul de Metileno, máximo		EN-933-9	10	10	10	
Terrones de arcilla y partículas deleznables, % máximo		INV E-211	2	2	2	
Geometría de las Partículas						
Partículas Fractur Mecánicamente, 9		- 1 cara - 2 caras	INVE-227	NA NA	50 NA	50 30

Ensavo	Norma de	Clase de Subbase Granular		
Liisayo	Ensayo	SBG_C	SBG_B	SBG_A
Índice de Aplanamiento, % máximo (2)	INV E-230	NA	NA	NA
Índice de Alargamiento, % máximo (3)	INV E-230	NA	NA	NA
Angularidad del Agregado Fino, % mínimo (RO)	AASHTO T-304	NA	NA	NA
Capacidad de Soporte				
CBR, % mínimo - Referido al 95 % de la densidad seca máxima, según el ensayo INV E-142 (AASHTO T 180), método D, después de 4 días de inmersión.	INV E-148	30	40	60


² Fuente: bases y subbases (especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y del espacio público en Bogotá D.D.)

Fuente: bases y subbases (especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y del espacio público en Bogotá D.D.)

2.5.- COMPORTAMIENTO RESILIENTE DE MATERIALES GRANULARES 2.5.1.- MÓDULO RESILIENTE

Como se sabe, los suelos tanto de fundación como los que conforman la estructura del pavimento presentan comportamiento elastoplástico. Así, los pulsos de carga que generan los vehículos producen deformaciones en las diferentes capas que no son recuperadas a la totalidad.

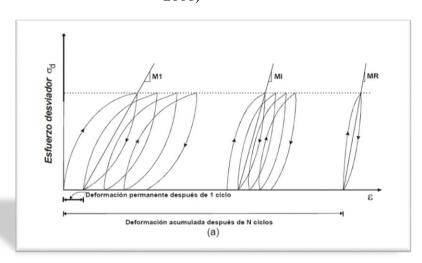
Figura 2.3 Deformación plástica y resiliente en un ciclo de carga (Khasawneh, 2005)

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

Una vez terminada la carga dinámica existen deformaciones de recuperación instantánea o resiliente y deformaciones que continúan en el material (**Figura 2.3**). Sin embargo, bajo cierto número de ciclos de carga y descarga el comportamiento presentado se dice que es "elástico" ya que las deformaciones tienden a recuperarse a la totalidad y las deformaciones permanentes son muy bajas en comparación con las resilientes.

La energía provocada por los ciclos de carga se disipa, generando menor histéresis en la relación esfuerzo- deformación del material para cierto número de ciclos; aproximadamente después de 200 ciclos (Drumm, et al, 1990) el módulo elástico se vuelve constante suponiendo así respuestas lineales (**Figura 2.4**).

Este estado es llamado estado de resiliencia del material. A partir de esto surgió el concepto de MR, el cual matemáticamente se define como la magnitud del esfuerzo desviador repetido en compresión divido entre la deformación axial recuperable (Garnica Anguas et al., 2001)


$$M_r = \frac{\sigma_1 - \sigma_3}{\varepsilon_{axial}} = \frac{\sigma_d}{\varepsilon_{axial}}$$

Dónde:

 σ d=esfuerzo desviador

 ε axial =deformacion recuperable

Figura 2.4 Ciclos de histéresis presentados en el material (Garnica Anguas et al., 2001)

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

En el momento en el que la toda la deformación presentada en el suelo es recuperable, se puede determinar el módulo resiliente del material.

De esta forma, el MR está estrechamente ligado a un proceso de carga y descarga.

2.5.2.- FÁCTORES QUE AFECTAN AL MÓDULO DE RESILIENCIA EN MATERIALES GRANULARES

2.5.2.1.-Tipos de material

Varios son los factores que afectan el módulo de resiliencia de un material granular, los cuales pueden clasificarse en dos grupos: en uno se pueden considerar los factores inherentes al tipo de material y sus características y, en el otro, el nivel de esfuerzos aplicado, duración del pulso de carga y el procedimiento de prueba general.

2.5.2.2.-Tamaño de espécimen, tipo de compactación, peso específico y granulometría

En relación con el tipo de material y sus características, influyen la naturaleza de la roca, el grado de sanidad (índice de solidez de los granos) y tamaño máximo de las partículas, su angulosidad y rugosidad, composición granulométrica, etc.

Musharraf et al (1994) llevaron a cabo un estudio en el que utilizaron seis tipos de agregados los cuales consistieron de tres calizas, una arenisca, un granito y una riolita, estos materiales son los comúnmente usados en la construcción de bases y subbases de pavimento de carreteras en Oklahoma, USA.

En las Figuras 2.5 y 2.6 se presentan las curvas granulométricas de los materiales estudiados.

Limite superior

Region of the superior of the

Figura 2.5 Granulometrías I y II utilizadas en el estudio (materiales tipo A)

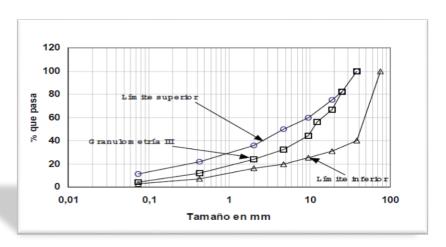


Figura 2.6 Material tipo B (Granulometría III)

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

En la Figura 2.7 (Musharraf, et al, 1994) se presentan valores de módulo de resiliencia obtenidos al probar los seis materiales granulares mencionados anteriormente.

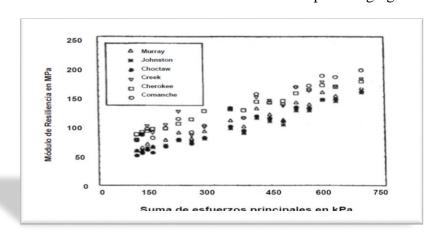


Figura 2.7 Módulos de resiliencia obtenidos en seis tipos de agregados

Se aprecia en la figura la variación del módulo de resiliencia con el estado de esfuerzos, así como las diferencias debidas al tipo de material. Las diferencias en el módulo de resiliencia debido al tipo de material, varían entre 20 y 50%.

Es importante notar que contrariamente a lo observado en suelos finos, el módulo de resiliencia aumenta con el nivel de esfuerzos en materiales granulares.

De acuerdo con varios investigadores (Corro, et al, 1985), una grava arcillosa puede tener módulos de resiliencia del orden de 375 MPa, en tanto que una grava arenosa alcanza valores de 650 MPa.

Es evidente que estos datos son incompatibles con los determinados de acuerdo con otros criterios; por ejemplo, Brown y Pappin sugieren módulos del orden de 100 MPa para bases de buena calidad y de 40 MPa para bases granulares deficientes.

2.5.2.3.- Magnitud del esfuerzo aplicado

En el Instituto Mexicano del Transporte se desarrollaron investigaciones en las que se estudió la influencia del esfuerzo aplicado en el módulo de resiliencia, para lo cual se utilizaron cuatro granulometrías (Figura 2.8). Las curvas identificadas como GW1 y GW2 corresponden a materiales bien graduados. La mayor parte de la curva GW1 se localiza en la zona 1 especificada por la Secretaría de Comunicaciones y Transportes

(SCT) y totalmente dentro de la zona 1 recomendada por el Instituto Mexicano del Transporte (IMT).

Las curvas GP1 y GP2 corresponden a materiales uniformes, se localizan fuera de las zonas granulométricas especificadas por la SCT y recomendadas por el IMT.

Figura 2.8 Curvas granulométricas de los materiales estudiados

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

2.5.2.4.- Contenido del agua

Ping Tiam, reporta los resultados de un estudio realizado con dos materiales granulares que se utilizan comúnmente en la construcción de subbases y bases de pavimento en Oklahoma, los cuales se trabajaron con tres granulometrías y tres contenidos de agua diferentes, a fin de conocer la influencia de estas características en su comportamiento esfuerzo-deformación.

Las tres diferentes granulometrías empleadas se muestran en la Figura 2.9. Los contenidos de agua fueron los correspondientes a la óptima (4.6 a 6.3 %), 2% menor y 2% mayor.

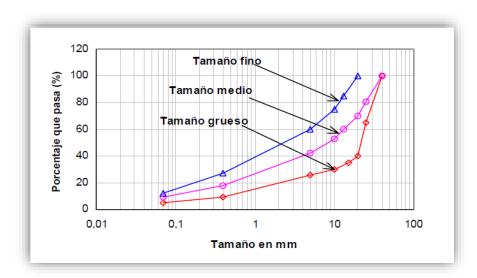
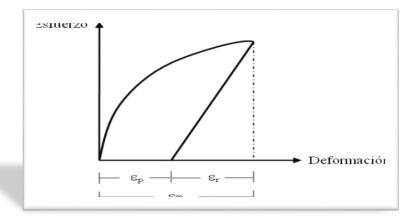



Figura 2.9 Diferentes granulometrías utilizadas en el estudio

2.6.- DEFORMACIÓN PERMANENTE EN MATERIALES GRANULARES 2.6.1.- DEFORMACIÓN PERMANENTE

Cuando a un material granular se inducen ciclos de carga y descarga parte de la deformación total (YT) que se genera es recuperada (deformación resiliente, Yr). Aquella deformación que no se recupera se acumula con cada repetición del ciclo y se le denomina deformación permanente (Yp) (Figura 2.10). En un pavimento estas deformaciones generan hundimientos o desplazamientos que en exceso pueden generar fallas funcionales y/o estructurales.

Figura 2.10 Curva típica esfuerzo – deformación en un ciclo de carga y descarga.

2.6.2.- FÁCTORES QUE INFLUYEN EN LA RESISTENCIA A LA DEFORMACIÓN PERMANENTE

La resistencia a la deformación permanente de materiales granulares se afecta principalmente por la magnitud e historia de esfuerzo aplicado al material y en segunda instancia por los siguientes factores: contenido de agua, densidad, número y frecuencia de carga, contenido de finos, gradación y naturaleza del agregado pétreo.

2.6.2.1.- Influencia del esfuerzo

La acumulación de la deformación en un material granular incrementa proporcionalmente con la magnitud del esfuerzo desviador (1 3 q = s - s) y disminuye con el aumento de la presión de confinamiento (Y3) (p.e., Morgan, 1966; Barksdale, 1972; Barksdale & Hicks, 1973; Brown, 1974; Barksdale, 1984; hompson & Smith, 1990; Brown & Selig, 1991; Lekarp et al., 1996; Paute et al., 1996; Garnica & Gómez, 2001; Suiker et al., 2005). En la Figura 2.11 se presentan los resultados de ensayos en un HVS reportados por Ingason et al. (2002) y se observa que un incremento en el nivel de esfuerzo genera un aumento en los valores de desplazamiento de la capa granular. La estructura de pavimento ensayada en el HVS consistió de una capa asfáltica de 3 cm soportada por dos capas granulares (base y subbase) cada una de 20 cm de espesor y una subrasante arenosa.

Figura 2.11 influencia del nivel de esfuerzo sobre la acumulación permanente (N es el número de ciclos)

Cuando el nivel de esfuerzo desviador es alto (cercano al valor de falla monotónica) en comparación con la presión de confinamiento, el material experimenta deformación permanente en el tiempo sin alcanzar una fase de equilibrio en la deformación. Lo anterior puede llevar a la falla del material (Brown, 1974; COST 337, 2000). La tasa de deformación permanente incrementa con la aproximación del esfuerzo cíclico hacia la línea monotónica de falla (Wichtmann et al 2004). Barksdale (1972), Lekarp & Dawson (1997) reportaron que existe un umbral de esfuerzo desviador en el cual la tasa de deformación tiende a incrementar con el número de ciclos.

2.6.2.2.- Influencia de la historia del esfuerzo

Kalcheff & Hicks (1973), Shenton (1974), Brown & Hyde (1975), Stewart (1986), Garnica & Gómez (2001), observaron que cuando la carga cíclica se aumenta gradualmente sobre un material granular la deformación es mucho más pequeña que

cuando se aplica directamente la carga más grande. Es decir, el efecto de cargas previas sobre estos materiales causan una reducción significativa de la acumulación de la deformación experimentada bajo carga subsiguiente y por lo tanto, la máxima carga cíclica aplicada controla la futura magnitud de la deformación permanente (Figura 2.12).

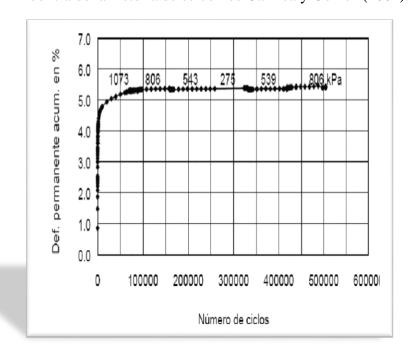


Figura 2.12 Influencia de la historia de esfuerzos Garnica y Gómez (2001).

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

Lekarp et al. (2000), Garnica & Gómez (2001), Werkmeister (2003) mencionan que aunque el efecto de la historia de carga sobre la deformación permanente ha sido reconocido, muy pocas investigaciones se han concentrado en esta área.

2.6.2.3.- Influencia del contenido de agua

Existe un contenido de agua que es beneficioso para elevar la resistencia a la deformación permanente. Incrementos adicionales a este contenido óptimo de agua,

generan en el material un aumento del grado de saturación acompañado por elevación de la presión de poros y disminución de los esfuerzos efectivos, lo que induce pérdida de la rigidez y de la resistencia a la deformación permanente (Barksdale, 1972; Dawson et al., 1996; Lekarp et al., 2000; COST 337, 2000; Gidel et al., 2001; Kolisoja et al., 2002). Holubec (1969), realizó ensayos triaxiales cíclicos sobre un material tipo macadam y una grava-arena. En el macadam observó que un aumento en el contenido de agua de 3.1% a 5.7% genera un incremento del 300% en la deformación permanente.

2.6.2.4.- Influencia de la densidad

En general, la reducción en la densidad de un material granular genera disminución de la resistencia a la deformación permanente y por lo tanto un incremento en la acumulación de este tipo de deformación (Barksdale, 1972; Barksdale & Hicks, 1973; Thom & Brown, 1987; Brown & Selig, 1991; Kamal et al., 1993; Dawson et al., 1996; Lekarp et al., 2000; COST 337, 2000; Wichtmann et al., 2004). Un ejemplo de la influencia de la densidad sobre la acumulación de la deformación permanente en materiales granulares. En 1989, 4 laboratorios de investigación (Laboratório Nacional de Engenharia Civil – LNEC, University of Nottingham – UNOT, Laboratoire Central des Ponts et Chaussées – LCPC y Delft University of Technology – DUT) realizaron ensayos triaxiales cíclicos sobre un material granular de las capas del pavimento.

Uno de los fines del estudio era comparar el funcionamiento de los equipos triaxiales. Los ensayos en los 4 laboratorios utilizaron la misma granulometría, contenido de agua y trayectorias de esfuerzos. Los resultados de deformación permanente fueron distintos en los 4 laboratorios y esta diferencia se debió principalmente a que los laboratorios empleaban diferentes métodos de compactación de las muestras (Galjaard et al., 1996).

2.6.2.5.- Influencia de la granulometría, tamaño máximo, cantidad de finos y forma de la partícula

Thom & Brown (1987) y Thom & Brown (1988) reportan que muestras con gradación uniforme no compactadas presentan mayor resistencia a la deformación permanente que muestras bien gradadas sin compactar. Sin embargo cuando compactaron las muestras observaron que la gradación no afectaba la deformación permanente. Además

concluyen que muestras con alta presencia de finos reducen la resistencia a la deformación permanente. Garnica & Gómez (2001) reportan que materiales uniformes presentan mayor resistencia a la deformación permanente que aquellos bien gradados a pesar que la rigidez es mayor en los materiales bien gradados. Núñez et al. (2004) por el contrario reportan que materiales bien gradados presentan mayor resistencia a la deformación permanente que aquellos con granulometría uniforme. Werkmeister (2003) realizando ensayos triaxiales cíclicos sobre 3 materiales granulares con distinta gradación concluye que la granulometría no influye en la resistencia a la deformación permanente.

De acuerdo a estudios realizados por Barksdale & Itani (1989), materiales con partículas redondeadas experimentaron dos veces mayor deformación permanente que materiales con partículas fracturadas. Además, cuando la gradación es más fina la tendencia es a experimentar mayor deformación (similar observación es reportada por Barksdale, 1972; Barksdale & Hicks, 1973 y Barksdale, 1984), y si el contenido de finos desarrolla plasticidad la resistencia a la deformación permanente disminuye. Barksdale (1984) realizando ensayos a escala real (en una pista de prueba acelerada bajo condiciones controladas de medio ambiente) reporta que pavimentos con bases granulares y con gradaciones finas experimentan valores de deformación permanente de 21% superiores a aquellos que emplearon gradaciones gruesas. Contrario a lo anterior menciona que la vida de fatiga de las estructuras de pavimentos fue 20% mayor cuando se utilizó la gradación más fina. Brown & Selig (1991) mencionan que altos contenidos de finos son no deseables en materiales granulares ya que causan problemas hidráulicos debido a la baja permeabilidad y la posibilidad de retener agua. Lo anterior induce a obtener un material con altos grados de saturación y por lo tanto pérdida de la resistencia a la deformación permanente. Pérdida de resistencia por la presencia de altos contenidos de finos son reportados también por Barksdale (1972) y Thom & Brown (1988).

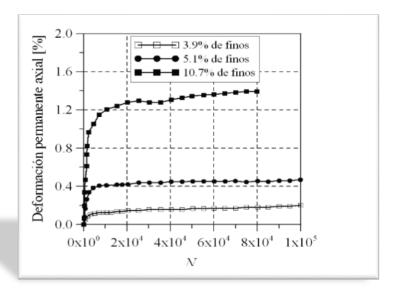
Kamal et al. (1993) observaron que la resistencia a la deformación permanente es mayor para materiales bien gradados. Reportan que una elevada cantidad de finos en

materiales granulares generan mayor deflexión en las estructuras de pavimento, pero existe un valor óptimo de contenido de finos para el cual el material presenta la mayor resistencia a la deformación.

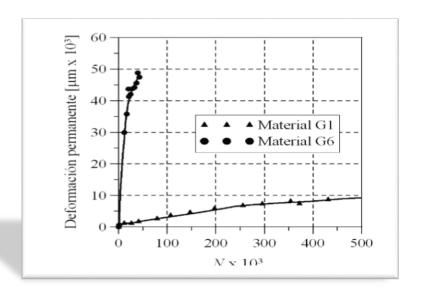
En la Figura 2.13 se presenta el efecto del contenido de finos sobre la deformación permanente en resultados de ensayos triaxiales cíclicos reportados por Kolisoja, et al. (2002). La presión de celda fue de 50 kPa y el esfuerzo axial de 300 kPa.

Un incremento en el contenido de finos de 3.9% a 10.7% incrementa notablemente los valores de deformación permanente.

En la Figura 2.14 se observa una curva típica de deformación vs número de ciclos de carga para dos materiales granulares distintos, los cuales experimentaron aproximadamente en un ensayo con HVS el mismo nivel de esfuerzo. En la figura se observa que el material G1 presenta valores de deformación menores que el material G6 debido solo a sus mejores propiedades mecánicas (ver especificación TRH 14 del CSRA, 1985 o consultar en Wolff & Visser, 1994). Kumar et al.


(2006) por el contrario, basados en los resultados de ensayos monotónicos y cíclicos sobre 4 materiales granulares reportaron que el material con mayor CBR (60.7%) experimentó mayores deformaciones permanentes bajo carga cíclica que los demás que presentaban inferiores CBR (entre 9.1% y 47.2%). Lekarp & Isacsson (2001) recomiendan que los ensayos triaxiales cíclicos se realicen con muestras a escala real. Lo anterior debido a que en muchas ocasiones se remueven las partículas grandes en los especímenes con el fin de reducir las muestras al tamaño requerido para poder ser ensayadas. Ensayos realizados sobre tres tipos de materiales granulares con diferentes granulometrías demuestran que la respuesta estructural de estos materiales depende del tamaño máximo de la partícula utilizada para preparar el espécimen del triaxial. La reducción de la escala de gradación genera un significante impacto sobre las características resilientes y de deformación permanente de los materiales ensayados. Gidel et al. (2001), Werkmeister (2003) y Kumar et al. (2006) reportan que el tipo de material y contenido mineralógico afecta el nivel de deformación permanente en un material granular. Un ejemplo se presenta en la Figura 2.15 donde se pueden observar

los resultados de ensayos triaxiales cíclicos sobre tres materiales de diferente procedencia y contenido mineralógico, pero con idéntica granulometría, contenido de agua y densidad. Además Gidel et al. (2001) mencionan que materiales con gradación uniforme y partículas angulares presentan mayor resistencia a la deformación permanente que materiales con granulometrías bien gradadas.


Cheung & Dawson (2002) realizaron ensayos triaxiales cíclicos sobre 3 materiales granulares distintos (dolomitic limestone, granodiorite y grava) con el fin de investigar la relación entre las propiedades de las partículas (forma, factor de rugosidad, redondez, esfericidad, fricción superficial y angularidad) y su comportamiento en términos de resistencia al corte, rigidez y resistencia a la deformación permanente. Para el estudio emplearon un equipo triaxial de 28 cm de diámetro y 56 cm de alto. Del estudio concluyen:

- La angulosidad y la redondez de las partículas tienen el más grande efecto sobre la resistencia a la deformación permanente, presentando mayor resistencia entre más angulares sean.
- La rigidez fue influenciada por la fricción y rugosidad superficial de las partículas (a mayor fricción y rugosidad mayor rigidez),
- No existe una relación clara entre la resistencia de las partículas y el funcionamiento de las mezclas en términos de rigidez, deformación permanente y resistencia.
- ➤ En general, la resistencia a la deformación permanente incrementa con incremento en el ángulo de fricción.

Figura 2.13 influencia del contenido de finos sobre la acumulación de la deformación permanente.

Figura 2.14 Influencia del tipo de material granular sobre la acumulación de la deformación permanente.

Fuente: Comportamiento de materiales granulares en pavimentos flexibles (Hugo Alexander Rondón, Fredy Alberto reyes).

Figura 2.15 Influencia del tipo de material sobre la acumulación de la deformación permanente. Gidel et al, 2001.

2.6.3.- ECUACIONES DE DEFORMACIÓN PERMANENTE.

A continuación se presentan algunas ecuaciones encontradas en la literatura de referencia que intentan predecir la evolución de la deformación permanente en materiales granulares. e1 p significa deformación permanente axial y N número de ciclos.

 Barksdale (1972): realizó ensayos triaxiales cíclicos con un máximo de 105 ciclos de carga.

$$\varepsilon_1^p = a + b \log(N)$$

- a, b son parámetros del material obtenidos por regresión.
- Hyde (1974, citado de Gidel et al., 2001): tiene en cuenta la influencia del esfuerzo desviador y la presión de confinamiento.

$$\varepsilon_{1f}^{p} = a \frac{q}{\sigma_{3}}$$

E1f = es la deformación permanente axial final para un número de ciclos infinitos.

q =es el esfuerzo desviador.

La presión de confinamiento y a es un parámetro del material obtenido por regresión. De la misma manera Lashine et al. (1971) y Brown (1974) habían presentado una ecuación similar donde a = 0.9 y 0.01 respectivamente.

 Veverka (1979, citado de Lekarp et al., 2000): la ecuación supone que existe una correlación de proporcionalidad entre las deformaciones resilientes y las permanentes.

$$\varepsilon_1^p = \mu \varepsilon N^{\alpha}$$

 \mathcal{U} = Es una constante de proporcionalidad entre la deformación permanente y la resiliente.

 \mathcal{E}_1^P = es la deformación permanente para los primeros 200 ciclos de carga y a es un parámetro que tiene en cuenta la disminución de la tasa de deformación con N.

2.7.- MÓDULO RESILIENTE DEL SUELO MEDIANTE MÉTODO MECANISTICO-EMPÍRICO (MÉTODO HOGG SIMPLIFICADO)

La utilización en el Perú de modelos matemáticos para pavimentos y programas de cómputo asociados, ha estado limitada más que todo al ámbito de los estudios para el mantenimiento y rehabilitación de pavimentos, habiendo sido muy reducido su empleo para fines de control de calidad de obra. Asimismo, en la mayoría de los casos los métodos empíricos (Conrevial, Instituto del Asfalto, etc.) han prevalecido frente a las metodologías racionales, las cuales han sido percibidas como muy sofisticadas y complejas, más aún para el nivel práctico de obra, con lo que finalmente se ha perdido la oportunidad de potenciar la tecnología de pavimentos e ingeniería vial en general.

En base a la experimentación por muchos años en evaluación de suelos y pavimentos, mediante la medición y análisis de deflexiones con la metodología Hogg-Burmister, se han desarrollado correlaciones entre las propiedades medidas (deflexión máxima y factor de longitud de curva) y los parámetros elásticos del sistema suelo-pavimento, lo que ha permitido el desarrollo de un método simple y rápido para ser aplicado en obra con la finalidad de evaluar la capacidad de soporte de los suelos, ya sea a través del valor del CBR o del Módulo de Resiliencia del substrato.

El trabajo presenta los conceptos teóricos en que se basa el método propuesto, así como el procedimiento de cálculo que debe seguirse en campo para la obtención de la capacidad de soporte; asimismo, se presentan valores tabulados que facilitan y hacen más rápido el proceso. También se incluyen verificaciones efectuadas aplicando el método riguroso cuyos resultados demuestran la validez y confiabilidad de la nueva herramienta desarrollada.

Este nuevo método que se presenta permitirá la completa aplicación del análisis deformacional en la construcción y supervisión de pavimentos, superando de esa manera las limitaciones conocidas que tienen los métodos empíricos para la caracterización de la performance de los pavimentos. Este método simplificado facilitará en la práctica la rápida verificación, para condiciones reales de campo, de los valores de soporte asumidos en el diseño del pavimento, así como el adecuado dimensionamiento de la altura de los terraplenes, el aporte y eficiencia de los materiales empleados en su construcción, el efecto de la ubicación del nivel freático en la capacidad resistente de los suelos, entre otros aspectos.

2.7.1.-EL MODELO DE HOGG

Un método para calcular el módulo elástico del suelo de subrasante, en un punto ubicado directamente bajo una carga superficial impuesta, es el modelo de Hogg. El modelo de Hogg está basado en un sistema hipotético de dos capas que consiste en una placa relativamente delgada que se apoya sobre una fundación elástica. El método es práctico y simplifica el sistema elástico multicapa típico por un modelo equivalente bicapa, compuesto por una capa rígida sobre un medio elástico. Dependiendo de la

selección de valores a lo largo de la curva de deflexión usada para calcular el módulo de la subrasante, existirá la posibilidad de sobre o subestimar el módulo de elasticidad.

El procedimiento con el modelo de Hogg usa la deflexión en el centro de la carga y una de las deflexiones adicionales fuera del punto inicial de aplicación de carga. Hogg mostró que la distancia radial donde la deflexión es aproximadamente la mitad de la deflexión bajo el punto inicial de carga, era eficaz para eliminar la tendencia de valoración o error estadístico de los parámetros. Sus cálculos consideran variaciones en el espesor del pavimento y la relación entre la rigidez de pavimento y la rigidez de la subrasante, ya que la distancia en donde la deflexión es la mitad de la desviación máxima está controlada por estos factores.

El desarrollo del modelo para carga puntual y una subrasante de espesor finito fue publicado en 1944 (5). Las soluciones numéricas y adaptación del modelo para cargas distribuidas, fue publicada en 1977 (6). En el Perú se publicó la traducción del método el año 1985 (7). Las ecuaciones que se emplean para el cálculo son:

Ecuación 1. Módulo de la subrasante según Hogg

$$E_0 = I \frac{(1+\mu_0) (3-4 \mu_0)}{2 (1-\mu_0)} \left[\frac{S_0}{S} \right] \left[\frac{p}{\Delta_0 l} \right]$$

Ecuación 2. Distancia donde la deflexión es mitad de la deflexión máxima

$$\mathbf{r}_{50} = \mathbf{r} \frac{(1/\alpha)^{1/\beta} - B}{\left[\frac{1}{\alpha} \left(\frac{\Delta_0}{\Delta_r} - 1\right)\right]^{1/\beta} B}$$

Ecuación 3. Longitud característica de la curva de deflexión

$$l = y_0 - \frac{r_{50}}{2} + \left[(y_0 r_{50})^2 - 4mar_{50} \right]^{1/2}$$

Si a/l < 0.2, entonces $l = (y_0 - 0.2m) r_{50}$

Ecuación 4. Relación entre la rigidez por carga puntual y carga distribuida

$$\left(\frac{S_0}{S}\right) = 1 - \overline{m} \left(\frac{a}{l} - 0.2\right)$$

Si a/1 < 0.2, entonces $(S_0/S)=1.0$

Donde,

E0 = Módulo de elasticidad de la subrasante

μ0 = Coeficiente de Poisson de la subrasante

S0 = Rigidez Teórica por carga puntual

 $S = Rigidez del pavimento = p/\Delta 0 (carga distribuida)$

p = Carga aplicada

 $\Delta 0$ = Deflexión en el punto inicial de carga (Deflexión máxima)

 Δr = Deflexión a la distancia radial r

r = Distancia radial del punto inicial de carga

r50 = Distancia radial para la cuál $\Delta r / \Delta 0 = 0.5$

l = Longitud característica

h = Espesor de la subrasante

I = Factor de Influencia — ver Tabla 2.4

 α = Coeficiente de ajuste de curva—ver Tabla 2.4

 β = Coeficiente de ajuste de curva—ver Tabla 2.4

B = Coeficiente de ajuste de curva—ver Tabla 2.4

y0 = Coeficiente para la longitud característica—ver Tabla 2.4

m = Coeficiente para la longitud característica—ver Tabla 2.4

m = Coeficiente para la relación de rigideces—ver Tabla 2.4

Wiseman (6) describió la implementación del modelo de Hogg señalando tres casos. Uno es para una fundación infinita elástica, y los otros dos casos son para un estrato finito elástico con un espesor efectivo que se asume aproximadamente igual a 10 veces la longitud característica l. Los dos casos de espesor finito corresponden a coeficientes de Poisson fijados en 0.4 y 0.5, respectivamente. La tabla 2.4 muestra los valores establecidos para las constantes usadas para los tres casos del modelo de Hogg.

Tabla 2.4 Coeficientes para el Modelo de Hogg

	Tabla 2.4 Coefficientes	F		- 66	
	CASOS		I	II	III
Ecuación					
Ec	Profundidad de estrato rígido	h/l_0	10	10	Infinito
	Coeficiente de Poisson	μ_0	0.50	0.40	Todos
1	Factor de Influencia	I	0.1614	0.1689	0.1925
2	Valor de $\Delta_{ m r}/\Delta_0$		> 0.70	> 0.43	Todos
		α	0.4065	0.3804	0.3210
	$r_{50}=f(\Delta_{\mathrm{r}}/\Delta_{0})$	β	1.6890	1.8246	1.7117
		В	0	0	0
	Valor de $\Delta_{ m r}/\Delta_0$	1	< 0.70	< 0.43	
		α	2.6947E-3	4.3795E-4	
	$r_{50}=f(\Delta_{\mathrm{r}}/\Delta_{0})$	β	4.5663	4.9903	
		В	2	3	
3	$l=f(r_{50}, a)$	уо	0.642	0.603	0.527
		m	0.125	0.108	0.098
4	$S_0/S = f(a/l)$	\overline{m}	0.219	0.185	0.208

2.7.2.-CORRELACIONES EMPÍRICAS

Los investigadores franceses Leger y Autret introdujeron el año 1972 el concepto del producto entre el radio de curvatura y la deflexión máxima, suponiendo que la curvatura era una parábola (8). Por medio del análisis teórico empleando un modelo bicapa elástico, estos investigadores demuestran que el producto $Rx\Delta_{teórico}$, para un espesor de capas superiores entre 25 y 50 cm, casi no depende del espesor. Por otro lado, en el rango de estos espesores el producto $Rx\Delta$ es una función única y definida del cociente modular E_1/E_2 . De acuerdo a estos conceptos puede usarse entonces el producto $Rx\Delta$ y el valor de Δ para calcular los parámetros elásticos del pavimento, en particular el módulo de elasticidad de la subrasante.

En el modelo de Hogg los parámetros que caracterizan la curvatura son la longitud elástica y el parámetro r₅₀. La longitud elástica (l₀), que en la práctica se verifica como la distancia radial en donde se ubica el punto de inflexión del cuenco de deflexiones, es como definición una relación entre la rigidez del pavimento y rigidez de la subrasante, por lo que su magnitud no puede correlacionarse directamente con la calidad o performance de las capas superiores. El parámetro r₅₀ denominado Factor de Longitud de Curva, por el contrario, se ha encontrado que correlaciona bien con la performance de las capas superiores, por lo que se consideró como el parámetro del modelo de Hogg equivalente al radio de curvatura parabólico de Leger y Autret, habiéndose empleado la nomenclatura R₅₀ para su denominación en la investigación.

2.7.2.1.-Ecuación de correlación D₀xR₅₀ versus E₀

Para el desarrollo de la ecuación de correlación entre el producto D_0xR_{50} y el módulo de la subrasante E_0 , se utilizaron datos obtenidos en ensayos reales de medición de cuencos de deflexiones para un rango amplio de suelos, para los cuales se obtuvo el módulo elástico del substrato mediante la aplicación rigurosa del modelo de Hogg usando el programa DFLECTOR. Las corridas del programa de cómputo se realizaron considerando el Caso II de la metodología, es decir, para una profundidad del estrato rocoso igual a $h/l_0=10$ y un coeficiente de Poisson $\mu=0.40$.

La selección del Caso II para el análisis de los datos de deflexiones se realizó considerando que dicha condición ha sido ampliamente empleada en el Perú y con la que se ha obtenido resultados que siempre han podido ser correlacionados con las condiciones particulares de los suelos en el campo. Además, es importante señalar que esta consideración concuerda con los resultados obtenidos en los últimos 15 años en el proyecto de investigación de largo alcance sobre performance de pavimentos que se lleva a cabo en EE.UU. desde 1987 (Long Term Pavement Performance) (9); de acuerdo a dicha experiencia, se ha encontrado que el Caso II del modelo de Hogg es el que proporciona resultados razonablemente estables para una amplia variedad de tipos de pavimentos y ubicaciones, habiéndose encontrado una alta correlación de estos con los módulos de subrasante determinados por retrocálculo con el programa MODCOMP4, el cual permite la caracterización elástica no-lineal de los suelos y materiales del pavimento.

La ecuación de correlación fue obtenida mediante el análisis de 2135 pares de datos (D_0xR_{50}, E_0) , en donde D_0xR_{50} varía entre 324 y 6778x10⁻¹cmxcm, y E_0 varía entre 260 y 5236 kg/cm². Mediante un análisis de regresión se encontró que la tendencia exponencial demostró mejor ajuste, encontrándose un coeficiente de determinación de R^2 =0.992 para la siguiente expresión:

$$E_0 = 1091314.96 \; (D_0 x R_{50})^{-0.939} \quad \dots \; \text{(Ecuación 5)}$$

La Figura 2.16 presenta la correlación gráfica establecida, en donde se observa la escasa dispersión que presentan los parámetros analizados, lo que demuestra una casi perfecta correlación que concuerda plenamente con los conceptos descubiertos por Leger y Autret.

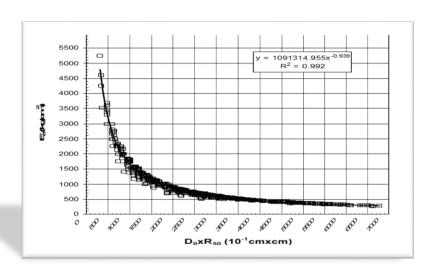


Figura 2.16 Relación Do * R₅₀ versus Eo

2.7.2.2.- Correlación E₀ versus CBR

Para expresar la capacidad portante del suelo en términos del Valor de Soporte de California (CBR), se puede emplear la conocida correlación establecida por Heukelom (10), según la cual:

$$E_0 = k CBR$$
 ... (Ecuación 6)

Dónde:

E0 = Módulo elástico o resiliente (kg/cm2)

k = Coeficiente de correlación (k=100 para suelos granulares gruesos; k=110 para suelos granulares finos; k=130 para suelos finos plásticos).

CBR = Valor de Soporte de California (%).

El uso de esta correlación está ampliamente difundido en el espectro tecnológico mundial, y en particular forma parte del procedimiento para la estimación del módulo resiliente en el método para el diseño estructural de pavimentos AASHTO versión 1993.

2.7.3.- DETERMINACIÓN DEL MÓDULO RESILIENTE

Para la determinación del módulo de elasticidad o módulo resiliente del suelo de subrasante se deberán seguir los siguientes pasos:

- De la curva de deflexión medida se selecciona el valor de la deflexión máxima
 D₀ y una deflexión adicional D_r correspondiente a la distancia radial R.
- Se calcula la relación D₀/D_r.
- Se calcula el valor del Factor de Longitud de Curva R₅₀, empleando la Ecuación
 2, la relación D₀/D_r y los coeficientes de la Tabla 1.
- Se calcula el producto $D_0 \times R_{50}$.
- Se calcula el módulo resiliente mediante la Ecuación 5.
- Se calcula el CBR del suelo mediante la Ecuación 6.

Para facilidad de los cálculos se han elaborado tablas para determinar los valores de R_{50} en función a la relación D_0/D_r (Tabla 2.5) y los valores de E_0 en función al producto D_0xR_{50} (Tabla 2.6).

2.7.3.1.- Validación de resultados

Para validar los resultados del método se ha efectuado el cálculo del módulo de elasticidad del suelo de subrasante empleando tanto el método de Hogg, de acuerdo al procedimiento riguroso, así como el método de Hogg simplificado, para los mismos datos de deflexiones. Los resultados de una muestra seleccionada se presentan en la Figura 2, en donde se puede observar que los valores se encuentran ubicados prácticamente sobre la línea de la igualdad, lo cual indica que los resultados obtenidos por los dos métodos pueden considerarse estadísticamente similares, validándose de esa manera la metodología propuesta.

No obstante la correlación desarrollada para el cálculo simplificado del módulo del suelo, como se ha visto, no depende del espesor de las capas superiores, los usuarios podrán efectuar las verificaciones que crean necesarias en obra para las condiciones

propias de cada proyecto en particular, siguiendo el mismo procedimiento que se ha empleado en la investigación, empleando para ello las ecuaciones 1, 2, 3 y 4, asumiendo el Caso II del método de Hogg conforme fue explicado. Asimismo, siendo la intención para el desarrollo del método simplificado que sea empleado únicamente para fines de control rápido en obra, sus resultados siempre podrán ser corroborados mediante el análisis automatizado en gabinete.³

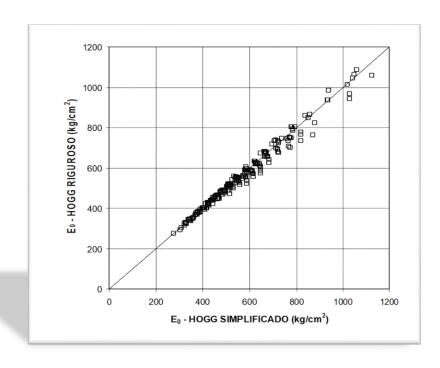


Figura 2.17 Validación del Método Hogg Simplificado

Fuente: Determinación del módulo resiliente del suelo de fundaciones mediante método mecanistico – empírico (Método Hogg Simplificado)

³ **Fuente**: Determinación del módulo resiliente del suelo de fundaciones mediante método mecanistico – empírico (Método Hogg Simplificado)

٠

Tabla 2.5 valores tabulados para el cálculo del factor de longitud de curva R_{50}

D0/DR	ļ				R5 (cm)				
	R=20 cm	R=30 cm	R=40 cm	R=50 cm	R=60 cm	R=70 cm	R=80 cm	R=90 cm	R=100 cm
1.25	42.8	64.1	85.5	106.9	128.3	149.6	171.0	192.4	213
1.26	41.8	62.8	83.7	104.6	125.5	146.5	167.4	188.3	209
1.27	41.0	61.5	82.0	102.5	123.0	143.5	163.9	184.4	204
1.28	40.2	60.3	80.4	100.4	120.5	140.6	160.7	180.8	200
1.29	39.4	59.1	78.8	98.5	118.2	137.9	157.7	177.4	197
1.30	38.7	58.0	77.4	96.7	116.1	135.4	154.7	174.1	193
1.31	38.0	57.0	76.0	95.0	114.0 112.0	133.0	152.0	171.0 168.0	190
1.32	37.3 36.7	56.0 55.1	74.7 73.4	93.4 91.8	110.2	130.7 128.5	149.4 146.9	165.2	186 183
1.34	36.1	54.2	72.2	90.3	108.4	126.4	144.5	162.6	180
1.35	35.6	53.3	71.1	88.9	106.7	124.4	142.2	160.0	177
1.36	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5	175
1.37	34.5	51.7	69.0	86.2	103.5	120.7	137.9	155.2	172
1.38	34.0	51.0	68.0	85.0	102.0	119.0	135.9	152.9	169
1.39	33.5	50.3	67.0	83.8	100.5		134.0	150.8	167
1.40	33.0	49.6	66.1	82.6	99.1	115.7	132.2	148.7	165
1.41	32.6	48.9	65.2	81.5	97.8	114.1	130.4	146.7	163
1.42	32.2	48.3	64.3	80.4	96.5	112.6	128.7	144.8	160
1.43	31.8	47.6	63.5	79.4	95.3	111.2	127.0	142.9	158
1.44	31.4	47.0	62.7	78.4	94.1	109.8	125.5	141.1	156
1.45	31.0	46.5	62.0	77.4	92.9	108.4	123.9	139.4	154
1.46	30.6	45.9	61.2	76.5	91.8	107.1	122.4	137.7	153
1.47	30.2	45.4	60.5	75.6	90.7		121.0	136.1	151
1.48	29.9	44.9	59.8	74.8	89.7	104.7	119.6	134.6	149
1.49	29.6	44.4	59.1	73.9	88.7	103.5	118.3	133.1	147
1.50	29.2	43.9	58.5	73.1	87.7	102.3	117.0	131.6	146
1.51	28.9	43.4	57.9	72.3	86.8	101.2	115.7	130.2	144
1.52	28.6	42.9	57.2	71.5	85.9	100.2	114.5	128.8	143
1.53	28.3	42.5	56.6	70.8	85.0		113.3	127.4	141
1.54	28.0	42.1	56.1	70.1	84.1		112.1	126.2	140
1.55	27.8	41.6	55.5	69.4	83.3		111.0	124.9	138
1.56	27.5 27.2	41.2 40.8	55.0 54.4	68.7 68.0	82.4 81.6		109.9 108.9	123.7 122.5	137 136
1.58	27.0	40.4	53.9	67.4	80.9	94.3	107.8	121.3	134
1.59	26.7	40.4	53.4	66.8	80.1	93.5	107.8	120.2	133
1.60	26.5	39.7	52.9	66.2	79.4	92.6	105.8	119.1	132
1.61	26.2	39.3	52.4	65.6	78.7	91.8	104.9	118.0	131
1.62	26.0	39.0	52.0	65.0	78.0		104.0	117.0	129
1.63	25.8	38.6	51.5	64.4	77.3		103.1	115.9	128
1.64	25.5	38.3	51.1	63.9	76.6		102.2	114.9	127
1.65	25.3	38.0	50.7	63.3	76.0		101.3	114.0	126
1.66	25.1	37.7	50.2	62.8	75.3	87.9	100.5	113.0	125
1.67	24.9	37.4	49.8	62.3	74.7	87.2	99.6	112.1	124
1.68	24.7	37.1	49.4	61.8	74.1	86.5	98.8	111.2	123
1.69	24.5	36.8	49.0	61.3	73.5	85.8	98.0	110.3	122
1.70	24.3	36.5	48.6	60.8	73.0	85.1	97.3	109.4	121
1.71	24.1	36.2	48.3	60.3	72.4		96.5	108.6	120
1.72	23.9	35.9	47.9	59.9	71.8		95.8	107.8	119
1.73	23.8	35.6	47.5	59.4	71.3		95.1	106.9	118
1.74	23.6	35.4	47.2	59.0	70.8		94.4	106.1	117
1.75	23.4	35.1	46.8	58.5	70.2	82.0	93.7	105.4	117
1.76	23.2	34.9	46.5	58.1	69.7	81.4	93.0	104.6	116
1.77	23.1	34.6	46.2	57.7	69.2	80.8	92.3	103.9	115
1.78	22.9	34.4	45.8	57.3	68.8		91.7	103.1	114
1.79	22.8	34.1	45.5	56.9	68.3		91.0	102.4	113
1.80	22.6	33.9	45.2	56.5	67.8	79.1	90.4	101.7	11:
1.81	22.4 22.3	33.7 33.4	44.9 44.6	56.1 55.7	67.3 66.9	78.6 78.0	89.8 89.2	101.0 100.3	
1.83	22.3	33.2	44.6	55.4	66.5	77.5	88.6	99.7	11
1.84	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0	11
1.85	21.9	32.8	43.7	54.7	65.6	76.5	87.5	98.4	10:
1.86	21.7	32.6	43.4	54.7	65.2	76.0	86.9	97.8	10
1.87	21.7	32.4	43.4	54.0	64.8	75.6	86.3	97.0	10
1.88	21.5	32.4	42.9	53.6	64.4	75.0	85.8	96.5	10
1.89	21.3	32.0	42.5	53.3	64.0	74.6	85.3	95.9	10
1.90	21.2	31.8	42.4	53.0	63.6	74.0	84.8	95.3	10:
1.91	21.1	31.6	42.1	52.7	63.2	73.7	84.2	94.8	10:
1.92	20.9	31.4	41.9	52.7	62.8	73.7	83.7	94.2	10-
1.93	20.8	31.2	41.6	52.0	62.4	72.8	83.2	93.7	10-

Tabla 2.5 valores tabulados para el cálculo del factor de longitud de curva R_{50}

D0/DR					R5 (cm)				
DU/DR	R=20 cm	R=30 cm	R=40 cm	R=50 cm	R=60 cm	R=70 cm	R=80 cm	R=90 cm	R=100 cm
1.94	20.7	31.0	41.4	51.7	62.1	72.4	82.8	93.1	103.4
1.95	20.6	30.9	41.1	51.4	61.7	72.0	82.3	92.6	102.9
1.96	20.5	30.7	40.9	51.1	61.4	71.6	81.8	92.0	102.3
1.97	20.3	30.5	40.7	50.8	61.0	71.2	81.3	91.5	101.7
1.98	20.2	30.3	40.4	50.6	60.7	70.8	80.9	91.0	101.1
1.99	20.1	30.2	40.2	50.3	60.3	70.4	80.4	90.5	100.6
2.00	20.0	30.0	40.0 39.8	50.0 49.7	60.0 59.7	70.0 69.6	80.0	90.0 89.5	100.0 99.5
2.02	19.9 19.8	29.8 29.7	39.6	49.7	59.7	69.2	79.6 79.1	89.0	98.9
2.03	19.7	29.5	39.4	49.2	59.0	68.9	78.7	88.6	98.4
2.04	19.6	29.4	39.1	48.9	58.7	68.5	78.3	88.1	97.9
2.05	19.5	29.2	38.9	48.7	58.4	68.2	77.9	87.6	97.4
2.06	19.4	29.1	38.7	48.4	58.1	67.8	77.5	87.2	96.9
2.07	19.3	28.9	38.5	48.2	57.8	67.5	77.1	86.7	96.4
2.08	19.2	28.8	38.3	47.9	57.5	67.1	76.7	86.3	95.9
2.09	19.1	28.6	38.2	47.7	57.2	66.8	76.3	85.8	95.4
2.10	19.0	28.5	38.0	47.5	56.9	66.4	75.9	85.4	94.9
2.11	18.9	28.3	37.8	47.2	56.7	66.1	75.6	85.0	94.4
2.12	18.8	28.2	37.6	47.0	56.4	65.8	75.2	84.6	94.0
2.13	18.7	28.1	37.4	46.8	56.1	65.5	74.8	84.2	93.5
2.14	18.6	27.9	37.2	46.5	55.8	65.1	74.5	83.8	93.1
2.15	18.5	27.8	37.1	46.3	55.6	64.8	74.1	83.4	92.6
2.16	18.4	27.7	36.9	46.1	55.3	64.5	73.8	83.0	92.2
2.17	18.4	27.5	36.7	45.9	55.1	64.2	73.4	82.6	91.8
2.18	18.3	27.4	36.5	45.7	54.8	63.9	73.1	82.2	91.3
2.19	18.2	27.3	36.4	45.5	54.5	63.6	72.7	81.8	90.9
2.20	18.1 18.0	27.1 27.0	36.2	45.2 45.0	54.3 54.0	63.3	72.4	81.4 81.1	90.5
2.21	17.9	26.9	36.0 35.9	44.8	53.8	63.1 62.8	72.1 71.7	80.7	90.1 89.7
2.23	17.9	26.8	35.7	44.6	53.6	62.5	71.7	80.3	89.3
2.24	17.8	26.7	35.6	44.4	53.3	62.2	71.1	80.0	88.9
2.25	17.7	26.5	35.4	44.2	53.1	61.9	70.8	79.6	88.5
2.26	17.6	26.4	35.2	44.1	52.9	61.7	70.5	79.3	88.1
2.27	17.5	26.3	35.1	43.9	52.6	61.4	70.2	79.0	87.7
2.28	17.5	26.2	34.9	43.7	52.4	61.1	69.9	78.6	87.3
2.29	17.4	26.1	34.8	43.5	52.2	60.9	69.6	78.3	87.0
2.30	17.3	26.0	34.6	43.3	52.0	60.6	69.3	77.9	86.6
2.31	17.2	25.9	34.5	43.1	51.7	60.4	69.0	77.6	86.2
2.32	17.2	25.8	34.4	42.9	51.5	60.1	68.7	77.3	85.9
2.33	17.1	25.7	34.2	42.8	51.3	59.9	68.4	77.0	85.5
2.34	17.0	25.6	34.1	42.6	51.1	59.6	68.1	76.7	85.2
2.35	17.1	25.6	34.2	42.7	51.3	59.8	68.3	76.9	85.4
2.36	17.0 17.0	25.5	34.0	42.6 42.4	51.1 50.9	59.6	68.1	76.6 76.3	85.1
2.38	16.9	25.4 25.3	33.9 33.8	42.4	50.9	59.4 59.1	67.8 67.6	76.0	84.8 84.5
2.39	16.8	25.3	33.7	42.2	50.7	58.9	67.3	75.8	84.2
2.40	16.8	25.2	33.6	41.9	50.3	58.7	67.1	75.5	83.9
2.41	16.7	25.1	33.4	41.8	50.2	58.5	66.9	75.2	83.6
2.42	16.7	25.0	33.3	41.6	50.0	58.3	66.6	75.0	83.3
2.43	16.6	24.9	33.2	41.5	49.8	58.1	66.4	74.7	83.0
2.44	16.5	24.8	33.1	41.4	49.6	57.9	66.2	74.5	82.7
2.45	16.5	24.7	33.0	41.2	49.5	57.7	66.0	74.2	82.4
2.46	16.4	24.7	32.9	41.1	49.3	57.5	65.7	74.0	82.2
2.47	16.4	24.6	32.8	40.9	49.1	57.3	65.5	73.7	81.9
2.48	16.3	24.5	32.7	40.8	49.0	57.1	65.3	73.5	81.6
2.49	16.3	24.4	32.5	40.7	48.8	57.0	65.1	73.2	81.4
2.50	16.2	24.3	32.4	40.5	48.7	56.8	64.9	73.0	81.1
2.51	16.2	24.3	32.3	40.4	48.5	56.6	64.7	72.8	80.8
2.52	16.1	24.2	32.2	40.3	48.3	56.4	64.5	72.5	80.6
2.53	16.1	24.1	32.1	40.2	48.2	56.2	64.3	72.3	80.3
2.54	16.0	24.0	32.0	40.0	48.0	56.0	64.1	72.1	80.1
2.55	16.0	23.9	31.9	39.9	47.9	55.9	63.9	71.8	79.8
2.56	15.9 15.9	23.9 23.8	31.8 31.7	39.8 39.7	47.7 47.6	55.7 55.5	63.7 63.5	71.6 71.4	79.6 79.3
2.57	15.9	23.7	31.7	39.7	47.5	55.4	63.3	71.4	79.3
2.59	15.8	23.7	31.5	39.5	47.3	55.2	63.1	71.2	78.9
2.60	15.7	23.6	31.4	39.4	47.3	55.0	62.9	70.8	78.6
2.61	15.7	23.5	31.4	39.2	47.2	54.9	62.7	70.5	78.4

Tabla 2.5 valores tabulados para el cálculo del factor de longitud de curva R_{50}

D0/DR					R5 (cm)				
	R=20 cm	R=30 cm	R=40 cm	R=50 cm	R=60 cm	R=70 cm	R=80 cm	R=90 cm	R=100 cm
2.63	15.6	23.4	31.2	39.0	46.8	54.5	62.3	70.1	77.9
2.64 2.65	15.5 15.5	23.3	31.1 31.0	38.8 38.7	46.6 46.5	54.4 54.2	62.2 62.0	69.9 69.7	77.7 77.5
2.66	15.5	23.2	30.9	38.6	46.4	54.1	61.8	69.5	77.3
2.67	15.4	23.1	30.8	38.5	46.2	53.9	61.6	69.3	77.0
2.68	15.4	23.0	30.7	38.4	46.1	53.8	61.5	69.1	76.8
2.69	15.3	23.0	30.6	38.3	46.0	53.6	61.3	68.9	76.6
2.70	15.3	22.9	30.6	38.2	45.8	53.5	61.1	68.8	76.4
2.71	15.2	22.9	30.5	38.1	45.7	53.3	60.9	68.6	76.2
2.72 2.73	15.2 15.2	22.8 22.7	30.4 30.3	38.0 37.9	45.6 45.5	53.2 53.0	60.8 60.6	68.4 68.2	76.0 75.8
2.74	15.1	22.7	30.2	37.8	45.3	52.9	60.5	68.0	75.6
2.75	15.1	22.6	30.1	37.7	45.2	52.8	60.3	67.8	75.4
2.76	15.0	22.6	30.1	37.6	45.1	52.6	60.1	67.7	75.2
2.77	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5	75.0
2.78	15.0	22.4	29.9	37.4	44.9	52.3	59.8	67.3	74.8
2.79	14.9	22.4	29.8	37.3	44.7	52.2	59.7	67.1	74.6
2.80	14.9	22.3	29.8	37.2	44.6	52.1	59.5	67.0	74.4
2.81	14.8 14.8	22.3 22.2	29.7 29.6	37.1 37.0	44.5 44.4	51.9 51.8	59.4 59.2	66.8 66.6	74.2 74.0
2.83	14.8	22.1	29.5	36.9	44.3	51.7	59.1	66.4	73.8
2.84	14.7	22.1	29.5	36.8	44.2	51.5	58.9	66.3	73.6
2.85	14.7	22.0	29.4	36.7	44.1	51.4	58.8	66.1	73.5
2.86	14.7	22.0	29.3	36.6	44.0	51.3	58.6	65.9	73.3
2.87	14.6	21.9	29.2	36.5	43.9	51.2	58.5	65.8	73.1
2.88	14.6	21.9	29.2	36.5	43.8	51.0	58.3	65.6	72.9
2.89	14.5	21.8	29.1	36.4	43.6	50.9	58.2	65.5	72.7
2.90 2.91	14.5 14.5	21.8	29.0 29.0	36.3 36.2	43.5 43.4	50.8 50.7	58.1 57.9	65.3 65.2	72.6 72.4
2.92	14.4	21.7	28.9	36.1	43.3	50.7	57.8	65.0	72.2
2.93	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8	72.1
2.94	14.4	21.6	28.8	35.9	43.1	50.3	57.5	64.7	71.9
2.95	14.3	21.5	28.7	35.9	43.0	50.2	57.4	64.5	71.7
2.96	14.3	21.5	28.6	35.8	42.9	50.1	57.2	64.4	71.6
2.97	14.3	21.4	28.6	35.7	42.8	50.0	57.1	64.2	71.4
2.98	14.2 14.2	21.4	28.5 28.4	35.6 35.5	42.7 42.6	49.9	57.0 56.9	64.1	71.2 71.1
2.99 3.00	14.2	21.3	28.4	35.5	42.5	49.7 49.6	56.7	64.0 63.8	70.9
3.01	14.1	21.2	28.3	35.4	42.4	49.5	56.6	63.7	70.7
3.02	14.1	21.2	28.2	35.3	42.4	49.4	56.5	63.5	70.6
3.03	14.1	21.1	28.2	35.2	42.3	49.3	56.3	63.4	70.4
3.04	14.1	21.1	28.1	35.1	42.2	49.2	56.2	63.2	70.3
3.05	14.0	21.0	28.0	35.1	42.1	49.1	56.1	63.1	70.1
3.06	14.0	21.0 20.9	28.0	35.0	42.0	49.0 48.9	56.0	63.0	70.0 69.8
3.07 3.08	14.0 13.9	20.9	27.9 27.9	34.9 34.8	41.9 41.8	48.8	55.9 55.7	62.8 62.7	69.7
3.09	13.9	20.9	27.8	34.8	41.7	48.7	55.6	62.6	69.5
3.10	13.9	20.8	27.7	34.7	41.6	48.6	55.5	62.4	69.4
3.11	13.8	20.8	27.7	34.6	41.5	48.5	55.4	62.3	69.2
3.12	13.8	20.7	27.6	34.5	41.4	48.4	55.3	62.2	69.1
3.13	13.8	20.7	27.6	34.5	41.4	48.3	55.2	62.0	68.9
3.14	13.8	20.6	27.5	34.4	41.3	48.2	55.0	61.9	68.8
3.15 3.16	13.7 13.7	20.6 20.6	27.5 27.4	34.3 34.3	41.2 41.1	48.1 48.0	54.9 54.8	61.8 61.7	68.7 68.5
3.17	13.7	20.5	27.4	34.2	41.1		54.7	61.5	68.4
3.18	13.6	20.5	27.3	34.1	40.9	47.8	54.6	61.4	68.2
3.19	13.6	20.4	27.2	34.0	40.9	47.7	54.5	61.3	68.1
3.20	13.6	20.4	27.2	34.0	40.8	47.6	54.4	61.2	68.0
3.21	13.6	20.3	27.1	33.9	40.7	47.5	54.3	61.0	67.8
3.22	13.5	20.3	27.1	33.8	40.6	47.4	54.2	60.9	67.7
3.23 3.24	13.5 13.5	20.3	27.0 27.0	33.8 33.7	40.5 40.5	47.3 47.2	54.0 53.9	60.8 60.7	67.6 67.4
3.25	13.5	20.2	26.9	33.6	40.5	47.2	53.8	60.6	67.4
3.26	13.4	20.1	26.9	33.6	40.3	47.0	53.7	60.4	67.2
3.27	13.4	20.1	26.8	33.5	40.2	46.9	53.6	60.3	67.0
3.28	13.4	20.1	26.8	33.5	40.1	46.8	53.5	60.2	66.9
3.29	13.4	20.0	26.7	33.4	40.1	46.7	53.4	60.1	66.8
3.30	13.3	20.0	26.7	33.3	40.0	46.7	53.3	60.0	66.7
3.31	13.3	20.0	26.6	33.3	39.9	46.6	53.2	59.9	66.5

Tabla 2.5 valores tabulados para el cálculo del factor de longitud de curva R_{50}

D0/DR					R5 (cm)				
	R=20 cm	R=30 cm	R=40 cm	R=50 cm	R=60 cm	R=70 cm	R=80 cm	R=90 cm	R=100 cm
3.32	13.3	19.9	26.6	33.2	39.8	46.5	53.1	59.8	66.4
3.33	13.3	19.9	26.5	33.1	39.8	46.4	53.0	59.7	66.3
3.34	13.2	19.8	26.5	33.1	39.7	46.3	52.9	59.5	66.2
3.35	13.2	19.8	26.4	33.0	39.6	46.2	52.8	59.4	66.0
3.36	13.2	19.8	26.4	33.0	39.5	46.1	52.7	59.3	65.9
3.37	13.2	19.7 19.7	26.3	32.9	39.5	46.1	52.6	59.2	65.8 65.7
3.38 3.39	13.1 13.1	19.7	26.3 26.2	32.8 32.8	39.4 39.3	46.0 45.9	52.5 52.4	59.1 59.0	65.6
3.40	13.1	19.6	26.2	32.7	39.3	45.8	52.4	58.9	65.4
3.41	13.1	19.6	26.1	32.7	39.2	45.7	52.3	58.8	65.3
3.42	13.0	19.6	26.1	32.6	39.1	45.6	52.2	58.7	65.2
3.43	13.0	19.5	26.0	32.5	39.1	45.6	52.1	58.6	65.1
3.44	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5	65.0
3.45	13.0	19.5	25.9	32.4	38.9	45.4	51.9	58.4	64.9
3.46	12.9	19.4	25.9	32.4	38.8	45.3	51.8	58.3	64.7
3.47	12.9	19.4	25.9	32.3	38.8	45.2	51.7	58.2	64.6
3.48	12.9	19.4	25.8	32.3	38.7	45.2	51.6	58.1	64.5
3.49	12.9	19.3	25.8	32.2	38.6	45.1	51.5	58.0	64.4
3.50	12.9	19.3	25.7	32.2	38.6	45.0	51.4	57.9	64.3
3.51	12.8	19.3	25.7	32.1	38.5	44.9	51.4	57.8	64.2
3.52	12.8	19.2	25.6	32.0	38.5	44.9	51.3	57.7	64.1
3.53	12.8	19.2	25.6	32.0	38.4	44.8	51.2	57.6	64.0
3.54 3.55	12.8 12.8	19.2 19.1	25.5 25.5	31.9 31.9	38.3 38.3	44.7 44.6	51.1 51.0	57.5 57.4	63.9 63.8
3.56	12.7	19.1	25.5	31.8	38.2	44.6	50.9	57.4	63.7
3.57	12.7	19.1	25.4	31.8	38.1	44.5	50.8	57.2	63.6
3.58	12.7	19.0	25.4	31.7	38.1	44.4	50.8	57.1	63.4
3.59	12.7	19.0	25.3	31.7	38.0	44.3	50.7	57.0	63.3
3.60	12.6	19.0	25.3	31.6	37.9	44.3	50.6	56.9	63.2
3.61	12.6	18.9	25.3	31.6	37.9	44.2	50.5	56.8	63.1
3.62	12.6	18.9	25.2	31.5	37.8	44.1	50.4	56.7	63.0
3.63	12.6	18.9	25.2	31.5	37.8	44.1	50.3	56.6	62.9
3.64	12.6	18.9	25.1	31.4	37.7	44.0	50.3	56.6	62.8
3.65	12.5	18.8	25.1	31.4	37.6	43.9	50.2	56.5	62.7
3.66	12.5	18.8	25.1	31.3	37.6	43.8	50.1	56.4	62.6
3.67	12.5	18.8	25.0	31.3	37.5	43.8	50.0	56.3	62.5
3.68	12.5	18.7	25.0	31.2	37.5	43.7	50.0	56.2	62.4
3.69	12.5	18.7	24.9	31.2	37.4		49.9	56.1	62.3
3.70	12.4	18.7	24.9	31.1	37.3	43.6	49.8	56.0	62.2
3.71 3.72	12.4 12.4	18.6 18.6	24.9 24.8	31.1 31.0	37.3 37.2	43.5 43.4	49.7 49.6	55.9 55.8	62.1 62.1
3.73	12.4	18.6	24.8	31.0	37.2	43.4	49.6	55.8	62.0
3.74	12.4	18.6	24.7	30.9	37.1	43.3	49.5	55.7	61.9
3.75	12.4	18.5	24.7	30.9	37.1	43.2	49.4	55.6	61.8
3.76	12.3	18.5	24.7	30.8	37.0	43.2	49.3	55.5	61.7
3.77	12.3	18.5	24.6	30.8	37.0	43.1	49.3	55.4	61.6
3.78	12.3	18.4	24.6	30.7	36.9	43.0	49.2	55.3	61.5
3.79	12.3	18.4	24.6	30.7	36.8	43.0	49.1	55.3	61.4
3.80	12.3	18.4	24.5	30.7	36.8	42.9	49.0	55.2	61.3
3.81	12.2	18.4	24.5	30.6	36.7	42.9	49.0	55.1	61.2
3.82	12.2	18.3	24.5	30.6	36.7	42.8	48.9	55.0	61.1
3.83	12.2	18.3	24.4	30.5	36.6	42.7	48.8	54.9	61.0
3.84	12.2	18.3	24.4	30.5	36.6	42.7	48.8	54.9	60.9
3.85	12.2	18.3	24.3	30.4	36.5	42.6	48.7	54.8	60.9
3.86	12.2	18.2	24.3	30.4	36.5			54.7	60.8
3.87 3.88	12.1 12.1	18.2 18.2	24.3 24.2	30.3 30.3	36.4 36.4	42.5 42.4	48.5 48.5	54.6 54.5	60.7 60.6
3.89	12.1	18.2	24.2	30.3	36.3	42.4	48.4	54.5	60.5
3.90	12.1	18.1	24.2	30.2	36.3	42.4	48.3	54.5	60.4
3.91	12.1	18.1	24.2	30.2	36.2	42.3	48.3	54.3	60.3
3.92	12.1	18.1	24.1	30.1	36.2	42.2	48.2	54.2	60.3
3.93	12.0	18.1	24.1	30.1	36.1	42.1	48.1	54.2	60.2
3.94	12.0	18.0	24.0	30.0	36.0	42.1	48.1	54.1	60.1
3.95	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0	60.0
3.96	12.0	18.0	24.0	30.0	35.9	41.9	47.9	53.9	59.9
3.97	12.0	17.9	23.9	29.9	35.9	41.9	47.9	53.8	59.8
3.98	11.9	17.9	23.9	29.9	35.8	41.8	47.8	53.8	59.7
3.99	11.9	17.9	23.9	29.8	35.8	41.8	47.7	53.7	59.7
4.00	11.9	17.9	23.8	29.8	35.8	41.7	47.7	53.6	59.6

Tabla 2.6 valores tabulados para el cálculo del módulo de elasticidad de subrasante Eo

DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0
(0.1cmxcm)	(kg/cm²)	(0.1cmxcm)	(kg/cm²)	(0.1cmxcm)	(kg/cm²)	(0.1cmxcm)	(kg/cm²)	(0.1cmxcm)	(kg/cm²)	(0.1cmxcm)	(kg/cm²)
300	5150	600	2686	900	1835	1200	1401	1500	1136	1800	957
305	5070	605	2665	905	1826	1205	1395	1505	1133	1805	955
310 315	4994	610	2645 2624	910	1816 1807	1210	1390	1510	1129	1810	952 950
	4919	615		915		1215	1385	1515	1126 1122	1815	
320 325	4847 4777	620 625	2605 2585	920 925	1798 1789	1220 1225	1379 1374	1520 1525	11122	1820 1825	947 945
330	4777	630	2566	930	1780	1223	1369	1525	1115	1830	943
335	4643	635	2547	935	1771	1235	1364	1535	1112	1835	940
340	4579	640	2528	940	1762	1233	1358	1540	1108	1840	938
345	4516	645	2510	945	1753	1245	1353	1545	1105	1845	935
350	4456	650	2491	950	1745	1243	1348	1550	1103	1850	933
355	4397	655	2474	955	1736	1255	1343	1555	1098	1855	931
360	4339	660	2474	960	1738	1260	1338	1560	1095	1860	928
365	4284	665	2439	965	1719	1265	1333	1565	1092	1865	926
370	4229	670	2422	970	1713	1270	1328	1570	1088	1870	924
375	4176	675	2405	975	1703	1275	1323	1575	1085	1875	921
380	4125	680	2388	980	1694	1280	1319	1580	1082	1880	919
385	4074	685	2372	985	1686	1285	1314	1585	1079	1885	917
390	4025	690	2356	990	1678	1290	1309	1590	1075	1890	914
395	3977	695	2340	995	1670	1295	1304	1595	1072	1895	912
400	3931	700	2324	1000	1663	1300	1299	1600	1069	1900	910
405	3885	705	2308	1005	1655	1305	1295	1605	1066	1905	908
410	3841	710	2293	1010	1647	1310	1290	1610	1063	1910	905
415	3797	715	2278	1015	1639	1315	1286	1615	1060	1915	903
420	3755	720	2263	1020	1632	1320	1281	1620	1057	1920	901
425	3713	725	2249	1025	1624	1325	1276	1625	1054	1925	899
430	3673	730	2234	1030	1617	1330	1272	1630	1051	1930	897
435	3633	735	2220	1035	1610	1335	1267	1635	1048	1935	894
440	3594	740	2206	1040	1602	1340	1263	1640	1045	1940	892
445	3556	745	2192	1045	1595	1345	1259	1645	1042	1945	890
450	3519	750	2178	1050	1588	1350	1254	1650	1039	1950	888
455	3483	755	2165	1055	1581	1355	1250	1655	1036	1955	886
460	3447	760	2151	1060	1574	1360	1246	1660	1033	1960	884
465	3412	765	2138	1065	1567	1365	1241	1665	1030	1965	882
470	3378	770	2125	1070	1560	1370	1237	1670	1027	1970	880
475	3345	775	2112	1075	1553	1375	1233	1675	1024	1975	877
480	3312	780	2099	1080	1547	1380	1229	1680	1021	1980	875
485	3280	785	2087	1085	1540	1385	1224	1685	1019	1985	873
490	3249	790	2074	1090	1533	1390	1220	1690	1016	1990	871
495	3218	795	2062	1095	1527	1395	1216	1695	1013	1995	869
500	3188	800	2050	1100	1520	1400	1212	1700	1010	2000	867
505	3158	805	2038	1105	1514	1405	1208	1705	1007	2005	865
510	3129	810	2026	1110	1507	1410	1204	1710	1005	2010	863
515	3100	815	2015	1115	1501	1415	1200	1715	1002	2015	861
520	3072	820	2003	1120	1495	1420	1196	1720	999	2020	859
525	3045	825	1992	1125	1488	1425	1192	1725	996	2025	857
530	3018	830	1980	1130	1482	1430	1188	1730	994	2030	855
535	2991	835	1969	1135	1476	1435	1184	1735	991	2035	853
540	2965	840	1958	1140	1470	1440	1180	1740	988	2040	851
545	2940	845	1947	1145	1464	1445	1177	1745	986	2045	849
550	2915	850	1937	1150	1458	1450	1173	1750	983	2050	847
555	2890	855	1926	1155	1452	1455	1169	1755	980	2055	845
560	2866	860	1915	1160	1446	1460	1165	1760	978	2060	843
565	2842	865	1905	1165	1440	1465	1162	1765	975	2065	841
570	2818	870	1895	1170	1435	1470	1158	1770	973	2070	840
575	2795	875	1885	1175	1429	1475	1154	1775	970	2075	838
580	2773	880	1875	1180	1423	1480	1150	1780	967	2080	836
585	2751	885	1865	1185	1418	1485	1147	1785	965	2085	834
590	2729	890	1855	1190	1412	1490	1143	1790	962	2090	832
595	2707	895	1845	1195	1406	1495	1140	1795	960	2095	830

Tabla 2.6 valores tabulados para el cálculo del módulo de elasticidad de subrasante Eo

DOxR5	E0 .	DOxR5	E0								
(0.1cmxcm)	(kg/cm²)										
2100	828	2400	731	2700	654	3000	593	3300	542	3600	499
2105	826	2405	729	2705	653	3005	592	3305	541	3605	499
2110	825	2410	728	2710	652	3010	591	3310	540	3610	498
2115	823	2415	726	2715	651	3015	590	3315	540	3615	497
2120	821	2420	725	2720	650	3020	589	3320	539	3620	497
2125	819	2425	724	2725	649	3025	588	3325	538	3625	496
2130	817	2430	722	2730	647	3030	587	3330	537	3630	495
2135	816	2435	721	2735	646	3035	586	3335	536	3635	495
2140	814	2440	719	2740	645	3040	585	3340	536	3640	494
2145	812	2445	718	2745	644	3045	584	3345	535	3645	494
2150	810	2450	717	2750	643	3050	583	3350	534	3650	493
2155	808	2455	715	2755	642	3055	583	3355	533	3655	492
2160	807	2460	714	2760	641	3060	582	3360	533	3660	492
2165	805	2465	713	2765	640	3065	581	3365	532	3665	491
2170	803	2470	711	2770	639	3070	580	3370	531	3670	490
2175	801	2475	710	2775	638	3075	579	3375	531	3675	490
2180	800	2480	709	2780	636	3080	578	3380	530	3680	489
2185	798	2485	707	2785	635	3085	577	3385	529	3685	488
2190	796	2490	706	2790	634	3090	576	3390	528	3690	488
2195	795	2495	705	2795	633	3095	575	3395	528	3695	487
2200	793	2500	703	2800	632	3100	575	3400	527	3700	487
2205	791	2505	702	2805	631	3105	574	3405	526	3705	486
2210	790	2510	701	2810	630	3110	573	3410	525	3710	485
2215	788	2515	699	2815	629	3115	572	3415	525	3715	485
2220	786	2520	698	2820	628	3120	571	3420	524	3720	484
2225	785	2525	697	2825	627	3125	570	3425	523	3725	484
2230	783	2530	695	2830	626	3130	569	3430	523	3730	483
2235	781	2535	694	2835	625	3135	569	3435	522	3735	482
2240	780	2540	693	2840	624	3140	568	3440	521	3740	482
2245	778	2545	692	2845	623	3145	567	3445	520	3745	481
2250	776	2550	690	2850	622	3150	566	3450	520	3750	481
2255	775	2555	689	2855	621	3155	565	3455	519	3755	480
2260	773	2560	688	2860	620	3160	564	3460	518	3760	479
2265	772	2565	686	2865	619	3165	563	3465	518	3765	479
2270	770	2570	685	2870	618	3170	563	3470	517	3770	478
2275	768	2575	684	2875	617	3175	562	3475	516	3775	478
2280	767	2580	683	2880	616	3180	561	3480	515	3780	477
2285	765	2585	681	2885	615	3185	560	3485	515	3785	476
2290	764	2590	680	2890	614	3190	559	3490	514	3790	476
2295	762	2595	679	2895	613	3195	559	3495	513	3795	475
2300	760	2600	678	2900	612	3200	558	3500	513	3800	475
2305	759	2605	677	2905	611	3205	557	3505	512	3805	474
2310	757	2610	675	2910	610	3210	556	3510	511	3810	473
2315	756	2615	674	2915	609	3215	555	3515	511	3815	473
2320	754	2620	673	2920	608	3220	554	3520	510	3820	472
2325	753	2625	672	2925	607	3225	554	3525	509	3825	472
2330	751	2630	671	2930	606	3230	553	3530	509	3830	471
2335	750	2635	669	2935	605	3235	552	3535	508	3835	471
2340	748	2640	668	2940	604	3240	551	3540	507	3840	470
2345	747	2645	667	2945	603	3245	550	3545	507	3845	469
2350	745	2650	666	2950	602	3250	550	3550	506	3850	469
2355	744	2655	665	2955	601	3255	549	3555	505	3855	468
2360	742	2660	663	2960	600	3260	548	3560	505	3860	468
2365	741	2665	662	2965	599	3265	547	3565	504	3865	467
2370	739	2670	661	2970	598	3270	546	3570	503	3870	467
2375	738	2675	660	2975	597	3275	546	3575	503	3875	466
2380	736	2680	659	2980	596	3280	545	3580	502	3880	465
2385	735	2685	658	2985	595	3285	544	3585	501	3885	465
2390	734	2690	656	2990	594	3290	543	3590	501	3890	464
2395	734	2695	655	2995	593	3295	543	3595	500	3895	464
2000	102	2030	000	2333	000	0230	545	0000	500	3033	404

Tabla 2.6 valores tabulados para el cálculo del módulo de elasticidad de subrasante Eo

DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0	DOxR5	E0
(0.1cmxcm)	(kg/cm ²)	(0.1cmxcm)	(kg/cm²)								
3900	463	4200	432	4500	405	4800	381	5100	360	5400	341
3905	463	4205	432	4505	404	4805	381	5105	360	5405	341
3910	462	4210	431	4510	404	4810	380	5110	359	5410	341
3915	461	4215	431	4515	404	4815	380	5115	359	5415	340
3920	461	4220	430	4520	403	4820	380	5120	359	5420	340
3925	460	4225	430	4525	403	4825	379	5125	358	5425	340
3930	460	4230	429	4530	402	4830	379	5130	358	5430	339
3935	459	4235	429	4535	402	4835	379	5135	358	5435	339
3940	459	4240	428	4540	402	4840	378	5140	357	5440	339
3945	458	4245	428	4545	401	4845	378	5145	357	5445	339
3950	458	4250	427	4550	401	4850	377	5150	357	5450	338
3955	457	4255	427	4555	400	4855	377	5155	356	5455	338
3960	457	4260	426	4560	400	4860	377	5160	356	5460	338
3965	456	4265	426	4565	399	4865	376	5165	356	5465	337
3970	455	4270	425	4570	399	4870	376	5170	355	5470	337
3975	455	4275	425	4575	399	4875	376	5175	355	5475	337
3980	454	4280	424	4580	398	4880	375	5180	355	5480	337
3985	454	4285	424	4585	398	4885	375	5185	354	5485	336
3990	453 453	4290 4295	424 423	4590	397 397	4890	375	5190	354 354	5490	336 336
3995 4000	453 452	4295	423	4595 4600	397	4895 4900	374 374	5195 5200	354	5495 5500	335
	452		423	4600							335
4005 4010	452	4305 4310	422	4610	396 396	4905 4910	373 373	5205 5210	353 353	5505 5510	335
4015	451	4315	422	4615	395	4915	373	5215	353	5515	335
4013	451	4313	421	4620	395	4910	372	5210	352	5520	334
4020	450	4325		4625	395	4925	372	5225	352	5525	334
4023	449	4323	420 420	4620	394	4920	372	5230	352	5530	334
4035	449	4335	419	4635	394	4935	371	5235	351	5535	333
4040	448	4340	419	4640	393	4940	371	5240	351	5540	333
4045	448	4345	418	4645	393	4945	371	5245	351	5545	333
4050	447	4350	418	4650	393	4950	370	5250	350	5550	333
4055	447	4355	418	4655	392	4955	370	5255	350	5555	332
4060	446	4360	417	4660	392	4960	370	5260	350	5560	332
4065	445	4365	417	4665	391	4965	369	5265	349	5565	332
4070	445	4370	416	4670	391	4970	369	5270	349	5570	331
4075	444	4375	416	4675	391	4975	369	5275	349	5575	331
4080	444	4380	415	4680	390	4980	368	5280	348	5580	331
4085	443	4385	415	4685	390	4985	368	5285	348	5585	331
4090	443	4390	414	4690	389	4990	367	5290	348	5590	330
4095	442	4395	414	4695	389	4995	367	5295	348	5595	330
4100	442	4400	414	4700	389	5000	367	5300	347	5600	330
4105	441	4405	413	4705	388	5005	366	5305	347	5605	329
4110	441	4410	413	4710	388	5010	366	5310	347	5610	329
4115	440	4415	412	4715	388	5015	366	5315	346	5615	329
4120	440	4420	412	4720	387	5020	365	5320	346	5620	329
4125	439	4425	411	4725	387	5025	365	5325	346	5625	328
4130	439	4430	411	4730	386	5030	365	5330	345	5630	328
4135	438	4435	410	4735	386	5035	364	5335	345	5635	328
4140	438	4440	410	4740	386	5040	364	5340	345	5640	328
4145	437	4445	410	4745	385	5045	364	5345	344	5645	327
4150	437	4450	409	4750	385	5050	363	5350	344	5650	327
4155	436	4455	409	4755	384	5055	363	5355	344	5655	327
4160	436	4460	408	4760	384	5060	363	5360	344	5660	326
4165	435	4465	408	4765	384	5065	362	5365	343	5665	326
4170	435	4470	407	4770	383	5070	362	5370	343	5670	326
4175	434	4475	407	4775	383	5075	362	5375	343	5675	326
4180	434	4480	407	4780	383	5080	361	5380	342	5680	325
4185	433	4485	406	4785	382	5085	361	5385	342	5685	325
4190	433	4490	406	4790	382	5090	361	5390	342	5690	325
4195	433	4495	405	4795	381	5095	360	5395	341	5695	325

Tabla 2.6 valores tabulados para el cálculo del módulo de elasticidad de subrasante Eo

DOxR5	E0										
(0.1cmxcm)	(kg/cm²)										
5700	324	6000	309	6300	295	6600	283	6900	271	7200	260
5705	324	6005	309	6305	295	6605	282	6905	271	7205	260
5710	324	6010	309	6310	295	6610	282	6910	271	7210	260
5715	324	6015	308	6315	295	6615	282	6915	270	7215	260
5720	323	6020	308	6320	294	6620	282	6920	270	7220	260
5725	323	6025	308	6325	294	6625	282	6925	270	7225	260
5730	323	6030	308	6330	294	6630	281	6930	270	7230	259
5735	322	6035	307	6335	294	6635	281	6935	270	7235	259
5740	322	6040	307	6340	293	6640	281	6940	270	7240	259
5745	322	6045	307	6345	293	6645	281	6945	269	7245	259
5750	322	6050	307	6350	293	6650	281	6950	269	7250	259
5755	321	6055	306	6355	293	6655	280	6955	269	7255	259
5760	321	6060	306	6360	293	6660	280	6960	269	7260	258
5765	321	6065	306	6365	292	6665	280	6965	269	7265	258
5770	321	6070	306	6370	292	6670	280	6970	268	7270	258
5775	320	6075	305	6375	292	6675	280	6975	268	7275	258
5780	320	6080	305	6380	292	6680	279	6980	268	7280	258
5785	320	6085	305	6385	292	6685	279	6985	268	7285	258
5790	320	6090	305	6390	291	6690	279	6990	268	7290	257
5795 5800	319 319	6095 6100	305 304	6395 6400	291 291	6695 6700	279 279	6995 7000	268	7295 7300	257 257
									267		
5805	319	6105	304 304	6405	291	6705 6710	278	7005	267	7305	257
5810	319	6110		6410	290		278	7010	267	7310	257
5815 5820	318 318	6115 6120	304 303	6415 6420	290 290	6715 6720	278	7015 7020	267 267	7315 7320	257
5825	318	6125	303	6425	290	6725	278	7020	267	7325	256 256
5830	318	6130	303	6430	290	6730	278 277	7025	266	7323	256
5835	317	6135	303	6435	289	6735	277	7035	266	7335	256
5840	317	6140	302	6440	289	6740	277	7040	266	7340	256
5845	317	6145	302	6445	289	6745	277	7040	266	7345	256
5850	316	6150	302	6450	289	6750	277	7043	266	7350	255
5855	316	6155	302	6455	289	6755	277	7055	265	7355	255
5860	316	6160	302	6460	288	6760	276	7060	265	7360	255
5865	316	6165	301	6465	288	6765	276	7065	265	7365	255
5870	315	6170	301	6470	288	6770	276	7070	265	7370	255
5875	315	6175	301	6475	288	6775	276	7075	265	7375	255
5880	315	6180	301	6480	288	6780	276	7080	265	7380	254
5885	315	6185	300	6485	287	6785	275	7085	264	7385	254
5890	314	6190	300	6490	287	6790	275	7090	264	7390	254
5895	314	6195	300	6495	287	6795	275	7095	264	7395	254
5900	314	6200	300	6500	287	6800	275	7100	264	7400	254
5905	314	6205	299	6505	286	6805	275	7105	264	7405	254
5910	313	6210	299	6510	286	6810	274	7110	264	7410	253
5915	313	6215	299	6515	286	6815	274	7115	263	7415	253
5920	313	6220	299	6520	286	6820	274	7120	263	7420	253
5925	313	6225	299	6525	286	6825	274	7125	263	7425	253
5930	312	6230	298	6530	285	6830	274	7130	263	7430	253
5935	312	6235	298	6535	285	6835	273	7135	263	7435	253
5940	312	6240	298	6540	285	6840	273	7140	262	7440	253
5945	312	6245	298	6545	285	6845	273	7145	262	7445	252
5950	311	6250	297	6550	285	6850	273	7150	262	7450	252
5955	311	6255	297	6555	284	6855	273	7155	262	7455	252
5960	311	6260	297	6560	284	6860	273	7160	262	7460	252
5965	311	6265	297	6565	284	6865	272	7165	262	7465	252
5970	311	6270	297	6570	284	6870	272	7170	261	7470	252
5975	310	6275	296	6575	284	6875	272	7175	261	7475	251
5980	310	6280	296	6580	283	6880	272	7180	261	7480	251
5985	310	6285	296	6585	283	6885	272	7185	261	7485	251
5990	310	6290	296	6590	283	6890	271	7190	261	7490	251
5995	309	6295	295	6595	283	6895	271	7195	261	7495	251

3.1.- CRITERIOS DE LA SELECCIÓN DE LA MUESTRA

El diseño y construcción de un proyecto de ingeniería vial es la investigación completa y detallada del lugar seleccionado, en cuanto se refiere al estudio de suelos, mediante la ejecución de pruebas de laboratorio que nos permita determinar sus características y propiedades. Si queremos llegar a unos resultados confiables, precisos, es necesario la obtención de muestras apropiadas para el desarrollo de las pruebas o ensayos que se realice en laboratorio.

Las muestras extraídas de un determinado terreno, de canto rodado, etc. Pueden ser alteradas o inalteradas:

- ➤ Muestras alteradas.- Una muestra es alterada cuando no tiene las mismas condiciones o características que cuando se encontraban en el terreno natural de donde se recolecta a medida que se realiza el muestreo. las muestras alteradas se usan para la identificación del suelo o material.
- ➤ Muestras inalteradas.- Es aquella muestra que conserva en lo posible, la estructura y el contenido de humedad para que presenten realmente las condiciones de campo.

Las muestras con las que se trabajó en este proyecto de grado son de tipo alteradas, debido a que los ensayos realizados son: clasificación del suelo para identificación, Compactación (proctor T-180), Capacidad Soporte de California (CBR), Desgaste de los Ángeles y Equivalente de Arena. Los mismos deben seguir una metodología de suelos alterados remoldados.

Las muestras ensayadas en laboratorio fueron extraídas de diferentes lugares tales como:

✓ Materiales que utilizó SEDECA para la capa subbase y base de pavimento, para el tramo de Santa Ana – Yesera fue material extraído; de banco de Yesera Norte para Capa Subbase, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°31′7.59″ y longitud Oeste a 64°34′18.74″, en coordenadas

UTM está ubicado, al Este a 337192.78 m y al Norte a 7619617.28 m y material de los bancos de Santa Ana y Yesera para Capa Base, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°32'52.80" y longitud Oeste a 64°35'26.33", en coordenadas UTM está ubicado, al Este a 335283.93 m y al Norte a 7616358.39 m.

- ✓ Materiales que utilizó SEDECA para la Capa Subbase y base de pavimento, para el tramo de San Andrés San Pedro de Sola fue material extraído; de banco Guadalquivir para Capa Subbase, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°36′31.81″ y longitud Oeste a 64°50′3.27″, en coordenadas UTM está ubicado, al Este a 3102128.19 m y al Norte a 7609329.89 m y material del Rio Sola para Capa Subbase y base, está ubicado en coordenadas geográficas son: latitud Sur a 21°38′17.61″ y longitud Oeste a 64°49′8.76″, en coordenadas UTM está ubicado, al Este a 311744.40 m y al Norte a 7606081.83 m y material del banco Pantipampa para la capa base el cual está ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°38′41.88″ y longitud Oeste a 64°49′47.02″, en coordenadas UTM está ubicado, al Este a 310625.30 m y al Norte a 7605358.94 m.
- ✓ Materiales que utilizó SEDECA para la capa subbase y base de pavimento, para el tramo de Tolomosa Pampa Redonda fue material extraído; de banco Pampa Redonda el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37′9.37″ y longitud Oeste a 64°45′3.37″, en coordenadas UTM está ubicado, al Este a 318779.70 m y al Norte a 7608286.28 m. Material del Rio Tolomosa para la capa subbase y base el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37′28.49″ y longitud Oeste a 64°46′0.70″, en coordenadas UTM está ubicado, al Este a 317125.95 m y al Norte a 7607692.99 m y material de banco Tolomosa para la capa base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37′10.54″ y longitud Oeste a

64°45'0.45", en coordenadas UTM está ubicado, al Este a 317945.10 m y al Norte a 7607991.23 m.


- ✓ Materiales que utilizó SEDECA para la capa subbase y base de pavimento, para el tramo de Erquiz Sud − Cruce Cadillar fue material extraído; de banco Erquiz, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29′26.00″ y longitud Oeste a 64°46′41.37″, en coordenadas UTM está ubicado, al Este a 315786.71 m y al Norte a 7622507.66 m, material Rio Erquiz para la Capa Subbase y Base el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29′32.07″ y longitud Oeste a 64°46′42.83″, en coordenadas UTM está ubicado, al Este a 315749.66 m y al Norte a 7622316.74 m y material de banco de Cruce Cadillar para la Capa Base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29′48.40″ y longitud Oeste a 64°46′16.33″, en coordenadas UTM está ubicado, al Este a 316521.14 m y al Norte a 7621842.24 m.
- ✓ Materiales que utilizó SEDECA para la capa subbase y base de pavimento, para el tramo de Concepción Chocloca Juntas fue material extraído; de banco de Guayriguana para la Capa Subbase y base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°44′52.92″ y longitud Oeste a 64°44′17.12″, en coordenadas UTM está ubicado, al Este a 320254.32 m y al Norte a 7594060.86 m y material de Quebrada Bateon para la Capa Base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°44′51.46″ y longitud Oeste a 64°44′2.80″, en coordenadas UTM está ubicado, al Este a 320663.44 m y al Norte a 7594097.26 m.

3.2.- UBICACIÓN DEL AREA DE ESTUDIO

La ubicación de las zonas de muestreo se encuentra dentro del departamento de Tarija:

• Material que se utilizó SEDECA en el tramo Santa Ana – Yesera

Figura 3.1 Mapa del tramo Santa Ana - Yesera

Fuente: Google Earth

Figura 3.2 Mapa del lugar banco de Santa Ana (para capa base)



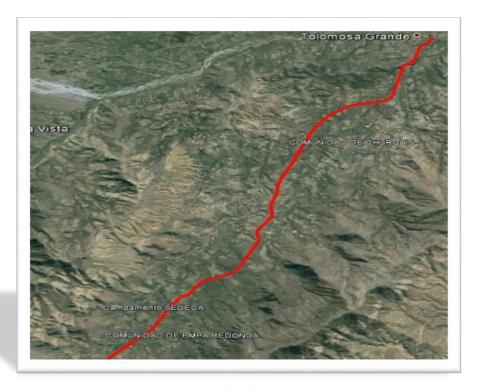
Figura 3.3 Mapa del lugar banco de Yesera Norte (para capa subbase)

Los materiales fueron extraídos; De banco de Yesera Norte para Capa Subbase, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°31'7.59" y longitud Oeste a 64°34'18.74", en coordenadas UTM está ubicado, al Este a 337192.78 m y al Norte a 7619617.28 m y material de los bancos de Santa Ana y Yesera para Capa Base, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°32'52.80" y longitud Oeste a 64°35'26.33", en coordenadas UTM está ubicado, al Este a 335283.93 m y al Norte a 7616358.39 m. Estos lugares pentenecen a la Provincia Cercado del departamento de Tarija.

• Material que se utilizó SEDECA en el tramo San Andrés – San Pedro De Sola

Figura 3.5 Mapa del lugar banco Gudalquivir (para capa subbase)

Figura 3.6 Mapa del lugar banco Gudalquivir y Río Sola (para capa base)



Fuente: Google Earth

Los materiales fueron extraídos: De banco Guadalquivir para Capa Subbase, en donde sus coordenadas geográficas de ubicación son: latitud Sur a 21°36'31.81" y longitud Oeste a 64°50'3.27", en coordenadas UTM está ubicado, al Este a 3102128.19 m y al Norte a 7609329.89 m y material del Rio Sola para Capa Subbase y base, está ubicado en coordenadas geográficas son: latitud Sur a 21°38'17.61" y longitud Oeste a 64°49'8.76", en coordenadas UTM está ubicado, al Este a 311744.40 m y al Norte a 7606081.83 m y material del

banco Pantipampa para la capa base el cual está ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°38'41.88" y longitud Oeste a 64°49'47.02", en coordenadas UTM está ubicado, al Este a 310625.30 m y al Norte a 7605358.94 m. Estos lugares pertenecen a la provincia cercado del departamento de Tarija.

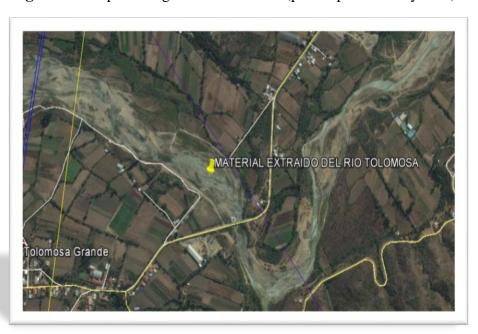

Material que se utilizó SEDECA en el tramo Tolomosa – Pampa Redonda
 Figura 3.7 Mapa del tramo Tolomosa – Pampa Redonda

Figura 3.8 Mapa del lugar banco Pampa Redonda (para la capa subbase)

Figura 3.9 Mapa del lugar Río Tolomosa (para capa subbase y base)

Los materiales fueron extraídos: De banco Pampa Redonda el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37'9.37" y longitud Oeste a 64°45'3.37", en coordenadas UTM está ubicado, al Este a 318779.70 m y al Norte a 7608286.28 m. Material del Río Tolomosa para la capa subbase y base el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37'28.49" y longitud Oeste a 64°46'0.70", en coordenadas UTM está ubicado, al Este a 317125.95 m y al Norte a 7607692.99 m y material de banco Tolomosa para la capa base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°37'10.54" y longitud Oeste a 64°45'0.45", en coordenadas UTM está ubicado, al Este a 317945.10 m y al Norte a 7607991.23 m. Estos lugares pertenecen a la provincia de cercado y avilés del departamento de Tarija.

Material que se utilizó SEDECA en el tramo Erquiz sud – Cruce Cadillar
 Figura 3.10 Mapa del lugar tramo Erquiz Sud – Cruce Cadillar

Figura 3.11 Mapa del lugar banco Erquiz y Río Erquiz (capa subbase)

Figura 3.12 Mapa del lugar banco de Cruce Cadillar

Los materiales fueron extraídos: De banco Erquiz, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29'26.00" y longitud Oeste a 64°46'41.37", en coordenadas UTM está ubicado, al Este a 315786.71 m y al Norte a 7622507.66 m, material Río Erquiz para la Capa Subbase y Base el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29'32.07" y longitud Oeste a 64°46'42.83", en coordenadas UTM está ubicado, al Este a 315749.66 m y al Norte a 7622316.74 m y material de banco de Cruce Cadillar para la Capa Base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°29'48.40" y longitud Oeste a 64°46'16.33", en coordenadas UTM está ubicado, al Este a 316521.14 m y al Norte a 7621842.24 m. Estos lugares están ubicados en la provincia Méndez del departamento de Tarija.

Material que se utilizó SEDECA en el tramo Concepción - Chocloca – Juntas

Figura 3.13 Mapa del lugar tramo Concepción – Chocloca – Juntas

Figura 3.14 Mapa del lugar banco de Quebrada Bateon y Guayriguana (Capa Base Y Subbase)

Fuente: Google Earth

Los materiales fueron extraídos: De banco de Guayriguana para la Capa Subbase y base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°44'52.92" y longitud Oeste a 64°44'17.12", en

coordenadas UTM está ubicado, al Este a 320254.32 m y al Norte a 7594060.86 m y material de Quebrada Bateon para la Capa Base, el cual se encuentra ubicado según coordenadas geográficas las cuales son: latitud Sur a 21°44′51.46″ y longitud Oeste a 64°44′2.80″, en coordenadas UTM está ubicado, al Este a 320663.44 m y al Norte a 7594097.26 m. Estos lugares pertenecen a la provincia avilés del departamento de Tarija

3.3.- MUESTREO DEL MATERIAL

3.3.1.- Objetivo

Realizar una extracción o muestreo de lo más representativo para así poder determinar de forma correcta las características y propiedades del suelo a través de ensayos que se realizarán en laboratorio.

3.3.2.- Equipo Utilizado

- ✓ Pala
- ✓ Pico
- ✓ Lona polietileno
- ✓ Bolsa de plástico

3.3.3.- Procedimiento

La extracción de muestras se la hizo de la siguiente manera:

- ✓ Para evitar que el suelo recolectado se mezcle con otro que no es el adecuado se retira la capa superficial, limpiando el lugar de extracción.
- ✓ Para extraer una muestra representativa se excava a una cierta profundidad.
- ✓ Se recoge todo el material excavado, se coloca en una bolsa de plástico con una identificación y bien cerrada para luego llevarla a laboratorio, en este caso es material de rio es decir de canto rodado y material de banco.

Figura 3.15 vista le lugar de muestreo banco Yesera Norte (capa subbase)

Figura 3.16 vista le lugar de muestreo banco Yesera (capa base)

Figura 3.17 vista le lugar de muestreo Río Sola y material de Banco Guadalquivir (capa subbase)

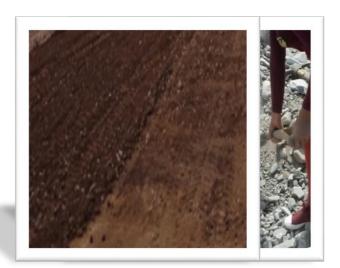

Figura 3.17 vista del lugar de muestreo Río Sola y material de Banco Pantipampa (capa base)

Figura 3.19 vista del lugar de muestreo Río Tolomosa y material de banco de Pampa Redonda (capa subbase)

Figura 3.20 vista del lugar de muestreo Río Tolomosa y material de banco (capa base)

Figura 3.21 vista del lugar de muestreo de Río Erquiz y material de banco de Erquiz (capa subbase)

Figura 3.22 vista del lugar de muestreo Río Erquiz y material de banco Cruce Cadillar (capa base)

Figura 3.23 vista del lugar de muestreo, material de Guayriguana (capa subbase)

Figura 3.24 vista del lugar de muestreo, material de Guayriguana y Quebrada

Bateon (capa base)

Fuente: Elaboración Propia

3.4.- DETERMINACIÓN DE CONTENIDO DE HUMEDAD

3.4.1.- Objetivo:

✓ Determinar el contenido de agua que contiene un determinado suelo en el momento analizado, expresado en porcentaje de humedad.

3.4.2.- Equipo utilizado:

- ✓ Balanza con una precisión de 0,01 gr.
- ✓ Horno, a temperatura de 105 a 110 °C.
- ✓ Taras, para colocar la muestra húmeda.

3.4.3.- Procedimiento que se realizó en laboratorio:

✓ Se limpia y se pesa la tara con una balanza de precisión de 0,01 gr. Después se mezcla el material con la ayuda de un badilejo y luego se introduce en la tara una cantidad representativa del suelo aproximadamente de 150 a 250 gr.

- ✓ Seguidamente se pesa la tara más el suelo húmedo, y se introduce al horno durante unas 24 hr a una temperatura de 110 °C. se tiene que tomar e4n cuenta que para suelos orgánicos se tiene que secar la muestra a una temperatura no mayor de 60°C.
- ✓ Por último se saca la tara más el suelo seco del horno, se deja enfriar, hasta que se mantenga a una temperatura aproximadamente a la del ambiente y se procede inmediatamente a pesar la tara más el suelo seco.

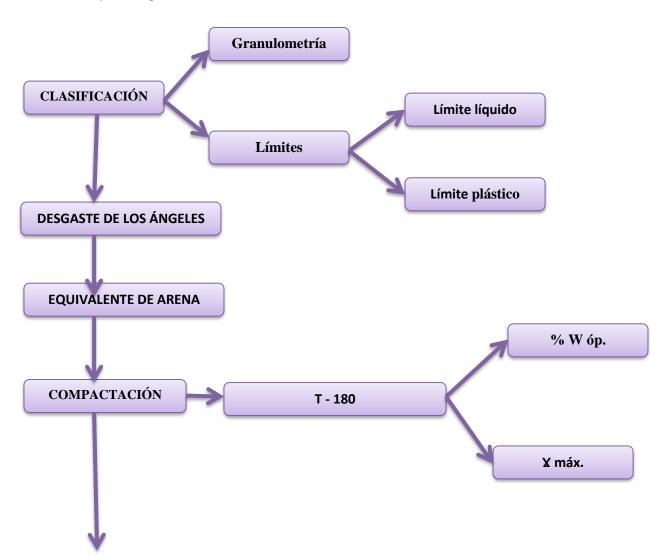
Nota: después de sacar la muestra del horno no se debe dejar por mucho tiempo expuesta al ambiente la misma, debido a que esta absorbe vapor de agua y esto aumentara el peso seco de la muestra.

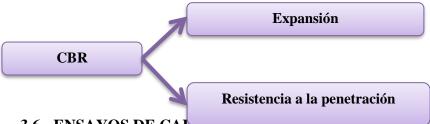
Figura 3.25 Balanza digital con precisión 0,01 gr con muestra

Fuente: Elaboración Propia

Figura 3.26 Horno eléctrico con muestras sometidas a secado

3.4.4.- Cálculos:


✓ Se tiene que restar el peso de la muestra húmeda más tara, con el peso de la tara, obteniendo el peso de la muestra húmeda. Luego se resta el peso seco más tara, con el peso de la tara, obteniendo el peso seco. Después se calcula la humedad expresada en porcentaje con la siguiente formula.


$$w(\%) = \frac{Psh - Pss}{Pss} * 100$$

3.5.- ENSAYOS DE LABORATORIO

De las muestras extraídas de Santa Ana, Yesera, banco Guadalquivir, Pantipampa, banco Erquiz, Rio Sola, banco Cruce Cadillar, Rio Erquiz, banco Guayriguana, Quebrada Bateon y Rio Tolomosa. Se llevara a cabo los ensayos caracterización y propiedades del suelo, los mismos se detallan a continuación:

3.5.1.- Esquena Lógica Estructural

3.6.- ENSAYOS DE CARACTERIZACION DE SUELOS

3.6.1.- Ensayos de Clasificación:

La clasificación de los suelos es un método mediante el cual, los suelos se clasifican sistemáticamente de acuerdo a sus características probables. Podemos establecer una clasificación de suelos que servirán para identificar los materiales que utilizamos dentro de la construcción civil. La clasificación de suelos se determina mediante las siguientes pruebas que se hizo en laboratorio.

3.6.2.- Granulometría de los suelos que son parte de la investigación:

El análisis granulométrico de los suelos, no es más que obtener la distribución porcentual de los tamaños de partículas que conforman un suelo. Esto se realiza con la ayuda de un juego de mallas, que tiene un tamaño graduado establecido por las normas ASTM y AASHTO T-27, en donde se obtienen los pesos retenidos para luego realizara los posteriores cálculos..

3.6.3.- Objetivo:

Obtener el porcentaje de material que pasa en cada tamiz, para luego graficar mediante una curva granulométrica la distribución del tamaño de los granos presentes en una masa de suelo.

3.6.4.- Equipo Utilizado

- ✓ Tamices 2½", 2", 1½", 1", ¾, 3/8, N°4, N°10, N°40, N°200
- ✓ Tapa y base
- ✓ Fuentes

- ✓ Brocha
- ✓ Balanza digital de 0,01gr de precisión.
- ✓ Horno eléctrico 105 °C a110°C de temperatura

Figura 3.27 juego de tamices

3.6.5.- Procedimiento:

3.6.5.1.- Granulometría material grueso

En primer lugar la muestra con que se hizo el ensayo fue una muestra representativa, se hizo una mezcla de material en cuanto a volumen y porcentajes según datos proporcionados por SEDECA, estas mezclas fueron las cuales realizaron para la capa base y subbase de los diferentes tramos que ejecuto SEDECA, se trabajaron con muestras mayores a 8000 gramos.

Posteriormente se procede a secar el material, hasta que los granos no se encuentren pegados o formados grumos, en caso de existir hay que buscar la forma de desintegrarlos, pero sin triturar las partículas verdaderas del suelo.

Los tamices para disponer para la parte gruesa del material se utilizó los siguientes: 2½", 2", 1½", 1", ¾, 3/8, N°4, N°10.

Se tamizo manualmente se utilizó bandejas para depositar cada material que pasa y luego estos identificarlos de acuerdo a la malla que se haya utilizado y pesarlo de ese modo se tendrá el peso retenido en cada tamiz.

3.6.5.2.- Método del Lavado

Como el material utilizado es un suelo con una cierta cantidad de arcilla, se hizo método del lavado del suelo fino debido a que el mismo garantiza una disgregación completa del material, dando como resultado los tamaños reales de las partículas.

Este método se usa para el material que pasa el tamiz N° 10, donde también se puede realizar con una representación menor del peso total. Esto quiere decir que se puede usar un peso de aproximadamente de 500 gr. Los pasos a seguir son los siguientes:

- ✓ Como primer paso debemos triturar la muestra, con la ayuda de un martillo de goma para así evitar la presencia de terrones.
- ✓ Se puso muestra de aproximadamente 800 gramos, en el horno y se dejó secar durante 24 hrs.
- ✓ De la muestra seca se pesó 500 gramos para dejarlo reposar en agua hasta que este se sature completamente, haciendo que el suelo tenga características de barro o lodo. Generalmente se usa un tiempo cómodo de 24hrs o más, si es que se requiere un tiempo más corto utilizar 5 hrs.
- ✓ Hay que dejar la muestra en agua hasta que se sature completamente, sin perder material se introduce la muestra al tamiz nº 200, luego con la ayuda del agua se puede lavar el suelo, hasta que el agua pasante tome aspectos más claros sin sedimentación.

- ✓ Luego el material que se retiene en la malla N°200, disponer dentro de un recipiente para realizar un secado del suelo y proceder a retamizar por las mallas N° 10, N°40Y N°200.
- ✓ Pesar el material retenido en cada malla o tamiz dispuesta el material fino.

Figura 3.28 Material Fino Reposando en Agua

Figura 3.29 Material Seco para Tamizar

3.6.6.- Cálculos:

- ✓ Con los pesos retenidos en cada tamiz, se procedió a calcular los retenidos acumulados en grs. Para luego llevarlos a porcentajes en función del peso total seco de la muestra.
- ✓ Con los valores obtenidos se calcula el porcentaje pasante de suelo en cada criba correspondiente.
- ✓ Los datos obtenidos servirán para graficar la curva de distribución granulométrica en escala semilogaritmica, donde en el eje de las abscisas se coloca la abertura de cada malla en mm en escala logarítmica y el eje de las ordenadas se coloca el porcentaje del material que pasa en cada tamiz en escala aritmética.

3.7.- LÍMITES DE CONSISTENCIA

La consistencia es el grado de cohesión de las partículas de un suelo y su resistencia a aquellas fuerzas exteriores que tienden a deformar o destruir su estructura. Los límites de consistencia de un suelo, están representados por contenidos de humedad y los principales que se utilizan para la clasificación son: límite líquido y límite plástico.

3.7.1.- Determinación del límite líquido y plástico:

3.7.2.- Objetivo:

El objetivo es realizar la práctica en función de la metodología es una manera correcta y adecuada para determinar los límites de consistencia de los suelos, que se expresan a través de la aplicación de un método lógico correcto.

3.7.3.- Equipo Utilizado

3.7.3.1.- equipo común

- ✓ Tamiz N° 40 más base y tapa
- ✓ Balanza digital con una precisión de 0,01 gr.
- ✓ Horno eléctrico a una temperatura de (105 a 110 °C)

Límite Líquido

- ✓ Equipo de Casagrande
- ✓ Ranurador
- ✓ Espátula y Taras Pequeñas

Límite Plástico

- ✓ Base de Vidrio
- ✓ Taras Pequeñas

3.7.4.- Procedimiento:

3.7.4.1.- límite líquido (AASHTO T-89)

✓ Para hacer este ensayo se utiliza el suelo que pasa el tamiz Nº40, se lo coloca dentro de un recipiente, se le agrega agua, luego se procede a homogeneizar la mezcla hasta llegar a forma una pasta suave, teniendo en cuenta de eliminar todo el aire atrapado entre las partículas del suelo.

Figura 3.30 Preparación de la muestra

✓ Se debe calibrar el equipo a una altura de caida de un centimetro, la medición se lo realiza con un ranurador del equipo.

Figura 3.31 Calibración (Casagrande)

Fuente: Elaboración Propia

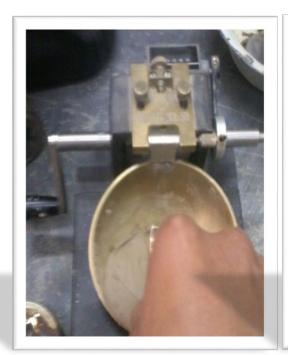

- ✓ Se debe pesar 5 taras pequeñas y limpias, anotando lospesos de cada una con su respectiva identificación en la planilla de limite liquido.
- ✓ Debemos poner la muestra con ayuda de la estula en la copa casagrande, tratando que la superficie del suelo adopte una disposición horizontal, donde el nivel de referencia es la parte inferios de la copa.
- ✓ Al conseguir que la muestra este totalmente horizontal, se procede a realizar la ranura, tratando de que el fondo de la copa este visible.

Figura 3.32 Muestra Horizontal (Equipo Casagrande)

- ✓ A la realización de la ranura, se acciona la copa de Casagrande, al ritmo de 2 golpes por segundo, hasta que se produzca la uniomn en la ranura de aproximadamente 12.7 mm, se debe registrar el numero de golpes en la planilla. Este procedimiento se debe repetir 5 veces en un rango de 6 a 35 golpes.
- ✓ Se debe realizar 2 cortes a la muestra en forma perpendicular a la ranura, estos deben pasar por los extremos de la parte que se unio, luego procedemos a extraer la porcion de la muestra entre los cortes y posteriormente ponerla en la capsulaque se encuentre identificada y pesada.
- ✓ Se debe registrar el peso del suelo humedo mas la capsula, para su posterior introduccion en el horno electrico con temperatura de (105 a 110 °C), dyrante 24 hr, luego extraer del horno pesar el suelo seco mas la capsula

Figura 3.33 extracción de la muestra

3.7.4.2.- límite plástico (AASHTO T-90)

Nota: Nose pudo hacer el límite plástico debido a que los materiales eran NP es decir no tenian plasticidad, por lo cuál nose podia realizar esta práctica.

3.8.- DESGASTE DE LOS ANGELES (AASHTO T-96-65)

3.8.1.- Objetivo:

El objetivo de esta prueba es averiguar la calidad global estructural del agragado grueso es decir la resistencia que tiene la misma y tienen que cumplir la especificaciones tecnicas los materiales granulares .

3.8.2.- Procedimiento:

- ✓ La muestra tiene que ser limpia y debe ser representativa, dependiendo de la granulometria es decir del material que se empieza a retenerse se con sidera el tipo de desgaste que se va a realizar.
- ✓ Debido a que el material granular que es parte del estudio de los diferente tipos de materiales se en retiene en el tamiz de 2", es por esto que el tipo de desgaste que se realizo en laboratorio fue el de tipo A esto quiere decir que la muestra sera sometida con 12 esferas a la maquina de los angeles.
- ✓ la muestra se debera cortar en el tamiz 1½" desechando el material retenido.
- ✓ Posteriormente se debera tamizar el material granular de tal manera que el peso retenido en el tamiz de 1", ¾, ½ y 3/8 sumen un total de 5000gr, es decir que en cada tamiz se debera tener material retenido de 1250 grs.
- ✓ Esta muestra tamizada debera ser lavada y secada.

- ✓ Luego se procedio a poner la muestra de 5000 grs en la maquina de los angeles con las 12 esferas, el cual tiene que tener 500 revoluciones, se deja la muestra por 18 min dentro de la máquina.
- ✓ Despues se procede a sacar la muestra y tamizar en el tamiz Nº12, pesando el material retenido en la misma.

Figura 3.34 Material retenido en el tamiz 1", 3/4, 1/2 y 3/8

Figura 3.35 Máquina de los angeles

Figura 3.36 Tamizado de la muestra después del sacado de la Maquina de los Ángeles

3.8.3.- Cálculo:

Para el calculo del desgaste parte del peso retenido que se tiene en el tamiz N°12 (1,7mm), se hace la diferencias de pesos en cuanto al peso total de la muestra y el peso retenido en el tamiz N° 12, para un mejor entendimiento se lo realiza el calculo mediante la siguiente fórmula:

$$desgaste(\%) = \frac{diferencia}{5000} * 100$$

Diferencia= Peso total de la muestra – Peso retenido en el tamiz Nº12

3.9.- EQUIVALENTE DE ARENA (AASHTO T-176)

3.9.1.- Objetivo:

Este ensayo tiene por objetivo determinar la proporcion relativa del contenido de polvo fino nocivo, o material arcilloso, en suelos o agrgados finos. Es un procedimiento que se puede utilizar para lograr una correlacion rapida en campo.

Se puede especificar un valor minimo del equivalente de arena, para limitar la cantidad admisible de finos arcillosos en un agregado.

Se realizo este ensayo debido a que se tiene que realizar, el equivalente de arena según especificaciones tecnicas tanto para la capabase y para la capa subbase y de este modo saber el porcentaje de fino que posee el material.

3.9.2.-Procedimiento:

A un volumen determinado de suelo o agregado fino se le adiciona una pequeña cantidad de solucion floculante, mezclandolos en un cilindro de plastico graduado y agitandolos para que las particulas de arena pierdan la cobertura arcillos. La muestra

es entonces "irrigada", usando una cantidad adicional de solucion floculante, para forzar el material arcilloso a quedar en suspensión encima de la arena, pasado los 20 min se procede a realizar las lecturas para luego determinar los calculos, las lecturas que se realizan son lecturas superiores y lecturas inferiores. Por cada material se realizo 3 ensayos.

3.9.3.- Cálculo:

Los cálculos se lo realizó mediante la siguiente fórmula :

equivalente de arena (%) =
$$\frac{\text{lectura inferior}}{\text{lectura superior}} * 100$$

Figura 3.37 Procedimiento del Ensayo de Equivalente de Arena

3.10.- ENSAYO DE COMPACTACIÓN (AASHTO T – 180)(material granular)

3.10.1.-Objetivo:

Determinar la relación entre el contenido y la humedad y la densidad de los suelos compactados para que forme una curva de compactación, consiste en un molde de dimensiones dadas y la densidad de los suelos empleando un apisonador de 10 libras

que se lo deja caer libremente de una altura de 18 pulgadas, compactando el suelo en 5 capaz.

Existen 3 métodos para realizar un ensayo de acuerdo a las especificaciones D-1557 de ASTM y T-180 de la AASHTO.

3.10.2.-Equipo Utilizado

- Molde de 2124 cm 3 (modificada T-180)
- ➤ Martillo de10 lb y 18" de caída libre.
- ➤ Balanza digital de 0.01 gr punto de precisión.
- ➤ Horno Eléctrico a temperatura (105 a 110)°C
- Regla metálica para enrasar.
- Probeta graduada.
- Extractor de muestras.
- Poruñas, badilejos, fuentes, espátula, brocha, taras, etc.

3.10.3.- Procedimiento

➤ Como primer paso debemos proceder a preparar la muestra como el material que es parte de la investigación es material granular se procede a tamizar en el tamiz 3/4 desechando lo retenido, luego se vuelve a tamizar en el tamiz N°4 separando el material fino y grueso luego se procedió a pesar el material mezclando un porcentaje de fino y un porcentaje de granular, dependiendo de la granulometría que se obtuvo y este será el material que se utilizara para el ensayo de compactación.

Figura 3.38 Tamizado de la muestra

- ➤ Al iniciar el ensayo debemos pesar los moldes con base y sin collarín, además de obtener su volumen respectivo.
- Después de preparar el material, se procede a calcular el contenido de humedad del mismo mediante el método estándar.
- Disponer el material en fuentes que serán incrementadas agua en diferentes proporciones.

- Debido a que las muestras ensayadas son materiales granulares (materiales para capa subbase y base), las húmedas con los que trabajo fueron 2% 4% 6% 8% y 10% variando en esos rangos de acuerdo a su humedad natural.
- ➤ El incremento de agua para los diferentes ensayos fueron realizados con la siguiente relación.

$$Vagua = \frac{\%Wensayado - \%Wactual}{100} * peso suelo$$

➤ Determinados los porcentajes de humedad para cada punto ensayado, se procede al incremento de agua a la cantidad deseada mediante el incremento de volúmenes de agua ya calculados, mezclando y homogenizando hasta obtener una humedad uniforme en toda la muestra.

Figura 3.39 Mezclando y homogeneizando la muestra

➤ La muestra que contiene la humedad deseada, se divide en 5 capaz iguales y se procede a compactar cada capa con 56 golpes con el martillo de 10 lb y 18" de caída libre en el molde de proctor modificado T-180.

Figura 3.40 Compactando el material granular

Fuente: Elaboración Propia

➤ Luego de compactar las 5 capaz se retira en collarín, para luego enrazar el material con la regla metálica, si luego de este proceso la superficie queda irregular, debemos tamizar el material con la misma humedad con el N° 10, para rellenar los huecos presionados con la regla metálica.

- Luego de enrasar se pesa el molde con su base más la muestra húmeda y registrar este dato a la planilla.
- Con el extractor de muestras se saca del corazón de la misma una muestra para determinar el contenido de la humedad real del suelo compactado. (método modificado)
- ➤ Debemos repetir los pasos secuenciales, con los diferentes contenidos de humedad real del suelo compactado (método modificado).
- Debemos repetir los pasos secuencialmente con los diferentes contenidos de humedad, para tener los puntos necesarios para graficar la curva de compactación.

3.10.4.-Cálculos

- Para encontrar el peso de los suelos húmedos debemos restar el peso del molde al peso del suelo húmedo más el molde.
- ➤ Para encontrar la densidad del suelo húmedo (Dsh), aplicamos la siguiente ecuación.

$$Dsh = \frac{peso suelo húmedo}{volumen del molde}$$

➤ Con los valores de porcentaje de humedad y densidad del suelo húmedo, calculamos la densidad del suelo seco (Dss).

Dss =
$$\frac{\text{Dsh}}{100 + \%\text{w}} * 100$$

Con los valores obtenidos en cada punto de humedades y densidades de suelo seco se procede a graficar los puntos, en donde en el eje de las abscisas van los contenidos de humedad y el eje de las ordenadas las densidades de suelos secos, luego se ajusta a la línea de tendencia correspondiente a una ecuación de segundo grado, donde el punto más alto es equivalente a la

densidad máxima y el contenido de humedad óptima, que es lo que se quiere obtener mediante este ensayo.

3.11.- ENSAYO DE CALIFORNIA BEARING RATIO (C.B.R.)

La finalidad de este ensayo es determinar la capacidad portante de los suelos que utilizaron SEDECA en sus proyectos de ejecución, compactados con humedad óptima y niveles de compactación variables.

El ensayo mide la resistencia al corte de un suelo bajo condiciones de densidad y humedad controladas, permitiendo un porcentaje (%) de la relación de soporte.

El índice C.B.R. (AASHTO T-193) es una medida de resistencia al esfuerzo cortante de un suelo bajo condiciones de densidad y humedad controladas.

Este método establece una relación entre la resistencia y la penetración de un suelo y su capacidad de soporte como base de sustentación para pavimentos flexible. Si bien este método es empírico, se debe realizar los ensayos en laboratorio.

3.11.1 Objetivo.-

Establecer la relación entre penetración que se realiza a un suelo y la capacidad de soporte es del mismo.

3.11.2.- Procedimiento:

Determinación de la densidad y humedad

- ✓ La cantidad de las muestra será de 5000 grs que pasa el tamiz 3/4, una vez pesado el material se debe calcular el contenido de humedad actual del suelo, a este material debemos agregar agua hasta el valor de humedad óptima.
- ✓ Se debe mezclar el material para su respectiva homogeneización, se ensambla el moldé a la base perforada, luego introducir el disco espaciador y ajustar el collarín al equipo, sobre el disco espaciador se colocara el filtro, esto se hizo para que no se pegue el material al disco y no existiera perdida del material fino

- ✓ El material se debe colocar en 5 capas de 56 golpes, con el martillo de 10 libras y 18" de caída, luego sequito el collarín para enrasar, de tal manera que se nivele la superficie del suelo.
- ✓ Se afloja el molde metálico de sus soportes, para quitar el disco espaciador se separa el molde de la base, luego se volteara el mismo para volver a ajustar a su base con la cara enrasada hacia abajo, antes se debe colocar un papel filtro en la base.
- ✓ Posteriormente se debe pesar el molde con la base y la muestra humedad, para así poder determinar su densidad y humedad.

Determinación de la expansión del suelo

✓ Luego de pesar el molde y la muestra antes de sumergirlo, se coloca sobre la superficie del suelo un plato perforado con vástago regulable, sobre éste se coloca dos pesas equivalentes a 10 libras. Para leer la expansión inicial se procede a colocar el trípode con un extensómetro cuyo vértice inferior se conecte con la cabeza del vástago, en este punto se deberá tomar la lectura inicial.

Figura 3.41 Moldes CBR mas Vástagos y Pesos

- ✓ Posteriormente los moldes se someten a saturación, es decir se lo sumerge en agua.
- ✓ Se toman y registran las lecturas cada 24hrs, durante 96 horas, es decir que 4 días. La diferencia entre la lectura inicial y final en valor absoluto en centímetros, dividida entre la altura real de espécimen que también esta esté en centímetros y multiplicada por cien, nos proporciona el valor de la expansión que sufrió.

Figura 3.42 Moldes CBR mas muestra sumergidos

Determinación de la resistencia a la penetración

- ✓ Después de 4 días de saturación, se drenara el espécimen de muestra inclinada durante unos 15minutos, para que luego el molde sea llevado a la prensa.
- ✓ Se hinco el pistón manteniendo una velocidad 0.05 pulg por min y se leen cargas totales necesarias en 0.025".0.05",0.075",0.1",0.150", 0.2",0.3",0.4".
- ✓ Se retira el molde de la prensa y se quitan las pesas, para pasar el mismo después de sumergirlo.
- ✓ Luego se extraen tres muestras, para así poder determinar el contenido de humedad, la muestra debe ser del fondo de la superficie.

Figura 3.43 Realizando las lecturas de los CBR

3.11.3.- Cálculos:

Cálculo de la densidad y humedad

✓ El peso unitaria de la muestra sería:

$$\gamma uh = \frac{Pmh}{Volumen\ molde}$$

Donde:

γuh = peso unitario de la muestra húmeda

Pmh= Peso muestra húmeda.

✓ Peso unitario de la muestra seca

$$\gamma ms = \frac{\gamma uh}{100 + w\%} * 100$$

Dónde:

γms = peso unitario de la muestra seca

w(%) = porcentaje de humedad

Calculo de la expansión

✓ La expansión:

$$\% \exp = \frac{Lf - Li}{h} * 100$$

Dónde:

Li= lectura inicial del extensómetro (cm).

h =altura total del espécimen.

Calculo del CBR

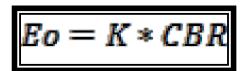
El CBR de un suelo es la carga unitaria correspondiente a 0.1" y 0.2" de penetración, expresada en por ciento de su respectivo valor estándar.

Para 0.1" tenemos:
$$CBR = \frac{carga (kg/cm^2)}{70.31 (kg/cm^2)} * 100$$

Para 0.2" tenemos:
$$CBR = \frac{carga (kg/cm^2)}{105.4 (kg/cm^2)} * 100$$

3.12.- INVESTIGACIÓN SOBRE EL COMPORTAMIENTO RESILIENTE Y LA DEFORMACIÓN PERMANENTE DE LOS MATERIALES GRANULARES

La investigación sobre el módulo resiliente y la deformación permanente se lo realizó mediante en Metodo de Hogg Simplicado, esta metodologia se basa en la evaluación de suelos y pavimentos, se han desarrollado correlaciones entre las propiedades medidas y los parametros elastico del sistema suelo- pavimento, lo que ha permitido el desarrollo de un metodo simple y rapido para ser aplicado en obra con la finalidad de evaluar la capacidad portante de los suelos, ya sea atrvez de un valor de CBR o modulo


de resiliencia del substrato, para esta investigación se tomo como base lo que es la capacidad portante del suelo. Este metodo asi tambien para el calculo de modulo resiliente y deformación materialpresentan valores tabulados uqe facilitan y hacen mas facil el proceso.

3.12.1.- Comportamiento del Modulo Resiliente

Para determinar el modulo resiliente de los materiales que fueron parte de la investigacion, los cuales fueron materiales granulares que utilizo SEDECA en sus proyecto de ejcucion de pavimento (capa subbase y base), se lodetermino mediante la correlacion del modulo resiliente versus el CBR que se obtuvo de cada material.

3.12.1.1.- Correlacion Eo versus CBR

Para expresar la capacidad portante del suelo en términos del valor de soporte de california (CBR), se puede emplear la conocida correlación establecida por Heukolom (10), según la cual:

Dónde:

Eo= Modulo Elástico o Resiliente (kg/cm2)

K= Coeficiente de Correlación (K= 100 para suelos granulares gruesos; K=110 para suelos granulares finos; K=130 para suelos finos plásticos)

CBR= Valor De Soporte De California (%)

Los cálculos se lo realizó para todos los materiales que fueron parte de la investigación teniendo los siguientes resultados:

MÓDULO RESILIENTE

> Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa sub base del tramo Santa Ana - Yesera (Material de Banco Yesera Norte)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.1 Módulo Resiliente de los materiales granulares capa sub base (banco Yesera Norte)

Nº	TIPO DE SUELO POR LA AASTHO	MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE)	
		CBR (%)	Eo (kg/cm2)
1	A-1a (0)	52,9	5819
2	A-1a (0)	50,3	5533
3	A-1a (0)	50,1	5511

Fuente: Elaboración Propia

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para capa base del tramo Santa Ana – Yesera (Material de Bancos 66.67 % Santa Ana – 33.33 Yesera)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.2 Módulo Resiliente de los materiales granulares capa base (bancos Santa Ana – Yesera Norte)

Nº	TIPO DE SUELO POR AASTHO		NULARES CAPA BASE NA – YESERA NORTE) Eo (kg/cm2)
1	A-1a (0)	88,7	9757
2	A-1a (0)	86,3	9493
3	A-1a (0)	83,8	9218

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa sub base del tramo San Andrés - - San Pedro de Sola (Mezcla en Volumen 3 Banco Guadalquivir y 1 Rio Sola)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.3 Módulo Resiliente de los materiales granulares capa sub base (banco Guadalquivir y Rio Sola)

Nº	TIPO DE SUELO POR LA AASTHO		LARES CAPA SUB BASE (UIVIR Y RIO SOLA) Eo (kg/cm2)
1	A-1a (0)	77,7	8547
2	A-1a (0)	74,5	8195
3	A-1a (0)	70,3	7733

Fuente: Elaboración Propia

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa base del tramo San Andrés - - San Pedro de Sola (Mezcla en Volumen 4 Rio Sola y 1 Ligante de Pantipampa)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.4 Módulo Resiliente de los materiales granulares capa base (banco Pantipampa y Rio Sola)

Nº	TIPO DE SUELO POR LA AASTHO	MATERIALES GRANULARES CAPA BASE (BANCO PANTIPAMPA Y RIO SOLA)	
		CBR (%)	Eo (kg/cm2)
1	A-1a (0)	92,6	10186
2	A-1a (0)	89,4	9834
3	A-1a (0)	88,3	9713

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa sub base del tramo Tolomosa - Pampa Redonda (70% Rio Tolomosa y 30% Banco Pampa Redonda)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.5 Módulo Resiliente de los materiales granulares capa sub base (banco Pampa Redonda y Rio Tolomosa)

Nº	TIPO DE SUELO POR LA AASTHO		LARES CAPA SUB BASE INDA Y RIO TOLOMOSA Eo (kg/cm2)
1	A-1a (0)	82	9020
2	A-1a (0)	81,6	8976
3	A-1a (0)	76,9	8459

Fuente: Elaboración Propia

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa base del tramo Tolomosa - Pampa Redonda (80% Rio Tolomosa y 20% Banco Ligante)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.6 Módulo Resiliente de los materiales granulares capa base (banco y Rio Tolomosa)

Nº	TIPO DE SUELO POR LA AASTHO		ERIALES GRANULARES CAPA BASE (BANCO Y RIO TOLOMOSA)	
	LA AASTRO	CBR (%)	Eo (kg/cm2)	
1	A-1a (0)	94,6	10406	
2	A-1a (0)	90,1	9911	
3	A-1a (0)	90,5	9955	

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa sub base del Tramo Erquiz Sud – Cruce Cadillar (Mezcla En Volumen 2 Rio Erquiz y 1 Banco Erquiz)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.7 Módulo Resiliente de los materiales granulares capa sub base (Banco Erquiz y Rio Erquiz)

Nο	TIPO DE SUELO POR LA AASTHO	MATERIALES GRANULARES CAPA SUB BASE BANCO ERQUIZ Y RIO ERQUIZ)	
		CBR (%)	Eo (kg/cm2)
1	A-1a (0)	88,1	9691
2	A-1a (0)	83	9130
3	A-1a (0)	79,5	8745

Fuente: Elaboración Propia

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa base del Tramo Erquiz Sud – Cruce Cadillar (Mezcla En Volumen 2 Rio Erquiz y 1 Banco Cruce Cadillar)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.8 Módulo Resiliente de los materiales granulares capa base (Banco Cruce Cadillar y Rio Erquiz)

Nο	TIPO DE SUELO POR LA AASTHO		NULARES CAPA BASE ILLLAR Y RIO ERQUIZ)
		CBR (%)	Eo (kg/cm2)
1	A-1a (0)	98,3	10813
2	A-1a (0)	95	10450
3	A-1a (0)	90,3	9933

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa sub base del Tramo Concepción – Chocloca – Juntas (Material de Banco Guayriguana)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.9 Módulo Resiliente de los materiales granulares capa sub base (Banco Guayriguana)

N∘	TIPO DE SUELO POR LA AASTHO	MATERIALES GRANULARES CAPA SUB BASE (BANCO GUAYRIGUANA)	
		CBR (%)	Eo (kg/cm2)
1	A-1a (0)	68,2	7502
2	A-1a (0)	66,6	7326
3	A-1a (0)	61,1	6721

Fuente: Elaboración Propia

➤ Materiales granulares que utilizó SEDECA en Pavimento Flexible, para la capa base del Tramo Concepción – Chocloca – Juntas (2 Material de Banco Guayriguana y 1 Quebrada Bateon)

CBR=%

K= 110 para suelos finos granulares

$$Eo = K * CBR$$

Cuadro 3.10 Módulo Resiliente de los materiales granulares capa base (Banco Guayriguana y Quebrada Bateon)

Nº	TIPO DE SUELO POR LA AASTHO		NULARES CAPA BASE A Y QUEBRADA BATEON)
	EXTRIBUTIO	CBR (%)	Eo (kg/cm2)
1	A-1a (0)	90,4	9944
2	A-1a (0)	88,8	9768
3	A-1a (0)	82,8	9108

3.12.2.- Deformación Permanente

La deformación permanente se lo determinado mediante el Método de Hogg Simplificado acontinuación se explicara mediante un ejemplo la manera que se determinó la deformación mediante este método el cuál es muy confiable.

DEFORMACIÓN PERMANENTE

Deformación Permanente de los Materiales Granulares que Utilizo SEDECA en Pavimento, para la Capa Sub base Y Base en el Tramo Santa Ana – Yesera.

1) Determinar El Modulo Resiliente Eo

$$Eo = k* CBR$$

Cuadro 3.11 Módulo Resiliente de los materiales granulares capa sub base y base (
Bancos Santa Ana y Yesera Norte)

Fuente: Elaboración Propia

Nº	MODULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE)	MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA - YESERA)
1	Eo	5819	9757
2	Eo	5533	9493
3	Eo	5511	9218

2) Determinando Do*R₅ En Función Del Módulo Resiliente (Eo)

Utilizando la ecuación correlación Do*R₅ versus Eo se obtendrá el valor de Do*R₅, en función del Módulo Resiliente.

 $Eo = 1091314,96(Do * R_{50})^{-0.939}$

Donde:

Eo= Módulo Resiliente (kg/cm2)

Do= Deflexión máxima (cm)

 R_{50} = Factor de longitud de curva (cm)

Despejando Do*R₅ se obtiene:

$$Do * R_5 = \left(\frac{Eo}{1091314,96}\right)^{-1/0,939}$$

No		ULARES CAPA SUB BASE ESERA NORTE)
	Eo (kg/cm2)	Do*R ₅ (0,1 cm*cm)
1	5819	263,49
2	5533	278,02
3	5511	279,20

Nō	MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA – YESERA NORTE)								
	Eo (kg/cm2)	Do*R ₅ (0,1cm*cm)							
1	9757	151,96							
2	9493	156,46							
3	9218	161,44							

Fuente: Elaboración Propia

3) Determinando El Factor De Longitud De Curva En Función De R= 70cm Y La Relación De Deflexiones, Según De Tabla Según Método De Hogg

Adoptando R= 70cm

Considerando aconsejable tomar la relación de deflexiones (Do/Dr) en un rango de valores entre (0,1 - 2 cm)

DE TABLA

Adoptando el valor de la relación de deflexiones Do/Dr = 1,26 se obtendrá de tabla que el valor de R_5 = 146,5 cm

4) Calculando Deformación Permanente De Los Materiales Granulares

Según tabla el valor del factor de longitud de curva es:

$R_5 = 147 \text{ cm}$

Despejando la deformación Do

$$Do = \frac{263,49}{R_5}$$
 0,180 cm

DEFORMACIÓN PERMANENTE

Nº		GRANULARES CAPA SUNCO YESERA NORTE)	JB BASE
	Eo (kg/cm2)	Do*R ₅ (0,1 cm*cm)	Do (cm)
1	5819	263,49	0,180
2	5533	278,02	0,190
3	5511	279,20	0,191

Fuente: Elaboración Propia

Nō		ES GRANULARES CAP ANTA ANA – YESERA	
	Eo (kg/cm2)	Do*R ₅ (0,1cm*cm)	Do (cm)
1	9757	151,96	0,104
2	9493	156,46	0,107
3	9218	161,44	0,110

3.13.- ANÁLISIS DE LOS RESULTADOS

3.13.1.- ANÁLISIS GRANULOMÉTRICO

Para un el analisis granulometrico se considero las granulometrias que deben cumplir según especificaciones tecnicas de los proyectos de SEDECA, tanto para la capa subbase y base las cuales son las siguientes:

La sub-base será efectuada con materiales que cumplan con una de las siguientes granulometrías:

Tabla 3.1 Gradaciones para Materiales de Sub-Base

Porcentajes por peso del material que pasa por tamices con malla cuadrada según

AASHTO T-11 Y T-27.

TI	PO DE GRADACIO	N
A	В	C
100		
-	100	
-	-	100
-	-	-
-	-	-
-	-	-
15-45	20-50	25-55
-	-	-
-	-	-
0-10	0-10	0-10
	A 100 15-45	100 - 100

FUENTE: MANUAL TECNICO ABC -VOLUMEN ESPECIFICACIONES TECNICAS

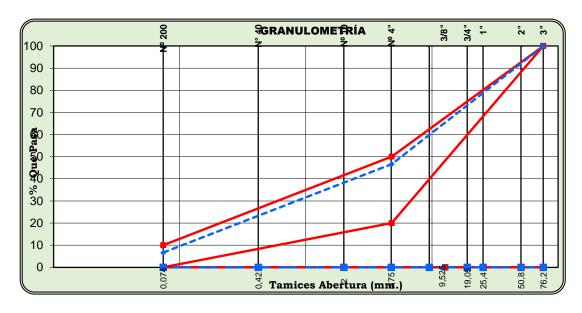
La base será efectuada con materiales que cumplan con una de las siguientes granulometrías:

TABLA 3.2 Gradaciones para Materiales de Capa Base

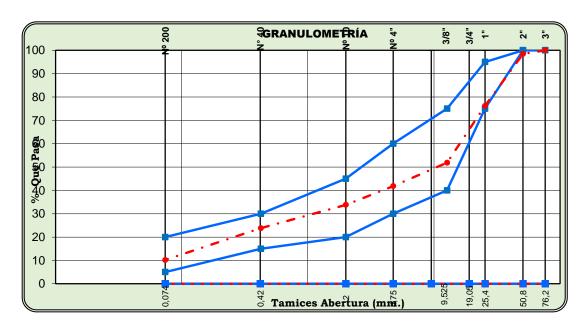
Porcentajes por peso del material que pasa por tamices con malla cuadrada según AASHTO T-11 y T-27:

	TIPO DE GRADACION												
TAMIZ	A	В	С	D									
2"	100	100											
1"	-	75 - 95	100	100									
3/8"	30 - 65	40 - 75	50 - 85	50 - 80									
No. 4	25 - 55	30 - 60	35 - 65	35 - 65									
No. 10	15 - 40	20 - 45	2 - 50	25 - 30									
No. 40	8 - 20	15 - 30	15 - 30	10 - 30									
No. 200	2 - 8	5 - 15	5 - 15	0 - 15									

FUENTE: MANUAL TECNICO ABC -VOLUMEN ESPECIFICACIONES TECNICAS


Se hara el análisis de cada material o muestra que fue parte de la investigación:

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Santa Ana – Yesera


Cuadro 3.12 Análisis granulométrico límites y clasificación de bancos Santa Ana y Yesera (capa subbase y base)

Estructura				G	Límites		Clasif.							
ESTIUCTUIA	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	Nº200	L.l.	L.p.	I.P.	AASHTO	S.U.C.S.
SUB BASE	100,00	91,80	76,32	72,00	59,79	46,67	34,00	21,25	6,64	17,25	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	95,39	73,91	68,51	56,36	46,25	36,33	23,95	8,19	18,05	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	92,76	76,35	71,54	59,05	46,44	37,16	22,52	8,56	17,80	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	98,44	76,18	69,96	51,83	41,81	33,80	23,82	10,19	18,60	N.P.	0	A - 1a	GP GC
CAPA BASE	100,00	92,81	77,14	73,72	60,29	49,79	39,99	28,04	11,02	18,00	N.P.	0	A - 1a	GP GC
CAPA BASE	100,00	95,06	76,70	73,29	60,08	49,56	40,12	26,56	10,33	17,60	N.P.	0	A - 1a	GP GM

Gráfica 3.1 Gráfica de la curva granulométrica de la capa subbase de materiales que se utilizó en el tramo Santa Ana - Yesera

Gráfica 3.2 Gráfica de la curva granulométrica de la capa base de materiales que se utilizó en el tramo Santa Ana - Yesera

Observaciones:

 Los materiales granulares con los que se trabajo, fueron los que utilizó SEDECA para la capa subbase el cual fue un material de un banco del lugar de Santa Ana al hacer la granulometría en laboratorio se lo realizo tres ensayos para poder tener una mejor clasificacion.

Por lo que se determina que del 100% del total de la muestra el 91.80% pasa el tamiz 2", obteniendo como resultado que 46,67 pasa el tamiz Nº4, esto nos quiere determinar que el suelo tiene mas porcentaje de material granular, que fino, para su mejor clasificacion se debe tambien realizar los limites del suelo por lo cual, el material tiene limite liquido y no tiene limite plastico según resultados, ya que el suelo es un A - 1a(0).

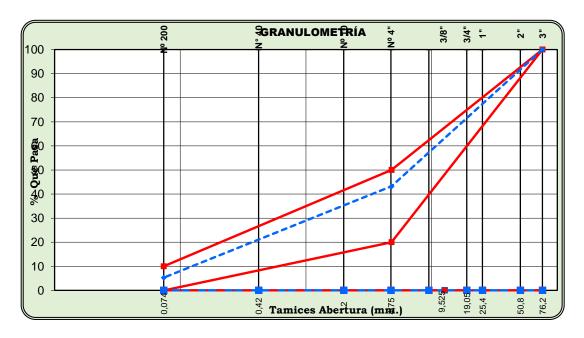
El material que fue parte de la investigación fue utilizado para la capa subbase y este cumple según norma ya que su granulometria entra dentro de la faja establecida según especificaciones del proyecto.

Según la norma AASHTO el material es un A-1a y según la clasificacion unificada el material es una grava bien graduada con limo con grava GW GM.

• Los materiales con los que se trabajo, fueron los que utilizo sedeca para la capa base de este tramo el cual fueron materiales de banco de Santa Ana y Yesera, en donde en laboratorio se hizo tre granulometrias y se puede observar que el 98,44% pasa el tamiz 2" y se pasa un 41,81% en el tamiz Nª4 por lo cual se observa la presencia de mayor cantidad de material granular en la muestra la cuales la mezcla de ambos bancos ya mencionados, al igual para una mejor clasificacion del suelo se debe realizar los limites liquido y plastico en donde se presencia que en material en no plastico, es decir no tiene plasticidad.

Según especificaciones de proyecto el material entra dentro de las fajas establecidas para la capa base asi tambien cumpliendo el indice de plasticidad el cual no debe ser mayor al 6% y según resultados cumple, ya qu el material no tiene indice de plasticidad.

Segun la clasificacion AASHTO el material es un A-1a(0).


Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.13 Análisis granulométrico límites y clasificación de (mezcla Río Sola y banco de Guadalquivir para la subbase – río sola y banco Pantipampa para base)

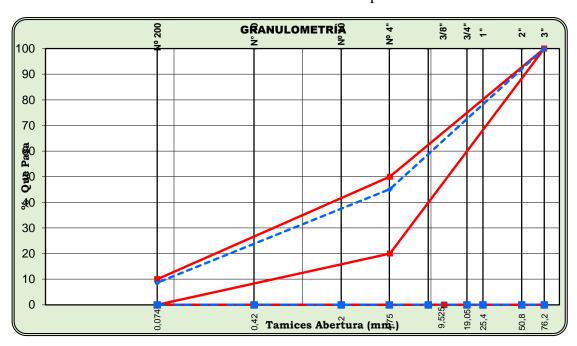
Estructura				G	ranulomet	ría					Límites	Clasif.		
Estructura	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	N°200	Ll.	L.p.	LP.	AASHTO	S.U.C.S.
SUB BASE	100,00	98,49	89,79	84,89	67,88	43,22	34,91	16,23	5,29	16,03	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	99,00	86,00	84,89	74,52	43,48	34,84	15,40	5,67	19,75	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	98,18	89,10	83,92	66,50	42,94	33,93	21,40	7,73	15,30	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	98,41	80,28	72,29	55,40	43,82	33,00	22,37	10,66	18,53	N.P.	0	A - 1a	CP CC
CAPA BASE	100,00	100,00	76,92	70,76	55,77	43,73	34,80	18,29	10,00	17,55	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	97,25	76,07	70,34	55,01	40,77	32,58	17,55	10,04	18,14	N.P.	0	A - 1a	GP GM

Fuente: Elaboración Propia

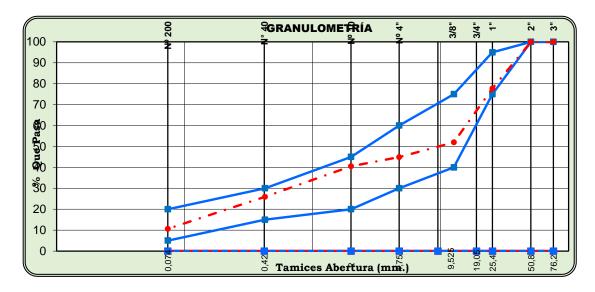
Gráfica 3.3 Gráfica de la curva granulométrica de la capa subbase de materiales que se utilizó en el tramo San Andrés – San Pedro De Sola

Gráfica 3.4 Gráfica de la curva granulométrica de la capa base de materiales que se utilizó en el tramo San Andrés – San Pedro De Sola

Observaciones:


- Se hizo tres ensayos por muestra para un mejor estudio del material en la capa subbase se observa que la granulometría del material cumple según especificaciones es decir que entra a la faja que se tiene establecida según especificaciones y en cuantos a los límites se puede observar que la mezcla del material no presenta límite plástico por lo cual es un material NP, en donde según norma AASHTO, el material para la subbase puede ser no plastico o tener un indice de plasticidad minimo de 2%.
- Según la granulometria que se obtuvo del material que se utilizo para la capa base, este cumple las especificaciones ya que el material entra a la faja establecida y se observa que presenta un indice de plasticidad el cual es aceptable según norma AASHTO para la capa base ya que permite que el indice de plasticidad sea menor al 6 %.

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Tolomosa - Pampa Redonda


Cuadro 3.14 Análisis granulométrico límites y clasificación de (mezcla banco de Pampa Redonda y Río Tolomosa para subbase – Río Tolomosa y banco para base)

Estructura				G	ranulometi	ría				Límites			Clasif.	
Estructura	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	Nº200	L.l.	L.p.	I.P.	AASHTO	S.U.C.S.
SUB BASE	100,00	97,78	75,19	67,06	52,81	45,18	40,42	27,45	8,59	13,09	N.P.	0	A - 1a	GP GM
SUB BASE	100,00	98,10	75,19	67,20	52,90	45,21	36,36	18,77	6,85	16,54	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	98,00	79,16	67,10	52,80	45,25	35,96	17,96	7,64	14,19	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	100,00	77,69	71,99	51,95	44,90	40,54	25,91	10,62	16,60	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	100,00	75,18	66,82	53,93	45,27	40,07	23,21	13,01	16,22	N.P.	0	A - 1a	GM
CAPA BASE	100,00	100,00	74,14	65,23	51,75	45,04	39,42	26,73	12,57	17,68	N.P.	0	A - 1a	GM

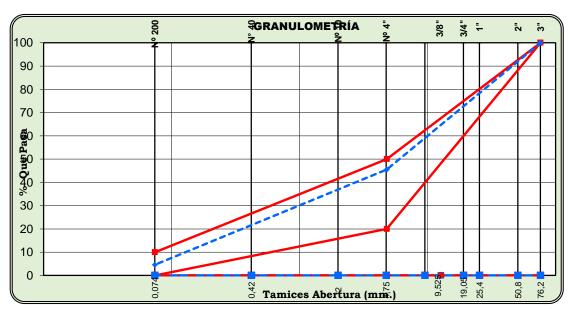
Gráfica 3.5 Gráfica de la curva granulométrica de la capa subbase de materiales que se utilizó en el tramo Tolomosa – Pampa Redonda

Gráfica 3.6 Gráfica de la curva granulométrica de la capa base de materiales que se utilizó en el tramo Tolomosa – Pampa Redonda

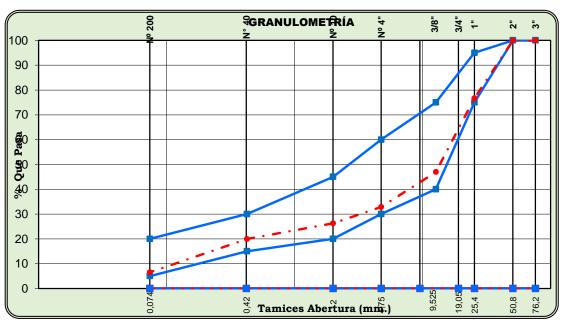
Fuente: Elaboración Propia

Observaciones:

- Se hizo tres ensayos por muestra para un mejor estudio del material en la capa subbase se observa que la granulometria del material cumple según especificaciones es decir que entra a la faja que se tiene establecida según especificaciones y en cuantos a los limites se puede observar que la mezcla del material no presenta limite plastico por lo cual es un material NP, en donde según norma AASHTO, el material para la subbase puede ser no plastico o tener un indice de plasticidad minimo de 2%.
- Según la granulometria que se obtuvo del material que se utilizo para la capa base, este cumple las especificaciones ya que el material entra a la faja establecida y se observa que presenta un indice de plasticidad el cual es aceptable según norma AASHTO para la capa base ya que permite que el indice de plasticidad sea menor al 6 % dandonos un indice de plasticidad del 0%.


Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Erquiz Sud - Cruce Cadillar

Cuadro 3.15 Análisis granulométrico límites y clasificación de (mezcla material Río Erquiz y banco de Erquiz para la subbase – Río Erquiz y banco de Cruce Cadillar para la base)


Ecturatura				G	ranulomet	ría					Límites	Clasif.		
Estructura	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	N°200	L.l.	L.p.	I.P.	AASHTO	S.U.C.S.
SUB BASE	100,00	88,34	84,63	74,67	61,03	45,55	37,01	12,95	4,57	16,43	N.P.	0	A - 1a	GW
SUB BASE	100,00	91,89	84,13	75,07	63,13	49,03	40,08	18,96	7,29	18,80	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	91,01	85,39	76,17	65,73	47,03	39,72	25,14	8,01	18,43	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	100,00	76,66	58,09	46,93	32,83	26,26	19,95	6,54	15,83	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	100,00	76,50	62,26	48,46	42,15	34,45	25,51	10,60	12,70	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	100,00	77,93	64,68	50,64	42,76	35,10	25,50	9,53	16,29	N.P.	0	A - 1a	GW GM

Fuente: Elaboración Propia

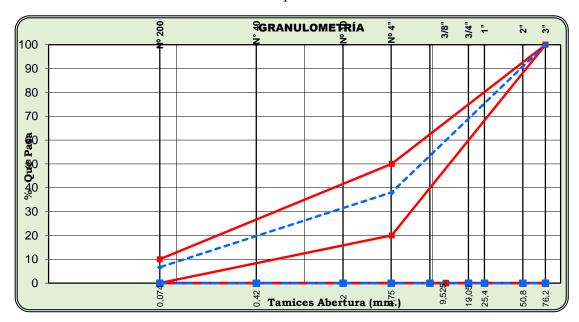
Gráfica 3.7 Gráfica de la curva granulométrica de la capa base de materiales que se utilizó en el tramo Erquiz Sud – Cruce Cadillar

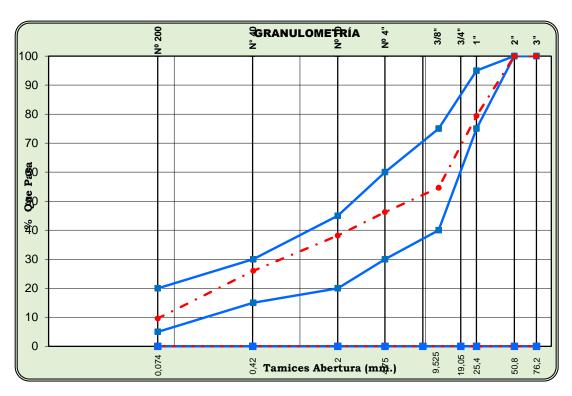
Gráfica 3.8 Gráfica de la curva granulométrica de la capa subbase de materiales que se utilizó en el tramo Erquiz Sud – Cruce Cadillar

Observaciones:

- Se hizo tres ensayos por muestra para un mejor estudio del material en la capa subbase se observa que la granulometria del material cumple según especificaciones es decir que entra a la faja que se tiene establecida según especificaciones y en cuantos a los limites se puede observar que la mezcla del material no presenta limite plastico por lo cual es un material NP, en donde según norma AASHTO el material para la subbase puede ser no plastico o tener un indice de plasticidad minimo de 2%.
- Según la granulometria que se obtuvo del material que se utilizo para la capa base, este cumple las especificaciones ya que el material entra a la faja establecida y se observa que el material no presenta un indice de plasticidad dedido a que no existe limite plastico, es por esto que el material es un NP.

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Concepción - Chocloca – Juntas


Cuadro 3.16 Análisis granulométrico límites y clasificación de (material de banco de Guayriguana para la subbase - mezcla de material banco Guayriguana y Quebrada


Bateon para la base)

Estructura				G	ranulometi	ría					Límites	Clasif.		
Estructura	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	Nº200	L.I.	L.p.	I.P.	AASHTO	S.U.C.S.
SUB BASE	100,00	100,00	83,89	73,11	56,33	38,06	30,28	16,38	6,64	16,16	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	100,00	83,70	73,20	56,38	38,10	30,54	16,06	7,00	18,19	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	100,00	82,93	73,13	55,94	37,53	29,74	14,71	5,54	15,98	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	100,00	79,39	69,67	54,63	46,23	38,17	26,00	9,60	16,49	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	100,00	79,42	69,50	54,60	46,15	37,09	25,39	10,11	16,89	N.P.	0	A - 1a	GP GM
CAPA BASE	100,00	100,00	79,40	69,43	54,50	46,20	38,18	25,46	9,57	17,15	N.P.	0	A - 1a	GW GM

Fuente: Elaboración Propia

Gráfica 3.9 Gráfica de la curva granulométrica de la capa subbase de materiales que se utilizó en el tramo Erquiz Sud – Cruce Cadillar

Gráfica 3.10 Gráfica de la curva granulométrica de la capa base de materiales que se utilizó en el tramo Erquiz Sud – Cruce Cadillar

- Según la granulometría que se obtuvo se observa que el material es un material
 A-1 a según la clasificación de la AASHTO y para la clasificación unificada
 es un material grava bien graduada con limo y arena para material de la subbase
 y el suelo no tiene plasticidad.
- El material para la capa base es unA-1 a tiene indicé de plasticidad de 3% lo cual según especificaciones y norma es aceptable ya que está establecido que el índice no debe ser mayor al 6%.

3.13.2.- ANÁLISIS DE DESGATE DE LOS ÁNGELES

Los resultados que tienen según ensayos que se hizo en laboratorio son:

Cuadro 3.17 Desgaste del materiales granulares de capa base y subbase de pavimentos

MATERIAL	DESGASTE (%)
Material de banco de Yesera Norte que utilizo SEDECA para la capa subbase del tramo de Santa Ana - Yesera	Desgaste (%)= 36,4
Material mezclado de banco de Santa Ana y Yesera que utilizo SEDECA, para la capa base del tramo de Santa Ana – Yesera	Desgaste (%)= 35,8
Material mezclado entre material de Rio Sola y material de banco Gudalquivir para la capa subbase del tramo San Andres - San Pedro de Sola	Desgaste (%)= 33,32
Material mezclado del Rio Sola y material de banco de Pantipampa para la capa base del tramo San Andres - San Pedro de Sola	Desgaste (%)= 21,76
Material mezclado del Rio Erquiz y de un banco de Erquiz para la capa subbase que se utilizo en el tramo de Erquiz sud – Cruce Cadillar	Desgaste (%)= 21,28
Material mezclado del Rio Erquiz y de un banco de Erquiz para la capa subbase que se utilizo en el tramo de Erquiz sud – Cruce Cadillar	Desgaste (%)= 22,98
Material mezclado del Rio Tolomosa y banco de Pampa Redonda para la capa subbase del tramo de Tolomosa – Pampa Redonda	Desgaste (%)= 24,54
Material mezclado del Rio Tolomosa y banco para la capa subbase del tramo de Tolomosa – Pampa Redonda	Desgaste (%)= 25
Material de banco de Guayriguana para la capa subbase del tramo Concepcion – Choclocla – Juntas	Desgaste (%)= 36,02
Material mezclado de banco de Guayriguana y Quebrada Bateon para la capa subbase del tramo Concepcion – Choclocla – Juntas	Desgaste (%)= 34,04

Observaciones:

Los resultados de los ensayos que se hizo de desgaste de los ángeles se puede observar que todos los material cumplen el desgaste ya que según norma el desgaste del material granular para la capa base y subbase tiene que ser menor a 40% y según resultados que se obtuvieron se ve que todos los materiales tienen una buena resistencia, pero el material que más resistencia tiene según este ensayo son los materiales que se utilizaron para la capa base y subbase del tramo de Erquiz y Cruce Cadillar asi tambien el tramo de Tolomosa sin obviar los demas tramos.

3.13.3.- ANÁLISIS DE LA COMPACTACIÓN T-180

De los ensayos que se hicieron de compactacion se tiene los siguientes resultados :

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Santa Ana - Yesera

Cuadro 3.18 Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase Tramo Santa Ana -Yesera

	Proctor			
ESTRUCTURA	D.max.(kg/m3)	H.op.(%)		
Capa subbase	2210	5,3		
Capa subbase	2167	5,9		
Capa subbase	2188	5,7		
Capa base	2187	4,0		
Capa base	2213	3,6		
Capa base	2225	4,0		

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.19 Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase Tramo San Andrés – San Pedro de Sola

ESTRUCTURA	Proct	or
	D.max.(kg/m3)	H.op.(%)
Capa subbase	2248	4,9
Capa subbase	2285	4,5
Capa subbase	2268	4,8
Capa base	2306	4,6
Capa base	2309	5,2
Capa base	2308	5,0

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Tolomosa - Pampa Redonda

Cuadro 3.20 Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase Tramo Tolomosa - Pampa Redonda

ESTRUCTURA	Proc	tor
	D.max.(kg/m3)	H.op.(%)
Capa subbase	2278	5,0
Capa subbase	2284	5,2
Capa subbase	2264	5,4
Capa base	2260	5,3
Capa base	2271	5,7
Capa base	2273	5,2

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Erquiz Sud - Cruce Cadillar

Cuadro 3.21 Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase Tramo Erquiz Sud - Cruce Cadillar

ESTRUCTURA	Proctor		
	D.max.(kg/m3)	H.op.(%)	
Capa subbase	2188	5,3	
Capa subbase	2176	6,2	
Capa subbase	2170	6,3	
Capa base	2238	4,7	
Capa base	2205	6,1	
Capa base	1784	6,6	

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Concepción - Chocloca - Juntas

Cuadro 3.22 Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase Tramo Concepción – Chocloca - Juntas

ESTRUCTURA	Proctor			
	D.max (kg/m3).	H.op.(%)		
Capa subbase	2135	5,0		
Capa subbase	2293	5,1		
Capa subbase	2298	4,9		
Capa base	2295	4,9		
Capa base	2291	4,7		
Capa base	2300	4,7		

Observación: los rangos de densidad y humedad optima son aceptables ya que es un suelo granular en donde la humedades varia de 4-6 %, tambien se puede observa que no existe gran dieferencia de resultados en los diferentes tipo de suelos.

3.13.4.- ANÁLISIS DE RELACIÓN SOPORTE DE CALIFORNIA CBR

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Santa Ana - Yesera

Cuadro 3.23 Resultados de CBR de Materiales de Capa Base y Subbase Tramo Santa Ana - Yesera

ESTRUCTURA		Exp. %			
ESTRUCTURA	100%	98%	95%	90%	Елр. 70
Capa sub base	52,92 %	45,46 %	34,27 %	15,61 %	0,47
Capa sub base	50,33 %	44,04 %	34,60 %	18,88 %	0,38
Capa sub base	50,14 %	43,74 %	34,14 %	18,14 %	0,62
Capa base	88,70 %	75,34 %	55,30 %	21,89 %	0,07
Capa base	86,27 %	72,64 %	52,19 %	18,11 %	0,04
Capa base	83,81 %	70,63 %	50,86 %	17,91 %	0,06

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.24 Resultados de CBR Materiales de Capa Base y Subbase Tramo San Andrés – San Pedro De Sola

ESTRUCTURA CBR					Exp. %
ESTRUCTURA	100%	98%	95%	90%	12Ap. 70
Capa sub base	77,73 %	70,30 %	59,15 %	40,56 %	0
Capa sub base	74,48 %	67,85 %	57,91 %	41,34 %	0
Capa sub base	70,26 %	62,62 %	51,17 %	32,08 %	0
Capa base	92,59 %	81,61 %	65,14 %	37,69 %	0,07
Capa base	89,37 %	78,16 %	61,34 %	33,32 %	0,10
Capa base	88,31 %	78,03 %	62,60 %	36,89 %	0,06

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Tolomosa - Pampa Redonda

Cuadro 3.25 Resultados de CBR Materiales de Capa Base y Subbase Tramo Tolomosa - Pampa Redonda

ESTRUCTURA		Ewn 0/			
ESTRUCTURA	100%	98%	95%	90%	Exp.%
Capa sub base	81,96 %	73,48 %	60,76 %	39,57 %	0,05
Capa sub base	81,56 %	74,63 %	64,25 %	46,94 %	0,07
Capa sub base	76,88 %	72,10 %	64,93 %	52,99 %	0,10
Capa base	94,61 %	85,14 %	70,93 %	47,26 %	0,04
Capa base	90,12 %	81,50 %	68,56 %	47,01 %	0,07
Capa base	90,48 %	80,63 %	65,85 %	41,22 %	0,06

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Erquiz Sud - Cruce Cadillar

Cuadro 3.26 Resultados de CBR Materiales de Capa Base y Subbase Tramo Erquiz Sud – Cruce Cadillar

ESTRUCTURA	CBR				
ESTRUCTURA	100%	98%	95%	90%	Exp.%
Capa sub base	88,07 %	78,76 %	64,80 %	41,53 %	0
Capa sub base	82,96 %	73,89 %	60,28 %	37,59 %	0
Capa sub base	79,49 %	70,83 %	57,85 %	36,20 %	0,02
Capa base	98,34 %	87,85 %	72,12 %	45,90 %	0,06
Capa base	94,96 %	88,19 %	78,03 %	61,09 %	0,03
Capa base	90,28 %	82,00 %	69,58 %	48,88 %	0,07

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Concepción - Chocloca - Juntas

Cuadro 3.27 Resultados de CBR Materiales de Capa Base y Subbase Tramo

Concepción – Chocloca – Juntas

ESTRUCTURA		Exp.%			
ESTRUCTURA	100%	98%	95%	90%	Ехр. 70
Capa sub base	68,19 %	61,90 %	52,45 %	36,72 %	0,03
Capa sub base	66,64 %	59,26 %	48,18 %	29,72 %	0,09
Capa sub base	61,08 %	54,73 %	45,19 %	29,30 %	0,10
Capa base	90,41 %	79,78 %	63,83 %	37,26 %	0,08
Capa base	88,77 %	77,89 %	61,57 %	34,37 %	0,11
Capa base	82,83 %	72,91 %	58,04 %	33,25 %	0,09

Fuente: Elaboración Propia

Observaciones:

Se observa que mediante los cálculos obtenidos, que los CBR obtenidos al 100% de cada muestra cumple según especificaciones ya que para capa subbase el material tiene que tener un CBR mayor al 40% y para capa base el CBR tiene que ser mayor al 80%, por lo tanto se ve que cumple. Otro aspecto que tambien se analiza es que no existe expasion elevada sino al contrario lo cual es bueno ya que el material tanto de capa subbase, como capa case no debe tener expansion mayor al 2% ya que siendo mayor la expansion provocaria que el pavimento sufra rapido de baches y demas degradacion.

Tambien se puede observa que los materiales que se utilizaron de banco son los que menor CBR tienen y los materiales que fueron mezclados de río es decir de canto rodado y banco tiene una mayor capacidad de soporte CBR.

3.13.5.- ANÁLISIS DEL MÓDULO RESILIENTE

Los resultados que se obtuvieron mediante una correlación con el CBR de cada suelo o muestra son los siguientes :

Materiales Granulares que Utilizó SEDECA, en Pavimento Flexible Para las Capas Sub base y Base en el Tramo Santa Ana – Yesera

Cuadro 3.28 Resultados De CBR y Eo de Materiales Granulares de las Capas Subbase y Base del Tramo Santa Ana - Yesera

Nº	CBR SUBBASE (BANCO YESERA NORTE)	CBR BASE (BANCO SANTA ANA Y YESERA)	MÓDULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE	MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA - YESERA)
1	52,92 %	88,70 %	Eo	5819	9757
2	50,33 %	86,27 %	Eo	5533	9493
3	50,14 %	83,81 %	Eo	5511	9218

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA, en Pavimento Flexible Para las Capas Sub base y Base en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.29 Resultados De CBR y Eo de Materiales Granulares de las Capas Sub base y Base del Tramo San Andrés – San Pedro De Sola

Nº	CBR SUBBASE (BANCO GUADALQUIVIR Y RIO SOLA)	CBR BASE (BANCO PANTIPAMPA Y RIO SOLA)	MÓDULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO GUADALQUIVIR Y RÍO SOLA)	MATERIALES GRANULARES CAPA BASE (BANCO PANTIPAMPA Y RÍO SOLA)
1	77,73 %	92,59 %	Eo	8547	10186
2	74,48 %	89,37 %	Eo	8195	9834
3	70,26 %	88,31 %	Eo	7733	9713

Materiales Granulares que Utilizó SEDECA, en Pavimento Flexible Para las Capas Sub base y Base en el Tramo Tolomosa - Pampa Redonda.

Cuadro 3.30 Resultados De CBR y Eo de Materiales Granulares de las Capas Sub base y Base del Tramo Tolomosa - Pampa Redonda

Nº	CBR SUBBASE (BANCO P.R. Y RIO TOLOMOSA)	CBR BASE (BANCO Y RIO TOLOMOSA)	MÓDULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO Y RÍO TOLOMOSA)	MATERIALES GRANULARES CAPA BASE (BANCO Y RÍO TOLOMOSA)
1	81,96 %	94,61 %	Eo	9020	10406
2	81,56 %	90,12 %	Eo	8976	9911
3	76,88 %	90,48 %	Ео	8459	9955

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA, en Pavimento Flexible Para las Capas Sub base y Base en el Tramo Erquiz Sud - Cruce Cadillar.

Cuadro 3.31 Resultados De CBR y Eo de Materiales Granulares de las Capas Subbase y Base del Tramo Erquiz Sud – Cruce Cadillar

Νº	CBR SUBBASE (BANCO ERQUIZ Y RIO ERQUIZ)	CBR BASE (BANCO CRUCE CADILLAR Y RIO ERQUIZ)	MÓDULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO ERQUIZ Y RÍO ERQUIZ)	MATERIALES GRANULARES CAPA BASE (BANCO CRUCE CADILLLAR Y RÍO ERQUIZ)
1	88,07 %	98,34 %	Ео	9691	10813
2	82,96 %	94,96 %	Ео	9130	10450
3	79,49 %	90,28 %	Eo	8745	9933

Materiales Granulares que Utilizó SEDECA, en Pavimento Flexible Para las Capas Sub base y Base en el Tramo Concepción - Chocloca – Juntas

Cuadro 3.32 Resultados De CBR y Eo de Materiales Granulares de las Capas Subbase y Base del Tramo Concepción – Chocloca - Juntas

Νº	CBR SUBBASE (BANCO GUAYRIGUANA)	CBR BASE (BANCO GUAYRIGUANA Y QUEBRADA BATEON)	MÓDULO RESILIENTE Eo (kg/cm2)	MATERIALES GRANULARES CAPA SUB BASE (BANCO GUAYRIGUANA)	MATERIALES GRANULARES CAPA BASE (BANCO GUAYRIGUANA Y QUEBRADA BATEON)
1	68,19 %	90,41 %	Eo	7502	9944
2	66,64 %	88,77 %	Eo	7326	9768
3	61,08 %	82,83 %	Eo	3421	9108

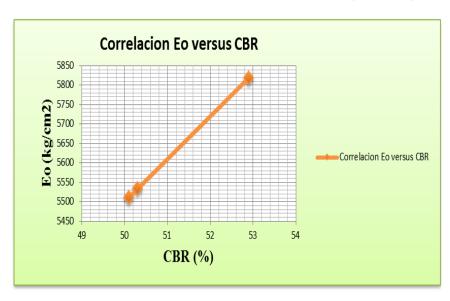
Fuente: Elaboración Propia

Observaciones:

Realizando la correlacion del CBR para determinar el modulo resiliente Eo. Se puede observar mediante los resultados que los CBR de los suelos que formaron parte de la investigacion son valores altos ya que son materiales que se utilizaron para capa base y subbase, debido a que el CBR es elevado se observa asi tambien un mayor módulo de resiliencia.

En donde se nota que existe menor modulo de resiliencia, es donde existe menor CBR, en este caso sería en los materiales que se utilizaron para las capas subbase y base los cuales fueron materiales granulares de bancos como; el banco de Santa Ana y Yesera los cuales fueron materiales granulares utilizados en el tramo Santa Ana - Yesera y el banco de Guayriguana material que fue utilizado en el tramo de Concepcion - Chocloca , estos bancos tienen una menor capacidad de soporte (CBR).

CORRELACIÓN Eo VERSUS CBR

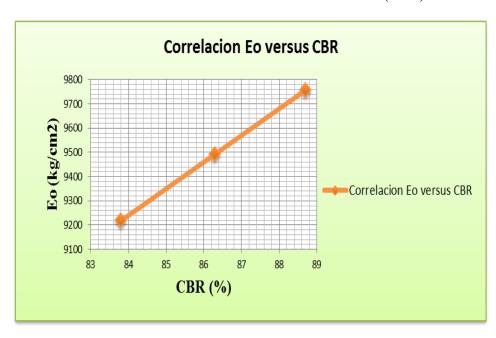

Materiales Granulares que Utilizó SEDECA, en el Tramo Santa Ana – Yesera

Cuadro 3.33 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo Santa Ana – Yesera (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE)			
Eo (kg/cm2)	CBR (%)		
5819	52,9		
5533	50,3		
5511	50,1		

Fuente: Elaboración Propia

Grafica 3.11 Correlación entre Eo versus CBR (Sub base)



Cuadro 3.34 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Santa Ana – Yesera (Base)

MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA - YESERA)			
Eo (kg/cm2)	CBR (%)		
9757	88,7		
9493	86,3		
9218	83,8		

Grafica 3.12 Correlación entre Eo versus CBR (Base)

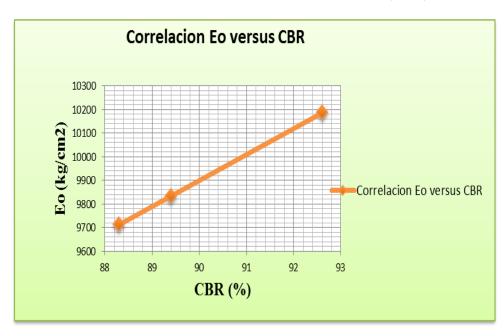
Materiales Granulares que Utilizó SEDECA, en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.35 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo San Andrés - San Pedro de Sola (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO GUADALQUIVIR Y RÍO SOLA)			
Eo (kg/cm2)	CBR (%)		
8547	77,7		
8195	74,5		
7133	70,3		

Fuente: Elaboración Propia

Grafica 3.13 Correlación entre Eo versus CBR (Sub base)



Cuadro 3.36 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

San Andrés – San Pedro de Sola (Base)

MATERIALES GRANULARES CAPA BASE (BANCO PANTIPAMPA Y RÍO SOLA)		
Eo (kg/cm2)	CBR (%)	
10186	92,6	
9834	89,4	
9713	88,3	

Grafica 3.14 Correlación entre Eo versus CBR (Base)

Materiales Granulares que Utilizó SEDECA, en el Tramo Tolomosa - Pampa Redonda

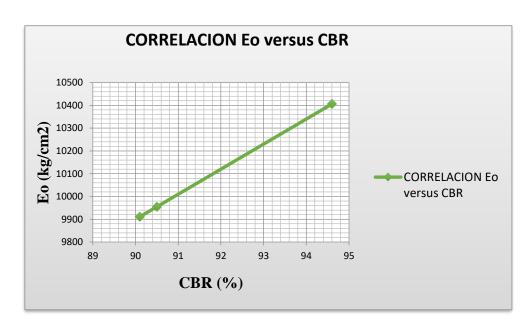

Cuadro 3.37 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Tolomosa – Pampa Redonda (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO Y RÍO TOLOMOSA)		
Eo (kg/cm2)	CBR (%)	
9020	82	
8976	81,6	
8459	76,9	

Fuente: Elaboración Propia

Grafica 3.15 Correlación entre Eo versus CBR (Sub base)


Cuadro 3.38 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

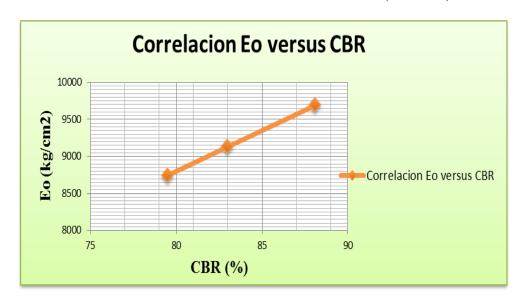
Tolomosa – Pampa Redonda (Base)

MATERIALES GRANULARES CAPA BASE (BANCO Y RÍO TOLOMOSA)		
Eo (kg/cm2)	CBR (%)	
10406	94,6	
9955	90,5	
9911	90,1	

Fuente: Elaboración Propia

Grafica 3.16 Correlación entre Eo versus CBR (Base)

Materiales Granulares que Utilizó SEDECA, en el Tramo Erquiz Sud - Cruce Cadillar


Cuadro 3.39 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Erquiz Sud – Cruce Cadillar (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO CRUCE CADILLAR Y RÍO ERQUIZ)		
Eo (kg/cm2)	CBR (%)	
9691	88,1	
9130	83	
8745	79,5	

Fuente: Elaboración Propia

Grafica 3.17 Correlación entre Eo versus CBR (Sub base)

Cuadro 3.40 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Erquiz Sud - Cruce Cadillar (Base)

MATERIALES GRANULARES CAPA BASE (BANCO CRUCE CADILLLAR Y RÍO ERQUIZ)			
Eo (kg/cm2)	CBR (%)		
10813	98,3		
10450	95		
9933	90,3		

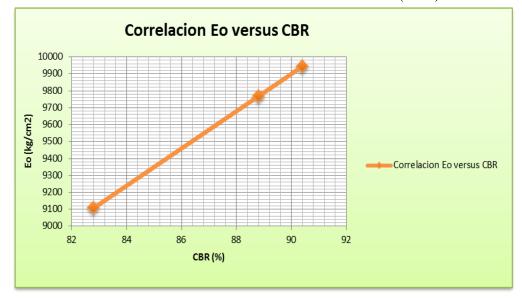
Grafica 3.18 Correlación entre Eo versus CBR (Base)

Materiales Granulares que Utilizó SEDECA, en el Tramo Concepción - Chocloca - Juntas

Cuadro 3.41 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Concepción – Chocloca - Juntas (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO GUAYRIGUANA)	
Eo (kg/cm2)	CBR (%)
7502	68,2
7326	66,6
6721	61,1


Grafica 3.19 Correlación entre Eo versus CBR (Sub base)

Cuadro 3.42 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo

Concepción - Chocloca - Juntas (Base)

MATERIALES GRANULARES CAPA BASE (BANCO GUAYRIGUANA Y QUEBRADA BATEON)		
Eo (kg/cm2)	CBR (%)	
9944	90,4	
9768	88,8	
9108	82,8	

Grafica 3.20 Correlación entre Eo versus CBR (Base)

Observaciones:

En la gráficas se puede observar que cuanto mayor es el valor del CBR de los materiales granulares utilizados por SEDECA para la capa sub base como base del pavimento, el modulo resiliente también será mayor esto se debe a que el CBR es directamente proporcional al modulo resiliente (Eo).

3.13.6.- ANÁLISIS DE LA DEFORMACIÓN PERMANENTE

Mediante el Método Hogg Simplificado se determinó la deformación en el cual considera el médulo de resiliencia para su calculo, como tambien otros factores, acontinuación se tiene la tabla de resultados de los materiales que son parte de la investigacion.

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Santa Ana – Yesera

Cuadro 3.43 Resultados deformación (Do) de los Materiales Granulares Capa Subbase Tramo Santa Ana – Yesera

Nº	MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE)		
	Eo (kg/cm2)	Do*R₅(0,1 cm*cm)	Do (cm)
1	5819	263,493	0,180
2	5533	278,021	0,190
3	5511	279,204	0,191

Cuadro 3.44 Resultados deformación (Do) de los Materiales Granulares Capa Base

Tramo Santa Ana - Yesera

Nº	MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA - YESERA)		
	Eo (kg/cm2)	Do*R₅(0,1cm*cm)	Do (cm)
1	9757	151,956	0,104
2	9493	156,461	0,107
3	9218	161,436	0,110

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.45 Resultados deformación (Do) de los Materiales Granulares Capa Sub base Tramo San Andrés – San Pedro de Sola

Nº	MATERIALES GRANULARES CAPA SUB BASE (BANCO GUADALQUIVIR Y RÍO SOLA)		
	Eo (kg/cm2)	Do*R₅(0,1 cm*cm)	Do (cm)
1	8547	174,967	0,119

2	8195	182,982	0,125
3	7733	194,646	0,133

Cuadro 3.46 Resultados deformación (Do) de los Materiales Granulares Capa Base

Tramo San Andrés – San Pedro De Sola

	MATERIALES GRANULARES CAPA BASE (BANCO PANTIPAMPA Y RÍO SOLA)		
Nº	Eo (kg/cm2)	Do*R₅(0,1cm*cm)	Do (cm)
1	10186	145,150	0,099
2	9834	150,689	0,103
3	9713	152,689	0,104

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Tolomosa - Pampa Redonda

Cuadro 3.47 Resultados deformación (Do) de los Materiales Granulares Capa Sub base Tramo Tolomosa – Pampa Redonda

Nº	MATERIALES GRANULARES CAPA SUB BASE (BANCO PAMPA REDONDA Y RÍO TOLOMOSA)		
	Eo (kg/cm2)	Do*R₅(0,1 cm*cm)	Do (cm)
1	9020	165,213	0,113

2	8976	166,076	0,113
3	8459	176,906	0,121

Cuadro 3.48 Resultados deformación (Do) de los Materiales Granulares Capa Base

Tramo Tolomosa – Pampa Redonda

Nō	MATERIALES GRANULARES CAPA BASE (BANCO Y RÍO TOLOMOSA)			
	Eo (kg/cm2)	Do*R₅(0,1cm*cm)	Do (cm)	
1	10406	141,884	0,097	
2	9955	148,740	0,102	
3	9911	149,443	0,102	

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Erquiz Sud - Cruce Cadillar

Cuadro 3.49 Resultados deformación (Do) de los Materiales Granulares Capa Sub base Tramo Erquiz Sud – Cruce Cadillar

Nº	MATERIALES GRANULARES CAPA SUB BASE (BANCO ERQUIZ Y RÍO ERQUIZ)			
	Eo (kg/cm2)	Do*R₅(0,1 cm*cm)	Do (cm)	
1	9691	153,059	0,104	

2	9130	163,094	0,111
3	8745	170,752	0,117

Cuadro 3.50 Resultados deformación (Do) de los Materiales Granulares Capa Base

Tramo Erquiz Sud – Cruce Cadillar

Nº	MATERIALES GRANULARES CAPA BASE (BANCO CRUCE CADILLLAR Y R ERQUIZ)			
	Eo (kg/cm2)	Do*R₅(0,1cm*cm)	Do (cm)	
1	10813	136,204	0,093	
2	10450	141,248	0,096	
3	9933	149,091	0,102	

Fuente: Elaboración Propia

Materiales Granulares que Utilizó SEDECA en Pavimento, para la Capa Sub base y Base en el Tramo Concepción - Chocloca – Juntas

Cuadro 3.51 Resultados deformación (Do) de los Materiales Granulares Capa Subbase Tramo Concepción – Chocloca - Juntas

Νº	MATERIALES GRANULARES CAPA SUB BASE (BANCO GUAYRIGUANA)		
	Eo (kg/cm2)	Do*R₅(0,1 cm*cm)	Do (cm)
1	7502	201,035	0,137
2	7326	206,183	0,141
3	6721	226,005	0,154

Cuadro 3.52 Resultados deformación (Do) de los Materiales Granulares Capa Base

Tramo Concepción – Chocloca - Juntas

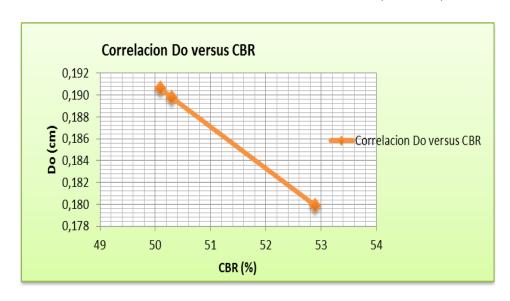
No	MATERIALES GRANULARES CAPA BASE (BANCO GUAYRIGUANA Y QUEBRADA BATEON)		
	Eo (kg/cm2)	Do*R₅(0,1cm*cm)	Do (cm)
1	9944	148,915	0,102
2	9768	151,774	0,104
3	9108	163,514	0,112

Observaciones:

Debido a que el material es granular según los resultados se puede observa que SEDECA trabaja con buenos materiales ya que las deformaciones determinadas de los materiales son pequeñas.

Tambien se puede observar que existe mayor deformación en materiales que fueron utilizados de bancos, debido a que éstos tienen mayor presencia de fino y esto provoca mayor deformación en el material y posteriormente en el pavimento.

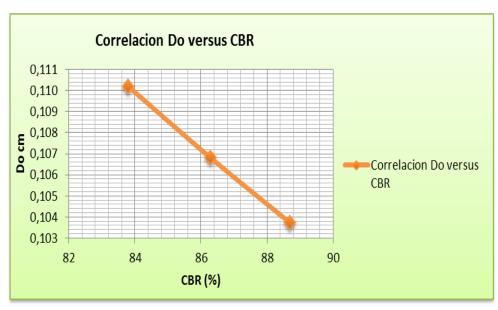
CORRELACIÓN Do VERSUS CBR


Materiales Granulares que Utilizó SEDECA en el Tramo Santa Ana - Yesera

Cuadro 3.53 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Santa Ana – Yesera (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO YESERA NORTE)		
Do (cm)	CBR (%)	
0,180	52,9	

0,190	50,3
0,191	50,1


Grafica 3.21 Correlación entre Do versus CBR (Sub base)

Cuadro 3.54 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Santa Ana – Yesera (Base)

MATERIALES GRANULARES CAPA BASE (BANCOS SANTA ANA - YESERA)		
Do cm	CBR (%)	
0,104	88,7	
0,107	86,3	
0,110	83,8	

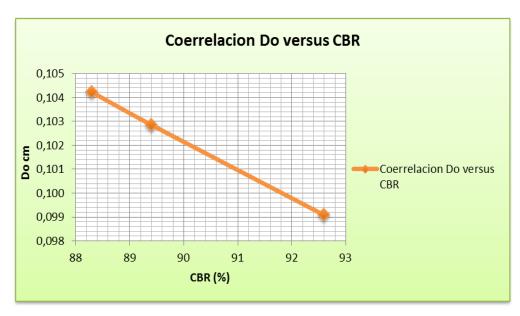
Grafica 3.22 Correlación entre Do versus CBR (Base)



Materiales Granulares que Utilizó SEDECA en el Tramo San Andrés - San Pedro de Sola

Cuadro 3.55 Deformación Permanente Do y CBR de Materiales Granulares del Tramo San Andrés – San Pedro de Sola (Sub base)

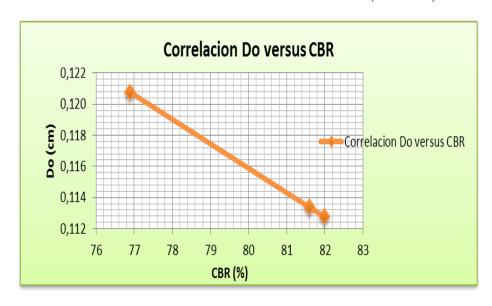
MATERIALES GRANULARES CAPA SUB BASE (BANCO GUADALQUIVIR Y RÍO SOLA)	
Do cm	CBR (%)
0,119	77,7
0,125	74,5
0,133	70,3


Grafica 3.23 Correlación entre Do versus CBR (Sub base)

Cuadro 3.56 Deformación Permanente Do y CBR de Materiales Granulares del Tramo San Andrés – San Pedro de Sola (Base)

MATERIALES GRANULARES CAPA BASE (BANCO PANTIPAMPA Y RÍO SOLA)		
Do cm	CBR(%)	
0,099	92,6	
0,103	89,4	
0,104	88,3	

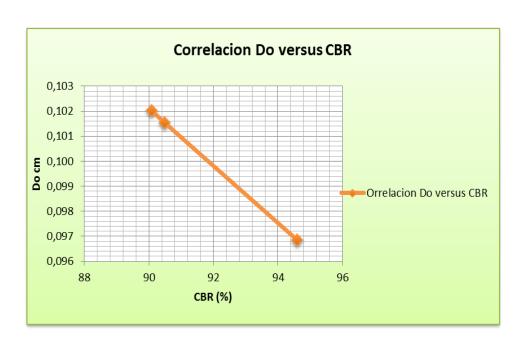
Grafica 3.24 Correlación entre Do versus CBR (Base)



Materiales Granulares que Utilizó SEDECA en el Tramo Tolomosa - Pampa Redonda

Cuadro 3.57 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Tolomosa – Pampa Redonda (Sub base)

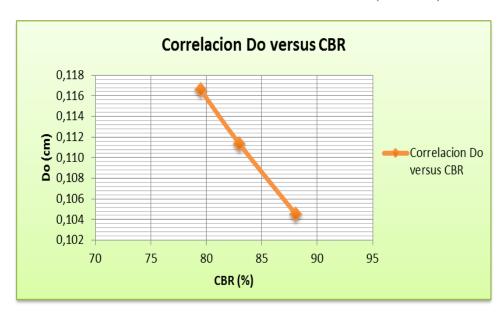
MATERIALES GRANULARES CAPA SUB BASE (BANCO PAMPA REDONDA Y RÍO TOLOMOSA)	
Do (cm)	CBR (%)
0,113	82
0,113	81,6
0,121	76,9


Grafica 3.25 Correlación entre Do versus CBR (Sub base)

Cuadro 3.58 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Tolomosa – Pampa Redonda (Base)

MATERIALES GRANULARES CAPA BASE (BANCO TOLOMOSA Y RÍO TOLOMOSA)	
Do (cm)	CBR(%)
0,097	94,6
0,102	90,5
0.102	90.1

Grafica 3.26 Correlación entre Do versus CBR (Base)

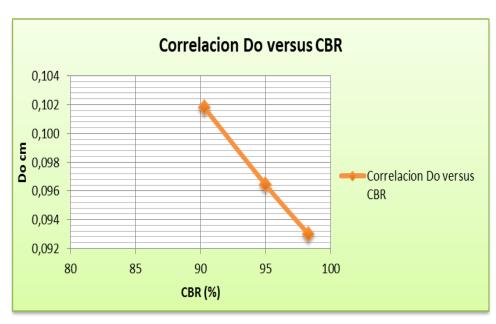


Materiales Granulares que Utilizó SEDECA en el Tramo Erquiz Sud - Cruce Cadillar

Cuadro 3.59 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Erquiz Sud – Cruce Cadillar (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO ERQUIZ Y RÍO ERQUIZ)		
Do (cm)	CBR (%)	
0,104	88,1	
0,111	83	
0,117	79,5	

Grafica 3.27 Correlación entre Do versus CBR (Sub base)

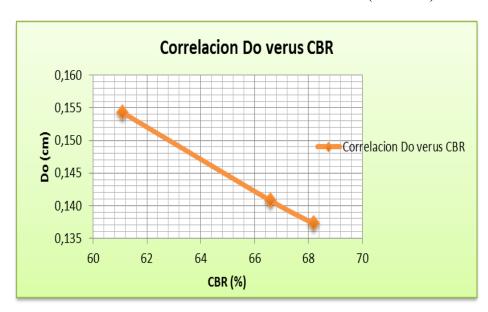

Cuadro 3.60 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Erquiz Sud – Cruce Cadillar (Base)

MATERIALES GRANULARES CAPA BASE (BANCO CRUCE CADILLLAR Y RÍO ERQUIZ)		
Do (cm)	CBR(%)	
0,093	98,3	
0,096	95	
0,102	90,3	

Fuente:

Elaboración Propia

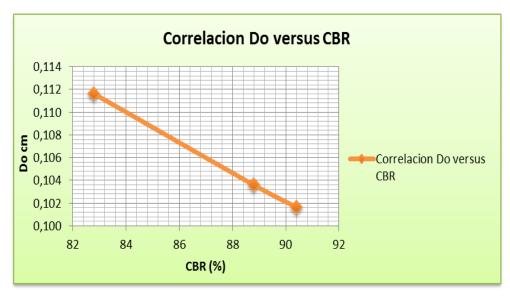
Grafica 3.28 Correlación entre Do versus CBR (Base)



Materiales Granulares que Utilizó SEDECA en el Tramo Concepción - Chocloca - Juntas

Cuadro 3.61 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Concepción – Chocloca – Juntas (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO GUAYRIGUANA)		
Do (cm)	CBR (%)	
0,137	68,2	
0,141	66,6	
0,154	61,1	


Grafica 3.29 Correlación entre Do versus CBR (Sub base)

Cuadro 3.62 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Concepción – Chocloca - Juntas (Base)

MATERIALES GRANULARES CAPA BASE (BANCO GUAYRIGUANA Y QUEBRADA BATEON)		
Do (cm)	CBR(%)	
0,102	90,4	
0,104	88,8	
0,112	82,8	

Grafica 3.30 Correlación entre Do versus CBR (Base)

Fuente: Elaboración Propia

Observaciones:

Se observó que haciendo un análisis de la deformación permanente en función del CBR que obtenga el material granular que fue parte de la investigación, se puede observar que cuanto mayor CBR tienen los materiales existe menor deformación en las capas sub base y base del pavimento, esto se puede observar en las gráficas de dicha relación.

3.14.- REFERENCIAS UTILIZADAS PARA COMPARAR LOS RESULTADOS OBTENIDOS EN LA INVESTIGACIÓN

Se consideró las siguientes referencias para comparar los resultados obtenidos de CBR, módulo resiliente (Eo) y la deformación permanente (Do):

➤ CBR (%): para tener conocimiento si los CBR obtenidos en la investigación, son óptimos se tuvo como referencia la norma AASHTO T-193, en cual está establecido que los valores de los CBR (%) para la capa sub base tienen que ser mayores o igual a el 40%, así también los valores de CBR (%) para la capa base tiene que ser mayores o igual al 80%. También se tuvo como referencia las especificaciones técnicas que tenía SEDECA en cada proyecto.

De acuerdo a la norma AASHTO se pudo observar que los valores obtenidos en los ensayos de CBR, si cumplen según dicha norma.

- ➤ MÓDULO RESILIENTE (Eo): el módulo resiliente tuvo como referencia la norma AASHTO-93 American Association of State Highway and Transportation Officials y la norma INVIAS 2002 Instituto Nacional de Vías. especificaciones generales para construcción de carreteras, Bogotá D.C. Colombia 2002,2007. Normas para ensayos de materiales para carreteras, Bogotá D.C. Colombia 2002b, 2007b
- ▶ DEFORMACIÓN PERMANENTE (Do): las referencia que se utilizaron fueron según las normas: AASHTO-93 American Association of State Highway and Transportation Officials y la norma INVIAS 2002 Instituto Nacional de Vías. especificaciones generales para construcción de carreteras, Bogotá D.C. Colombia 2002, 2007. Normas para ensayos de materiales para carreteras, Bogotá D.C. Colombia 2002b, 2007b

4.1.- CONCLUSIONES

Después de hacer el análisis de los resultados que se obtuvo de los ensayos que se hizo en laboratorio y así también el análisis que se hizo del comportamiento resiliente por correlación con el CBR y deformación permanente del material granular mediante el método de Hogg Simplificado, se concluyó lo siguiente:

• Según ensayos que se realizaron en laboratorio de los materiales granulares utilizados para la capa sub-base y base del pavimento, para realizar su debida clasificación según la norma AASHTO, se observó que los materiales granulares son NP es decir no tienen plasticidad, lo cual determina que los materiales no presentan gran expansión, sino al contrario una expansión demasiada pequeña debido a que los materiales granulares no tienen gran presencia de finos y según clasificación por la norma AASHTO estos materiales granulares son excelentes, ya que estos son A-1a (0).

Tabla 1. Clasificación Según la Norma AASHTO

CLASIFICACION DE SUELOS Sistema AASHTO

Clasif. General	Materiales Granulares (35% o menos pasa la malla nº 200)				Limos y	Arcillas (35% pasa	malla nº 200)			
Grupos	Α.	-1	A - 3		Α	- 2		A - 4	A - 5	A - 6	A - 7
Subgrupos	A-1-a	A - 1 - b		A - 2 - 4	A-2-5	A-2-6	A-2-7				A-7-5/A-7-6
% que pasa tamiz :											
Nº 10	50 máx										
Nº 40	30 máx	50 máx	51 mín								
№ 200	15 máx	25 máx	10 máx	35 máx	35 máx	35 máx	35 máx	36 mín	36 mín	36 mín	
Caract. Bajo Nº 40											
LL				40 máx	41 mín	40 máx	41 mín	40 máx	41 mín	40 máx	41 mín
IP	6 máx	6 máx	NP	10 máx	10 máx	11 mín	11 mín	10 máx	10 máx	11 mín	11 mín
IG	0	0	0	0	0	4 máx	4 máx	8 máx	12 máx	16 máx	20 máx
Tipo de material	Gravas y	Arenas	Arena fina	Gravas y	arenas lii	mosas y	arcillosas	Suelos	Limosos	Suelo	s arcillosos
Terreno fundación	Exce	lente	Excelente		Excelente	e a bueno)	Regular a malo			

El índice de Plasticidad del subgrupo A - 7 - 5 es menor o igual a (LL - 30) El índice de Plasticidad del subgrupo A - 7 - 6 es mayor a (LL - 30)

Fuente: AASTHO 93

Cuadro 3.12 Análisis granulométrico límites y clasificación de bancos Santa Ana y Yesera (capa subbase y base)

Estan etnas	Granulometría I							Límites			Clasif.			
Estructura	3"	2"	1"	3/4"	3/8"	Nº4	Nº10	Nº40	Nº200	L.l.	L.p.	LP.	AASHTO	S.U.C.S.
SUB BASE	100,00	91,80	76,32	72,00	59,79	46,67	34,00	21,25	6,64	17,25	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	95,39	73,91	68,51	56,36	46,25	36,33	23,95	8,19	18,05	N.P.	0	A - 1a	GW GM
SUB BASE	100,00	92,76	76,35	71,54	59,05	46,44	37,16	22,52	8,56	17,80	N.P.	0	A - 1a	GW GM
CAPA BASE	100,00	98,44	76,18	69,96	51,83	41,81	33,80	23,82	10,19	18,60	N.P.	0	A - 1a	OP OC
CAPA BASE	100,00	92,81	77,14	73,72	60,29	49,79	39,99	28,04	11,02	18,00	N.P.	0	A - 1a	OP OC
CAPA BASE	100,00	95,06	76,70	73,29	60,08	49,56	40,12	26,56	10,33	17,60	N.P.	0	A - 1a	GP GM

Fuente: Elaboración propia

 Con el método de compactación de proctor modificado T-180, se pudo llegar a resultados satisfactorios confiables, teniendo en cuenta que la humedad óptima se encuentra en un rango de (4 - 6%) y su densidad de (1700 – 2300 Kg/m³), estos valores llegan a ser parte del rango debido al tipo de suelo que tienen los materiales son granulares.

Tabla 2. Características generales de compactación de los distintos tipos de suelos AASHTO T - 180 - 99

	Ensayo	Ensayo proctor				
Clasificación AASHTO T - 27	Densidad seca máxima (kg/dm³)	Humedad optima (%)				
A – 1	1.85-2.25	5-10				
A-2	1.75-2.15	9-18				
A – 3	1.75-1.85	9-15				
A – 4	1.50-2.10	10-20				
A – 5	1.35-1.60	20-35				
A – 6	1.50-1.90	10-30				
A-7-5	1.35-1.60	20-35				
A-7-6	1.45-1.85	15-30				

FUENTE: Diseño De Pavimentos AASTHO 93

Cuadro 1. Resultados de Densidad y Humedad Óptima Materiales de Capa Base y Subbase de los Materiales Granulares

ESTRUCTURA		Santa Yesera	Tram Andrés Pedro	s - San	Tramo Tolomosa – Pampa Redonda		
	D.max. (kg/m3)	H.op.	D.max. (kg/m3)	H.op.	D.max. (kg/m3)	H.op .(%)	
Capa subbase	2188	5,3	2248	4,9	2278	5,0	
Capa subbase	2176	6,2	2285	4,5	2284	5,2	
Capa subbase	2170	6,3	2268	4,8	2264	5,4	

Capa base	2238	4,7	2306	4,6	2260	5,3
Capa base	2205	6,1	2309	5,2	2271	5,7
Capa base	1784	6,6	2308	5,0	2273	5,2

ESTRUCTURA	Sud –	Erquiz Cruce lillar	Tramo Concepción – Chocloca - Juntas		
	D.max. (kg/m3)	H.op.	D.max. (kg/m3)	H.op.	
Capa subbase	2188	5,3	2135	5,0	
Capa subbase	2176	6,2	2293	5,1	
Capa subbase	2170	6,3	2298	4,9	
Capa base	2238	4,7	2295	4,9	
Capa base	2205	6,1	2291	4,7	
Capa base	1784	6,6	2300	4,7	

propia

los

• Según

datos

Fuente: Elaboración

obtenidos en laboratorios, se pudo observar que las muestras cumplen con los CBR establecidos en especificaciones técnicas de los proyectos y así también como referencia la norma AASTHO, siendo estas mayores al 40% para la capa subbase y mayores al 80% para la capa base.

Tabla 3. Características del CBR según su uso AASTHO T - 193

CBR	CLASIFICACIÓN CUALITATIVA DEL SUELO	USO

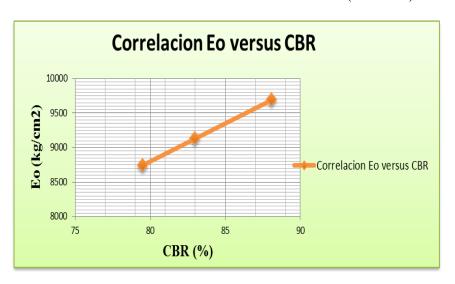
2-5	Muy mala	Sub - rasante
5-8	Mala	Sub - rasante
8-20	Regular – Buena	Sub - rasante
20-30	Excelente	Sub - rasante
30-60	Buena	Sub - base
60-80	Buena	Base
80-100	Excelente	Base

FUENTE: Diseño De Pavimentos AASTHO 93

Cuadro 2. Resultados de CBR Materiales granulares para Capa Base y Subbase del Pavimento

	CBR								
ESTRUCTURA	Tramo Santa Ana - Yesera	Tramo San Andrés - San Pedro de Sola	Tramo Tolomosa – Pampa Redonda	Tramo Erquiz Sud – Cruce Cadillar	Tramo Concepción – Chocloca - Juntas				
Capa sub base	52,92 %	77,73 %	81,96 %	88,07 %	68,19 %				
Capa sub base	50,33 %	74,48 %	81,56 %	82,96 %	66,64 %				
Capa sub base	50,14 %	70,26 %	76,88 %	79,49 %	61,08 %				
Capa base	88,70 %	92,59 %	94,61 %	98,34 %	90,41 %				
Capa base	86,27 %	89,37 %	90,12 %	94,96 %	88,77 %				
Capa base	83,81 %	88,31 %	90,48 %	90,28 %	82,83 %				

Fuente: Elaboración propia


 Para análizar el módulo resiliente se lo realizó mediante una correlación de CBR y se pudo concluir que es una metodología confiable realizar este análisis para tener conocimiento del comportamiento que tienen los materiales granulares en la capa sub base y base. Se observó que realizando esta correlación el módulo resiliente aumenta dependiendo de su CBR.

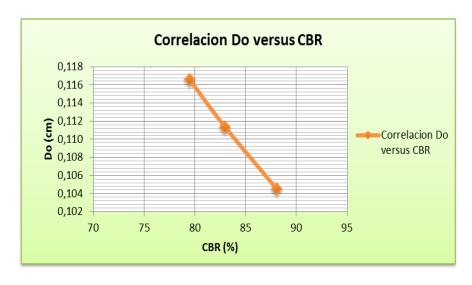
Cuadro 3.39 Módulo Resiliente Eo y CBR de Materiales Granulares del Tramo Erquiz Sud – Cruce Cadillar (Sub base)

MATERIALES GRANULARES CAPA SUB BASE (BANCO CRUCE CADILLAR Y RIO ERQUIZ)							
Eo (kg/cm2)	CBR (%)						
9691	88,1						
9130	83						
8745	79,5						

Fuente: Elaboración Propia

Grafica 3.17 Correlación entre Eo versus CBR (Sub base)

Fuente: Elaboración Propia


 Se observó también que las muestras que tenían mayor valor en cuanto a su CBR, los cuales fueron para la capa subbase en rango de (60 – 80%) y la base de (90 – 95%), la deformación permanente era pequeña, esto se presentó en los materiales granulares que se utilizaron de canto rodado.

Cuadro 3.59 Deformación Permanente Do y CBR de Materiales Granulares del Tramo Erquiz Sud – Cruce Cadillar (Sub base)

MATERIALES GRANULARES CAPA SUB BASE

(BANCO ERQUIZ Y RIO ERQUIZ)					
Do (cm) CBR (%)					
0,104	88,1				
0,111	83				
0,117	79,5				

Grafica 3.27 Correlación entre Do versus CBR (Sub base)

- De acuerdo a los resultados de la deformación de los materiales granulares se pudo observar que existe mayor deformación a materiales que fueron utilizados de bancos puesto que éstos presentaban menor CBR, es decir que para la capa subbase era de (50 60 %) y la base de (80 90%) estos valores se encuentran casi al límite de lo que menciona la norma AASHTO T 193. Las deformaciones fueron muy pequeña para la subbase se tuvo de 0.104 a 0.190 cm y para la base de 0.093 a 0.110cm de deformación.
- Los materiales de río son más óptimos que los materiales de banco, esto se debe
 a que los materiales granulares de río ya presentaron un arrastre y por lo cual

son más sólidos, presentan mayor resistencia, tienen menor presencia de finos y estos materiales no están expuestos a la contaminación, como serían los materiales de banco los cuales tiene mayor presencia de finos, es por estos motivos que los mejores materiales son los de río. Esto también se observó según resultados obtenidos de los ensayos que se realizaron para la investigación.

• Los mejores materiales granulares para la capa base y sub base según los ensayos realizados en laboratorio y en cuanto al análisis de su módulo resiliente y deformación permanente, son los materiales de los tramos de: Tolomosa - Pampa Redonda para sub base (mezcla banco Pampa Redonda y rio Tolomosa), base (mezcla banco Tolomosa y rio Tolomosa) y el tramo de Erquiz sud – Cruce Cadillar para sub base (mezcla banco Erquiz – rio Erquiz), base (mezcla banco Cruce Cadillar y rio Erquiz). Estos materiales granulares tienen un CBR muy bueno y es por esto que la deformación que presentan la capa sub base y base del pavimento son muy pequeña.

Cuadro 3.25 Resultados de CBR Materiales de Capa Base y Subbase Tramo

Tolomosa - Pampa Redonda

ESTRUCTURA		E 0/			
ESTRUCTURA	100%	98%	95%	90%	Exp.%
Capa sub base	81,96 %	73,48 %	60,76 %	39,57 %	0,05
Capa sub base	81,56 %	74,63 %	64,25 %	46,94 %	0,07
Capa sub base	76,88 %	72,10 %	64,93 %	52,99 %	0,10
Capa base	94,61 %	85,14 %	70,93 %	47,26 %	0,04
Capa base	90,12 %	81,50 %	68,56 %	47,01 %	0,07
Capa base	90,48 %	80,63 %	65,85 %	41,22 %	0,06

Cuadro 3.26 Resultados de CBR Materiales de Capa Base y Subbase Tramo Erquiz Sud – Cruce Cadillar

ESTRUCTURA	CBR				E 0/
	100%	98%	95%	90%	Exp.%
Capa sub base	88,07 %	78,76 %	64,80 %	41,53 %	0
Capa sub base	82,96 %	73,89 %	60,28 %	37,59 %	0
Capa sub base	79,49 %	70,83 %	57,85 %	36,20 %	0,02
Capa base	98,34 %	87,85 %	72,12 %	45,90 %	0,06
Capa base	94,96 %	88,19 %	78,03 %	61,09 %	0,03
Capa base	90,28 %	82,00 %	69,58 %	48,88 %	0,07

4.2.- RECOMENDACIONES

- Para tener resultados óptimos en laboratorio se tiene que realizar un buen muestreo de los materiales granulares, por lo cual se tiene que tener una muestra representativa para realizar los ensayos en laboratorio.
- Al realizar las prácticas en laboratorio, se las debe realizar con una buena precisión en cuanto la lecturación del CBR, ya que de no ser así puede influir bastante en los resultados obtenidos.
- Se recomienda hacer un análisis de los materiales granulares sobre su
 comportamiento elastoplástico en las capas del pavimento, antes de realizar el
 diseño del pavimento ya que de este modo se tendrá un previo conocimiento de
 la calidad del materiales granulares y esto será beneficioso para un buen diseño
 y así evitar fallas estructurales del pavimento a corto o largo plazo.
- Para realizar la clasificación de los materiales granulares se recomienda acudir a la norma AASTHO, para tener mayor conocimiento del suelo que está siendo parte del estudio y así de este modo tener una información más adecuada sobre estos materiales granulares.