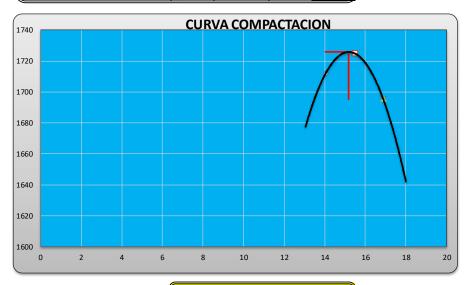


SERVICIO DEPARTAMENTAL DE CAMINOS LABORATORIO DE SUELOS Y MATERIALES



ENSAYO DE COMPACTACION

Proyecto	Tramo Tunal - Alisos								
Material	Material para estudio			Ensayo	27				
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	21-oct2016				
Origen	5+500	Pozo (Km.)	5+500	Realizado	Nestor Tarraga				

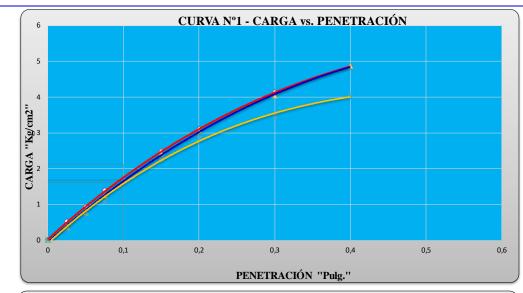
COMPACTACION								
Determinación №	Unidad	1	2	3				
Nº Capas	Capas	5	5	5				
Nº Golpes P/Capas	Golpes	56	56	56				
Peso del Molde + Suelo Húmedo	gr.	7462,0	7546,0	7524,0				
Peso del Molde	gr.	3317,0	3317,0	3317,0				
Peso Suelo Húmedo	gr.	4145,0	4229,0	4207,0				
Volumen del Molde	СС	2123,0	2123,0	2123,0				
Peso Específico Húmedo	Kg./m3	1952,4	1992,0	1981,6				
Cápsula No		43	45	40				
Peso Cápsula + Suelo Húmedo	gr.	230,00	207,00	207,00				
Peso Cápsula + Suelo Seco	gr.	205,00	183,00	181,00				
Peso Agua	gr.	25,00	24,00	26,00				
Peso Cápsula	gr.	27,00	28,00	27,00				
Peso Suelo Seco	gr.	178,00	155,00	154,00				
Contenido de Humedad	%	14,04	15,48	16,88				
Densidad Suelo Seco	Kg./m3	1712,0	1724,9	1695,4				

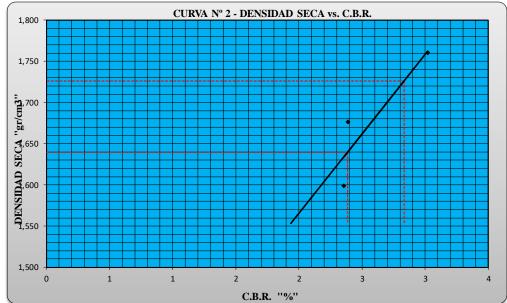
Densidad Máxima = 1726 Kg./m3 Humedad Optima = 15,2 %

OBSERVACIONES.-

Samuel Rocabado TECNICO DE LABORATORIO

TECNICO DE LABORATORIO


SERVICIO DEPARTAMENTAL DE CAMINOS LABORATORIO DE SUELOS Y ASFALTOS


LABORATORIO DE SUELOS Y ASFALTOS

RESP. LAB. SUELOS Y ASFALTOS

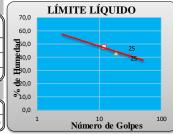
Proyecto				0		EARIN								_
Material		Material para	estudio			Haine	luliai	- Allac	,,,		Ensayo			
Profundidad (m.) 0,5 , M					F-44			Subra	sante		Fecha		27 24-oct20	16
. ,					Pozo (K	uctura m.)		5+8			Realizado		stor Tar	
Origen (Km.)		001000			1 020 (10						rtealizado	140	3101 141	raga
TAMIZ		Nº 4	Nº	10	N	9 40	Nº	200	L	L	IP		CLA	ASIF.
% PASA 100,0			96	5,7	8	9,7	8	5,2	37	,5	12,	0	-	6 (9)
ALCULADO:							!				<u> </u>			
Molde Nº			1	10		10	_	11	1	1	12	,		12
Nº de Capas				5	5			5			5		-	5
Nº de Golpes / 0	Capa			i6	1	56		25	2		12	!	-	12
Condición de la				mbeber		Embeb.		Embeber	Desp. I		Antes Er			Embeb.
Peso Muestra H	lúmeda+Molde	(grs.)	117	750	11	930	11	555	117	7 30	114	50	12	274
Peso Molde (grs	s.)		74	156	7-	456	74	150	74	50	752	18	75	528
Peso Muestra H				294	+	474		105	42		392		-	746
Volumen de la n				20		120		123	21		213			135
Densidad Húme	da (grs./cm3)			025		110		934	2,0	16	1,83	37	2,:	223
			COI	<u> ИРАС</u>	TACIO)N Y E	MBEB	IMIEN	VTO					
			Comp	actado	Emb	ebido	Comp	actado	Emb	ebido	Compa	ctado	Emb	ebido
Tara Nº				1	1	0		2	(3		0	
Peso Suelo Hún				5,00	0,00		248,00 0,00		245,00		0,00			
Peso Suelo Seco + Tara		226	5,00	0	,00	21	3,60	0,00		217,00		0,00		
Peso Agua				,00		,00		,40	0,		28,00		0,00	
Peso Tara			,00	0,00			,00	0,		29,00		0,00		
Peso Suelo Sec	0			9,00	_			1,60	0,00 20,26		188,00 14,89		0,00 39,03	
% de Humedad Densidad Seca	Droboto (are /o	m2\		,08 760	1	760		5,34 676	1	76	1		1,599	
		_		726	1,760 1,726			726		26	1,599 1,726		1,726	
Densidad Máxima Laboratorio (grs./cm3)				2,0	1,726		97,1		97,1		92.			2.6
% De Compact						ÁNIDE	T A ES	ZD A NIC	IÓN					
De Compact			DET	FDMI	NACTO									
		l a			NACIO					.,	1	1		.,
Fecha	Hora	Obs.	Lect	mm		pansión	Lect,.	mm	% Exp	ansión	Lect,.	mm	% Exp	oansión
Fecha 23-oct-16		Obs.	Lect	mm	% Ex	pansión	Lect,.	mm	% Ехр		0			
Fecha			Lect 0 529		% Ex		Lect,.				0 794	7,94	6,8	4 %
Fecha 23-oct-16		Obs. Factor Arc	Lect 0 529	mm	% Ex	pansión	Lect,.	mm	% Ехр		0 794	7,94		4 %
Fecha 23-oct-16 24-oct-16 PENETR	Hora ACIÓN	Factor Arc	0 529 5000 Lect.	mm 5,3 Carga (F	% Ex 4,5 Kg/cm2)	pansión 56 %	Lect,. 0 562 Lect.	mm 5,62 Carga (F	% Exp 4,84 (g/cm2)	1 %	0 794	7,94 % Exp	6,8 p. Tota (Kg/cm2)	5,4
Fecha 23-oct-16 24-oct-16 PENETR Min. Pulg	Hora ACIÓN . Mm.	Factor Arc	Lect 0 529 5000 Lect. Dial	mm 5,3 Carga (H	% Ex	pansión 66 %	Lect,. 0 562 Lect. Dial	mm 5,62 Carga (K	% Exp	1 %	0 794 Lect.	7,94 % Exp	6,8	4 %
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,028	ACIÓN . Mm. 5 0,64	Factor Arc	Lect 0 529 5000 Lect. Dial	5,3 Carga (I	% Ex 4,5 Kg/cm2)	pansión 56 %	Lect,. 0 562 Lect. Dial 7	5,62 Carga (Karga (Ka)	% Exp 4,84 (g/cm2)	1 %	0 794 Lect.	7,94 % Exp Carga Calc. 0,3	6,8 p. Tota (Kg/cm2)	5,4
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,029 1,0 0,050	ACIÓN . Mm. 5 0,64 0 1,27	Factor Arc	Lect 0 529 5000 Lect. Dial 10 18	Carga (H Calc. 0,5 0,9	% Ex 4,5 Kg/cm2)	pansión 56 %	Lect,. 0 562 Lect. Dial 7 15	5,62 Carga (I Calc. 0,4 0,8	% Exp 4,84 (g/cm2)	1 %	0 794 Lect. 6 15	7,94 % Exp Carga Calc. 0,3 0,8	6,8 p. Tota (Kg/cm2)	5,4
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,028 1,0 0,056 1,5 0,073	ACIÓN . Mm. 5 0,64 0 1,27 5 1,91	Factor Arc	Lect 0 529 5000 Lect. Dial 10 18 27	Carga (FC Calc. 0,5 0,9 1,4	% Ex 4,5 Kg/cm2) Correg.	% C.B.R.	Lect, 0 562 Lect. Dial 7 15 24	5,62 Carga (FC Calc. 0,4 0,8 1,2	% Exp	% C.B.R,.	0 794 Lect. 6 15 21	7,94 % Exp Carga Calc. 0,3 0,8 1,1	6,8 p. Total (Kg/cm2) Correg	4 % 5, % C.B.R.
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,022 1,0 0,055 1,5 0,078 2,0 0,106	ACIÓN Mm 5 0,64 0 1,27 5 1,91 0 2,54	Factor Arc	Lect 0 529 5000 Lect. Dial 10 18 27 33	Carga (l Calc. 0,5 0,9 1,4	% Ex 4,5 Kg/cm2)	pansión 56 %	Lect,. 0 562 Lect. Dial 7 15 24 32	5,62 Carga (I Calc. 0,4 0,8 1,2 1,7	% Exp 4,84 (g/cm2)	1 %	0 794 Lect. 6 15 21 32	7,94 % Exp Carga Calc. 0,3 0,8 1,1 1,7	6,8 p. Tota (Kg/cm2)	5,4
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulge 0,5 0,029 1,0 0,055 1,5 0,079 2,0 0,100 3,0 0,150	ACIÓN . Mm. 5 0,64 0 1,27 5 1,91 0 2,54 0 3,81	Factor Ard Carga Kg./cm2	Lect 0 529 5000 Lect. Dial 10 18 27 33 48	Carga (l Calc. 0,5 0,9 1,4 1,7 2,5	% Ex 4,5 Kg/cm2) Correg.	% C.B.R.	Lect,. 0 562 Lect. Dial 7 15 24 32 47	5,62 Carga (I Calc. 0,4 0,8 1,2 1,7 2,4	% Exp 4,86 (g/cm2) Correg.	% C.B.R,.	0 794 Lect. 6 15 21 32 44	7,94 % Exj Carga Calc. 0,3 0,8 1,1 1,7 2,3	6,8 p. Tota (Kg/cm2) Correg	5, % C.B.R.
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,022 1,0 0,055 1,5 0,078 2,0 0,106	ACIÓN . Mm 0,64 0 1,27 5 1,91 0 2,54 0 3,81 0 5,08	Factor Arc	Lect 0 529 5000 Lect. Dial 10 18 27 33	Carga (l Calc. 0,5 0,9 1,4	% Ex 4,5 Kg/cm2) Correg.	% C.B.R.	Lect,. 0 562 Lect. Dial 7 15 24 32	5,62 Carga (I Calc. 0,4 0,8 1,2 1,7	% Exp	% C.B.R,.	0 794 Lect. 6 15 21 32	7,94 % Exp Carga Calc. 0,3 0,8 1,1 1,7	6,8 p. Total (Kg/cm2) Correg	4 % 5, % C.B.R.
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,028 1,0 0,056 1,5 0,072 2,0 0,100 3,0 0,156 4,0 0,200	ACIÓN . Mm 0,64 0 1,27 5 1,91 0 2,54 0 3,81 0 5,08 0 7,62	Factor Ard Carga Kg./cm2	Lect 0 529 5000 Lect. Dial 10 18 27 33 48 60	Carga (I Calc. 0,5 0,9 1,4 1,7 2,5 3,1	% Ex 4,5 Kg/cm2) Correg.	% C.B.R.	Lect,. 0 562 Lect. Dial 7 15 24 32 47 59	Carga (I Calc. 0,4 0,8 1,2 1,7 2,4	% Exp 4,86 (g/cm2) Correg.	% C.B.R,.	0 794 Lect. 6 15 21 32 44 55	7,94 % Exp Carga Calc. 0,3 0,8 1,1 1,7 2,3 2,8	6,8 p. Tota (Kg/cm2) Correg	5, % C.B.R.
Fecha 23-oct-16 24-oct-16 PENETR. Min. Pulg 0,5 0,025 1,0 0,056 1,5 0,072 2,0 0,100 3,0 0,156 4,0 0,200 6,0 0,300	ACIÓN . Mm 0,64 0 1,27 5 1,91 0 2,54 0 3,81 0 5,08 0 7,62 0 10,16	Factor Ard Carga Kg./cm2	Lect 0 529 5000 Lect. Dial 10 18 27 33 48 60 80	Carga (I Calc. 0,5 0,9 1,4 1,7 2,5 3,1	% Ex 4,5 Kg/cm2) Correg.	% C.B.R.	Lect,. 0 562 Lect. Dial 7 15 24 32 47 59	Carga (I Calc. 0,4 0,8 1,2 1,7 2,4 3,0	% Exp 4,86 (g/cm2) Correg.	% C.B.R,.	0 794 Lect. 6 15 21 32 44 56 67	7,94 % Exp Carga Calc. 0,3 0,8 1,1 1,7 2,3 2,8 3,5	6,8 p. Tota (Kg/cm2) Correg	5, % C.B.R.

1,9 2,4 2,8 **DENS. AL 90%**: 1,553 gr/cm3 C.B.R.. AL 90%: DENS. AL 95%: 1,640 gr/cm3 DENS. AL 100%: 1,726 gr/cm3 C.B.R.. AL 95%: C.B.R.. AL 100%: **EXP. AL 95%**: 5,6

EXP. AL 100%:

Samuel Rocabado TECNICO DE LABORATORIO

SERVICIO DEPARTAMENTAL DE CAMINOS LABORATORIO DE SUELOS Y MATERIALES


CLASIFICACIÓN DE SUELOS


Proyecto	Tramo Tunal - Alisos							
Material	Material para estudio			Nº Ensayo	28			
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	24-oct2016			
Origen (Km.)	6+000	Pozo(Km.)	6+000	Realizado	Nestor Tarraga			

	GRANULOMETRÍA											
Peso total seco (grs.)			500,0	Muestra pasa	tamiz Nº 4		500,0					
Tamiz	Peso Retenido	Peso Retenido	% Retenido	% Retenido	% Que	Abertura	Especificaciones					
Nº	Tamiz (grs.)	Acumulado (grs.)	Tamiz	Acumulado	Pasa	Mm.	Especificaciones					
3"	0	0,0	0,0	0,0	100,0	76,20						
2"	0,0	0,0	0,0	0,0	100,0	50,80						
1"	0,0	0,0	0,0	0,0	100,0	25,40						
3/4"	0,0	0,0	0,0	0,0	100,0	19,05						
3/8"	0,0	0,0	0,0	0,0	100,0	9,525						
4	0,0	0,0	0,0	0,0	100,0	4,800						
10	3,8	3,8	0,8	0,8	99,2	2,000						
40	8,2	12,0	1,6	2,4	97,6	0,420						
200	35,5	47,5	7,1	9,5	90,5	0,074						

Nº Tara	Peso Suelo	Peso Suelo	Peso agua	Peso Tara	Peso Suelo	% de hum.	Nº de	
	Hum.+Tara	Seco+Tara			Seco		Golpes	(
52	37,99	31,32	6,67	17,38	13,94	47,85	12	dad
81	38,00	31,39	6,61	16,06	15,33	43,12	19	Humedad
95	39,35	32,52	6,83	16,00	16,52	41,34	32	/
LIMI	TES DE AT	TERBER	G (Límite Plástic	co) AAS	нто т	-90		% de
35	19,35	18,60	0,75	15,90	2,70	27,78		
36	19,04	18,27	0,77	15,46	2,81	27,40	27,59	

LIMITES DE ATTERBERG (Límite Líquido) AASHTO T- 89

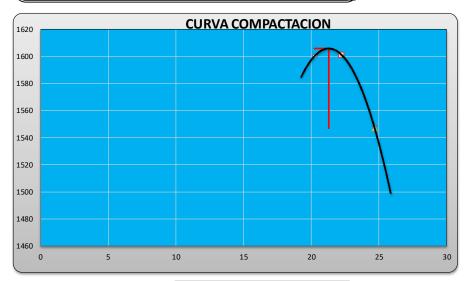
Límite Líquido 42,4 Límite Plástico 27,6 Indice de plasticidad 14,8 CLASIFICACIÓN AASHTO M 145

AASHTO A - 7 - 6 (10)

Indice de Grupo 10,43

Samuel Rocabado
TECNICO DE LABORATORIO

SERVICIO DEPARTAMENTAL DE CAMINOS


LABORATORIO DE SUELOS Y MATERIALES

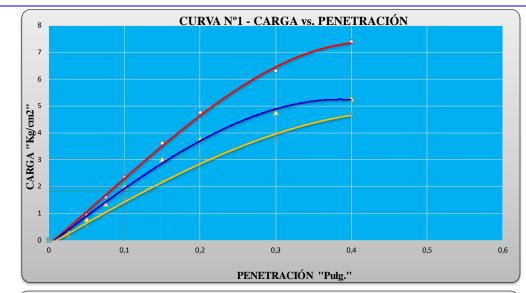
ENSAYO DE COMPACTACION

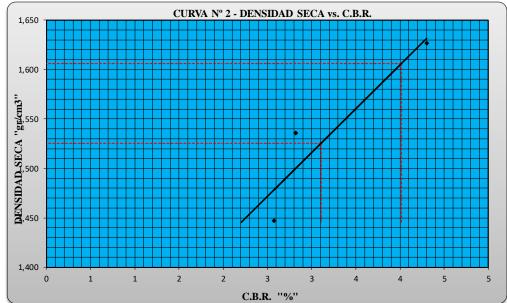
Proyecto	Tramo Tunal - Alisos								
Material	Material para estudio			Ensayo	28				
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	24-oct2016				
Origen	6+000	Pozo (Km.)	6+000	Realizado	Nestor Tarraga				

COMPACTACION								
Determinación №	Unidad	1	2	3				
Nº Capas	Capas	5	5	5				
Nº Golpes P/Capas	Golpes	56	56	56				
Peso del Molde + Suelo Húmedo	gr.	6725,0	6795,0	6735,0				
Peso del Molde	gr.	2659,0	2659,0	2659,0				
Peso Suelo Húmedo	gr.	4066,0	4136,0	4076,0				
Volumen del Molde	СС	2113,0	2113,0	2113,0				
Peso Específico Húmedo	Kg./m3	1924,3	1957,4	1929,0				
Cápsula No		5	4	3				
Peso Cápsula + Suelo Húmedo	gr.	530,90	379,70	399,60				
Peso Cápsula + Suelo Seco	gr.	463,30	329,70	341,20				
Peso Agua	gr.	67,60	50,00	58,40				
Peso Cápsula	gr.	129,40	104,80	104,70				
Peso Suelo Seco	gr.	333,90	224,90	236,50				
Contenido de Humedad	%	20,25	22,23	24,69				
Densidad Suelo Seco	Kg./m3	1600,3	1601,4	1547,0				

Densidad Máxima =	1606 Kg./m3
Humedad Optima =	21,3 %

OBSERVACIONES.-


Samuel Rocabado
TECNICO DE LABORATORIO



			C	CALIF	ORN	IA BI	EARIN	IG R	ATIO	(CBR	3)				
Proyec	to						Tramo	Tuna	l - Aliso	s					
Materia	al		Material para					Ì				Ensayo		28	
Profun	didad (m.)		0,5 , N				uctura		Subra			Fecha 25-oct2016			
Origen	Origen (Km.) 06+000					Pozo (K	m.)		6+0	000		Realizado	Ne	stor Ta	raga
т/	AMIZ		Nº 4	Nº 10		N	o 40	Nº	200	L	L	IP	,	CLA	ASIF.
	PASA		100,0	99,2		9	7,6	9	0,5	42	,4	14,	8		- 6 (10)
ALCUL	ADO:											•			
Molde N	10				7		7		8	8	3	9			9
Nº de C	-				5		5		5			5			5
	olpes / Cap				56		56		25	2		12			12
	ón de la Mu		/ \		mbeber		Embeb.		Embeber	Desp. E		Antes E			Embeb.
	uestra Húm olde (grs.)	eua+ivioide	(yrs.)		005 356)230 856		282 313	106	13	985			096 129
	uestra Húm	eda (ors.)			149		374		969	43		372			967
	n de la mue	ιο ,			100		100		130	21		212			120
	ad Húmeda (, ,			976		083		863	2,0		1,7			871
				COI	MPAC"	TACIO	<u>ÓN Y E</u>	MBEF	BIMIEN	ITO					
				Comp	actado	Emb	oebido	Comp	actado	Emb	ebido	Compa	ctado	Emb	ebido
Tara Nº				2	24		0		25	0		26	3		0
Peso S	uelo Húmed	o+Tara		426	5,30	0,00		382,90		0,00		417,	60	0,00	
Peso S	uelo Seco +	Tara		369	9,40	0	,00	334,20		0,00		362,30		0,00	
Peso A	Peso Agua		56	,90	0	,00	48,70		0,00		55,30		0,00		
Peso T					1,50		,00		5,90	0,		105,80		0,00	
	uelo Seco				1,90		,00		8,30	0,00 31,97		256,50 21,56		0,00 29.32	
	umedad		0)		,48		3,07		1,33	31 1,5				1,447	
	ad Seca Pro ad Máxima L				626 606	1,626 1,606			1,536 1, 1,606 1,			1,4			606
	Compactació		(gis./ciiio)		1.3	101,3			5.6	95		90.			0.1
									XPANS:		, -				
F.	echa	Hora	Obs.	Lect	mm	1		1	mm		!	1	mm	0/ 5	
	oct-16	пога	Obs.	0	mm	% EX	pansión	Lect,.	mm	% Exp	ansion	Lect,.	mm	% EX	oansión
	oct-16			400	4,0	3.4	15 %	452	4,52	3,90) %	504	5,04	4.3	4 %
			Factor Are	-	-									p. Total	3,
F	PENETRACI	ÓN	Carga	Lect.	Carga (l	Kg/cm2)	%	Lect.	Carga (k	(g/cm2)	%	Lect.		(Kg/cm2)	%
Min.	Pulg.	Mm.	Kg./cm2	Dial	Calc.	Correg.	C.B.R.	Dial	Calc.	Correg.	C.B.R,.		Calc.	Correg	C.B.R.
0,5	0,025	0,64		6	0,3			4	0,2			2	0,1		
1,0	0,050	1,27		18	0,9			15	0,8			10	0,5		
1,5	0,075	1,91		31	1,6	<u> </u>	L	26	1,3			18	0,9	L	
2,0	0,100	2,54 3,81	70,3	45 70	2,3	3,0	4,3	38 58	2,0	2,0	2,8	29 42	1,5 2,2	1,8	2,6
3,0 4,0	0,150 0,200	5,08	105,5	92	3,6 4,8	4,8	4,5	73	3,0	3,8	3,6	42 59	3,0	3,0	2,9
6,0	0,300	7,62	100,0	122	6,3	4,0	4,0	92	4,8	5,0	5,0	73	3,8	5,0	2,3
8,0	0,400	10,16		143	7,4			102	5,3			91	4,7		
	0,500	12,70		0	0,0			0	0,0			0	0,0		
10,0		,	ĺ	1 -	.,-	Ī	Ī		.,.	1	Ì	I -	1 .,-	1	1

oservaciones	
Samuel Rocabado	Ing. Luis Vargas
TECNICO DE LABORATORIO	RESP. LAB. SUELOS Y ASFALTOS

 DENS. AL 90%:
 1,445 gr/cm3
 C.B.R.. AL 90%:
 0,9

 DENS. AL 95%:
 1,526 gr/cm3
 C.B.R.. AL 95%:
 1,3
 N° 28

 DENS. AL 100%:
 1,606 gr/cm3
 C.B.R.. AL 100%:
 1,7

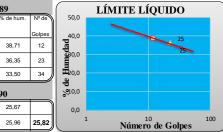
 EXP. AL 95%:
 3,9
 EXP. AL 100%:
 3,5

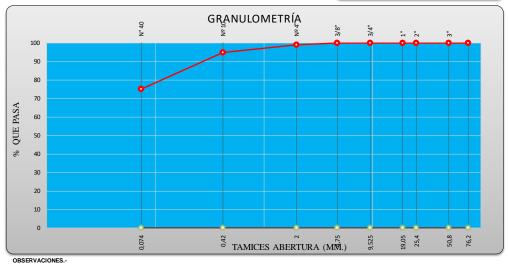
Samuel Pagabada

Samuel Rocabado
TECNICO DE LABORATORIO

SERVICIO DEPARTAMENTAL DE CAMINOS LABORATORIO DE SUELOS Y MATERIALES

CLASIFICACIÓN DE SUELOS


Proyecto		Tramo	Tunal - Alisos		
Material	Material para estudio			Nº Ensayo	29
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	25-oct2016
Origen (Km.)	6+500	Pozo(Km.)	6+500	Realizado	Nestor Tarraga


		GI	RANULOMETRÍA				
Peso total seco (grs.)			500,0	Muestra pasa	tamiz Nº 4		500,0
Tamiz	Peso Retenido	Peso Retenido	% Retenido	% Retenido	% Que	Abertura	Especificaciones
Nº	Tamiz (grs.)	Acumulado (grs.)) Tamiz	Acumulado	Pasa	Mm.	Especificaciones
3"	0	0,0	0,0	0,0	100,0	76,20	
2"	0,0	0,0	0,0	0,0	100,0	50,80	
1"	0,0	0,0	0,0	0,0	100,0	25,40	
3/4"	0,0	0,0	0,0	0,0	100,0	19,05	
3/8"	0,0	0,0	0,0	0,0	100,0	9,525	
4	0,0	0,0	0,0	0,0	100,0	4,800	
10	4,7	4,7	0,9	0,9	99,1	2,000	
40	20,5	25,2	4,1	5,0	95,0	0,420	
200	99,2	124,4	19,8	24,9	75,1	0,074	

LIMIT	TES DE AT	TERBER	G (Límite Líquid	o) AASI	TOTE	89	
	Peso Suelo	Peso Suelo	Peso agua	Peso Tara	Peso	% de hum.	Nº de
Nº Tara					Suelo		
	Hum.+Tara	Seco+Tara			Seco		Golpes
88	36,23	30,47	5,76	15,59	14,88	38,71	12
4	40,51	33,80	6,71	15,34	18,46	36,35	23
29	39,42	33,45	5,97	15,63	17,82	33,50	34
LIMIT	TES DE AT	TERBER	G (Límite Plástic	o) AAS	нто т	-90	
9	20,00	19,14	0,86	15,79	3,35	25,67	

19,78

18,90

15,51 3,39

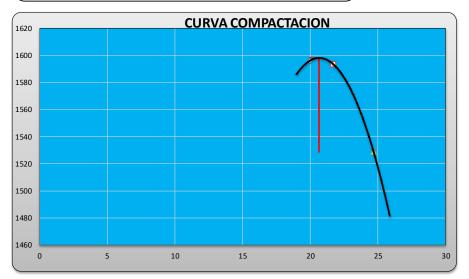
Límite Líquido 35,4 Límite Plástico 25,8 nindice de plasticidad 9,5 CLASIFICACIÓN AASHTO M 145

AASHTO A - 4 (8)

Indice de Grupo 8,00

Samuel Rocabado TECNICO DE LABORATORIO

SERVICIO DEPARTAMENTAL DE CAMINOS


LABORATORIO DE SUELOS Y MATERIALES

ENSAYO DE COMPACTACION

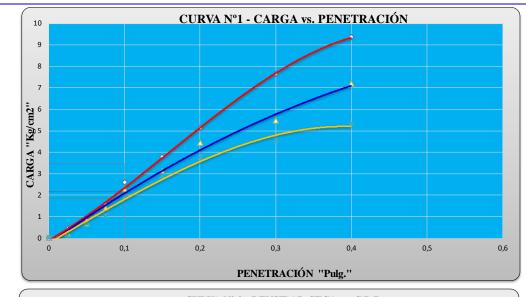
Proyecto			Tramo Tunal - Al	isos	
Material	Material para estudio			Ensayo	29
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	25-oct2016
Origen	6+500	Pozo (Km.)	6+500	Realizado	Nestor Tarraga

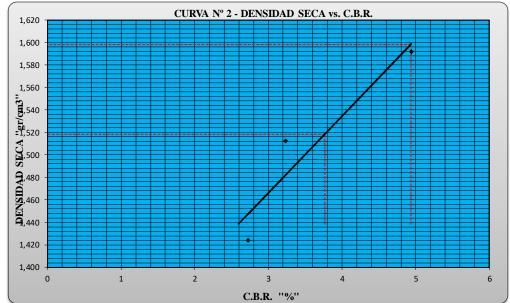
COM	1PACTA(CION		
Determinación Nº	Unidad	1	2	3
Nº Capas	Capas	5	5	5
Nº Golpes P/Capas	Golpes	56	56	56
Peso del Molde + Suelo Húmedo	gr.	6705,0	6757,0	6687,0
Peso del Molde	gr.	2659,0	2659,0	2659,0
Peso Suelo Húmedo	gr.	4046,0	4098,0	4028,0
Volumen del Molde	cc	2113,0	2113,0	2113,0
Peso Específico Húmedo	Kg./m3	1914,8	1939,4	1906,3
Cápsula No		30	3	8
Peso Cápsula + Suelo Húmedo	gr.	472,90	460,70	461,10
Peso Cápsula + Suelo Seco	gr.	412,30	396,60	388,90
Peso Agua	gr.	60,60	64,10	72,20
Peso Cápsula	gr.	108,80	101,10	96,40
Peso Suelo Seco	gr.	303,50	295,50	292,50
Contenido de Humedad	%	19,97	21,69	24,68
Densidad Suelo Seco	Kg./m3	1596,1	1593,7	1528,9

 Densidad Máxima =
 1598 Kg./m3

 Humedad Optima =
 20,7 %

OBSERVACIONES.-


Samuel Rocabado
TECNICO DE LABORATORIO



				ALIF	OKN.	IA BI	EARIN				<u>()</u>				
Proyecto							Tramo	Tunal	- Alisc	s		1			
Material			Material para	estudio								Ensayo		29	
Profundid	ad (m.)		0,5 , M			Estr	uctura		Subra	sante		Fecha		26-oct20	16
Origen (Kı	m.)		06+500			Pozo (K	m.)		6+	500		Realizado	Ne	stor Tar	raga
TAM	17		Nº 4	No	10	l N	o 40	l No	200	Т.		IP	,	CLA	ASIF.
% PA			00,0		9,1		5,0		5,1	35		9,5			4 (8)
ALCULAD	0:											<u> </u>		ı	
Molde Nº				1	3		13		14	1	4	15	5	1	15
Nº de Capa	as				5		5		5		5	5			5
Nº de Golp		a		5	6		56		25	2	:5	12	2	1	12
Condición o					mbeber		Embeb.		Embeber	Desp. I		Antes Er		Desp.	
		eda+Molde	(grs.)		267		491		592	107		964			022
Peso Mold	le (grs.)			72	20	7:	220	6	746	67	46	606	60	60	060
Peso Mues	stra Húm	eda (grs.)		40	147	4:	271	3	846	39	69	358	32	39	962
Volumen d	le la mue	stra (cm3)		21	13	2	113	2	113	21	13	209	90	20	90
Densidad F	Húmeda ((grs./cm3)		1,9	915	2,	021	1,	820	1,8	378	1,7	14	1,8	896
				COI	MPAC'	TACIO	ÒN Y E	MBEE	IMIEN	<u>ITO</u>					
				Comp	actado	Emb	oebido	Comp	actado	Emb	ebido	Compa	ctado	Emb	ebido
Tara Nº				3	0		0	:	31	()	33	3		0
Peso Suelo	o Húmed	o+Tara		413	3,60	0	,00	38	5,70	0,	00	384,	10	0,	00
Peso Suelo	o Seco +	Tara		362	2,80	0	,00	34	0,20	0,	00	338,	70	0,	00
Peso Agua	a			50	,80	0	,00	45	5,50	0,	00	45,4	40	0,	00
Peso Tara	1			112	2,80	0	,00	11	6,70	0,	00	115,	80	0,	00
Peso Suelo	o Seco			250	0,00	0	,00	22	3,50	0,	00	222,	90	0,	00
% de Hume	edad			20	,32	26	6,98	20),36	24	,21	20,3	37	33	,14
		beta (grs./ci	_	1,5	592	1,	592		512	1,5		1,42			424
		.aboratorio (grs./cm3)		598		598		598		598	1,59			598
% De Con	npactació	on		99	9,6	9	9,6	9	4,6	94	,6	89,	.1	89	9,1
				DET	ERMI	NACIO	<u>ÓN DE</u>	LA EX	XPANS	<u>IÓN</u>					
Fech	ia	Hora	Obs.	Lect	mm	% Ex	pansión	Lect,.	mm	% Ехр	ansión	Lect,.	mm	% Exp	ansión
25-oct-	-16			0				0				0			
26-oct-	-16			340	3,4	2,9	93 %	374	3,74	3,22	2 %	456	4,56	3,9	3 %
			Factor Arc	5000									% Exp	o. Tota	3,4
PEN	NETRACI	ÓN	Carga	Lect.	Carga (l	(g/cm2)	%	Lect.	Carga (l	(g/cm2)	%	Lect.	Carga	(Kg/cm2)	%
Min.	Pulg.	Mm.	Kg./cm2	Dial	Calc.	Correg.	C.B.R.	Dial	Calc.	Correg.	C.B.R,.		Calc.	Correg	C.B.R
	0,025	0,64		8	0,4			4	0,2			3	0,2		
1,0	0,050	1,27		16	0,8			13	0,7			13	0,7		
1,5	0,075	1,91		30	1,6			27	1,4			20	1,0		
	0,100	2,54	70,3	50	2,6	3,5	4,9	44	2,3	2,3	3,2	37	1,9	1,9	2,7
	0,150	3,81		73	3,8			60	3,1	<u> </u>		56	2,9		
	0,200	5,08	105,5	99	5,1	5,1	4,8	86	4,4	4,4	4,2	73	3,8	3,8	3,6
	0,300	7,62		148	7,6			106	5,5			88	4,5		
	0,400	10,16		181	9,4		 	139	7,2	<u> </u>		102	5,3		
10,0	0,500	12,70		0	0,0		<u> </u>	0	0,0			0	0,0		
1					-	•		-	•	•		_	•		

TECNICO DE LABORATORIO RESP. LAB. SUELOS Y ASFALTOS

 DENS. AL 90%: 1,438 gr/cm3
 C.B.R.. AL 90%: 2.6

 DENS. AL 95%: 1,518 gr/cm3
 C.B.R.. AL 95%: 3,8
 N° 29

 DENS. AL 100%: 1,598 gr/cm3
 C.B.R.. AL 100%: 4,9

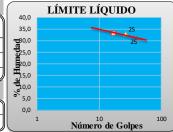
 EXP. AL 95%: 3,2
 EXP. AL 100%: 2,9

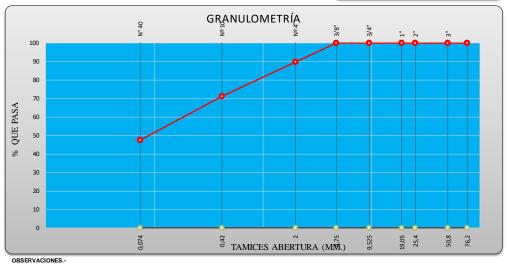
Samuel Rocabado Ing. Luis Vargas

Samuel Rocabado TECNICO DE LABORATORIO

RESP. LAB. SUELOS Y ASFALTOS

SERVICIO DEPARTAMENTAL DE CAMINOS LABORATORIO DE SUELOS Y MATERIALES


CLASIFICACIÓN DE SUELOS


Proyecto		Tramo	Tunal - Alisos		
Material	Material para estudio			Nº Ensayo	30
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	26-oct2016
Origen (Km.)	7+000	Pozo(Km.)	7+000	Realizado	Nestor Tarraga

_		GR	ANULOMETRÍA				
Peso total seco (grs.)			500,0	Muestra pasa	tamiz Nº 4		466,2
Tamiz	Peso Retenido	Peso Retenido	% Retenido	% Retenido	% Que	Abertura	F:
Nº	Tamiz (grs.)	Acumulado (grs.)	Tamiz	Acumulado	Pasa	Mm.	Especificaciones
3"	0	0,0	0,0	0,0	100,0	76,20	
2"	0,0	0,0	0,0	0,0	100,0	50,80	
1"	0,0	0,0	0,0	0,0	100,0	25,40	
3/4"	0,0	0,0	0,0	0,0	100,0	19,05	
3/8"	0,0	0,0	0,0	0,0	100,0	9,525	
4	0,0	0,0	0,0	0,0	100,0	4,800	
10	47,7	47,7	10,2	10,2	89,8	2,000	
40	86,7	134,4	18,6	28,8	71,2	0,420	
200	110,5	244,9	23,7	52,5	47,5	0,074	

Nº Tara	Peso Suelo	Peso Suelo	Peso agua	Peso Tara	Peso Suelo	% de hum.	Nº de
	Hum.+Tara	Seco+Tara			Seco		Golpes
1	36,71	31,46	5,25	15,67	15,79	33,25	17
14	34,74	30,09	4,65	15,97	14,12	32,93	27
2	31,52	27,83	3,69	15,93	11,90	31,01	38
LIMI	TES DE AT	TERBER	RG (Límite Plástic	o) AAS	нто т	-90	
9	23,13	21,80	1,33	15,79	6,01	22,13	
13	23,25	21,91	1,34	15,90	6,01	22,30	22,21

LIMITES DE ATTERBERG (Límite Líquido) AASHTO T- 89

Límite Líquido

32,5

Límite Plástico

22,2

indice de plasticidad

10,3

CLASIFICACIÓN AASHTO M 145

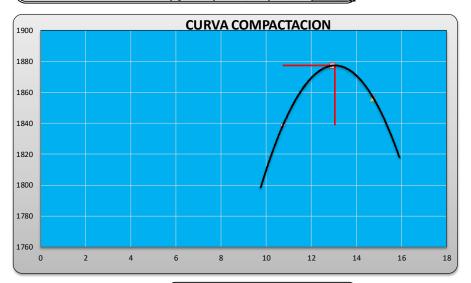
AASHTO

A - 4 (3)

Indice de Grupo 2,59

Samuel Rocabado
TECNICO DE LABORATORIO

SERVICIO DEPARTAMENTAL DE CAMINOS


LABORATORIO DE SUELOS Y MATERIALES

ENSAYO DE COMPACTACION

Proyecto			Tramo Tunal - Al	isos	
Material	Material para estudio			Ensayo	30
Profundidad (m.)	0,5 , M	Estructura	Subrasante	Fecha	26-oct2016
Origen	7+000	Pozo (Km.)	7+000	Realizado	Nestor Tarraga

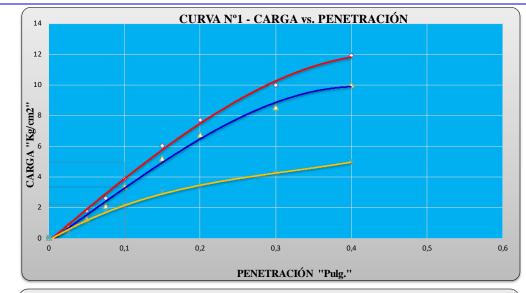
COM	MPACTA(CION		
Determinación №	Unidad	1	2	3
Nº Capas	Capas	5	5	5
Nº Golpes P/Capas	Golpes	56	56	56
Peso del Molde + Suelo Húmedo	gr.	7510,0	7684,0	7705,0
Peso del Molde	gr.	3274,0	3274,0	3274,0
Peso Suelo Húmedo	gr.	4236,0	4410,0	4431,0
Volumen del Molde	CC	2080,0	2080,0	2080,0
Peso Específico Húmedo	Kg./m3	2036,5	2120,2	2130,3
Cápsula No		8	6	9
Peso Cápsula + Suelo Húmedo	gr.	234,00	219,00	167,00
Peso Cápsula + Suelo Seco	gr.	214,00	197,00	149,00
Peso Agua	gr.	20,00	22,00	18,00
Peso Cápsula	gr.	28,00	27,00	27,00
Peso Suelo Seco	gr.	186,00	170,00	122,00
Contenido de Humedad	%	10,75	12,94	14,75
Densidad Suelo Seco	Kg./m3	1838,8	1877,3	1856,4

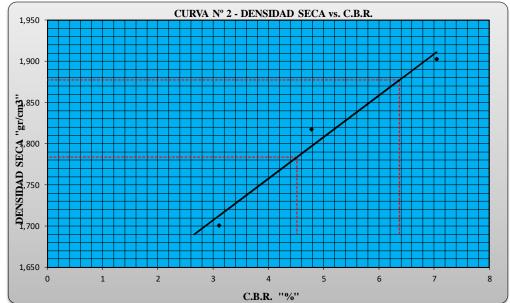
 Densidad Máxima =
 1877 Kg./m3

 Humedad Optima =
 13,1 %

OBSERVACIONES.-

Samuel Rocabado
TECNICO DE LABORATORIO


TECNICO DE LABORATORIO


SERVICIO DEPARTAMENTAL DE CAMINOS

RESP. LAB. SUELOS Y ASFALTOS

Origen (Km.) 07+000 Pozo (Km.) 7+000 Resizado Nestor Tarraga TAMIZ Nº 4 Nº 10 Nº 40 Nº 200 LL IP CLASIF. % PASA 100,0 89,8 71,2 47,5 32,5 10,3 A - 4 (3) ALCULADO: Midde N° 43 43 44 44 45 45 N° de Capas 5 5 5 5 5 5 5 5 N° de Capas 56 56 55 5				C	ALIF	ORN	IA BI	EARIN			-	(.)				
Profundidad (m.)							1	Tramo	Tunal	- Alisc	S					
Origen (Km.) 07+000 Poze (Km.) 7+000 Realizado Nestor Tarraga TAMIZ Nº 4 № 10 № 40 № 200 LL IP CLASIF. % PASA 100,0 89,8 71,2 47,5 32,5 10,3 A - 4 (3) ALCULADO: Mindóle N° 43 43 44 44 45 45 N° de Capas 5 5 5 5 5 5 5 N° de Capas 5 6 6 25 25 12 12 N° de Capas 5 6 6 25 25 12 12 14 N° de Capas 5 5 5 5 5 5 5 5 Peso Buseita Húmeda (str.) 4031 10613 10647 10822 11093 11481 Peso Museitra Húmeda (grs.) 4525 4757 4342 4517 4157 4575 Volumen de la muestra (cmó) 2,105 2,205	Materia	I			estudio		1						Ensayo			
TAMIZ N° 4 N° 10 N° 40 N° 200 LL IP CLASIF. % PASA 100.0 89.8 71.2 47.5 32.5 10.3 A - 4 (3) ACULADO: Mode N° 43 43 44 44 45 45 N° de Capas 5	Profunc	didad (m.)											Fecha			
Separation Sep	Origen	(Km.)		07+000			Pozo (K	m.)		7+0	000		Realizado	Ne	stor Tar	raga
Mode N°	TA	MIZ		Nº 4	Nº	10	N	o 40	Nº	200	L	L	IP		CLA	ASIF.
Modelon Mod	% F	PASA		100,0	89	9,8	7	1,2	4	7,5	32	,5	10,	3	Α -	4 (3)
Nº de Capas So So So So So So So S	ALCUL	ADO:														
Nº de Golpes / Capa S6 S6 S5 S5 S5 S7 Antes Embeber Desp. Embeb. Ant	Molde N	10			4	13		43	•	14	4	4	45	5	4	45
Antes Embeber Desp. Embeb. Antes Embeber Desp. Embeb. De	Nº de Ca	apas			,	5		5		5		5	5			5
Peso Muestra Húmeda+Molde (grs.)					5	6			:	25	2	5	12	2		
Peso Molde (grs.)							· ·				-				· ·	
Peso Muestra Húmeda (grs.) 4525 4757 4342 4517 4157 4575 Volumen de la muestra (cm/3) 2100 2100 2112 2112 2115 2155 2155 2155 2155 2155 2155 2255 2,056 2,139 1,929 2,123 COMPACTACIÓN Y EVIBEBIMIENTO Compactado Embebido Compactado Embebido Compactado Embebido Compactado Embebido Compactado Embebido Tara № 61 0 51 0 44 0 Peso Suelo Húmedo+Tara 227,000 0,000 228,000 0,000 239,000 0,000 239,000 0,000 Peso Agua 22,000 0,000 24,000 25,000 0,000 27,000 0,000 Peso Tara 39,000 0,000 41,000 0,000 27,000 0,000 Peso Tara 39,000 0,000 41,000 0,000 27,000 0,000 28,000 0,000 27,000 0,000 28,000 0,000 27,000 0,000 28,000 0,000 28,000 0,000 28,000 28,000 0,000 27,000 0,000 28,000 0,000 27,000 0,000 28,000 0,000 28,000 28,000 0,000 28,00			eda+Molde	(grs.)			-									
Volumen de la muestra (cm3) 2100 2100 2112 2112 2155							1				1				1	
Compactado Embebido Compactado											-					
COMPACTACIÓN Y EMBEBIMIENTO Compactado Embebido Compactado Compacta											-					
Compactado Embebido Compactado Compactado Embebido Compactado Embebido Compactado	Densida	d Humeda	grs./cm3)									39	1,92	29	2,	123
Tara № 61 0 51 0 44 0 Peso Suelo Húmedo+Tara 227,00 0,00 265,00 0,00 266,00 0,00 Peso Suelo Seco + Tara 205,00 0,00 239,00 0,00 239,00 0,00 Peso Tara 39,00 0,00 41,00 0,00 38,00 0,00 Peso Suelo Seco 166,00 0,00 41,00 0,00 201,00 0,00 We Humedad 13,25 19,06 13,13 17,69 13,43 24,84 Densidad Maxima Laboratorio (grs./cm3) 1,903 1,877<												obido	Compo	otodo	Emb	obido
Peso Suelo Húmedo+Tara	Toro NO						EIIII		_							
Peso Suelo Seco + Tara 205,00 0,00 239,00 0,00 239,00 0,00 239,00 0,00 27,00 0,00 Peso Agua 22,00 0,00 28,00 0,00 27,00 0,00 Peso Tara 39,00 0,00 41,00 0,00 38,00 0,00 201,00 0,00 Peso Suelo Seco 166,00 0,00 198,00 0,00 201,00 0,00 201,00 0,00 Peso Suelo Seco 166,00 13,13 17,69 13,43 24,84 Pensidad Seca Probeta (grs./cm3) 1,903 1,903 1,817 1,817 1,817 1,817 1,877		iolo Húmod	o+Tara				0				_				1	
Peso Agua							-				· ·					
Peso Tara 39,00			Tala			,	-			-,	<u> </u>					
Peso Suelo Seco 166,00 0,00 198,00 0,00 201,00 0,00 % de Humedad 13,25 19,06 13,13 17,69 13,43 24,84 Densidad Seca Probeta (grs./cm3) 1,903 1,903 1,817 1,817 1,701 1,701 Densidad Máxima Laboratorio (grs./cm3) 1,877																
% de Humedad 13,25 19,06 13,13 17,69 13,43 24,84 Densidad Seca Probeta (grs./cm3) 1,903 1,903 1,817 1,817 1,701 1,701 Densidad Máxima Laboratorio (grs./cm3) 1,877 1,872 1,872 1,872 <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>											<u> </u>					
Densidad Seca Probeta (grs./cm3) 1,903 1,903 1,817 1,817 1,701 1,701 1,701							-				<u> </u>					
DETERMINACIÓN DE LA EXPANSIÓN DETERMINACIÓN DE LA EXPANSIÓN	Densida	d Seca Pro	beta (grs./c	m3)			1				1					
PENETRACIÓN Carga Lect. Carga (Kg/cm2) % Lect. Lect. Lect. Carga (Kg/cm2) % Lect. Lec															1,/	877
Fecha Hora Obs. Lect. mm % Expansión Lect, mm % Expansión Lect, mm % Expansión Lect, mm % Expansión 26-oct-16 0 276 2,8 2,38 % 321 3,21 2,77 % 389 3,89 3,35 % Factor Aro 5000 % Exp. Tota 2,8 2,38 % 321 3,21 2,77 % 389 3,89 3,35 % Factor Aro 5000 % Exp. Tota 2,9 PENETRACIÓN Carga Lect. Carga (Kg/cm2) % Lect. Carga (Kg/cm2) % Min. Pulg. Mm. Kg./cm2 Dial Calc. Correg. C.B.R. C.B.R. Calc. Correg. C.B.R. Calc. Calc. Correg. C.B.R. 11 0,6 0,0 </td <td>% De C</td> <td>Compactacio</td> <td>ón</td> <td></td> <td>10</td> <td>1,3</td> <td>10</td> <td>01,3</td> <td>9</td> <td>6,8</td> <td>96</td> <td>,8</td> <td>90,</td> <td>6</td> <td>90</td> <td>0,6</td>	% De C	Compactacio	ón		10	1,3	10	01,3	9	6,8	96	,8	90,	6	90	0,6
26-oct-16 0 276 2,8 2,38 % 321 3,21 2,77 % 389 3,89 3,35 %					DET	ERMI	NACIO	ÓN DE	LA E	YPANS	<u>IÓN</u>					
27-oct-16 276 2,8 2,38 % 321 3,21 2,77 % 389 3,89 3,35 %	Fe	cha	Hora	Obs.	Lect	mm	% Ex	pansión	Lect,.	mm	% Ехр	ansión	Lect,.	mm	% Exp	ansión
PENETRACIÓN Carga Lect. Carga (Kg/cm2) % Lect. Lect. Carga (Kg/cm2) % Lect. Lect.																
PENETRACIÓN Carga Lect. Carga (Kg/cm2) % Lect. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	27-0	oct-16			276	2,8	2,3	38 %	321	3,21	2,7	7 %	389	3,89	3,3	5 %
Min. Pulg. Mm. Kg./cm2 Dial Calc. Correg. C.B.R. Dial Calc. Correg. C.B.R. 0,5 0,025 0,64 15 0,8 111 0,6 6 0,3 111 0,6 6 0,3 111 0,0 111 0,6 6 0,3 111 0,0 1,0 1,0 1,0 1,0 1,0 1,1 <td></td> <td></td> <td></td> <td>Factor Arc</td> <td>5000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>% Exp</td> <td>p. Total</td> <td>2,</td>				Factor Arc	5000									% Exp	p. Total	2,
0.5 0,025 0,64 15 0,8 11 0,6 6 0,3 1,0 0,050 1,27 34 1,8 24 1,2 21 1,1 1,5 0,075 1,91 50 2,6 40 2,1 34 1,8 2,0 0,100 2,54 70,3 75 3,9 4,9 7,0 65 3,4 3,4 4,8 41 2,1 2,2 3,1 3,0 0,150 3,81 116 6,0 100 5,2 58 3,0 4,0 0,200 5,08 105,5 149 7,7 7,7 7,3 130 6,7 6,4 65 3,4 3,4 3,2 6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8 8,0 0,400 10,16 230 11,9 193 10,0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td>· ·</td><td></td><td></td><td>-</td><td>· ·</td><td></td><td>Lect.</td><td></td><td></td><td></td></td<>				_			· ·			-	· ·		Lect.			
1,0 0,050 1,27 34 1,8 24 1,2 21 1,1 1,1 1,5 0,075 1,91 50 2,6 40 2,1 34 1,8 22 3,4 3,4 1,8 34 1,8 41 2,1 2,2 3,1 3,0 3,0 3,8 1,1 1,2 1,1				Kg./cm2			Correg.	C.B.R.			Correg.	C.B.R,.	_		Correg	C.B.R.
1,5 0,075 1,91 50 2,6 40 2,1 34 1,8 2,0 0,100 2,54 70,3 75 3,9 4,9 7,0 65 3,4 3,4 4,8 41 2,1 2,2 3,1 3,0 0,150 3,81 116 6,0 100 5,2 58 3,0 58 3,0 4,0 0,200 5,08 105,5 149 7,7 7,7 7,3 130 6,7 6,7 6,4 65 3,4 3,4 3,2 6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0 0 0 0													-		<u> </u>	<u> </u>
2,0 0,100 2,54 70,3 75 3,9 4,9 7,0 65 3,4 3,4 4,8 41 2,1 2,2 3,1 3,0 0,150 3,81 116 6,0 100 5,2 58 3,0 1 4,0 0,200 5,08 105,5 149 7,7 7,7 7,3 130 6,7 6,7 6,4 65 3,4 3,4 3,2 6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0 0,0 0 0 0,0							1			_	1				 	
3.0 0,150 3,81 116 6,0 100 5,2 58 3,0 4,0 0,200 5,08 105,5 149 7,7 7,7 7,3 130 6,7 6,7 6,4 65 3,4 3,4 3,2 6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0,0 0 0 0,0				70.2			4.0	7.0			2.4	4.0			2.0	2.4
4,0 0,200 5,08 105,5 149 7,7 7,7 7,3 130 6,7 6,7 6,4 65 3,4 3,4 3,2 6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0,0 0 0 0 0,0				10,3			4,8	7,0			3,4	4,0			۷,۷	3,1
6,0 0,300 7,62 193 10,0 165 8,5 82 4,2 8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0,0 0 0,0				105.5			77	7.3			6.7	6.4			3.4	3.2
8,0 0,400 10,16 230 11,9 193 10,0 96 5,0 10,0 0,500 12,70 0 0,0 0 0,0 0 0,0				.50,0			.,,,	.,0			5,7	0,7			5,7	5,2
10,0 0,500 12,70 0 0,0 0 0,0 0 0,0															\vdash	
Observaciones						5,0		<u> </u>		5,0	<u> </u>		<u> </u>	5,0		
)bserv	aciones														

DENS. AL 90%: 1,690 gr/cm3
DENS. AL 95%: 1,783 gr/cm3
DENS. AL 100%: 1,877 gr/cm3
EXP. AL 95%: 2,9

C.B.R.. AL 90%: 2,7 C.B.R.. AL 95%: 4,5 C.B.R.. AL 100%: 6,4 EXP. AL 100%: 2,5

N° 30

Samuel Rocabado TECNICO DE LABORATORIO

16

4.4.- CALIBRACION DE LA ECUACIONES DEL MÉTODO MECANICISTA

La calibración de las ecuaciones que se utilizan en el método mecanístico del

programa KENPAV son:

Ecuaciones utilizadas son:

Calculo del trafico

$$N = 365 * MJA * (\frac{(1+i)^n - 1}{i})$$

Donde:

MJA: Numero de Vehículos Pesados.

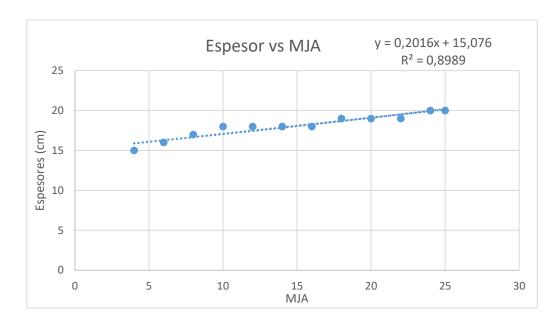
n: Periodo de Diseño (años).

i: Tasa de Crecimiento Anual (%).

CAM: Coeficiente de Agresión Media.

La ecuación del cálculo del tráfico se hace variar el número de vehículos pesados

para calcular el espesor de la subrasante luego en la información de la estructura se hace


variar el módulo de elasticidad dándonos diferentes espesores.

Con la ecuación por regresión lineal calculada hacemos variar el número de

vehículos pesados nos da como resultados los espesores

$$y = 0.2016x + 15,076$$

 $R^2 = 0.8989$

MJA	ESPESORES
	(cm)
4	15
6	16
8	17
10	18
12	18
14	18
16	18
18	19
20	19
22	19
24	20
25	20

a. Parámetros de diseño utilizados

Parámetros de Diseño Utilizados						
Radio de Contacto	Presión de Contacto	Distancia entre Ejes	# Posiciones Eje			
0.662	0.125	0.375	3			

Datos Estructurales del programa KENPAV

N°	Tipo		E (MPa)	ν	H (m)
1 CAP	A ASFALTICA		5400	0.15	0.04
2 BASE	E GRANULAR		600	0.15	D
3 GRA	VA NO TRATADA		125	0.15	0.2
4 SUB-	-RASANTE	7	50	0.15	

En esta parte como podemos observar tenemos los datos estructurales:

- E: Es el módulo de elasticidad del material en MPa.
- v: Es el coeficiente de poisson del material.
- H: Es el espesor de la capa dado en m.

Ecuaciones (Esfuerzos y Deformaciones)

$$\sigma_{z, adm} = \sigma_6 * \left(\frac{NE}{1 * 10^6}\right)^b * Kc. Kd. Kr. Ks$$

$$\varepsilon_{z, adm} = \varepsilon_6 * \left(\frac{NE}{1 * 10^6}\right)^b * \sqrt{\frac{E(10 \circ C)}{E(15 \circ C)}} * Kc. Kr. Ks$$

$$\varepsilon_{z, ap} = A * (NE)^{-0.222}$$

$$\sigma_{z, ap} = \sigma_6 * \left(\frac{NE}{1 * 10^6}\right)^b$$

Ecuaciones (Kr, delta)

$$Kr = 10^{-U.b.\delta}$$

$$\delta = \sqrt{(SN)^2 + (\frac{c.Sh}{b})^2}$$

Donde:

ε_{z, adm}: deformación en la base admisible

 ϵ_6 : deformación a un millón de solicitaciones con 50%, a 10°C y 25 Hz

NE: número de ejes equivalentes

E: módulo de elasticidad

K_c: coeficiente de ajuste de calibración

K_r: coeficiente de ajuste de riesgo

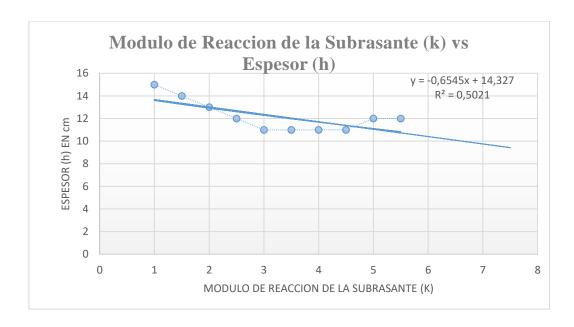
K_s: coeficiente de ajuste de la subrasante

σ_{z, adm}: esfuerzo de tracción en la base admisible

 σ_6 : esfuerzo de tracción en la base para un millón de repeticiones

k_d: coeficiente de ajuste de las discontinuidades en la capa base

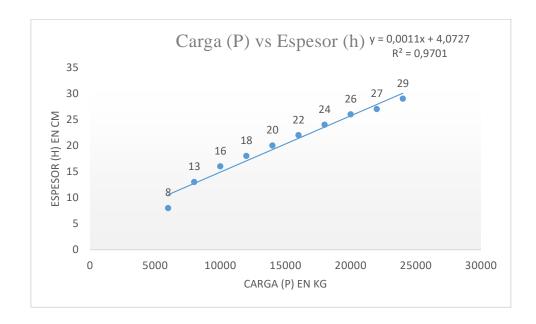
 $\epsilon_{z, ap}$: deformación vertical admisible


Calibrando la ecuación de Westergaard

Haciendo variar primero el módulo de reacción de la subrasante (k) y todos los demás datos son constantes nos muestra lo siguiente:

$$S = \frac{3 * P}{h^2} (1 - (\frac{a * \sqrt{2}}{l})^{0.6})$$

$$l = \sqrt[4]{\frac{E * h^3}{12 * (1 - u^2) * k}}$$


P (kg)	S (kg/cm2)	a (cm)	E (kg/cm2)	u	k (kg/cm2)	h (cm)
8200	45	25	213546	0,15	1	15
8200	45	25	213546	0,15	1,5	14
8200	45	25	213546	0,15	2	13
8200	45	25	213546	0,15	2,5	12
8200	45	25	213546	0,15	3	11
8200	45	25	213546	0,15	3,5	11
8200	45	25	213546	0,15	4	11
8200	45	25	213546	0,15	4,5	11
8200	45	25	213546	0,15	5	12
8200	45	25	213546	0,15	5,5	12

Ahora hacemos variar la carga (P)

P (kg)	S	a (cm)	E (kg/cm2)	u	k (kg/cm2)	h (cm)
	(kg/cm2)					

6000	45	25	213546	0,15	2	8
8000	45	25	213546	0,15	2	13
10000	45	25	213546	0,15	2	16
12000	45	25	213546	0,15	2	18
14000	45	25	213546	0,15	2	20
16000	45	25	213546	0,15	2	22
18000	45	25	213546	0,15	2	24
20000	45	25	213546	0,15	2	26
22000	45	25	213546	0,15	2	27
24000	45	25	213546	0,15	2	29

4.5.- SUBRASANTE MEJORADA

Su comportamiento como suelos de subrasante es muy variable, malo en estado saturado, hasta regular cuando está consolidado.

Las características más importantes de la subrasante mejorada para estos suelos arcillosos pueden ser:

- El comportamiento de suelos de subrasante es variable, desde regular en estado normalmente consolidado, hasta bueno o muy bueno en estado de pre consolidación muy alta.
- Poseen un grado de compresibilidad muy variable.
- Generalmente presentan baja permeabilidad.
- Las deformaciones que eventualmente se producen son a largo plazo.

la subrasante está formada por suelos finos, suelos arcillosos y limosos de baja a media plasticidad, estos suelos corresponden a suelos de los grupos A-4, A-6 y A-7.; en los tramos donde presenta la subrasante este tipo de suelos, deben ser cambiadas o mejoradas con otro tipo de suelos.

Los ensayos realizados para obtener el valor del espesor son la granulometría, límites de atterberg, compactación y el CBR. Con el valor del CBR entrando a la gráfica 1 encontramos el valor del módulo de reacción de la subrasante k.

Para mejorar el espesor de la subrasante vamos a incluir material granular al suelo para obtener un valor mejor del CBR y poder aplicar en los métodos para obtener el espesor.

- Aumentado un CBR del 10%, con el valor del CBR del 10% entramos a la gráfica 1 y sacar el valor de k para poder reemplazar en los métodos y así poder obtener un valor del espesor de la subrasante y encontramos que los valores para los diferentes métodos nos dan:
 - Westergaard de 23 cm, Pickett de 8 cm, Bradbury de 15 cm y Kelley de 22 cm; el espesor utilizado es de 23 cm para mayor seguridad. Vemos una mejora del espesor que a escavar en cada uno de los tramos mejora en un 13% del material.
- Aumentado un CBR del 15%, con el valor del CBR del 15% entramos a la gráfica 1 y sacar el valor de k para poder reemplazar en los métodos y así poder obtener un valor del espesor de la subrasante y encontramos que los valores para los diferentes métodos nos dan:

Westergaard de 25 cm, Pickett de 9 cm, Bradbury de 16 cm y Kelley de 23cm; el espesor utilizado es de 25 cm para mayor seguridad. Vemos una mejora del espesor que a escavar en cada uno de los tramos mejora en un 20% del material.

CBR (%)	Westergaard (cm)	Pickett (cm)	Bradbury (cm)	Kelley (cm)
10	23	8	15	22
15	25	9	16	23

En valor de la subrasante incluyendo material granular al suelo con un CBR del 10% y 15% obtenemos una mejora de la subrasante de 13% y 20% respectivamente, los valores para el espesor son de 23 cm para un cbr del 10% y 25 cm para un cbr del 15%.

4.6.- APLICACIÓN DE LOS MÉTODOS MECANÍCISTAS

Para la aplicación del método mecanícista vamos a utilizar el programa llamado Kenpav que es el de Diseño Racional de Pavimentos.

4.6.1 KENPAV

A continuación, se presentan las características de los datos de entrada del programa KENPAV:

Una vez abierto KENPAV, los menús presentados en la parte superior de la pantalla son: "Archivo"; "Editar", "Diseño" y "Ayuda". El primero "Archivo", contiene todas las funciones inherentes al manejo de documentos, nuevo diseño; abrir

diseño; guardar proyecto y cierre del programa. El Menú "Editar" permite copiar, cortar pegar. El Menú "Diseño" permite calcular el tráfico y modificar los parámetros de diseño. Finalmente, el menú "Ayuda" contiene un acceso para desplegar ayuda en línea y también información adicional sobre el desarrollo del programa. La pantalla inicial de KENPAV se muestra a continuación:

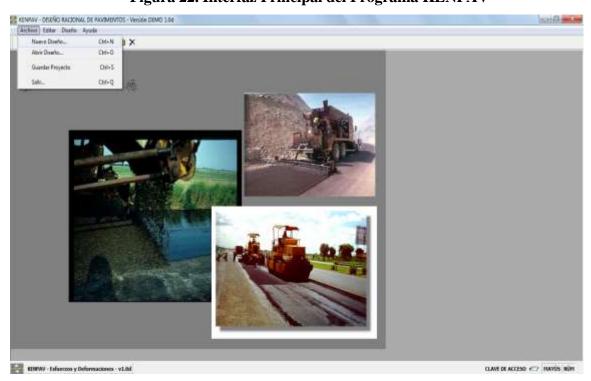
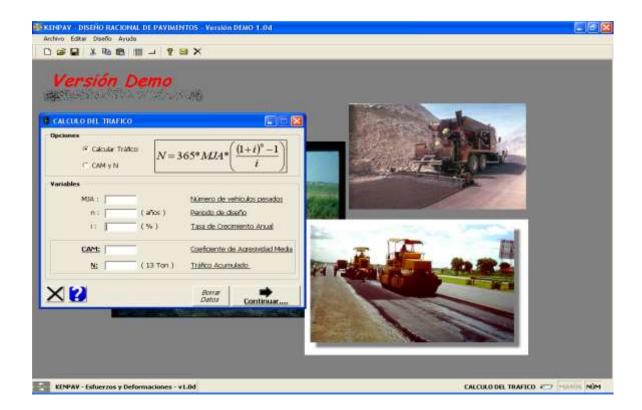



Figura 22. Interfaz Principal del Programa KENPAV

Figura 23. Calculo del Tráfico

Los datos de entrada son los siguientes:

El programa nos da la opción de calcular el tráfico con las siguientes variables:

- a. MJA: Numero de Vehículos Pesados.
- b. n: Periodo de Diseño (años).
- c. i: Tasa de Crecimiento Anual (%).
- d. CAM: Coeficiente de Agresión Media.

Estas variables están desarrolladas en las páginas 59 y 560 del Capítulo 3 del presente trabajo.

O bien podemos insertar directamente el tráfico acumulado y obviar los anteriores datos.

Posteriormente elegimos el tipo de estructura:

Figura 24. Tipo de estructura – Con Transito Bajo (Carpeta Asfáltica)

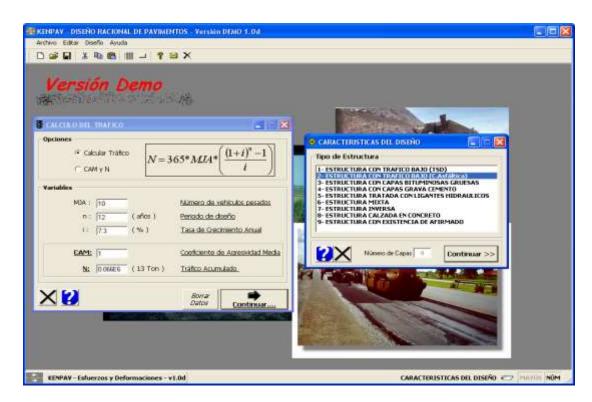
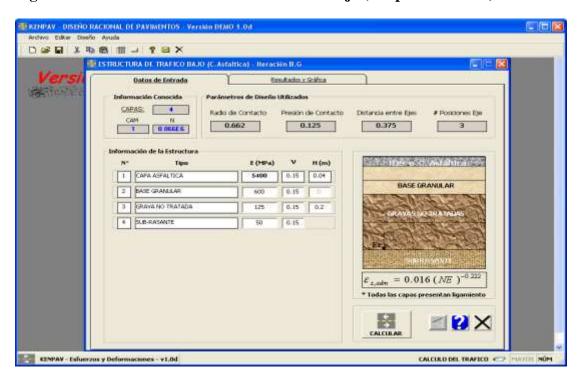



Figura 25. Interfaz - Estructura con Transito Bajo (Carpeta Asfáltica) KENPAV

Esta parte contiene:


a. Información conocida

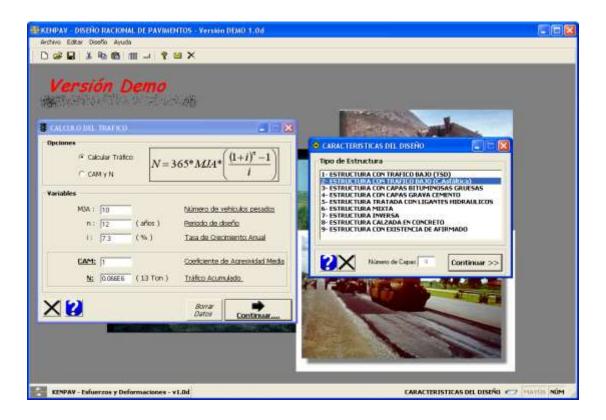
b. Parámetros de diseño utilizados

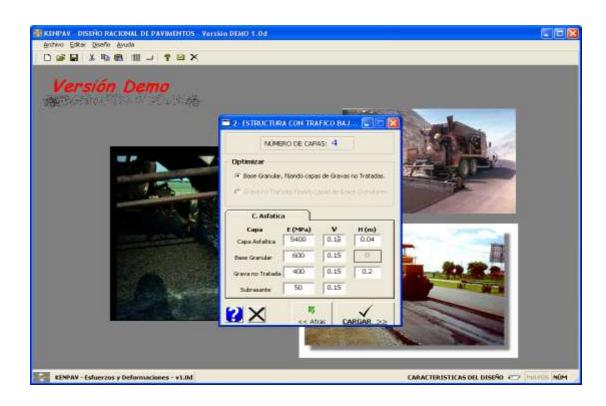
Figura 26. Datos Estructurales del programa KENPAV

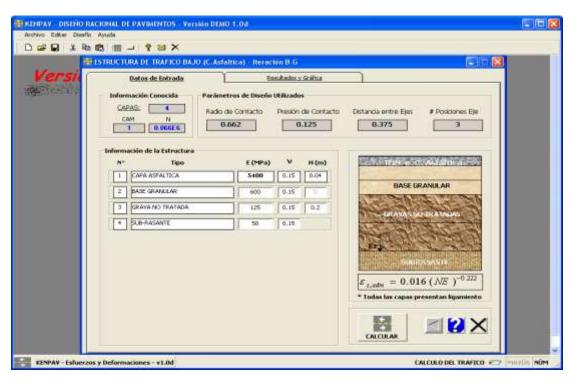
En esta parte como podemos observar tenemos los datos estructurales:

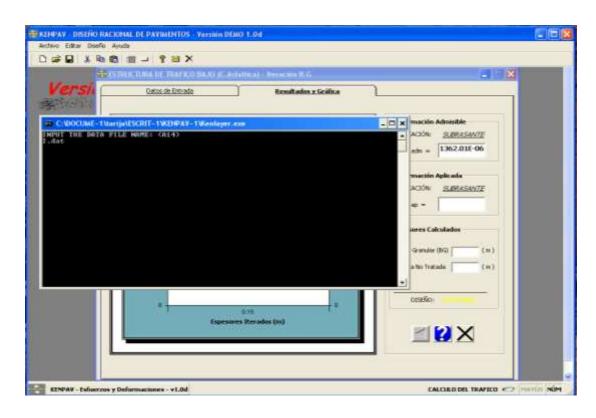
- E: Es el módulo de elasticidad del material en MPa.
- v: Es el coeficiente de poisson del material.
- H: Es el espesor de la capa dado en m.

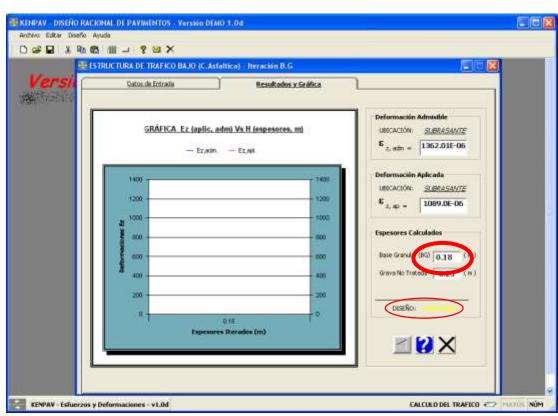
Para El Diseño Según Kenpav, Los Datos Necesarios Son Los Siguientes:

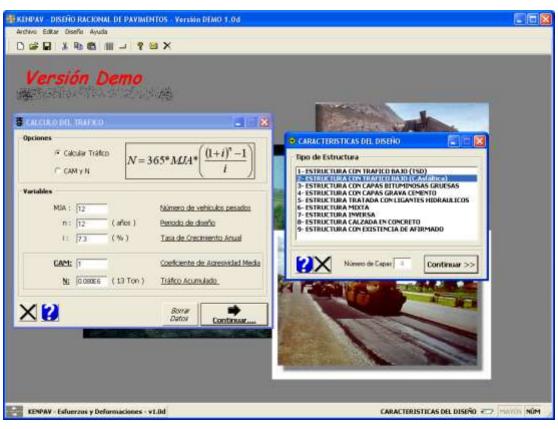

Tramo Santa Ana - Yesera

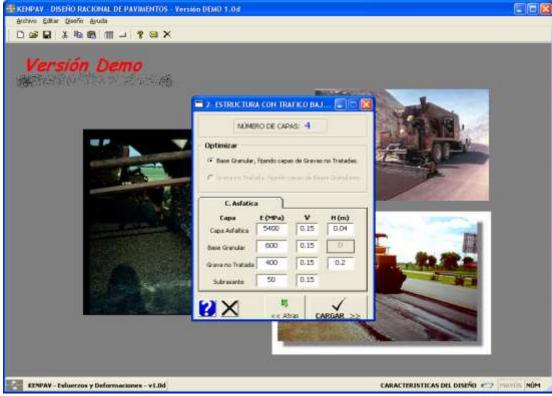

MJA= 10 veh/dia

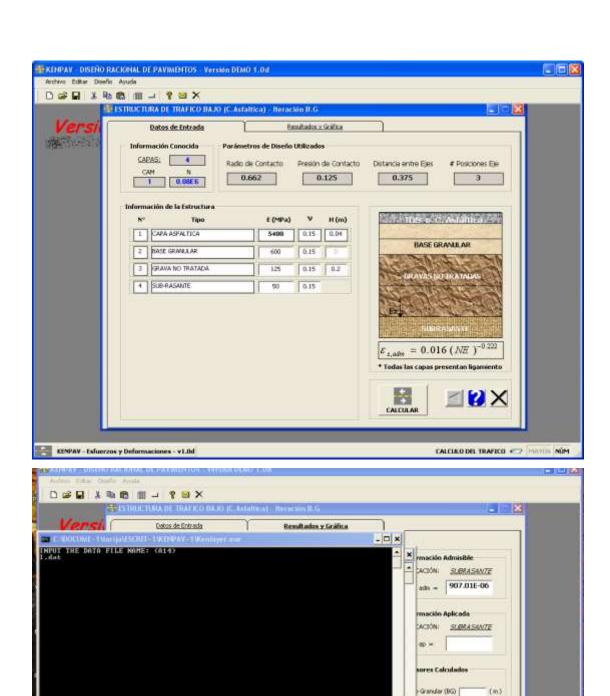

Tasa de crecimiento anual = 7.3%


Periodo de diseño = 12 años


Coeficiente de Agresividad Media = 1


Tramo Tolomosa – Pampa Redonda

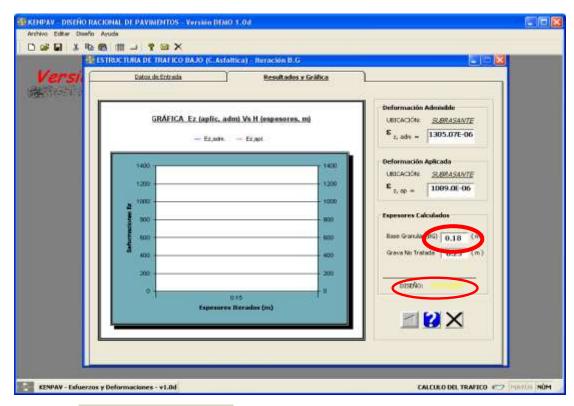

MJA= 12 veh/dia


Tasa de crecimiento anual = 7.3%

Periodo de diseño = 12 años

Coeficiente de Agresividad Media = 1

KENPAV - Esfuerzos y Deformaciones - v1.0d

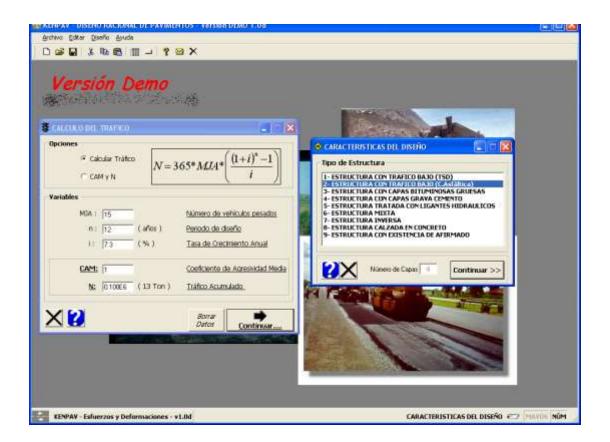

ra No Tratada

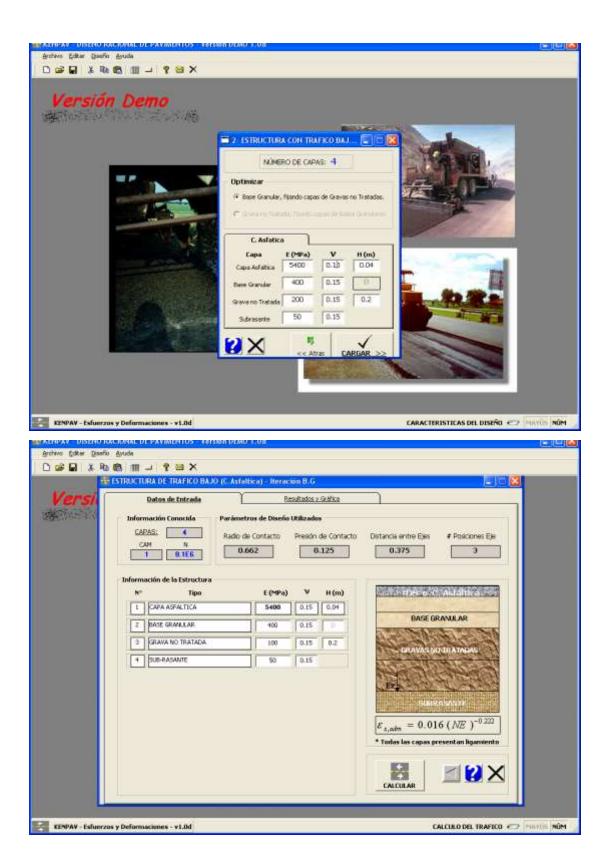
X

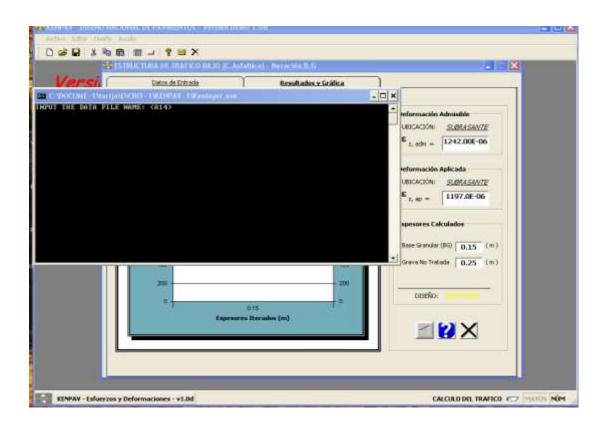
DESEÑO:

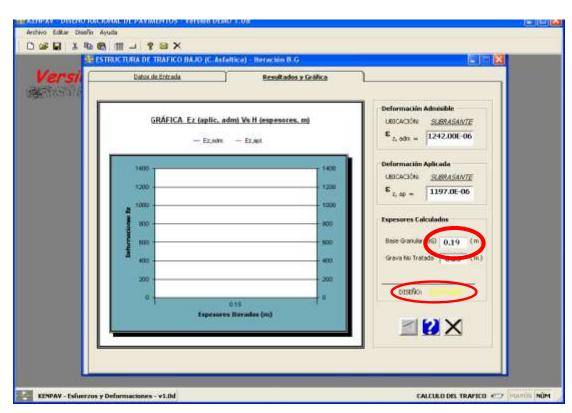
(m)

CALCULO DEL TRAFECO 😂 HAYES NOM

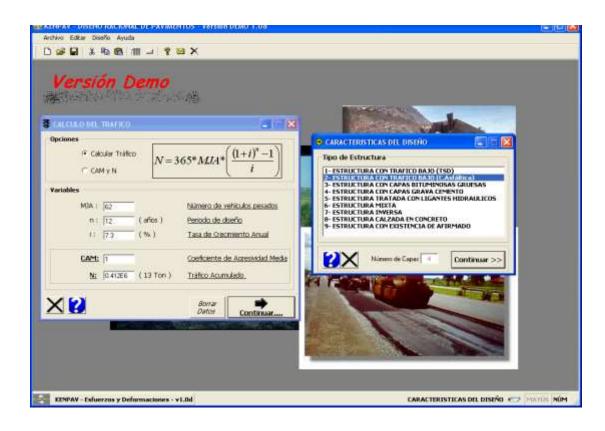

Tramo Pampa Redonda - Tunal


MJA= 15 veh/día


Tasa de crecimiento anual = 7.3%

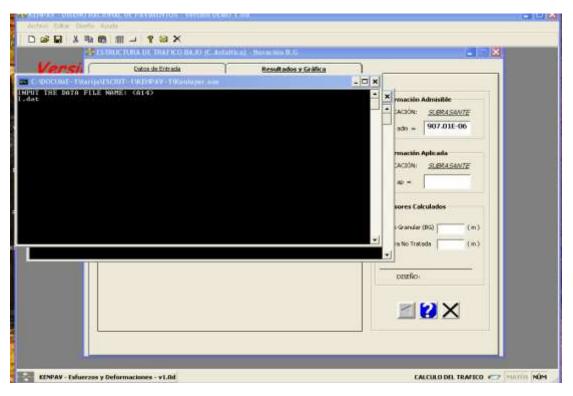

Periodo de diseño = 12 años

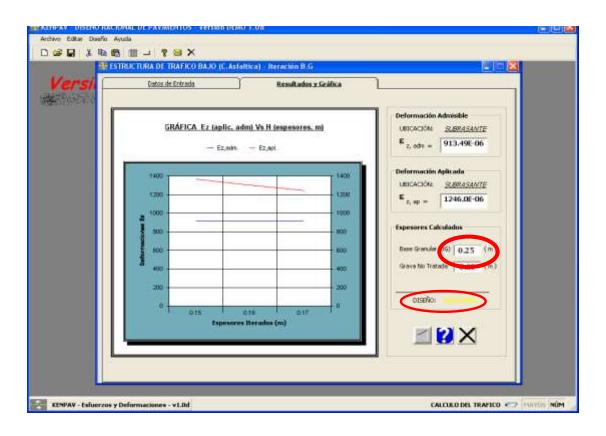
Coeficiente de Agresividad Media = 1


Tramo Puente Jarcas - Junacas

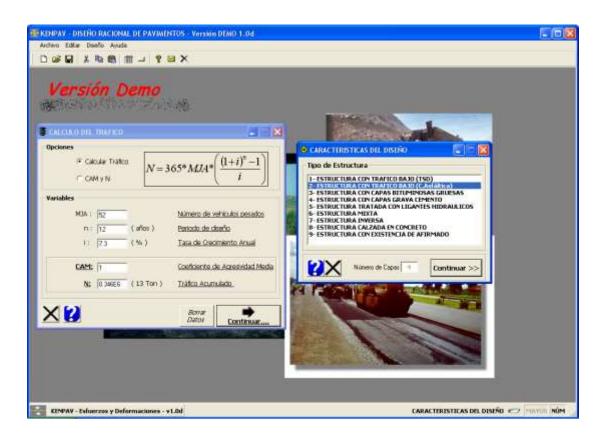
MJA= 62 veh/dia

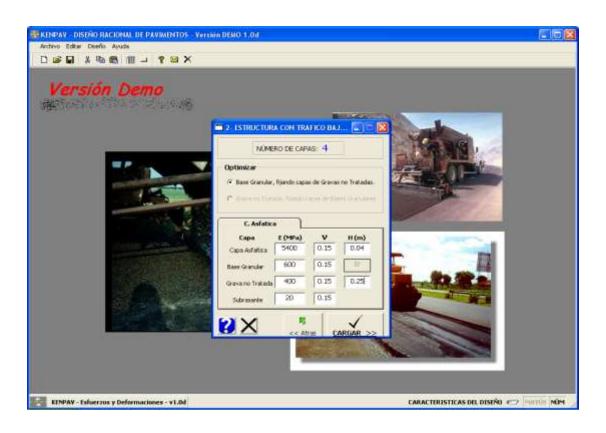
Tasa de crecimiento anual = 7.3%

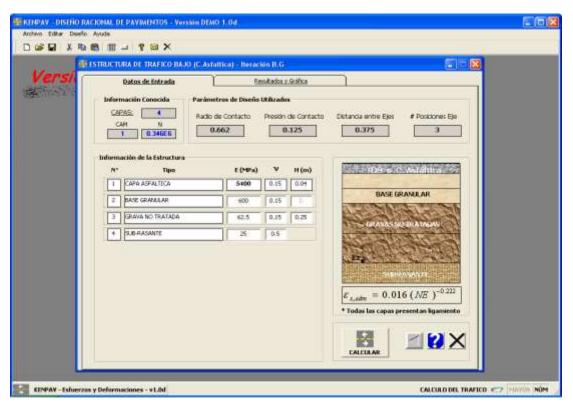

Periodo de diseño = 12 años

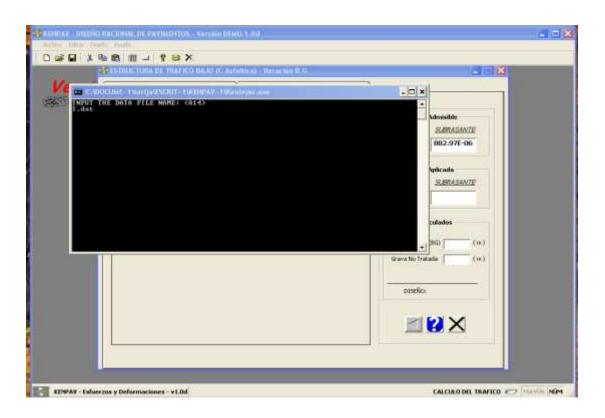

Coeficiente de Agresividad Media = 1

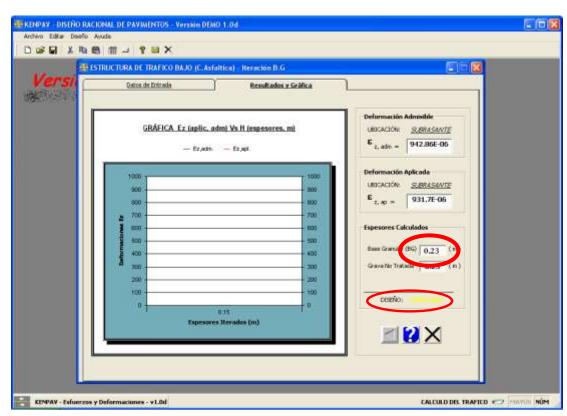
- Deformación A	Admisible			
UBICACIÓN:	SUBRASANTE			
E z, adm =	985.52E-06			
Deformación /	Aplicada			
UBICACIÓN:	SUBRASANTE			
E z, ap -	974.2E-06			
Espesores Cal	Espesores Calculados			
Base Granular	Base Granular (BG) 0.25 (m)			

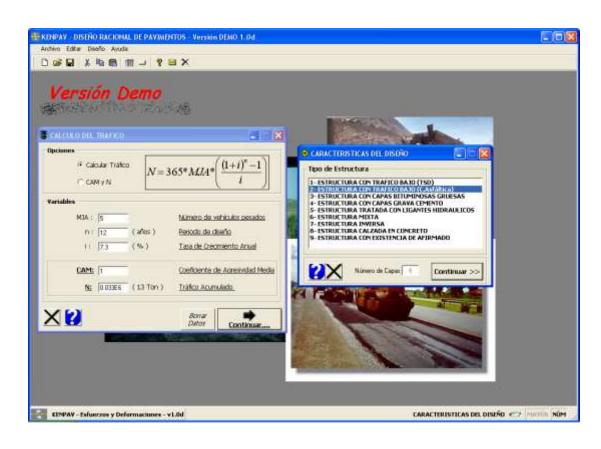

Tramo Junacas - Piedra Larga

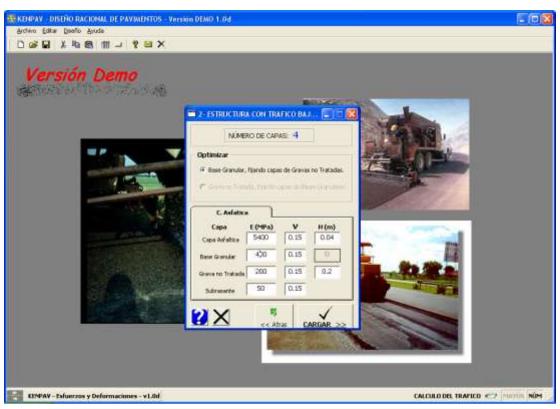

MJA= 52 veh/dia


Tasa de crecimiento anual = 7.3%

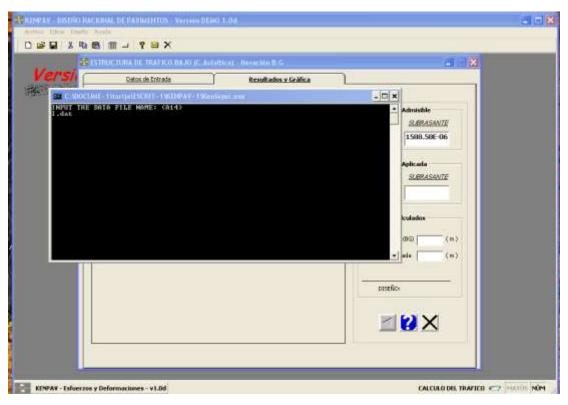

Periodo de diseño = 12 años

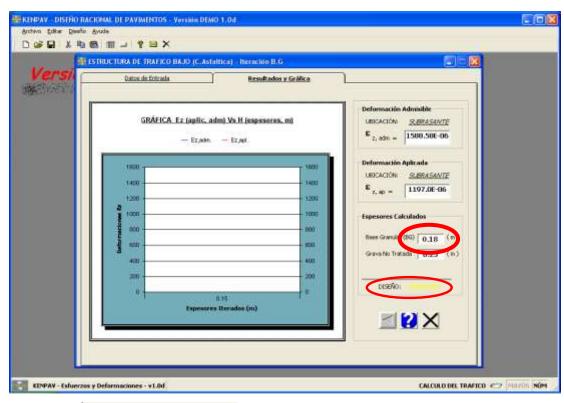

Coeficiente de Agresividad Media = 1


Tramo Tunal - Alisos


MJA= 52 veh/dia

Tasa de crecimiento anual = 7.3%


Periodo de diseño = 12 años


Coeficiente de Agresividad Media = 1

Con los datos obtenidos a través del programa se pudo obtener el valor del tráfico acumulado (N), de todos los tramos analizados nos dan diferentes valores de los espesores, el espesor asumido va a ser el de donde pasan un mayor número de vehículos pesados escogiendo el mayor espesor obtenido con el programa, así como resultados del análisis lo siguiente:

Cuadro 11. Ensayos, MJA Y Espesores De Los Tramos En Estudio

TRAMO	ENSAYO	MJA	ESPESORES (m)
Santa Ana - Yesera	1	10	0,18
		20	0,19
		25	0,2
Santa Ana - Yesera	2	14	0,18
		19	0,19
		23	0,2
Santa Ana - Yesera	3	13	0,18
		20	0,19
		24	0,2
Santa Ana - Yesera	4	15	0,18
		20	0,19
		25	0,2
Santa Ana - Yesera	5	14	0,18
		19	0,19
		23	0,2

TRAMO	ENSAYO	MJA	ESPESORES (m)
Tolomosa - Pampa	6	12	0,18
Redonda		16	0,19
		22	0,2
Tolomosa - Pampa	7	14	0,18
Redonda		19	0,19
		25	0,2
Tolomosa - Pampa	8	11	0,18
Redonda		15	0,19
		22	0,2
Tolomosa - Pampa	9	10	0,18
Redonda		16	0,19
		23	0,2
Tolomosa - Pampa	10	14	0,18
Redonda		19	0,19
		25	0,2

TRAMO	ENSAYO	MJA	ESPESORES	
Decree Dedende Treed	11	10	(m)	
Pampa Redonda - Tunal	11	10	0,18	
		15	0,19	
		20	0,2	
Pampa Redonda - Tunal	12	8	0,18	
		14	0,19	
		18	0,2	
Pampa Redonda - Tunal	13	10	0,18	
			15	0,19
				20
Pampa Redonda - Tunal	14	9	0,18	
		14	0,19	
		19	0,2	
Pampa Redonda - Tunal	15	10	0,18	
		15	0,19	
		20	0,2	

TRAMO	ENSAYO	MJA	ESPESORES (m)	
Puente Jarcas - Junacas	16	50	0,2	
		58	0,22	
		65	0,25	
Puente Jarcas - Junacas	17	48	0,2	
		55	0,22	
			68	0,25
Puente Jarcas - Junacas	18	52	0,21	
			59	0,23
				69
Puente Jarcas - Junacas	19	50	0,2	
		57	0,22	
		66	0,25	
Puente Jarcas - Junacas	20	50	0,2	
		55	0,23	
		65	0,25	

TRAMO	ENSAYO	MJA	ESPESORES
			(m)
Junacas -Piedra larga	21	48	0,2
		53	0,22
		60	0,25
Junacas -Piedra larga	22	48	0,2
		55	0,23
		62	0,25
Junacas -Piedra larga	23	52	0,21
		59	0,23
		65	0,25
Junacas -Piedra larga	24	47	0,2
		50	0,22
		60	0,25
Junacas -Piedra larga	25	48	0,2
		55	0,23
		65	0,25

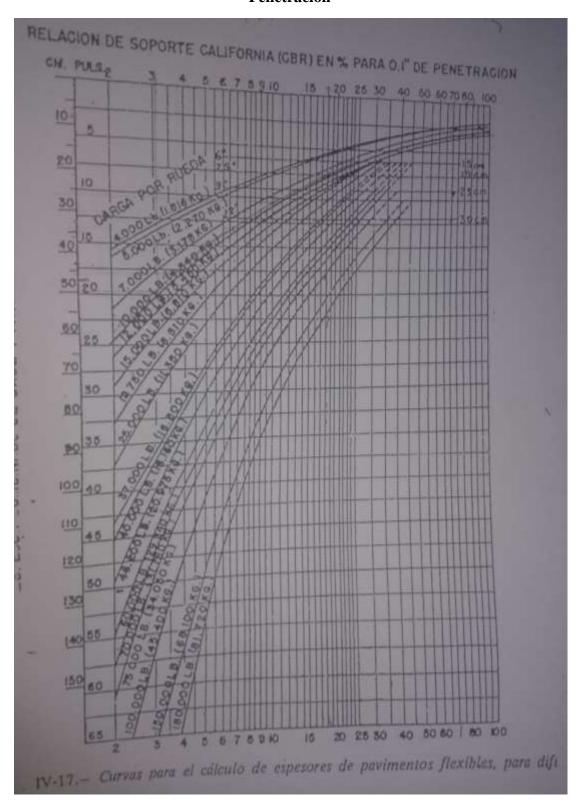
TRAMO	ENSAYO	MJA	ESPESORES (m)
Tunal - Alisos	26	5	0,18
		10	0,19
		15	0,2
Tunal - Alisos	27	5	0,18
		10	0,19
		15	0,2
Tunal - Alisos	28	4	0,18
		9	0,19
		13	0,2
Tunal - Alisos	29	8	0,18
		11	0,19
		15	0,2
Tunal - Alisos	30	8	0,18
		11	0,19
		15	0,2

4.6.2 MÉTODO DE CBR

Cálculos de los espesores por el método de CBR:

Datos de entrada

Este método se basa en las características del valor soporte de cada capa de la carretera por eso nos da datos del CBR, también está en función de la carga por rueda. Con ambos valores se entra al ábaco y se encuentra los espesores.


El vehículo tipo de diseño tiene una carga por eje de 18000 lb, cuyas condiciones de la subrasante y subrasante a mejorar.

Como tenemos la carga por eje la dividimos entre 2 y tenemos la carga por eje:

Carga rueda: 9000 lb

Para hallar los espesores por medio de este método se utiliza el siguiente ábaco:

Figura 27. Recilacion de Soporte California (CBR) en % Para 0.1'' de Penetracion

TRAMO SANTA ANA – YESERA

 $CBR_{SR} = 3.7\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

 $CBR_{SR} = 3.7\%$ $H_1 = 46 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 10\%$ $H_2 = 26 \text{ cm}$

 $H_1 = 46 \text{ cm}$

 $H_2 = 26$ cm

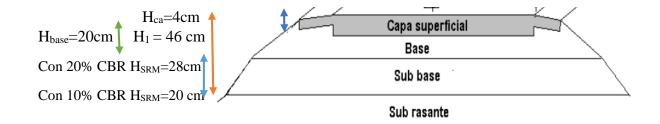
 $\Delta_{SRM} = H_1 - H_2 = 46 - 26$

 Δ_{SRM} = 20 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 26 + 20 = 46 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 20\% \qquad \qquad H_2 = 18 \text{ cm}$


 $H_1 = 46 \text{ cm}$

 $H_2 = 18$ cm

 $\Delta_{SRM} = H_1 - H_2 = 46 - 18$

 Δ_{SRM} = 28 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 18 + 28 = 46 \text{ cm}$

TRAMO TOLOMOSA – PAMPA REDONDA

 $CBR_{SR} = 2\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

 $CBR_{SR} = 2\%$ $H_1 = 60 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 10\% \qquad \qquad H_2 = 26 \text{ cm}$

 $H_1 = 60 \text{ cm}$

 $H_2 = 26$ cm

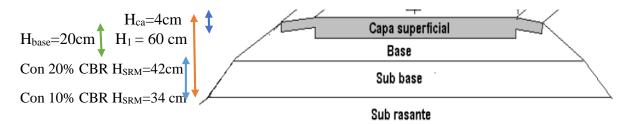
 $\Delta_{SRM} = H_1 - H_2 = 60 - 26$

 Δ_{SRM} = 34 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 26 + 34 = 60 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 20\%$ $H_2 = 18 \text{ cm}$


 $H_1 = 60 \text{ cm}$

 $H_2 = 18$ cm

 $\Delta_{SRM} = H_1 - H_2 = 60 - 18$

 Δ_{SRM} = 42 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 18 + 42 = 60 \text{ cm}$

TRAMO PAMPA REDONDA – TUNAL

 $CBR_{SR} = 2\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

$$CBR_{SR} = 2\%$$
 $H_1 = 60 \text{ cm}$

Mejorando un CBR con el:

$$CBR_{SRM} = 10\%$$
 $H_2 = 26 \text{ cm}$

 $H_1 = 60 \text{ cm}$

 $H_2 = 26$ cm

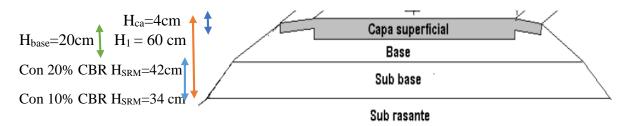
$$\Delta_{SRM} = H_1 - H_2 = 60 - 26$$

 Δ_{SRM} = 34 cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 26 + 34 = 60 \text{ cm}$$

Mejorando un CBR con el:

$$CBR_{SRM} = 20\%$$
 $H_2 = 18 \text{ cm}$


 $H_1 = 60 \text{ cm}$

 $H_2 = 18$ cm

$$\Delta_{SRM} = H_1 - H_2 = 60 - 18$$

 Δ_{SRM} = 42 cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 18 + 42 = 60 \text{ cm}$$

TRAMO PUENTE JARCAS – JUNACAS

 $CBR_{SR} = 3.1\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

 $CBR_{SR} = 3.1\%$ $H_1 = 50 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 10\%$ $H_2 = 26 \text{ cm}$

 $H_1 = 50 \text{ cm}$

 $H_2 = 26$ cm

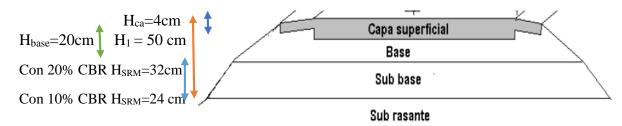
 $\Delta_{SRM} = H_1 - H_2 = 50 - 26$

 Δ_{SRM} = 24 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 26 + 24 = 50 \text{ cm}$

Mejorando un CBR con el:

 $CBR_{SRM} = 20\% \qquad \qquad H_2 = 18 \text{ cm}$


 $H_1 = 50 \text{ cm}$

 $H_2 = 18$ cm

 $\Delta_{SRM} = H_1 - H_2 = 50 - 18$

 Δ_{SRM} = 32 cm de altura se debe mejorar el terreno

 $\Delta_{SR} = 18 + 32 = 50 \text{ cm}$

TRAMO JUNACAS – PIEDRA LARGA

 $CBR_{SR} = 3.1\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

$$CBR_{SR} = 3.1\%$$
 $H_1 = 50 \text{ cm}$

Mejorando un CBR con el:

$$CBR_{SRM} = 10\%$$
 $H_2 = 26 \text{ cm}$

$$H_1 = 50 \text{ cm}$$

$$H_2 = 26$$
 cm

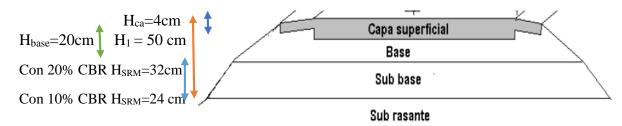
$$\Delta_{SRM} = H_1 - H_2 = 50 - 26$$

Δ_{SRM} = 24 cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 26 + 24 = 50 \text{ cm}$$

Mejorando un CBR con el:

$$CBR_{SRM} = 20\% \qquad \qquad H_2 = 18 \text{ cm}$$


 $H_1 = 50 \text{ cm}$

$$H_2 = 18$$
 cm

$$\Delta_{SRM} = H_1 - H_2 = 50 - 18$$

Δ_{SRM} = 32 cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 18 + 32 = 50 \text{ cm}$$

TRAMO TUNAL – ALISOS

 $CBR_{SR} = 2\%$

Entrando al abaco de RELACION DE SOPORTE DE CALIFORNIA (CBR) EN % PARA 0.1" DE PENETRACION

$$CBR_{SR} = 2\%$$
 $H_1 = 60 \text{ cm}$

Mejorando un CBR con el:

$$CBR_{SRM} = 10\% \qquad \qquad H_2 = 26 \ cm$$

$$H_1 = 60 \text{ cm}$$

$$H_2 = 26 \text{ cm}$$

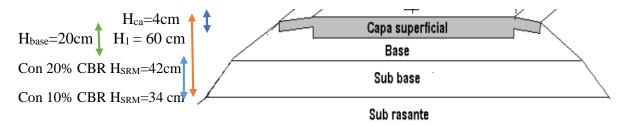
$$\Delta_{SRM} = H_1 - H_2 = 60 - 26$$

$\Delta_{SRM} = 34$ cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 26 + 34 = 60 \text{ cm}$$

Mejorando un CBR con el:

$$CBR_{SRM} = 20\% \qquad \qquad H_2 = 18 \text{ cm}$$


$$H_1 = 60 \text{ cm}$$

$$H_2 = 18 \text{ cm}$$

$$\Delta_{SRM} = H_1 - H_2 = 60 - 18$$

Δ_{SRM} = 42 cm de altura se debe mejorar el terreno

$$\Delta_{SR} = 18 + 42 = 60 \text{ cm}$$

Cuadro 12. Resultados De Los Espesores De La Subrasante Mejorada

	Altura	Subras	sante Me	jorada			Kenpav
Tramo	total del pavimen	Con CBR	Con CBR	Con CBR	Carpeta asfaltica	Base (cm)	(subrasa nte)
	to	=5%	=10%	=20%	(cm)		(cm)
	(cm)	(cm)	(cm)	(cm)			
Santa Ana –	46	10	20	28	4	20	20
Yesera							
Tolomosa –	60	24	34	42	4	20	20
Pampa							
Redonda							
Pampa	60	24	34	42	4	20	20
Redonda –							
Tunal							
Puente Jarcas	50	14	24	32	4	20	25
- Junacas							
Junacas –	50	14	24	32	4	20	25
Piedra Larga							
Tunal – Alisos	60	24	34	42	4	20	20

Fuente: Elaboración Propia

Realizando el cálculo de los espesores por los métodos del método racional con el programa KENPAV y el método de CBR y haciendo un mejoramiento de CBR con el 5%, 10% y 20% obtenemos los resultados en el anterior cuadro de los espesores

calculados, vemos diferentes espesores que dieron como resultados aplicando los diferentes métodos.

Los espesores para adoptados para cada tramo adoptamos el espesor mayor calculado para mayor seguridad al paso de los vehículos que circulan por los diferentes tramos en estudio. El espesor adoptado es el de método racional (KENPAV)

Valores adoptados de los espesores en cm. Método Racional (Kenpav)

TRAMO	SUBRASANTE
Santa Ana - Yesera	20 cm

TRAMO	SUBRASANTE
Tolomosa – Pampa Redonda	20 cm

TRAMO	SUBRASANTE
Pampa Redonda – Tunal	20 cm

TRAMO	SUBRASANTE
Puente Jarcas – Junacas	25 cm

TRAMO	SUBRASANTE
Junacas – Piedra Larga	25 cm

TRAMO	SUBRASANTE
Tunal – Alisos	20 cm

4.7.- CARACTERÍSTICAS DE LAS CAPAS DE PAVIMENTO FLEXIBLE

CARACTERISTICAS DE LAS CAPAS DE PAVIMENTO FLEXIBLE

En un pavimento de asfalto, o flexible, la subbase es la capa de material que se construye directamente sobre la subrasante y que está formada por un material de mejor calidad que el de aquella, obtenido en la generalidad de los casos de depósitos cercanos a la obra.

La subbase tiene como función:

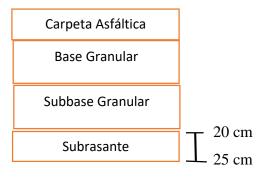
- a) Reducir el costo del pavimento disminuyendo el espesor de la base que se construye, generalmente, con materiales de mayor costo por tener que cumplir con especificaciones más rígidas.
- b) Proteger a la base aislándola de la subrasante ya que cuando esta está formada por material fino y plástico (generalmente es el caso) y cuando la base es de textura abierta, de no existir el aislamiento dado por el material de subbase, le material de la subrasante se introducirá en la base pudiendo provocar cambios volumétricos perjudiciales al variar las condiciones de humedad, a la vez que se disminuirá la resistencia estructural de la base. El aislamiento producido por la subbase no solo consiste en evitar que los finos plásticos de la subrasante se introduzcan en la base de textura abierta, sino también en evitar los bufamientos y revoltura de ambos materiales cuando se usan piedras trituradas o gravas de rio para formar la base.
- c) En caminos en construcción frecuentemente se construye la subbase, que propiamente es un revestimiento provisional, para tener una superficie de rodamiento que facilite, en cualquier época del año, el paso del equipo de construcción y de los vehículos que transiten por el camino antes de quedar pavimentado. Si el revestimiento provisional una vez que ha estado en servicio reúne las condiciones de calidad para subbase, este espesor debe tomarse en

cuenta al proyectar el espesor total del pavimento, de lo contrario debe dejarse como parte de la subrasante.

La base es la capa de material que se construye sobre la subbase o, a falta de esta, sobre la subrasante, debiendo estar formada por materiales de mejor calidad que el de la subbase. Los principales requisitos que debe satisfacer la capa de base son los que siguen:

- a) Tener en todo tiempo la resistencia estructural para soportar las presiones que le sean transmitidos por los vehículos estacionados o en movimiento.
- b) Tener el espesor necesario para que dichas presiones al ser transmitidas a la subbase o a la subrasante, no excedan la resistencia estructural de estas.
- No presentar cambios volumétricos perjudiciales al variar las condiciones de humedad.

La carpeta asfáltica es la capa de material pétreo cementado con asfalto que se coloca sobre la base para satisfacer las funciones siguientes:


- a) Proporcionar la superficie de rodamiento adecuada que permita, en todo tiempo, un tránsito fácil y cómodo de los vehículos.
- b) Impedir la infiltración del agua de lluvia hacia las capas inferiores, para impedir que el agua disminuye su capacidad para soportar cargas.
- c) Resistir la acción destructora de los vehículos y de los agentes climatéricos.

Analizando el diseño d todos los tramos en estudio tenemos que nos dio los valores del CBR al 95% con los de CBR 1.3% al 8.8% de los tramos realizados, dándonos las clasificaciones de los suelos para todos los tramos un A-4, A-5, A-6, A-7-5 y A-7-6.

Analizando los espesores calculados para los diferentes tramos en estudio tenemos como resultado los espesores obtenidos por los diferentes métodos aplicados tenemos como resultado lo siguiente:

	Altura	Subras	sante Me	jorada			Kenpav
Tramo	total del pavimen	Con CBR	Con CBR	Con CBR	Carpeta asfaltica	Base (cm)	(subrasa nte)
	to	=5%	=10%	=20%	(cm)		(cm)
	(cm)	(cm)	(cm)	(cm)			
Santa Ana –	46	10	20	28	4	20	20
Yesera							
Tolomosa –	60	24	34	42	4	20	20
Pampa							
Redonda							
Pampa	60	24	34	42	4	20	20
Redonda –							
Tunal							
Puente Jarcas	50	14	24	32	4	20	25
- Junacas							
Junacas –	50	14	24	32	4	20	25
Piedra Larga							
Tunal – Alisos	60	24	34	42	4	20	20

El espesor o la altura a excavar de la subrasante para los tramos de Santa Ana – Yesera, Tolomosa – Pampa Redonda, Pampa Redonda – Tunal y Tunal – Alisos es de 20 cm de altura que vamos a mejorar. En los tramos de Puente Jarcas – Junacas y Junacas – Piedra Larga el espesor es de 25 cm de altura que se quiere mejorar en la subrasante.

20 cm a excavar o mejorar la subrasante en los tramos Santa Ana – Yesera, Tolomosa – Pampa Redonda, Pampa Redonda – Tunal y Tunal – Alisos.

25 cm a excavar o mejorar la subrasante en los tramos de Puente Jarcas – Junacas y Junacas – Piedra Larga.

Los métodos utilizados para obtener los espesores son el Método Racional con el uso del programa (KENPAV), el método de Dr. Westergaard, el del Dr. Gerald Pickett, el de Royall D. Bradbury y el método de E. F. Kelley. Analizando cada uno de los métodos utilizados para calcular el espesor no varía mucho los espesores en cada método, pero utilizamos el mayor espesor que es el del método racional para una mejor seguridad al hacer el diseño de la subrasante a mejorar en cada tramo de estudio.

En el método racional para calcular los espesores hacemos variar el número de vehículos pesados que van a circular por los tramos y teniendo el periodo de diseño el índice de crecimiento y la agresividad media que se saca de tablas.

Teniendo un CBR de 0 a 3% es un suelo muy pobre y el uso para esta es para subrasante. Un CBR de 3 al 7% un suelo de pobre a regular que su uso también es para subrasante y un CBR de 7 al 20% es un suelo regular y el uso que se da para esto es de las subbases.

La capa de material granular proporcionara a la subrasante una mayor capacidad de carga debido a que se disminuye la capacidad de la presión sobre ella al aumentarse el área de repartición de esfuerzos. Esta capa de material granular le dará también una cierta protección a la subrasante en cuanto a la infiltración se prefiere, pero no es una protección total ya que un exceso de agua a través del revestimiento llega a afectar la estabilidad de la subrasante, y por lo tanto se presentarán asentamientos a no ser que se coloque un espesor muy fuerte de revestimiento que entonces resultaría antieconómico.

La carpeta asfáltica que se coloque sobre el revestimiento servirá para proporcionar una superficie de rodamiento que evita al máximo posible las pérdidas de

materiales por la acción abrasiva de las llantas de los vehículos en movimiento, proporciona una superficie lisa, cómoda, flexible y resistente a la meteorización.

4.8.- ANALISIS DE RESULTADOS

4.8.1.- MATERIALES

El análisis de los diferentes ensayos realizados en el laboratorio de suelos donde se realizaron los siguientes ensayos:

- Clasificación de los suelos (clasificación AASTHO)
- Granulometría (método del lavado)
- Límites de Atterberg
- Compactación de suelos, medida de la humedad optima y la densidad máxima (ensayo proctor modificado Compactación de suelos, medida de la humedad optima y la densidad máxima (ensayo proctor modificado T – 180)
- Ensayo de CBR

Para la determinación de la subrasante mejorada deberán tener un diámetro máximo de partícula de 7 cm. El índice de soporte california (CBR), determinado por el ensayo ASSTHO con energía de compactación del ensayo de ASSTHO T- 180 y la densidad seca correspondiente al 95% de la máxima determinada en los ensayos deberá ser mayor que la considerada para el dimensionamiento del pavimento en la sección representativa donde se realiza la regularización y la expansión del material deberá ser inferior al 2%.

Cuadro 13. Clasificación De La Subrasante En Función Del CBR

CBR	CLASIFICACIÓN			
0-5	Subrasante muy mala			
5 – 10	Subrasante mala			
10 – 20	Subrasante regular a buena			
20 – 30	Subrasante muy buena			
30 – 50	Subbase buena			
50 - 80	Base buena			

Cuadro 14. Clasificación De Los Suelos Según AASTHO

CLASIFICACION GENERAL		Matenales Granulares (igual o menor del 35% pasa el tamiz Nº 200)						Materiales Limo - Arcillosos (más del35% que pasa el tamiz Nº 2			77.7	
GRUPOS	A	1-1			A	1-2				A-5 A-6	A-7	
SUB - GRUPOS	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5		A-7-5	
SUB-ONUT OU	mr.	M-1-D		N.E.4	1177213	75250	7627				A-7-6	
% que pasa el Tamiz												
Nº 10	50 máx.								1		1	
Nº 40	30 máx.	50 máx.	51 máx.									
Nº 200	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 min.	36 min.	36 mín.	36 min	
Características del Material que pasa el tamiz Nº 40												
Limite Liquido			NO	40 máx.	41 min.	40 máx.	41 min.	40 máx.	41 min.	40 máx	41 más	
Indice de Plasticidad	6máx	6 máx.	PLÁSTICO	10 máx.	10 máx.	11 min.	11 min.	10 máx.	10 máx.	11 min.	11 min	
Indice de Grupa	0	0	0	0	0	4 máx.	4 máx.	8 máx.	12 máx.	16 máx.	20 más	
Tipos de Material	piedra	entos de grava y ena	Arena fina	Arena fina Grava, arenas fimo			nosas y arcillosas		Suelos Limosos		Suelos Arcillosos	
Terreno de Fundación		E	xcelente a Bue	eno				Regular a	Deficiente			

NOTA: El Índice de plasticidad de los suelos A-7-5 es igual o menor que su Limite Líquido 30, el de los A-7-6 mayor que su Limite Líquido (fig. 1) se halla indicada la relación ente lo LL e IP de los materiales finos. Dicho de otro modo, el grupo A-7 es subdividido en A-7-5 ó A-7-6 dependiendo del Límite Plástico (L.P.)

Si el LP ≥ 30, la clasificación es A-7-6

Si el LP < 30, la clasificación es A-7-5

Cuadro 15. Clasificación General, Usos Y Clasificación ASSTHO En Función Del CBR

CBR	Clasificación general	Usos	Clasificación		
			ASSTHO		
0 - 3	Muy pobre	subrasante	A-5, A-6, A-7		
3-7	Pobre a regular	Subrasante	A-4, A-5, A-6, A-7		
7 – 20	Regular	Subbase	A-2, A-4, A-6, A-7		
20 – 50	Bueno	Base, subbase	A-1b, A-2-5, A-3		
>50	excelente	Base	A-1 ^a , A-2-4, A-3		

Con los resultados obtenidos con la realización de los ensayos tenemos: Clasificación

Cuadro 16. Resultados Obtenidos Del CBR Y La Clasificación

Tramo	Santa Ana - Yes	Santa Ana - Yesera		londa
	Clasificación	CBR	Clasificación	CBR
1	A - 4	5,1	A - 6	5,0
2	A - 4	2,9	A - 7 - 6	4,5
3	A - 4	4,4	A - 7 - 5	1,3
4	A - 6	3,3	A - 4	1,4
5	A - 4	3,1	A - 7 - 5	0,9

Tramo	Pampa Redonda - 7	Гunal	Puente Jarcas - Juna	cas
	Clasificación	CBR	Clasificación	CBR
1	A - 6	5,7	A - 7 - 6	3,0
2	A - 7 - 5	4,7	A - 4	4,4
3	A - 6	2,6	A - 5	9,6
4	A - 4	8,8	A - 6	2,7
5	A - 4	6,6	A - 6	2,6

Tramo	Junacas - Piedra l	arga	Tunal - Alisos	
	Clasificación	CBR	Clasificación	CBR
1	A - 7 - 5	3,0	A - 4	4,8
2	A - 4	4,7	A - 6	2,4
3	A - 4	4,5	A - 7 - 6	3,1
4	A - 6	2,7	A - 4	3,8
5	A - 6	2,7	A - 4	4,5

Como podemos observar para todos los tramos tenemos una subrasante pobre regular ya que están en el rango de clasificación A-4, A-5, A-6 y A-7, y los CBR están en los rangos de 3 a 7.

4.8.2 MÉTODO MECANÍCISTA

Cuadro 17. Cuadro Resumen Del Kenpav

	DATOS DE ENTRADA			
	MECANÍCISTA			
Trafíco	Número De Vehículos Pesados			
Tranco	Coeficiente De Agresividad			
	Modulo De Elasticidad			
Estructura	Coeficiente De Poisson			
	Altura			
Clima	No Se Toma En Cuenta			
	PROCESAMIENTO			
	Calcula Deformaciones Admisibles			
	Deformaciones Aplicadas			
	Espesores			
	RESULTADOS			
	Espesores			

Datos de entrada

Los datos de entrada del método de CBR son:

El vehículo tipo de diseño que se utiliza es el que tiene una carga por rueda o carga por eje de 18000 libras o 8.2 toneladas y el CBR calculado en el laboratorio.

Se ingresa con estos datos de las cargas por eje y el valor del CBR realizado en los ensayos de laboratorio al ábaco de relación de soporte california (CBR) en % para 0.1" de penetración, se encuentra el espesor del pavimento y se hace un mejoramiento de la subrasante añadiendo material granular y aumento el CBR en 5%, 10% y 20%.

Aplicando el método de CBR y el programa kenpav nos dan los siguientes espesores:

Altura	Subras	sante Me	jorada			Kenpav
total del	Con	Con	Con	Carpeta	Base	(subrasa
pavimen	CBR	CBR	CBR	asfaltica	(cm)	nte)
to	=5%	=10%	= 20 %	(cm)		(cm)
(cm)	(cm)	(cm)	(cm)			
46	10	20	28	4	20	20
60	24	34	42	4	20	20
60	24	34	42	4	20	20
50	14	24	32	4	20	25
50	14	24	32	4	20	25
60	24	34	42	4	20	20
	total del pavimen to (cm) 46 60 50 50	total del pavimen to (cm) (cm) (cm) 46 10 60 24 50 14 50 14	total del pavimen to (cm) Con CBR CBR = 10% (cm) 46 10 20 60 24 34 50 14 24 50 14 24	total del pavimen to (cm) Con (cm) CBR (CBR) CBR (CBR)	total del pavimen to (cm) Con CBR CBR CBR CBR (cm) CBR CBR CBR (cm) CBR CBR CBR (cm) CCarpeta asfaltica (cm) 46 10 20 28 4 60 24 34 42 4 50 14 24 32 4 50 14 24 32 4	total del pavimen to (cm) Con (cm) Con (cm) Con (cm) Con (cm) Carpeta asfaltica (cm) Base (cm) 46 10 20 28 4 20 60 24 34 42 4 20 50 14 24 32 4 20 50 14 24 32 4 20

En los diferentes tramos obtenemos diferentes espesores poniendo diferentes tipos de carga que vendrían a ser el número de vehículos pesados para el programa kenpav y observando para el método de CBR tenemos un espesor de subrasante mejorada, mejorándolo en 5, 10 y 20%, haciendo un análisis de los espesores adoptamos

el espesor del método racional ya que este método calcula el espesor de la subrasante que se tiene que colocar en la estructura del pavimento.

Haciendo un análisis de la subrasante mejorada aumentando los CBR en un 5, 10 y 20% observamos que la estructura puede funcionar mejorando la subrasante en un 10% esto por el menor espesor que se tendría que mejorar aumentando material granular. los espesores escogidos son los siguientes para cada tramo:

TRAMO	SUBRASANTE
Santa Ana - Yesera	20 cm

TRAMO	SUBRASANTE
Tolomosa – Pampa Redonda	20 cm

TRAMO	SUBRASANTE
Pampa Redonda – Tunal	20 cm

TRAMO	SUBRASANTE
Puente Jarcas – Junacas	25 cm

TRAMO	SUBRASANTE
Junacas – Piedra Larga	25 cm

TRAMO	SUBRASANTE				
Tunal – Alisos	20 cm				

Como resultado final tenemos del presente trabajo tenemos un cuadro donde están los resultados finales obtenidos de las deformaciones admisibles y aplicadas y de los espesores de cada tramo en estudio.

Cuadro 18. Resultados De Deformación Admisible, Aplicada Y Espesores

TRAMO	DEFORMACIÓN	DEFORMACIÓN	ESPESORES	
	ADMISIBLE (εz,adm)	APLICADA (εz,ap)	(cm)	
Santa Ana - Yesera	1109.83E-06	1104.0E-06	20	
Tolomosa - Pampa Redonda	1130.10E-06	1120.0E-06	20	
Pampa Redonda - Tunal	1165.80E-06	1150.0E-06	20	
Puente Jarcas - Junacas	917.09E-06	910.8E-06	25	
Junacas -Piedra larga	973.91E-06	960.5E-06	25	
Tunal - Alisos	1284.28E-06	1251.0E-06	20	

CAPITULO V CONCLUSIONES Y RECOMENDACIONES

5.1.- CONCLUSIONES

Luego de realizar la aplicación práctica con el programa Kenpav para encontrar el espesor de la subrasante en el proyecto estudiado se llegó a las siguientes conclusiones:

- ➤ Primeramente, se cumplió el objetivo general de realizar la obtención del espesor de la subrasante mejorada en suelos limo-arcillosos por el medio de métodos mecanísticos.
- Los valores obtenidos mediante el laboratorio están dentro de los parámetros mínimos establecidos en consecuencia las subrasantes tienen las condiciones mínimas aceptables.
- Como podemos observar para todos los tramos tenemos una subrasante pobre regular ya que están en el rango de clasificación A-4, A-5, A-6 y A-7, y los CBR están en los rangos de 3 a 7 y de 0 a 3 que es una subrasante muy pobre.

Tramo	Santa Ana - Yesera		Tolomosa - Pampa Redonda		
Traino	Clasificación	CBR	Clasificación	CBR	
1	A - 4	5,1	A - 6	5,0	
2	A - 4	2,9	A - 7 - 6	4,5	
3	A - 4	4,4	A - 7 - 5	1,3	
4	A - 6	3,3	A - 4	1,4	
5	A - 4	3,1	A - 7 - 5	0,9	

Tramo	Pampa Redonda - Tunal		Puente Jarcas - Junacas		
Traino	Clasificación	CBR	Clasificación	CBR	
1	A - 6	5,7	A - 7 - 6	3,0	
2	A - 7 - 5	4,7	A - 4	4,4	
3	A - 6	2,6	A - 5	9,6	
4	A - 4	8,8	A - 6	2,7	
5	A - 4	6,6	A - 6	2,6	

Tramo	Junacas - Piedra larga		Tunal - Alisos		
Traino	Clasificación	CBR	Clasificación	CBR	
1	A - 7 - 5	3,0	A - 4	4,8	
2	A - 4	4,7	A - 6	2,4	
3	A - 4	4,5	A - 7 - 6	3,1	
4	A - 6	2,7	A - 4	3,8	
5	A - 6	2,7	A - 4	4,5	

- Es necesario conocer que para las subrasantes es necesario que la expansión sea mínima y el porcentaje de CBR sea alto, tomando en cuenta como suelo confiable evitando el colapso por la poca resistencia y expansión de la arcilla o por la pérdida de resistencia por remoldeo.
- ➤ Si bien la subrasante cumple con las exigencias mecánicas mínimas para su construcción es necesario una mejora de sus características mecánicas, para garantizar que los mismos van a tener un funcionamiento permanente, especialmente en épocas de lluvias.
- Se realizó el dimensionamiento del espesor de la subrasante mejorada con el programa Kenpav y el método de CBR utilizando para su aplicación para seis

diferentes tramos del departamento de Tarija, los resultados de espesores obtenido con el programa son los siguientes:

	Altura	Subrasante Mejorada					Kenpav
	total del	Con	Con	Con	Carpeta	Base	(subrasa
Tramo	pavimen	CBR	CBR	CBR	asfaltica	(cm)	nte)
	to	=5%	=10%	=20%	(cm)		(cm)
	(cm)	(cm)	(cm)	(cm)			
Santa Ana –	46	10	20	28	4	20	20
Yesera							
Tolomosa –	60	24	34	42	4	20	20
Pampa							
Redonda							
Pampa	60	24	34	42	4	20	20
Redonda –							
Tunal							
Puente Jarcas	50	14	24	32	4	20	25
- Junacas							
Junacas –	50	14	24	32	4	20	25
Piedra Larga							
Tunal – Alisos	60	24	34	42	4	20	20

- ➤ En el programa KENPAV las variables de mayor relevancia son: la variable del tráfico, que son sólo camiones mayores o iguales a 13 toneladas de peso, y de los datos estructurales, el módulo de elasticidad, el coeficiente de poisson y la altura de carpeta.
- ➤ Para diseñar por este método mecanistica KENPAV, se hace indispensable conocer los parámetros de los materiales que se van a utilizar en la estructura de pavimento, tales como las deflexiones y los esfuerzos admisibles del suelo, los cuales serán claves para determinar si la estructura soporta o no el tráfico que se le va a aplicar a esta.
- En el método mecanicista KENPAV es difícil hallar el trafico promedio diario anual, ya que para obtenerlo se debe realizar un conteo riguroso de camiones

que pesen igual o más de 13 toneladas, si se lo quisiera realizar de manera óptima.

- ➤ El procesamiento del programa KENPAV solo se basa en hallar esfuerzos y deformaciones (método racional) las cuales son ecuaciones científicas. De acuerdo a los resultados podemos observar que el software mecanicista KENPAV es el más conservador, lo cual es de importancia, ya que representa de un 20 a 15% del espesor dado y a su vez esto representa costo. El programa KENPAV nos da como resultado el espesor, pero también nos otorga deformaciones admisibles y deformaciones aplicadas.
- ➤ Los espesores obtenidos por el método racional a través del programa KENPAV obtenemos que todos los diseños con estos espesores finales de diseño son todos aceptables para la construcción de la subrasante.
- Para el método de CBR es importante conocer la carga de rueda o carga por eje que se va a utilizar y se tiene que tener los CBR para poder ingresar al ábaco y encontrar el espesor que se tiene.
- ➤ Habiendo encontrado la altura de pavimento pasamos a hacer un mejoramiento del material aumentando el CBR en un 5%, 10% y 20% dando diferentes espesores para mejorar la subrasante, con estos mejoramientos el pavimento funciona correctamente y escogemos el mejoramiento del 10%.
- ➢ Habiendo realizado el método racional atraves del programa Kenpav y el método de CBR para calcular el espesor de la subrasante y cada método sale diferentes espesores de los cuales adoptamos el espesor del método racional porque nos da el espesor de la subrasante teniendo en cuenta los números de vehículos pesados que circulan por cada tramo seleccionado, dando como resultados finales espesores de 20 cm para los tramos de Santa Ana Yesera,

Tolomosa – Pampa Redonda, Pampa Redonda – Tunal y Tunal – Alisos y 25 cm para los tramos de Puente Jarcas – Junacas y Junacas Piedra Larga.

5.2.- RECOMENDACIONES

A continuación, se detallan algunas recomendaciones:

- ➤ Se recomienda que antes de realizar el diseño de espesor utilizando algún programa se debe verificar todos los valores introducidos de los parámetros de entrada antes de realizar el diseño, y así poder obtener el espesor buscado para un grupo de parámetros de entrada de un proyecto en particular.
- ➤ Se debe tener en cuenta las facilidades tecnológicas para hacer espesores mínimos y máximos, los cuales dependen principalmente de los equipos que se van a utilizar.
- ➤ Para el uso del programa del método racional Kenpav se debe tener muy en cuenta los datos que se van a introducir ya que con datos fallidos el programa no saca los espesores correctos.
- ➤ En los métodos utilizados se deben verificar todos los valores con sus respectivas unidades para que de un buen resultado.