UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

ANALISIS DEL RIESGO DE ROTURA DE UNA PRESA DE TIPO ESCOLLERA EN CASO DE SOBREVERTIDO POR EL CORONAMIENTO APLICACIÓN PRESA CALDERAS

Por:

MARISOL VARGAS CASTELLÓN

Proyecto de Grado elaborado en la asignatura CIV-502 presentado a consideración de la UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" como requisito para optar el grado académico de Licenciatura en Ingeniería Civil

Julio de 2010

TARIJA – BOLIVIA

HOJA DE EVALUACION

EVALUACION CONTINUA	
Fecha de Presentación.	
Calificación:	
Numeral	
Literal	
V°B° Docente CIV 502	
EVALUACION FINAL	
Fecha de Defensa	•••
Calificación:	
Numeral	
Literal	
Tribunal 1	
Tribunal 2	

El tribunal calificador del presente proyecto, no se solidariza con la forma, términos, modos y expresiones vertidas en el trabajo, siendo las mismas únicamente responsabilidad del autor.

A Dios y a mi madre, Zayda por su inagotable cariño y paciencia que tantas veces ha reconfortado y llenado mi alma, y sobre todo, por su ánimo continuo, sin el que no habría podido alcanzar el final de este largo camino, que culmina en este trabajo.

"La realización es la expresión plena de nuestras potencialidades, y el único camino para lograr la Excelencia es tener el valor y el coraje de extraer lo mejor de nosotros mismos"

Marisol Vargas Castellón.

TABLA CONTENIDO

RESUMEN

CAPITULO I

ASPEC	201	GENER	ΔŢ	FS
	1 (),)	A LI MANIMA	\neg	/ // 7

1.1 Introducción	1
1.2 Generalidades	1
1.3 Área de Estudio	2
1.4 Características del Proyecto de Riego Calderas	2
1.5 Situación actual	5
1.6 Planteamiento y formulación del problema	5
1.7 Justificación	6
1.8 Alcance	9
1.9 Objetivos.	10
1.9.1 Objetivo General	10
1.9.2 Objetivos Específicos	10
CAPITULO II	
FUNDAMENTO TEORICO	
2.1 El Fenómeno de Sobrevertido	12
2.2 Movimiento del agua sobre la presa	13
2.2.1 Caracterización del Movimiento	13
2.2.2 Régimen rápido o lento	14
2.2.3 Movimiento laminar o turbulento	14
2.2.4 Lecho hidráulicamente liso o rugoso	15

2.2.4.1 Movimiento casi liso	16
2.2.4.2 Movimiento de ondas de interferencia	16
2.2.4.3 Movimiento de rugosidades aisladas	16
2.2.5 Características diferenciales	17
2.3 Pérdida de carga sobre el talud de la presa	18
2.3.1 Formulación de Hartung-Scheuerleín	20
2.3.2 Ley de pérdida de carga	23
2.3.3 Perfil de la lámina de agua	24
2.4 El Medio de Filtración.	25
2.4.1 Introducción	25
2.4.2 Tratamiento del medio poroso como un continuo	26
2.4.3 Propiedades del medio poroso	29
2.4.4 Conceptos de velocidad en un medio poroso	33
2.4.5 Fórmula de resistencia.	34
2.4.5.1 Coeficientes de la fórmula de resistencia	40
2.5 Movimiento del agua a través de la escollera	41
2.5.1 Estudio paramétrico	41
2.6 Estabilidad frente al deslizamiento.	62
2.6.1. Mecanismos básicos de rotura	62
2.6.1.1 Rotura por Arrastre y Erosión	62
2.6.1.2 Rotura por Deslizamiento en Masa	70
2.6.2 Planteamiento del análisis.	75
2 6 3 Estudio Paramétrico	76

2.6.4 Fórmula que se propone
2.6.5 Proceso de saturación del espaldón84
2.6.5.1 Introducción84
2.6.5.2 Hidrograma de Sobrevertido85
2.6.5.3 Un modelo conceptual del Proceso de Saturación88
2.6.5.6 Efecto de la Compactación de la escollera92
2.7 Dimensionamiento
2.7.1 Introducción95
2.7.2 Determinación del tamaño de la escollera de protección97
2.7.3 Proceso de dimensionamiento
2.7.3.1 Coeficientes de Seguridad
2.7.3.2 Abaco de Dimensionamiento
2.7.3.3 Proceso de Dimensionamiento
CAPITULO III INFORMACION DISPONIBLE
3.1 Estudios realizados en la Presa Calderas
3.1.1 Estudio Topográfico
3.1.2 Propiedades Geométricas de la cuenca
3.1.2.1 Área de la Cuenca
3.1.2.2 Perímetro de la Cuenca
3.1.2.3 Perímetro estilizado

3.1.2.4 Índice de compacidad o Gravelius	115
3.1.2.5 Rectángulo Equivalente	115
3.1.2.6 Pendiente de la Cuenca	116
3.1.2.7 Pendiente del Cauce Principal	116
3.1.3 Propiedades de Relieve de la Cuenca	117
3.1.3.1 Curva Hipsométrica	117
3.1.3.2 Índice de Pendiente de Roche	118
3.1.4 Propiedades Morfométricas de la Cuenca	118
3.1.4.1 Red de drenaje	118
3.1.4.2 Orden de corriente	119
3.1.4.3 Densidad de drenaje	119
3.1.5 Estudio Hidrológico.	119
3.1.5.1 Antecedentes Generales.	119
3.1.5.2 Geomorfología	120
3.1.5.3 Hidrografía y Fisiografía	120
3.1.5.4 Cobertura Vegetal	120
3.1.5.5 Análisis de los datos de precipitación	121
3.1.5.6 Consistencia de datos	121
3.1.5.7 Análisis de consistencia	123
3.1.6 Pluviometría	125
3.1.6.1 Metodología	126
3.1.6.2 Lluvias Anuales	126

3.1.6.2 a) Zonificación Pluviométrica127	
3.1.6.2. b) Sub Zonificación Pluviométrica	
3.1.7 Estimación de Lluvia Media Anual	
3.1.7.1 Lluvias Medias Mensuales	
3.1.7.2 Estimación de Lluvias Máximas	
3.1.7.2.a) Estimación de Lluvias Máximas Diarias132	
3.1.7.2.b) Estimación de Lluvias Máximas Horarias133	
3.1.7.2.c) Tiempo de concentración	
3.1.7.2.d) Intensidad de Precipitación	
3.1.7.2.e) Estimación de Lluvias Mínimas	
3.1.7.2.f) Probabilidades de Riesgo y Vida Útil	
3.1.8 Estimación de Caudales	
3.1.8.1 Introducción	
3.1.8.2 Estimación del coeficiente de Escorrentía140	
3.1.8.3 Estimación de Caudales Medios Mensuales y Anuales141	
3.1.8.4 Caudales Medios Mensuales	
3.1.8.5 Estimación de Caudal Máximo	
3.1.8.6 Riesgo Probable	
3.1.9 Sedimentos	

3.1.9.1 Producción de Sedimentos	150
3.2 Regulación Mensual del Embalse Calderas	150
3.3 Estudio de Avenidas	151
3.3.1 Laminación de Avenidas	151
3.3.2 Laminación de Avenidas en el Embalse Calderas	151
3.3.3 Obtención de los Hidrogramas de Avenida	152
3.3.3.1 Metodología Seguida	152
3.3.3.2 Hidrograma de Entrada por el método de Mockus	152
3.3.3.3 Método de Tránsito de la Piscina Nivelada	152
3.3.3.4 Obtención del Hidrograma de Salida	153
3.3.3.5 Curva de Descarga	154
3.4 Estudio de Estabilidad de la Presa Calderas	154
3.4.1 Material para la construcción de la Presa Calderas	156
3.4.1.1 Material para Enrocado	156
3.4.1.2 Capa de apoyo de la losa de hormigón armado	158
3.4.1.3 Capa Intermedia de Transición	159
3.4.2 Parámetros geomecanicos adoptados	160
3.4.3 Análisis de Estabilidad de Taludes	164
3.4.3.1 Estados de Carga.	166
3.4.3.2 Presa Llena	166
3.4.3.3 Presa Vacía	166
3.4.3.4 Caso de desembalse Rápido	167
3.4.3.5 Sobrevertido por el coronamiento	167

CAPITULO IV

,	,		
A DI IO A OIONI	DD A CTICA	(DDECA (
APLICACION	PRACICA	(PKHNA (ALDERANI
I II LICITOIN		(1100011)	

4.1 Aplicación Presa Calderas	173
4.1.1 Fórmula de Resistencia	174
4.1.2 Coeficiente de Seguridad Frente al Deslizamiento	175
4.1.3 Proceso de Saturación del Espaldón	175
4.1.3.1 Hidrograma de Sobrevertido	176
4.1.3.2 Caudal de Saturación.	177
4.1.3.3 Dimensionamiento	178
4.1.3.3 a) Caso de Sobrevertido Extremo	178
4.1.3.3 b) Situación de Sobrevertido Normal	179
4.1.3.3 c) Caso Intermedio	179
CAPITULO V ANALISIS DE RESULTADOS	
5.1 Resultados Obtenidos	182
5.1.1 Del Estudio Hidrológico	182
5.1.2 De la Estabilidad del Cuerpo de La Presa	182
5.1.3 De la Aplicación	183
5.2 Análisis de los Resultados Obtenidos	184
5.2.1 Del Estudio Hidrológico	184
5.2.2 Del Estudio de Estabilidad	185
5.2.3 De la Aplicación	186

CAPITULO VI	
CONCLUSIONES Y RECOMENDACIONES	191
BIBLIOGRAFIA	
ANEXOS	

INDICE DE CUADROS

	Pag
	· N°
CUADRO N° 1.1 Fallas de presas por Sobrepaso en el mundo periodo	8
CUADRO N° 2.1 Coeficientes de seguridad frente al deslizamiento	83
CUADRO N° 3.1 Estaciones pluviométricas.	121
CUADRO N° 3.2 Lluvias medias mensuales y anuales	122
CUADRO N° 3.3 Resumen de la consistencia de datos	125
CUADRO N° 3.4 Zonificación pluviométrica.	127
CUADRO N° 3.5 Sub zonificación pluviométrica	129
CUADRO N° 3.6 Lluvias medias mensuales al 75 y 80% de probabilidad	131
CUADRO N° 3.7 Lluvias máximas diarias	132
CUADRO N° 3.8 Tiempo de concentración de la cuenca	135
CUADRO N° 3.9 Altura de lluvia horaria para t _c	136
CUADRO N° 3.10 Altura de lluvia horaria para diferente duración y periodo de retorno	136
CUADRO N° 3.11 Intensidad máxima de la cuenca para diferentes periodos de retorno.	137
CUADRO N° 3.12 Intensidades para diferente duración y periodo de retorno	137
CUADRO N° 3.13 Estimación de lluvias mínimas	139
CUADRO N° 3.14 Relación entre la precipitación media mensual y anual	141
CUADRO N° 3.15 Caudales medios mensuales para diferentes probabilidades de excedencia.	142
CUADRO N° 3.16 Caudales medios mensuales	143

CUADRO N° 3.17 Datos hidrograma t=500 años	144
CUADRO N° 3.18 Datos hidrograma t=1000 años	146
CUADRO N° 3.19 Producción de sedimentos.	150
CUADRO N° 3.20 Resumen de la regulación para el Embalse Calderas	151
CUADRO N° 3.21 Resultados del estudio de laminación	153
CUADRO N° 3.22 Características principales del material para enrocado de la presa.	156
CUADRO N° 3.23 Análisis de tamices para el enrocado	156
CUADRO N° 3.24 Análisis de tamices para la capa de apoyo	158
CUADRO N° 3.25 Características principales de la capa intermedia de transición	160
CUADRO N° 3.26 Composición granulométrica del Rio Huacata	161
CUADRO N° 3.27 Diámetros correspondientes a la curva granulométrica	162
CUADRO N° 3.28 Resumen de parámetros geomecanicos Presa Huacata	163
CUADRO N° 3.29 Resumen de parámetros geomecanicos adoptados para la Presa Calderas	163
CUADRO N° 3.30 Factores de seguridad para diferentes estados de carga y condiciones de borde	168
CUADRO N° 3.31 Factores de seguridad mínimos recomendados para presa	187

INDICE DE FIGURAS

FIGURA N° 1.1 Ubicación del área de influencia en el contexto nacional, departamental y seccional.
FIGURA N° 2.1 Gráfico para la determinación de la superficie específica
FIGURA N° 2.2 Leyes exponencial y cuadrática ajustadas a los puntos obtenidos experimentalmente para un material de 7,37 cm. de diámetro medio
FIGURA N° 2.3 Nomograma para determinar la constante "c" en la fórmula de resistencia
FIGURA N° 2.4 Definición geométrica de la sección tipo de cálculo
FIGURA N° 2.5 Esquema de la determinación gráfica de la presión del agua en distintos puntos de una línea de filtración
FIGURA N° 2.6 Esquema de línea de filtración en las proximidades de pie de presa y presión del agua correspondiente a un punto de la misma
FIGURA N° 2.7 Isolíneas para talud 1.5 a) presión del agua: b) gradiente hidráulico
FIGURA N° 2.8 Isolíneas para talud 2 a) presión del agua; b) gradiente hidráulico
FIGURA N° 2.9 Para talud 1,5 a) Isolíneas de presión relativa del agua; b) área de presión relativa mayor del 95 %
FIGURA N° 2.10 para talud 2 a) Isolíneas de presión relativa del agua; b) área de presión relativa mayor del 95 %
FIGURA N° 2.11 Para talud 1,5, líneas de diferencia de a) presión del agua; b) gradiente hidráulico, para movimiento lineal (m = 1) y no lineal (m = 1.85).
FIGURA N° 2.12 Diferencia de presiones relativas para movimiento lineal (m= 1) y no lineal (m= 1.85) para talud 1.5.

FIGURA N° 2.13 Para talud 1.5 a) líneas de igual velocidad de filtración; b) líneas equipotenciales
FIGURA N° 2.14 para talud 2 a) líneas de igual velocidad de filtración; b) líneas equipotenciales
FIGURA N° 2.15 Caudal de saturación para fórmula de resistencia i =3,6x10-3 *v1.85 a) representación en el plano altura - caudal de saturación, para distintos taludes b) representación en el plano talud- caudal de saturación, para distintas alturas.
FIGURA N° 2.16 Relación lineal altura - caudal de saturación, para distintos valores del coeficiente de la fórmula de resistencia
FIGURA N° 2.17 Abaco para la determinación del caudal de saturación
FIGURA N° 2.18 Croquis de la rotura de la ataguía de la presa del Jerte por sobre vertido
FIGURA N° 2.19 Presa de Belci: a) planta y sección tipo; b) esquema de las fases de rotura por sobrevertido
FIGURA N° 2.20 Acciones sobre una rebanada según el talud
FIGURA N° 2.21 Abaco para la determinación del coeficiente de subpresión
FIGURA N° 2.22 Hidrograma de sobrevertido
FIGURA N° 2.23 Proceso de saturación del espaldón
FIGURA N° 2.24 Penetración del agua en espaldón anisótropo por compactación de la escollera
FIGURA N° 2.25 Posibilidad de deslizamiento en la zona de coronación sobre un nivel poco permeable.
FIGURA N° 2.26 Abaco de Solvik
FIGURA N° 2.27 Abaco de dimensionamiento

FIGURA N° 3.1 Sección transversal del cuerpo de la presa Calderas	155
FIGURA N° 3.2 Resultados de ensayos triaxiales para materiales granulares gruesos	160
FIGURA N°3.3 Coeficientes de Sismicidad para Bolivia	165

INDICE DE GRAFICOS

	Pag. N°
GRAFICO N° 3.1 Curva Hipsométrica.	117
GRAFICO N° 3.2 Sucesión histórica de precipitaciones	122
GRAFICO N° 3.3 - 3.6 Análisis de consistencia.	123
GRAFICO N° 3.7 Zonificación de lluvias anuales	127
GRAFICO N° 3.8 Sub zonificación del lluvias anuales.	128
GRAFICO N° 3.9 Curvas IDF.	137
GRAFICO N° 3.10 Hidrograma triangular para un T=500 años	145
GRAFICO N° 3.11 Hidrograma curvilíneo T=500 años propuesto por la Soil Conservation Service.	145
GRAFICO N° 3.12 Caudal máximo probable T=1000 años hidrograma triangular.	147
GRAFICO N° 3.13 Hidrograma Curvilíneo T=1000 años propuesto por la Soil Conservation Service	147
GRAFICO N° 3.14 Hidrograma de entrada por el método de Mockus	152
GRAFICO N° 3.15 Hidrograma de Salida	153
GRAFICO N° 3.16 Curva de Descarga	154
GRAFICO N° 3.17 Curva granulométrica de material natural de enrocado procedencia: Yesera Centro	157
GRAFICO N° 3.18 Curva granulométrica de material de apoyo de la losa de H°A° procedencia: Yesera Centro	158
GRAFICO N° 3.19 Límites granulométricos para la capa de apoyo de la losa de impermeabilización	159

GRAFICO N° 3.20 Curva granulométrica del material granular de la Presa	
Huacata	162
GRAFICO N° 4.1 Hidrogramas de Entrada y Salida	177
GRAFICO N° 4.2 Hidrograma de sobrevertido	178
	GRAFICO N° 3.20 Curva granulométrica del material granular de la Presa Huacata. GRAFICO N° 4.1 Hidrogramas de Entrada y Salida. GRAFICO N° 4.2 Hidrograma de sobrevertido.

INDICE DE ANEXOS

ANEXO 1 Estudio Topográfico.
ANEXO 2 Estudio Hidrológico
ANEXO 3 Estudio de Estabilidad de Taludes
ANEXO 4 Memoria fotográfica.
ANEXO 5 Plano.