UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"COMPARACIÓN DE LA PERMEABILIDAD OBTENIDA POR EL MÉTODO DE CARGA VARIABLE Y EL ENSAYO DE CONSOLIDACIÓN UNIDIMENSIONAL"

Autor:

EDWIN RODRIGO MARTINEZ CRUZ

Proyecto de Grado presentado a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para optar el Título Académico de Licenciatura de Ingeniería Civil.

Semestre II – 2020 Tarija – Bolivia

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN"

"COMPARACIÓN DE LA PERMEABILIDAD OBTENIDA POR EL MÉTODO DE CARGA VARIABLE Y EL ENSAYO DE CONSOLIDACIÓN UNIDIMENSIONAL"

Por:

EDWIN RODRIGO MARTINEZ CRUZ

Semestre II – 2020

Tarija – Bolivia

M. Sc. Ing. Ernesto R. Álvarez Gozalvez DECANO FACULTAD CIENCIAS Y	M. Sc. Lic. Elizabeth Castro Figueroa VICEDECANA FACULTAD CIENCIA Y
TECNOLOGÍA	TECNOLOGÍA
TRIBUNAL:	
M. Sc. Ing. Luis	Alberto Yurquina Flores

Ph.D., Dr.Sc., M.Sc. Ing. Alberto Benítez Reynoso

V°B°

DEDICATORIA.

Dedico con todo mi corazón este Proyecto de Grado a mis queridos padres Andrés Martínez Soraide e Inéz Cruz Díaz, por ser la base fundamental en mi familia y enseñarme a seguir adelante sobre cualquier circunstancia que se presenta en la vida y a mis hermanos Sonia, Silvia, Yamil y Sharid, por apoyarme en todo momento, y creer que sí lo iba a logar.

AGRADECIMIENTO.

Primordialmente agradezco a Dios por haberme dado la oportunidad de vivir y brindarme siempre salud sabiduría y fortaleza en mis momentos de debilidad.

A mis queridos padres por el apoyo infinito que me brindaron.

A mis hermanos por ayudarme de una u otra forma cuando necesitaba de ellos.

A los docentes que constantemente me enseñaron este hermoso saber de la Ingeniería Civil.

A la Ingeniera Laura Soto, por haber sido un pilar fundamental en la elaboración de este proyecto, por haberme motivado, guiado y apoyado, a séguir adelante en todo momento.

Al Ingeniero Rene García, por el apoyo incondicional brindado hacia mi persona y enseñarme a ser una persona perseverante.

PENSAMIENTO.

"Siento una gran gratitud por los que me dijeron que NO, gracias a ellos lo hice yo mismo.

Karl Popper

CAPÍTULO I

DISEÑO TEÓRICO Y METODOLÓGICO

Pá	igina
1.1. ANTECEDENTES	1
1.2. SITUACIÓN PROBLÉMICA	3
1.2.1. Problema	3
1.2.2. Relevancia y factibilidad del problema	3
1.2.3. Delimitación temporal y espacial del problema	4
1.3. JUSTIFICACIÓN	4
1.4. OBJETIVOS	5
1.4.1. Objetivo general	5
1.4.2. Objetivos específicos	5
1.5. HIPÓTESIS.	5
1.6. IDENTIFICACIÓN DE VARIABLES.	6
1.6.1. Variable independiente	6
1.6.2. Variable dependiente	6
1.6.3. Conceptualización y operalización de las variables	7
1.7. IDENTIFICACIÓN DEL TIPO DE INVESTIGACIÓN	8
1.8. UNIDADES DE ESTUDIO Y DECISIÓN MUESTRAL	9
1.8.1. Unidad de estudio	9
1.8.2. Población.	9
1.8.3. Muestra	11
1.8.4. Selección de las técnicas de muestreo	11
1.9 MÉTODOS Y TÉCNICAS EMPLEADAS	11

1.9.1. Métodos deductivos
1.9.2. Técnicas de muestreo
1.10. PROCESAMIENTO DE LA INFORMACIÓN
1.11. ALCANCE DE LA INVESTIGACIÓN
CAPÍTULO II
ASPECTOS GENERALES DE LA PERMEABILIDAD Y CONSOLIDACIÓN DE
LOS SUELOS
Página
2.1. CONCEPTO DE SUELO
2.2. TIPOS DE SUELO
2.2.1. Suelos residuales
2.2.2. Suelos transportados
2.3. PROPIEDADES FÍSICAS Y QUÍMICAS DEL SUELO14
3.3.1. Granulometría
2.3.1.1. Análisis granulométrico con mallas
2.3.1.2. Análisis hidrométrico
2.3.2. Relación de peso y volumen
2.3.3. Peso específico relativo
2.3.4. Consistencia
2.3.4.1. Límites de Atterberg
2.3.4. Extructura y cohesión del suelo
2.4. ARCILLAS
2.4.1. Minerales constitutivos de las arcillas
2.5. CLASIFICACIÓN DE SUELOS

2.5.1. Sistema de clasificación unificado (SUCS)	30
2.5.2. Sistema de clasificación de suelos de la (AASHTO)	31
2.6. LA CONSOLIDACIÓN.	33
2.6.1. Principios de consolidación.	33
2.6.2. Teoría de consolidación Terzaghi 1925	38
2.6.3. Clases de consolidación	39
2.6.4. Prueba de consolidación unidimensional en laboratorio.	39
2.6.5. Método Taylor de consolidación unidimensional	41
2.6.6. Asentamiento por consolidación primaria	43
2.6.7. Presión de preconsolidacion.	47
2.6.8. Determinación del coeficiente de permeabilidad a partir de los datos	
de consolidación	48
2.7. PERMEABILIDAD	50
2.7.1. Introducción	50
2.7.2. Flujo laminar y turbulento	50
2.7.3. Ecuación de Bernoulli	51
2.7.4. Ecuación de Darcy	55
2.7.5. Conductividad hidráulica	56
2.7.6. Métodos para medir el coeficiente de permeabilidad del suelo	58
2.7.7. Ensayos de laboratorio para determinar la conductividad hidráulica	60
2.7.7.1. Ensayo de carga variable	60
2.8. PROBABILIDAD Y ESTADÍSTICA	64
2.8.1. Estadística Descriptiva	64
2.8.2. Distribución de frecuencia	64
2.8.3. Conceptos básicos de las medias de tendencia central	65

2.8.3.1. Media	65
2.8.3.2. Mediana	66
2.8.3.3. Moda	66
2.8.4. Conceptos básicos de las medidas de dispersión	66
2.8.4.1. Rango	67
2.8.4.2. Desviación estándar	67
2.8.4.3. Varianza	67
2.8.5. Concepto básico de las medias de posición	67
2.8.5.1. Asimetría	67
2.8.5.2. Curtosis	68
2.8.6. Estadística inferencial	68
2.8.6.1. Distribución continua de probabilidad	68
2.8.6.2. Prueba de hipótesis	70
2.8.6.3. Prueba de Anderson Darling	71
2.8.6.4. Prueba t de Student	72
2.8.6.5. Prueba W de Mann-Whitney	73
2.8.6.6. Regresión y correlación	74

CAPÍTULO III

DESARROLLO EXPERIMENTAL

Página
3.1. INTRODUCCIÓN
3.2. ZONA DE ESTUDIO79
3.2.1. Criterios de selección de muestras
3.2.1.1. Tenacidad consistencia cerca del límite plástico
3.2.2. Descripción y ubicación de los suelos estudiados
3.2.2.1. Fotos satelitales de Google Earth de los barrios de extracción de muestras 82
3.2.3. Coordenadas de las zonas de estudio
3.3. ENSAYOS DE CARACTERIZACIÓN DE LAS MUESTRAS85
3.3.1. Programa estratégico de trabajo85
3.3.2. Extracción de muestras
3.3.2.1. Introducción
3.3.2.2. Objetivos
3.3.2.3. Toma de muestras
3.3.2.4. Equipo utilizado
3.3.2.5. Procedimiento de extracción de la muestra
3.3.3. Determinación en laboratorio del contenido de humedad del suelo91
3.3.3.1. Introducción
3.3.3.2. Objetivo
3.3.4. Análisis granulométrico por tamizado92
3.3.4.1. Introducción
3.3.4.2. Objetivos
3.3.5. Análisis granulométrico por medio del hidrómetro

3.3.5.1. Introducción	94
3.3.5.2. Objetivos	94
3.3.6. Determinación del peso específico de los suelos	96
3.3.6.1. Introducción	96
3.3.6.2. Objetivos	96
3.3.7. Determinación del límite líquido de los suelos	97
3.3.7.1. Introducción	97
3.3.7.2. Objetivos	97
3.3.8. Determinación del límite plástico e índice de plasticidad de los suelos	98
3.3.8.1. Introducción	98
3.3.8.2. Objetivos	98
3.3.9. Clasificación de suelos según el Sistema Unificado de Clasificación de	
suelos SUCS	100
3.3.9.1. Introducción	100
3.3.9.2. Objetivos	100
3.4. ENSAYOS PARA LA DETERMINACIÓN DEL COEFICIENTE DE	
PERMEABILIDAD	101
3.4.1. Permeámetro de carga variable	101
3.4.1.1. Introducción	101
3.4.1.2. Objetivos	101
3.4.1.3. Equipos y material utilizado	101
3.4.1.4. Preparación de la muestra	105
3.4.1.5. Procedimiento de laboratorio	106
3.4.1.6. Cálculos para la determinación del coeficiente de permeabilidad "k"	109
3.4.2. Ensayo de consolidación unidimensional de los suelos	113

3.4.2.1. Introducción
3.4.2.2. Objetivos
3.4.2.3. Equipo y material utilizado
3.4.2.4. Preparación de la muestra
3.4.2.5. Procedimiento en laboratorio
3.4.2.6. Determinación indirecta del coeficiente de permeabilidad "k" a
través del ensayo edométrico
CAPÍTULO IV
ANÁLISIS Y COMPARACIÓN DE RESULTADOS
Página
4.1. INTRODUCCIÓN
4.2. RESUMEN DE ENSAYOS DE LABORATORIO131
4.3. ANÁLISIS ESTADÍSTICO
4.3.1. Análisis estadísticos de la variable continua permeabilidad, método
de carga variable
4.3.1.1. Los Chapacos
4.3.1.2. Torrecillas
4.3.1.3. El Constructor
4.3.1.4. San Blas
4.3.1.5. San Jorge II
4.3.2. Análisis estadístico de la variable continua permeabilidad, obtenida
por el ensayo edométrico154
4.3.2.1. Los Chapacos
4.3.2.2. Torrecillas

4.3.2.3. El Constructor
4.3.2.4. San Blas
4.3.2.5. San Jorge II
4.4. COMPARACIÓN DEL COEFICIENTE DE PERMEABILIDAD169
4.4.1. Comparación del coeficiente de permeabilidad, para el barrio
Los Chapacos
4.4.2. Comparación del coeficiente de permeabilidad, para el barrio
Torrecillas
4.4.3. Comparación del coeficiente de permeabilidad, para el barrio
El Constructor
4.4.4. Comparación del coeficiente de permeabilidad, para el barrio San Blas
4.4.5. Comparación del coeficiente de permeabilidad, para el barrio
San Jorge II194
4.5. ANÁLISIS DE RESULTADOS201
CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES
Página
5.1. CONCLUSIONES
5.2. RECOMENDACIONES
BIBLIOGRAFÍA
ANEXOS
ANEXOS I. ENSAYOS DE LABORATORIO
ANEXOS II. PROCESAMIENTO DE DATOS Y RESULTADOS DE LOS
ENSAYOS DE LABORATORIO

ÍNDICE DE TABLAS

	Página
Tabla 1. Conceptualización y operacionalización de las variables independientes	7
Tabla 2. Conceptualización y operacionalización de las variables dependientes	8
Tabla 3. Tamaño de la muestra	10
Tabla 4. Límites de separación de tamaño de suelo	16
Tabla 5. Tamaños de mallas estándar en EE.UU	17
Tabla 6. Límites del tamaño de suelos separados	20
Tabla 7. Símbolos de identificación	30
Tabla 8. Sistema de clasificación de suelos AASHTO	32
Tabla 9. Relación entre diversos parámetros de esfuerzo, deformación en	
compresión confinada	46
Tabla 10. Valores típicos de conductividad hidráulica para suelos saturados	56
Tabla 11. Variación de η(T°C) /η (20°C)	57
Tabla 12. Valores típicos del coeficiente de permeabilidad	58
Tabla 13. Interpretación del coeficiente de determinación	78
Tabla 14. Coordenadas de los barrios de estudio	84
Tabla 15. Resumen del registro de profundidad de extraccion de las muestras	88
Tabla 16. Presiones admisibles en el terreno de cimentaciones	89
Tabla 17. Resumen de los resultados del porcentaje de humedad en los suelos	91
Tabla 18. Resumen de los resultados de la granulometría	93
Tabla 19. Resumen de los resultados del análisis granulométrico a través	
del hidrómetro	95
Tabla 20. Resumen de los resultados del peso específico de los suelos	96
Tabla 21. Resumen de los resultados de los límites de consistencia	99
Tabla 22. Resumen de los resultados de clasificación de suelos	100
Tabla 23. Corrección por viscosidad	111
Tabla 24. Resumen de los resultados de permeabilidad por el método	
de carga variable, permeámetro de carga descendente	112
Tabla 25. Tiempos registrados en el edómetro	119

Tabla 26. Resumen de los resultados de permeabilidad por el método edométrico .	129
Tabla 27. Parámetros de granulometria, plasticidad, peso específico y	
permeabilidad promedio de las muestras estudiadas	131
Tabla 28. Resumen de los resultados de la permeabilidad por el método de carga	
variable procedente del barrio Los Chapacos	133
Tabla 29. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio Los Chapacos	134
Tabla 30. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio Los Chapacos	135
Tabla 31. Coeficiente de variación para el análisis de la permeabilidad	
obtenida por el método de carga variable procedente del barrio	
Los Chapacos	137
Tabla 32. Valores típicos de coeficiente de variación	137
Tabla 33. Resumen de los resultados de la permeabilidad por el método de carga	
variable procedente del barrio Torrecillas	138
Tabla 34. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio Torrecillas	139
Tabla 35. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio Torrecillas	140
Tabla 36. Coeficiente de variación para el análisis de la permeabilidad	
obtenida por el método de carga variable procedente del barrio	
Torrecillas	141
Tabla 37. Resumen de los resultados de la permeabilidad por el método de carga	
variable procedente del barrio El Constructor.	142
Tabla 38. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio El Constructor	143
Tabla 39. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio El Constructor	144
Tabla 40. Coeficiente de variación para el análisis de la permeabilidad	
obtenida por el método de carga variable procedente del barrio	
El Constructor.	145

Tabla 41. Resumen de los resultados de la permeabilidad por el método de carga	
variable procedente del barrio San Blas	146
Tabla 42. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio San Blas	147
Tabla 43. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio San Blas	148
Tabla 44. Coeficiente de variación para el análisis de la permeabilidad	
obtenida por el método de carga variable procedente del barrio	
San Blas	149
Tabla 45. Resumen de los resultados de la permeabilidad por el método de carga	
variable procedente del barrio San Jorge II	150
Tabla 46. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio San Jorge II	151
Tabla 47. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio San Jorge II	152
Tabla 48. Coeficiente de variación para el análisis de la permeabilidad obtenida	
por el método de carga variable procedente del barrio San Jorge II	153
Tabla 49. Resumen de los resultados de la permeabilidad por el ensayo	
edométrico procedente del barrio Los Chapacos	154
Tabla 50. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
para el barrio Los Chapacos	154
Tabla 51. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio Los Chapacos	155
Tabla 52. Resumen de los resultados de la permeabilidad por el ensayo	
edométrico procedente del barrio Torrecillas	157
Tabla 53. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio Torrecillas	157
Tabla 54. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio Torrecillas	158
Tabla 55. Resumen de los resultados de la permeabilidad por el ensayo	
edométrico, procedente del barrio El Constructor	160

Tabla 56. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio El Constructor	160
Tabla 57. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio El Constructor	161
Tabla 58. Resumen de los resultados de la permeabilidad por el ensayo	
edométrico procedente del barrio San Blas	163
Tabla 59. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio San Blas	163
Tabla 60. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio San Blas	164
Tabla 61. Resumen de los resultados de la permeabilidad por el ensayo	
edométrico procedente del barrio San Jorge II	166
Tabla 62. Resumen estadístico descriptivo de la variable aleatoria permeabilidad	
procedente del barrio San Jorge II.	166
Tabla 63. Prueba de bondad de ajuste Anderson Darling para la variable	
permeabilidad proveniente del barrio San Jorge II	167
Tabla 64. Relacion de vacíos y permeabilidad obtenida por el ensayo de	
carga variable para un suelo "CH"	169
Tabla 65. Relacion de vacíos y permeabilidad obtenida por el edómetro	
para un suelo " CH"	170
Tabla 66. Permeabilidad del edómetro obtenido a través del proceso de	
interpolación entre la relacion de vacíos y permeabilidad	
para un suelo " CH"	170
Tabla 67. Resumen estadístico de la comparación de variables	
permeabilidad, para un suelo "CH"	172
Tabla 68. Resumen promedio de los ensayos efectuados por los métodos	
de carga variable y el ensayo edométrico para un suelo "CH"	175
Tabla 69. Relacion de vacíos y permeabilidad obtenida por el ensayo de	
carga variable para un suelo "ML-CL"	176
Tabla 70. Relacion de vacíos y permeabilidad obtenida por el edómetro	
para un suelo "ML-CL"	177

Tabla 71.	Permeabilidad del edómetro obtenido a través del proceso de	
:	interpolación entre la relacion de vacíos y permeabilidad	
	para un suelo "ML-CL"	177
Tabla 72.	Resumen estadístico de la comparación de variables	
	permeabilidad para un suelo "CL-ML"	178
Tabla 73.	Resumen promedio de los ensayos efectuados por los métodos	
	de carga variable y el ensayo edométrico, para un suelo "ML-CL"	181
Tabla 74.	Relacion de vacíos y permeabilidad obtenida por el ensayo de	
	carga variable para un suelo "CL"	182
Tabla 75.	Relacion de vacíos y permeabilidad obtenida por el edómetro	
]	para un suelo "CL"	183
Tabla 76.	Permeabilidad del edómetro obtenido a través del proceso de	
:	interpolación entre la relacion de vacíos y permeabilidad	
	para un suelo "CL"	183
Tabla 77.	Resumen estadístico de la comparación de variables	
	permeabilidad para un suelo "CL"	184
Tabla 78.	Resumen promedio de los ensayos efectuados por los métodos	
	de carga variable y el ensayo edométrico "CL"	187
Tabla 79.	Relacion de vacíos y permeabilidad obtenida por el ensayo de	
	carga variable para un suelo "ML"	188
Tabla 80.	Relacion de vacíos y permeabilidad obtenida por el edómetro	
]	para un suelo " ML"	189
Tabla 81.	Permeabilidad del edómetro obtenido a través del proceso de	
į	interpolación entre la relacion de vacíos y permeabilidad	
1	para un suelo " ML"	189
Tabla 82.	Resumen estadístico de la comparación de variables	
	permeabilidad para un suelo "ML"	190
Tabla 83.	Resumen promedio de los ensayos efectuados por los métodos	
	de carga variable y el ensayo edométrico, para un suelo "ML"	193
Tabla 84.	Relacion de vacíos y permeabilidad obtenida por el ensayo de	
	carga variable para un suelo "MH"	194

Tabla 85. Relacion de vacíos y permeabilidad obtenida por el edómetro	
para un suelo "MH"	195
Tabla 86. Permeabilidad del edómetro obtenido a través del proceso de	
interpolación entre la relacion de vacíos y permeabilidad	
para un suelo "MH"	195
Tabla 87. Resumen estadístico de la comparación de variables	
permeabilidad para un suelo MH	196
Tabla 88. Resumen promedio de los ensayos efectuados por los métodos	
de carga variable y el ensayo edométrico, para un suelo "MH"	199
Tabla 89. Resumen del coeficiente de permeabilidad promedio, para	
cada método tomando en cuenta el tipo de suelo	203
Tabla 90. Grado de correlación entre variables	205
Tabla 91. Coeficiente de correlación	205
Tabla 92. Valores del coeficiente de permeabilidad de las muestras	
estudiadas	209
Tabla 93. Valores típicos del coeficiente de permeabilidad	209

ÍNDICE DE FIGURAS

	Página
Figura 1. Curva de la distribución granulométrica de un suelo de grano grueso	
obtenida en un análisis con mallas	17
Figura 2. Análisis granulométrico con el hidrómetro	19
Figura 3. Esquema de una muestra de suelo	20
Figura 4. Esquema de una muestra de suelo saturado y no saturado	21
Figura 5. Límites de Atterberg	24
Figura 6. Definición de los límites de Atterberg	25
Figura 7. Estructuras que dan cohesión a los suelos granulares	26
Figura 8. Estructura de las partículas de arcilla sedimentadas	27
Figura 9. Gráfica de plasticidad.	31
Figura 10. Modelo cilindro, resorte	34
Figura 11. Variación del esfuerzo total, la presión de agua intersticial y el	
esfuerzo efectivo en una capa de arcilla drenada en la parte	
superior y la parte inferior como resultado de un esfuerzo	
añadido, $\Delta\sigma$	37
Figura 12. Consolidómetro.	40
Figura 13. Gráfica de deformación en función del tiempo durante una	
consolidación para un incremento particular de la carga	40
Figura 14. Lectura del deformímetro Vs $\sqrt{\text{tiempo}}$	43
Figura 15. Cambio en la altura de la muestra en una prueba de	
consolidación en una dimensión	44
Figura 16. Gráfica típica de e en función de log σ'	45
Figura 17. Rango de C _v Según el Departamento de Marítima de	
Estados Unidos	46
Figura 18. Curva e-log σ' para una arcilla suave del este de	
San Louis, Illinois	47
Figura 19. Distinción experimental objetiva entre flujo laminar y turbulento	51

Figura 20. Presión, elevación y cargas totales para el flujo del agua a	
través de un suelo	53
Figura 21. Naturaleza de la variación de v con el gradiente hidráulico, i	54
Figura 22. Prueba de permeabilidad de carga variable	62
Figura 23. Histograma de frecuencia	65
Figura 24. La curva normal	69
Figura 25. Distribución gama	70
Figura 26. Programa estratégico de trabajo	85
Figura 27. Curva teórica de consolidación	121
Figura 28. Primer orden, consolidación por el método de Taylor	122
Figura 29. Segundo orden, consolidación por el método de Taylor	123
Figura 30. Tercer orden, consolidación por el método de Taylor	124
Figura 31. Cambio en la altura de la muestra en una prueba de	
consolidación en una dimensión	126
Figura 32. Curva típica de comprensibilidad.	127
Figura 33. Histograma de la variable permeabilidad obtenida a través del método	
de carga variable, Los Chapacos	135
Figura 34. Distribución estadística Exponencial de 2 parametros para la variable	
permeabilidad obtenida por el método de carga variable,	
Los Chapacos	136
Figura 35. Histograma de la variable permeabilidad, obtenida a través del método	
de carga variable, Torrecillas	139
Figura 36. Distribución estadistica Loglogística para la variable permeabilidad	
obtenida por el método de carga variable, Torrecillas	140
Figura 37. Histograma de la variable permeabilidad, obtenida a través del método	
de carga variable, El Constructor	143
Figura 38. Distribución estadística Valor extremo por maximo, para la variable	
permeabilidad obtenida por el método de caraga variable,	
El Constructor	144
Figura 39. Histograma de la variable permeabilidad, obtenida a travez del método	
de carga variable, San Blas	147

Figura 40.	Distribución estadística Exponencial de 2 parámetros para la variable	
	permeabilidad obtenida por el método de carga variable	
	San Blas	148
Figura 41.	Histograma de la variable permeabilidad, obtenida a travez del método	
	de carga variable, San Jorge II	151
Figura 42.	Distribución estadística Weibull de 3 parámetros para la variable	
	permeabilidad obtenida por el método de carga variable, San Jorge II	152
Figura 43.	Histograma de la variable permeabilidad obtenida a través del	
	ensayo edométrico, Los Chapacos	155
Figura 44.	Distribución estadística Weibull de 3 parámetros, para la variable	
	permeabilidad procedente del barrio, Los Chapacos.	156
Figura 45.	Histograma de la variable permeabilidad obtenida a través del	
	ensayo edómetrico, Torrecillas	158
Figura 46.	Distribución estadística Exponencial de 2 parámetros, para la	
	variable permeabilidad procedente del barrio, Torrecillas	159
Figura 47.	Histograma de la variable permeabilidad obtenida a través del	
	ensayo edómetrico, El Constructor	161
Figura 48.	Distribución estadistica Exponencial de 2 parámetros, para la	
	variable permeabilidad procedente del barrio El Constructor	162
Figura 49.	Histograma de la variable permeabilidad obtenida a través del	
	ensayo edómetrico, San Blas	164
Figura 50.	Distribución estadistica Valor extremo más pequeño, para la	
	variable permeabilidad procedente del barrio San Blas	165
Figura 51.	Histograma de la variable permeabilidad obtenida a través del	
	ensayo edométrico, San Jorge II	167
Figura 52.	Distribución estadistica Valor extremo mas pequeño para la	
	variable permeabilidad procedente del barrio San Jorge II	168
Figura 53.	Relación de vacíos Vs permeabilidad "k", para un suelo "CH"	171
Figura 54.	Comparación de la permeabilidad promedio obtenida por los	
	métodos de carga variable y el ensayo edométrico, para un	
	suelo CH	173

Figura 55. Comparación de la mediana para las variables permeabilidad
obtenida por los métodos de carga variable y el ensayo
edométrico, para un suelo CH
Figura 56. Regresión entre el método de carga variable y el método edométrico,
para un suelo CH
Figura 57. Relación de vacíos Vs permeabilidad "k", para un suelo "ML-CL"178
Figura 58. Comparación de la permeabilidad promedio obtenida por los métodos
de carga variable y el ensayo edométrico, para un suelo ML-CL179
Figura 59. Comparación de las medianas para las variables permeabilidad,
obtenida por los métodos de carga variable y el ensayo edométrico,
para un suelo ML-CL
Figura 60. Regresión entre el método de carga variable y el método edométrico,
para un suelo ML-CL
Figura 61. Relación de vacíos Vs permeabilidad "k", para un suelo "CL"
Figura 62. Comparación de la permeabilidad promedio obtenida por los métodos
de carga variable y el ensayo edométrico, para un suelo CL
Figura 63. Comparación de las medianas para las variables permeabilidad,
obtenida por los métodos de carga variable y el ensayo edométrico,
para un suelo CL
Figura 64. Regresión entre el método de carga variable y el método edométrico
para un suelo CL
Figura 65. Relación de vacíos Vs permeabilidad "k", para un suelo "ML"190
Figura 66. Comparación de la permeabilidad promedio obtenida por los métodos
de carga variable y el ensayo edométrico, para un suelo ML
Figura 67. Comparación de las medianas para las variables permeabilidad,
obtenida por los métodos de carga variable y el ensayo edométrico,
para un suelo ML
Figura 68. Regresión entre el método de carga variable y el método edométrico
para un suelo ML
Figura 69. Relación de vacíos Vs permeabilidad "k", para un suelo "MH"196

Figura 70. Comparación de la permeabilidad promedio obtenida por los métodos	
de carga variable y el ensayo edométrico, para un suelo MH	197
Figura 71. Comparación de las medianas para las variables permeabilidad,	
obtenida por los métodos de carga variable y el ensayo edométrico,	
para un suelo MH.	198
Figura 72. Regresión entre el método de carga variable y el método edométrico	
para un suelo MH	200
Figura 73. Correlación entre el Índice de plasticidad y el Límite líquido para	
todos los suelos en analisis	201
Figura 74. Correlación entre el % de arcilla y el Límite líquido para todos los	
suelos en analisis	202
Figura 75. Resumen comparativo del coeficiente de permeabilidad para suelos	
СН у МН	204
Figura 76. Resumen comparativo del coeficiente de permeabilidad para suelos	
CL, ML y ML-CL	204
Figura 77. Variación del índice de vacíos con respecto a la presión aplicada en	
las muestras analizadas	207
Figura 78. Variación del coeficiente de permeabilidad con respecto a la presión	
aplicada en las muestras analizadas	208

ÍNDICE DE IMAGENES

Página
Imagen 1. Mapa político de Bolivia, Departamento de Tarija y Provincia
Cercado
Imagen 2. Barrió San Jorge II de la ciudad de Tarija, extracción de muestra
Imagen 3. Barrió Los Chapacos de la ciudad de Tarija, extracción de muestra
Imagen 4. Barrió Torrecillas de la ciudad de Tarija, extracción de muestra
Imagen 5. Barrió El Constructor de la ciudad de Tarija, extracción de muestra
Imagen 6. Barrió San Blas de la ciudad de Tarija, extracción de muestra
Imagen 7. Extracción y Tallado de muestras
Imagen 8. Determinación del contenido de humedad
Imagen 9. Granulometría por tamizado
Imagen 10. Granulométrica por medio del hidrómetro
Imagen 11. Determinación del peso específico de los sólidos
Imagen 12. Determinación del límite plástico
Imagen 13. Determinación del límite plástico
Imagen 14. Equipos de permeabilidad
Imagen 15. Discos porosos
Imagen 16. Pedestal metálico
Imagen 17. Tapa superior del equipo
Imagen 18. Celda acrílica transparente
Imagen 19. Muestra preparada para ser ensayada
Imagen 20. Muestra preparada para ser ensayada en el equipo
Imagen 21. Muestra preparada para ser ensayada en el laboratorio
Imagen 22. Detalles del montaje para el ensayo de cabeza variable
Imagen 23. Equipo de consolidación del laboratorio de suelos de la
Universidad Juan Misael Saracho
Imagen 24. Dial o deformímetro
Imagen 25. Equipo de carga
Imagen 26. Muestra preparada para ser ensayada

Imagen 27. Muestra seca después de ser ensayada	117
Imagen 28. Preparación de las muestras para el ensayo de edométrico	118
Imagen 29. Ensayo edométrico.	120