UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE ESTRUCTURAS Y Cs. Ms.

"APLICACIÓN DE ADITIVO PLASTIFICANTE CARENTE DE CLORUROS PARA MEJORAR EL RENDIMIENTO Y RESISTENCIA DE ESTRUCTURAS EN TARIJA"

Por:

GUTIÉRREZ PÉREZ CHRISTIAN

Proyecto presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el Grado Académico de Licenciatura en Ingeniería Civil.

SEMESTRE – II - 2019 TARIJA – BOLIVIA

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE ESTRUCTURAS Y Cs. Ms.

"APLICACIÓN DE ADITIVO PLASTIFICANTE CARENTE DE CLORUROS PARA MEJORAR EL RENDIMIENTO Y RESISTENCIA DE ESTRUCTURAS EN TARIJA"

Por:

GUTIÉRREZ PÉREZ CHRISTIAN

SEMESTRE II - 2019 TARIJA - BOLIVIA

Ing. Liliana Carola Miranda Encinas
DOCENTE CIV - 502

M. Sc. Ing. Ernesto R. Álvarez Gonzalvez	M. Sc. Lic. Elizabeth Castro Figueroa
DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA	VICEDECANA FACULTAD DE CIENCIAS Y TECNOLOGÍA
TRIBUNAL:	
	Sánchez López
Ing. Ricardo M	Morales Retamozo
	s Díaz Ayarde

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo éstas responsabilidad del autor.

DEDICATORIA:

El presente trabajo se lo dedico a mis padres y abuelos por apoyarme en la decisión de estudiar la Carrera de Ingeniería Civil, en brindarme la sustentabilidad motivacional y económica para seguir adelante y por inculcarme los valores éticos que definen la persona que soy ahora.

AGRADECIMIENTOS:

Agradezco a mi madre Ana María Pérez y mi padre Luis Enrique Gutiérrez por todo el amor y apoyo incondicional en el trayecto de esta etapa de mi vida; a mis abuelos por sus grandes palabras que me sirvieron de motivación y a mis docentes por sus consejos y experiencias que me ayudarán en el porvenir del futuro campo laboral.

PENSAMIENTO:

"Mi padre me explicó que la educación y el conocimiento es lo que les permitirá a los niños mejorar el mundo"

(Steve Wozniak)

ÍNDICE

Dedicatoria

Agradecimientos

Resumen

	Página
1 ANTECEDENTES	1
1.1 Introducción	1
1.2 Justificación	1
1.3 Objetivos	2
1.3.1 General	2
1.3.2 Específicos	2
1.4 Hipótesis	3
1.5 Alcance	3
1.6 Metodología	4
2 MARCO TEÓRICO	6
2.1 Introducción	6
2.2 Hormigones	6
2.2.1 Definición	7
2.2.2 Propiedades generales	7
2.2.3 Tipos de hormigón	10
2.2.4 Hormigones para uso estructural	24
2.3 Composición del hormigón	24
2.3.1 Componentes tradicionales	24

2.3.2 Características del hormigón	28
2.4 Aditivo Plastificante sin Cloruros	30
2.4.1 Definición	30
2.4.2 Generalidades	30
2.4.3 Componentes	31
2.4.4 Adición del Plastificante sin Cloruros	32
2.5 Normativas a utilizar en el procedimiento experimental	33
3 DESARROLLO DE LA INVESTIGACIÓN	35
3.1 Características de los materiales componentes del hormigón	35
3.1.1 Cemento.	35
3.1.2 Agregado fino	36
3.1.3 Agregado grueso	39
3.1.4 Agua	42
3.2 Metodología y procedimiento para la investigación	43
3.2.1 Dosificación convencional	43
3.2.2 Dosificación con Aditivo Plastificante	43
3.2.3 Preparación para los ensayos a compresión y tracción indirecta	44
3.2.4 Ensayo de rotura de probetas a Compresión.	47
3.2.5 Ensayo de rotura de probetas a Tracción Indirecta	48
4 ANÁLISIS DE LOS RESULTADOS	50
4.1 Características físicas y mecánicas de los agregados	50
4.2 Análisis de consistencias obtenidas en la mezcla de hormigón	53
4.3 Análisis de resistencias a compresión en las probetas	55

4.3.1 Análisis de los resultados y búsqueda de datos atípicos (Compresión)	56
4.3.2 Evaluación de las resistencias a compresión	58
4.3.3 Determinación de curvas de resistencia a compresión vs. porcentaje	
aditivo plastificante	59
4.4 Análisis de resistencias a tracción indirecta en las probetas	62
4.4.1 Análisis de los resultados y búsqueda de datos atípicos (Tracción Inc	directa)
	62
4.4.2 Evaluación de las resistencias a tracción indirecta	63
4.4.3 Determinación de curvas de resistencia a tracción indirecta vs. porce	entaje
de aditivo plastificante	64
4.5 Análisis de precios entre un hormigón convencional vs porcentaje de adi	itivo
plastificante	67
4.6 Contrastación de hipótesis	79
CONCLUSIONES Y RECOMENDACIONES	70
Conclusiones	80
Recomendaciones	81
BIBLIOGRAFÍA	72
Bibliografía	83

Índice de Anexos

	Pág.
A.1 Dosificación para hormigón de 16 MPa.	86
A.2 Correcciones dosificación 16 MPa por la adición de aditivo plastificante sin cloruro	s.87
A.3 Dosificación para hormigón de 21 MPa.	88
A.4 Correcciones dosificación 21 MPa por la adición de aditivo plastificante sin cloruro	s.89
A.5 Algoritmo para el diseño de mezclas de hormigón por el método ACI 211.1	90
A.6 Valores de trabajabilidad para diferentes estructuras	91
A.7 Requisitos aproximados de agua de mezclado y contenido de aire para diferentes revenimientos y tamaños máximos nominales recomendados	91
A.8 Resistencia de diseño en caso que no se tengan datos para determinar la desviación estándar.	92
A.9 Correspondencia entre la resistencia a compresión y la relación agua/cemento del hormigón.	92
A.10 Volúmenes de agregado grueso seco y compactado con varilla para 1m³ de hormigón.	93
A.11 Tiempos mínimos de mezclado recomendados	93
A.12 Código modelo CEB-FIP 1990.	94
A.13 Granulometría del agregado fino.	95
A.14 Peso unitario agregado fino.	96
A.15 Peso específico del agregado fino.	97
A.16 Granulometría del agregado grueso	98
A.17 Peso unitario del agregado grueso.	99
A.18 Peso específico del agregado grueso	.100
A.19 Resistencia a compresión para hormigón de 16 MPa	101

A.20 Resistencia a tracción indirecta para hormigón de 16 MPa	102
A.21 Resistencia a compresión para hormigón de 21 MPa.	103
A.22 Resistencia a tracción indirecta para hormigón de 21 MPa.	104
A.23 Desviación estándar y coeficiente de variación para datos de compresión	105
A.24 Desviación estándar y coeficiente de variación para datos de tracción indirecta	106
A.25 Tabla de Dixon	107
A.26 Criterio de Chauvenet para rechazar una observación	107
A.27 Tabla valores críticos de Grubbs.	108
A.28 Prueba de Dixon, datos de compresión	109
A.29 Prueba de Grubbs, datos de compresión	110
A.30 Criterio de Chauvenet, datos de compresión.	111
A.31 Prueba de Dixon, datos de tracción indirecta	112
A.32 Prueba de Grubbs, datos de tracción indirecta	113
A.33 Criterio de Chauvenet, datos a tracción indirecta	114
A.34 Desviación estándar y coeficiente de variación para datos de compresión corregidos	115
A.35 Desviación estándar y coeficiente de variación para datos de tracción indirecta	
corregidos	116
A.36 Prueba de Dixon, datos de compresión corregidos	117
A.37 Prueba de Grubbs, datos de compresión corregidos	118
A.38 Criterio de Chauvenet, datos de compresión corregidos	119
A.39 Prueba de Dixon, datos de tracción indirecta corregidos	120
A.40 Prueba de Grubbs, datos de tracción indirecta corregidos	121
A.41 Criterio de Chauvenet, datos a tracción indirecta corregidos	122
A.42 Dispersión de datos de compresión H° 16 MPa a los 28 días	123

A.43 Dispersión de datos de compresión H° 16 MPa a los 14 días	123
A.44 Dispersión de datos de compresión H° 21 MPa a los 28 días	124
A.45 Dispersión de datos de tracción indirecta H° 16 MPa a los 28 días	124
A.46 Dispersión de datos de tracción indirecta H° 16 MPa a los 14 días	125
A.47 Dispersión de datos de tracción indirecta H° 21 MPa a los 28 días	125
A.48 Reducción de muestras de agregados	126
A.49 Ensayo: Granulometría agregado fino	126
A.50 Ensayo: Granulometría agregado grueso	127
A.51 Ensayo: Peso específico y porcentaje de absorción agregado fino	128
A.52 Ensayo: Peso unitario suelto y compactado agregado fino	129
A.53 Ensayo: Peso específico y porcentaje de absorción agregado grueso	130
A.54 Ensayo: Peso unitario suelto y compactado agregado grueso	131
A.55 Corrección de granulometría del agregado fino	132
A.56 Desgaste del agregado grueso por máquina de los ángeles	133
A.57 Corrección granulometría agregado fino.	134
A.58 Limpieza agregado grueso y descarte de impurezas y agregados gruesos de	e forma
alargada	135
A.59 Procedimiento de vaciado y curado de las probetas	136
A.60 Consistencias del hormigón.	138
A.60.1 Seca (probetas descartadas).	138
A.60.2 Plástica (probetas patrón).	138
A.60.3 Plástica (probetas con 0,3% de aditivo plastificante sin cloruro)	139
A.60.4 Fluida (probetas con 0,5% de aditivo plastificante sin cloruro)	139
A.60.5 Líquida (probetas con 2% de aditivo plastificante sin cloruro)	140
A.61 Comprobación dimensiones de las probetas de hormigón	140

A.62 Ensayo: Rotura de las probetas por compresión	141
A.63 Ensayo: Rotura de las probetas por tracción indirecta	142
A.64 Probetas patrón de hormigón de 16 MPa	143
A.64.1 Compresión.	143
A.64.2 Tracción Indirecta	144
A.65 Probetas de hormigón de 16 MPa con 0,3% de plastificante sin cloruros	145
A.65.1 Compresión.	145
A.65.2 Tracción Indirecta	146
A.66 Probetas de hormigón de 16 MPa con 0,5% de plastificante sin cloruros	147
A.66.1 Compresión.	147
A.66.2 Tracción Indirecta	148
A.67 Probetas de hormigón de 16 MPa con 2% de plastificante sin cloruros	149
A.67.1 Compresión.	149
A.67.2 Tracción Indirecta.	150
A.68 Probetas estándar de hormigón de 21 MPa.	151
A.68.1 Compresión.	151
A.68.2 Tracción Indirecta	152
A.69 Probetas de hormigón de 21 MPa con 0,3% de plastificante sin cloruros	153
A.69.1 Compresión.	153
A.69.2 Tracción Indirecta.	154
A.70 Probetas de hormigón de 21 MPa con 0,5% de plastificante sin cloruros	155
A.70.1 Compresión.	155
A.70.2 Tracción Indirecta	156
A.71 Probetas de hormigón de 21 MPa con 2% de plastificante sin cloruros	157
- · · · · · · · · · · · · · · · · · · ·	

A.71.1 Compresión.	157
A.71.2 Tracción Indirecta.	.158
A.72 Probetas desechadas por problemas de rotura	159

Índice de Tablas

	Pág.
2.1 Tipos de hormigón por la resistencia.	11
2.2 Tipos de hormigón por el peso volumétrico.	13
2.3 Tipos de hormigón por la consistencia.	15
2.4 Componentes peligrosos aditivo plastificante sin cloruros	32
3.1 Propiedades del cemento "El Puente".	35
4.1: Granulometría agregado fino real	50
4.2: Granulometría agregado fino modificada	50
4.3: Características físicas y mecánicas del agregado fino.	51
4.4: Granulometría agregado grueso	52
4.5: Características físicas y mecánicas del agregado grueso	52
4.6: Calificación de la preparación de hormigón respecto a su coeficiente de variación	56
4.7: Rango aceptabilidad de correlación	57
4.8: Resistencia a compresión a los 28 días para H-16.	58
4.9: Resistencia a compresión a los 14 días para H-16	58
4.10: Resistencia a compresión a los 28 días para H-21	59
4.11: Resistencia a tracción indirecta a los 28 días para H-16	63
4.12: Resistencia a tracción indirecta a los 14 días para H-16	63
4.13: Resistencia a tracción indirecta a los 28 días para H-21	64
4.14: Precio unitario de hormigón convencional de 16 MPa	69
4.15: Precio unitario de hormigón de 16 MPa con 0,3% adición	
aditivo plastificante sin cloruros.	70
4.16: Precio unitario de hormigón de 16 MPa con 0,5% adición aditivo plastificante sin cloruros	71
autivo piastificalite sili civi utos	/ 1

4.17: Precio unitario de hormigón de 16 MPa con 2% adición	
aditivo plastificante sin cloruros.	72
4.18: Precio unitario de hormigón convencional de 21 MPa	73
4.19: Precio unitario de hormigón de 21 MPa con 0,3% adición	
aditivo plastificante sin cloruros.	74
4.20: Precio unitario de hormigón de 21 MPa con 0,5% adición	
aditivo plastificante sin cloruros.	75
4.21: Precio unitario de hormigón de 21 MPa con 2% adición	
aditivo plastificante sin cloruros.	76

Índice de gráficos

Pág.
4.1: Curva granulométrica agregado fino
4.2: Curva granulométrica agregado grueso
4.3 Asentamiento mínimo obtenido en la mezcla de hormigón
4.4 Asentamiento máximo obtenido en la mezcla de hormigón
4.5: Resistencia hormigón de 16 MPa (28 días) con distintos % aditivo plastificante59
4.6: Resistencia hormigón de 16 MPa (14 días) con distintos % aditivo plastificante60
4.7: Resistencia hormigón de 21 MPa (28 días) con distintos % aditivo plastificante60
4.8: Comparación de las resistencias a compresión del hormigón de 16 MPa con el de 21 MPa a los 28 días
4.9: Resistencia hormigón de 16 MPa (28 días) con distintos % aditivo plastificante64
4.10: Resistencia hormigón de 16 MPa (14 días) con distintos % aditivo plastificante65
4.11: Resistencia hormigón de 21 MPa (28 días) con distintos % aditivo plastificante65
4.12: Comparación de las resistencias a tracción del hormigón de 16 MPa con
el de 21 MPa a los 28 días67
4.13: Incremento del costo del precio unitario de 1 m3 de hormigón de 16 MPa77
4.14: Incremento del costo del precio unitario de 1 m3 de hormigón de 21 MPa77
4.15: Gráfica comparativa del incremento de resistencia vs costo de 1 m³ de hormigón de 16 MPa
4.16: Gráfica comparativa del incremento de resistencia vs costo de 1 m³ de hormigón de
21 MPa

Índice de figuras

	Pág.
1.1 Esquema de metodología utilizada	5
4.1 Formas que adopta la mezcla en la prueba de revenimiento	47