UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO PROGRAMA ESPECIAL DE TITULACION

ESTUDIO PARA USO DE GEOSINTÉTICOS EN EL CONTROL DE EROSIÓN "AEROPUERTO ORIEL LEA PLAZA DE TARIJA"

Postulante:

JOSE ALBERTO ITURRY BRAVO

SEPTIEMBRE DE 2013

TARIJA – BOLIVIA

DEDICATORIA:

A mi esposa Ximena y mi hija Bianca, a mis padres José y Ana y a mí Tía Marina: por el esfuerzo y ayuda incalculable, por guiarme en el camino de la superación y ser constante inspiración y motivación en la conclusión de este trabajo.

INDICE GENERAL

-I- INTRODUCCION	01
1.1. ANÁLISIS DE CONTEXTO.	02
1.1.1. Área geográfica del Estudio	02
1.2. PLANTEAMIENTO DEL PROBLEMA	05
1.2.1. Problema	05
1.3. OBJETIVOS	06
1.3.1. Objetivo General	06
1.3.2. Objetivos Específicos	06
1.4. JUSTIFICACIÓN	07
1.5. DISEÑO METODOLOGICO	08
1.5.1. Tipo de Investigación	08
1.5.2. Métodos de recolección de información	08
1.5.3. Instrumentos.	10
1.6. HIPÓTESIS	10
1.7. OPERACIONALIZACIÓN DE LAS VARIABLES	10
1.7.1. Variables Dependientes	10
1.7.2. Variables Independientes	11
-II- MARCO TEORICO	12
2.1. CONCEPTO GENERAL	12
2.1.1 CLASIFICACIÓN DE LOS GEOSINTÉTICOS	13
2.1.2 GEOTEXTILES	13
2.1.2.1. Clasificación según su método de fabricaci	ón 13
a) Geotextiles Tejidos	13
b) Geotextiles No Tejidos	14
2.1.2.2 Clasificación según su composición	14
a) Fibras naturales	14
b) Fibras artificiales	14
c) Fibras sintéticas	14
2 1 2 2 1 Procesos de fabricación	15

a) Clase de polímeros	15
b) Tipo de filamento	15
c) Tipo de proceso productivo	17
2.1.2.3 Geotextiles Tejidos	18
2.1.2.4 Tres clases de procesos de fabricación.	19
2.1.3 FUNCIONES Y CAMPOS DE APLICACIÓN	20
2.1.3.1 Función de separación	21
2.1.3.2 Función refuerzo	22
2.1.3.3 Función de drenaje	23
2.1.3.4 Función filtro	24
2.1.3.5 Función protección	25
2.1.3.6 Función de impermeabilización	26
2.1.4. GEOMALLAS COEXTRUIDAS	26
2.1.4.1. Clasificación	28
a) Geomallas Coextruidas Mono-Orientadas	28
b) Geomallas Coextruidas Bi-Orientadas	29
2.1.4.2 Proceso de fabricación	29
2.1.4.3. Funciones y aplicaciones	30
2.1.5. GEOMALLA DE FIBRA DE VIDRIO	32
2.1.5.1. Proceso de fabricación	33
2.1.5.2. Funciones y aplicaciones	33
2.1.6. GEOCOMPUESTOS DE DRENAJE	33
2.1.6.1. Clasificación	34
a) Geodren Planar	34
b) Geodren Circular	35
2.1.6.2. Proceso de fabricación	35
2.1.6.3. Funciones y aplicaciones	36
2.1.7. GEOMEMBRANAS	37
2.1.7.1. Clasificación	38
2.1.7.2. Proceso de fabricación	39

 a) Fabricación par extrusión plana 	39
b) Fabricación por soplado	39
2.1.7.3. Funciones y aplicaciones	40
2.1.8. MANTOS PARA CONTROL DE EROSIÓN	41
2.1.8.1 Clasificación	42
a) Temporales	42
b) Permanentes	43
2.1.8.2 Funciones y aplicaciones	44
2.1.9. NEOWEB· SISTEMA DE CONFINAMIENTO CELULAR	44
2.1.9.1 Funciones y aplicaciones	46
2.2. EROSIÓN DE SUELO	47
2.2.1. Conceptos Generales	47
2.2.1. Tipos de erosión	48
2.2.1.1. Por origen	48
a) Naturales	48
b) Antrópicas	48
2.2.1.2- Por agentes causantes	48
2.2.1.2.1. Erosión Hídrica (por agua)	48
a) Tipos de Erosión hídrica en Suelo	49
i Laminar	49
ii Surcos	49
iii Zanjas o cárcavas	50
b) La erosión hídrica se debe a	50
c) Erosión por impacto de gota de lluvia	50
d) La erosión es función	51
i- la erosividad	51
ii- la erodabilidad	51
e) De la lluvia debemos considerar	51
f) Del suelo debemos considerar	52
2.2.1.2.2. Erosión Eólica (por viento)	53

·III- ESCENARIO GENERAL Y EVALUACIÓN DE-	
OBRAS EXISTENTES.	54
3.1. ESCENARIO GENERAL	54
3.2. EVALUACION DE OBRAS EXISTENTES	56
3.2.1. Evaluación Del Sistema De Drenaje Transversal A La Pista	56
a) Alcantarilla I	56
b) Alcantarilla II	58
c) Alcantarilla III	60
3.2.2. Evaluación De Los Terraceos I, II y III	61
a) Terraceo I	61
b) Terraceo II	63
c) Terraceo III	64
3.2.3. Sector final de la prolongación del eje de pista	65
3.2.4. Canales Abiertos Existentes	66
a) Sector Margen izquierdo	66
b) Sector Margen Derecho	68
c) Sector Final Prolongación Eje de Pista	70
3.3. EVALUACIÓN HIDRÁULICA DE CANALES EXISTENTES	71
3.3.1. Determinación de Caudales y Velocidades en Canales	71
3.3.2. Determinación de Caudales de Aporte en Canales Existentes	73
3.3.3. Evaluación de la Sección Hidráulica de los Canales	77
IV- ESTABILIZACION DE ZONAS CRÍTICAS EROSIONADAS	
CON USO DE GEOSINTÉTICOS	80
4.1. METODOS DE DISEÑO PARA USO DE GEOSINTÉTICOS	80
4.1.1 Diseño Por Costos y Disponibilidad	80
4.1.2. Diseño Por Experiencia o Método Empírico	80
4.1.3. Diseño Por Especificaciones	80
4.1.4 Diseño Por Función	81
4.2. IDENTIFICACION DE SECTORES CRITICOS PARA	
USO DE GEOSINTÉTICOS	83

4.2.1 Quebrada SILS - Estabilización de Taludes mediante-	
Geotextiles (Geomantas), y canalización de quebrada	83
4.2.1.1. Productos Enrollados Para Control de Erosión-	
Permanentes o Geomanta (MRV)	86
4.2.1.2. Equipo	86
4.2.1.3. Instalación del manto para control de erosión-	
o geomanta	87
4.2.1.4. Diseño hidráulico de los canales de H°C° para-	
la quebrada SILS	88
4.2.2 Lagunas artificiales en el sector final prolongación-	
eje de pista	92
4.2.2.1 Proceso de diseño para espesor de geomembrana	93
4.2.2.2 Emplazamiento y geometría laguna artificial Nº1	94
4.2.2.3 Emplazamiento y geometría laguna artificial Nº2	96
4.2.2.4 Alcantarillas de salida para lagunas artificiales	99
4.2.2.4.1 Alcantarilla N°1	99
a) Obras hidráulicas complementarias	
(Alcantarilla N°1)	99
b) Diseño de alcantarilla Nº1	101
4.2.2.4.2 Alcantarilla N°2	102
a) Obras hidráulicas complementarias	
(Alcantarilla N°2)	102
b) Diseño de alcantarilla Nº2	103
4.2.3. Sector de Terraceos I, II, III y Muros de Gaviones	105
4.2.3.1. Diseño de Geodren en Muros de Gavión	105
a Estimación del caudal de diseño	105
b Caudal por infiltración	105
c Caudal total de diseño	106
d Selección del Geodren adecuado	107
4.2.3.2 Obras Civiles adicionales	107

a Desplazamiento del Camino Perimetral	107
b Muros de Gavión para Contención de Terrazas	108
c Muros de Gavión para Contención de-	
Camino Perimetral	109
d Movimientos de tierra (Nivelación de-	
superficies/Terraceos)	110
4.2.4. Alcance del Estudio con Uso de Geosintéticos	111
4.2.4.1. Canalización Quebrada SILS	111
4.2.4.2. Lagunas Artificiales	111
a) Lagunas Artificiales	111
b) Muros de Contención (Gaviones)	112
4.2.4.3. Construcción de Terraceos	112
a) Perfilado de Terraceos existente (A-B)	112
b) Nuevos Terraceos (C-D)	112
4.2.4.4. Ejecución de Obras Adicionales	113
-V- CONCLUSIONES DEL ESTUDIO	114
5.1. Conclusiones	114
5.2. Recomendaciones	116
BIBLIOGRAFIA	117

ANEXOS

Anexos Cap. III Evaluación hidráulica de canales existentes

Anexos Cap. IV Productos. Enrollados para Control de Erosión Permanentes

Anexos Cap. IV Diseño para espesor de geomembrana

Anexos Cap. IV Factores de Reducción Geosintéticos

Anexos Cap. IV Topografía y Análisis de Suelos

Anexos Cap. IV Obras Complementarias Para Terraceos y Canales Nuevos

INDICE DE FIGURAS

Figura1.1: Ubicación Geográfica de la ciudad de Tarija	02
Figura 1.2: Ubicación especifica del Aeropuerto Cap. Oriel Lea Plaza	
de la ciudad de Tarija	03
Figura 1.3: Delimitación de la zona de estudio	
Figura 2.1.: Tipos de fibras utilizadas en la construcción de geotextiles	16
Figura 2.2: Vista microscópica de algunos de tipos de Geotextiles Tejidos	
y No tejidos	17
Figura 2.3: Geomalla Coextruida Mono-orientada	28
Figura 2.4: Geomalla Coextruida Bi-orientada.	29
Figura 2.5: Esquema del proceso de fabricación de las geomallas coextruidas	30
Figura 2.6: Proceso de colocado geomalla de fibra de vidrio	32
Figura 2.7: Geodren Circular.	35
Figura 2.8: Colocado Geomembranas.	38
Figura 2.9: Mantos control erosivo (Antes- después)	42
Figura 2.10: Estructura del Manto permanente.	42
Figura 2.11: Esquema Colocado Sistema de confinamiento con celdas.	45
Figura 2.12: Erosión laminar	49
Figura 2.13: Erosión en surcos	49
Figura 2.14: Erosión en zanjas o cárcavas	50
Figura 2.15: Impacto de una gota sobre suelo desnudo	51
Figura 2.16: Efecto de lluvias en suelos desnudo	52
Figura2.17: Efecto del Viento en la Erosión de los Suelos	53
Figura 3.1: PLANO DE UBICACIÓN DE ALCANTARILLAS I II III	55
Figura 3.1: (a) Alcantarilla de chapa ARMCO	56
Figura 3.2: Ubicación de alcantarilla Nº 1	57
Figura 3.3: (a) Canalización de aguas servida	
(b) Conexión subterránea de canales.	58

Figura 3.4: (a) Canalización quebrada SILS (Sector Norte)	
(b) Canalización quebrada SILS (Sector Sur)	59
Figura 3.5: Gavión de protección salida quebrada SILS (Sector Sur)	59
Figura 3.6: Conducto de caída del canal E	60
Figura 3.7: (a,b)Canalización de la quebrada TORRECILLAS(con sedimentos)	
(c,d) canales de aporte quebrada TORRECILLAS.	61
Figura 3.8: Desmoronamientos y socavaciones en la zona próxima.	62
Figura 3.9: Cobertura Vegetal en el sector.	62
Figura 3.10: Canal J y sus tramos	63
Figura 3.10: (a) Sector con cobertura vegetal. (Sector Noroeste)	
(b) Sector con escasa cobertura vegetal	64
Figura 3.11: (a) Escasa cobertura vegetal en el sector	64
Figura 3.12: (a) Depresiones (b) Cárcavas Profundas	
(c) Sector Acumulación de Aguas Pluviales	65
Figura 3.13: Ubicación de canales correspondientes al Terraceo Nº1	66
Figura 3.14: Ubicación de canales correspondientes al Terraceo Nº2	67
Figura 3.15: Ubicación de canales correspondientes al Terraceo Nº 3	68
Figura 3.16: Ubicación de canales sector margen derecho (quebrada SILS)	68
Figura 3.17: Ubicación del canal D (Sector margen derecho)	69
Figura 3.18: Ubicación canal E-1 y E-2 (sector margen derecho)	69
Figura 3.19: Ubicación de canales sector final prolongación eje de pista	70
Figura 3.20: Socavación al lado del camino perimetral lado sur (final pista)	70
Figura 3.21: Curvas de Intensidad – Duración – Frecuencia (IDF)	74
Figura 3.22: Alcantarillas Subterráneas	79
Figura 4.1: (a) Colocado de la geomanta; (b) Talud estabilizado con geomanta	
y cobertura vegetal	84
Figura 4.2: (a) Geomanta evitando el arrastre del suelo y las semillas);	
(b) Sistema de enraizado con refuerzo permanente	85
Figura 4.3: Vista en planta y Emplazamiento de los canales SAC-II y SILS II	85
Figura 4.4: Esquema planteado para la canalización SILS II y SAC-II	86

Figura 4.5: Estabilidad taludes QDA.SAC – II Factor de Seguridad calculado	
con el GeoSlope (a) Método de Bishop. (b)Método Ordinary	
(c) Método de Janbu. (d) Método de Morgenstern-Price	90
Figura 4.6: Esquema del talud planteado para la canalización SAC-II	91
Figura 4.7: Estabilidad taludes QDA.SILS – II Factor de Seguridad calculado	
con el GeoSlope (a)Método de Bishop (b) Método Ordinary	
(c) Método de Janbu (d) Método de Morgenstern-Price	92
Figura 4.8: Esquema del talud planteado para la canalización SILS-II	92
Figura 4.9: (a) Emplazamiento laguna artificial Nº 1.	
(b) Geometría laguna artificial Nº1	95
Figura 4.10: Detalle constructivo laguna artificial Nº1	96
Figura 4.11: Detalle muro de gaviones	96
Figura 4.12: (a) Emplazamiento laguna artificial Nº 2.	
(b) Geometría laguna artificial N°2	97
Figura 4.13: Detalle constructivo laguna artificial N°2 y detalle de gaviones	98
Figura 4.14: Esquema de sistema de drenaje planteado	99
Figura 4.15: Sección tipo, canal de salida Laguna I	100
Figura 4.16: Condiciones de Entrada Alcantarilla Nº1	100
Figura 4.17: Perfil Longitudinal alcantarilla N°1	101
Figura 4.18: Vista en planta alcantarilla Nº1	101
Figura 4.19: Hoja de Cálculo – Culvert Master	102
Figura 4.20: Sección tipo canal de salida laguna II	103
Figura 4.21: Condiciones de Entrada Alcantarilla Nº 2	103
Figura 4.22: Perfil Longitudinal Alcantarilla N°2	104
Figura 4.23: Vista en planta alcantarilla N°2	104
Figura 4.24: Hoja de Cálculo – Culvert Master	105
Figura 4.25: Monograma para el cálculo del diámetro de tubería a usar según-	
ecuación de Prandtl-Colebrook	106
Figura 4.26: Geodren Circular	107
Figura 4.27: Desplazamiento del Camino Perimetral	108

Figura 4.28: Emplazamiento muro de gaviones final prolongación eje de pista.	108
Figura 4.29: Geometría del muro de gaviones (final prolongación eje de pista)	109
Figura 4.30: Emplazamiento Muro Gaviones Camino Perimetral	109
Figura 4.31: Dimensiones Muro Gavión Camino Perimetral	110

INDICE DE TABLAS

Tabla 3.1 Evaluación hidráulica del canal J	72
Tabla 3.2 Coeficientes de escorrentía para diferentes tipos de superficie	73
Tabla 3.3 Coeficientes de escorrentía promedio. Canal J	75
Tabla 3.4 Cálculo de Tiempos de Concentración e intensidades. Canal J	76
Tabla 3.5 Cálculo de Caudales para los distintos Tramos del Canal J	77
Tabla 3.6 Comparación de Caudales. Canal J	78
Tabla 4.1 Planilla de diseño Canal SILS II (H°C°)	88
Tabla 4.2 Planilla de diseño Canal SAC-II (H°C°)	89
Tabla 4.3 Ítems de geosintéticos para Canalización Quebrada Sils	111
Tabla 4.4 Items de geosintéticos para Construcción de Lagunas Artificiales	112
Tabla 4.5 Items para Conformación de Terraceos	113
Tabla 4.6 Items para Ejecución de Obras Adicionales	113