UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA QUÍMICA

OBTENCIÓN DE BIOETANOL A PARTIR DE CASCARA DE NARANJA

Por:

GABRIEL ALEJANDRO ANDRADE CASTRO.

Proyecto de Grado: Investigación aplicada, presentado a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Química.

Octubre del 2018

TARIJA – BOLIVIA

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA QUÍMICA

OBTENCIÓN DE BIOETANOL A PARTIR DE CASCARA DE NARANJA

Por:

GABRIEL ALEJANDRO ANDRADE CASTRO

Proyecto de Grado: Investigación aplicada, presentado a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Química.

Octubre del 2018

TARIJA – BOLIVIA

ING. PATRICIA CASTILLO ROCHA

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y demás expresiones vertidas en el mismo, siendo éstas responsabilidad del autor.

DEDICATORIA

El presente proyecto es dedicado a Dios y a mi madre. A Dios por estar conmigo siempre en cada etapa de mi vida, protegiéndome y fortaleza para seguir adelante, a mi madre, a mi madre, quien a lo largo de mi vida ha velado por mi bienestar y educación, siendo mi apoyo en todo momento. Debiendo a ellos todos mis triunfos presentes y futuros, los amo con mi vida.

AGRADECIMIENTO

A Dios por haberme acompañado y guiado a lo largo de mi carrera, por ser mi fortaleza en mis momentos de debilidad y por darme una vida llena de momentos de felicidad.

A mi madre por haberme apoyado en todo momento y brindado la oportunidad de tener una excelente educación en el transcurso de mi vida.

A mis docentes y tribunales, por compartir sus conocimientos, haberme brindado su apoyo y dedicación durante la elaboración del presente proyecto de investigación.

A todas las personas que han formado parte de mi vida hasta la culminación de mis estudios, por contribuir de diferentes maneras en cada objetivo logrado.

ÍNDICE

Pág
INTRODUCCION
ANTECEDENTES 1
OBJETIVOS
OBJETIVO GENERAL 10
OBJETIVOS ESPECÍFICOS
JUSTIFICACIÓN 10
JUSTIFICACIÓN ECONÓMICA 10
JUSTIFICACIÓN SOCIAL 11
JUSTIFICACIÓN AMBIENTAL 11
JUSTIFICACIÓN TECNOLÓGICA 12
JUSTIFICACIÓN PERSONAL 12
CAPITULO I
MARCO TEORICO
1.1 ASPECTOS GENERALES SOBRE EL BIOETANOL
1.1.1 CLASES DE BIOETANOL 12
1.2 UTILIDADES DEL BIOETANOL
1.2.1 BIOETANOL COMO ADITIVO Y COMBUSTIBLE EN MOTORES DE
COMBUSTIÓN INTERNA
<u>1.3 BIOMASA</u>
1.3.1 TIPOS DE BIOMASA RESIDUAL 20
<u>1.3.1.1 SECTOR AGRARIO</u>
1.3.1.2 SECTOR INDUSTRIAL 21

1.3.1.3 SECTOR URBANO	22
1.4- RESIDUOS FRUTALES COMO FUENTE DE BIOETANOL	25
1.4.1 COMPOSICIÓN DE LOS RESIDUOS FRUTALES	27
<u>1.4.1.1 CELULOSA</u>	28
1.4.1.2 HEMICELULOSA	28
<u>1.4.1.3 LIGNINA</u>	29
1.5 CASCARA DE NARANJA	30
1.5.1 USOS DE LAS CÁSCARAS DE NARANJA	31
1.5.2 COMPOSICIÓN FISICOQUÍMICA DE LAS CÁSCARAS DE NARANJA	<u>4</u> 32
1.6 CUANTIFICACIÓN DE MATERIA PRIMA EXISTENTE EN EL DEPARTAMENTO DE TARIJA	33
1.7 TECNOLOGÍAS EXISTENTES PARA EL PROCESO DE OBTENCIÓN D	<u>E</u>
BIOETANOL A PARTIR DE CASCARAS DE NARANJA	34
1.7.1 PRE TRATAMIENTO	36
1.7.1.1 PRE TRATAMIENTOS MECÁNICOS	36
1.7.1.2 PRE TRATAMIENTOS QUÍMICOS	36
1.7.1.3 PRE TRATAMIENTOS BIOLÓGICOS	37
1.7.1.4 PRE TRATAMIENTOS TÉRMICOS	38
1.7.1.5 PRE TRATAMIENTOS FISICOQUÍMICOS	39
1.7.2 HIDRÓLISIS	39
1.7.2.1 HIDRÓLISIS CON ÁCIDOS CONCENTRADOS	40
1.7.2.2 HIDRÓLISIS CON ÁCIDOS DILUIDOS	40
1.7.2.3 HIDRÓLISIS ENZIMÁTICA	41
1.7.2.4 HIDRÓLISIS Y FERMENTACIÓN SIMULTÁNEA (HFS)	41
1.7.3 FERMENTACIÓN ALCOHÓLICA	42

1.7.3.1 ETAPAS DEL PROCESO DE FERMENTACIÓN ALCOHÓLICA	. 42
1.7.3.2 CRECIMIENTO MICROBIANO	. 44
1.7.3.3 LIMITACIONES DEL PROCESO DE FERMENTACIÓN	
<u>ALCOHÓLICA</u>	. 45
1.7.3.4 LEVADURAS	. 46
<u>1.7.3.5 BACTERIAS</u>	. 47
1.7.4 DESTILACIÓN	. 48
1.7.4.1 DESTILACIÓN SIMPLE.	. 49
1.7.4.2 DESTILACIÓN EXTRACTIVA CON EFECTO SALINO	. 50
CAPITULO II	
PARTE EXPERIMENTAL	
2.1 MATERIA PRIMA	. 51
2.1.1 ELIMINACION DE LAS CASCARAS DE NARANJA EN EXPENDIOS	
<u>COMERCIALES</u>	. 51
2.1.2 DETERMINACION DE LOS PARAMETROS FISICOS Y QUIMICOS DI	<u>E</u>
LAS CASCARAS DE NARANJA	. 52
2.2 SELECCIÓN DE LAS ETAPAS A EMPLEAR PARA EL PROCESO DE	
OBTENCION DE BIOETANOL A PARTIR DE CASCARA DE NARANJA	. 53
2.2.1 SELECCIÓN DE LA ETAPA DE PRE TRATAMIENTO	. 55
2.2.2 SELECCIÓN DE LA ETAPA DE HIDROLISIS A EMPLEAR	. 60
2.2.3 SELECCIÓN DEL MICROORGANISMO A EMPLEAR EN LA ETAPA I	<u>)E</u>
FERMENTACIÓN ALCOHÓLICA	. 63
2.2.4 PROCESO SELECCIONADO A EMPLEAR EN LA OBTENCION DE	
BIOETANOL A PARTIR DE MATERIA RESUDUAL DE NARANJA	. 67
2.3 DISEÑO EXPERIMENTAL	. 68
2.3.1 DISEÑO FACTORIAL PARA LA ETAPA DE HIDRÓLISIS ÁCIDA	. 68

2.3.2 DISEÑO FACTORIAL PARA LA ETAPA DE FERMENTACIÓN
ALCOHÓLICA 69
2.4 OBTENCION DE BIOETANOL A ESCALA DE LABORATORIO70
2.4.1 OBTENCION DE LA MATERIA PRIMA
2.4.2 SELECCIÓN Y PREPARACION DE LA MATERIA PRIMA
<u>2.4.3 TRITURADO</u>
2.4.4 PRE TRATAMIENTO CON EXPLOSION DE VAPOR (EV)
2.4.5 TRITURADO CON LICUADORA
<u>2.4.6 DESHIDRATADO</u>
<u>2.4.7 MOLIENDA</u>
2.4.8 HIDROLISIS DE AZUCARES 80
2.4.8.1 DETERMINACION DEL VOLUMEN DE DILUCION
2.4.8.2 DETERMINACION DE LA DENSIDAD DE LA DILUCION
2.4.8.3 DETERMINACION DE LOS GRADOS BRIX
2.4.9 OBTENCION DEL SUSTRATO PARA LA FERMENTACION
<u>2.4.10 FILTRADO</u>
2.4.10.1 DETERMINACION DE AZUCARES REDUCTORES
2.4.11 CORRECCION DEL SUSTRATO
2.4.12 INOCULACION DEL SUSTRATO 88
2.4.13 FERMENTACION ALCOHOLICA 89
2.4.13.1 CONSUMO DEL SUSTRATO 90
2.4.14 DESTILACIÓN SIMPLE 91
CAPITULO III
RESULTADOS Y DISCUSIONES
3.1 RESULTADOS OBTENIDOS EN LA MATERIA PRIMA

3.1.1 RESULTADOS OBTENIDOS EN LA DETERMINACION DE HUMEDAD
DE LAS CASCARAS DE NARANJA94
3.1.2 RESULTADOS DE LA DETERMINACION DE AZUCARES TOTALES Y
REDUCTORES DE LAS CASCARAS DE NARANJA DESHIDRATADA
3.2 RESULTADOS OBTENIDOS DE LOS PRODUCTOS INTERMEDIOS 99
3.2.1RESULTADOS OBTENIDOS EN LAS ETAPAS DE TRITURADO, PRE
TRATAMIENTO, TRITURADO CON LICUADORA, DESHIDRATACION Y
MOLIENDA99
3.2.2 RESULTADOS OBTENIDOS EN LA ETAPA DE HIDROLISIS ACIDA 102
3.2.2.1 RESULTADOS OBTENIDOS EN LA DETERMINACION DEL
VOLUMEN DE DILUCION
3.2.2.2 RESULTADOS OBTENIDOS EN LA DETERMINACION DE LA
DENSIDAD DE DILUCION
3.2.3 RESULTADOS OBTENIDOS EN LA ELABORACION DE LOS
SUSTRATOS PARA LA FERMENTACION ALCOHOLICA
3.2.3.1 RESULTADOS DE LA HIDROLISIS ACIDA EN LA OBTENCION DEL
<u>SUTRATO</u>
3.2.3.2 VOLUMEN OBTENIDO DESPUES DE LA OPERACIÓN DE
FILTRACION 109
3.2.3.3 RESULTADOS OBTENIDOS EN LA DETERMINACION DE
AZUCARES REDUCTORES EN LOS SUSTRATOS DE FERMENTACION 109
3.2.3.4 RESULTADOS OBTENIDOS EN LA CORRECCION DEL
SUSTRATO
3.2.4 RESULTADOS OBTENIDOS EN LA FERMENTACION
ALCOHOLICA 112
3.3 RESULTADOS OBTENIDOS DEL PRODUCTO FINAL

3.3.1 RESULTADOS DEL CONTROL DE CALIDAD REALIZADO EN EL
PRODUCTO OBTENIDO
3.3.2- DETERMINACION DE RENDIMIENTOS 119
3.3.2.1 DETERMINACION DE RENDIMIENTO DE HIDROLISIS ACIDA 119
3.3.2.2 DETERMINACION DE RENDIMIENTOS EN LA FERMENTACION
ALCOHOLICA 121
3.3.2.3 RENDIMIENTO GLOBAL DEL PROCESO DE OBTENCION DE
BIOETANOL A PARTIR DE MATERIA RESIDUAL DE NARANJA 124
34 VARIABLES Y CONDICIONES DE OPERACIÓN DEL PROCESO DE
OBTENCION DE BIOETANOL
3.5 ANALISIS ESTADISTICO DE LAS VARIABLES DEL PROCESO 129
3.5.1 ANALISIS ESTADISTICO DE LA HIDROLISIS ACIDA
3.5.2 ANALISIS ESTADISTICO DE LA FERMENTACION ALCOHOLICA 133
CAPITULO IV
CONCLUSIONES Y RECOMENDACIONES
<u>4.1 CONCLUSIONES</u>
<u>4.2 RECOMENDACIONES</u>

ÍNDICE DE TABLAS Y/O CUADROS

Påg.
Tabla 1: Producción de Naranja en el Departamento de Tarija
Tabla 2: Producción Estimada de Residuos Sólidos de la Ciudad de Tarija2
Tabla 3: Emisiones de CO ₂ , CH ₄ y N ₂ O del Sector Energético en Bolivia
Tabla 4: Comparación de Características Fisicoquímicas de la Gasolina Frente al
<u>Etanol</u> 6
Tabla 5: Producción y Consumo de Bioetanol en América Latina
Tabla I-1: Propiedades Fisicoquímicas del Etanol (a 1 atm y 20 °C)
Tabla I-2: Rendimiento del Etanol Carburante Empleado como Mezcla
Combustible
<u>Tabla I-3: Propiedades del Etanol y la Gasolina</u>
<u>Tabla I-4: Tipos de Biomasa y sus Características</u>
Tabla I-5: Composición Fisicoquímica de las Cascaras de Naranja 32
Tabla I-7: Producción Aproximada de Residuos de Naranja en el Departamento de
<u>Tarija</u>
Tabla II-1: Factores a Evaluar en la Matriz de Selección del Pre tratamiento a
<u>Emplear</u>
Tabla II-2: Escala de Puntaje de Cumplimiento en la Matriz de Selección del Pre
tratamiento a Emplear
Tabla II-3: Matriz de Selección del Pretratamiento a Emplear en el Proceso de
Obtención de Bioetanol
Tabla II-4: Factores a Evaluar en la Matriz de Selección de Hidrólisis a Emplear 60
Tabla II-5: Escala de Puntaje de Cumplimiento en la Matriz de Selección de
Hidrólisis a Emplear61

Tabla II-6: Matriz de Selección de Hidrólisis a Emplear en el Proceso de Obtención	<u>l</u>
de Bioetanol	62
Tabla II-7: Factores a Evaluar en la Matriz de Selección del Microorganismo	
Fermentador a Emplear	63
Tabla II-8: Escala de Puntaje de Cumplimiento en la Matriz de Selección del	
Microorganismo a Emplear	65
Tabla II-9: Matriz de Selección del Microorganismo Fermentador a Emplear en el	
Proceso de Obtención de Bioetanol	65
Tabla II-10: Diseño Experimental de la Etapa de Hidrólisis Ácida	68
Tabla II-11: Combinación de las Variables en la Hidrólisis Ácida	69
Tabla II-12: Diseño Experimental de la Etapa de Fermentación Alcohólica	70
Tabla II-13: Combinación de las Variables de Fermentación	70
Tabla II-14: Cantidad Pesada de Materia Prima	74
Tabla II-15: Cantidades de Materia Prima Destinadas al Pre tratamiento	75
Tabla II-16: Cantidad de Cascaras de Naranja al Finalizar el Pre Tratamiento (EV).	76
Tabla II-17: Cantidad de Cascara de Naranja Obtenida del Triturado con Licuadora	77
Tabla II-18: Cantidades Obtenidas del Secado	79
Tabla II-19: Cantidades Obtenidas de la Molienda	80
Tabla II-20: Cantidad de Cascara de Naranja Destinada a Hidrolisis Acida	80
Tabla II-21: Experimentos con Mayores Grados Brix Obtenidos en la Hidrolisis	84
Tabla II-22: Cantidad de Materia Obtenida en Cada Etapa	85
Tabla III-1: Determinación de Humedad de las Cascaras de Naranja (A)	94
Tabla III-2: Determinación de Humedad de las Cascaras de Naranja (B)	95
Tabla III-3: Resultados Obtenidos en la Determinación de Humedad de las Cascara	<u>s</u>
de Naranja	98

Tabla III-4: Resultados de los Análisis de Cascaras de Naranja Deshidratadas	99
Tabla III-5: Cantidad de Cascara de Naranja Resultante desde la Etapa de Tritur	<u>ado</u>
hasta Molienda	100
Tabla III-6: Resultados de la Hidrolisis Acida de las Cascaras de Naranja	102
Tabla III-7: Resultados en la Determinación del Volumen de Dilución	105
Tabla III-8: Resultados Obtenidos en la Determinación de la Densidad de	
<u>Dilución</u>	106
Tabla III-9: Resultados en la Obtención de Materia Seca de los Sustratos de	
Fermentación	107
Tabla III-10: Resultados de la Hidrolisis en la Obtención de los Sustratos de	
Fermentación	108
Tabla III-11: Volumen de Sustratos Obtenidos Después de la Filtración	109
Tabla III-12: Resultados de la Determinación de Azucares Reductores en los	
Sustratos de Fermentación	110
<u>Tabla III-13: Corrección del Sustrato</u>	110
Tabla III-14: Consumo de Sustratos en la Fermentación Alcohólica	112
Tabla III-15: Medición de la Densidad en la Fermentación Alcohólica	115
Tabla III-16: Determinación del Grado Alcohólico del Vino Obtenido	117
Tabla III-17: Determinación del Grado Alcohólico del Destilado	117
Tabla III-18: Resultados de las Pruebas de Calidad del Bioetanol Obtenido	119
Tabla III-19: Determinación del Rendimiento de Hidrolisis Acida	120
Tabla III-20: Determinación del Rendimiento en la Fermentación Alcohólica	123
Tabla III-21: Diseño Factorial de la Hidrolisis Acida	130
Tabla III-22: Prueba de Efectos Inter-Sujetos – Hidrolisis Acida	131

<u>Tabla III-23: ANOVA Datos y Resultados Obtenidos Aplicando Regresión lineal –</u>	
Hidrolisis Acida)
<u>Tabla III-24: Diseño Factorial de la Hidrolisis Acida</u>	,
<u>Tabla III-25: Prueba de Efectos Inter-Sujetos – Fermentación Alcohólica</u>	_
Tabla III-26: ANOVA Datos y Resultados Obtenidos Aplicando Regresión lineal-	
Fermentación Alcohólica	<u>,</u>

ÍNDICE DE FIGURAS

Pag.
Figura I-1: Clasificación de los Residuos Sólidos Orgánicos Según sus Características
<u>Físicas</u>
Figura I-2: Clasificación de los Residuos Sólidos Orgánicos Según Fuente de
Generación 24
Figura I-3: Residuos de Naranja
Figura I-4: Esquema General de los Componentes Químicos de los Materiales
<u>Lignocelulósicos</u> 27
Figura I-5: Estructura Básica de las Moléculas de Celulosa Unidas Mediante Puentes
Hidrógeno28
Figura I-6: Estructura Básica de la Molécula de Hemicelulosa (Xylosa-β(1,4)-
$\underline{\text{Manosa-β(1,4)-Glucosa-alfa(1,3)-Galactosa}}$
Figura I-7: Estructura de Básica de la Lignina
Figura I-8: Cáscara de Naranja
Figura I-9: Proceso de Obtención de Bioetanol de Segunda Generación
Figura I-10: Pretratamiento de la Biomasa Lignicelulosica
Figura I-11: Curva de Crecimiento de la Levadura
Figura II-1: Expendios de Comidas a Base de Frutas
Figura II-2: Determinación de Humedad de las Cascaras de Naranja
Figura II-3: Etapas Alternativas a Seleccionar en el Proceso de Obtención de
Bioetanol 54
Figura II-4: Etapas Seleccionadas para el Proceso de Obtención de Bioetanol a partir
de Cáscaras de Naranja
Figura II-5: Diagrama del Proceso de Obtención de Bioetanol a Escala de
<u>Laboratorio</u> 71
Figura II-6: Obtención de la Materia Prima a Emplear
Figura II-7: Cascaras de Naranja Seleccionadas para el Proceso de Obtención de
Bioetanol
Figura II-8: Cascaras de Naranja Trituradas

Figura II-9: Pesaje de Cascaras de Naranja Destinadas a Pre Tratamiento	74
Figura II-10: Cascaras de Naranja Sometidas a Pre Tratamiento EV	75
Figura II-11: Triturado con Licuadora	76
Figura II-12: Desecador Empleado en la Operación de Deshidratado	77
Figura II-13: Deshidratado de las Cascaras de Naranja Trituradas	78
Figura II-14: Molienda de las Cascaras de Naranja	79
Figura II-15: Hidrolisis Acida de Azucares en Agitador Magnético	81
Figura II-16: Determinación del Volumen de Dilución	82
Figura II-17: Determinación de la Masa de la Dilución	83
Figura II-18: Medición de los Grados Brix	84
Figura II-19: Obtención de Sustratos para la Fermentación Alcohólica	86
Figura II-20: Filtración de Partículas Sólidas del Sustrato	87
Figura II-21: Muestras de Sustratos Enviadas para Determinación de Azucares	
Reductores	87
Figura II-22: Corrección del Sustrato	88
Figura II-23: Activación de la Levadura	89
Figura II-24: Fermentación Alcohólica	90
Figura II-25: Determinación de la Densidad del Vino obtenido	91
Figura II-26: Destilación Simple	92
Figura II-27: Medición del Grado Alcohólico	93
Figura II-28: Bioetanol Obtenido	93
Figura III-1: Curva de Secado de Cascaras de Naranja (A)	96
Figura III-2: Curva de Secado de Cascaras de Naranja (B)	97
Figura III-3: Diagrama de Bloques De Triturado a Molienda	. 101
Figura III-7: Formación de Azucares Fermentables Mediante Hidrolisis Acida (4	
<u>Horas)</u>	. 103
Figura III-8: Formación de Azucares Fermentables Mediante Hidrolisis Acida (8	
<u>Horas</u>)	. 104
Figura III-9: Diagrama de Bloques de las Cantidades Obtenidas desde Hidrolisis	
Acida hasta Corrección de Sustrato	. 111

Figura III-10: Consumo del Sustrato 1 a pH 3,5 y 4,5 (A)	. 113
Figura III-11: Consumo del Sustrato 1 a pH 3,5 y 4,5 (B)	. 113
Figura III-12: Consumo del Sustrato 2 a pH 3,5 y 4,5 (A)	. 114
Figura III-13: Consumo del Sustrato 2 a pH 3,5 y 4,5 (B)	. 114
Figura III-14: Diagrama de Bloques Correspondiente a la Mejor Experiencia	. 114
Figura III-15: Datos Ajustados en Regresión Lineal – Hidrolisis Acida	. 132
Figura III-16: Datos Ajustados en Regresión Lineal – Fermentación Alcohólica	. 135