UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"ESTUDIO Y EVALUACIÓN ESTRUCTURAL DE LAS EXPLANACIONES POR SIMULACIÓN DE INUNDACIÓN SOBRE EL TRAMO CARRETERO TRONCAL RUTA Nº 1 EL PUENTE – ISCAYACHI"

Por:

WILSON EDDY CORO CASTRO

Julio de 2009

TARIJA – BOLIVIA

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"ESTUDIO Y EVALUACIÓN ESTRUCTURAL DE LAS EXPLANACIONES POR SIMULACIÓN DE INUNDACIÓN SOBRE EL TRAMO CARRETERO TRONCAL RUTA Nº 1 EL PUENTE – ISCAYACHI"

Por:

WILSON EDDY CORO CASTRO

PROYECTO ELABORADO EN LA ASIGNATURA CIV – 502

PROYECTO DE INGENIERÍA CIVIL II

Julio de 2009

TARIJA – BOLIVIA

Ing. Wilson Yucra Rivera
PROFESOR DE CIV - 502

PROFESOR DE	CIV – 502
MSc. Ing. Luís Alberto Yurquina flores DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA	MSc. Lic. Gustavo Succi Aguirre VICEDECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA
APROBADO POR:	
TRIBUNAL:	
Ing. Marcelo I	Pacheco
Ing. Adolfo N	Molina
Ing. Jhonny	

Tarija 9 de julio de 2009

La suscrita Profesora de Lenguaje

Prof. Daysi Cassasola M.:

Que habiendo revisado el Trabajo de Proyecto de Grado titulado:

"ESTUDIO Y EVALUACIÓN ESTRUCTURAL DE LAS EXPLANACIONES POR SIMULACIÓN DE INUNDACIÓN SOBRE EL TRAMO CARRETERO TRONCAL

RUTA Nº 1 EL PUENTE – ISCAYACHI", elaborado por el universitario:

WILSON EDDY CORO CASTRO, de la carrera de Ingeniería Civil, de la Universidad Autónoma Juan Misael saracho se pudo evidenciar que el trabajo se encuentra elaborado correctamente, no cuenta con errores ortográficos y cumple con todos los requisitos y exigencias gramaticales de la Real Academia de la Lengua Española.

Por lo que el universitario, puede continuar con los demás requisitos para su Defensa Final.

En cuanto Certifico en honor a la verdad y para fines que al interesado convenga.

Daysi Cassasola M. PROFESORA DE LENGUAJE

ÉTICA DE AUTORÍA DEL PROYECTO

El Proyecto de Grado a Continuación, es el resultado de la necesidad de aportar con una solución coherente al prematuro deterioro de la carretera, del tramo en estudio.

Este proyecto, fue elaborado en función a la investigación de las características de la zona y de los datos recolectados del mal estado actual de la carretera.

El proceso de ejecución del proyecto se realizo determinando algunos parámetros y calibrando ecuaciones que nos permita resultados con mayor precisión. Por otra parte, se establece evaluar con criterios que permitan juzgar la calidad de la solución, la solución óptima será la mejor valorada de todas las alternativas de soluciones.

Para ello se realizo el modelado hidráulico paralela al eje de la carretera, por medio del software HEC-RAS Se verifico que este proyecto de Grado, es el primero en su planteamiento.

DEDICATORIA

Es un honor para mí dedicar este documento a la memoria de mi querido padre y al apoyo de mi también querida madre y hermanas por, su amor y comprensión, que con sacrificio hicieron posible este anhelo.

AGRADECIMIENTO

A Dios por este logro alcanzado.

A todas las personas que directa e indirectamente colaboraron con la elaboración de este trabajo.

A la vida, por haberme enseñando a convertir en escalones las piedras con las que tropecé, lo cual hizo posible este logro.

PENSAMIENTO

Muchos habrían podido llegar a la sabiduría, si no se hubieran creído ya suficientemente sabios.

Juan L. Vives

ÍNDICE

Revisión gramatical Ética de autoría del proyecto Dedicatoria Agradecimiento Pensamiento Resumen CAPÍTULO I INTRODUCCIÓN Página 1.1. Introducción.....1 1.2. Justificación......3 Objetivos......3 1.3. 1.3.1. Objetivos generales......3 Objetivos específicos.....4 1.3.2. 1.4. CAPÍTULO II ESTUDIO DE LAS EXPLANACIONES 2.1. Introducción.....6 2.2. Infraestructura......6 2.2.1 Las explanaciones......7 2.2.2. 2.2.3. 2.2.4. Unidad homogénea de diseño------------------------11 2.3. 2.3.1. Estudios preliminares 11 2.3.2. 2.3.3.

Estudios geológicos y geotécnicos......12

2.4.

2.4.1.

		Página
2.4.1.1.	Características geológicas de los suelos	13
2.4.1.2.	Geomorfología	14
2.4.1.2.1.	Depósitos lacustre	14
2.4.1.2.2.	Depósitos coluviales	15
2.4.2.	Estudios geotécnicos	15
2.4.2.1.	Clasificación geotécnica	15
2.4.2.2.	Geometría de la explanada	16
2.4.2.3.	Desmonte	16
2.4.2.3.1.	Excavado de los materiales en la traza	16
2.4.2.3.2.	Aprovechado de los materiales	17
2.4.2.3.3.	Talud de desmonte	17
2.4.2.4.	Relleno	17
2.4.2.4.1.	Talud de relleno	18
2.5.	Topografía	18
2.5.1.	Caracterización fisiográfica e hidrológica	19
2.5.1.1.	Pendientes	19
2.5.2.	Características topográficas del entorno	20
2.5.2.1.	Relieve	21
2.6.	Drenaje superficial	21
2.6.1.	Flujo difuso	21
2.6.2.	Flujo concentrado	21
2.6.3.	Flujo por medios porosos	21
2.6.4.	Principios básicos de drenaje	21
2.7.	Hidrológica	23
2.7.1.	Introducción	23
2.7.2.	Estudio de las lluvias máximas	23
2.7.3.	Precipitaciones de gran intensidad y poca duración	24
2.7.3.1.	Calibración de la ecuación de Gumbel	25
2.7.3.2.	Aplicación de la ecuación	27
2.7.3.3.	Precipitaciones de Diseño	29
2.7.3.4.	Curvas Intensidad Duración y Frecuencia	29

		Página
2.7.4.	Estimación de caudales	32
2.7.4.1.	Caudales Máximos	32
2.7.4.2.	Estimación de caudales máximos, método racional	32
2.7.3.5.	Caudales máximos finales	34
	CAPÍTULO III	
	EVALUACIÓN GEOTÉCNICA DE LAS EXPLANACIONE	ES
3.1.	Introducción	35
3.2.	Problemas geotécnicos	36
3.3.	Antecedentes previos	36
3.4.	Metodología	37
3.4.1.	Inspección del estado	37
3.4.1.1.	Especificaciones y condiciones de diseño	38
3.4.1.2.	Infraestructura	39
3.4.1.3.	Inventario	40
3.4.1.4.	Inspección visual detallada	40
3.4.1.5.	Ficheros	40
3.4.1.6.	Relevamiento	49
3.4.1.7.	Diagnostico	50
	CAPÍTULO IV	
EVALUA	CIÓN POR SIMULACIÓN DE INUNDACIÓN APLICANDO EI	L PROGRAMA
HEC-RA	AS Beta 4.0 PARA DESARROLLAR UN MODELO HIDRÁULIO	CO EN 3D EN
	LA QUEBRADA CHAUPI UNO	
4.1.	Introducción	53
4.2.	Objetivos de la simulación	53
4.3.	Información	54
4.3.1.	Datos geométricos	54
4.3.1.1.	Geometría del cauce	54
4.3.1.2.	Secciones transversales	55

		Página
4.3.2.	Caudales máximos de diseño	57
4.4	Desarrollo del modelo hidráulico	57
4.4.1.	Ejecución del Programa	57
4.5.	Crear proyecto: ajustes iniciales	58
4.6.	Geometría del cauce	58
4.6.1.	Crear el tramo	58
4.6.2.	Secciones transversales	60
4.7.	Introducción de los datos hidráulicos	61
4.7.1.	Condiciones de contorno	63
4.7.2.	Calculo de las condiciones de contorno	63
4.8.	Ejecución del modelo	65
4.9.	Ver los resultados	65
DE LA CA	ARRETERA TRAMO TRONCAL "ISCAYACHI - EL PUENTE LA EVALUACIÓN Y SIMULACIÓN	" EN BASE A
5.1.	Antecedentes	67
5.2.	Descripción general del tramo	67
5.3.	Objetivos de conservación	67
5.4.	Fases	68
5.4.1.	Control del cauce	68
5.4.1.1.	Variante natural sin obras propuestas	69
5.4.1.1.1.	Descripción de los resultados	69
5.4.1.2.	Variante natural con muro defensivo en la plataforma	70
5.4.1.2.1.	Descripción de los resultados	70
5.4.1.3.	Variante con canalización y muro defensivo	71
5.4.1.3.1.	Descripción de los resultados	72
5.4.2.	Canalización	73
5.4.3.	Muro defensivo	74
5.4.3.1.	Dimensionamiento de muros de retención	74

		Página
5.4.3.1.1.	Análisis de las fuerzas de empuje debido al suelo	75
5.4.3.1.2.	Análisis de estabilidad	76
5.4.3.2.	Diseño estructural muro defensivo tipo	78
5.4.3.2.1.	Análisis y verificación estructural	79
5.5.	Erosión y socavación	80
5.5.1.	Antecedentes	80
5.5.2.	Análisis de socavación	80
5.5.2.1.	Erosión local	81
5.5.2.2.	Socavación al pie de los muros defensivos	81
5.5.3.	Descripción de los resultados	82
5.6.	Evaluación de alcantarillas	84
5.6.1.	Introducción	84
5.6.2.	Inventario	84
5.6.3.	Drenaje transversal	84
5.6.4.	Relevamiento de fallas	85
5.6.5.	Hidráulica de alcantarillas	86
5.6.5.1.	Escurrimiento con salida libre	87
5.6.5.1.1.	Escurrimiento sin presión	87
5.6.5.1.2.	Escurrimiento con presión	91
5.6.5.2.	Escurrimiento con salida sumergida	91
5.6.5.3.	Velocidad de escurrimiento	91
5.6.5.3.1.	Conducción con salida libre	92
5.6.5.3.2.	Conducción con salida sumergida	92
5.6.5.4.	Diseño hidráulico	92
5.6.5.4.1.	Análisis y verificación del dimensionamiento de las alcantarillas	92

CAPÍTULO VI ANÁLISIS DE COSTOS

6.1.	Introducción	95
6.2.	Análisis de presupuesto	95
6.3.	Costo de la canalización	95
6.4.	Costo de muro defensivo	95
6.5	Costo de las alcantarillas rediseñadas	96
6.6.	Costo de las obras para el control de material sólido	97
6.7.	Costo total de las obras propuestas en el presente estudio	97
	CAPÍTULO VII	
	CONCLUSIONES Y RECOMENDACIONES	
7.1.	Conclusiones	98
7.2.	Recomendaciones	100

BIBLIOGRAFÍA

ÍNDICE DE FIGURAS

		Página
Fig. 2.1	Explanada en sección de desmonte	9
Fig. 2.2	Explanada en sección de relleno	9
Fig. 2.3	Explanada en sección a media ladera	10
Fig. 2.4	Curva altura duración y frecuencia	31
Fig. 2.5	Curva intensidad duración y frecuencia	31
Fig. 3.1	Sección de firme, explanada y cimiento del firme	35
Fig. 4.1	Perfil longitudinal de cauce	54
Fig. 4.2	Cauce principal paralelo al eje de la carretera	55
Fig. 4.3	Ubicación de las secciones transversales principales	56
Fig. 4.4	Geometría del cauce con las transversales fijas e interpoladas	56
Fig. 4.5	Ventana principal del programa	57
Fig. 4.6	Cuadro para crear nuevos proyectos	58
Fig. 4.7	Trazado de la geometría del cauce principal	59
Fig. 4.8	Introducción de la secciones transversales	60
Fig. 4.9	Sección transversal formada	62
Fig. 4.10	Perfiles o caudales para distintos periodos de retorno	63
Fig. 4.11	Caudales para distintos periodos de retorno	64
Fig. 4.12	Condiciones de contorno	64
Fig. 4.13	Plan para determinar la geometría y el tipo de flujo	65
Fig. 5.1	Variante natural inundada	69
Fig. 5.2	Sección transversal inundada 5+616.14	70
Fig. 5.3	Sección transversal con muro 5+616.14	70
Fig. 5.4	Variante con canalización	71
Fig. 5.5	Variante con canalización y muro defensivo	72
Fig. 5.6	Muro defensivo tipo	74
Fig. 5.7	Conducto ideal y escurrimiento con salida libre sin presión	78

ÍNDICE DE CUADROS

		Página
Cuadro Nº 1.1	Distancia de los centros poblados	3
Cuadro Nº 2.1	Características Morfometricas de las subcuencas que rodean la	
	carretera	20
Cuadro Nº 2.2	Estaciones pluviométricas en la zona	24
Cuadro Nº 2.3	Parámetros estadísticos del pluviógrafo para diferentes tiempos	24
Cuadro Nº 2.4	Precipitaciones máximas para periodos de retorno T (años)	25
Cuadro Nº 2.5	Parámetros estadísticos finales	28
Cuadro Nº 2.6	Precipitaciones Máximas Diarias de Diseño	29
Cuadro Nº 2.7	Altura de lluvia duración y frecuencia	30
Cuadro Nº 2.8	Intensidad duración y frecuencia	30
Cuadro Nº 2.9	Caudales Máximos Obtenidos por el Método Racional	33
Cuadro Nº 2.10	Caudales Máximos finales	34
Cuadro Nº 3.1	Profundidad mínima del nivel freático bajo la explanada	39
Cuadro Nº 5.1	Caudal de diseño	69
Cuadro Nº 5.2	resultado de los valores máximos de la simulación	69
Cuadro Nº 5.3	Resultado de los valores máximos del modelado con muro defen	sivo 71
Cuadro Nº 5.4	Caudal de diseño canalización y muro	72
Cuadro Nº 5.5	Valores máximos del modelado con canalización y muro defensi	vo72
Cuadro Nº 5.6	Volumen canalizado por secciones	73
Cuadro Nº 5.7	Dimensiones determinadas para el diseño de los muros	78
Cuadro Nº 5.8	Resultados para la condición de estabilidad de los muros	78
Cuadro Nº 5.9	Resultado de la verificación de estabilidad	79
Cuadro Nº 5.10	Rediseño muro defensivo	80
Cuadro Nº 5.11	Condiciones hidráulicas del cauce para determinar el coeficiente	K83
Cuadro Nº 5.12	Altura de socavación al pie de los muros defensivos	83
Cuadro Nº 5.13	Altura de socavación muro colapsado	84
Cuadro Nº 5.14	Alcantarillas obstruidas y colmatadas	86
Cuadro Nº 5.15	Valores de coeficientes K para el diseño de secciones rectangular	res 90

Página

Cuadro Nº 5.16	Valores de K para el diseño, para hr/h=1 para secciones circulares	90
Cuadro Nº 5.17	Resultado de la evaluación de las alcantarillas	93
Cuadro Nº 5.18	Rediseño de las alcantarillas evaluadas	94
Cuadro Nº 5.19	Alcantarillas menores para limpieza de material	94
Cuadro Nº 6.1	Costo de la canalización	95
Cuadro Nº 6.2	Costo de los muros defensivos por tipo y longitud de H°C°	96
Cuadro Nº 6.3	Costo de excavación manual rellenado y compactado	96
Cuadro Nº 6.4	Costo por obra de las alcantarillas tipo cajón de H°A°	96
Cuadro Nº 6.5	Costo por obra de los diques de gavión para el control de sedimento 9	97
Cuadro Nº 6.6	Costo total de las obras propuestas en el presente estudio	97

ÍNDICE DE ANEXOS

Anexo I Fotos

Anexo II Estudio hidrológico

Anexo III Condiciones de contorno, calados aguas arriba y aguas abajo para

distintos periodos de retorno

Anexo IV Ejecución de la simulación de inundación y el detalle de los resultados

Gráficos en 3D, tablas, curvas y secciones transversales.

Anexo V Manual básico de introductoria a HEC-RAS

Anexo VI Traducción Inglés – Español de algunas palabras y expresiones

Anexo VII Verificación de estabilidad, diseño y rediseño de muro defensivo

Anexo VIII Granulometría

Anexo IX Estimación de la profundidad de socavación al pie de los muros

Anexo X Verificación hidráulica y rediseño de las alcantarillas observadas

Anexo XI Estimación del caudal sólido

Anexo XII Estructuras de control y retención de sedimento tipo dique de gavión

Anexo XIII Presupuesto general

Anexo XIV Planos