UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS AGRICOLAS Y FORESTALES CARRERA DE INGENIERIA FORESTAL

DETERMINACION DEL PORCENTAJE DE PRENDIMIENTO DE ALAMO (*Populus angulata* Aiton) EN FUNCION AL DIAMETRO DE ESTACAS EN VIVERO EN LA PROVINCIA CERCADO

Por:

GREGORIO TAPIA SUBIA

Tesis de grado presentada a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Forestal

Gestion-2016 TARIJA-BOLIVIA

Dr. Ing. Gilberto Varas Catoira PROFESOR GUÍA

PROFESOR GUIA				
M.Sc. Ing. Linder Espinoza Márquez DECANO DE LA FACULTAD DE CIENCIAS AGRÍCOLAS Y FORESTALES	M.Sc. Ing. Henry E. Valdez Huanca VICEDECANO DE LA FACULTAD DE CIENCIAS AGRÍCOLAS Y FORESTALES			
APROBADA POR:				
TRIBUNAL:				
	to. Cossío Narváez			
M.Sc. Ing. Juan	Oscar Hiza Zuñiga			
M.Sc. Ing. Henry	E. Valdez Huanca			

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo esta responsabilidad del autor.

DEDICATORIAS:

Este gran logro dedico mis padres (Francisco Tapia, Juliana Subía, hermanos y a mi querida hija Bianca Tapia) a quienes los quiero y fueron los que me motivaron a seguir adelante, por brindarme todo su apoyo incondicional durante todos estos años de estudios para poder llegar a estas instancias de logros profesionales.

AGRADECIMIENTOS:

Mi profundo agradecimiento al Dr. Ing. Gilberto Varas Catoira por el asesoramiento en la elaboración del presente trabajo.

Al plantel docente de la carrera de Ingeniería Forestal, quienes fueron la base de mi formación académica.

Al tribunal calificador: Ing. Carlos A. Cossío Narváez, Ing. Juan O. Hiza Zuñiga e Ing. Henry E. Valdéz Huanca, que contribuyeron a mejorar el trabajo de investigación.

A mis amigos y compañeros Oscar, Herlan, Tito y Martin con quienes compartimos lindos momentos.

INDICE

Dedicatoria

Agradecimiento

Resumen

CAPITULO I INTRODUCCION

		Pagina
1.	Introducción	1
	1.1 Justificación.	3
	1.2 Hipótesis	3
	1.3 Objetivos.	4
	1.3.1 Objetivo general	4
	1.3.2 Objetivos específicos	4
	CAPITULO II	
	REVICION BIBLIOGRAFICA	
2	REVICION BIBLIOGRAFICA	5
2.1	DESCRIPCIÓN DE LAS ESPECIES SALICÁCEAS	5
2.1	.1 Descripción de la Familia Salicáceas.	6
2.2	ANTECEDENTES GENERALES DE LA ESPECIE	6
2.2	2.1 Descripción de la especie	6
2.3	CARACTERÍSTICAS BOTÁNICAS DEL PÓPULUS	7
2.3	3.1 Clasificación taxonómica: Álamo <i>Populus angulata</i> Aiton	7
2.4	DESCRIPCION DEL ARBOL	8
2.4	2.1 Distribución geográfica y usos principales	9

2.5	SELECCIÓN Y MEJORA DE LOS ÁLAMOS
2.5.1	Selección12
2.5.2	La mejora12
2.6 H	EXIGENCIAS AGRO-ECOLÓGICAS PARA EL CULTIVO DEL ÁLAMO12
2.6.1	Requerimientos ecológicos
2.6.2	Requerimientos climáticos
2.6.3	Requerimientos edáficos
2.7	MULTIPLICACIÓN DE LOS ÁLAMOS Y TÉCNICAS DE VIVERO16
2.7.1	Propagación Sexual o por Semilla
2.7.2	Multiplicación Asexual o Vegetativa
2.7.3	Características de la propagación asexual o vegetativa
2.8 E	ELECCIÓN Y MANEJO DE LA PLANTA DONANTE
2.8.1	Obtención y preparación de estacas
2.9	TRATAMIENTOS APLICADOS A LAS ESTACAS
2.9.1	Aplicación de reguladores de crecimiento (Hormonas sintéticas)26
2.9.2	Condiciones ambientales durante el enraizamiento
2.9.3	Medios de enraizamiento natural
2.9.4	Propiedades requeridas en los sustratos o mezclas
2.10	OTROS ANTECEDENTES
2.11	USOS DE LA MADERA

CAPITULO III

MATERIALES Y METODOS

3.1 U	bicación del área de estudio	37
3.1.1	Ubicación geográfica	37
3.1.2	Características climáticas	39
3.2 M	lateriales	39
3.2.1	Material vegetativo	39
3.2.2	Herramientas y Materiales	40
3.2.3	Material de gabinete	40
3.2.4	Sustrato	40
3.3 M	letodología	41
3.3.1	Metodología para la propagación asexual	41
3.3.2	Establecimiento del área de estudio del experimento	42
3.3.3	Selección, y tratamiento de las estacas	44
3.4 Di	iseño experimental	46
3.4.1	Factores	46
3.4.2	Combinación factorial	46
3.4.3	Modelo matemático	48
3.4.4	Croquis del experimento.	48
3.5 V	ariables respuestas a evaluar	49
3.5.1	Porcentaje de prendimiento	49
3.5.2	Tamaño de brotes	49
3.5.3	Numero de brotes	50
3 5 4	Longitud de raíz	50

CAPITULO IV

RESULTADOS Y DISCUSIONES

4.1	Porcentaje de prendimiento	51
4.2	Tamaño de brotes.	55
4.3	Numero de brotes.	62
4.4	Longitud de raíz.	66
4.5	Análisis general de las variables de estudio	70
	CAPITULO V	
	CONCLUSIONES Y RECOMENDACIONES	
5.1	Conclusiones	72
5.2	Recomendaciones	74

INDICE DE CUADROS

	Pagina
Cuadro 1.	Taxonomia de la especie de Álamo <i>Populus angulata</i> Aiton8
Cuadro 2.	Clasificación de las estacas en la propagación asexual o vegetativa23
Cuadro 3.	Factores de estudio a evaluar en la propagación de álamo Populus
angulata Aito	n46
Cuadro 4.	Combinación factorial para cada unidad experimental
Cuadro 5.	Interacción de dos factores: tipos de corte*diámetro
Cuadro 6.	Análisis de varianza para el porcentaje de prendimiento en la
	de álamo <i>Populus angulata</i> Aiton en función al diámetro y tipo de51
Cuadro 7.	Promedios para porcentaje de prendimiento en corte54
Cuadro 8.	Promedios para porcentaje de prendimiento en diámetro55
Cuadro 9.	Análisis de varianza para la variable tamaño de brotes a los 90 días en
	n de álamo Populus angulata Aiton, a través de corte y diámetro de
estacas	56
Cuadro 10.	Análisis de varianza para la variable tamaño de brotes a los 5 meses en
1 1 0	n de álamo <i>Populus angulata</i> Aiton, a través de corte y diámetro de59
Cuadro 11.	Promedios para el tamaño de brotes en corte a los 5
meses	61
Cuadro 12.	Promedios para el tamaño de brotes en diámetro a los 5
meses	62
Cuadro 13.	Análisis de varianza para la variable número de brotes en la
propagación	de álamo Populus angulata Aiton, a través de corte y diámetro de
aataaaa	62

Cuadro 14.	Promedios para el número de brotes en corte64	
Cuadro 15.	Promedios para el número de brotes en diámetro	
Cuadro 16.	Análisis de varianza para la variable longitud de raíz en la propagación	l
de álamo Popa	ulus angulata Aiton, a través de corte y diámetro de estacas66	
Cuadro 17.	Promedios para longitud de la raíz en corte	
Cuadro 18.	Promedios para longitud de la raíz en diámetro	ı
Cuadro 19.	Relación entre todas las variable de estudio consideradas en la	
propagación v	egetativa de estacas de álamo <i>Populus angulata</i> Aiton71	

INDICE DE FIGURAS

							Pag	inas
Figura: 1	Ut	oicación de	l vivero depe	ndiente de la "	UAJMS".			38
Figura: 2	Flu	jo grama d	le procedimie	nto experimen	tal			41
Figura: 3	Cro	quis expe	rimental de ca	mpo				42
Figura: 4	Co	mponentes	y dimensiona	amiento de la	platabanda	de pro	pagació	n de
estacas de á	ilamo <i>l</i>	Populus an	<i>gulata</i> Aiton.					43
Figura: 5	Cro	oquis del e	xperimento					48
Figura: 6	Co	mparación	de medias	para tipo co	rte de en	el po	orcentaje	de
prendimien	to de la	as estacas o	de álamo <i>Pop</i>	ulus angulata	Aiton			53
Figura: 7	Co	mparación	de medias p	oara tipo de o	liámetro e	n el p	orcentaj	e de
prendimien	to de la	as estacas o	de álamo <i>Pop</i>	ulus angulata	Aiton			54
Figura: 8	Co	mparación	de medias pa	ara tipo de co	rte en el ta	maño	de brote	s de
estacas	de	álamo	Populus	angulata	Aiton	a	los	90
dias								57
Figura 9.	Co	mparación	de medias p	ara el diámeti	o en el tar	maño (de brote	s de
estacas	de	álamo	Populus	angulata	Aiton	a	los	90
dias								58
Figura: 10	Co	mparación	de medias pa	ara tipo de co	rte en el ta	maño	de brote	s de
estacas	de	álamo	Populus	angulata	Aiton	a	los	5
mese								60
Figura 11.	Co	mparación	de medias p	ara el diámeti	o en el tar	maño (de brote	s de
estacas	de	álamo	Populus	angulata	Aiton	a	los	5
meses								61
Figura 12.	Co	mparación	de medias pa	ra el corte en e	el número d	le brote	es de est	acas
de álamo P	opulus	angulata	Aiton					64

Figura 13.	Comparación de medias para el diámetro en el número de brotes o	de
estacas de ála	mo Populus angulata Aiton6	55
Figura 14.	Comparación de medias para tipos de corte en la longitud de raíz de l	as
estacas de ála	mo Populus angulata Aiton6	57
Figura 15.	Comparación de medias para el diámetro en la longitud de raíz en	la
propagación d	le estacas de álamo <i>Populus angulata</i> Aiton6	59

INDICE DE ANEXOS

- **ANEXO 1.** Planillas utilizadas para la toma de datos de la propagación de álamo *Populus angulata* Aiton.
- **ANEXO 2.** Seguimiento y control para la variable tamaño de brote durante el desarrollo de las estacas de álamo *Populus angulata* Aiton, hasta la obtención plantones aptos para ser implantados.
- **ANEXO 3.** Seguimiento y control para la variable tamaño de brote durante el desarrollo de las estacas de álamo *Populus angulata* Aiton, hasta la obtención plantones aptos para ser implantados.
- **ANEXO 4.** Seguimiento y control del desarrollo durante los 90 días, para la variable número de brotes de las estacas de álamo *Populus angulata* Aiton.
- **ANEXO 5.** Herramientas materiales utilizadas en el prendimiento de estacas de álamo *Populus angulata* Aiton.
- **ANEXO 6.** Selección de árboles padre para el corte de estacas de Álamo *Populus* angulata Aiton.
- **ANEXO 7.** Tratamiento y preparación de las estacas de álamo *Populus angulata* Aiton, previo al plantado.
- **ANEXO 8.** Plantado de estacas de álamo en base a cada tratamiento establecido dentro la platabanda.

ANEXO 9. Seguimiento del desarrollo de las estacas de álamo *Populus angulata* Aiton, en base a la aplicación de los dos tipos de corte y tres tipos de diámetros en vivero dependiente de la UAJMS.

ANEXO 10. Seguimiento y evaluación del desarrollo a los 90 días, de las estacas de álamo *Populus angulata* Aiton, en base a la aplicación de dos tipos de cortes y tres tipos de diámetro en el vivero dependiente de la UAJMS.

ANEXO 11. Seguimiento y cuidados culturales durante el desarrollo del álamo *Populus angulata* Aiton, a través de estacas en el vivero dependiente de la UAJMS.

ANEXO 12. Evaluación y seguimiento en la propagación vegetativa de álamo *Populus angulata* Aiton, a partir de los 90 días hasta la obtención plantones aptos para ser implantados.