

SOCIEDAD DE INGENIEROS DE BOLIVIA DEPARTAMENTAL LA PAZ

VISADO DE ESTUDIO GEOLÓGICO- GEOTÉCNICO

CARÁTULA

TITULO: Vivienda Unipersonal

Número de plantas: Ocho Plantas y un sótano

Nombre del Propietario: Gabino Limachi Rodriguez

Dirección: Calle José Arzabe

Zona: Norte - Villa 16 de Julio

Ciudad: El Alto

Superficie del terreno [m²]: 750.00

Movimiento de tierras [m3]: 2572.71

Proyectista: Ing. Jaime Bustillos V.

RNI: 1390

Objetivo del visado: Exigencia Municipal

Fecha Inicio de visado: Febrero, 15 de 2017

Firma y Sello del Ingeniero
Proyectista

Jaime Bustillos Villafan
INGENIZRO GEOLOGO
ESPECIALISTA EN GEOTECNIA
R.N.I. 1.390

Visado

ESTUDIO GEOLÓGICO - GEOTÉCNICO

PROYECTO: Ocho Plantas y un sótano

PROPIEDAD :

Gabino Limachi Rodríguez

UBICACIÓN :

Calle José Arzabe

PLAN URBANO:

Villa 16 de Julio

CIUDAD :

El Alto

CONSULTOR

Ing. Jaime Bustillos V.

Octubre, 26 de 2016 LA PAZ - BOLIVIA

Glas

Ingeniería de Suelos

INDICE

Pagina INTRODUCCION 2. RELIEVE TOPOGRAFICO 2 CONSIDERACIO9NES GEOLOGICAS 2 4. RIESGOS Ó INESTABILIDAD DE SUELOS 5. CONSIDERACIONES GEOTECNICAS 3 Trabajos de Campo 3 5.1. 5 5.2. Trabajos y análisis de Laboratorio 5 5.2.1. Humedad Natural 5 5.2.2. Límites de Consistencia . 6 5.2.3. Fatiga admisible del Suelo de Fundación ASPECTOS CONSTRUCTIVOS DE LOS SUELOS DE FUNDACION 6 7 MOVIMIENTO DE TIERRAS 7. CONCLUSIONES Y RECOMENDACIONES 8 8.

ANEXOS

FIGURAS

Figura 1	UBICACIÓN REGIONAL DEL LOTE	Escala 1:2500
Figura 2	UBICACIÓN DE POZOS	Escala 1:400
Figura 3	PERFIL GEOLOGICO Y COTAS DE FUNDACION	Escala 1:400
Figura 4	PERFILES TOPOGRAFICOS	Escala 1:400
Figura 5	CALCULO DE AREAS	Escala 1:400

DIAGRAMA DE MASAS

FORMULARIOS DE MECANICA DE LOS SUELOS en 13 hojas

ESTUDIO GEOLOGICO GEOTÉCNICO

PROPÌEDAD: Gabino Limachi Rodríguez UBICACIÓN: Calle José Arzabe ZONA: Urbanización 16 de Julio

CIUDAD: El Alto

1. INTRODUCCION.

Un Estudio Geotécnico consiste en investigar los suelos en profundidad por medio de pozos de sondeo a cielo abierto y sobre la base de la información de campo, la lectura del perfil geológico de los pozos, el resultado del análisis de muestras en laboratorio y la bibliografía local, establece y recomienda parámetros que permitan el cálculo y diseño de las fundaciones de edificaciones.

En este sentido, el presente estudio ha sido realizado a solicitud del Sr. Limachi Rodríguez para determinar las propiedades constructivas de los suelos de su propiedad destinado a una construcción de ocho Plantas y un sótano en el terreno de 750.00 m2 localizado en la Calle José Arzabe de la Zona 16 de Julio del sector Norte de la Ciudad El Alto.

FOTO 1

IMAGEN SATELITAL

REFERENCIAS

0

Ubicación del terreno

UBICACIÓN: Calle Arzabe ZONA : 16 de Julio CIUDAD : El Alto

SUPERFICIE 750.00 m2

Glas

Ingeniería de Suelos

2. RELIEVE TOPOGRAFICO.

El relieve topográfico regional está caracterizado por una superficie plana la que morfológicamente identifica una Terraza formando la planicie del altiplano boliviano con leve inclinación en sentido Sud Occidental.

Localmente el terreno expone una superficie horizontal con leve inclinación en dirección Sud Occidental y para facilitar el replanteo de obras se ha designado la cota relativa de 100.00 metros al nivel de calzada de la Calle Arzabe ó patio.

3. CONSIDERACIONES GEOLOGICAS.

Los suelos que conforman esta zona están constituidos por materiales de origen fluvio glacial provenientes de flujos de barro de la Cordillera Real formando una amplia unidad geológica llamada Gravas de la Formación Milluni.

Están constituidos por sedimentos de granulometría gruesa, predominan las gravas mezcladas en una matrix areno limosa de estructura masiva con alto grado de consolidación, son compactos y cohesivos donde se advierten pedrones esporádicos de cuarcitas y granitos de clastos sub-angulares.

Durante la excavación de los pozos no se han detectado flujos de agua, si bien el porcentaje de humedad aumenta en profundidad, sus valores están dentro de admisible para catalogarlos como suelos secos en superficie a ligeramente húmedos en profundidad. La presencia de aguas de diferente origen no influyen en su estabilidad debido a su permeabilidad permitiendo el libre flujo de las aguas sin alterar su estructura interna ni afectar su estabilidad.

4. RIESGOS O INESTABILIDAD DE SUELOS.

Desde el punto de vista geológico, la zona es catalogada como ESTABLE, ya que en las inspecciones efectuadas al lote de terreno y sus inmediaciones no se han advertido fenómenos geodinámicos naturales que determinen riesgos, consecuentemente son excelentes para fines constructivos.

5. CONSIDERACIONES GEOTECNICAS.

La evaluación geotécnica se ha realizado mediante labores de campo y laboratorio de acuerdo a lo siguiente:

5.1 Trabajos de Campo.

- a. Excavación de tres pozos de sondeo a cielo abierto.
- b. Ejecución de pruebas de Penetrometría de sitio
- Extracción de muestras de suelo representativas.
- d Descripción del perfil geológico de cada pozo.

FOTO 2 POZO 1 Ubicado en la parte inferior izquierda del terreno	Cota referencial : 100.00 m el nivel Calle Arzabe Cota boca pozo : 100.00 m
	PERFIL GEOLOGICO 100.00 a 98.50 FORMACION MILLUNI "Qmi" Mezcla de gravas, arenas y limos compactos sin plasticidad color gris muy estables Suelo tipo "GM - GP"
	98.50 a 98.00 FORMACION MILLUNI "Qmi" Gravas en matrix areno limosos compacto de color gris no tiene plasticidad, alta consistencia. Suelo tipo "GM"

OBSERVACIONES

No se han advertido flujos de agua, se observa la presencia de pedrones de varios Tamaños en la base del pozo impidiendo su profundización.

Glas Ingenierla de Suelos

FOTO 2 POZO 1 Ubicado en la parte inferior izquierda del terreno

Cota referencial : 100.00 m el nivel Calle Arzabe Cota boca pozo : 100.00 m

PERFIL GEOLOGICO

100.00 a 97.00 FORMACION MILLUNI "Qmi"

Mezcla de arenas, arcillas y limo compactos baja plasticidad color gris muy estable y consistentes. Suelo tipo "GC"

97.00 a 96.50 FORMACION MILLUNI "Omi" Mezcla de arenas, arcillas y limo Compactos haja plasticidad color Gris may estable y consistentes. Suelo tipo "GC"

OBSERVACIONES.

FOTO 2

Presencia de pedrones de clastos sub redondeados hasta 0.40 metros de tamaño.

POZO 1

Ubicado en la parte inferior izquierda del terreno

Cota referencial : 100.00 m el nivel Calle Arzabe Cota boca pozo : 100.00 m

PERFIL GEOLOGICO

100.00 a 97.00 FORMACION MILLUNI "Qmi"

Mezcla de arenas, arcillas y limo Compactos baja plasticidad color Gris muy estable y consistentes.

Suelo tipo "GM- GC"

97.00 a 96.20 FORMACION MILLUNI "Omi"

Gravas en matrix arena limoso Compactos sin plasticidad color Gris muy estable y consistentes.

Suelo tipo "GM"

OBSERVACIONES.

En la base del pozo, presencia de pedrones de varios tamaños, ausencia de aguas.

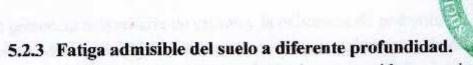
Glas

Ingeniería de Suelos

5.2 Trabajos y Análisis de Laboratorio.

- * Determinación de la humedad natural
- * Límites de consistencia de los suelos
- * Análisis granulométrico por tamizado
- * Clasificación Unificada de Suelos
- * Determinación de las fatigas en profundidad
- * Ensayo de Corte Directo (Angulo de fricción interna y cohesión)
- * Densidad seca y húmeda de los suelos.

Las propiedades físico-mecánicas de los suelos se determinó sobre la base de muestras tipo extraídas en ocasión de los ensayos de penetrometría de sitio, este último nos permite conocer la capacidad de carga de los suelos a diferente profundidad y su descripción se refiere únicamente a los parámetros constructivos más importantes.


5.2.1 Humedad Natural.

La humedad natural de los suelos tiene valores que los cataloga como secos en superficie a húmedos en profundidad y la presencia de aguas no afecta su estructura interna debido a su permeabilidad y composición.

5.2.2 Límites de consistencia.

En el análisis de las diferentes muestras procesadas, los suelos presentan bajas propiedades plásticas y esto se debe a que estos depósitos son provenientes de remociones en masa de tipo fluvio glacial donde los finos están representados por arenas y limos con bajo contenido de arcillas.

Por los ensayos de sitio efectuados, se establece que la capacidad de carga aumenta en profundidad debido a su consistencia que como suclos de fundación son excelentes.

POZO	PROFUN	(m)	HUMEDAD	FATIGA	TIPO DE	DESCRIPCIÓN
No	Ensayo	Relativa	%	Kg/cm2	SUELO	CONSTRUCTIVA
1	1.50	98.50	2.89	2.30	GM - GP	Excelente sucio
	2.00	98.00	3.77	2.10	GM	Excelente sucio
2	3.00	97,00	5.48	1.80	GC	Buen suelo
	3.50	96.50	6.27	2.00	GM	Excelente suelo
3	3.00	97.50	5.91	2.00	GM - GC	Excelente suelo
	3.80	97.20	6.74	2.20	GM	Excelente suelo

Por los valores obtenidos, la capacidad de carga se incrementa en profundidad y para fines de cálculo se recomienda una **fatiga admisible de 1.80 kg/cm2**, con amplio rango de seguridad por ser el menor valor obtenido en los ensayos de campo y de laboratorio.

6. ASPECTOS CONSTRUCTIVOS DE LOS SUELOS DE FUNDACION.

- * Se caracterizan por presentar buenas condiciones constructivas para estructuras de cualquier tipo y de acuerdo a sus propiedades físico mecánicas indican que no son compresibles al efecto de cargas externas.
- * El suelo de fundación corresponde a la Unidad denominada Gravas de la Formación Milluni, se trata de depósitos Fluvio glaciales formada por sedimentos gruesos muy compactos con bajas propiedades plásticas.
- * No se detectaron aguas que definan flujos subterráneos, si bien el contenido porcentual de humedad aumenta en profundidad, este hecho no influye en su estructura interna ni modifica su estabilidad.

Pág	na	a
ray	II ICL	v

* La presencia mayoritaria de gravas y la existencia de pedrones de cuarcitas y granitos de clastos sub redondeados, constituyen elementos de estabilidad en estos suelos y los hace muy resistentes a solicitaciones externas, consecuentemente son excelentes suelos para fines constructivos que permiten cortes verticales estables.

7. MOVIMIENTO DE TIERRAS

Según requerimiento del proyecto, se contempla en el estudio el establecimiento de un sótano y para su cálculo se utilizó tres perfiles topográficos del terreno que muestre los desniveles de corte respectivos para su uso en los cómputos métricos del Diagrama de Masas.

En hoja adjunta se tiene sintetizado los cálculos mediante cómputos métricos del diagrama de masas dando un resultado de 2572.71 m3 (DOS MIL QUINIENTOS SETENTA Y DOS 71/100 m3) para su traslado.

Considerando nuestro caso, las condiciones morfológicas y especialmente sus propiedades físico mecánicas de los suelos de esta unidad geológica, permiten la exposición de cortes verticales temporales, en el entendido que la pérdida de humedad origina la creación de vacíos entre partículas disminuyendo notablemente su cohesión y originando inestabilidad en los cortes expuestos.

En consecuencia, se considera prudente tomar en cuenta DOS etapas de trabajo en el movimiento de tierras para lo cual en recomendable el concurso de un supervisor con conocimientos sobre el uso de equipo pesado.

ETAPA PRIMERA

Denominación : Excavación del Núcleo

Localización : Parte central del lote de terreno

Franjas de seguridad : 1.50 metros en los límites de propiedad con vecinos

Accesibilidad : Rampa ubicada en la parte central del frente del lote

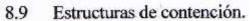
Iniciación de trabajos: De la parte posterior del terreno a la parte anterior.

ETAPA SEGUNDA

Denominación : Excavación periférica

Localización : Limites con propiedades vecinas

Formas de trabajo : * Cortes por tramos de tres metros intercalados


* Apuntalamiento en la cabecera de talud de cortes

* Construcción del muro de contención intercalado

Iniciación de trabajos : De la parte posterior del terreno a la parte anterior.

8. CONCLUSIONES Y RECOMENDACIONES.

- 8.1 El terreno investigado, se encuentra localizado en la Urbanización 16 de Junio de la Zona Norte de la Ciudad del Alto, en forma local se encuentra ubicado en la calle José Arzabe, tiene una superficie de 750.00 m2 donde se pretende edificar una construcción de ocho plantas y un sótano.
- 8.2 La ubicación de los pozos de sondeo se ha planificado aleatoriamente que permita conocer el tipo de suelo representativo cuya profundidad de investigación alcanzó a entre 2.00 y 3.80 metros de boca de pozo.
- 8.3 Se ha establecido como cota de referencia y convencional el valor de 100.00 mas al nivel de la calzada de la Calle José Arzabe con la finalidad de facilitar el replanteo y ubicar los niveles de fundación de las obras civiles destinada a realizar cortes para el establecimiento del sótano.
- 8.4 Por inspecciones de sitio e inmediaciones, la zona es catalogada como Geológicamente estable debido a que en las inspecciones no se advirtieron fenómenos o anomalías que determinen riesgos naturales que atenten la estabilidad de los suelos y de las obras a ejecutar.

Ubicación = En cortes del talud mayor a dos metros

Parámetros a utilizar = Angulo fricción interna 36.40 grados

Cohesión del suelo 0.70 ton/m2

Densidad húmeda 2.36 ton/m3

Fatiga admisible del suelo 1.80 kg/cm2

Mov. de tierrras = 2572.71 m3

Trabajos de campo = Contemplar dos etapas de trabajo

8.10 Cualquier problema que se identificara en los suelos durante la etapa de excavación para las fundaciones o en la constructiva, se debe recurrir necesariamente al suscrito consultor a objeto de dar las soluciones adecuadas y correspondientes que el caso precise.

La Paz, Octubre 26 de 2016

aime Bustillo

Página 10

GL'S Consultora en Ingeniería de Suelos ESTUDIO GEOLÓGICO - GEOTEGNICO PROPIETARIO: Gabino Limachi Rodrigüez UBICACIÓN: Calle José Arzabe ZONA: 16 de Julio UBICACIÓN REGIONAL DEL LOTE Escala: Indicadas 26 de Octubre 2016 Figura 1

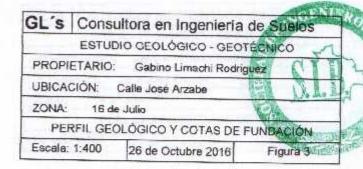
Escala 1:2500

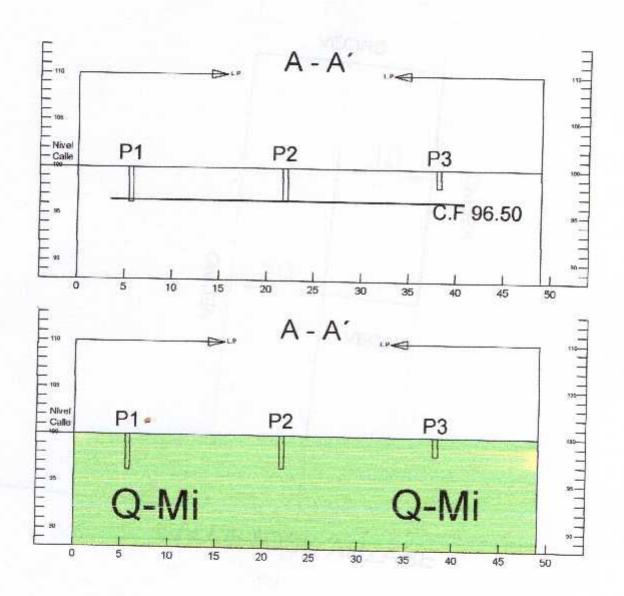
REFERENCIAS

Escala 1:1000

GL's Consultora en Ingenieria de Suelos ESTUDIO GEOLÓGICO - GEOTÉCNICO PROPIETARIO: Gabino Limachi Rodriguez UBICACIÓN: Calle José Arzabe ZONA: 16 de Julio UBICACIÓN DE POZOS Escala: 1:400 26 de Octubre 2016 Figura 2

REFERENCIAS


Ubicación del terreno



(Ubicación de pazos

100X Cota referencial

Linea de perfil Topográfico

REFERENCIAS

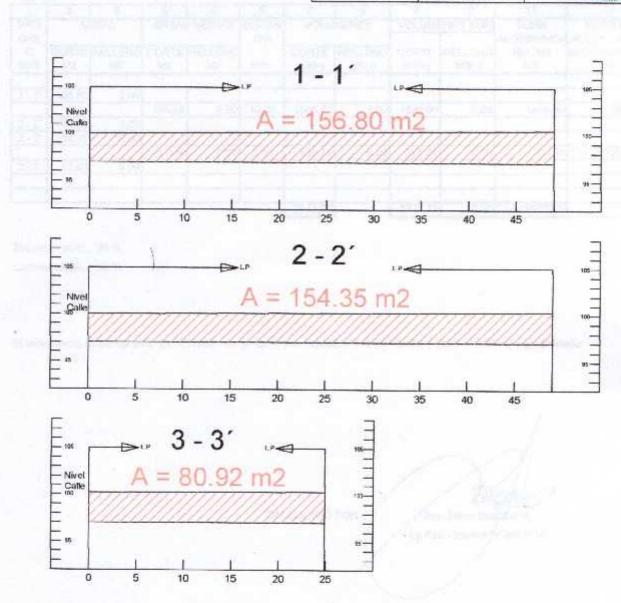
100X Cota referencial

Q-Mi

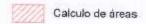

Limite de propiedad

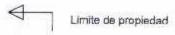
Cuaternano Formación Milluni

Pozo excavado


C.F. Cota de fundación

GL'S Consultora en Ingeniería de Suelos ESTUDIO GEOLÓGICO - GEOTÉCNICO PROPIETARIO: Gabino Limachi Rodriguez UBICACIÓN: Calle José Arzabe ZONA: 16 de Julio PERFILES TOPOGRÁFICOS Escala: 1:400 26 de Octubre 2016 Figura 4




REFERENCIAS

GL's Consultora en Ingeniería de Suelos ESTUDIO GEOLÓGICO - GEOTÉCNICO PROPIETARIO: Gabino Limachi Rodriguez UBICACIÓN: Calle José Arzabe ZONA: 16 de Julio CALCULO DE ÁREAS Escala: 1:400 26 de Octubre 2016 Figura 5

REFERENCIAS

COMPUTOS DE MOVIMIENTO DE TIERRAS Diagrama de Masas - Propiedad de Genara Ofelia Moya Calle

Proyecto: Establecimiento de una plataforma.

nuja i	/ 1	
1	2	

Hoja 1	2	3	4	5	6	7	8	9	10	11	12
PRO GRE	AF	REAS	AREAS	MEDIAS	DISTAN	VOLU	MENES	VOLUM	ENES SUEL		TOTALES ACUMULADOS
SI VAS	CORTE M2	RELLENÓ M2	CORTE M2	RELLENO M2	0.0000001	CORTE m3(+)	RELLENO M3(-)	CORTE m3(+)	RELLENO M3(-)		ALGEBRAICAM M3
1 - 1'	156,80	0,00				-					
- 211			155,58	0,00	10,00	1555,75	0,00	1866,90	0,00	1866,90	1886,90
2 - 2'	154,35	0,00	Lane					U-LUIS			
2 - 2'	154,35	0,00									
			117,64	0,00	5,00	588,18	0,00	705,81	0,00	705,81	2572,71
3 - 3'	80,92	0,00									
						2143,93		2572,71	0,00	2572,71	

Esponjamiento: 20 % Compactación: 10 %

El movimiento de tierras para EL SOTANO es de DOS MIL QUINIENTOS SETENTA Y DOS 71/100 m3 para trasladar.

CALCULADO POR :

Ing. Jaime Busillos V. La Paz, Octubre 26 del 2016

REGISTROS

DE **LABORATORIO**

PROYECTO

: ESTUDIO GEOTÉCNICO

UBICACIÓN

: CALLE ARZABE

ZONA

: 16 DE JULIO EL ALTO

CLIENTE

: GABINO LIMACHI RODRIGUEZ

CONSULTOR : Ing. JAIME BUSTILLOS V.

LABORATORISTA: Tec, DANIEL DE LA BARRA L.

FECHA: OCTUBRE - 2016

LA PAZ - BOLIVIA

S. L. S.

RESUMEN DEL POZO DE EXPLORACIÓN

PROYECTO:	ESTUDIO GEÓTECNICO	FECHA	OCTUBRE - 2016
USICACION:	CALLE ARZABE	REFERENCIA:	PCZO 1
ZONA:	16 DE JULIO	PROFUNDIDAD:	2,00 Mis.
CNUDAD:	EL ALTO	CONSULTOR:	ING. JAIME BUSTILLOS V.
CLIENTE:	SABINO LIMACHI RODRIGUEZ	LABORATORISTA:	Tec. DANIEL DE LA BARRA L.

PENETRACIÓN MECÁNICA S.P.T.	FATIGAS (kgrond)	1.00 2,00 5,00		-
WE .		830 50	<u>-</u> 12	(c) 10
(Kg/cm2)			2,30	2,10
SO N	COLPES	V .	13	Ε
CLASIF	No 40 No 250 SUELOS COLPES		5,2 GM-GP	GM
	No 230		5,2	26,7
GRANULOMETRIAS			52,	36,8
	No 10		37,3 82,1	8,32
	No. 4 No. 10		42,0	999
	346		49.3	219
	3.4.		57.3	0,99
GRAMI	-		8.59	63,0 77,2 69,0
	1.1/2*		72.2	53,0
	ř.		93 E	6'06
	in tri		8.08	95.3
	ia		100,0	100,0
6 8 8	ď		E.	
LIMITES DE CONSISTENCIA	e l		호	Ÿ
CONS	1		G. Z	ď
NAT.			58 2	3,77
DESCRIPCIÓN HUM.	-		GRAVA ARENO LIMOSA MAL GRADADA	GRAVA ARENO LIMOSA
(E)			1,50	2,00

Dalud De La Barra Lobyza
Dassiel F. De La Barra Lobyza
Registro H. A. M. Lab. 2001
18 anico en Sucios y Bertangones

.S. L. S

ENSAYE DE CLASIFICACIÓN DE SUELOS

PROYECTO: ESTUDIO GEÓTECNICO
UBICACION: CALLE ARZABE
ZONA: 16 DE JULIO

ZONA: 16 DE JULIO
CIUDAD: EL ALTO
CLIENTE: GABINO LIMACHI RODRIGUEZ

FECHA: REFERENCIA: PROFUNDIDAD: CONSULTOR: LABORATORISTA:

POZD 1,50 MIS Ing. JAIME BUSTILLOS V. Tec. DANIEL DE LA BARRA L

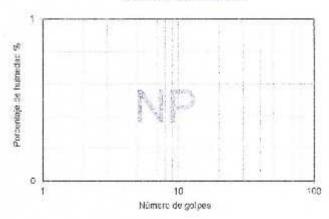
OCTUBRE - 2016

DATOS DE LA MUESTRA TOI PESO TOTAL MUESTRA HUMEDA	8.046	con.
	0.040	gr
PESO RETENIDO TAMIZ Nº 4	4858	gr
PESO PASA TAMIZ Nº 4 HUMEDO	3.368	gr
PESO PASA TAMIZ Nº 4 SEGO	3.371	gr
PESO TOTAL MUESTRA SECA	8.0291	gr

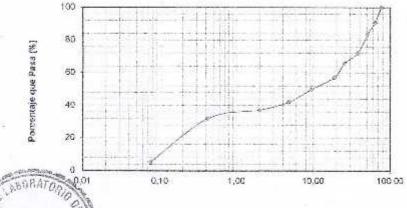
DATOS DEL AGREGADO	FINO	April 10th
PASA № 4 HUMEDO	100.0	gr
PASA № 4 SECO	99.5	gr

	NATURAL.	HIGROS.
TARA N°	2	9
PESO TARA + MUESTRA HUMEDA	586.40	* 49,70
PESO TARA + MUESTRA SECA	571 60	149,20
PESO DEL AGUA	14.80	0,50
PESO DE LA TARA	58 70	49,70
PESD MUESTRA SECA	512.90	99,50
CONTENIDO DE ACUA %	289	0,50

DETERMINACION DE	LUMITE	LIQUIDO	\$1000 KM (1800)
TARA Nº			
NUMERO DE GOLPES	-		
PESO TARA I WUESTRA HUMEDA			
PESCITARA + VUESTRA SECIA			
PESO DEL AGUA	1		
PESO DE LA TARA	1		
PESO MUESTRA SECA	1		
CONTENIDO DE AGUA %			10
LIMITE LIQUIDO	NP	NP	NP


DETERMINACION DEL LIMITE	PLASTICO	BALLAN RE
TARA Nº	The same of	
PESO TARA + MUESTRA HUMEDA		
PESO TARA + MUESTRA SECA	No.	
PESO DEL AGUA		
PESO DE LA TARA	20 3000	
PESO MUESTRA SECA		
CONTENIDO DE AGUA %	NP	N2

S.L.S.


Text, 2283578 + 71572761

CURVA DE ESCURRIMIENTO

CURVA GRANULOMÉTRICA

Abertura	Tamiz	from
S. ORD OF PERSON	V 4111 110-	diam'r.

RESUMEN	S. W. W. W. T. G.
PORCENTAJE DE GRAVAS	58,0
PORGENTAJE DE ARENAS	36.8
PORCENTAJE DE FINOS	5,2
HUMEDAD NATURAL	2,89
FIMIL FIGURES	NP
LIM TE PLASTICO	NP
MOIOF DE PLASTICIDAD	NP

CLASIFI	CACIÓN UNI	FICADA	
POZO L	SUELC	GRANULAR	
1	GM - GP		
PROF. 1,50 Mbs	GRAVA LIMOSA		

Daniel P. De La Barra Loayan Pegistro H. A. M. Lab. 009 Teponico en Stielos y Herrely cases S. L. S.

ENSAYE DE CLASIFICACIÓN DE SUELOS

PROYECTO: ESTUDIO GEÔTECNICO FECHA:
UBICACION: CALLE ARZABE REFERENCIA:
ZONA: 18 DE JULIO PROFUNDIDAD:
CIUDAD: EL ALTO CONSULTOR:
CLIENTE: GABINO LIMACHI RODRIGUEZ LABORATORISTA:

PESO TOTAL MUESTRA HUMEDA	6.773	DI.
PESO RETENIDO TAMIZ Nº 4	3001	Dr.
PESO PASA TAMIZ Nº 4 HUMEDO	3.772	gr
PESO PASA TAMIZ Nº 4 SECO	3.742	gr
PESO TOTAL MUESTRA SECA	6.743	gr

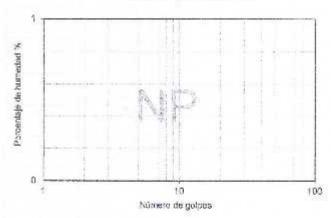
DATOS DEL AGREGADO FINO	ALAR TOTAL	15.4
PASA Nº 4 HUMEDO	100,0	gr
PASA Nº 4 SECO	99,2	or

	NATURAL	HIGROS.
TARA Nº	15	28
PESO TARA + MUESTRA HUMEDA	670,50	153,90
PESO TARA + MUESTRA SECA	648,20	153,10
PESO DEL AGUA	22,30	0,80
PESO DE LA TARA	56,30	53,90
PESO MUESTRA SECA	591,90	99,20
CONTENIDO DE AGUA %	3,77	0,81

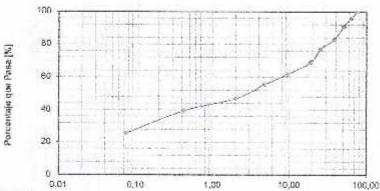
TARA N°			
NUMERO DE GOLPES			
PEGO TARA - MUESTRA HUMBOA			
PESO TARA - MUESTRA SECA			
PESO DEL AGUA			
PESO DE LA TARA			
PESO MUESTRA SECA			
CONTENIDO DE AGUA %	1		
LIMITE LIQUIDO	NP	INP	NP

DETERMINACION DEL LIMITE	PLASTICO	100
TARA Nº	-	
PESO TARA + MUESTRA HUMEDA	i	
PESO TARA + MUESTRA SECA		
PESO DEL AGUA		
PESO DE LA TARA		
PESO MUESTRA SECA		
CONTENIDO DE AGUA %	NP	NP

TAMIZ	ABERTURA	RETENIDO AGUM	RETENIDO AGUMULADO	
Nº	EN [mm]	gr gr	%	DEL TOTAL
3"	76,20			100,0
21/2"	63,50	294,0	4.4	95,6
2"	50,80	612,0	9,1	90,9
1 1/2"	35,10	1.147,0	17,0	83,0
3"	25,40	1,530,0	22.6	77.2
3/4"	19.00	2.009,0	31.0	69,0
3/8"	9,50	2.584,0	38,3	61.)
No 4	4.75	3,001,0	44.5	55,5
No 10	2,00	15.4	15,5	46.9
No 40	0.43	28,5	28.7	39,6
No 200	0.08	53.2	53.6	25,


OCTUBRE - 2016

Ing. JAIME BUSTILLOS V.


Tec DANIEL DE LA BARRA L.

70Z0_1 2,00 Mls

CURVA DE ESCURRIMIENTO

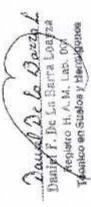
CURVA GRANULOMÉTRICA

Abertura	Tamiz	(man)

RESUMEN	ATT ATT ATT ATT ATT
PORCENTALE DE GRAVAS	44,5
PORCENTAJE DE ARENAS	29,0
PORCENTAJE DE FINOS	25,7
HUMEDAD NATURAL	3,77
LIWITE JIQUIDO	NP
LIMITE PLASTICO	NP
INDIO: DE PLASTICICAD	NP

GLASIFI	CACION UNI	FICADA
POZO -	SUELO	GRANULAR
1		3M
PROF 2,00 Mts	GRAVA	A UMOSA

Daniel F. De La Barra Logyza
Registro H. A. M. Lab. (2)
Teonico sa Suelos y Merzalcanes


S, L. S.

RESUMEN DEL POZO DE EXPLORACIÓN

ESTUDIO GEOTECNICO CALLE ARZABE 16 DE JULIO EL ALTO GARNINO I MACHI RODRIGUEZ LABORATORISTA:			Ing. JAIM	Tec. DAMIFI	
	FECHA	PEPERENCIA:	CONSTITUTOR :	LARGEATORISTA :	
1	STUDIO GEOTECNICO	CALLE ARZABE	18 DE JULIO		GABINO LIMACHI ROCKIGUEZ

S.P.T.	chem2)	250 300		
MECANICA S.P.T.	FATIGAS (kgrem2)	300 300	25 25	~ ~ ~
(legicm2)	1		1,80	2,00
N. DE	No 226 SUELOS GOLPES		ω	01
CLASE.	SUELOS		29	GM
	No 200		5,12	32,9
			1,64	41.8
	No 10 No 40		6,85	20.1
	7 00	41	(C)	603
RIAS	386	-	73,65	65,1
GRANULOMETRIAS	314		82,2	71,6
BRANU	1		0,88	7,87 71,6
30	4 4,79		6,48	46,3
	-	-	9,728	9,
	4 4 10 1 4		100,0	67,5
	H	7		100,0
pr f	5	2	8,59	d Z
LAMITES DE	CONSISTENCE		36,31	- €
T-W	8	1	23,28 14,89	ů,
HUM.	_		8.4. 8.4.	12'9
DI BCRIPCIÓN HUM.			GRAVA ARCILLO ARENOSA	GRAVA UMO ARENGSA
PROF.	(m)		3.00	86.6

S. L. S.

ENSAYE DE CLASIFICACIÓN DE SUELOS

ESTUDIO GEOTECNICO CALLE ARZABE 16 DE JULIO EL ALTO GABINO LIMACHI RODRIGUEZ PROYECTO:

UBICACION: ZONA: CHUDAD:

CLIENTE:

FEGHA: REFERENCIA:

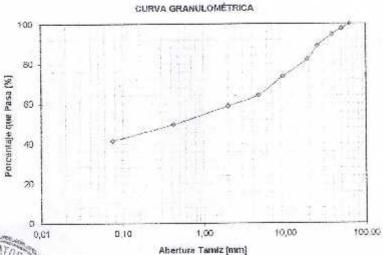
PROFUNDIDAD: CONSULTOR: LABORATORISTA: OCTUBRE 2018

POZO 2 3,00 Mts

Ing. JAIME BUSTILLOS V. Tec. DANIEL DE LA BARRA L.

DATOS DE LA MUESTRA TOT	AL	- 14.0
PESO TOTAL MUESTRA HUMEDA	4,201	gr
PESO RETENIDO TAMIZ Nº 4	1492	gr
PESO PASA TAMIZ Nº 4 HUMEDO	2.709	gr
PEGO PASA TAMIZ Nº 4 SECO	2 690	gr
PESO TOTAL MUESTRA SECA	4.182	gr

DATOS DEL AGREGADO FINO	Maria Te	-
PASA Nº 4 HUMEDO	100,0	gr
PASA Nº 4 SECO	99,3	gr


	NATURAL.	HIGROS.
TARA N°	22	78
PESO TARA + MUESTRA HUMEDA	511,931	142,80
PESO TARA + MUESTRA SECA	487,50	142,10
PESO DEL AGUA	24,43	0,70
PESO DE LA TARA	41,90	42,80
PESO MUESTRA SECA	445,60	99.30
CONTENIDO DE AGUA 1%	5,48	0.70

DETERMINACION DEL L	46	47	48
NUMERO DE GOLPES	15	22	28
PESO TARA I MJESTBA HUMBDA	48,13	47,12	48,75
PESO TARA + MUESTRA SECA	42.56	41,96	43 44
PESO DEL AGUA	5,54	5,16	5.31
PESO DE LA TARA	20,22	20,15	20,33
PESO MUESTRA SECA	22,37	21.61	23.11
CONTENIDO DE AGUA %	24.77	23,66	22,95
LIMITE LIQUIDO	23,23	23,28	23,33

TARA Nº	49	50
PESO TARA + MUESTRA HUMEDA	35,46	36,79
PESO TARA + MUESTRA SECA	33,50	34,71
PESO DEL AGUA	1,96	2,05
PESO DE LA TARA	20,17	20,53
PESO MUESTRA SECA	13,33	14,18
CONTENIDO DE AGUA 4	14,70	14,67

TAMIZ	ABERTURA	RETENICO ACUM	% QUE PASA	
N°	EN (into)	gr	-56	DEL TOTAL
3"	76,20	- Children		
21/2"	63,50			100,0
2"	50.80	100.0	2.4	97,6
1.1/2"	38,10	225,0	5.4	94,0
1"	25,40	483,0	11,1	88.9
3/4"	19.00	745,0	17,6	82,2
3/8"	9,50	1.103,0	25,4	73,6
No 4	4,75	1.492,0	35,7	64.3
No 10	2,00	8.4	6,5	58.9
No 40	0.43	22,5	22,7	49
No 200	90.0	35,1	35,3	41,6

RESUMEN	
PORCENTAJE DE GRAVAS	35,7
PORGENTAJE DE ARENAS	22.7
PORCENTAJE DE FINOS	41,6
HUMEEAD NATURAL	5,48
LIMITE LIQUIDG	23.28
LIMITE RIASTICO	14.69
INDICE DE PLASTICIDAD	8.50

CLASIFI	CACION UNI	FICADA
POZO	SUELO	GRANULAR
2	GC	
PROF.3,00 Mts	GRAVA .	ARCILLOSA

Daniel P De La Barra Loayza Registro H. A. M. Lab. 001 Técnido en Suelos y Menselgapes

.S. L. S

ENSAYE DE CLASIFICACIÓN DE SUELOS

PROYECTO: ESTUDIO GEÓTECNICO UDICACION: CALLE ARZABE

UBICACION: CALLE ARZABE ZONA: 16 DE JULIO

CUDAD: EL ALTO
CLIENTE: GASINO LIMACHI RODRIGUEZ

FECHA:
REFERENCIA:
PROFUNDIDAD:
CONSULTOR:
LABORATORISTA:

OCTUBRE - 2016

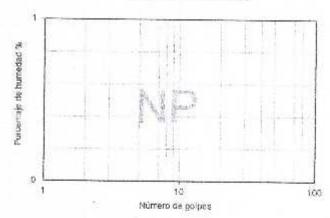
"OZO 2

3.50 M/s.

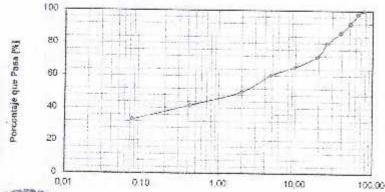
Ing. JAIME BUSTILLOS V.
Tec. DANIEL DE LA BARRA L.

DATOS DE LA MUESTRA TO	The second second second	400
PESO TOTAL MUESTRA HUMEDA	5,214	gr
PESO RETENIDO TAMIZ Nº 4	2059	qr
PESO PASA TAMIZ Nº 4 HUMEDO	3.155	gr
PESO PASA TAMIZ Nº 4 SECO	3.133	OI.
PESO TOTAL MUESTRA SECA	5 190	gr

DATOS DEL AGREGADO	FINO	30.57
PASA Nº 4 HUMEDO	100,0	gr.
PAGA N* 4 SECO	99,3	gr


	NATURAL	HIGROS.
TARA Nº	4	6
PESO TARA + MUESTRA HUMEDA	529.10	136,20
PESO TARA + MUESTRA SECA	500,70	135,50
PESO DEL AGUA	29,40	0,70
PESO DE LA TARA	/8,10	35.20
PESO MUESTRA SECA	452,607	99.30
CONTENIDO DE AGUA %	8.27	0.70

DETERMINACION DE	L LIMITE	LIQUIDO	Charle TARE
TARA Nº			
NUMERO DE GOLPES	1		
PESO TARA + NUESTRA HUMEDA			
PESO TARA + MUESTRA SECA			
PESO DEL AGUA			
PESO DE LA TARA			
PESO MUESTRA SECA	- 100		
CONTENIDO DE AGUA %	1	-	
LIMITE UQUIDO	NP	NP	NP


DETERMINACION DEL LIMITE	PLASTICO	No.
TARA Nº		- Indiana
PESO TARA + MUESTRA HUMEDA	_	
PESO TARA + MUESTRA SECA		
PESO DEL AGUA		_
PESO DE LA TARA		
PESO MUESTRA SECA		-
CONTENIDO DE AGUA %	NP.	NH

CURVA DE ESCURRIMIENTO

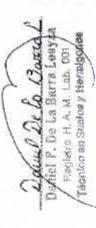
CURVA GRANULOMÉTRICA

Aberture Tamiz [mm]

RESUMEN	The Markett
PORCENTAJE DE GRAVAS	39,7
PORCENTAJE DE ARENAS	27.4
PORCENTAJE DE FINOS	32.9
HUMEDAD NATURAL	6,27
LIMITE LIQUIDO	NP.
LIMITE PLASSICO	NP
ADICE DE PLASTICIDAD	NP

CLASIF	CACIÓN UN	FICADA
POZO	SUELO	GRANULAR
2	(SM.
PROF. 3,50 Mts	GRAVA	LIMOSA

Dayled De la Barra Lozyka
Daniel F. De La Barra Lozyka
Jegistra H. A. M. Lab. 009
Tegnico en Suelos y Herselscope


S. L. S.

RESUMEN DEL POZO DE EXPLORACIÓN

PROYECTO:	ESTUDIO GEOTECNICO	FECHA:	OCTUBRE - 2016
UBICACION:	CALLE ARZABE	REFERENCIA:	E 0204
ZONA:	16 DE JULIC	PROFUNDIDAD:	3,80 Mts.
CIUDAD:	EL ALTO	CONSULTOR:	Ing JAIME BUSTILLOS V.
CLIENTE	GABINO LIMACHI RODRIGUEZ	LABORATORISTA:	Tec. DANIEL DE LA BARRA L.

PENETRACION MECÁNICA S.P.T.	yenn?)	200 303		~—~»
NICA N	FATKSAS (kg/gm2)	g -		
MECA	FASK	8		
ब हो	4	20 g +		e e a
(Ng/cm2)			2,00	2,20
N O DE	COLPES		5	7
CLAS'F	No 200 SUELOS GOLPES		25.6 GM-GC	GM
	No 20D		25.6	83 5
	QF ON		33.9	2,4
1000	C. 9N		55,4 43,4	53.4
	No.4		58.4	52.5
TRAS	3.87		1,59	57,6
GRANULOMETRAS	347		70.6	62,0
GRAN	4		5 52	77,3 77,3
	11/2*		97,4 91,8 88,1	2
	14		9.0	83,2
	210			82,0
	6		0'501	160,0
DE NOW	9.		17.00	호
LIMITES DE CONSISTENCIA	L.P.	5	.8.03	2
	-		5.81 22.74 16.03 8.71 105.0	ž
HOM.			99	8,74
DESCRIPCIÓN HUM.	AND THE PROPERTY OF		GRAVA ARENO LIMO ARCILLOSA	GRAVA ARENO LIMOSA
PROF.		11-11-	3,00	3,80

S. L. S. servicio de Labora menore suguos

PROYECTO:

UBICACION:

ZONA:

S.L.S.

Warkert Braun No. 975

Telf. 2253576 - 71572763

CIUDAD :

ENSAYE DE CLASIFICACIÓN DE SUELOS

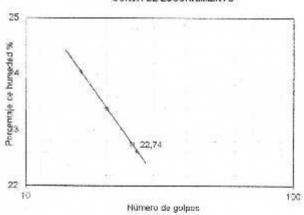
ESTUDIO GEÓTECNICO FECHA;
CALLE ARZABE REFERENCIA:
16 DE JULIO PROFUNDIDAD:
EL ALTO CONSULTOR:
GABINO LIMACHI RODRIGUEZ LABORATORISTA;

DATOS DEL AGREGAD	O FINO	12.2
PASA Nº 4 HUMEDO	100.0	gr
PASA Nº 4 SECO	99.1	gr

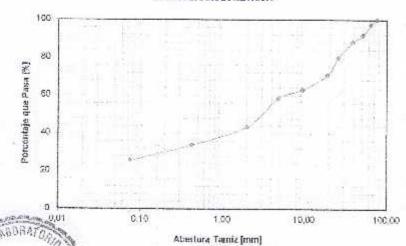
	NATURAL	HIGROS.
TARA Nº	90	20
PESC TARA + MUESTRA HUMEDA	640,40	138,20
PESC TARA + MUESTRA SECA	608,30	137,30
PESC DEL AGUA	32,10	0,90
PESC DE LA TARA	65,10	38,20
PESO MUESTRA SECA	543,20	99,10
CONTENIDO DE AGUA %	5,91	0.91

DETERMINACION DEL	LIMITE LIQUID	00	Const.
TARA N*	111	112	113
NUMERO DE GOLPES	16	20	25
PESO TARA Y MUESTRA HUMEDA	36,03	35,02	35,95
PESO TARA + MUESTRA SEGA	31,62	30,99	32,47
PESO DEL AGUA	4,41	4,03	4,49
PESO DE LA TARA	13,28	13,76	12,63
PESO MUESTRA SECA	18,34	17,23	19,54
CONTENIDO DE AGUA %	24.05	23,39	22,63
LIMITE LIQUIDO	22,73	22.74	22.78

DETERMINACION DEL LIMITE PL	ASTICO	
TARA Nº	114	115
PESO TARA + MUESTRA HUMEDA	27,98	28.88
PESO TARA + MUESTRA SECA	25,87	26.57
PESO DEL AGUA	2,11	2.31
PESO DE LA TARA	12,74	12.13
PESO MUESTRA SECA	13,13	14 44
CONTENIDO DE AGUA 1%	15,07	18,00


TAMZ	ABERTURA	RETENIDO ACUM	% QUE PASA		
N"	EN [aum]	gr	%	CEL TOTAL	
3"	76 20			100,0	
21/2"	63,50	116,0	2.6	97,4	
2"	50,80	371,0	8,2	91.8	
1 1/2"	38,10	538,0	11,9	89.1	
1.	25,40	914,0	20,1	79.9	
3/4"	19,00	1.324,0	29,2	70,8	
3/8"	9,50	1.675.0	36,9	63,1	
No 4	4,/5	1.889,0	41,6	58,4	
No 10	2,00	25,4	25,6	43,4	
No 40	0,43	41,6	42,0	33.9	
No 200	0,08	55.7	56,2	25,6	

3,00 - Mis.


Ing. JAIME BUSTILLOS V.

Too, DANIEL DE LA BARRA L.

CURVA DE ESCURRIMIENTO

CURVA GRANULOMÈTRICA

RESUMEN						
PORCENTAJE DE GRAVAS	41,6					
PORCENTAJE DE ARENAS	32,8					
PORCENTAJE DE FINOS	25,6					
HUMEDAD NATURAL	5,91					
LIM TE LIQUIDO	22,74					
LIMITE PLASTICO	16.03					
-NOICE DE PLASTIGIDAD	6.71					

CLASII	FICACIÓN UNI	FICADA
POZO	SUELO	GRANULAR
3	GM	- GC
PROF 3,00 Mts	GRAVA LIM	O ARCILLOSA

Daylor De La Barra Loayla Daniel P. De La Barra Loayla Vegistro H. A. M. Lab. 007 Tabalco en Suelos y Herosigosses .S. L. S

ENSAYE DE CLASIFICACIÓN DE SUELOS

PROYECTO: ESTUDIO GEÓTECNICO UBICACION: CALLE ARZABE

ZONA: 16 DE JULIO CIUDAD: EL ALTO

CLIENTE: GABINO LIMACHI RODRIGUEZ

FECHA: REFERENCIA: PROFUNDIDAD:

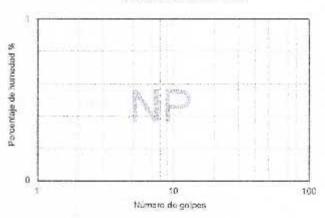
CONSULTOR: LABORATORISTA: OCTUBRE - 2016 POZO 3

3,80 Mis.

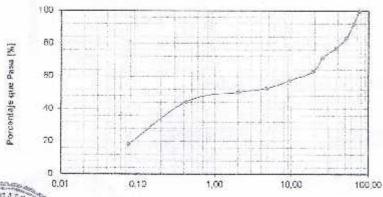
Ing. JAIME BUSTILLOS V. Tec. DANIEL DE LA BARRA L.

DATOS DE LA MUESTRA TOT	AL	S. Svie
PESO TOTAL MUESTRA HUMEDA	9.018	QF.
PESO RETENIDO TAMIZ Nº 4	4256	gr
PESO PASA TAMIZ Nº 4 HUMEDO	4762	Qf.
PESO PASA TAMIZ Nº 4 SECO	4.724	gr
PESO TOTAL MUESTRA SECA	8.980	91

DATOS DEL AGREGADO F	INO	TELEVI
PASA Nº 4 HUMEDO	100,0	gr
PASA Nº 4 SECO	99,2	gr


	NATURAL	HIGROS	
TARA N°	85	31	
PESO TARA + MUESTRA HUMEDA	627,60	136,30	
PESO TARA + MUESTRA SECA	592,40	135,50	
PESO DEL AGUA	35,20	0,80	
PESO DE LA TARA	70,10	36,30	
PESO MUESTRA SECA	522,30	99,20	
CONTENIDO DE AGUA %	5,74	18,0	

DETERMINACION DE	L UMITE	LIQUIDO	4-5WAR
TARA N°		1	
NUMERO DE GOLPES			
PESO TARA + MUESTRA HUMEDA			
PESO TARA + MUESTRA SECA	THE W		
PESO DEL AGUA			
PESO DE LA TARA			
PESO MUESTRA SECA			
CONTENIDO DE AGUA %			
LIMITE LIQUIDO	NP	INP	NP


DETERMINACION DEL LIMIT	E PLASTICO	CANADA NA LAT
TARA N°		
PESO TARA + MUESTRA HUMEDA		
PESO TARA + MUESTRA SECA		
PESO DEL AGUA		
PESO DE LA TARA		
PESC MUESTRA SECA		
CONTENIDO DE AGUA %	NP	NP

CURVA DE ESCURRIMIENTO

CURVA GRANULOMÉTRICA

Abertura Tamiz [mm]

RESUMEN	Links -	Service .
PORCENTAJE DE GRAVAS		47,4
PORCENTAJE DE ARENAS	1	34,3
PORCENTAJE DE FINOS		18,3
HUMEDAD NATURAL		6,74
LIMITE LIQUIDO	NP	
LIMITE PLASTICU	NP	
POCE DE PLASTICIDAD	NP	TE

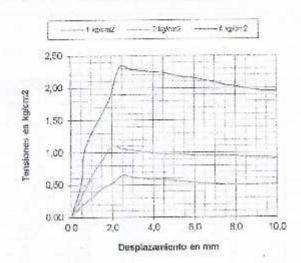
CLASIF	CACIÓN UNI	FICADA	
POZO _	SUELO	GRANULAR	
3	GM		
PROF. 3,80 Mts	GRAVA	LIMOSA	

Dayled De la Barra L Danie F. Fegiotro H. A. M. Lab. 001 Testadou su Sussous y trespulgance

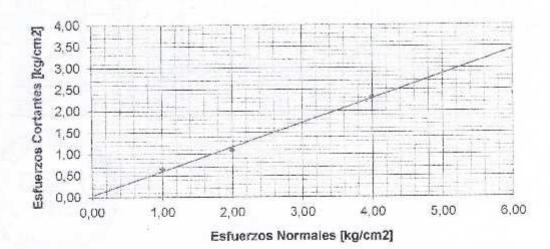
S. L. S. SERVICIO DE SUELOS

CLIENTE:

ENSAYO DE CORTE DIRECTO


POZO 3

3.80 Mts.


OCTUBRE - 2016 FECHA: ESTUDIO GEOTECNICO PROYECTO: REFERENCIA: UBICACIÓN: CALLE ARZABE PROFUNDIDAD: ZONA: 16 DE JULIO ing, J. BUSTILLOS CONSULTOR: EL ALTO CIUDAD: Tec. D. DE LA BARRA LABORATORISTA:

RESISTENCIAS EN KG/CM2

GABINO LIMACHI RODRIGUEZ

CRITERIO DE FALLLA MOHR - COULOMB

COHESIÓN 0,07 kg/cm ANGULO DE FRICCIÓN INTERNA $\phi = 36.4^{\circ}$

Lud De la Barro Dangel F. De La Barra Louyz Atogletro H. A. M. Lab. 001 Toonico en Suelos y Hermigones S. L. S.

ENSAYO DE CORTE DIRECTO Hoja de Rotura y Cálculo

PROYECTO: E

ESTUDIO GEÓTECNICO

UBICACIÓN: ZONA : CALLE ARZABE 16 DE JULIO

CIUDAD:

EL ALTO

CLIENTE:

GABINO LIMACHI RODRIGUEZ

FECHA:

REFERENCIA:

OCTUBRE - 2016

POZO 3

3,80 Mts.

PROFUNDIDAD:

CONSULTOR:

ing. J. BUSTILLOS

LABORATORISTA:

Tec. D. DE LA BARRA

(i) = (1) (i) (i) (i)			DATOS D	EL ENSAYO	
K de Anillo:	1,65	Area:	28,3 cm2	Velocidad del ensayo:	0,05 mm/min

Ensayo realizado con: Muestra INALTERADA, SATURADA y CONSOLIDADA

P	resión: 1	.0 kg/cm	2	P	resion: 2	.0 kg/cm	2	P	resión: 4	.0 kg/cm	2
Al num	Lect. Anillo	Fuerza (kg)	Tensión kg/cm2	ΔI mm	Lect. Anillo	Fuerza (kg)	Tensión kg/cm2	∆l mm	Lect. Anillo	Fuerza (kg)	Tensión kg/cm2
0.0	0.0	0,0	0,00	0.0	0.0	0,0	0.00	0,0	0,0	0,0	0,00
0,5	2,8	5,2	0,18	0,5	4,8	8,9	0,31	0,5	8,2	15.2	0,54
1,0	4.6	8,5	0,30	1,0	6,7	17,9	0,63	0,6	14,5	27,0	0,95
1,5	6.9	12,3	0,45	1.5	13.5	25,0	0.88	0,9	18.9	35,0	1,24
2,0	8.1	14,9	0,53	2.0	16,7	30,9	1,09	1,5	24,5	45.5	1,61
2.5	9,9	18,3	0,65	2.5	16,2	30,0	1.06	1,9	28.6	52 9	1,87
3,0	9,5	17,6	0,62	3,0	15,9	29,4	1,04	2,4	35,5	65.7	2.32
3.5	9,2	17,0	0.60	3,5	15,6	28,9	1,02	3.0	35.0	64.8	2,29
4.0	9,0	16,7	0,59	4,0	15,2	28,1	0,99	3,5	34,7	64,2	2,27
4.5	8.9	16,5	0.58	4,5	15,0	27,8	0,98	4,5	34,2	63,3	2.24
5,0	8,7	16,1	0,57	5,0	14.9	27.6	0,97	5.0	33,6	62,2	2,20
5.5	8,5	15,7	0.56	5,5	14,9	27,6	0,97	5,5	33,2	61,4	2,17
6.0	8,2	15,2	0,54	6,0	14,6	27.0		6,0	33,0	61,1	2,16
6,5	8,0	14,8	0,52	6,5	14,8	27,0	0,95	6,5	32,5	60,1	2,12
7,0	7,9	14,6	0.52	7,0	14,6	27,0	0,95	7,0	32,0	59,2	2,09
7.5	7,8	14,4	0.51	7,5	14.6	27,0	0,95	7,5	31,3	57,9	2,05
8,0	7.7	14,2	0,50	8,0	14,6	27,0	0,95	8,0	31,0	57,4	2,03
8.5	7.7	14,2	0,50	8,5	14,3	26,5	0,93	8,5	30,5	56,4	1,99
9.0	7.7	14,2	0,50	9,0	14,3	26,5	0,93	9,0	30,1	55,7	1,97
9.5	7,7	14,2	0,50	9,5	14,3	26,5	0,93	9,5	29,9	55,3	
10,0	7,7	14,2	0,50	10,0	12.0	25,9		10,0	29,8	55,1	1,95

S. L. S.

DETERMINACIÓN DE LA DENSIDAD EN SITIO DE SUELOS POR EL MÉTODO DE LOS TROZOS INALTERADOS T 233-70

GRAVEDAD ESPECIFICA DE SUELOS AASHTO T 100-75

LABORATORIO DE SUELOS Y MATERIALES

PROYECTO: UBICACION: ESTUDIO GEÓTECNICO

ZONA : CIUDAD : CALLE ARZABE 16 DE JULIO EL ALTO

CLIENTE:

GABINO LIMACHI RODRIGUEZ

FECHA:

REFERENCIA:

PROFUNDIDAD: CONSULTOR:

LABORATORISTA:

OCTUBRE - 2016

FOZO 3

3,80 Mts.

Ing. JAIME BUSTILLOS

Tec. D. DE LA BARRA

DETERMINACION DE LA RELACION DE VACIOS Y CONTENIDO DE HUMEDAD METODO DE TROZOS INALTERADOS CUBIERTOS CON PARAFINA

Muestra:	1	2	PROMEDIO
Identificación de la muestra:	A		
Peso sueio húmedo con parafina [gr]:	795,50		
Peso suelo húmedo [gr]:	756,30		
Peso de la parafina [gr]:	39,30		
Densidad de la parafina [gr/cm*3]:	0,90		No.
Volumen de la parafina [cm^3]:	43,67		
Peso suelo con parafina, sumergido [gr]:	431,50		
Volumen del suelo húmedo con parafina (cm^3).	364,10		
Volumen del suelo húmedo [cm^3]:	320,43	LOWE IN	
Densidad del suelo húmedo [gr/cm^3]:	2,360		2,360
Densidad del suelo seco [gr/cm^3]:	2,211	THE COMMENT OF THE PARTY.	2,211

PORCENTAJE:	PROMEDIO	
Muestre:		
Identificación de la muestra	A	
Número de cápsula:	85	
Peso suelo húmedo y cápsula [gr]:	627,60	
Peso suelo seco y cápsula [gr]:	592,40	
Peso del agua [gr]:	35,20	
Peso de la cápsula [gr]:	70,10	
Peso suelo seco [gr]:	522,30	
Porcentaje de humedad [%]:	6,74	6,74

PROPIEDAD	PROMEDIO	
Peso específico del suelo:	2,60	2,60
Relación de vactos:	0.18	0,18
Grado de saturación [%]:	98.76	98,76
Porosidad [%]:	15.09	15,09

DETERMINACION DE PESOS ESPECÍFICOS DE AGREGADOS PÉTREOS
POR EL MÉTODO DEL PICNÓMETRO

Muestra:	1	2	PROMEDIO
Temperatura, t (°C)	20		
Peso del picnómetro y agua; a [gr]:	145,50		
Peso de la muestra seca; b [gr]:	100,00		
Suma de ambos pesos; (a+b) [gr];	245,50		
Peso del pionómetro muestra y agua; c [gr]:	207,10		
Volumen, Vsp [cm^3]:	38,40		
Peso específico del suelo; G :	2,60		2,60

Date De La Barra Luayea Registro H. A. M. Lab. 001 Técnico en Suelos y biermigenes

A-2. PRESUPUESTO DE OBRA Y ANALISIS DE PRECIOS UNITARIOS

MODULO N 1

Ítem	Descripción	Unidad	Cantidad	Precio unitario (Numeral)	Precio unitario (Literal)	Precio Total (Numeral)		
OBRA	OBRA GRUESA							
1	HORMIGON PARA MUROS FCK=210 KG/CM2	М3	67.74	1,089.04	Un mil ochenta y nueve 04/100 Bolivianos	73,771.57		
2	ACERO ESTRUCTURAL PARA MUROS FY=500 KG/CM2	KG	4,605.88	11.47	Once 47/100 Bolivianos	52,829.42		
3	HORMIGON PARA LOSA DE FUNDACIÓN FCK=210 KG/CM2	МЗ	554.48	1,113.22	Un mil ciento trece 22/100 Bolivianos	617,258.23		
4	ACERO ESTRUCTURAL PARA LOSA DE FUNDACIÓN FY=500 KG/CM2	KG	30,995.43	11.46	Once 46/100 Bolivianos	355,207.65		
5	HORMIGON PARA COLUMNAS FCK=210 KG/CM2	М3	220.31	1,451.52	Un mil cuatrocientos cincuenta y un 52/100 Bolivianos	319,788.73		
6	ACERO ESTRUCTURAL PARA COLUMNAS FY=500 KG/CM2	KG	26,164.03	11.33	Once 33/100 Bolivianos	296,438.44		
	HORMIGON PARA VIGAS FCK=210 KG/CM2	М3	277.74	1,469.51	Un mil cuantrocientos sesenta y nueve 51/100 Bolivianos	408,141.71		
8	ACERO ESTRUCTURAL PARA VIGAS FY=500 KG/CM2	KG	18,555.76	11.47	Once 47/100 Bolivianos	212,834.51		
9	HORMIGON PARA LOSA NERVADA FCK=210 KG/CM2	М3	896.35	2,171.17	Dos mil ciento setenta y un 17/100 Bolivianos	1,946,119.28		
10	ACERO ESTRUCTURAL PARA LOSA NERVADA FY=500 KG/CM2	KG	47,030.47	11.47	Once 47/100 Bolivianos	539,439.51		
11	HORMIGON PARA LOSA DE TANQUE FCK=210 KG/CM2	МЗ	6.39	1,395.74	Un mil trecietos noventa y cinco 04/100 Bolivianos	8,915.99		
12	ACERO ESTRUCTURAL PARA LOSA DE TANQUE FY=500 KG/CM2	KG	538.19	11.58	Once 58/100 Bolivianos	6,232.23		
	PRECIO TOTAL Cuatro millones ochocientos treinta y seis mil novecientos setenta y siete 27/100 Bolivianos							

MODULO N 1 (SISMO)

Ítem	Descripción	Unidad	Cantidad	Precio unitario (Numeral)	Precio unitario (Literal)	Precio Total (Numeral)		
OBRA	OBRA GRUESA							
1	HORMIGON PARA MUROS FCK=210 KG/CM2	МЗ	71.00	1,089.04	Un mil ochenta y nueve 04/100 Bolivianos	77,321.84		
٠,	ACERO ESTRUCTURAL PARA MUROS FY=500 KG/CM2	KG	10,678.40	11.47	Once 47/100 Bolivianos	122,481.25		
3	HORMIGON PARA LOSA DE FUNDACIÓN FCK=210 KG/CM2	МЗ	554.48	1,113.22	Un mil ciento trece 22/100 Bolivianos	617,258.23		
4	ACERO ESTRUCTURAL PARA LOSA DE FUNDACIÓN FY=500 KG/CM2	KG	41,142.42	11.46	Once 46/100 Bolivianos	471,492.09		
5	HORMIGON PARA COLUMNAS FCK=210 KG/CM2	М3	284.60	1,451.52	Un mil cuatrocientos cincuenta y un 52/100 Bolivianos	413,101.14		
6	ACERO ESTRUCTURAL PARA COLUMNAS FY=500 KG/CM2	KG	66,512.62	11.33	Once 33/100 Bolivianos	753,588.00		
7	HORMIGON PARA VIGAS FCK=210 KG/CM2	М3	335.85	1,469.51	Un mil cuantrocientos sesenta y nueve 51/100 Bolivianos	493,534.93		
8	ACERO ESTRUCTURAL PARA VIGAS FY=500 KG/CM2	KG	57,021.90	11.47	Once 47/100 Bolivianos	654,041.19		
9	HORMIGON PARA LOSA NERVADA FCK=210 KG/CM2	М3	894.61	2,171.17	Dos mil ciento setenta y un 17/100 Bolivianos	1,942,344.12		
10	ACERO ESTRUCTURAL PARA LOSA NERVADA FY=500 KG/CM2	KG	60,358.80	11.47	Once 47/100 Bolivianos	692,315.45		
11	HORMIGON PARA LOSA DE TANQUE FCK=210 KG/CM2	М3	6.39	1,395.74	Un mil trecietos noventa y cinco 04/100 Bolivianos	8,915.99		
12	ACERO ESTRUCTURAL PARA LOSA DE TANQUE FY=500 KG/CM2	KG	538.19	11.58	Once 58/100 Bolivianos	6,232.23		
PRECIO TOTAL Seis millones docientos cincuenta y dos mil seiscientos veintiséis 27/100 Bolivianos					6,252,626.45			

MODULO N 2

Ítem	Descripción	Unidad	Cantidad	Precio unitario (Numeral)	Precio unitario (Literal)	Precio Total (Numeral)
OBRA	GRUESA					
1	HORMIGON PARA MUROS FCK=210 KG/CM2	М3	51.39	1,089.04	Un mil ochenta y nueve 04/100 Bolivianos	55,965.77
2	ACERO ESTRUCTURAL PARA MUROS FY=500 KG/CM2	KG	3,780.99	11.47	Once 47/100 Bolivianos	43,367.91
3	HORMIGON PARA LOSA DE FUNDACIÓN FCK=210 KG/CM2	М3	239.79	1,113.22	Un mil ciento trece 22/100 Bolivianos	266,939.02
4	ACERO ESTRUCTURAL PARA LOSA DE FUNDACIÓN FY=500 KG/CM2	KG	16,562.72	11.46	Once 46/100 Bolivianos	189,808.71
5	HORMIGON PARA COLUMNAS FCK=210 KG/CM2	М3	117.63	1,451.52	Un mil cuatrocientos cincuenta y un 52/100 Bolivianos	170,745.20
6	ACERO ESTRUCTURAL PARA COLUMNAS FY=500 KG/CM2	KG	12,767.67	11.33	Once 33/100 Bolivianos	144,657.74
7	HORMIGON PARA VIGAS FCK=210 KG/CM2	М3	144.98	1,469.51	Un mil cuantrocientos sesenta y nueve 51/100 Bolivianos	213,049.56
8	ACERO ESTRUCTURAL PARA VIGAS FY=500 KG/CM2	KG	9,561.14	11.47	Once 47/100 Bolivianos	109,666.23
9	HORMIGON PARA LOSA NERVADA FCK=210 KG/CM2	М3	431.45	2,171.17	Dos mil ciento setenta y un 17/100 Bolivianos	936,761.72
10	ACERO ESTRUCTURAL PARA LOSA NERVADA FY=500 KG/CM2	KG	23,061.26	11.47	Once 47/100 Bolivianos	264,512.64
11	HORMIGON PARA MURO NUCLEO DE ASCENSOR FCK=210 KG/CM2	М3	55.86	1,532.36	Un mil Quinientos treinta y dos 36/100 Bolivianos	85,597.63
12	ACERO ESTRUCTURAL PARA MURO NUCLEO DE ASCENSOR FY=500 KG/CM2	KG	1,734.01	11.56	Once 56/100 Bolivianos	20,045.13
				PRECIO TOTAL	Dos millones quinientos un mil ciento diecisiete 26/100 Bolivianos	2,501,117.26

MODULO N 2 (SISMO)

Ítem	Descripción	Unidad	Cantidad	Precio unitario (Numeral)	Precio unitario (Literal)	Precio Total (Numeral)	
OBRA	GRUESA						
1	HORMIGON PARA MUROS FCK=210 KG/CM2	М3	52.34	1,089.04	Un mil ochenta y nueve 04/100 Bolivianos	57,000.35	
2	ACERO ESTRUCTURAL PARA MUROS FY=500 KG/CM2	KG	8,152.13	11.47	Once 47/100 Bolivianos	93,504.93	
3	HORMIGON PARA LOSA DE FUNDACIÓN FCK=210 KG/CM2	МЗ	259.26	1,113.22	Un mil ciento trece 22/100 Bolivianos	288,613.42	
4	ACERO ESTRUCTURAL PARA LOSA DE FUNDACIÓN FY=500 KG/CM2	KG	21,777.84	11.46	Once 46/100 Bolivianos	249,574.05	
5	HORMIGON PARA COLUMNAS FCK=210 KG/CM2	М3	171.01	1,451.52	Un mil cuatrocientos cincuenta y un 52/100 Bolivianos	248,221.53	
6	ACERO ESTRUCTURAL PARA COLUMNAS FY=500 KG/CM2	KG	36,084.29	11.33	Once 33/100 Bolivianos	408,835.04	
7	HORMIGON PARA VIGAS FCK=210 KG/CM2	М3	196.74	1,469.51	Un mil cuantrocientos sesenta y nueve 51/100 Bolivianos	289,111.40	
	ACERO ESTRUCTURAL PARA VIGAS FY=500 KG/CM2	KG	31,470.22	11.47	Once 47/100 Bolivianos	360,963.42	
	HORMIGON PARA LOSA NERVADA FCK=210 KG/CM2	М3	419.99	2,171.17	Dos mil ciento setenta y un 17/100 Bolivianos	911,879.96	
1()	ACERO ESTRUCTURAL PARA LOSA NERVADA FY=500 KG/CM2	KG	28,484.45	11.47	Once 47/100 Bolivianos	326,716.60	
11	HORMIGON PARA MURO NUCLEO DE ASCENSOR FCK=210 KG/CM2	М3	59.67	1,532.36	Un mil Quinientos treinta y dos 36/100 Bolivianos	91,435.92	
	ACERO ESTRUCTURAL PARA MURO NUCLEO DE ASCENSOR FY=500 KG/CM2	KG	4,994.67	11.56	Once 56/100 Bolivianos	57,738.41	
	PRECIO TOTAL Tres millones trescientos ochenta y tres mil quinientos noventa y cinco 02/100 Bolivianos						

ANALISIS DE PRECIOS UNITARIOS

		Item: Acero estructural para losa de fundación		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.005	7.86	0.04
>	D	TOTAL MATERIALES			(A) =	8.54
	В	MANO DE OBRA				
1		Armador	Hr	0.009	18.75	0.17
2		Ayudante de armador	Hr	0.014	12.50	0.18
>		SUBTOTAL MANO DE OBRA			(B) =	0.34
	F	Cargas Sociales		55,00% de	(E) =	0.19
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.08
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.61
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.04
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.04
>	J	SUB TOTAL			(D+G+I) =	9.19
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.92
	М	Utilidad		10,00% de	(J+L) =	1.01
>	N	PARCIAL			(J+L+M) =	11.12
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.34
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.46
>		PRECIO ADOPTADO:				11.46
		Son: Once 46/100 bolivianos				

		Item: Acero estructural para muros de sótano		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.012	7.86	0.09
>	D	TOTAL MATERIALES			(A) =	8.59
	В	MANO DE OBRA				
1		Armador	Hr	0.009	18.75	0.17
2		Ayudante de armador	Hr	0.012	12.50	0.15
>		SUBTOTAL MANO DE OBRA			(B) =	0.32
	F	Cargas Sociales		55,00% de	(E) =	0.18
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.07
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.57
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.03
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.03
>	J	SUB TOTAL			(D+G+I) =	9.20
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.92
	М	Utilidad		10,00% de	(J+L) =	1.01
>	N	PARCIAL			(J+L+M) =	11.13
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.34
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.47
>		PRECIO ADOPTADO:				11.47
		Son: Once 47/100 bolivianos				

		Item: Acero estructural para columnas		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.007	7.86	0.06
>	D	TOTAL MATERIALES			(A) =	8.56
	В	MANO DE OBRA				
1		Armador	Hr	0.009	18.75	0.17
2		Ayudante de armador	Hr	0.009	12.50	0.11
>		SUBTOTAL MANO DE OBRA			(B) =	0.28
	F	Cargas Sociales		55,00% de	(E) =	0.15
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.07
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.50
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.03
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.03
>	J	SUB TOTAL			(D+G+I) =	9.09
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.91
	М	Utilidad		10,00% de	(J+L) =	1.00
>	N	PARCIAL			(J+L+M) =	10.99
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.34
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.33
>		PRECIO ADOPTADO:				11.33
		Son: Once 44/100 bolivianos				

		Item: Acero estructural para vigas		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.010	7.86	0.08
>	D	TOTAL MATERIALES			(A) =	8.58
	В	MANO DE OBRA				
1		Armador	Hr	0.010	18.75	0.19
2		Ayudante de armador	Hr	0.011	12.50	0.14
>		SUBTOTAL MANO DE OBRA			(B) =	0.33
	F	Cargas Sociales		55,00% de	(E) =	0.18
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.08
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.58
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.03
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.03
>	J	SUB TOTAL			(D+G+I) =	9.19
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.92
	М	Utilidad		10,00% de	(J+L) =	1.01
>	N	PARCIAL			(J+L+M) =	11.12
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.34
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.47
>		PRECIO ADOPTADO:				11.47
		Son: Once 47/100 bolivianos				

		Item: Acero estructural para losas nervadas		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Νō	Р.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.010	7.86	0.08
>	D	TOTAL MATERIALES			(A) =	8.58
	В	MANO DE OBRA				
1		Armador	Hr	0.010	18.75	0.19
2		Ayudante de armador	Hr	0.011	12.50	0.14
>		SUBTOTAL MANO DE OBRA			(B) =	0.33
	F	Cargas Sociales		55,00% de	(E) =	0.18
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.08
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.58
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.03
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.03
>	J	SUB TOTAL			(D+G+I) =	9.19
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.92
	M	Utilidad		10,00% de	(J+L) =	1.01
>	N	PARCIAL			(J+L+M) =	11.12
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.34
>	α	TOTAL PRECIO UNITARIO			(N+P) =	11.47
>		PRECIO ADOPTADO:				11.47
		Son: Once 47/100 bolivianos				

		Item: Acero estructural para losa de tanque		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.013	7.86	0.10
>	D	TOTAL MATERIALES			(A) =	8.60
	В	MANO DE OBRA				
1		Armador	Hr	0.012	18.75	0.23
2		Ayudante de armador	Hr	0.011	12.50	0.14
>		SUBTOTAL MANO DE OBRA			(B) =	0.36
	F	Cargas Sociales		55,00% de	(E) =	0.20
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.08
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.65
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.04
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.04
>	J	SUB TOTAL			(D+G+I) =	9.29
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.93
	М	Utilidad		10,00% de	(J+L) =	1.02
>	N	PARCIAL			(J+L+M) =	11.24
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.35
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.58
>		PRECIO ADOPTADO:				11.58
		Son: Once 58/100 bolivianos				

		Item: Acero estructural para nucleo de ascensor		Unidad: KG		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Acero estructural	Kg	1.000	8.50	8.50
2		Alambre de amarre	Kg	0.021	7.86	0.17
>	D	TOTAL MATERIALES			(A) =	8.67
	В	MANO DE OBRA				
1		Armador	Hr	0.009	18.75	0.17
2		Ayudante de armador	Hr	0.012	12.50	0.15
>		SUBTOTAL MANO DE OBRA			(B) =	0.32
	F	Cargas Sociales		55,00% de	(E) =	0.18
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.07
>	G	TOTAL MANO DE OBRA			(E+F+O) =	0.57
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
	Н	Herramientas menores		6,00% de	(G) =	0.03
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.03
>	J	SUB TOTAL			(D+G+I) =	9.27
	L	Gastos grales. y administrativ		10,00% de	(J) =	0.93
	M	Utilidad		10,00% de	(J+L) =	1.02
>	N	PARCIAL			(J+L+M) =	11.21
	Р	Impuesto a las Transacciones		3,09% de	(N) =	0.35
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	11.56
>		PRECIO ADOPTADO:				11.56
		Son: Once 56/100 bolivianos				

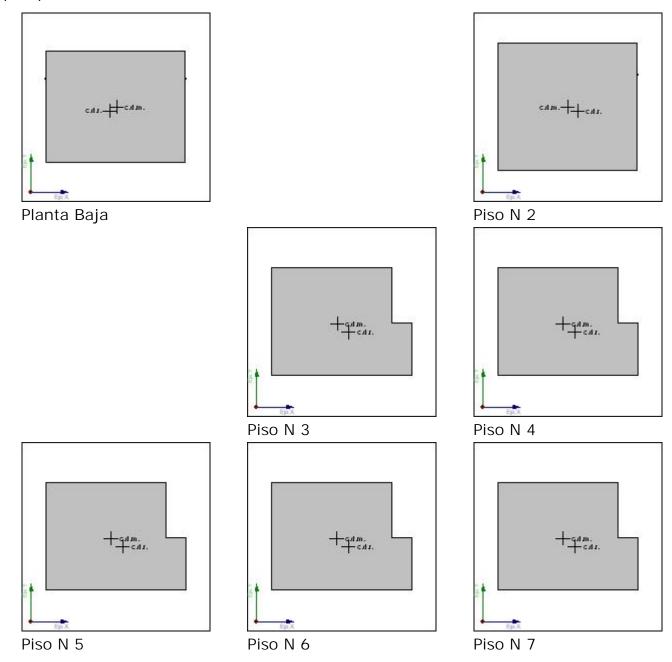
		Item: Hormigón para losa de fundación		Unidad: m³		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050	820.00	861.00
2		Mortero endurecedor	Kg	5.000	3.28	16.40
3		Liquido de curado	L	0.150	40.19	6.03
4		Separador homologado para cimentaciones	Und	5.000	0.96	4.80
>	D	TOTAL MATERIALES			(A) =	888.23
	В	MANO DE OBRA				
1		Albañil	Hr	0.021	18.75	0.39
2		Ayudante	Hr	0.147	12.50	1.84
>	Ε	SUBTOTAL MANO DE OBRA			(B) =	2.23
	F	Cargas Sociales		55,00% de	(E) =	1.23
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	0.52
>	G	TOTAL MANO DE OBRA			(E+F+O) =	3.98
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Regla vibrante de 3 m	Hr	0.335	28.63	9.59
2		Fratasadora mecanica de hormigón	Hr	0.276	31.09	8.58
3		Camión bomba	Hr	0.042	1,042.51	43.79
4		Pulverizador de accionamiento meecánico	Hr	0.100	183.98	18.40
	Н	Herramientas menores		6,00% de	(G) =	0.24
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.24
>	J	SUB TOTAL			(D+G+I) =	892.44
	L	Gastos grales. y administrativ		10,00% de	(J) =	89.24
	М	Utilidad		10,00% de	(J+L) =	98.17
>	N	PARCIAL			(J+L+M) =	1,079.85
	Р	Impuesto a las Transacciones		3,09% de	(N) =	33.37
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	1,113.22
>		PRECIO ADOPTADO:				1,113.22
		Son: Un mil ciento trece 22/100 bolivianos				

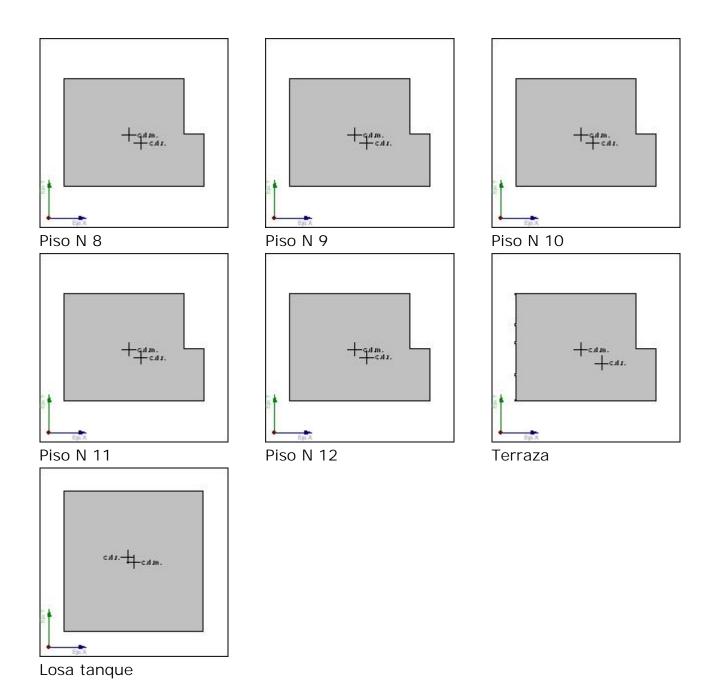
		Item: Hormigón para muro de sótano		Unidad: m ³		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050	820.00	861.00
2		Separador homologado	Und	8.000	0.40	3.20
>	D	TOTAL MATERIALES			(A) =	864.20
	В	MANO DE OBRA				
1		Albañil	Hr	0.068	18.75	1.28
2		Ayudante	Hr	0.273	12.50	3.41
>	E	SUBTOTAL MANO DE OBRA			(B) =	4.69
	F	Cargas Sociales		55,00% de	(E) =	2.58
L	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	1.09
>	G	TOTAL MANO DE OBRA			(E+F+O) =	8.35
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Camión bomba	Hr	0.053	1,042.51	55.25
					4-3	
	Н	Herramientas menores		6,00% de	(G) =	0.50
>	ı	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	0.50
>	J	SUB TOTAL			(D+G+I) =	873.05
	L	Gastos grales. y administrativ		10,00% de	(J) =	87.31
	M	Utilidad		10,00% de	(J+L) =	96.04
>	N	PARCIAL			(J+L+M) =	1,056.39
	Р	Impuesto a las Transacciones		3,09% de	(N) =	32.64
	_				()	
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	1,089.04
>		PRECIO ADOPTADO:				1,089.04
		Son: Un mil ochenta y nueve 04/100 bolivianos				

		Item: Hormigón para columnas		Unidad: m³		
		EDIFICIO GABINO LIMACHI				
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050	820.00	861.00
2		Separador homologado	Und	12.000	0.50	6.00
3		Panel metálico	m²	0.107	657.70	70.37
4		Puntal metálico	Und	0.490	92.22	45.19
5		Berenjeno de PVC	Und	4.400	2.50	11.00
5		Agente desmoldante	L	0.240	14.15	3.40
>	D	TOTAL MATERIALES			(A) =	996.96
	В	MANO DE OBRA				
1		Albañil	Hr	0.114	18.75	2.14
2		Ayudante	Hr	0.455	12.50	5.69
3		Encofrador	Hr	2.435	18.75	45.66
4		Ayudante encofrador	Hr	2.783	12.50	34.79
>	E	SUBTOTAL MANO DE OBRA			(B) =	88.27
	F	Cargas Sociales		55,00% de	(E) =	48.55
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	20.44
>	G	TOTAL MANO DE OBRA			(E+F+O) =	157.26
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Camión bomba	Hr	0.158	1,042.51	164.72
	Н	Herramientas menores		6,00% de	(G) =	9.44
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	9.44
>	J	SUB TOTAL			(D+G+I) =	1,163.65
	L	Gastos grales. y administrativ		10,00% de	(J) =	116.37
	М	Utilidad		10,00% de	(J+L) =	128.00
>	N	PARCIAL			(J+L+M) =	1,408.02
	Р	Impuesto a las Transacciones		3,09% de	(N) =	43.51
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	1,451.52
>		PRECIO ADOPTADO:				1,451.52
		Son: Un mil cuatrocientos cincuenta y uno 52/100				
		bolivianos				

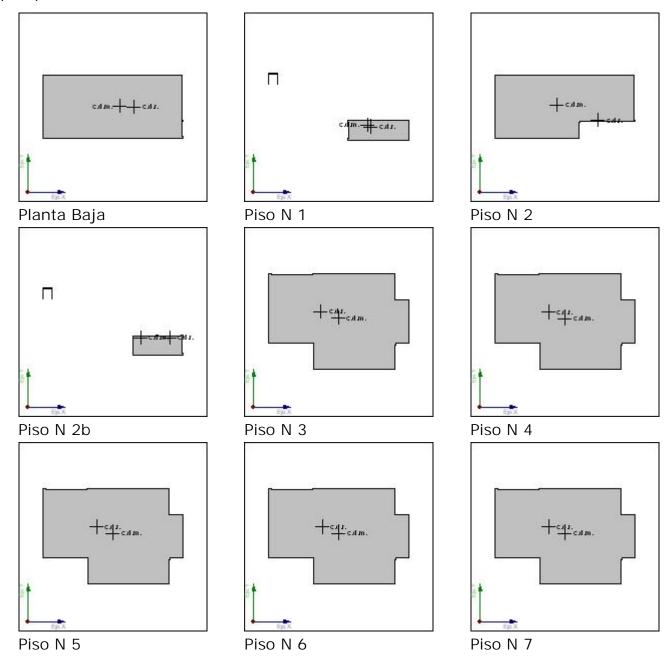
	Item: Hormigón para vigas			Unidad: m³		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050	820.00	861.00
2		Separador homologado	Und	4.000	0.56	2.24
3		Agente desmoldante L 0.150		14.15	2.12	
4		Puntas de acero	Kg	0.200	50.04	10.01
5		Madera de pino	m³	0.015	1,702.59	25.54
6		Puntal metálico	Und	0.133	92.22	12.27
7		Estructura soporte	m²	0.038	607.66	23.09
8		Tablero de madera	m²	0.230	268.08	61.66
>	D	TOTAL MATERIALES			(A) =	997.92
	В	MANO DE OBRA				
1		Albañil	Hr	0.097	18.75	1.82
2		Ayudante	Hr	0.381	12.50	4.76
3		Encofrador	Hr	2.842	18.75	53.29
4		Ayudante encofrador	Hr	2.842	12.50	35.53
>	Ε	SUBTOTAL MANO DE OBRA			(B) =	95.39
	F	Cargas Sociales		55,00% de	(E) =	52.47
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	22.09
>	G	TOTAL MANO DE OBRA			(E+F+O) =	169.95
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Camión bomba	Hr	0.148	1,042.51	154.29
	Н	Herramientas menores		6,00% de	(G) =	10.20
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	10.20
>	J	SUB TOTAL			(D+G+I) =	1,178.07
	L	Gastos grales. y administrativ		10,00% de	(J) =	117.81
	М	Utilidad		10,00% de	(J+L) =	129.59
>	N	PARCIAL			(J+L+M) =	1,425.47
	Р	Impuesto a las Transacciones		3,09% de	(N) =	44.05
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	1,469.51
>		PRECIO ADOPTADO:				1,469.51
		Son: Un mil cuatrocientos sesenta y nueve 51/100 bolivia	nos			

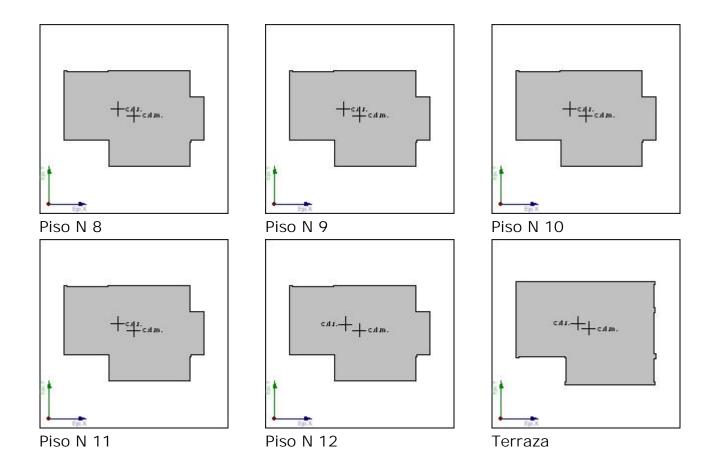
		Item: Hormigón para losas nervadas		Unidad: m³		
		EDIFICIO GABINO LIMACHI				
Nο	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050	820.00	861.00
2		Tablero de madera	m²	0.191	268.08	51.20
3		Estructura de soporte	m²	0.030	607.66	18.23
4		Puntal metálico	Und	0.117	92.22	10.79
5		Madera de pino	m³	0.013	-	22.13
6		Puntas de acero	Kg	0.174	50.04	8.71
7		Agente desmoldante	L	0.130	14.15	1.85
8		Casetón 40X40X30	Und	17.400	35.61	619.61
9		Separador homologado	Und	5.217	0.40	2.09
10		Agua	m³	0.022	10.72	0.23
>	D	TOTAL MATERIALES			(A) =	1,595.84
	В	MANO DE OBRA				
1		Albañil	Hr	0.057	18.75	1.07
2		Ayudante	Hr	0.217	12.50	2.71
3		Encofrador	Hr	2.361	18.75	44.27
4		Ayudante encofrador	Hr	2.287	12.50	28.59
>	Ε	SUBTOTAL MANO DE OBRA			(B) =	76.64
	F	Cargas Sociales		55,00% de	(E) =	42.15
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	17.75
>	G	TOTAL MANO DE OBRA			(E+F+O) =	136.54
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Camión bomba	Hr	0.083	1,042.51	86.53
	Н	Herramientas menores		6,00% de	(G) =	8.19
>	ı	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	8.19
>	J	SUB TOTAL			(D+G+I) =	1,740.57
	L	Gastos grales. y administrativ		10,00% de	(J) =	174.06
	М	Utilidad		10,00% de	(J+L) =	191.46
>	N	PARCIAL			(J+L+M) =	2,106.09
	Р	Impuesto a las Transacciones		3,09% de	(N) =	65.08
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	2,171.17
>		PRECIO ADOPTADO:				2,171.17
		Son: Dos mil ciento setenta y uno 17/100 bolivianos				


A 1 -	P. Insumo/Parámetro				
A 1 -	P. Insumo/Parámetro				
1 -	•	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	A MATERIALES				
	Hormigón premezclado H21	m³	1.050	820.00	861.00
2	Separador homologado	Und	7.200	0.56	4.03
3	Agente desmoldante	L	0.075	14.15	1.06
4	Puntas de acero	Kg	0.100	50.04	5.00
5	Madera de pino	m³	0.008	1,702.59	13.62
6	Puntal metálico	Und	0.068	92.22	6.27
7	Estructura soporte	m²	0.175	607.66	106.34
8	Tablero de madera	m²	0.110	268.08	29.49
> D				(A) =	1,026.82
В					
1	Albañil	Hr	0.058	18.75	1.09
2	Ayudante	Hr	0.240	12.50	3.00
3	Encofrador	Hr	1.430	18.75	26.81
4	Ayudante encofrador	Hr	1.430	12.50	17.88
> E				(B) =	48.78
F	8		55,00% de	(E) =	26.83
0	1 0 0		14,94% de	(E+F) =	11.29
> G				(E+F+O) =	86.90
С					
1	Camión bomba	Hr	0.095	1,042.51	99.04
Н	H Herramientas menores		6,00% de	(G) =	5.21
> I				(C+H) =	5.21
> J				(D+G+I) =	1,118.93
L			10,00% de	(J) =	111.89
N				(J+L) =	123.08
> N			,	(J+L+M) =	1,353.90
Р	Impuesto a las Transacciones		3,09% de	(N) =	41.84
> Q	TOTAL PRECIO UNITARIO			(N+P) =	1,395.74
>	PRECIO ADOPTADO:				1,395.74
	Son: Un mil trecientos noventa y cinco 74/100				
	bolivianos				


	Item: Hormigón para núcleo de ascensor			Unidad: m³		
		EDIFICIO GABINO LIMACHI		1	1	
Νō	P.	Insumo/Parámetro	Und.	Cant.	Unit. (Bs)	Parcial (Bs)
	Α	MATERIALES				
1	-	Hormigón premezclado H21	m³	1.050		861.00
2		Separador homologado	Und	8.000	0.56	4.48
3		Agente desmoldante		0.200	14.15	2.83
4		Pasamuro de PVC	Und	0.667	6.65	4.44
5		Consola trepante para sistema de encofrado continuo de núcleos de hormigó	m²	0.044	4,146.37	182.44
6		Paneles metálicos	m²	0.044	1,429.78	62.91
>	D	TOTAL MATERIALES			(A) =	1,118.10
	В	MANO DE OBRA				
1		Albañil	Hr	0.063	18.75	1.18
2		Ayudante Hr 0.261		12.50	3.26	
3		Encofrador	Hr 1.667		18.75	31.26
4		Ayudante encofrador	Hr	1.819	12.50	22.74
>	E	SUBTOTAL MANO DE OBRA			(B) =	58.44
	F	Cargas Sociales		55,00% de	(E) =	32.14
	0	Impuesto al Valor Agregado		14,94% de	(E+F) =	13.53
>	G	TOTAL MANO DE OBRA			(E+F+O) =	104.11
	С	EQUIPO, MAQUINARIA Y HERRAMIEN				
1		Camión bomba	Hr	0.137	1,042.51	142.82
	Н	Herramientas menores		6,00% de	(G) =	6.25
>	I	TOTAL HERRAMIENTAS Y EQUIPO			(C+H) =	6.25
>	J	SUB TOTAL			(D+G+I) =	1,228.45
	L	Gastos grales. y administrativ		10,00% de	(J) =	122.85
	М	Utilidad		10,00% de	(J+L) =	135.13
>	N	PARCIAL			(J+L+M) =	1,486.43
	Р	Impuesto a las Transacciones		3,09% de	(N) =	45.93
>	Q	TOTAL PRECIO UNITARIO			(N+P) =	1,532.36
>		PRECIO ADOPTADO:				1,532.36
		Son: Un mil quinientos treinta y dos 36/100 bolivianos				

A-3 CRONOGRAMA DE EJECUCIÓN


A-5. CENTROS DE MASA Y RIGIDEZ POR PLANTA


Representación gráfica del centro de masas y del centro de rigidez por planta del Edificio N 1

Representación gráfica del centro de masas y del centro de rigidez por planta del Edificio N 2

A-6. JUSTIFICACIÓN CAPACIDAD PORTANTE

VERIFICACIÓN CARGA PORTANTE DEL SUELO (MODULO N 1) GEOMETRÍA

$$B(m) = 20$$

$$L(m) = 25$$

CARGAS

CARGA EN BASE DE PILARES Y MUROS (T) = 7,407.40

PP DE LA LOSA DE FUNDACIÓN (T)= 1,320.00

CARGAS SOBRE LA LOSA= 250.00

CARGA AXIAL P (T)= 8,977.40

MOMENTO EN X (Mx T*M)= 99,094.00

MOMENTO EN Y (My T*M)= 80,120.00

eB (m) = 8.92

eY(m) = 11.04

Condicion en B = 0.45 > 1/6

Condicion en Y = 0.44 > 1/6

Caso I

$$a' = \frac{1}{2} * a * a$$

Donde:

$$y = y \left(1.5 - \frac{3}{4}\right)$$

$$= \left(1.5 - \frac{3}{100}\right)$$

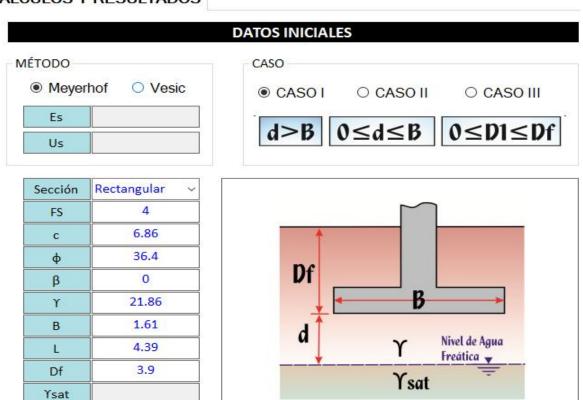
 $B_1(m) = 3.23$

$$L_1(m) = 4.39$$

$$A'=7.07$$

$$=\frac{\cdot \prime}{\prime}$$

Donde L' es el mayor valor de B1 y L1


$$L'(m) = 4.39$$

$$B'(m)=1.61$$

CALCULOS Y RESULTADOS

d

D1 D2

Procesar

Limpiar Datos

Exportar a Txt

CALCULOS Y RESULTADOS

Cálculo de Carga Última

Ecuación General de Meyerhof:

* qu = c.Nc.Fcs.Fcd.Fci + q.Nq.Fqs.Fqd.Fqi + (1/2).Y.B.NY.FYs.FYd.FYi qu = 7,032.699 KN/m2

Carga Admisible

==========

* q(adm) = qu / FS q(adm) = 1,758.175 KN/m2

Carga Total Bruta Admisible

q(adm) = 1,758.175 KN/m2 Área de Sección = 7.068 m2

* Q(Amd) = q(adm) . Area Q(Amd) = 12,426.603 KN

 $q_{adm} = (Kg/cm^2) = 17.93$

VERIFICACIÓN CARGA PORTANTE DEL SUELO (MODULO N 2) GEOMETRÍA

$$B(m) = 11.5$$

$$L(m) = 25$$

CARGAS

CARGA EN BASE DE PILARES Y MUROS (T) = 4,068.89

PP DE LA LOSA DE FUNDACIÓN (T)= 621.00

CARGAS SOBRE LA LOSA= 179.81

CARGA AXIAL P (T)= 4,869.70

MOMENTO EN X (Mx T*M)= 38,224.50

MOMENTO EN Y (My T*M)= 24,190.60

$$eB(m) = 4.97$$

$$eY(m) = 7.85$$

Condicion en B=
$$0.43$$
 > $1/6$

Condicion en
$$Y = 0.31$$
 > 1/6

Caso I

$$x' = \frac{1}{2} * x = x$$

Donde:

$$a = a \left(1.5 - \frac{3}{4}\right)$$

$$a = a \left(1.5 - \frac{3}{a}\right)$$

$$B_1(m) = 2.35$$

$$L_1(m) = 13.95$$

$$A'=16.37$$

$$=\frac{!}{!}$$

Donde L' es el mayor valor de B_1 y L_1

$$L'(m) = 13.95$$

$$B'(m)=1.17$$

CALCULOS Y RESULTADOS

CALCULOS Y RESULTADOS

Cálculo de Carga Última

Ecuación General de Meyerhof:

* qu = c.Nc.Fcs.Fcd.Fci + q.Nq.Fqs.Fqd.Fqi + (1/2).Y.B.NY.FYs.FYd.FYi qu = 5,709.381 KN/m2

Carga Admisible

* q(adm) = qu / FS q(adm) = 1,427.345 KN/m2

Carga Total Bruta Admisible

q(adm) = 1,427.345 KN/m2 Área de Sección = 16.322 m2

* Q(Amd) = q(adm) . Area Q(Amd) = 23,296.414 KN

 $q_{adm} = (Kg/cm^2) = 14.55$

Factor de seguridad

El cálculo de la *capacidad de carga permisible* bruta de cimentaciones superficiales requiere aplicar un factor de seguridad (FS) a la capacidad de carga última bruta, o

$$q_{\text{perm}} = \frac{q_u}{\text{FS}}$$

Sin embargo, algunos ingenieros prefieren emplear un factor de seguridad tal que

 $Incremento neto del esfuerzo en el suelo = \frac{capacidad de carga última neta}{FS}$

La capacidad de carga última neta se define como la presión última por área unitaria de la cimentación que puede soportar el suelo en exceso de la presión causada por el suelo circundante al nivel de la cimentación. Si la diferencia entre el peso específico del concreto utilizado en la cimentación y el peso específico del suelo circundante se supone que es insignificante, entonces

$$q_{\text{neta}(u)} = q_u - q$$

donde

 $q_{\mathrm{neta}(u)} = \mathrm{capacidad}$ de carga última neta $q = \gamma D_f$

Por lo tanto,

$$q_{\text{perm(neta)}} = \frac{q_u - q}{\text{FS}}$$

Modificación de las ecuaciones de capacidad de carga por nivel freático

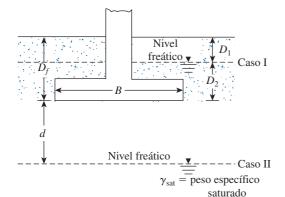
Caso I. Si el nivel freático se ubica tal que $0 \le D_1 \le D_f$, el factor q en las ecuaciones de capacidad de carga toma la forma

$$q = \text{sobrecarga efectiva} = D_1 \gamma + D_2 (\gamma_{\text{sat}} - \gamma_w)$$

donde

 $\gamma_{\rm sat}$ = peso específico saturado del suelo

 γ_w = peso específico del agua


Además, el valor de γ en el último término de las ecuaciones se tiene que reemplazar por $\gamma' = \gamma_{\rm sat} - \gamma_w$.

Caso II. Para un nivel freático ubicado tal que $0 \le d \le B$,

$$q = \gamma D_f$$

En este caso, el factor γ en el último término de las ecuaciones de capacidad de carga se debe reemplazar por el factor

$$\overline{\gamma} = \gamma' + \frac{d}{B} (\gamma - \gamma')$$

Modificación de las ecuaciones de capacidad de carga por nivel freático.

Las modificaciones anteriores se basan en la suposición de que no existe una fuerza de filtración en el suelo.

Caso III. Cuando el nivel freático se ubica tal que $d \ge B$, el agua no tendrá efecto sobre la capacidad de carga última.

Ecuación general de la capacidad de carga (Teoría de Meyerhof)

$$q_u = c' N_c F_{cs} F_{cd} F_{ci} + q N_q F_{qs} F_{qd} F_{qi} + \frac{1}{2} \gamma B N_{\gamma} F_{\gamma s} F_{\gamma d} F_{\gamma i}$$

En esta ecuación:

c' = cohesión

q =esfuerzo efectivo al nivel del fondo de la cimentación

 γ = peso específico del suelo

B = ancho de la cimentación (= diámetro para una cimentación circular)

 F_{cs} , F_{qs} , $F_{\gamma s}$ = factores de forma F_{cd} , F_{qd} , $F_{\gamma d}$ = factores de profundidad F_{ci} , F_{qi} , $F_{\gamma i}$ = factores de inclinación de la carga

 N_c , N_a , N_{γ} = factores de capacidad de carga

Factores de capacidad de carga

$$N_q = \tan^2\left(45 + \frac{\phi'}{2}\right)e^{\pi \tan \phi'}$$

$$N_c = (N_q - 1)\cot\phi'$$

$$N_{\gamma} = 2(N_q + 1) \tan \phi'$$

Factores de capacidad de carga para la teoría de Meyerhof.

ϕ'	N_c	N_q	N_{γ}	$oldsymbol{\phi}'$	N_c	N_q	N_{γ}
0	5.14	1.00	0.00	26	22.25	11.85	12.54
1	5.38	1.09	0.07	27	23.94	13.20	14.47
2	5.63	1.20	0.15	28	25.80	14.72	16.72
3	5.90	1.31	0.24	29	27.86	16.44	19.34
4	6.19	1.43	0.34	30	30.14	18.40	22.40
5	6.49	1.57	0.45	31	32.67	20.63	25.99
6	6.81	1.72	0.57	32	35.49	23.18	30.22
7	7.16	1.88	0.71	33	38.64	26.09	35.19
8	7.53	2.06	0.86	34	42.16	29.44	41.06
9	7.92	2.25	1.03	35	46.12	33.30	48.03
10	8.35	2.47	1.22	36	50.59	37.75	56.31
11	8.80	2.71	1.44	37	55.63	42.92	66.19
12	9.28	2.97	1.69	38	61.35	48.93	78.03
13	9.81	3.26	1.97	39	67.87	55.96	92.25
14	10.37	3.59	2.29	40	75.31	64.20	109.41
15	10.98	3.94	2.65	41	83.86	73.90	130.22
16	11.63	4.34	3.06	42	93.71	85.38	155.55
17	12.34	4.77	3.53	43	105.11	99.02	186.54
18	13.10	5.26	4.07	44	118.37	115.31	224.64
19	13.93	5.80	4.68	45	133.88	134.88	271.76
20	14.83	6.40	5.39	46	152.10	158.51	330.35
21	15.82	7.07	6.20	47	173.64	187.21	403.67
22	16.88	7.82	7.13	48	199.26	222.31	496.01
23	18.05	8.66	8.20	49	229.93	265.51	613.16
24	19.32	9.60	9.44	50	266.89	319.07	762.89
25	20.72	10.66	10.88				

Factores de forma, profundidad e inclinación

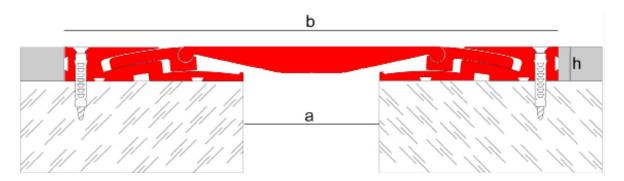
Los factores de forma, profundidad e inclinación de uso común se dan en la tabla

Factores de forma, profundidad e inclinación [DeBeer (1970); Hansen (1970); Meyerhof (1963); Meyerhof y Hanna (1981)].

Factor	Relación	Referencia
Forma	$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	DeBeer (1970)
	$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \phi'$	
	$F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$	
Profundidad	si; $\frac{D_f}{B} \le 1$	Hansen (1970)
	Para $\phi = 0$: $F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right)$	
	$egin{aligned} F_{qd} &= 1 \ F_{\gamma d} &= 1 \end{aligned}$	
	Para $\phi'>0$: $F_{cd}=F_{qd}-\frac{1-F_{qd}}{N_c\tan\phi'}$	
		\
	$F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \left(\frac{D_f}{B}\right)^2$	
	$F_{\gamma d} = 1$ si; $\frac{D_f}{R} > 1$	
	Para $\phi = 0$:	
	$F_{cd} = 1 + 0.4 \tan^{-1} \left(\frac{D_f}{B} \right)$	
	$F_{qd}=1$ $F_{\gamma d}=1$	
	Para $\phi' > 0$: $F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N \tan \phi'}$	
	$F_{qd} = 1 + 2 \tan \phi' (1 - \operatorname{sen} \phi')^2 \tan^{-1} \phi'$	$1\left(\frac{D_f}{B}\right)$
	$F_{} = 1$	dianes
Inclinación	$F_{ci} = F_{qi} = \left(1 - \frac{\beta^{\circ}}{90^{\circ}}\right)^2$	Meyerhof (1963); Hanna y Meyerhof (1981)
	$F_{\gamma i} = \left(1 - \frac{\beta}{\phi'}\right)$, , ,
	β = inclinación de la carga sobre la cimentación respecto a la vertical	

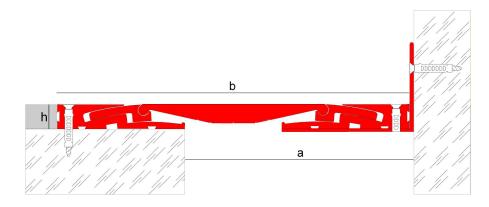
A-7. DETALLE JUNTA SÍSMICA

Novojunta® Pro Metal SIS


Suelo/suelo. Cargas muy pesadas.

Novojunta® Pro MetalSIS es un sistema de perfiles preformado fabricado íntegramente en aluminio. Su diseño, con piezas deslizantes, le capacita para absorber grandes movimientos multidireccionales, lo que lo convierte en una opción idónea para zonas de riesgo sísmico. Su amplia cara vista estriada antideslizante queda enrasada con el pavimento sin presentar resaltos. Se coloca de forma simultánea al pavimento y soporta cargas muy pesadas.

Características generales


Material:	Aluminio	
Longitud:	3 m.l.	
Acabados:	Natural	

Referencia	Ancho de junta (a):	Cara vista (b):	Altura (h):	Movimiento admitido	Movimiento total
NJPMS50NA	50 mm	255 mm			
NJPMS100NA	100 mm	305 mm	20 mm	Horiz.: +/-30 mm.	Horiz.: 60 mm.
NJPMS150NA	150 mm	360 mm	20111111	Vert.: +/- 25 mm.	Vert.: 50 mm.
NJPMS200NA	200 mm	410 mm	-		

Pieza perimetral

Novojunta® Pro MetalSIS dispone de una pieza especial para su colocación como junta perimetral anclada al paramento.

EL TOQUE FINAL

Características Técnicas

Aleación	6060 (UNE 38350:2001)
Resistencia al fuego	M0 (UNE 23-727-90)
Resistencia a la abrasión	Muy buena
Solidez a la luz	Excelente

Aplicaciones

Los edificios y elementos constructivos están sometidos a deformaciones y variaciones geométricas. La disposición de juntas de dilatación contribuye a disminuir los efectos que estas variaciones tienen sobre el conjunto del edificio, previniendo la aparición de patologías.

El **CTE (Código Técnico de la Edificación)** en su DB-SAE (Acciones en la edificación), establece que en edificios de hormigón o acero, se dispondrán las juntas de dilatación de forma que no existan elementos continuos de más de 40 m. de longitud.

Novojunta® Pro Metal SIS es una solución para juntas estructurales formada por un conjunto de piezas de aluminio deslizantes. Este perfil absorbe las tensiones y deformaciones producidas en los elementos constructivos, previniendo la aparición de grietas u otras patologías. Idóneo para su colocación en suelos.

Novojunta® Pro Metal SIS posee una amplia cara vista estriada que le confiere **propiedades antideslizantes**. Su diseño evita los resaltos, manteniendo una cara vista totalmente enrasada. Su excelente capacidad de carga hace que sea adecuada para tráfico de cargas pesadas, cumpliendo con los requerimientos más exigentes.

Materiales

Aluminio

Novojunta® Pro Metal SIS es un perfil fabricado íntegramente en extrusión de aluminio. El aluminio es un material de excelentes propiedades químicas y fisicomecánicas. Es ligero, tenaz, dúctil, maleable y altamente durable. Su resistencia a la corrosión y al fuego es muy buena.

El aluminio es un material muy valorado y utilizado en varios sectores, especialmente en la construcción. Sus procesos de transformación son múltiples, por lo que se pueden obtener geometrías muy diferentes con altas prestaciones. Es un material reciclable.

Soporte de cargas

Novojunta® Pro Metal SIS soporta cargas muy pesadas, comprendiendo tráfico peatonal y vehicular. Soporta tráfico sobre neumáticos de 60kN con presión de contacto 1N/mm2, ruedas macizas de 30 kN con presión de contacto 3 N/mm2 o rueda Vulkollan de 30 kN con presión de contacto 6,020 N/mm2.

Instalación

El modelo Novojunta® Pro Metal SIS se sirve **premontado** y con tirantes que marcan la posición óptima de instalación y que se retiran una vez fijada la junta. Este perfil se instala al mismo tiempo que la ejecución del pavimento.

Asegúrese de que las superficies donde va a colocar la Novojunta® Pro Metal SIS están libres de polvo y grasa. Coloque el perfil sobre la junta, **sin retirar los tirantes suministrados**. Marque los agujeros para la tornillería de fijación y posteriormente haga los agujeros. Vuelva a colocar el perfil y fíjelo usando la tornillería de fijación (suministrada) en los agujeros avellanados que trae la junta. Asegúrese que la tornillería queda perfectamente enrasada con la superficie. Retire los tirantes metálicos.

Este modelo es muy sencillo de instalar. Puede instalar Novojunta® Pro Metal SIS en juntas de ancho igual o menor al indicado en el modelo. Nunca instale este perfil en una junta de ancho mayor.

Limpieza y mantenimiento

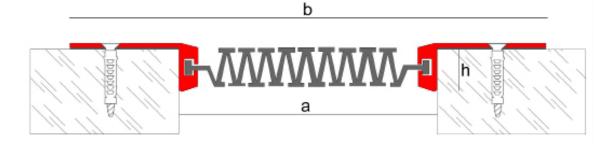
La limpieza debe realizarse periódicamente con una fregona suave y un líquido limpiador neutro, aclarando bien con agua fría y secando bien para retirar el exceso de humedad. La suciedad persistente puede eliminarse con agentes de limpieza aptos ligeramente abrasivos.

No se recomienda el uso de lana de acero, productos abrasivos o decapantes así como ácidos fuertes (clorhídrico y perclórico), bases fuertes (sosa cáustica o amoniaco) o soluciones carbonatadas. El ácido cítrico tampoco debe usarse, pues disuelve la capa de óxido protectora de la superficie del aluminio. Las ceras, vaselina, lanolina o similar no son adecuadas. Se deben evitar los disolventes con haloalcanos (hidrofluoroéteres o disolventes clorados) y los acelerantes del fraguado que contengan cloruros (use acelerantes sin cloruros).

Información técnica

Puede ampliar información sobre las características técnicas de los productos de Emac® descargando su ficha técnica en www.emac.es.

Para cualquier otra consulta adicional no dude en contactar con nuestro Departamento Técnico en tecnico@emac.es


Novojunta® Pro PA SP

います。

Novojunta® Pro PA SP es un sistema para colocación en juntas verticales tanto en exterior (fachadas) como en interior. Este modelo consiste en dos alas de aluminio perforadas para su fijación al soporte y un inserto de caucho elastómero de alta calidad con gran capacidad de absorción de movimientos multidireccionales. Esta particularidad convierte al perfil en idóneo para su colocación en zonas con riesgo sísmico.

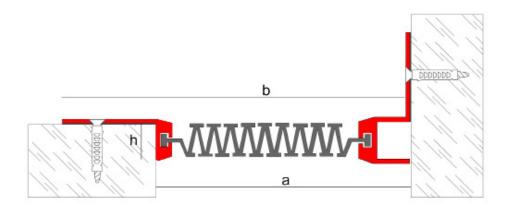
Características generales

Material:	Aluminio natural + caucho elastómero
Longitud:	3 m.l.
Acabados:	
	Negro 9005

REFERENCIA	ANCHO JUNTA (a)	MOVIMIENTO ADMITIDO	MOVIMIENTO TOTAL ADMITIDO
NJPPASP2050	20 a 50 mm	+/-20 mm	40 mm
NJPPASP50120	50 a 120 mm	+/-35 mm	70 mm
NJPPASP110180	110 a 180 mm	+/-50 mm	100 mm
NJPPASP120250	120 a 260 mm	+/-70 mm	140 mm
NJPPASP180410	260 a 390 mm	+/-90 mm	180 mm

Aplicaciones

Los edificios y elementos constructivos están sometidos a deformaciones y variaciones geométricas. La disposición de juntas de dilatación contribuye a disminuir los efectos que estas variaciones tienen sobre el conjunto del edificio, previniendo la aparición de patologías.


El **CTE (Código Técnico de la Edificación)** en su DB-SAE (Acciones en la edificación), establece que en edificios de hormigón o acero, se dispondrán las juntas de dilatación de forma que no existan elementos continuos de más de 40 m. de longitud.

Novojunta® Pro PA SP es una solución especialmente diseñada para su colocación en juntas estructurales **verticales** de gran tamaño y que requieran gran admisión de movimiento, como ocurre en **zonas de riesgo sísmico**. Este perfil absorbe las tensiones y deformaciones producidas en los elementos constructivos, previniendo la aparición de grietas u otras patologías.

Características Técnicas

Aluminio	
Aleación	6060 (UNE 38350:2001)
Resistencia al fuego	M0 (UNE 23-727-90)
Resistencia a la abrasión	Muy buena
Solidez a la luz	Excelente
Banda elástica	
Alargamiento a rotura	400% (ISO 527)
Resistencia a rotura	16 MPa (ISO 527)
Deformación permanente en compresión	70°C / 25% - 24 h:52% (ISO 815A)
Rigidez en torsión	T 300 Mpa -55% (ISO 458/2)

Otras configuraciones

Novojunta® Pro PA SP dispone de ala de fijación superpuesta para colocación en juntas perimetrales, con lo que existe la solución completa para cualquier instalación.

Materiales

Aluminio

Los perfiles laterales de **Novojunta® Pro PA SP** son fabricados íntegramente en extrusión de aluminio. El aluminio es un material de excelentes propiedades químicas y fisicomecánicas. Es ligero, tenaz, dúctil, maleable y altamente durable. Su resistencia a la corrosión y al fuego es muy buena.

El aluminio es un material muy valorado y utilizado en varios sectores, especialmente en la construcción. Sus procesos de transformación son múltiples, por lo que se pueden obtener geometrías muy diferentes con altas prestaciones. Es un material reciclable.

Banda elástica

El cuerpo central de **Novojunta® Pro PA SP** está fabricado en caucho elastómero de altas prestaciones con capacidad de absorción de movimientos multidireccionales. Cuenta con excelentes propiedades mecánicas, gran elasticidad, es resistente a intemperie y rayos UV, humedad, desgaste por abrasión y a temperaturas extremas (-30°C / +120°C).

Su excelente recuperación tras la compresión es clave en su función como junta de dilatación, permitiendo el movimiento derivado de las tensiones y deformaciones de los elementos constructivos.

E AC®

Instalación

El modelo Novojunta® Pro PA SP se sirve desmontado y mecanizado para su fijación al soporte.

Este modelo de junta presenta una funcionalidad añadida, pues incorpora unas bandas de EPDM flexible en la parte inferior de los perfiles que ayuda a absorber posibles desniveles en los paramentos o fachadas donde se instale.

Para instalar la junta siga estos sencillos pasos:

- 1. Asegúrese de que las superficies donde va a colocar la Novojunta® Pro PA SP están libres de polvo y grasa.
- 2. Marque y haga los agujeros que alojarán los tacos de fijación.
- 3. Premonte el conjunto introduciendo la goma en los perfiles laterales.
- 4. Coloque el perfil, ajústelo al ancho de la junta y fíjelo al soporte. Asegúrese de que los tacos quedan perfectamente enrasados con la superficie.

Limpieza y mantenimiento

En su colocación en exterior, principalmente en fachadas, y debido a su menor accesibilidad, las precipitaciones ejercerán la función de limpiador.

La colocación de este perfil es exclusivamente vertical, con lo que no es esperable que presente suciedad persistente. Para su limpieza use siempre un paño con agua y un producto limpiador neutro que no dañe el metal o el caucho interior.

No se recomienda el uso de lana de acero, productos abrasivos o decapantes así como ácidos fuertes (clorhídrico y perclórico),bases fuertes (sosa cáustica o amoniaco) o soluciones carbonatadas. El ácido cítrico tampoco debe usarse, pues disuelve la capa de óxido protectora de la superficie del aluminio. Las ceras, vaselina, lanolina o similar no son adecuadas. Se deben evitar los disolventes con haloalcanos (hidrofluoroéteres o disolventes clorados) y los acelerantes del fraguado que contengan cloruros (use acelerantes sin cloruros).

Información técnica

Puede ampliar información sobre las características técnicas de los productos de Emac® descargando su ficha técnica en **www.emac.es.**

Para cualquier otra consulta adicional no dude en contactar con nuestro Departamento Técnico en **tecnico@emac.es**

303.001 24/01/2018