UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE TOPOGRAFIA Y VIAS DE LA COMUNICACIÓN

"ANALISIS DEL EFECTO DE LAS FIBRAS DE POLIETILENO DE TEREFTALATO (PET) EN LA RESISTENCIA A LA FLEXO-TRACCIÓN DE PAVIMENTOS RIGIDOS PARA VEHICULOS LIVIANOS"

POR:

ORTEGA IQUIZA JUAN PABLO

SEMESTRE I - 2022

TARIJA – BOLIVIA

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGERNIERIA CIVIL DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

ANALISIS DEL EFECTO DE LAS FIBRAS DE POLIETILENO DE TEREFTALATO (PET) EN LA RESISTENCIA A FLEXO-TRACCIÓN DE PAVIMENTOS RIGIDOS PARA VEHICULOS LIVIANOS

Por:

ORTEGA IQUIZA JUAN PABLO

Proyecto elaborado en la asignatura de CIV 502, presentado a consideración de la UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Civil.

SEMESTRE I - 2022 TARIJA-BOLIVIA

DEDICATORIAS

A mis padres Víctor Hugo Ortega Molina y Eugenia Carmen Iquiza Ramírez por haberme apoyado incondicionalmente en toda mi formación académica, a mi segunda mama Angelica Ramírez, que sin su apoyo esto no sería posible. A mi abuelo Juan Iquiza (+) que desde el cielo sé que me da fuerzas para salir adelante.

CONTENIDO

CAPITULO I INTRODUCCIÓN

Pág	gina
1.1.Antecedentes	1
1.2.Situación problémica.	1
1.2.1.Problema.	2
1.2.2.Relevancia y factibilidad del problema.	2
1.2.3.Delimitación temporal y espacial del problema.	3
1.3.Justificación.	4
1.4.Objetivos.	5
1.4.1.Objetivo general.	5
1.4.2.Objetivos específicos.	5
1.5.Hipótesis.	5
1.6.Operacionalización de las variables.	6
1.6.1.Variable independiente.	7
1.6.2.Variable dependiente.	7
1.7.Identificación del tipo de investigación	7
1.8.Unidades de estudio y decisión muestral.	8
1.8.1.Unidad de estudio.	8
1.8.2.Población.	8
1.8.3.Muestra.	9
1.8.4.Selección de las técnicas de muestreo.	9
1.9.Métodos y técnicas empleadas.	. 11
1.9.1.Métodos.	. 11

	Página
1.9.2.Técnicas.	12
1.10.Procesamiento de la información.	12
1.11.Alcance de la investigación.	13
CAPITULO II	
ASPECTOS GENERALES DE LOS PAVIMENTOS RÍGID	OS
	Página
2.1.Fundamento teórico.	15
2.2. Pavimento.	15
2.1.2. Clasificación del pavimento.	16
2.3. Pavimentos rígidos.	16
2.3.1. Clasificación de los pavimentos de concreto.	17
2.3.2. Capas del pavimento rígido.	19
2.3.3. Cargas en el pavimento rígido.	21
2.3.4. Esfuerzos en el pavimento rígido.	21
2.3.5. Propiedades estructurales.	25
2.4. El hormigón.	27
2.4.1. Cemento	28
2.4.2. Agregados.	33
2.4.3. Agua	36
2.5. Fibras.	37
2.6. Polietileno de tereftalato (PET).	38
2.6.1. Proceso de elaboración de fibra de polietileno de tereftalato (PET)	42

CAPITULO III

APLICACIÓN PRÁCTICA

P	ágina
3.1. Ubicación geográfica.	46
3.1.1. Ubicación en el contexto nacional	46
3.1.2. Ubicación en el contexto departamental	46
3.1.3. Ubicación en el contexto regional.	47
3.1.4. Ubicación del banco de materiales.	47
3.2. Materiales usados.	48
3.2.1. Muestreo de agregados.	48
3.2.2. Fibras de polietileno de tereftalato (PET).	50
3.2.3. Lavado de material.	51
3.3. Ensayos de Laboratorio.	52
3.3.1. Ensayo de granulometría.	52
3.3.2. Ensayo desgaste máquina de los ángeles.	56
3.3.3. Ensayo peso específico en el agregado grueso	58
3.3.4. Ensayo peso específico en el agregado fino.	59
3.3.5. Ensayo peso unitario agregado grueso.	61
3.3.6. Ensayo peso unitario agregado fino.	63
3.3.7. Ensayo contenido de humedad agregado grueso y fino.	65
3.3.8. Ensayo finura del cemento.	67
3.3.9. Ensayo peso específico del cemento.	68
3.4. Dosificación de mezcla de hormigón.	70
3.4.1. Dosificación de hormigones para pavimentos rígidos con cemento ip-30	70
3.3.11. Dosificación de hormigones para pavimento rígido con cemento ip-40	70

Página
3.5. Ensayos para determinar la resistencia a flexo-tracción
3.5.1. Ensayos del asentamiento del cono de abrams
3.5.2. Ensayos de resistencia a flexión de probetas prismáticas
3.5.2. Ensayos de resistencia a compresión de probetas cilíndricas
CAPITULO IV
ANÁLISIS DE RESULTADOS
Página
4.1. Análisis de los resultados de asentamiento
4.2. Análisis estadístico de la resistencia a la flexo-tracción
4.3. Análisis general de resultados. 95
4.4 Análisis individual de resultados
4.5. Porcentaje óptimo de fibras de polietileno de tereftalato (PET)
4.6. Análisis del efecto de la fibra de PET en la resistencia a flexo tracción
4.7. Análisis de costos. 103
4.8. Prueba de hipótesis. 106
CAPITULO V
CONCLUSIONES Y RECOMENDACIONES
Página
5.1. Conclusiones. 109
5.2. Recomendaciones. 110
Bibliografía

Anexos

ÍNDICE DE ILUSTRACIONES

Págir	na
Ilustración Nº 1 Diferencias entre pavimento rígido y flexible	17
Ilustración Nº 2 Esquema de pavimento de concreto simple con juntas	18
Ilustración Nº 3 Capas de un pavimento rígido	19
Ilustración Nº 4 Capas del pavimento rígido y espesores comúnmente usados	20
Ilustración Nº 5 Alabeo de la losa de pavimento rígido	22
Ilustración Nº 6 Alabeo causado por cambios de humedad	22
Ilustración Nº 7 Puntos críticos de localización de las cargas	23
Ilustración Nº 8 Esquema de ensayo ASTM C-78	26
Ilustración Nº 9 Relación de volumen típica de los materiales del hormigón	28
Ilustración Nº 10 Bolsa de cemento fancesa Ip-30 líder	31
Ilustración Nº 11 Bolsa de cemento fancesa Ip-40 Superior	32
Ilustración Nº 12 Puntos de reciclaje de envases PET de fábricas de cementos	41
Ilustración Nº 13 Almacenamiento de botellas PET.	42
Ilustración Nº 14 Proceso de lavado y secado de las botellas PET.	43
Ilustración Nº 15 Proceso de fileteado y obtención de hilo de PET	43
Ilustración Nº 16 Proceso de templado y obtención de fibras de PET.	44
Ilustración Nº 17 Forma de fibras	45
Ilustración Nº 18 Mapa político del Estado Plurinacional de Bolivia	46
Ilustración Nº 19 Mapa político del departamento de Tarija	47
Ilustración Nº 20 Mapa de la provincia Cercado	47
Ilustración Nº 21 Carretera hacia banco de materiales Charajas.	48
Ilustración Nº 22 Planta de acopio de materiales Charajas	48
Ilustración Nº 23 Extracción de agregado fino	49
Ilustración Nº 24 Extracción de agregado grueso.	49
Ilustración Nº 25 Ficha técnica de fibras de polietileno de tereftalato (PET)	50
Ilustración Nº 26 Proceso de lavado del material	51
Ilustración Nº 27 Proceso de secado del material	51
Ilustración Nº 28 Cuarteo y pesado de la grava	53

Ilustración Nº 29 Proceso de tamizado de la grava	53
Ilustración Nº 30 Pesado de material fino.	55
Ilustración Nº 31 Proceso de tamizado de material fino	55
Ilustración Nº 32 Ensayo de desgaste mediante la máquina de los ángeles	57
Ilustración Nº 33 Lavado del material para obtener resultados finales.	57
Ilustración Nº 34 Preparación del agregado grueso para ensayo de peso específico	58
Ilustración Nº 35 Proceso de obtención del peso específico	59
Ilustración Nº 36 Preparación del agregado fino para ensayo de peso específico	60
Ilustración Nº 37 Colocado de muestras en el horno para su posterior pesaje	60
Ilustración Nº 38 Proceso de pesaje del molde para el ensayo de peso unitario	62
Ilustración N° 39 Proceso de apisonado para obtención de peso unitario compactado .	62
Ilustración Nº 40 Proceso de obtención del peso unitario suelto	64
Ilustración N^o 41 Apisonado y pesaje de muestra para peso unitario compactado	64
Ilustración $N^{\rm o}$ 42 Muestra de agregado grueso para ensayo de contenido de humedad	65
Ilustración N° 43 Muestras de agregado fino para ensayo de contenido de humedad	66
Ilustración Nº 44 Muestras luego de un día de secado en el horno	66
Ilustración Nº 45 Proceso de tamizado y pesaje del cemento	67
Ilustración Nº 46 Peso retenido y que pasa el tamiz Nº200	68
Ilustración Nº 47 Medición de la temperatura de la gasolina.	69
Ilustración N^o 48 Pesado y proceso de obtención del peso específico del cemento	69
Ilustración Nº 49 Realización del ensayo del cono de Abrams	73
Ilustración Nº 50 Medición del asentamiento	73
Ilustración Nº 51 Medición del asentamiento a hormigón fibroso	76
Ilustración Nº 52 Apisonado para ensayo de cono de abrams	77
Ilustración Nº 53 Medición de asentamiento en hormigón fibroso al 1.4%	77
Ilustración Nº 54. Vigas prismáticas con hormigón convencional	81
Ilustración Nº 55 Rotura de viga prismática con hormigón convencional	81
Ilustración Nº 56 Pesado y rotura de vigas con fibras al 0.6%	83
Ilustración Nº 57 Comportamiento de la fibra en la resistencia a flexión	83
Ilustración Nº 58 Pesado y posicionamiento de la viga a ser ensayada	85

	Página
Ilustración Nº 59 Rotura de viga con fibra al 1 %	85
Ilustración № 60 Pesado y acomodado de viga para ensayo a flexión	87
Ilustración Nº 61 Rotura de viga prismática con fibra al 1.4%	87
Ilustración Nº 62 Rotura de vigas con hormigón de alta resistencia	88
Ilustración Nº 63 Rotura de cilindros con hormigón convencional	89
Ilustración Nº 64 Rotura de muestras cilíndricas con hormigón de alta resistencia	90

INDICE DE TABLAS

P	ágina
Tabla 1. Conceptualización y operacionalización de la variable independiente	6
Tabla 2. Conceptualización y operacionalización de la variable dependiente	6
Tabla 3. Unidad de estudio, muestra y población.	8
Tabla 4. Población y muestra estratificada.	8
Tabla 5. Tamaño de muestra	9
Tabla 6. Población y muestra estratificada	10
Tabla 7. Muestra estratificada	11
Tabla 8. Variables consideradas en los análisis de diseño del pavimento	24
Tabla 9. Resistencias a flexión del hormigón	26
Tabla 10 Granulometrías de agregado grueso para pavimentos hormigón	34
Tabla 11 Granulometría de agregado fino para pavimentos de hormigón.	36
Tabla 12 Límites permisibles máximo del agua.	37
Tabla 13. Sistema de identificación de envases PET.	39
Tabla 14. Análisis granulométrico de la grava	52
Tabla 15. Análisis granulométrico de la arena	54
Tabla 16. Grados de ensaye (definidos por sus rangos de tamaño, en mm)	56
Tabla 17. Resultados del ensayo (ASTM C 131)	56
Tabla 18. Resultados finales del ensayo (ASTM C 131)	56
Tabla 19. Peso de muestras para determinación de peso específico	58
Tabla 20. Resultados de ensayo de peso específico	58
Tabla 21. Peso de muestras para determinación de peso específico	59
Tabla 22. Resultados de peso específico para el agregado fino	59
Tabla 23. Proceso de cálculo de peso unitario suelto	61
Tabla 24. Proceso de cálculo de peso unitario compactado	61
Tabla 25. Proceso de cálculo para peso unitario suelto agregado fino	63
Tabla 26. Cálculo y resultados de peso unitario compactado del agregado fino	63
Tabla 27. Proceso de cálculo del contenido de humedad del agregado grueso	65
Tabla 28. Proceso de cálculo del contenido de humedad del agregado fino.	65
Tabla 29 Proceso de cálculo para obtención de la finura del cemento	67

Tabla 30. Proceso de cálculo y resultados de ensayo de peso específico del cemento 6	8
Tabla 31. Proporciones en peso de materiales para moldes cilíndricos y prismáticos	0
Tabla 32. Proporciones en peso de materiales para moldes prismáticos y cilíndricos 7	¹ 1
Tabla 33. Resultados del ensayo del cono de abrams 7	2
Tabla 34. Resultados de asentamiento para hormigón con 0.6% de fibra	4
Tabla 35. Resultados del asentamiento para hormigón 1% de fibra 7	15
Tabla 36. Resultados del asentamiento para hormigón 1.4% de fibra 7	16
Tabla 37 Asentamiento de hormigón de alta resistencia para cilindros. 7	8
Tabla 38. Asentamiento de hormigón de alta resistencia para vigas	8
Tabla 39. Resultados de resistencia a flexión en vigas con hormigón convencional 7	19
Tabla 40. Resultados de ensayo a flexión en vigas con hormigón fibroso al 0.6% 8	32
Tabla 41 Resistencia a flexión en vigas con hormigón fibroso al 1%	34
Tabla 42 Resistencia a flexión en vigas con hormigón fibroso al 1.4%	36
Tabla 43. Resistencia a flexión de vigas con hormigón de alta resistencia 8	8
Tabla 44. Resistencia a compresión a cilindros con hormigón convencional 8	39
Tabla 45. Resistencia a compresión a cilindros con hormigón de alta resistencia 9	0
Tabla 46. Resultado de asentamientos promedio 9	1
Tabla 47. Diseño estándar con hormigón convencional 9	13
Tabla 48. Diseño estándar con hormigón reforzado con 0.6 % de fibra. 9	13
Tabla 49. Diseño estándar con hormigón reforzado con 1 % de fibra. 9	13
Tabla 50. Diseño estándar con hormigón reforzado con 1.4 % de fibra	14
Tabla 51. Diseño estándar con hormigón de alta resistencia (IP-40). 9	14
Tabla 52. Resistencias promedio de vigas reforzadas con fibra. 9	19
Tabla 53. Porcentaje óptimo de fibra	19
Tabla 54. Proporciones de materiales óptimos. 10	0(
Tabla 55 . Cantidad de materiales para 1 m ³ de hormigón	0(
Tabla 56. Cantidad de fibra de polietileno de tereftalato (PET) para 1m ³ 10	0(
Tabla 57. Presupuesto general 10)5