UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE ESTRUCTURAS Y CIENCIAS DE LOS MATERIALES

TOMO - I

"DISEÑO DEL CENTRO DE SALUD ITIKA GUAZU -TENTAGUAZU" (COMUNIDAD DE TENTAGUAZU DEL MUNICIPIO DE ENTRE RIOS DEL DEPARTAMENTO DE TARIJA)

Por:

MAURICIO TEJERINA VACA

Proyecto de Grado presentado a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Civil.

Semestre II – 2018

TARIJA - BOLIVIA

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE ESTRUCTURAS Y CIENCIAS DE LOS MATERIALES

TOMO - I

"DISEÑO DEL CENTRO DE SALUD ITIKA GUAZU -TENTAGUAZU" (COMUNIDAD DE TENTAGUAZU DEL MUNICIPIO DE ENTRE RIOS DEL DEPARTAMENTO DE TARIJA)

Por:

MAURICIO TEJERINA VACA

Semestre II – 2018

TARIJA - BOLIVIA

M.Sc.Ing. Ernesto Álvarez Gozalvez DECANO FACULTAD CIENCIAS Y TECNOLOGIA	M.S,c.Lic. Elizabeth Castro Figueroa VICEDECANA FACULTAD CIENCIAS Y TECNOLOGIA
TRIBUNAL:	
PhD. Ing. Alber	to Benítez Reynoso
M.S.c.Ing. Paú	il Carrasco Arnold
M.Sc.Ing Armand	lo Almendras Saravia

El docente y tribunal evaluador del Proyecto de Ingeniería Civil, no se solidarizan con los términos, la forma, los modos y las expresiones vertidas en la elaboración del presente trabajo, siendo los mismos únicamente responsabilidad del autor.

DEDICATORIA

El presente trabajo va dedicado a mis adres Ingrid y Jorge con todo mi amor, quienes me brindaron apoyo, consejos y ayuda para poder cumplir mis metas.

AGRADECIMIENTOS

A mis padres, familia y amigos por brindarme palabras de apoyo ayuda y consejos para poder llevar acabo este proyecto.

A docentes que me brindaron apoyo y sus conocimientos.

ÍNDICE

1.	ASPECTOS GENERALES DEL PROYECTO	1
1.1.	Antecedentes	1
1.2.	Planteamiento del problema	2
1.3.	Formulación	3
1.4.	Sistematización	3
1.5.	Objetivos	3
1.5.1.	General	3
1.5.2.	Específicos	3
1.6.	Justificación	4
1.6.1.	Académica	4
1.6.2.	Técnica	4
1.6.3.	Social	4
1.6.3.1	. Población afectada	5
1.7.	Marco de referencia	6
1.7.1.	Conceptual	6
1.7.2.	Espacial	8

1.7.3.	Temporal	10
1.8.	Alcance del proyecto:	10
1.9.	Aporte Académico	10
1.10.	Generalidades del diseño arquitectónico	10
2. MA	RCO TEÓRICO	12
2.1.	Levantamiento topográfico	12
2.1.1.	Definición	12
2.2.	Estudio de suelos	13
2.2.1.	Granulometría	14
2.2.2.	Límites de atterberg	14
2.2.3.	Sistema de clasificación de suelos	14
2.2.3.1	. Sistema AASTHO	14
2.2.3.2	2. Sistema Unificado	15
2.2.4.	Ensayo de penetración estándar (S.P.T.)	15
2.3.	Diseño arquitectónico	15
2.4.	Idealización de la estructura	16
2.4.1.	Sustentación de la cubierta	16

2.4.2.	Sustentación de la edificación.	16
2.4.3.	Fundación.	16
2.4.4.	Análisis de cargas	16
2.5.	Diseño de estructuras	20
2.5.1. \$	Sustentación de cubierta	20
2.5.1.1	. Norma de diseño	20
2.5.1.2	. Combinaciones de carga LRFD	20
2.5.1.3	. Parámetros de diseño	22
2.5.1.4	. Elementos estructurales	23
2.5.2.	Sustentación de la edificación	30
2.5.2.1	. Norma de diseño	30
2.5.2.2	. Hipótesis de carga	30
2.5.2.3	. Parámetros de diseño	31
2.5.2.3	.1. Hormigón	32
2.5.2.3	.2. Propiedades mecánicas del Hormigón	32
2.5.2.3	.2. Módulos de deformación longitudinal	33
2.5.2.3	.4. Coeficiente de Poisson	34

2.5.2.3.5. Coeficiente de dilatación térmica	35
2.5.2.3.6. Acero	35
2.5.2.3.7. Resistencia característica	36
2.5.2.3.8. Resistencia de cálculo	36
2.5.2.3.9. Módulo de deformación longitudinal	37
2.5.2.3.10. Coeficiente de dilatación térmica	37
2.5.2.3.11. Estados límites últimos	37
2.5.2.3.12. Estados límites de servicio o de utilización	38
2.5.2.4. Elementos estructurales	47
2.5.2.4.1. Vigas	47
2.5.2.4.2. Columnas	50
2.5.2.4.3. Losas alivianadas	55
2.5.3. Fundaciones	56
2.5.4. Estructuras complementarias	60
2.5.4.1. Escalera	60
2.5.4.2. Análisis de la junta de dilatación en la estructura	64
2.6. Estrategia para la ejecución del proyecto	64

2.6.1.	Especificaciones técnicas	64
2.6.2.	Precios unitarios	65
2.6.4.	Presupuesto	66
2.6.5.	Planeamiento y cronograma	67
2.6.5.1	. Técnicas para la programación del proyecto	67
3.	INGENIERÍA DEL PROYECTO	69
3.1.	Análisis de la topografía.	69
3.2.	Análisis de estudio de suelos.	70
3.3.	Análisis del diseño arquitectónico	71
3.4.	Planteamiento estructural	73
3.4.	Idealización de la estructura	74
3.4.1.	Planteo estructural de cubierta	74
3.4.2.	Estructura de la edificación	76
3.4.3.	Fundaciones	76
3.5.	Diseño de estructuras	78
3.5.1.	Estructura de sustentación de cubierta	78
3.5.1.1	. Diseño estructura de sustentación de la cubierta metálica	78

3.5.1.1.1.	Diseño de correas (en SAP esta como correa con teja y viento)	78
3.5.1.1.2.	Vigas inclinadas en cubierta (viga tipo 1)	82
3.5.1.1.3.	Diseño de la cercha	86
3.5.2. Suster	ntación de la edificación	99
3.5.2.1.	Diseño de vigas de H°A°	99
3.5.2.2.	Diseño de columnas de H°A°	108
3.5.2.3.	Diseño de la losa aligerada	114
3.5.3. Diseño	o de zapatas de H°A°	120
3.5.4. Estruc	eturas especiales	131
3.5.4.1.	Diseño de la escalera	131
3.5.4.2.	Diseño la junta de dilatación en la estructura	140
3.6. Estrato	egia para la ejecución del proyecto	141
3.6.1. Espec	ificaciones técnicas	141
3.6.2. Precio	os unitarios	142
3.6.3. Cómp	utos métricos.	143
3.6.4. Presup	puesto	143
3.6.5. Planea	amiento y cronograma	145

4. APORTE ACADÉMICO (DISEÑO DE VIGAS CURVA)	146
4.1. Generalidades	146
4.3. Diseño de viga curva	149
4.3.1Geometría de las vigas	149
4.3.2. Cálculo de la longitud de las vigas	149
4.3.3. Cálculo de armadura y verificación de las vigas	151
5. CONCLUSIONES Y RECOMENDACIONES	184
5.1. Conclusiones	184
5.2. Recomendaciones	185
BIBLIOGRAFÍA	187

ÍNDICE DE CUADROS

Cuadro 1: Población beneficiada diferenciada por sexo	5
Cuadro 2: Población beneficiada por número de familias	5
Cuadro 3: Sobre cargas de uso	17
Cuadro 4: Presión dinámica del viento	20
Cuadro 5: Combinaciones de carga	21
Cuadro 6: Factores de reducción de resistencia	21
Cuadro 7: Factores de resistencia característica	22
Cuadro 8: Resistencia a la compresión	33
Cuadro 9: Coeficientes de conversión respecto a probetas del mismo tipo a diferedades	rentes 33
Cuadro 10: Diámetro y áreas de acero	35
Cuadro 11: Características mecánicas mínimas de las barras corrugadas	36
Cuadro 12: Coeficientes de minoración de la resistencia de los materiales	38
Cuadro 13: Valores máximos de la abertura de fisuras Wmax	39
Cuadro 14: Separación entre estribos de vigas	43
Cuadro 15: Valores del coeficiente ξ	46

Cuadro 16 Valores de frecuencias criticas	47
Cuadro 17: CUANTÍAS GEOMÉTRICAS MÍNIMAS	48
Cuadro 18: Tabla universal para flexión simple o compuesta Aceros de dureza natural	a 49
Cuadro 19: Esfuerzos Normales Cercha	86
Cuadro 20: Planilla de presupuesto de la obra	144

ÍNDICE DE FIGURAS

Figura 1: Ubicación del proyecto	8
Figura 2: Lugar del proyecto	9
Figura 3: Barlovento y Sotavento	18
Figura 4: Propiedades mecánicas de los aceros	23
Figura 5: Elementos Cubierta	24
Figura 6 Diagrama de Euler	24
Figura 7: Casos de flexión simple, tracción compuesta y tracción simple	41
Figura 8: Área eficaz de hormigón que influye en el ancho de fisura	42
Figura 9: Actuación de la carga para obtener los máximos momentos positivos e cargados	n tramos 47
Figura 10: Actuación de la carga para obtener el máximo momento negativo en e "A"	el punto 48
Figura 11: Monogramas para determinar el factor K de longitud efectiva en colu pórticos	mnas de 51
Figura 12: Diagrama de iteración a dimensional	54
Figura 13: Dimensiones adoptadas	56
Figura 14: Cargas actuantes en una zapata aislada	57

Figura 15: Esquema de una escalera	61
Figura 16 Topografía	69
Figura 17 Ubicación de Pozos para el estudio de suelos	71
Figura 18 Plano arquitectónico Primera planta	72
Figura 19 Plano arquitectónico Segunda planta	73
Figura 20 Vista 3D de la estructura	74
Figura 21 Cubierta	75
Figura 22: Idealización de cercha	75
Figura 23 Estructura	76
Figura 24 Ubicación de las zapatas	77
Figura 25 Plano de corte B-B	77
Figura 26: Carga muerta correa	78
Figura 27: Carga viva Correa	78
Figura 28: Carga viento correa	79
Figura 29: Cortantes correa	80
Figura 30: Momentos correa	80
Figura 31: Propiedades perfil C 100x50x15	81

Figura 32: Flecha máxima correa	82
Figura 33: Viga tipo 1	82
Figura 34: Momentos de la viga tipo 1	83
Figura 35: Propiedades del perfil 2C 100*50*20	84
Figura 36: Flecha Viga tipo 1	85
Figura 37: Dimensiones cercha	86
Figura 38: Características de la sección 2C160*80*30	88
Figura 39 Características de la sección 2C 100*50*15	90
Figura 40 Apoyo fijo	94
Figura 41 Apoyo móvil	97
Figura 42: Dimensiones y largos de vigas y columnas analizadas	110
Figura 43: Monograma para pórticos	111
Figura 44: Datos geométricos	114
Figura 45: Cargas muertas losa	115
Figura 46 Cargas vivas losa	116
Figura 47 Zapata del pilar 41	121
Figura 48: Esfuerzos en la zapata	124

Figura 49: Sección transversal de la zapata	127
Figura 50 Geometría escalera	131
Figura 51 Metrado de cargas	132
Figura 52 Ubicación de la junta de dilatación	141
Figura 53 Geometría de las Vigas	149
Figura 54 Longitud de curva viga 1	149
Figura 55 Longitud de curva viga 2	150
Figura 56 Longitud de curva viga 3	150
Figura 57 Espesor eficaz y Area eficaz viga 1	160
Figura 58 Espesor eficaz y Area eficaz viga 2	171
Figura 59 Espesor eficaz y Area eficaz viga 3	181