UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DPTO. DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"ANÁLISIS DEL COMPORTAMIENTO DE LAS MEZCLAS ASFÁLTICAS AL APLICAR CEMENTO PORTLAND Y FIBRAS DE CÁSCARA DE COCO COMO AGENTE ESTABILIZADOR"

Por:

FREDDY CHIRINOS FLORES

Proyecto presentado a consideración de la UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO", como requisito para optar al grado académico de Licenciatura en Ingeniería Civil.

SEMESTRE II - 2018 TARIJA – BOLIVIA

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DPTO. DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"ANÁLISIS DEL COMPORTAMIENTO DE LAS MEZCLAS ASFÁLTICAS AL
APLICAR CEMENTO PORTLAND Y FIBRAS DE CÁSCARA DE COCO
COMO AGENTE ESTABILIZADOR"

Por:

FREDDY CHIRINOS FLORES

SEMESTRE II - 2018 TARIJA – BOLIVIA

•••••	• • • • • • • • • • • • • • • • • • • •
M.Sc. Ing. Ernesto R. Álvarez Gozalvez	M.Sc. Lic. Elizabeth Castro Figueroa
DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA TRIBUNAL:	VICEDECANA FACULTAD DE CIENCIAS Y TECNOLOGÍA
Ing. Wilson Y	Yucra Rivera
Ing. Moisés E.	. Díaz Ayarde

Ing. Andrea Shimura Méndez

ADVERTENCIA:

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo éstas responsabilidad del (la) autor (a).

DEDICATORIA:

El presente trabajo lo dedico primeramente a Dios por permitirme alcanzar este objetivo, y por brindarme sabiduría, paciencia, fuerza y voluntad para realizar esta tesis, y estar siempre conmigo en cada momento de mi vida.

A mis padres: Crispin Chirinos M. y Claudina Flores S. por brindarme su apoyo en todas las etapas de mi vida y haber sabido guiarme por el camino del bien, e inculcarme el espíritu de lucha para alcanzar mis metas.

A mis hermanos (as): por todo su apoyo y porque siempre he contado con ellos en todo momento.

A mis amigos y compañeros por los gratos momentos que pasamos en los estudios y en las aulas.

AGRADECIMIENTO:

A DIOS primeramente por permitirme la gracia de la vida y por las fuerzas que me brindó para levantarme en los momentos difíciles, finalmente por permitirme concluir esta meta.

A mis padres: por inculcarme los valores que me han permitido lograr esta meta. Por apoyarme incondicionalmente, este logro es gracias a ustedes, gracias por la confianza que han tenido y depositado en mí.

Un agradecimiento especial al: Ing. Marcelo Segovia Cortez y al Msc. Ing. Luis Alberto Yurquina Flores a ambos docentes por sus enseñanzas y guías impartidas en mi Proyecto de Grado.

A la Empresa Consultora S.A.H.: En especial al Tec. Mario Reinoso Estrada por brindarme su laboratorio, compartir sus conocimientos y ayuda en cada uno de los ensayos realizados en su laboratorio.

PENSAMIENTO:

"La única manera de hacer un trabajo GENIAL es AMAR lo que haces."

STEVE JOBS.

ÍNDICE

Advertencia

Dedicatoria

Agradecimiento

Pensamiento

Resumen

CAPÍTULO I

FUNDAMENTO TEÓRICO

Página	l
1.1. INTRODUCCIÓN	
1.2. ANTECEDENTES Y JUSTIFICACIÓN	
1.3. SITUACIÓN PROBLÉMICA 5	
1.4. DETERMINACIÓN DEL PROBLEMA	
1.5. OBJETIVOS 6	
1.5.1. Objetivo general 6	
1.5.2. Objetivos específicos	
1.6. HIPÓTESIS	
1.7. ALCANCE	
1.8. PROCEDENCIA DE LOS MATERIALES A UTILIZAR	
1.9. DEFINICIÓN DE VARIABLES	
1.9.1. Variables dependientes (Xi)	
1.9.2. Variables independientes (Yi)	
1.9.3. Conceptualización y operacionalidad de las variables	
1.10. DISEÑO METODOLÓGICO DE LA INVESTIGACIÓN	
1.10.1. Unidad de estudio	

1.10.2. Población	9
1.10.3. Muestra	9
1.10.4. Selección de las técnicas de muestreo	10
1.11. MÉTODOS Y PROCEDIMIENTOS LÓGICOS	11
1.11.1. Listado de actividades a realizar	11
1.11.2. Esquema de actividades en función al procedimiento definido por la perspectiva	13
1.11.3. Cronograma de actividades	14
1.11.4. Productos esperados en correspondencia con el procedimiento de la perspectiva	14
1.11.5. Resultados esperados	15
1.11.6. Análisis de resultados	15
CAPÍTULO II	
ESTADO DE CONOCIMIENTO	
ESTADO DE CONOCIMIENTO	Página
ESTADO DE CONOCIMIENTO 2.1. MEZCLAS ASFÁLTICAS	
	17
2.1. MEZCLAS ASFÁLTICAS 2.1.1. Clasificación de mezcla asfáltica	17
2.1. MEZCLAS ASFÁLTICAS	17
2.1. MEZCLAS ASFÁLTICAS	17 17 18
2.1. MEZCLAS ASFÁLTICAS 2.1.1. Clasificación de mezcla asfáltica 2.1.2. Características de la mezcla (analizando el método Marshall) 2.1.2.1. Densidad	17 17 18 18
2.1. MEZCLAS ASFÁLTICAS	17 17 18 18 18
2.1. MEZCLAS ASFÁLTICAS	17 17 18 18 18 19
2.1. MEZCLAS ASFÁLTICAS	17 17 18 18 18 19 19

2.1.3.2. Durabilidad	. 21
2.1.3.3. Flexibilidad	. 21
2.1.3.4. Resistencia a la fatiga	. 21
2.1.3.5. Resistencia al fracturamiento por baja temperatura	. 22
2.1.3.6. Resistencia al daño por humedad o impermeabilidad	. 22
2.1.3.7. Resistencia al deslizamiento	. 22
2.1.3.8. Trabajabilidad	. 22
2.1.4. Componentes de las mezclas asfálticas	. 22
2.1.4.1. Cemento asfáltico	. 22
2.1.4.2. Ensayos realizados al asfalto para determinar sus propiedades	. 23
2.1.4.2.1. Ensayo de penetración de materiales bituminosos (AASHTO T49-97; ASTM D5)	. 23
2.1.4.2.2. Ensayo de ductilidad de materiales bituminosos (AASHTO T51-00; ASTM D113)	. 24
2.1.4.2.3. Ensayo de punto de inflamación mediante el vaso abierto de Cleveland (AASHTO T48; ASTM D22)	. 24
2.1.4.2.4. Ensayo para determinar el punto de ablandamiento con el aparato de anillo y bola (AASHTO T53-92; ASTM D36-89)	. 24
2.1.5.2.5. Ensayo para determinar la gravedad especifica de materiales bituminosos (AASHTO T228-93; ASTM D70-76)	. 24
2.1.5.2.6. Película delgada (AASHTO T179-05; ASTM D 17-54)	. 24
2.1.4.3. Requisitos del cemento asfáltico clasificado por penetración	. 25
2.1.4.4. Agregados pétreos	. 25
2.1.4.5. Clasificación de los agregados pétreos	. 25
2.1.4.6. Propiedades de los agregados pétreos	. 26

2.1.4.7. Ensayos realizados a los agregados	26
2.1.4.7.1. Análisis granulométrico de los agregados (AASHTO T27-99; ASTM E40 C-136)	26
2.1.4.7.2. Peso unitario de los agregados gruesos y finos (AASHTO T19; ASTM C 29M-97)	26
2.1.4.7.3. Peso específico y absorción del agregado grueso (AASHTO T85; ASTM C127)	26
2.1.4.7.4. Peso específico y absorción del agregado fino (AASHTO T84; ASTM C128)	27
2.1.4.7.5. Porcentaje de caras fracturadas en los agregados (ASTM D5821-95)	27
2.1.4.7.6. Ensayo de desgaste de los agregados por medio de la Maquina de los Ángeles (AASHTO T96; ASTM C131)	27
2.1.4.7.7. Método para determinar el equivalente de arena (AASHTO T176; ASTM D2419)	27
2.1.4.7.8. Método de los sulfatos para determinar la durabilidad del agregado grueso y fino (AASHTO T104-99; ASTM E88)	27
2.1.4.7.9. Método para determinar el índice de lajas (AASHTO C142)	28
2.1.4.7.10. Finura del cemento (ASTM C 184 - 66)	28
2.1.4.8. Especificaciones que deben cumplir los agregados	28
2.1.4.8.1. Agregado grueso	28
2.1.4.8.2. Agregado fino	29
2.1.4.9. Filler (llenante mineral)	29
2.1.4.9.1. Influencia del filler en las propiedades de las mezclas asfálticas	30
2.1.4.9.2. Efecto del filler como componente de las mezclas asfálticas	30
2.1.4.10. Especificaciones del filler	31
2.1. MEZCLAS ASFÁLTICAS	17

2.1.1. Clasificación de mezcla asfáltica	. 17
2.1.2. Características de la mezcla (analizando el método Marshall)	. 18
2.1.2.1. Densidad	. 18
2.1.2.2. Vacíos de aire	. 18
2.1.2.3. Vacíos en el agregado mineral (VAM)	. 19
2.1.2.4. Contenido de asfalto	. 19
2.1.2.5. Vacíos llenos de asfalto (RBV)	. 20
2.1.3. Propiedades de las mezclas asfálticas	. 21
2.1.3.1. Estabilidad o resistencia a las deformaciones plásticas	. 21
2.1.3.2. Durabilidad	. 21
2.1.3.3. Flexibilidad	. 21
2.1.3.4. Resistencia a la fatiga	. 21
2.1.3.5. Resistencia al fracturamiento por baja temperatura	. 22
2.1.3.6. Resistencia al daño por humedad o impermeabilidad	. 22
2.1.3.7. Resistencia al deslizamiento	. 22
2.1.3.8. Trabajabilidad	. 22
2.1.4. Componentes de las mezclas asfálticas	. 22
2.1.4.1. Cemento asfáltico	. 22
2.1.4.2. Ensayos realizados al asfalto para determinar sus propiedades	. 23
2.1.4.2.1. Ensayo de penetración de materiales bituminosos (AASHTO T49-97; ASTM D5)	. 23
2.1.4.2.2. Ensayo de ductilidad de materiales bituminosos (AASHTO T51-00; ASTM D113)	. 24
2.1.4.2.3. Ensayo de punto de inflamación mediante el vaso abierto de Cleveland (AASHTO T48; ASTM D22)	. 24

2.1.4.2.4. Ensayo para determinar el punto de ablandamiento con el aparato de	
anillo y bola (AASHTO T53-92; ASTM D36-89)	24
2.1.5.2.5. Ensayo para determinar la gravedad especifica de materiales	
bituminosos (AASHTO T228-93; ASTM D70-76)	24
2.1.5.2.6. Película delgada (AASHTO T179-05; ASTM D 17-54)	24
2.1.4.3. Requisitos del cemento asfáltico clasificado por penetración	25
2.1.4.4. Agregados pétreos	25
2.1.4.5. Clasificación de los agregados pétreos	25
2.1.4.6. Propiedades de los agregados pétreos	26
2.1.4.7. Ensayos realizados a los agregados	26
2.1.4.7.1. Análisis granulométrico de los agregados (AASHTO T27-99;	
ASTM E40 C-136)	26
2.1.4.7.2. Peso unitario de los agregados gruesos y finos (AASHTO T19;	
ASTM C 29M-97)	26
2.1.4.7.3. Peso específico y absorción del agregado grueso (AASHTO T85;	26
ASTM C127)	26
2.1.4.7.4. Peso específico y absorción del agregado fino (AASHTO T84; ASTM C128)	27
2.1.4.7.5. Porcentaje de caras fracturadas en los agregados (ASTM D5821-95)	
2.1.4.7.6. Ensayo de desgaste de los agregados por medio de la Maquina	21
de los Ángeles (AASHTO T96; ASTM C131)	27
2.1.4.7.7. Método para determinar el equivalente de arena (AASHTO T176;	
ASTM D2419)	27
2.1.4.7.8. Método de los sulfatos para determinar la durabilidad del agregado	
grueso y fino (AASHTO T104-99; ASTM E88)	27
2.1.4.7.9. Método para determinar el índice de lajas (AASHTO C142)	28

2.1.4.7.10. Finura del cemento (ASTM C 184 - 66)	28
2.1.4.8. Especificaciones que deben cumplir los agregados	28
2.1.4.8.1. Agregado grueso	28
2.1.4.8.2. Agregado fino	29
2.1.4.9. Filler (llenante mineral)	29
2.1.4.9.1. Influencia del filler en las propiedades de las mezclas asfálticas	30
2.1.4.9.2. Efecto del filler como componente de las mezclas asfálticas	30
2.1.4.10. Especificaciones del filler	31
2.1.5. Fibras	31
2.1.5.1. Definición de fibras	31
2.1.5.2. Fibra de coco	32
2.1.5.3. Características de la fibra de coco	33
2.1.5.4. Fibra agente estabilizador para el pavimento asfáltico	33
2.1.5.5. Propiedades del pavimento asfáltico con fibras	33
2.1.5.6. Especificaciones de las fibras	34
2.2. DISEÑO DE MEZCLAS ASFÁLTICAS, MÉTODO MARSHALL	34
2.2.1. Metodología	34
2.2.2 Propósito de la metodología	35
2.2.3 Descripción general	35
2.2.4 Especificaciones de la metodología	37
2.2.4.1. Granulometría	37
2.2.4.2. Golpes de compactación	38
2.2.4.3. Parámetros volumétricos de diseño Marshall	38
2.2.5. Ensayos realizados a la mezcla asfáltica compactada	39

2.2.5.1. Determinación de la gravedad específica bulk	. 39
2.2.5.2. Ensayo de estabilidad y fluencia	. 40
2.2.5.3. Análisis de densidad y vacíos	. 40
CAPÍTULO III	
CARACTERIZACIÓN DE LOS MATERIALES	
I	Página
3.1. IDENTIFICACIÓN DE LA ZONA DE MUESTREO	. 42
3.2. PROCEDENCIA DEL CEMENTO PORTLAND Y LA FIBRA DE COCO	. 44
3.3. CARACTERIZACIÓN DE LOS MATERIALES	. 46
3.3.1. Agregado grueso	. 46
3.3.2. Agregado fino	. 48
3.3.3. Resultados de la caracterización de agregados	. 50
3.4. CARACTERIZACIÓN DEL CEMENTO ASFÁLTICO	. 51
3.5.1. Resultados de la caracterización de cemento asfáltico	. 51
CAPÍTULO IV	
DISEÑO Y ANÁLISIS DE LAS MEZCLAS ASFÁLTICAS	
I	Página
4.1. PREDISEÑO PARA OBTENER EL CONTENIDO ÓPTIMO DE	
CEMENTO ASFÁLTICO Y DE FIBRA DE COCO	. 52
4.1.1. Mezclas para obtener el diseño óptimo de cemento asfáltico	. 52
4.1.2. Dosificaciones de los especímenes	. 56
4.1.3. Resultados de las muestras	. 59
4.1.4. Gráficos de ensayos marshall vs cemento asfáltico para un diseño normal	
con un 0.04% de fibra de coco	. 62

4.2. DISENO PARA UNA MEZCLA ASFÂLTICA MODIFICADA CON	
ADICIÓN DE CEMENTO PORTLAND Y FIBRAS DE COCO	66
4.2.1. Mezclas para obtener el diseño óptimo de cemento asfáltico	66
4.2.2. Dosificación de los especímenes (modificados)	69
4.2.3. Resultados de las muestras modificadas con cemento Portland y fibras de coco	. 72
4.2.4. Gráficos de ensayos marshall vs cemento asfáltico para un diseño modificado con 1% de filler (cemento Portland)	
4.3. DISEÑO PARA UNA MEZCLA ASFÁLTICA NORMAL CON FILLER	
NATURAL	. 80
4.3.1. Mezclas para obtener el diseño óptimo de cemento asfáltico	. 80
4.3.2. Dosificación de los especímenes (normales)	. 83
4.3.3. Resultados de las muestras normales con filler natural	. 86
4.3.4. Gráficos de ensayos marshall vs cemento asfáltico para un diseño normal con 1% de filler natural	. 90
4.4. CONTENIDOS ÓPTIMOS DE LOS DISEÑOS NORMALES PARA EL ANÁLISIS ESTADÍSTICO	. 94
4.5. CONTENIDOS ÓPTIMOS DE LOS DISEÑOS MODIFICADOS PARA EL ANÁLISIS ESTADÍSTICO	. 95
4.6. ANÁLISIS ESTADÍSTICO	
4.6.1. Estadística descriptiva	. 96
4.6.2. Estadística inferencial	
4.6.2.1. Variable estabilidad	. 97
4.6.2.1.1. Análisis estadístico para las mezclas asfálticas modificadas con 1.71% de filler y 0.066% de fibra de coco	
4.6.2.2. Variable fluencia	. 97

4.5.2.2.1. Análisis estadístico para las mezclas asfálticas modificadas con 1.71%	
de filler y 0.066% de fibra de coco	. 97
4.6.2.3. Variable densidad	. 98
4.6.2.1.1. Análisis estadístico para las mezclas asfálticas modificadas con 1.71%	
de filler y 0.066% de fibra de coco	. 98
4.6.2.4. Variable porcentaje de vacíos	. 98
4.5.2.2.1. Análisis estadístico para las mezclas asfálticas modificadas con 1.71%	
de filler y 0.066% de fibra de coco	. 96
4.7. ANÁLISIS DE LOS RESULTADOS OBTENIDOS	. 99
4.7.1. Comparación del contenido óptimo del cemento asfáltico	. 99
4.7.2. Comparación de la densidad	. 99
4.7.3. Comparación del % de vacíos totales en la mezcla	100
4.7.4. Comparación del porcentaje de vacíos en el agregado mineral (% VAM)	101
4.7.5. Comparación del % RBV	101
4.7.6. Comparación de la estabilidad de las mezclas	102
4.7.7. Comparación del flujo o fluencia de las mezclas	103
4.8. ANÁLISIS DE PRECIOS DE PRODUCCIÓN PARA LAS DIFERENTES	
MEZCLAS ASFÁLTICAS	103
4.8.1. Análisis del precio de producción para la mezcla asfáltica normal	104
4.8.2. Análisis del precio de producción para la mezcla asfáltica con adición	
de cemento Portland y fibras de coco	105
4.8.3. Análisis del precio de los materiales para las mezclas asfálticas	
estudiadas	106

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

	Página
5.1. CONCLUSIONES	107
5.2. RECOMENDACIONES	108
BIBLIOGRAFÍAS	110
ANEXOS	

ÍNDICE DE ANEXOS

- Anexo A: Cómputos métricos, análisis de precio unitario y presupuesto total
- Anexo B: Extracción de materiales, caracterización de los materiales y diseño de las mezclas asfálticas
- Anexo C: Tabla para la corrección de la estabilidad
- Anexo D: Documentos de respaldo

ÍNDICE DE FIGURAS

Pági	na
Figura 1.1. Esquema de actividades en función al procedimiento de la perspectiva 13	3
Figura 2.1. Diagrama de componentes de una mezcla asfáltica)
Figura 2.2. Proceso de trituración de la cáscara de coco a fibras)
Figura 3.1. Zona de muestreo 1	2
Figura 3.2. Zona de muestreo 2	3
Figura 3.3. Zona de muestreo 3	3
Figura 3.4. Agregado pétreo	1
Figura 3.5. Fábrica de cemento el puente	1
Figura 3.6. Mercado abasto del sur	5
Figura 3.7. Cáscara de coco	5
Figura 4.1. Curva granulométrica de los agregados con 0.04% de fibra de coco 53	3
Figura 4.2. Curva granulométrica de los agregados con 0.08% de fibra de coco 54	1
Figura 4.3. Curva granulométrica de los agregados con 0.12% de fibra de coco 55	5
Figura 4.4. % asfalto vs densidad del diseño de la mezcla asfáltica con 0.04%	
de fibra	2
Figura 4.5. % asfalto vs % de vacíos del diseño de la mezcla asfáltica con 0.04%	_
de fibra	3
Figura 4.6. % asfalto vs % RBV del diseño de la mezcla asfáltica con 0.04% de fibra	3
Figura 4.7. % asfalto vs estabilidad del diseño de la mezcla asfáltica con 0.04%	,
de fibra	1
Figura 4.8. % asfalto vs % VAM del diseño de la mezcla asfáltica con 0.04%	
de fibra	1

Figura 4.9. % asfalto vs flujo del diseño de la mezcla asfáltica con 0.04%
de fibra65
Figura 4.10. % Óptimo de cemento asfáltico vs % fibra de coco
Figura 4.11. Curva granulométrica de los agregados con 1% de filler (cemento Portland)
Figura 4.12. Curva granulométrica de los agregados con 2% de filler (cemento Portland)
Figura 4.13. Curva granulométrica de los agregados con 3% de filler (cemento Portland)
Figura 4.14. % asfalto vs densidad del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.15. % asfalto vs % de vacíos del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.16. % asfalto vs % RBV del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.17. % asfalto vs estabilidad del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.18. % asfalto vs % VAM del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.19. % asfalto vs flujo del diseño de la mezcla asfáltica con 1% de filler (cemento Portland)
Figura 4.20. % Óptimo de cemento asfáltico vs % filler (cemento Portland)
Figura 4.21. Curva granulométrica de los agregados con 1% de filler natural 80
Figura 4.22. Curva granulométrica de los agregados con 2% de filler natural 8
Figura 4.23. Curva granulométrica de los agregados con 3% de filler natural 82
Figura 4.24. % asfalto vs densidad del diseño de la mezcla asfáltica con 1% de filler natural

Figura 4.25. % asfalto vs % de vacíos del diseño de la mezcla asfáltica con 1% de	
filler natural9	0
Figura 4.26. % asfalto vs % RBV del diseño de la mezcla asfáltica con 1% de	
filler natural9	1
Figura 4.27. % asfalto vs estabilidad del diseño de la mezcla asfáltica con 1% de	
filler natural9	1
Figura 4.28. % asfalto vs % VAM del diseño de la mezcla asfáltica con 1% de	
filler natural9	2
Figura 4.29. % asfalto vs flujo del diseño de la mezcla asfáltica con 1% de	
filler natural9	2
Figura 4.30. % Óptimo de cemento asfáltico vs % filler natural	3
Figura 4.31. Comparación del contenido óptimo cemento asfáltico	9
Figura 4.32. Comparación de la densidad de las mezclas asfálticas	0
Figura 4.33. Comparación del % de vacíos de las mezclas asfálticas	0
Figura 4.34. Comparación del % de VAM de las mezclas asfálticas	1
Figura 4.35. Comparación del % de RBV de las mezclas asfálticas	2
Figura 4.36. Comparación de la estabilidad de las mezclas asfálticas	2
Figura 4.20. Comparación de la fluencia de las mezclas asfálticas 10	3
Figura 4.20. Comparación del precio de las mezclas asfálticas	6

ÍNDICE DE TABLAS

Pagina
Tabla 1.1. Conceptualización y operacionalidad de las variables
Tabla 1.2. Nivel de confianza 9
Tabla 1.3. Muestra estratificada por afijación proporcional
Tabla 1.4. Cronograma de actividades
Tabla 2.1. Clasificación de las mezclas asfálticas
Tabla 2.2. Requisitos del cemento asfáltico clasificado por penetración
Tabla 2.3. Serie de tamices utilizados para realizar la granulometría
Tabla 2.4. Especificaciones que debe cumplir el agregado grueso
Tabla 2.5. Especificaciones que debe cumplir el agregado fino
Tabla 2.6. Graduación del agregado fino de acuerdo a AASHTO M 29
Tabla 2.7. Granulometría que debe cumplir el filler de acuerdo a la norma ASTM 31
Tabla 2.8. Propiedades de fibra celulosas, AASHTO MP8
Tabla 2.9. Granulometría que deben cumplir los agregados para el diseño Marshall
Tabla 2.10. Número de golpes en cada cara del espécimende ensayo
Tabla 2.11. Requisitos para la mezcla asfáltica Marshall (AASHTO T 2459) 39
Tabla 2.12. Porcentajes mínimos de vacíos en el agregado mineral (VMA) 39
Tabla 3.1. Granulometría de grava de 3/4" (AASHTO T27-99; ASTM E40 C-136)
Tabla 3.2. Granulometría de gravilla de 3/8" (AASHTO T27-99; ASTM E40 C-136)
Tabla 3.3. Peso unitario del agregado 3/4" (AASHTO T19; ASTM C 29M-97) 46
Tabla 3.4. Peso unitario del agregado 3/8" (AASHTO T19; ASTM C 29M-97) 46

Tabla 3.5. Peso específico y absorción del agregado de 3/4 ASTM C127)	•
Tabla 3.6. Peso específico y absorción del agregado de 3/8 ASTM C127)	•
Tabla 3.7. Porcentaje de caras fracturadas en los agregados (ASTM D5821-95)	
Tabla 3.8. Porcentaje de caras fracturadas en los agregados (ASTM D5821-95)	
Tabla 3.9. Ensayo de desgaste de los agregados de 3/4" po Maquina de los Ángeles (AASHTO T96; ASTM	
Tabla 3.10. Ensayo de desgaste de los agregados de 3/8" Maquina de los Ángeles (AASHTO T96; ASTI	•
Tabla 3.11. Método de los sulfatos para determinar la dural grueso (AASHTO T104-99; ASTM E88)	
Tabla 3.12. Método para determinar el índice de lajas en lo (AASHTO C142)	
Tabla 3.13. Método para determinar el índice de lajas en lo (AASHTO C142)	
Tabla 3.14. Granulometría de la arena (AASHTO T27-99;	ASTM E40 C-136) 48
Tabla 3.15. Granulometría de la arena lavada (AASHTO T ASTM E40 C-136)	
Tabla 3.16. Granulometría del filler natural (ASTM E 40) .	49
Tabla 3.17. Peso unitario de la arena (AASHTO T19; AST	M C 29M-97) 49
Tabla 3.18. Peso específico y absorción del agregado fino (ASTM C128)	•
Tabla 3.19. Método para determinar el equivalente de arena ASTM D2419)	•

Tabla 3.22. Resultados finales de la caracterización de los agregados	Tabla 3.20. Método de los sulfatos para determinar la durabilidad del agregado
fibra de coco	fino (AASHTO T104-99; ASTM E88)
Tabla 3.23. Resultados de la caracterización de cemento asfáltico	Tabla 3.21. Porcentaje de finura del cemento (ASTM E 117 - AASHTO T 11) 50
Tabla 4.1. Dosificación de los agregados con 0.04% de fibra de coco	Tabla 3.22. Resultados finales de la caracterización de los agregados
Tabla 4.2. Dosificación de los agregados con 0.08% de fibra de coco	Tabla 3.23. Resultados de la caracterización de cemento asfáltico
Tabla 4.3. Dosificación de los agregados con 0.12% de fibra de coco	Tabla 4.1. Dosificación de los agregados con 0.04% de fibra de coco
Tabla 4.4. Dosificación para el diseño de la mezcla asfáltica con 0.04% de fibra de coco	Tabla 4.2. Dosificación de los agregados con 0.08% de fibra de coco
fibra de coco	Tabla 4.3. Dosificación de los agregados con 0.12% de fibra de coco
fibra de coco	•
fibra de coco	•
de coco	
de coco	-
de coco	•
Tabla 4.11. Contenido óptimo de cemento asfáltico con 0.08% de fibra de coco 60 Tabla 4.12. Contenido óptimo de cemento asfáltico con 0.12% de fibra de coco 60 Tabla 4.13. Resultados de las características de la mezcla asfáltica con 0.04%	
Tabla 4.12. Contenido óptimo de cemento asfáltico con 0.12% de fibra de coco 60 Tabla 4.13. Resultados de las características de la mezcla asfáltica con 0.04%	Tabla 4.10. Contenido óptimo de cemento asfáltico con 0.04% de fibra de coco 60
Tabla 4.13. Resultados de las características de la mezcla asfáltica con 0.04%	Tabla 4.11. Contenido óptimo de cemento asfáltico con 0.08% de fibra de coco 60
	Tabla 4.12. Contenido óptimo de cemento asfáltico con 0.12% de fibra de coco 60
de libra de coco	Tabla 4.13. Resultados de las características de la mezcla asfáltica con 0.04% de fibra de coco

Tabla 4.14.	Resultados de las características de la mezcla asfáltica con 0.08% de fibra de coco	61
Table 4 15		01
1 abia 4.13.	Resultados de las características de la mezcla asfáltica con 0.12% de fibra de coco	62
Tabla 4.16.	Dosificación de los agregados con 1% de filler (cemento Portland)	66
Tabla 4.17.	Dosificación de los agregados con 2% de filler (cemento Portland)	67
Tabla 4.18.	Dosificación de los agregados con 3% de filler (cemento Portland)	68
Tabla 4.19.	Dosificación para el diseño de la mezcla asfáltica con 1% de filler (cemento Portland) y 0.066% de fibra de coco	69
Tabla 4.20.	Dosificación para el diseño de la mezcla asfáltica con 2% de filler (cemento Portland) y 0.066% de fibra de coco.	70
Tabla 4.21.	Dosificación para el diseño de la mezcla asfáltica con 3% de filler (cemento Portland) y 0.066% de fibra de coco.	71
Tabla 4.22.	Resultados de la dosificación para el diseño de la mezcla asfáltica con 1% de filler (cemento Portland)	72
Tabla 4.23.	Resultados de la dosificación para el diseño de la mezcla asfáltica con 2% de filler (cemento Portland)	72
Tabla 4.24.	Resultados de la dosificación para el diseño de la mezcla asfáltica con 3% de filler (cemento Portland)	73
Tabla 4.25.	Contenido óptimo de cemento asfáltico con 1% de filler (cemento Portland)	73
Tabla 4.26.	Contenido óptimo de cemento asfáltico con 2% de filler (cemento Portland).	73
Tabla 4.27.	Contenido óptimo de cemento asfáltico con 3% de filler (cemento Portland)	74
Tabla 4.28.	Resultados de las características de la mezcla asfáltica con 1% de filler (cemento Portland)	74

Tabla 4.29. Resultados de las carac	terísticas de la mezcla asfáltica con 2% de	
filler (cemento Portland	d)	5
	terísticas de la mezcla asfáltica con 3% de	5
Tabla 4.31. Dosificación de los agr	egados con 1% de filler natural80	0
Tabla 4.32. Dosificación de los agr	egados con 2% de filler natural	1
Tabla 4.33. Dosificación de los agr	egados con 3% de filler natural82	2
	seño de la mezcla asfáltica con 1% de filler	3
•	seño de la mezcla asfáltica con 2% de filler	4
•	seño de la mezcla asfáltica con 3% de filler	5
	cación para el diseño de la mezcla asfáltica	6
	cación para el diseño de la mezcla asfáltica	6
	cación para el diseño de la mezcla asfáltica	7
Tabla 4.40. Contenido óptimo de c	emento asfáltico con 1% de filler natural 87	7
Tabla 4.41. Contenido óptimo de c	emento asfáltico con 2% de filler natural 87	7
Tabla 4.42. Contenido óptimo de c	emento asfáltico con 3% de filler natural 88	8
	terísticas de la mezcla asfáltica con 1% de	8
	terísticas de la mezcla asfáltica con 2% de	9

Tabla 4.45.	Resultados de las características de la mezcla asfáltica con 3% de filler natural	39
Tabla 4.46.	Contenido óptimo de la mezcla asfáltica normal con 1.85% de filler natural) 4
Tabla 4.47.	Contenido óptimo de la mezcla asfáltica con 1.71% de filler (cemento Portland)	95
Tabla 4.48.	Estadística descriptiva para la mezcla asfáltica normal con 1.85% de filler natural	96
Tabla 4.49.	Estadística descriptiva para la mezcla asfáltica con 1.71% de filler (cemento Portland)	96
Tabla 4.50.	Dosificación para 1 m³ mezcla asfáltica normal con 1% de filler natural)4
Tabla 4.51.	Precio de los materiales para 1 m³ de mezcla asfáltica normal con 1% filler natural)4
Tabla 4.52.	Resumen de precio unitario para 1 m³ de la mezcla asfáltica normal con 1% filler natural)4
Tabla 4.53.	Dosificación para 1 m³ mezcla asfáltica modificada con 1% de filler (cemento Portland) y 0.066% de fibra de coco)5
Tabla 4.54.	Precio de los materiales para 1 m³ de mezcla asfáltica modificada con 1% filler (cemento Portland) y 0.066% de fibra de coco)5
Tabla 4.55.	Resumen de precio unitario para 1 m³ de la mezcla asfáltica modificada con 1% filler (cemento Portland) y 0.066% de	
	fibra de coco)6