UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

TOMO I

"DISEÑO DE INGENIERÍA MEJORAMIENTO DE CAMINO QUEBRADA EL TORO - EL TORO"

Por:

VIORELI LORENA TEJERINA FORONDA

Proyecto presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de licenciatura en Ingeniería Civil.

Semestre I Gestión 2021 Tarija – Bolivia

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

TOMO I

"DISEÑO DE INGENIERÍA MEJORAMIENTO DE CAMINO QUEBRADA EL TORO - EL TORO"

Por:

TEJERINA FORONDA VIORELI LORENA

Semestre I Gestión 2021 Tarija – Bolivia

El tribunal calificador del presente proyecto, no se solidariza con la forma, términos, modos y expresiones vertidas en el presente trabajo; siendo los mismos, únicamente responsabilidad del autor.

Dedicatoria

A mi madre Martha Foronda, por todo el amor incondicional, como una roca firme, dándome estabilidad y ejemplo de mujer luchadora, mi padre Oswaldo Tejerina, por el apoyo brindado, mis abuelitos Juana Echalar y Nicolás Foronda, por guiar mi camino con sus enseñanzas, mis hermanos Paola Tejerina y Oswaldo Nathanael Tejerina, por alegrar mis días, con su compañía y su amor autentico de hermanos, al más importante: Nuestro creador Jehová, su presencia en mi vida fue lo más gratificante, poniendo en mi camino personas increíbles y viendo la belleza de su creación en ellos.

Agradecimientos

Agradezco a **Dios**, por permitir cumplir un logro más en mi vida, llenándome de satisfacción y esperanza.

Mi madre Martha por ser madre fiel, cariñosa y autoridad imponente de valores, sencillez, siempre alentándome a luchar por mis sueños, mi padre, hermanos, abuelitos y amigos, por su grata compañía y apoyo incondicional.

Pensamiento

"Para merecer la dicha hay que hacer el bien y trabajar sin descanso; no se llega a ella por la especulación o holganza.

La pereza seduce, el trabajo satisface". (Ana Frank)

ÍNDICE GENERAL

CAPÍTULO I INTRODUCCIÓN

	Pág.
1.1 INTRODUCCIÓN	1
1.2 JUSTIFICACIÓN	2
1.3 SITUACIÓN PROBLÉMICA	3
1.3.1 Planteamiento del problema	3
1.3.2 Problema	3
1.4 OBJETIVOS	3
1.4.1 Objetivo general	3
1.4.2 Objetivos específicos	4
1.5 ALCANCE DEL PROYECTO	4
CAPÍTULO II	
DISEÑO DE INGENIERIA	
	Pág.
2.1 ESTUDIOS PREVIOS AL DISEÑO	9
2.1.1 Estudio topográfico	9
2.1.1.1 Topografía para proyectos	9
2.1.2 Estudio geotécnico	13
2.1.2.1 Trabajo de campo	14
2.1.2.2 Trabajo de laboratorio	15
2.1.2.2.1 Granulometría (AASHTO T-88, ASTM D 422)	16
2.1.2.2.2 Límites de Atterberg	18
2.1.2.2.3 Clasificación	21
2.1.2.2.3.1 Clasificación AASHTO (AASHTO M 145, 1995)	21

2.1.2.2.3.2 Clasificación SUCS (AASHTO M 145, ASTM 3282 o 2487)	.23
2.1.2.2.4 Compactación (AASHTO T180, ASTM D1557-AASHTO T90 ASTM D698)	.24
2.1.2.2.5 CBR (AASTHO T-193, ASTM 1883)	.27
2.1.2.3 Trabajo de gabinete	.31
2.1.2.3.1 Material de préstamo	.31
2.1.2.3.2 Resumen de estudio de suelos	.31
2.1.3 Estudio hidrológico	33
2.1.3.1 Análisis estadístico de lluvias máximas diarias	.33
2.1.3.2 Estimación de caudal de diseño	.41
2.1.4 Estudio de tráfico	43
2.1.4.1 Proyecciones de tráfico	.47
2.1.4.1.1 Tasas de crecimiento	.47
2.1.4.1.2 Evolución del TPDA	.48
2.1.4.1.3 Crecimiento de la población	.48
2.1.4.1.4 Evolución del producto interno bruto – PIB	.48
2.1.4.1.5 Evolución del parque automotor	.48
2.1.4.2 Tráfico normal	.50
2.1.4.3 Tráfico generado	.52
2.1.4.4 Tráfico derivado o desarrollado	.53
2.1.4.5 Tráfico total	.54
2.2 DISEÑO DE INGENIERIA	55
2.2.1 Ubicación del proyecto	55
2.2.1.1 Ubicación física del proyecto	.55
2.2.2 Información básica del área del proyecto	58
2.3. DISEÑO GEOMÉTRICO	59

2.3.1 Análisis de alternativa de trazo geométrico	59
2.3.1.1 Alternativa única de trazo	59
2.3.1.2 Selección de la alternativa única de trazo	62
2.3.2 Sistema de clasificación	63
2.3.2.1 Categoría de las vías	63
2.3.3 Velocidad de diseño	66
2.3.4 Diseño planimétrico	67
2.3.4.1 Distancia de frenado	67
2.3.4.2 Distancia de adelantamiento	68
2.3.4.3 Radio mínimo	68
2.3.4.4 Coeficiente de fricción transversal máximo admisible	69
2.3.4.5 Peralte máximo	70
2.3.4.6 Sobre ancho en curvas circulares	72
2.3.4.7 Longitud máxima en rectas	73
2.3.4.8 Longitud mínima en recta	73
2.3.4.9 Curva en S	74
2.3.4.10 Curvas circulares	74
2.3.4.11 Elementos de la curva circular simple	74
2.3.4.12 Elementos de la curva transición	75
2.3.4.13 Sección transversal	76
2.3.4.14 La plataforma	77
2.3.4.15 La calzada	78
2.3.4.16 Pendiente transversal o bombeo	79
2.3.4.17 Bermas	79
2.3.4.18 Ancho de bermas.	79

2.3.4.19 Dimensión de sobre anchos	81
2.3.4.20 Resumen de parámetros de diseño horizontal	81
2.3.4.21 Cálculo para curvas horizontales	81
2.3.5 Diseño altimétrico	87
2.3.5.1 Alineamiento vertical	87
2.3.5.2 Pendientes máximas	88
2.3.5.3 Pendientes mínimas	88
2.3.5.4 Curvas verticales.	89
2.3.5.4.1 Curvas verticales convexas	90
2.3.5.4.2 Curvas verticales cóncavas	90
2.3.5.5 Resumen de parámetros de diseño verticales	91
2.3.5.6 Cálculo de curvas verticales	91
2.3.6 Volúmenes de movimiento de tierra	94
2.3.6.1 Diagrama curva masa.	96
2.4 DISEÑO ESTRUCTURAL	97
2.4.1 Periodo de diseño	97
2.4.2 Ejes equivalentes	97
2.4.2.1 Factor direccional y factor de carril	97
2.4.2.2. Numero de repeticiones de ejes equivalentes	98
2.4.2.2.1 Carga por eje	98
2.4.3 Análisis de C.B.R. de diseño	102
2.4.3.2 C.B.R. de diseño según instituto de asfaltos	102
2.4.3.3 C.B.R. crítico.	102
2.4.4 Modulo de resiliente Mr	103
2.4.5 Alternativas del paquete estructural	103

2.7 PRESUPUESTO DEL PROYECTO135	į
2.7.1 Cómputos métricos	,
2.7.2 Presupuesto general	,
2.7.2.1 Presupuesto general de ejecución)
2.9 IMPACTO AMBIENTAL	ŀ
2.9.1 Ficha ambiental (FA)	Ļ
2.9.2 Categorización del proyecto	Ļ
2.10 PLANOS DEL PROYECTO194	ļ
2.10.1 Planos de ubicación y general	Ļ
2.10.2 Planos de análisis de alternativas	į
2.10.3 Planos bimodales planta y perfil	į
2.10.4 Planos de secciones transversales	į
2.10.5 Planos de obras de drenaje	į
CAPÍTULO III	
CONCLUSIONES Y RECOMENDACIONES	
Pág	•
3.1 CONCLUSIONES	,
3.2 RECOMENDACIONES	,
Bibliografía	
Anexos	
Anexo 1: Estudio topográfico	
Anexo 2: Replanteo del eje de diseño	
Anexo 3: Alineamiento horizontal	
Anexo 4: Alineamiento vertical	
Anexo 5: Volúmenes de corte, volúmenes de relleno y curva masa	
Anexo 6: Estudio geotécnico	
Anexo 7: Estudio de tráfico	

Anexo 8: Diseño estructural del pavimento

Anexo 9: Estudio hidrológico

Anexo 10: Diseño de cunetas

Anexo 11: Diseño de alcantarillas de alivio y cruce

Anexo 12: Cómputos métricos

Anexo 13: Precios unitarios

Anexo 14: Presupuesto general

Anexo 15: Especificaciones técnicas

Anexo 16: Ficha ambiental

Anexo 17: Informe fotográfico

Planos

ÍNDICE DE TABLAS

Pag.
Tabla N°2. 1: Límites de consistencia
Tabla N°2. 2: Especificaciones de calidad
Tabla N°2. 3: Especificaciones de calidad para tratamiento superficial
Tabla N°2. 4: Granulometrías para subbase, base y carpeta de rodadura14
Tabla N°2. 5: Clasificación de suelos sistema AASHTO
Tabla N°2. 6: Clasificación de suelos sistema SUCS
Tabla N°2. 7: Correlación aproximada entre la clasificación de los suelos y ensayos31
Tabla N°2. 8: Periodo de retorno
Tabla N°2. 9: Clasificación vehicular según la ABC
Tabla N°2. 10: Clasificación funcional para diseño de carreteras y caminos rurales64
Tabla N°2. 11: Características típicas de caminos según la clasificación funcional65
Tabla N°2. 12: Velocidades de proyecto
Tabla N°2. 13: Distancia mínima de frenado en horizontal Df
Tabla N°2. 14: Distancia mínima de adelantamiento
Tabla N°2. 15: Radios mínimos absolutos en curvas horizontales
Tabla N°2. 16: Valores admisibles del coeficiente de fricción transversal70
Tabla N°2. 17: Valores máximos para peralte y fricción transversal71
Tabla N°2. 18: Ensanche de calzada permite el cruce de 2 vehículos del mismo tipo72
Tabla N°2. 19: Ensanche de la calzada en caminos con $Vp \le 60 Km/h$
Tabla N°2. 20: Longitud de Rmin entre curvas de diferente sentido74
Tabla N°2. 21: Anchos de calzada según categorías
Tabla N°2. 22: Bombeo de la calzada
Tabla N°2. 23: Ancho de bermas según categoría y Vp
Tabla N°2. 24: Pendiente máxima según categoría de carretera o camino
Tabla N°2. 25: Parámetros mínimos curvas verticales de visibilidad de frenado91
Tabla N°2. 26: Periodo de diseño
Tabla N°2. 27: Factor de distribución por carril
Tabla N°2. 28: Porcentaje de camiones en el carril de diseño
Tabla N°2. 29: Relación de cargas por eje99

Tabla N°2. 30: Pesos promedio por eje y tipo de vehículo	99
Tabla N°2. 32: Espesores mínimos en función a los ejes equivalente	103
Tabla N°2. 33: Niveles de confiabilidad	104
Tabla N°2. 34: Valores de Zr en la curva normal para grados de confiabilidad	104
Tabla N°2. 35: Selección de los coeficientes de drenaje	106
Tabla N°2. 36: Espesores mínimos de concreto asfáltico y base granular	106
Tabla N°2. 37: Coeficiente de escorrentía	112
Tabla N°2. 38: Dimensiones de las señales verticales	133
Tabla N°2. 39: Ubicación longitudinal de las señales verticales	134
Tabla N°2. 40: Sustentación y fundación de señales verticales	135

ÍNDICE DE IMAGEN

	Pág.
Imagen N°2. 1: Ubicación de BM-3	10
Imagen N°2. 2: Levantamiento topográfico	11
Imagen N°2. 3: Extracción de muestra de suelo	15
Imagen N°2. 4: Ensayo granulométrico	16
Imagen N°2. 5: Ensayo de límite líquido y plástico	19
Imagen N°2. 6: Ensayo de compactación	25
Imagen N°2. 7: Ensayo de C.B.R.	28
Imagen N°2. 8: Ecuaciones de probabilidad pluviométrica de Bolivia	35
Imagen N°2. 9: Polígono de tipo de suelo	39
Imagen N°2. 10: Polígono de cobertura vegetal	39
Imagen N°2. 11: Estación de aforo vehicular El Toro	43
Imagen N°2. 12: Parque automotor en el municipio de Tarija año 2018	49
Imagen N°2. 13: Parque automotor en el municipio de Tarija año 2019	49
Imagen N°2. 14: Curva vertical 1	92
Imagen N°2. 15: Diseño de espesores de pavimento flexible	107
Imagen N°2. 16: Diseño de espesores de tratamiento superficial triple	109
Imagen N°2. 17: Verificación con software H canales 3.1	115
Imagen N°2. 18: Casos de caudal conocido que ingresa a la alcantarilla	119
Imagen N°2. 19: Cálculo de diámetro de la alcantarilla de alivio	120
Imagen N°2. 20: Resumen de alcantarillas de alivio	121
Imagen N°2. 21: Áreas de aporte de las cuencas	122
Imagen N°2. 22: Curvas IDF	123
Imagen N°2. 23: Cálculo de sección transversal de alcantarilla de cruce	125

ÍNDICE DE GRÁFICOS

	Pág.
Gráfico Nº2. 1: Curva granulométrica (banco de préstamo)	17
Gráfico Nº2. 2: Curva de límite líquido, muestra Nº1	20
Gráfico Nº2. 3: Compactación, muestra Nº1	26
Gráfico N°2. 4: Carga penetración, muestra N°1	29
Gráfico Nº2. 5: C.B. R - peso unitario, muestra Nº1	30
Gráfico N°2. 6: Curva IDF, cuenca N°1	41
Gráfico Nº2. 7: Variación horaria del volumen de tránsito	46
Gráfico N°2. 8: Curva masa	96
Gráfico N°2. 9: Capas estructurales pavimento flexible	108
Gráfico N°2. 10: Capas estructurales tratamiento superficial triple	110
Gráfico N°2. 11: Ecuaciones de probabilidad pluviométrica de Bolivia	110

ÍNDICE DE CUADROS

	Pág.
Cuadro N°2. 1: Resumen de BM's	11
Cuadro N°2. 2: Puntos topográficos del proyecto	12
Cuadro N°2. 3: Coordenadas de las calicatas	15
Cuadro N°2. 4: Tamizado del suelo banco de préstamo, método general	17
Cuadro N°2. 5: Resumen de los ensayos de granulometría	18
Cuadro N°2. 6: Valores de límite líquido e índice de plasticidad	19
Cuadro N°2. 7: Determinación de límite líquido, muestra N°1	20
Cuadro N°2. 8: Determinación de límite plástico, muestra N°1	20
Cuadro N°2. 9: Resumen de los resultados de límites de Atterberg	21
Cuadro N°2. 10: Resumen de la clasificación de los suelos	24
Cuadro N°2. 11: Contenido de humedad y densidad, muestra N°1	26
Cuadro N°2. 12: Resumen de los resultados de compactación	27
Cuadro N°2. 13: Contenido de humedad y peso unitario, muestra N°1	28
Cuadro N°2. 14: C.B.R, muestra N°1	29
Cuadro N°2. 15: Resumen de resultado de los CBR's	30
Cuadro N°2. 16: Resumen de los resultados de todos los ensayos de suelos	31
Cuadro N°2. 17: Valor de diseño de soporte de la subrasante	32
Cuadro N°2. 18: Estación pluviométrica en la zona de estudio	33
Cuadro N°2. 19: Precipitaciones máximas	34
Cuadro N°2. 20: Altura de lluvia máxima diaria	35
Cuadro N°2. 21: Propiedades de la cuenca N°1	37
Cuadro N°2. 22: Tiempo de concentración cuenca N°1	37
Cuadro N°2. 23: Resultados de los parámetros para definición de cuencas	38
Cuadro N°2. 24: Obtención del coeficiente de escorrentía	40
Cuadro N°2. 25: Resultados de cálculo de caudales, método racional	42
Cuadro N°2. 26: Composición del tráfico promedio horario	45
Cuadro N°2. 27: Resultado de tráfico promedio diario	46
Cuadro N°2. 28: Tasa anual de crecimiento intercensal (periodo 2.001-2.012)	48
Cuadro N°2. 29: Parque automotor de los municipios en estudio	48

Cuadro N°2. 30: Tasas de crecimiento	50
Cuadro N°2. 31: Volúmenes de tráfico normal	51
Cuadro N°2. 32: Volúmenes de tráfico generado	52
Cuadro N°2. 33: Volúmenes de tráfico derivado	53
Cuadro N°2. 34: Volúmenes de tráfico total estimado	54
Cuadro N°2. 35: Resultado de tráfico futuro	55
Cuadro Nº2. 36: Resumen censo población y vivienda 2.012 comunidades en estud	lio58
Cuadro $N^{\circ}2$. 37: Resumen censo de las unidades educativas de las comunidades	58
Cuadro N°2. 38: Parámetros de diseño horizontal	81
Cuadro N°2. 39: Reporte del software AutoCAD Civil 3D	82
Cuadro N°2. 40: Replanteo de peralte y sobre ancho	83
Cuadro N°2. 41: Reporte del software AutoCAD Civil 3D	85
Cuadro N°2. 42: Replanteo de peralte y sobre ancho	86
Cuadro N°2. 43: Parámetros de diseño vertical	91
Cuadro N°2. 44: Replanteo de curva vertical	93
Cuadro N°2. 45: Reporte de curva vertical AutoCAD civil 3D	93
Cuadro N°2. 46: Reporte de volúmenes de corte-corte	95
Cuadro N°2. 47: Reporte de volúmenes de relleno-relleno	95
Cuadro N°2. 48: Reporte de volúmenes de relleno-corte	96
Cuadro N°2. 49: Resumen de volúmenes de movimiento de tierra	96
Cuadro $N^{\circ}2$. 50: Determinación de los factores "LEF" y el factor de camión "TF".	100
Cuadro N°2. 51: TPDA en los ejes mixtos de cada clase de vehículo por año	101
Cuadro N°2. 52: ESAL para cada tipo de vehículo de proyecto	102
Cuadro N°2. 53: Procesamiento de datos para el percentil	102
Cuadro N°2. 54: Análisis del diseño de espesores pavimento flexible	107
Cuadro N°2. 55: Análisis del diseño de espesores tratamiento superficial triple	109
Cuadro N°2. 56: htT para cunetas	111
Cuadro N°2. 57: Intensidad máxima para la cuneta	112
Cuadro N°2. 58: Área de aporte en cuneta	113
Cuadro N°2. 59: Ubicación por progresiva de la cuneta	116
Cuadro N°2. 60: Cálculo de tirante para cunetas triangulares	117

Cuadro N°2. 61: htT para alcantarillas de alivio	118
Cuadro N°2. 62: Intensidad máxima para alcantarilla de alivio	118
Cuadro N°2. 63: Resumen alcantarillas de cruce	125
Cuadro Nº2. 64: Computo métrico de tratamiento superficial	136
Cuadro Nº2. 65: Cómputo métrico de tratamiento superficial triple	146
Cuadro N°2. 66: Computo métrico de pavimento flexible	148
Cuadro N°2. 67: Computo métrico de pavimento flexible	158
Cuadro Nº2. 68: Presupuesto general de ejecución para tratamiento superficial triple	.160
Cuadro N°2. 69: Presupuesto general de ejecución para pavimento flexible	161
Cuadro N°2. 70: Precios unitarios	162