UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO

FACULTAD DE CIENCIAS Y TECNOLOGIA

CARRERA DE INGENIERIA CIVIL

DEPARTAMENTO DE ESTRUCTURAS Y CIENCIAS DE LOS MATERIALES

TOMO I

"DISEÑO ESTRUCTURAL DE CENTRO INTEGRAL SOCIAL Y CULTURAL DEL MUNICIPIO DE ENTRE RIOS"

Por:

ANDRES FERNANDEZ FIGUEROA

SEMESTRE I - 2023

Tarija-Bolivia

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL

DEPARTAMENTO DE ESTRUCTURAS Y CIENCIAS DE LOS MATERIALES

TOMO I

"DISEÑO ESTRUCTURAL DE CENTRO INTEGRAL SOCIAL Y CULTURAL DEL MUNICIPIO DE ENTRE RIOS"

Por:

ANDRES FERNANDEZ FIGUEROA

ELABORADO EN LA ASIGNATURA CIV-502
PROYECTO DE INGENERIA CIVIL II

SEMESTRE I - 2023

Tarija-Bolivia

DEDICATORIA:

Este proyecto dedico a Familia que me todas estuvieron dando su apoyo para que pueda cumplir mis metas a amigos que me dieron el apoyo necesario y sobre todo a mi y demostrarme que puedo lograr lo que me pueda prometer.

Dedicatoria

Agradecimientos

Pensamiento

Resumen

INDICE

1.ANTECEDENTES	24
1.1. El problema	24
1.1.1 Planteamiento.	24
1.1.2 Formulación.	24
1.1.3 Sistematización.	25
1.2. Objetivos	25
1.2.1 General.	25
1.2.2 Específicos.	26
1.3. Justificación	26
1.3.1 Académica.	26
1.3.2 Técnica.	26
1.3.3 Social.	27
1.4. Alcance del proyecto	27
1.4.1 General.	27
1.4.2 Análisis de Alternativas.	27
1.4.4 Aporte Académico.	27
1.5. Localización	27
1.5.1. Servicios básicos existentes	28
2. MARCO TEORICO	31
2.1. Levantamiento Topográfico.	31
2.2. Estudio de Suelos.	31
2.3. Diseño Arquitectónico.	32

2.4. Idealización de las estructuras.	32
2.4.1 Sustentación de la cubierta.	32
2.4.1 Sustentación de edificación.	33
2.5. Diseño Estructural.	35
2.5.1 Estructura de sustentación de Cubierta.	35
2.5.2 Estructura de sustentación de la Edificación.	50
2.6. Estrategia para la ejecución del proyecto.	72
2.6.1. Especificaciones técnicas.	73
2.6.2. Cómputos métricos.	73
2.6.3. Precios unitarios.	74
2.6.4. Presupuesto.	75
2.6.5. Planificación y cronograma.	76
3. INGENIERIA DEL PROYECTO	78
3.1. Análisis del Levantamiento topográfico.	78
3.2. Análisis del Estudio de Suelos.	79
3.3. Análisis del Diseño arquitectónico.	79
3.4. Planeamiento estructural.	80
3.4.1 Estructura de sustentación de Cubierta.	80
3.4.2 Estructura de sustentación de la Edificación.	82
3.5. Análisis, cálculo y diseño estructural	84
3.5.1 Estructura de sustentación de cubierta	84
3.5.2 Estructura de sustentación de la edificación.	115
3.6. Desarrollo de la estrategia para la ejecución del proyecto.	129
3.6.1. Especificaciones Técnicas.	129
3.6.2. Precios unitarios.	129
3.6.3. Cómputos Métricos.	132
3.6.4. Presupuesto	132
3.6.5. Planificación y cronograma.	132
4. APORTE ACADEMICO	134

4.1. Marco teórico.	134
4.1.1 Definición.	134
4.1.1.1 Sistema atirantado.	134
4.2. Alcance del aporte.	135
4.1.1 Normas de Diseño	135
4.1.2 Materiales para el diseño	137
4.1.3 Cargas Actuantes.	138
4.1.4 Combinaciones de Carga.	138
4.3. Producto – Aporte.	139
4.3.1 Determinación de cargas.	
4.3.2 Distribución de cargas sobre la cubierta	142
4.3.2 Análisis Estructural de estructuras metálicas.	145
4.3.4 Diseño de elementos.	148
5. CONCLUSIONES Y RECOMENDACIONES	157
5.1 Conclusiones	157
5.2 Recomendaciones	158

ÍNDICE DE ANEXOS

ANEXOS	160
ANEXO 1. Ábacos – Tablas – Análisis de Cargas.	162
1.1 Ábacos	162
1.2 Tablas	163
1.2.1 Tablas para el diseño de perfiles metálicos de acero conformado	163
1.3 Análisis y Metrado de Cargas.	182
ANEXO 2. Levantamiento Topográfico.	187
ANEXO 3. Estudio de suelos	192
ANEXO 4 Memoria de cálculo y diseño.	203
ANEXO 5 Especificaciones técnicas	289
ANEXO 6. Precios unitarios.	312
ANEXO 7. Cómputos métricos.	340
ANEXO 8. Presupuesto general.	353
ANEXO 9. Cronograma	355
ANEXO 10. Planos arquitectónicos y estructurales.	357

INDICE DE FIGURAS

Figura 1.1 Alternativa 1 de Formulación	24
Figura 1.2 Alternativa 2 de Formulación	25
Figura 1.3 Localización del proyecto	28
Figura 2.1 Idealización de la cubierta metalica	33
Figura 2.2 Idealización de la edificación.	34
Figura 2.3 Tipos de Soldadura	37
Figura 2.4 Flexión asimétrica.	48
Figura 2.5 Losa Alivianada con Viguetas pretensadas	54
Figura 2.6 Losa Casetonada	56
Figura 2.7 Modelos de Losa Nervada	58
Figura 2.8 Diagrama de esfuerzo parábola rectángulo	60
Figura 2.9 Nomogramas para Pórticos.	64
Figura 2.10 Abaco de diagrama de interacción para Columnas.	67
Figura 2.11 Zapata aislada sometida a M, V, N.	69
Figura 2.12 Tabla de Insumos para Precios Unitarios.	75
Figura 2.13 Parámetros de calculo	75
Figura 3.1 Levantamiento Topográfico.	78
Figura 3.2 Ubicación del Levantamiento Topográfico.	78
Figura 3.3 Modelo de Estructura de la cubierta 1.	80
Figura 3.4 Modelo de Estructura de la cubierta 2.	80
Figura 3.5 Modelo de Estructura de la cubierta 3.	81
Figura 3.6 Modelo de Estructura de la cubierta 4.	81
Figura 3.7 Modelo de Estructura de la cubierta 5.	81
Figura 3.8 Modelo de la estructura de edificación.	82

Figura 3.9 Modelo de cimentación.	83
Figura 3.10 Modelado de Graderías.	83
Figura 3.11 Idealización de la cercha	84
Figura 3.12 Representación de Carga Viva	88
Figura 3.13 Representación Carga Muerta	89
Figura 3.14 Representación Carga de Viento	89
Figura 3.15 Representación Carga de Granizo	89
Figura 3.16 Análisis Estructural de Correa en eje "X".	91
Figura 3.17 Análisis Estructural de Correa en eje "Y"	92
Figura 3.18 Perfil Tipo C 120x50x15x2.5 mm para las correas.	92
Figura 3.19 Análisis Estructural de Cordón Superior [Momento y Cortante]	95
Figura 3.20 Análisis Estructural de Cordón Superior [Axial].	95
Figura 3.21 Análisis Estructural de Cordón Inferior [Momento y Cortante]	96
Figura 3.22 Análisis Estructural de Cordón Inferior [Axial].	96
Figura 3.23 Perfil Tipo Cajon 120x40x2 mm para Cordón Sup-Inf.	97
Figura 3.24 Análisis Estructural de la Diagonal [Momento y Cortante].	102
Figura 3.25 Análisis Estructural de la Diagonal [Axial].	102
Figura 3.26 Perfil Tipo Cajon 80x40x2 para las Diagonales.	103
Figura 3.27 Análisis Estructural de Montante [Momento y Cortante]	105
Figura 3.28 Análisis Estructural de Montante [Axial].	106
Figura 3.29 Perfil Tipo Cajon 80x40x2 mm para Montantes.	106
Figura 3.30 Esquema de las uniones, cuerda superior y correa.	109
Figura 3.31 Espesor efectivo de la garganta.	111
Figura 3.32 Detallamiento de apoyo fijo para cerchas.	113
Figura 3.33 Detallamiento de apoyo fijo para cerchas.	114

Figura 3.34 Modelo 3d de apoyo fijo para cerchas.	115
Figura 3.35 Geometría de losa alivianada h=20cm	116
Figura 3.36 Geometría de losa alivianada h=25cm	117
Figura 3.37 Geometría de losa alivianada.	117
Figura 3.38 Dimensiones de Losa Casetonada	118
Figura 3.39 Armado de Losa Casetonada	118
Figura 3.40 Viga de mayor solicitación entre C115 – C98	119
Figura 3.41 Resultados de Cypecad	120
Figura 3.42 Armado de viga más solicitada.	121
Figura 3.43 Viga Solicitada	121
Figura 3.44 Armadura Transversal de viga.	123
Figura 3.45 Resultados de Cypecad	124
Figura 3.46 Columna C140	124
Figura 3.47 Esfuerzos últimos en columna C140	125
Figura 3.48 Disposición de Armadura Longitudinal	125
Figura 3.49 Resultados de columna C140	126
Figura 3.50 Dimensiones en planta de Gradería	128
Figura 3.51 Armadura Zapata Aislada	128
Figura 3.52 Armadura Zapata Combinada	129
Figura 3.53 Parámetros de cálculo para P.U.	131
Figura 4.1 Partes de la cubierta	134
Figura 4.2 Análisis de Aporte Académico.	135
Figura 4.3 Geometría de Cubierta Atirantada, Vista en Perfil.	139
Figura 4.4 Geometría de Cubierta Atirantada, Vista en planta.	140
Figura 4.5 Cargas Muertas sobre correas.	143

Figura 4.6 Cargas Vivas sobre correas.	144
Figura 4.7 Cargas de Viento sobre correas superiores.	144
Figura 4.8 Carga de Granizo	144
Figura 4.9 Hipótesis de Carga	145
Figura 4.10 Resultados de esfuerzos en correa	147
Figura 4.11 Resultados de esfuerzos en tirante	147
Figura 4.12 Sección Perfil Conformado	148
Figura 4.13 Verificación de perfiles de Acero	150
Figura 4.14 Esfuerzos en apoyos.	151
Figura A1.1 Nomogramas para Pórticos Intraslacionales y translacionales	162
Figura A1.2 Abaco de Diagrama de Interacción para Columnas	162
Figura A4.1 Junta de dilatación de la estructura	203
Figura A4.2 Idealización de la cercha	204
Figura A4.3 Geometría de Cubierta 1	208
Figura A4.4 Representación de Carga Viva	209
Figura A4.5 Representación Carga Muerta	209
Figura A4.6 Representación Carga de Viento	210
Figura A4.7 Representación Carga de Granizo	210
Figura A4.8 Análisis Estructural de Correa en eje "X".	213
Figura A4.9 Análisis Estructural de Correa en eje "Y"	213
Figura A4.10 Perfil Tipo C 120x50x15x2.5 mm para las correas.	214
Figura A4.11 Análisis Estructural de Cordón Superior [Momento y Cortante]	218
Figura A4.12 Análisis Estructural de Cordón Superior [Axial].	218
Figura A4.13 Análisis Estructural de Cordón Inferior [Momento y Cortante].	219
Figura A4.14 Análisis Estructural de Cordón Inferior [Axial].	219

Figura A4.15 Perfil Tipo Cajon 120x40x2 mm para Cordón Sup-Inf.	220
Figura A4.16 Análisis Estructural de la Diagonal [Momento y Cortante]	226
Figura A4.17 Análisis Estructural de la Diagonal [Axial].	227
Figura A4.18 Perfil Tipo Cajon 80x40x2 para las Diagonales.	227
Figura A4.19 Análisis Estructural de Montante [Momento y Cortante].	231
Figura A4.20 Análisis Estructural de Montante [Axial].	231
Figura A4.21 Perfil Tipo Cajon 80x40x2 mm para Montantes.	232
Figura A4.22 Esquema de las uniones, cuerda superior y correa.	235
Figura A4.23 Espesor efectivo de la garganta	236
Figura A4.24 Esfuerzos en los apoyos de cerchas	237
Figura A4.25 Diseño de apoyo fijo de cerchas	240
Figura A4.26 Detalla miento de apoyo fijo para cerchas.	241
Figura A4.27 Modelo 3d de apoyo fijo para cerchas.	242
Figura A4.28 Características técnicas de la vigueta	244
Figura A4.29 Geometría de losa alivianada h=20cm	245
Figura A4.30 Geometría de losa alivianada h=20cm	246
Figura A4.31 Disposición de viguetas pretensadas	246
Figura A4.32 Dimensiones de Losa Casetonada	247
Figura A4.33 Datos de Forjado Casetonado	248
Figura A4.34 Tabla de Coeficiente de Calculo Losa Casetonada.	249
Figura A4.35 Disposición de Losa Casetonada.	251
Figura A4.36 Viga de mayor solicitación	253
Figura A4.37 Viga Solicitada entre C115 – C98	253
Figura A4.38 Resultados de Cypecad	255
Figura A4.39 Armado de viga más solicitada.	256

Figura A4.40 Viga más Solicitada	256
Figura A4.41 Armadura Transversal de viga.	257
Figura A4.42 Resultados de Cypecad	258
Figura A4.43 Esfuerzos en la Columna C 140	259
Figura A4.44 Perspectiva y vista de la columna analizada	260
Figura A4.45 Abaco de Pórticos Instraslacionales	263
Figura A4.46 Tabla Relación Axil Reducido con B	264
Figura A4.47 Diagrama de interacción Adimensionales	265
Figura A4.48 Disposición de Armadura Longitudinal	266
Figura A4.49 Armadura longitudinal y transversal con el programa CypeCad	267
Figura A4.50 Dimensiones en planta de Gradería	268
Figura A4.51 Representación de cargas en Gradería.	270
Figura A4.52 Representación de esfuerzos cortantes en gradería.	271
Figura A4.53 Representación de esfuerzos de momentos en gradería.	271
Figura A4.54 Detalle de armadura de Gradería.	273
Figura A4.55 Esfuerzos por estado de servicio Columna C140.	275
Figura A4.56 Esfuerzos Últimos en Columna C140.	275
Figura A4.57 Disposición de Armaduras de Fundaciones.	280
Figura A4.58 Cargas de Servicio para C124	281
Figura A4.59 Cargas ultimas para C124	281
Figura A4.60 Cargas de Servicio para C175	282
Figura A4.61 Cargas ultimas para C175	282
Figura A4.62 Dimensiones de la fundación.	283
Figura A4.63 Introducción de cargas	285
Figura A4.64 Esfuerzos de momentos en zapata	285

Figura A4.65 Zapata junta de dilatación287	

INDICE DE TABLAS

Tabla 2.1 Tipos de acero y resistencias.	35
Tabla 2.2 Factor de reducción de resistencias.	36
Tabla 2.3 Tabla Características de electrodo respecto al acero	37
Tabla 2.4 Velocidades Básicas del viento en ciudades.	38
Tabla 2.5 Tabla de Direccionalidad K _d	41
Tabla 2.6 Categorías de Estructuras	41
Tabla 2.7 Coeficiente de exposición K _z y K _h .	44
Tabla 2.8 Factor topográfico Kzt	45
Tabla 2.9 Resistencia del hormigón en función del tipo de acero	50
Tabla 2.10 Resistencia del hormigón en función del tipo de acero	50
Tabla 2.11 Coeficientes minoración de Resistencias.	51
Tabla 2.12 Coeficientes de mayoración de cargas.	51
Tabla 2.13 Valores de Sobre Carga.	52
Tabla 2.14 Tabla Para cómputos métricos	74
Tabla 3.1 Análisis del estudio de suelos	79
Tabla 3.2 Tabla Características de electrodo respecto al acero	109
Tabla 3.3 Características para el diseño de soldadura.	110
Tabla 3.4 Tabla de coeficientes de seguridad para soldadura.	110
Tabla 4.1 Tipos de acero y resistencias.	136
Tabla 4.2 Factor de reducción de resistencias.	136
Tabla A1.1 Tipos de Acero	163
Tabla A1.2 Factor de reducción de resistencias.	163
Tabla A1.3 Acción del viento en cubierta a 1 agua y valores de Cp	164
Tabla A1.4 Velocidades Básicas del viento en ciudades	164

Tabla A1.5 Tabla de Direccionalidad K _d	167
Tabla A1.6 Categorías de Estructuras	168
Tabla A1.7 Coeficiente de exposición K _z y K _h .	169
Tabla A1.8 Factor topográfico Kzt	170
Tabla A1.9Resistencias del hormigón en función del tipo de acero	170
Tabla A1.10 Tabla Resistencia característica del hormigón.	170
Tabla A1.11 Coeficientes de reducción de resistencias.	171
Tabla A1.12 Valores de Sobrecarga de Uso.	171
Tabla A1.13 Cargas Gravitacionales Norma AISI	172
Tabla A1.14 Cuantías geométricas para elementos de H°A°.	173
Tabla A1.15 Cuantías geométricas mínimas.	173
Tabla A1.16 Abaco Universal Para flexión simple	173
Tabla A1.17 Perfiles Costanera Conformado en frio	174
Tabla A1.18 Perfiles Tipo Cajon Conformado en frio.	175
Tabla A1.19 Tabla de momentos admisibles para viguetas pretensadas.	176
Tabla A1.20 Relación de vacíos, contenido de agua y peso específico seco, t	ípicos de
algunos suelos.	176
Tabla A1.21 Planilla de cómputos métricos	177
Tabla A1.22 Planilla para Presupuesto General	177
Tabla A1.23 Tablas para diseño de losas nervadas.	177
Tabla A1.24 Tabla de recubrimiento mínimo en [mm].	179
Tabla A1.25 Tabla Características de electrodo respecto al acero	179
Tabla A1.26 Valores de coeficientes de seguridad para soldadura.	179
Tabla A1.27 Tabla Características de acero ACINDAR.	180
Tabla A1.28 Características Electrodos ACINDAR	181

Tabla A4.32 Características de electrodo respecto al acero	2:	3	Ę)
--	----	---	---	---