ANEXO A INFORME DE LABORATORIO

Anexo A.1

Versión 01 Fecha de emisión: 2016-10-31

CEANID-FOR-88

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"
Laboratorio Oficial del Ministerio de Salud y Deportes
Red de Laboratorios Oficiales de Análisis de Alimentos
Red Nacional de Laboratorios de Micronutrientes
Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

	I. INFORMACIÓN DEL SOLICITANTE							
Cliente:	Fanny Ximena Mamani Flores							
Solicitante:	Fanny Ximena Mamani Flores							
Dirección:	Barrio Narciso Campero - Electo Diaz N° 1860							
Teléfono/Fax	77814657	Correo-e	***	Código	AL 201/18			

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Jugo de naranj	а					
Codigo de muestreo:	***	Fecha de vencimiento: ***		***	Lote: *****		
Fecha y hora de muestreo:	2018-08-01	Hrs 9:00					
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercad	Tarija - Cercado - Tarija Bolivia					
Lugar de muestreo:	Lugar de elaboración						
Responsable de muestreo:	Fanny X. Mama	ani F.					
Código de la muestra:	666 FQ 427 M	B 406	Fecha de recepció	n de la muestra:	2018-08-01		
Cantidad recibida:	1000 ml		Fecha de ejecución	n de ensayo:	De 2018-08-01 al 2018-08-		

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO	UNIDAD	DESILITADO	LIMITES PERMISIBLES	REFERENCIA DE
PARAIVIETRO	DE ENSAYO	UNIDAD	RESULTADO	Min. Max.	LOS LIMITES
Ceniza	NB 39034:10	%	0,34	Sin Referencia	Sin Referencia
Fibra	Gravimétrico	%	n.d.	Sin Referencia	Sin Referencia
Grasa	NB 313019:06	%	0,21	Sin Referencia	Sin Referencia
Hidratos de Carbono	Cálculo	%	8,61	Sin Referencia	Sin Referencia
Humedad	NB 313010:05	%	90,,24	Sin Referencia	Sin Referencia
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	0,60	Sin Referencia	Sin Referencia
Valor energetico	Cálculo	Kcal/100 g	38,73	Sin Referencia	Sin Referencia
B. A. Mesofilos	NB 32003:05	UFC/ml	< 1,0 x 10 ¹ (*)	Sin Referencia	Sin Referencia
Coliformes totales	NB 32005:02	UFC/ml	< 1,0 x 10 ¹ (*)	Sin Referencia	Sin Referencia
Mohos y Levaduras	NB 32006:03	UFC/ml	1,2 x 10 ²	Sin Referencia	Sin Referencia
NB: Norma Boliviana	Kcal: Kiloo	alorias			

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 10 de agosto del 2018

Ing. Adalid Aceituno Cáceres
JEFE DEL CEANID

ISO: Organización Internacional de Normalización

Original: Cliente

CEANID-FOR-88 Versión 01 Fecha de emisión: 2016-10-31

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"
Laboratorio Oficial del Ministerio de Salud y Deportes
Red de Laboratorios Oficiales de Análisis de Alimentos
Red Nacional de Laboratorios de Micronutrientes
Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

I. INFORMACIÓN DEL SOLICITANTE							
Cliente:	Fanny Ximena Mamani Flore	25 -					
Solicitante:	Fanny Ximena Mamani Flore	es .					
Dirección:	Barrio Narciso Campero - Ele	ecto Diaz N° 1860	0				
Teléfono/Fax:	77814657	Correo-e	****	Código	AL 049/19		

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Jugo de jengib	re				
Codigo de muestreo:	***	Fecha d	e vencimiento: ***	Lote:	****	
Fecha y hora de muestreo:	2019-03-26		Hrs 17:00			
Procedencia (Localidad/Prov/ Dpto)	LTA/Tarija - Cercado - Tarija Bolivia					
Lugar de muestreo:	Lugar de elaboración					
Responsable de muestreo:	Fanny X. Mam	ani F.				
Código de la muestra:	188 FQ 092 M	B 146	Fecha de recepción de la muestra:	7	2019-03-28	
Cantidad recibida:	800 ml		Fecha de ejecución de ensayo:	De 2019-	03-28 al 2019-04-05	

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO	UNIDAD	RESULTADO	LIMITES PER	RMISIBLES	REFERENCIA DE
TAKAMETKO	DE ENSAYO	ONIDAD	RESOLIADO	Min.	Max.	LOS LIMITES
Ceniza	NB 39034:10	%	0,41	Sin Refe	rencia	Sin Referencia
Fibra	Gravimétrico	%	n.d.	Sin Refe	rencia	Sin Referencia
Grasa	NB 313019:06	%	0,02	Sin Refe	rencia	Sin Referencia
Hidratos de Carbono	Cálculo	%	7,69	Sin Refe	rencia	Sin Referencia
Humedad	NB 313010:05	%	91,08	Sin Refe	rencia	Sin Referencia
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	0,80	Sin Refe	rencia	Sin Referencia
Valor energetico	Cálculo	Kcal/100 g	34,14	Sin Refe	rencia	Sin Referencia
B. A. Mesofilos	NB 32003:05	UFC/ml	7,9 x 10 ⁵	Sin Refe	rencia	Sin Referencia
Coliformes totales	NB 32005:02	UFC/ml	6,3 x 10 ⁴	Sin Refe	rencia	Sin Referencia
Mohos y Levaduras	NB 32006:03	UFC/ml	1,1 x 10 3	Sin Refe	rencia	Sin Referencia
NB: Norma Boliviana UFC: Unidad formadora de colonias	Kcal: Kilo: ISO: Orga		nal de Normalización		n.d.: No detecto < : menor que	ndo

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 05 de abril del 2019

Ing. Adalid Aceitudo Cáceles
JEFE DEL CEANID

Original: Cliente

Copia: CEANII

CEANID-FOR-88 Versión 01 Fecha de emisión: 2016-10-31

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

I. INFORMACIÓN DEL SOLICITANTE								
Cliente:	Fanny Ximena Mama	ni Flores						
Solicitante:	Fanny Ximena Mama	ni Flores						
Dirección:	Barrio Narciso Campe	ero - Electo Diaz N° 1860						
Teléfono/Fax:	77814657	Correo-e	••••	Código	AL 237/18			

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Nectar de naranja con miel de abeja y jengibre						
Codigo de muestreo:	***	Fecha de vencimiento:		Lote: *****			
Fecha y hora de muestreo:	2018-08-30	2018-08-30 Hrs 17:00					
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercad	Tarija - Cercado - Tarija Bolivia					
Lugar de muestreo:	Lugar de elaboración						
Responsable de muestreo:	Fanny X. Mam	ani F.					
Código de la muestra:	781 FQ 475 MB 496 Fecha de recepción de la muestra: 2018-08-31						
Cantidad recibida:	1500 ml	1500 ml Fecha de ejecución de ensayo: De					

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO	UNIDAD	RESULTADO	LIMITES PERMISIBLES	REFERENCIA DE	
	DE ENSAYO			Min. Max.	LOS LIMITES	
Ceniza	NB 39034:10	%	0,14	Sin Referencia	Sin Referencia	
Fibra	Gravimétrico	%	n.d.	Sin Referencia	Sin Referencia	
Grasa	NB 313019:06	%	0,30	Sin Referencia	Sin Referencia	
Hidratos de Carbono	Cálculo	%	11,88	Sin Referencia	Sin Referencia	
Humedad	NB 313010:05	%	86,89	Sin Referencia	Sin Referencia	
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	0,79	Sin Referencia	Sin Referencia	
Valor energetico	Cálculo	Kcal/100 g	53,48	Sin Referencia	Sin Referencia	
B. A. Mesofilos	NB 32003:05	UFC/ml	< 1,0 x 10 1 (*)	Sin Referencia	Sin Referencia	
Coliformes totales	NB 32005:02	UFC/ml	< 1,0 x 10 1 (*)	Sin Referencia	Sin Referencia	
Mohos y Levaduras	NB 32006:03	UFC/ml	< 1,0 x 10 1 (*)	Sin Referencia	Sin Referencia	

UFC: Unidad formadora de calanias

ISO: Organización Internacional de Normalización

n d - No detectodo « menor que g: grames

(*): No se observa desarrollo de colonias 1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

%: parcentaje

2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 14 de septiembre del 2018

dalid Aceitung Cácere

JEFE DEL CEANID

ANEXO B FORMATO DE TEST DE EVALUACION SENSORIAL

Anexo B.1 (Test 1)

Evaluación sensorial del primer prototipo en el primer grupo con miel de abeja (subsidio
y variando jengibre

Nombre:	·····		. Fecha://
Sat:			Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras				
sabor					
Escala	NS₁	NS_2	NS ₃		
(1)					
(2)					
(3)					
(4)					
(F)					

Atributo		Muestras	
color			
Escala	NS ₁	NS_2	NS ₃
(1)			
(2)			
(3)			
(4)			
(5)			

Atributo	Muestras					
aroma						
Escala	NS ₁	NS ₂	NS₃			
(1)						
(2)						
(3)						
(4)						
(5)						

Atributo acidez		Muestras	3
Escala	NS ₁	NS ₂	NS₃
(1)			
(2)			
(3)			
(4)			
(5)			

Atributo		Muestras	
viscosidad			
Escala	NS ₁	NS ₂	NS₃
(1)			
(2)			
(3)			
(4)			
(5)			

Cua	l mue	estra	es c	le su	ı ma	yor	agrad	do y	por	que	 	 	 	 	 	

Anexo B.2 (Test 2)

Evaluación sensorial del primer prototipo en el segundo grupo con y miel de abeja (Tariquia) y variando jengibre

Nombre:	Fecha://
Set:	Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras				
sabor					
Escala	NT ₁	NT ₂	NT ₃		
(1)					
(2)					
(3)					
(4)					
(5)					

Atributo		Muestras	
color			
Escala	NT ₁	NT ₂	NT ₃
(1)			
(2)			
(3)			
(4)			
(5)			

Atributo	Muestras					
aroma						
Escala	NT ₁	NT_2	NT ₃			
(1)						
(2)						
(3)						
(4)						
(5)						

Atributo		Muestras	3
acidez			
Escala	NT ₁	NT_2	NT ₃
(1)			
(2)			
(3)			
(4)			
(5)			

Atributo viscosidad		Muestras	
Escala	NT ₁	NT ₂	NT ₃
(1)			
(2)			
(3)			
(4)			
(5)			

Cual muestra es de su mayor agrado y porque	

Anexo B. 3 (Test 3)

Evaluación sensorial del segundo prototipo en el primer grupo con miel de abeja (subsidio) y variando jengibre

Nombre:	Fecha://
Set:	Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras	
sabor		
Escala	NS ₄	NS ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
color		
Escala	NS ₄	NS ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
aroma		
Escala	NS ₄	NS₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
acidez		
Escala	NS ₄	NS ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo viscosidad	Muestras	
Escala	NS ₄	NS_5
(1)		
(2)		
(3)		
(4)		
(5)		

Cual muestra es	s de su mayor a	grado y porque	 	

Anexo B. 4 (Test 4)

Evaluación sensorial del segundo prototipo en el segundo grupo con miel de abeja (Tariquia) y variando jengibre

Nombre:	Fecha://
Set:	Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras	
sabor		
Escala	NT ₄	NT ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
color		
Escala	NT ₄	NT ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
aroma		
Escala	NT ₄	NT ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo acidez	Muestras	
Escala	NT ₄	NT ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo viscosidad	Mue	estras
Escala	NT ₄	NT ₅
(1)		
(2)		
(3)		
(4)		
(5)		

Cual muestra es de su mayor agrado y	porque

Anexo B .5 (Test 5)

Evaluación sensorial del tercer prototipo en el primer grupo con miel de abeja (subsidio), jengibre y variando carboximetil celulosa

Nombre:	Fecha://
Set:	Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras	
sabor		
Escala	NS ₆	NS ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
color		
Escala	NS ₆	NS ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Mue	stras
aroma		
Escala	NS ₆	NS ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo acidez	Mue	estras
Escala	NS ₆	NS ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Mue	stras
viscosidad		
Escala	NS ₆	NS ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Cual muestra es de su mayor agrado y porque	

Anexo B. 6 (Test 6)

Evaluación sensorial del tercer prototipo en el segundo grupo con miel de abeja (Tariquia), jengibre y variando carboximetil celulosa

Nombre:	Fecha://
Set:	Hora:

- (1) Me agrada mucho
- (2) Me agrada poco
- (3) No me agrada ni desagrada
- (4) Me desagrada poco
- (5) Me desagrada mucho

Atributo	Muestras	
sabor		
Escala	NT ₆	NT ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Muestras	
color		
Escala	NT ₆	NT ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo	Mue	stras
aroma		
Escala	NT ₆	NT ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo Acidez	Mue	estras
Escala	NT ₆	NT ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Atributo viscosidad	Mue	estras
Escala	NT ₆	NT ₇
(1)		
(2)		
(3)		
(4)		
(5)		

Cuál de las dos muestra	s prefiere	 	

Anexo B. 7 (Test 7)

Evaluación sensorial en el cuarto prototipo para elegir la muestra ideal

Atributo sabor Muestras Escala NS ₈ NT ₈ (1) (2) (3) (4) (5) (4) (1) (2) (3) (4) (5) (5) Atributo Atributo Atributo Atributo Atributo Muestras Atributo Atributo Muestras Atributo Atributo (1) (2) (2) (3) (3) (4) (4) (4) (5) (5) Atributo Muestras Muestras Atributo Muestras				 Me agrada Me agrada No me agr Me desagr Me desagr 	poco ada ni de ada poce	0			
Escala NS ₈ NT ₈ (1) (1) (2) (2) (3) (3) (4) (4) (5) (5) Atributo At	Atributo	Mue	stras	7		Atributo	Mue	estras	7
(1) (2) (3) (3) (4) (4) (5) (5) Atributo Atrib						color			
(2) (3) (3) (3) (4) (4) (5) (5) Atributo aroma Muestras acidez Escala NS ₈ NT ₈ Escala NS ₈ NT ₈ (1) (1) (2) (2) (3) (3) (4) (4) (5) (5)		NS ₈	NT ₈				NS ₈	NT ₈	_
(3) (4) (4) (5) (5) (5) (5) Atributo (5) Muestras acidez Escala NS ₈ NT ₈ (1) Escala NS ₈ NT ₈ NS ₈ NT ₈ (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (5)				_		` '			_
(4) (4) (5) (5) Atributo aroma Muestras acidez Escala NS ₈ NT ₈ (1) (1) (2) (2) (3) (3) (4) (4) (5) (5)	(2)					(2)			
Atributo aroma Muestras acidez Escala NS ₈ NT ₈ (1) (1) (2) (2) (3) (3) (4) (4) (5) (5)	(3)					(3)			
Atributo aroma Muestras acidez Escala NS ₈ NT ₈ (1) (1) (2) (2) (3) (3) (4) (4) (5) (5)	(4)					(4)			
aroma acidez Escala NS ₈ NT ₈ (1) (1) (1) (2) (2) (2) (3) (3) (4) (5) (5) (5)	(5)					(5)			
(1) (2) (3) (3) (4) (4) (5) (5)		Mue	stras				Mue	stras	
(1) (2) (3) (3) (4) (4) (5) (5)	Escala	NS ₈	NT ₈				NS ₈	NT ₈	
(2) (3) (4) (5)							- 0		
(3) (4) (5) (5)						` ,			
(4) (5) (5)									
(5)						` '			
						` '			
Atributo Muestras	(0)				ļ	(0)			
viscosidad				viscosidad					
Escala NS ₈ NT ₈					NS ₈	NT ₈			
(1)									
				· /					
(3)									
				(5)					
				(4)					
				(2)					
				(3)					
				· /					
			-	· /		+			
				(4)					
(3)			-			+			
(3) (4)				(5)					
(3) (4)				(3)					
(3) (4)									
(3) (4)									
(3) (4)									
(3) (4)									
(3) (4)									
(3) (4)	ál do loc do	e muoetr	ac profior	o como muost	tra idaal:				
(3) (4) (5)	ál de las do	s muestra	as prefier	e como muest	tra ideal:				
(3) (4) (5)	uál de las do	s muestra	as prefier	e como muest	tra ideal:				
(3) (4)			NS ₈						

ANEXO C RESULTADOS DEL ANÁLISIS ESTADÍSTICO

Anexo C

Metodología para realizar el análisis estadístico Tukey

Según (Ureña, 1999), para realizar el análisis estadístico Fisher se deben seguir los siguientes pasos:

En la tabla C.I, se detalla el diseño de bloques completamente randomizado de los tratamientos (muestras) vs jueces (bloques) de una prueba experimental.

Tabla C.I

Diseño de bloques completamente randomizado

Jueces	1	2	3	4	n	Total
1	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X _{1n}	B ₁
2	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X _{2n}	B ₂
3	X ₃₁	X ₃₂	X ₃₃	X ₃₄	X _{3n}	B ₃
K	T _{K1}	T _{K2}	T _{K3}	T _{K4}	T _{Kn}	Bx
Total (Tj)	T ₁	T ₂	T ₃	Tn	Tn	G

Fuente: Ureña, 1999

I. Planteamiento de la hipótesis

- Hp:no hay diferencia entre los tratamientos(muestras)

- Ha: al menos una muestra es diferente a las demás

II. Nivel de significancia: 0,05 (5%)
III. Prueba de significancia: "Fisher "

IV. Suposiciones:

Los datos siguen una distribución normal (-N)

- Los datos son extraídos de un muestreo al azar

V. Los criterios de decisión a tomar en cuenta son:

Se acepta la Hp si Fcal<Ftab (no se realiza la prueba de Tukey) Se rechaza la Hp si Fcal>Ftab (se realiza la prueba de Tukey)

VI. construcción del cuadro ANVA

Para realizar la construcción del cuadro de ANVA, se toma en cuenta las expresiones matemáticas.

Grados de libertad:

GL _v = Grados de libertad de variable = m - 1
GL _j = Grados de libertad de jueces = n- 1
GL _t = Grados de libertad de totales = (n)(m) - 1
$GL_r = Grados de libertad de residual = GL_t - GL_v - GL_i$

FC = Factor de corrección =
$$\frac{TT^2}{(n)(m)}$$

Total, de observación (TT)

$$TT = \sum X_{ij}$$

• Suma de cuadrados de variable (SC_V)

$$SC_V = \frac{[(T_{c1})^2 + (T_{c2})^2 + ... + (T_{cn})^2]}{n} - FC$$

Suma de cuadrados de los jueces (SC_i)

$$SC_j = \frac{[(T_{j1})^2 + (T_{j2})^2 + ... + (T_{jn})^2]}{n} - FC$$

Suma de cuadrados totales (SCt)

$$SC_t = [(X_{11})^2 + (X_{12})^2 + ... + (X_{mn})^2] - FC$$

Suma de cuadrados residuales (SC_r)

$$SC_r = SC_t + SC_v + SC_i$$

Varianza estimada o cuadrados medios:

V _v = Varianza debida a la variable = SC _v /GL _v
V _j = Varianza debida alos jueces = SC _i / GL _j
V_r = Varianza residual = SC_r / GL_r

Valor de F calculado:

$$F_v = V_v / V_r$$
 $F_r = V_j / V_r$

• Valor de F tabulado:

$GL(m) = GL_v/GL_r$	$GL(n) = GL_j/GL_r$

Tabla C.II

Cuadro de ANVA para los atributos

Fuente de variación (FV)	Grados libertad (GL)	Suma de cuadrados (SC)	Cuadrados medios (CM)	Fcal	Ftab
Total	(na – 1)	SS (T)			
Tratamientos	(m-1)	SS (A)	SS (A)	CM(A)	$GL_{SS(A)}$
(A)	(111-1)	33 (A)	(a – 1)	CM(E)	$GL_{SS(E)}$
Jugges (P)	(n 1)	SS (B)	SS (B)	CM(B)	$GL_{SS(B)}$
Jueces (B)	(n-1)	33 (b)	$\overline{(n-1)}$	CM(E)	$\overline{GL_{SS(E)}}$
Error (E)	(a-1) (n-1)	SS (E)	SS (E)		
LIIOI (L)	(a-1) (11-1)	33 (L)	(a-1)(n-1)		

Fuente: Ureña, 1999

• Ordenamiento de las medias (promedio) para cada tratamiento

Medias	A, B, C, D, F, E
	C, E, A, D, B, F

Cálculo del error estándar:

$$\mathsf{E} = \left(\frac{CM}{j}\right)^{1/2}$$

Donde: CM es la varianza (cuadrado medio) para el error.

• Rango estudiantizados significativos (valores de tablas):

R.E.S. =
$$\frac{variables}{GL_v}$$

Diferencia mínima significativa:

Tabla C.III

Comprobando Diferencia > a DMS son significantes

Tratamiento	Valor	Diferencia	significancia
N1 – N2		<> DMS	No, si hay significancia

Fuente: Ureña, 1999

Análisis estadístico del primer prototipo en el primer grupo con miel de abeja (subsidio) y variando jengibre

Tabla C.1

Evaluación sensorial del primer prototipo
en el primer grupo

Atributo sabor NS1 NS₂ NS3 **Jueces** Τj Xij 3,64 4,2 Promedio 3,88

Fuente: Elaboración propia

Tabla C.2

Análisis de varianza para el atributo sabor

ziriarioro do rarrariza para er atributo caber					
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	2	3,95	1,97	3,02	3,19
Jueces	24	31,01	1,29	1,98	1,87
Error	48	31,39	0,65		
Total	74	66,35			

Fuente: Elaboración propia

Tabla C.3

Evaluación del primer prototipo en el primer grupo

Atributo color					
Jueces	NS1	NS2	NS3		
1	5	5	5		
2	4	5	5		
3	4	4	5		
4	4	5	5		
5	4	3	3		
6	5	5	5		
7	2	2	2		
8	5	5	5		
9	5	3	4		
10	4	5	5		
11	4	4	5		
12	4	3	3		
13	3	4	5		
14	3	4	4		
15	3	3	4		
16	5	4	4		
17	2	5	1		
18	4	5	4		
19	3	3	5		
20	3	4	3		
21	4	5	4		
22	5	4	4		
23	3	4	3		
24	4	4	5		
25	5	4	5		
Tj	97	102	103		
Xij	397	434	453		
Promedio	3,88	4,08	4,12		

Fuente: Elaboración propia

Tabla C.4

Análisis de varianza para el atributo color

FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	2	0,83	0,41	0,77	3,19
Jueces	24	41,28	1,72	3,20	1,87
Error	48	25,84	0,54		
Total	74	67.95			

Tabla C.5
Evaluación sensorial del primer prototipo en el primer grupo

	Atributo		
Jueces	NS1	NS2	NS3
1	3	5	5
2	5	5	5
3	4	4	5
4	5	3	4
5	4	3	4
6	5	5	5
7	3	3	3
8	5	4	5
9	4	3	3
10	4	5	4
11	4	5	4
12	3	4	3
13	3	4	5
14	4	3	4
15	3	3	4
16	4	4	5
17	2	3	5
18	4	4	5
19	3	4	3
20	2	5	3
21	4	5	4
22	5	3	4
23	3	3	4
24	4	4	5
25	3	2	2
Tj	93	96	103
Xij	365	388	443
Promedio	3,72	3,84	4,12

Tabla C.6

Análisis de varianza para el atributo
aroma

aroma						
FV	GL	SC	CM	Fcal	Ftab	
Tratamientos	2	2,11	1,05	1,90	3,19	
Jueces	24	30,48	1,27	2,30	1,87	
Error	48	26,56	0,55			
Total	74	59,15				

Fuente: Elaboración propia

Tabla C.7

Evaluación sensorial del primer prototipo en el primer grupo

Atributo acidez					
Jueces	NS1	NS2	NS3		
1	3	4	5		
2	4	5	5		
3	4	5	3		
4	4	4	5		
5	4	5	3		
6	5	4	5		
7	2	2	2		
8	5	4	5		
9	5	2	4		
10	4	5	4		
11	4	5	5		
12	4	3	3		
13	2	4	5		
14	3	4	4		
15	4	3	4		
16	4	4	5		
17	2	2	4		
18	4	4	5		
19	2	4	5		
20	5	4	5		
21	5	4	4		
22	5	4	4		
23	3	4	3		
24	5	4	4		
25	3	2	2		
Tj	95	95	103		
Xij	387	383	447		
Promedio	3,8	3,8	4,12		

Fuente: Elaboración propia

Tabla C.8

Análisis de varianza para el atributo
acidez

acidez						
FV GL SC CM Fcal Ftal						
Tratamientos	2	1,71	0,85	1,27	3,19	
Jueces	24	38,35	1,60	2,37	1,87	
Error	48	32,29	0,67			
Total	74	72,35				

Tabla C.9

Evaluación sensorial del primer prototipo en el primer grupo

Atributo viscosidad					
Jueces	NS1	NS2	NS3		
1	4	5	5		
3	4	5	4		
	4	5	4		
4	4	5	5		
5	3	3 5	3		
6	5		4		
7	2 5	3	3		
8	5	4	4		
9	5	4	5		
10	5	5	4		
11	4	4	5		
12	3	4	3		
13	2	4	5		
14	4	4	4		
15	4	4	4		
16	5	4	4		
17	2	2	5		
18	4	4	5		
19	3	3	4		
20	5	5	4		
21	4	4	5		
22	5	4	3		
23	4	3	4		
24	4	4	5		
25	4	4	4		
Tj	98	101	105		
Xij	406	423	453		
Promedio	3,92	4,04	4,2		

Tabla C.10

Análisis de varianza para el atributo viscosidad

7 III alloid de Vallailea para el adilbate Vietosiada					
FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	2	0,99	0,49	1,00	3,19
Jueces	24	25,12	1,05	2,12	1,87
Error	48	23,68	0,49		
Total	74	49,79			

Análisis estadístico del primer prototipo en el segundo grupo con miel de abeja (*Tariquia*) y variando jengibre

Tabla C.11

Evaluación sensorial del primer prototipo en el segundo grupo

	Atributo sabor					
Jueces	NT1	NT2	NT3			
1	4	4	3			
2	4	4	5			
3	4	4	5			
4	3	3	5			
5	2	5	4			
6	3	4	4			
7	2	5	5			
8	3	5	2			
9	4	3	2			
10	4	3	3			
11	5	4	5			
12	4	5	3			
13	5	2 4	4			
14	5		5			
15	4	3	5			
16	3	2 4	4			
17	4		5			
18	5	4	5			
19	3	4	3			
20	2	4	2			
21	4	4	5			
22	3	4	4			
23	3	2	3			
24	3	2	4			
25	4	5	4			
Tj	90	93	99			
Xij	344	369	419			
Promedio	3,6	3,72	3,96			

Fuente: Elaboración propia

Tabla C.12

Análisis de varianza para el atributo sabor

/ III all old ad la		pa.a o.			
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	2	1,52	0,76	1,49	3,19
Jueces	24	49,28	2,05	4,03	1,87
Error	48	24,48	0,51		
Total	74	75,28			

Fuente: Elaboración propia

Tabla C.13
Evaluación sensorial del primer prototipo
en el segundo grupo

	Atributo	Atributo color				
Jueces	NT1	NT2	NT3			
1	5	3	3			
2	5	4	4			
3	4	4	5			
4	5	5	5			
5	3	3	3			
6	3	3	4			
7	4	5	5			
8	5	3	5			
9	4	3	3			
10	4	5	5			
11	1	3	1			
12	3	4	5			
13	3	3	4			
14	4	4	3			
15	3	3	4			
16	2	3	4			
17	4	3	4			
18	3	3	3			
19	5	4	3			
20	2	3	3			
21	3	5	5			
22	4	3	4			
23	2	2	2			
24	3	3	4			
25	5	4	5			
Tj	89	88	96			
Xij	347	326	396			
Promedio	3,56	3,52	3,84			

Fuente: Elaboración propia

Tabla C.14

Análisis de varianza para el atributo color

FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	2	1,52	0,76	1,49	3,19
Jueces	24	49,28	2,05	4,03	1,87
Error	48	24,48	0,51		
Total	74	75,28			

Tabla C.15

Evaluación sensorial del primer prototipo
en el segundo grupo

Atributo aroma NT1 NT2 NT3 **Jueces** Τj Xij Promedio 3,52 3,24 3,68

Tabla C.16

Análisis de varianza para el atributo aroma

FV	GL	SC	CM	Fcal	Ftab	
Tratamientos	2	2,48	1,24	1,71	3,19	
Jueces	24	35,39	1,47	2,03	1,87	
Error	48	34,85	0,73			
Total	74	72,72				

Fuente: Elaboración propia

Tabla C.17
Evaluación sensorial del primer prototipo en el segundo grupo

Atributo acidez							
Jueces	NT1	NT2	NT3				
1	4	3	3				
2	3	5	4				
3	4	4	4				
4	4	4	4				
5	2	4	4				
6	3	3	4				
7	5	5	5				
8	4	2 3 3	5				
9	4	3	2				
10	4	3	3				
11	5	4	5				
12	4	3	3				
13	3	3	4				
14	3	5	4				
15	4	3	4				
16	4	2 5	3				
17	5		5				
18	3	2	5				
19	3	3 2	4				
20	3		3				
21	5	5	5				
22	3	4	5				
23	3	3	3				
24	2	3	4				
25	5	5	3				
Tj	92	88	98				
Xij	358	336	402				
Promedio	3,68	3,52	3,92				

Fuente: Elaboración propia

Tabla C.18

Análisis de varianza para el atributo
acidez

aciuez									
FV	GL	SC	CM	Fcal	Ftab				
Tratamientos	2	2,03	1,01	1,59	3,19				
Jueces	24	32,88	1,37	2,15	1,87				
Error	48	30,64	0,64						
Total	74	65,55							

Evaluación sensorial del primer prototipo en el segundo grupo
Atributo viscosidad

Atributo viscosidad							
Jueces	NT1	NT2	NT3				
1	5	3	3				
2	4	5	4				
3	4	4	5				
4	4	4	4				
5	3	4	3				
6	3	3	3				
7	4	4	5				
8	5	2	5				
9	5	3	3				
10	5	3	4				
11	5	4	1				
12	5	5	5				
13	5	4	1				
14	4	5	4				
15	3	4	4				
16	3	3	4				
17	3	4	5				
18	5	5	5				
19	4	4	3				
20	3	4	3				
21	4	4	5				
22	4	4	4				
23	3	3	3				
24	4	4	4				
25	4	4	5				
Tj	101	96	95				
Xij	423	382	393				
Promedio	4,04	3,84	3,8				

Tabla C.20

Tabla C.19

Análisis de varianza para el atributo viscosidad

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	2	0,83	0,41	0,51	3,19
Jueces	24	21,15	0,88	1,08	1,87
Error	48	39,17	0,82		
Total	74	61,15			

Análisis estadístico del segundo prototipo en el primer grupo con miel de abeja (subsidio) y variando jengibre

Tabla C.21

Evaluación sensorial del segundo prototipo en el primer grupo

Atributo sabor NS4 NS5 Jueces Τj Xij 4,08 **Promedio** 4,48

Fuente: Elaboración propia

Tabla C.22

Análisis de varianza para el atributo sabor

Analisis de varianza para el atributo sabol						
FV	GL	SC	CM	Fcal	Ftab	
Tratamientos	1	2,00	2,00	2,40	4,26	
Jueces	24	10,08	0,42	0,50	1,99	
Error	24	20,00	0,83			
Total	49	32 08				

Fuente: Elaboración propia

Tabla C.23

Evaluación sensorial del segundo prototipo en el primer grupo

Atributo color						
Jueces	NS4	NS5				
1	4	5				
2	4	4				
3	4	3				
4	5	4				
5	5	4				
6	3	4				
7	5	4				
8	3	4				
9	4	3				
10	5	5				
11	5	4				
12	4	5				
13	5	4				
14	5	4				
15	3	5				
16	4	5				
17	5	5				
18	5	4				
19	4	5				
20	5	5				
21	4	5				
22	4	4				
23	5	4				
24	4	5				
25	4	3				
Tj	108	107				
Xij	478	469				
Promedio	4,32	4,28				

Fuente: Elaboración propia

Tabla C.24

Análisis de varianza para el atributo color

7 manere de varianza para el acribate dele.						
FV	GL	SC	CM	Fcal	Ftab	
Tratamientos	1	0,02	0,02	0,04	4,26	
Jueces	24	11,00	0,46	0,96	1,99	
Error	24	11,48	0,48			
Total	49	22,50				

Tabla C.25

Evaluación sensorial del segundo prototipo en el primer grupo

Atributo aroma NS4 NS5 **Jueces** Τj Xij Promedio 4,04 4,36

Tabla C.26

Análisis de varianza para el atributo aroma

u. 0u							
FV	GL	SC	CM	Fcal	Ftab		
Tratamientos	1	1,28	1,28	2,24	4,26		
Jueces	24	11,00	0,46	0,80	1,99		
Error	24	13,72	0,57				
Total	49	26,00					

Fuente: Elaboración propia

Tabla C.27

Evaluación sensorial del segundo prototipo en el primer grupo

Atributo acidez					
Jueces	NS4	NS5			
1	4	5			
2	4	5			
3	4	3			
4	5	5			
5	5	4			
6	4	3			
7	4	5			
8	5	4			
9	4	3			
10	3	3			
11	2	3			
12	4	5			
13	5	3			
14	5	3			
15	4	4			
16	4	5			
17	3 2 4	4			
18	2	4			
19	4	5			
20	5	4			
21	5	5			
22	5	4			
23	5	4			
24	5	5			
25	4	5			
Tj	104	103			
Xij	452	441			
Promedio	4,16	4,12			

Fuente: Elaboración propia

Tabla C.28

Análisis de varianza para el atributo
acidez

aciacz							
FV	GL	SC	CM	Fcal	Ftab		
Tratamientos	1	0,02	0,02	0,03	4,26		
Jueces	24	21,52	0,90	1,49	1,99		
Error	24	14,48	0,60				
Total	49	36,02					

Tabla C.29

Evaluación sensorial del segundo prototipo en el primer grupo

Atributo viscosidad					
Jueces	NS4	NS5			
1		5			
	3 5 4 4 4 3 5 3 3 4 4	3			
2 3 4	4	3 3 3 5 5			
	4	3			
5 6	4	5			
	3	5			
7	5	4 5 3 5 5 5 5 5 4			
8	3	5			
9	3	3			
10	4	5			
11 12	4	5			
12	4	5			
13	3	5			
14	3	5			
13 14 15 16	3	4			
16	5	5			
17	5	5			
18 19	3 3 5 5 4 5 4	5			
19	5	5			
20	5	5			
21	4	5			
22	3	5			
20 21 22 23 24	3 5 4	5 5 5 5 5 5 5 4			
24		5			
25	3	5 114			
Tj Xij	98	114			
Xij	400	534			
Promedio	3,92	4,56			

Tabla C.30
Análisis de varianza para el atributo viscosidad

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	5,12	5,12	7,28	4,26
Jueces	24	13,12	0,55	0,78	1,99
Error	24	16,88	0,70		_
Total	49	35,12			

Fuente: Elaboración propia

Tabla C.31

Ordenamiento de las medias (promedio)

The state of the s					
Medias	NS5	NS4			
	4,56	3,92			

Fuente: Elaboración propia

Tabla C.32

Comprobando diferencia, > a DMS son significantes

Tratamientos	Valor	Diferencia	Significancia
NS5-NS4	0,64	0,64>0,62	Si hay
			significancia

Análisis estadístico del segundo prototipo en el segundo grupo con miel de abeja (*Tariquia*) y variando jengibre

TablaC.33

Evaluación sensorial del segundo prototipo en el segundo grupo

Atributo sabor NT4 Jueces NT5 Τj Xij 3,96 4,32 Promedio

Fuente: Elaboración propia

Tabla C.34

Análisis de varianza para el atributo sabor

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	1,62	1,62	2,61	4,26
Jueces	24	23,52	0,98	1,58	1,99
Error	24	14,88	0,62		
Total	49	40,02			

Fuente: Elaboración propia

Tabla C. 35
Evaluación sensorial del segundo prototipo en el segundo grupo

Atributo color					
Jueces	NT4	NT5			
1	5	4			
2	4	5			
3	4	5			
4	5	3			
5	5	4			
6	4	5			
7	4	5			
8	5	4			
9	5	4			
10	3	3			
11	5	4			
12	4	5			
13	4	5			
14	4	5			
15	1	2 5			
16	5				
17	5	4			
18	4	3			
19	3	4			
20	3	3			
21	4	5			
22	5	4			
23	4	4			
24	3	4			
25	4	4			
Tj	102	103			
Xij	438	441			
promedio	4,08	4,12			

Fuente: Elaboración propia

Tabla C.36

Análisis de varianza para el atributo color

FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	1	0,02	0,02	0,04	4,26
Jueces	24	27,00	1,13	2,35	1,99
Error	24	11,48	0,48		
Total	49	38,50			

Tabla C.37

Evaluación sensorial del segundo prototipo en el segundo grupo

Atributo aroma				
Jueces	NT4	NT5		
1	4	5		
2	4	5		
3	4	5		
4	5	3		
5	4	5		
6	4	5		
7	4	4		
8	3	4		
9	5	4		
10	4	3		
11	5	4		
12	5	4		
13	5	4		
14	5	5		
15	2	1		
16	4	5		
17	4	4		
18	4	5		
19	3	4		
20	4	5		
21	5	3		
22	5	3		
23	5	3		
24	2	4		
25	2	3		
Tj	101	100		
Xij	431	424		
Promedio	4,04	4		

Tabla C.38

Análisis de varianza para el atributo aroma

	u,	Jiiiu			
FV	G	SC	CM	Fcal	Ftab
Tratamientos	1	0,02	0,02	0,03	4,26
Jueces	24	28,48	1,19	1,54	1,99
Error	24	18,48	0,77		
Total	49	46,98			

Fuente: Elaboración propia

Tabla C.39

Evaluación sensorial del segundo prototipo en el segundo grupo

Atributo acidez				
Jueces	NT4	NT5		
1	4	5		
2	5	4		
3	3	4		
4	5	4		
5	4	5		
6	5	4		
7	4	4		
8	3	4		
9	5	4		
10	4	3		
11	5	4		
12	4	5		
13	5	5		
14	5	5		
15	2	2		
16	5	5		
17	4	5		
18	5	3		
19	4	3		
20	4	5		
21	5	3		
22	5	4		
23	4	3		
24	4	4		
25	3	3		
Tj	106	100		
Xij	466	418		
Promedio	4,24	4		

Fuente: Elaboración propia

Tabla C.40

Análisis de varianza para el atributo acidez

	<u></u>				
FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	1	0,72	0,72	1,53	4,26
Jueces	24	23,28	0,97	2,06	1,99
Error	24	11,28	0,47		
Total	49	35,28			

Evaluación sensorial del segundo prototipo en el segundo grupo

Atributo viscosidad				
Jueces	NT4	NT5		
1	5	4		
2	5	4		
3	3	5		
4	5	4		
5	5	4		
6	4	4		
7	4	5		
8	4	5		
9	4	4		
10	3	3		
11	5	4		
12	3	5		
13	4	4		
14	4	5		
15	2	2		
16	4	5		
17	4	4		
18	4	4		
19	4	4		
20	3	4		
21	5	5		
22	5	5		
23	4	5		
24	3	3		
25	3	3		
Tj	99	104		
Xij	409	448		
Promedio	3,96	4,16		

Tabla C.42

Tabla C.41

Análisis de varianza para el atributo viscosidad

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,50	0,50	1,33	4,26
Jueces	24	23,32	0,97	2,59	1,99
Error	24	9,00	0,38		
Total	49	32,82			

Análisis estadístico del tercer prototipo en el primer grupo con miel de abeja (subsidio), jengibre y variando carboximetil celulosa

Tabla C.43
Evaluación sensorial del tercer prototipo
en el primer grupo

Atributo sabor Jueces NS6 NS7 Τj Xij Promedio 4,12 4,52

Fuente: Elaboración propia

Tabla C.44

Análisis de varianza para el atributo sabor

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	2,00	2,00	4,00	4,26
Jueces	24	8,88	0,37	0,74	1,99
Error	24	12,00	0,50		
Total	49	22,88			

Fuente: Elaboración propia

TablaC.45

Evaluación sensorial del tercer prototipo en el primer grupo

Atributo color					
Jueces	NS6	NS7			
1	4	4			
2	4	5			
3	4	5			
4	4	4			
5	5	5			
6	4	5			
7	4	4			
8	5	5			
9	5	3			
10	4	3			
11	5	4			
12	4	5			
13	4	3			
14	4	3			
15	5	4			
16	4	5			
17	4	5			
18	5	4			
19	4	3			
20	3	4			
21	4	5			
22	3	3			
23	3	4			
24	4	3			
25	4	4			
Tj	103	102			
Xij	433	432			
Promedio	4,12	4,08			

Fuente: Elaboración propia

Tabla C.46

Análisis de varianza para el atributo color

FV	GL	sc	CM	Fcal	Ftab
Tratamientos	1	0,02	0,02	0,05	4,26
Jueces	24	14,00	0,58	1,34	1,99
Error	24	10,48	0,44		
Total	49	24,50			

Tabla C.47
Evaluación sensorial del tercer prototipo en el primer grupo

Atributo aroma					
Jueces	NS6	NS7			
1	4	5			
2	5	4			
3	5	4			
4	3	3			
5	5	4			
6	4	5			
7	4	5			
8	4	4			
9	5	4			
10	5	4			
11	5	4			
12	4	5			
13	4	2			
14	5	4			
15	3	3			
16	4	5			
17	4	4			
18	5	3			
19	3	2 4			
20	4	4			
21	4	5			
22	3	5			
23	3	3			
24	4	3			
25	3	4			
Tj	102	98			
Xij	430	404			
Promedio	4,08	3,92			

Tabla C.48

Análisis de varianza para el atributo

aroma

aroma					
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,32	0,32	0,56	4,26
Jueces	24	20,00	0,83	1,46	1,99
Error	24	13,68	0,57		
Total	49	34,00			

Fuente: Elaboración propia

Tabla C.49
Evaluación sensorial del tercer prototipo
en el primer grupo

	Atributo acidez					
Jueces	NS6	NS7				
1	3	4				
2	3	3				
3	4	5				
4	5	4				
5	4	5				
6	4	4				
7	3	5				
8	3	3				
9	5	3				
10	4	5				
11	5	4				
12	4	5				
13	4	3				
14	4	4				
15	4	3				
16	5	4				
17	4	4				
18	4	5				
19	3	3				
20	3	4				
21	5	4				
22	3	3				
23	2	5				
24	4	3				
25	4	4				
Tj	96	99				
Xij	384	407				
Promedio	3,84	3,96				

Fuente: Elaboración propia

Tablac.50

Análisis de varianza para el atributo
acidez

acracz					
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,18	0,18	0,28	4,26
Jueces	24	15,00	0,63	0,98	1,99
Error	24	15,32	0,64		
Total	49	30.50			

Tabla C.51
Evaluación sensorial del tercer prototipo
en el primer grupo

Atributo viscosidad				
Jueces	NS6	NS7		
1	4	5		
2	3	3		
3	5	5		
4	3	3		
5	4	5		
6	5	5		
7	3	4		
8	4	5		
9	4	5		
10	4	5		
11	5	3		
12	4	4		
13	3	4		
14	3	3		
15	4	5		
16	4	5		
17	4	5		
18	3	5		
19	3	3		
20	3	4		
21	5	4		
22	5	4		
23	3	5		
24	3	3		
25	3	4		
Tj	94	106		
Xij	368	466		
Promedio	3,76	4,24		

Tabla C.52

Análisis de varianza para el atributo viscosidad

77000074444					
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	2,88	2,88	6,83	4,26
Jueces	24	21,00	0,88	2,08	1,99
Error	24	10,12	0,42		
Total	49	34,00			

Fuente: Elaboración propia

Tabla C.53
Ordenamiento de las medias (promedio)
para los tratamientos

Medias	NS7	NS6
	4,24	3,76

Fuente: Elaboración propia

Tabla C.54
Comprobando diferencias, > a DMS son significantes

Tratamiento	Valor	Diferencia	Significancia
NS7-NS6	0,48	0,48>0,38	Si hay significancia

Análisis estadístico del tercer prototipo en el segundo grupo con miel de abeja (Tariquia), jengibre y variando carboximetil celulosa

TablaC.55
Evaluación sensorial del tercer prototipo en el segundo grupo

Atributo sabor					
Jueces	NT6	NT7			
1	4	5			
2	5	4			
3	4	5			
4	3	4			
5	4	3			
6	5	3			
7	3	4			
8	5	3			
9	4	5			
10	3	4			
11	2	4			
12	3	5			
13	4	5			
14	4	3			
15	4	5			
16	3	4			
17	4	4			
18	4	5			
19	3	3			
20	5	4			
21	2	5			
22	3	4			
23	5	4			
24	4	5			
25	5	5			
Tj	95	105			
Xij	381	455			
Promedio	3,8	4,2			

Fuente: Elaboración propia

TablaC.56
análisis de varianza para el atributo sabor

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	2,00	2,00	2,53	4,26
Jueces	24	15,00	0,63	0,79	1,00
Error	24	19,00	0,79		
Total	49	36,00			

Fuente: Elaboración propia

Tabla C.57
Evaluación sensorial del tercer prototipo en el segundo grupo

Atributo color						
Jueces	NT6	NT7				
1	4	5				
2	5	4				
3	3	5				
4	3	4				
5	5	5				
6	5	5				
7	4	4				
8	5	5				
9	4	4				
10	3	5				
11	3	2				
12	4	4				
13	5	4				
14	4	4				
15	4	5				
16	5	5				
17	5	4				
18	3	4				
19	4	3				
20	5	4				
21	3	4				
22	4	3				
23	5	4				
24	4	5				
25	4	5				
Tj	103	106				
Xij	439	464				
Promedio	4,12	4,24				

Fuente: Elaboración propia

TablaC.58

Análisis de varianza para el atributo color

minutes are rearranted partial or data related control						
FV	GL	SC	СМ	Fcal	Ftab	
Tratamientos	1	0,18	0,18	0,38	4,26	
Jueces	24	17,88	0,75	1,58	1,00	
Error	24	11,32	0,47			
Total	49	29,38	·			

Tabla C.59
Evaluación sensorial del tercer prototipo en el segundo grupo

Atributo aroma					
Jueces	NT6	NT7			
1	4	4			
2	5	5			
3 4	5	4			
4	3	4			
5	3	4			
6	5	3			
7	3	5			
8	4	3			
9	4	5			
10	3	4			
11	3	3			
12	5	4			
13	4	5			
14	3	3 1			
15	2				
16		4			
17	3	5			
18	4	4			
19	3	4			
20	4	4			
21	3	5			
22	4	3			
23	5	4			
24	4	5			
25	5	4			
Tj	94	99			
Xij	372	413			
Promedio	3,76	3,96			

Tabla C.60

Análisis de varianza para el atributo aroma

u. 0u						
FV	GL	SC	CM	Fcal	Ftab	
Tratamientos	1	0,50	0,50	0,80	4,26	
Jueces	24	24,52	1,02	1,63	1,00	
Error	24	15,00	0,63			
Total	49	40,02				

Fuente: Elaboración propia

Tabla C.61
Evaluación sensorial del tercer prototipo en el segundo grupo

	Atributo acidez					
Jueces	NT6	NT7				
1	4	4				
2	4	5				
3	4	5				
4	4	4				
5	4	4				
6	4	3				
7	2	5				
8	4	3				
9	4	4				
10	4	4				
11	4	4				
12	4	3				
13	2	5				
14	3	3				
15	4	5				
16	2 4	4				
17	4	5				
18	3	4				
19	5	4				
20	5	4				
21	2	5				
22	3	4				
23	5	4				
24	4	5				
25	5	4				
Tj	93	104				
Xij	367	444				
Promedio	3,72	4,16				

Fuente: Elaboración propia

Tabla C.62

Análisis de varianza para el atributo acidez

adiacz					
F۷	GL	SC	CM	Fcal	Ftab
Tratamientos	1	2,42	2,42	2,89	4,26
Jueces	24	12,32	0,51	0,61	1,00
Error	24	20,08	0,84		
Total	49	34,82			

Tabla C.63

Evaluación sensorial del tercer prototipo en el segundo grupo

-	Atributo viscosidad						
Jueces	NT6	NT7					
1	4	5					
2	4	5					
3	4	5					
4	3	4					
5	5	4					
6	5	2					
7	4	5					
8	4	4					
9	4	4					
10	3	4					
11	4	4					
12	3	4					
13	5	4					
14	2 4	3					
15		5					
16	2	4					
17	3	5					
18	3	3					
19	4	5					
20	5	3					
21	4	5					
22	4	3					
23	4	5					
24	4	5					
25	4	5					
Tj	95	105					
Xij	377	459					
Promedio	3,8	4,2					

Tabla C.64

Análisis de varianza para el atributo viscosidad

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	2,00	2,00	2,82	4,26
Jueces	24	17,00	0,71	1,00	1,00
Error	24	17,00	0,71		
Total	49	36,00			

Análisis estadísticos para elegir muestra ideal del cuarto prototipo

Tabla C.65
Evaluación sensorial del cuarto prototipo

Partiación ser	Atributo sabor						
Jueces	NS8	NT8					
1	4	5					
2	4	5					
3	4	5					
4	5	3					
5	3	5					
6		5					
7	5	4					
8	5	4					
9	2 4	3					
10	4	5					
11	5	4					
12	4	3					
13	4	3					
14	4	3					
15	4	3					
16	5	4					
17	5	4					
18	5	4					
19	4	5					
20	4	4					
21	4	3					
22	5	3					
23	4	5					
24	5	4					
25	3	5					
Tj	104	101					
Xij	448	425					
promedio	4,16	4,04					

Fuente: Elaboración propia

Tabla C.66
Análisis de varianza para el atributo sabor

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,18	0,18	0,22	4,26
Jueces	24	13,00	0,54	0,67	1,00
Error	24	19,32	0,81		
Total	49	32,50			

Fuente: Elaboración propia

Tabla C.67
Evaluación sensorial del cuarto prototipo

Atributo color					
Jueces	NS8	NT8			
1	4	5			
2	5	4			
3	3	5			
4	5	4			
5	4	5			
6	4	5			
7	5	4			
8	5	4			
9	4	4			
10	4	5			
11	5	4			
12	4	4			
13	4	3			
14	4	5			
15	5	4			
16	4	5			
17	4	4			
18	5	4			
19	4	5			
20	4	5			
21	4	3			
22	3	4			
23	4	5			
24	4	5			
25	5	4			
Tj	106	109			
Xij	458	485			
Promedio	4,24	4,36			

Fuente: Elaboración propia

Tabla C. 68
Análisis de varianza para el atributo color

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,18	0,18	0,35	4,26
Jueces	24	6,00	0,25	0,49	1,00
Error	24	12,32	0,51		
Total	49	18,50			

Tabla C.69

Evaluación sensorial del cuarto prototipo

Atributo aroma NS8 NT8 Jueces Τj Xij Promedio 4,36 4,16

Tabla C.70

Análisis de varianza para el atributo

aroma

aroma					
FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,50	0,50	0,92	4,26
Jueces	24	10,12	0,42	0,78	1,00
Error	24	13,00	0,54		
Total	49	23,62			

Fuente: Elaboración propia

Tabla C.71 Evaluación sensorial del cuarto prototipo

Atributo acidez Jueces NS8 NT8					
Jueces					
1	4	5			
2	4	5			
3	5	5			
4	5	3 5			
5	4				
6 7	3 5	4			
	5				
8	4	5			
9	2	2 4			
10	4	4			
11	5	4			
12 13	4	4			
13	4	3			
14	3	4			
15	3 4	3			
16	5	4			
17	4	4			
18		3			
19	4	5			
20	4	4			
21	4	4			
22	5	4			
23	4	5			
24	4	4			
25	4	4			
Tj	102	101			
Xij	428	423			
Promedio	4,08	4,04			

Fuente: Elaboración propia

Tabla C.72

Análisis de varianza para el atributo
acidez

FV	GL	SC	CM	Fcal	Ftab
Tratamientos	1	0,02	0,02	0,05	4,26
Jueces	24	17,32	0,72	1,83	1,00
Error	24	9,48	0,39		
Total	49	26,82			

Tabla C.73

Evaluación sensorial del cuarto prototipo

Atributo viscosidad								
Jueces								
1	5	4						
2	4	5						
3	4	5						
4	5	3						
5	4	5						
6	5	4						
7	5	4						
8	5	5						
9	4	3						
10	4	5						
11	5	4						
12	4	3						
13	4	3						
14	4	3						
15	3	4						
16	5	4						
17	5	4						
18	5	3						
19	4	5						
20	4	5						
21	4	3						
22	4	5						
23	5	4						
24	4	4						
25	3	4						
Tj	108	101						
Xij	476	423						
Promedio	4,32	4,04						

Tabla C.74

Análisis de varianza para el atributo viscosidad

FV	GL	SC	СМ	Fcal	Ftab
Tratamientos	1	0,98	0,98	1,74	4,26
Jueces	24	10,88	0,45	0,80	1,00
Error	24	13,52	0,56		
Total	49	25,38			

ANEXO D RESULTADOS DEL DISEÑO EXPERIMENTAL

ANEXO D.1

Metodología y resolución del diseño experimental

Según (Ureña, 1999), para realizar el análisis del diseño experimental consta de los siguientes pasos

VII. Planteamiento de la hipótesis

Hp: No hay diferencia entre las muestras.

- Ha: Al menos una muestra es diferente a las demás.

VIII. Nivel de significancia: 0,05 (5%)

IX. Prueba de significancia: "Fisher "

X. Suposiciones:

- Los datos siguen una distribución normal (-N)
- Los datos son extraídos de un muestreo al azar

XI. Los criterios de decisión a tomar en cuenta son:

- Se acepta la Hp si Fcal<Ftab
- Se rechaza la Hp si Fcal>Ftab

En base a los resultados den la suma de cuadrados se procede a construir la tabla del análisis de varianza (ANVA)

XII. construcción del cuadro ANVA

Para realizar la construcción del cuadro de ANVA, se toma en cuenta las expresiones matemáticas.

Grados de libertad:

$GL_v = 0$	Grados	de	libertad	de	variable = m	- 1

GL_i = Grados de libertad de jueces = n- 1

 $GL_t = Grados de libertad de totales = (n)(m) - 1$

 GL_r = Grados de libertad de residual = GL_t – GL_v – GL_j

FC = Factor de corrección =
$$\frac{TT^2}{(n)(m)}$$

Total, de observación (TT)

$$TT = \sum X_{ii}$$

• Suma de cuadrados de variable (SC_V)

$$SC_V = \frac{[(T_{c1})^2 + (T_{c2})^2 + ... + (T_{cn})^2]}{n} - FC$$

• Suma de cuadrados de los jueces (SC_j)

$$SC_j = \frac{[(T_{j1})^2 + (T_{j2})^2 + ... + (T_{jn})^2]}{n} - FC$$

Suma de cuadrados totales (SC_t)

$$SC_t = [(X_{11})^2 + (X_{12})^2 + ... + (X_{mn})^2] - FC$$

• Suma de cuadrados residuales (SC_r)

$$SC_r = SC_t + SC_v + SC_i$$

Varianza estimada o cuadrados medios:

V _v = Varianza debida a la variable = SC _v /GL _v
V _j = Varianza debida alos jueces = SC _j / GL _j
V _r = Varianza residual =SC _r / GL _r

Valor de F calculado:

$$F_v = V_v / V_r$$
 $F_r = V_j / V_r$

• Valor de F tabulado:

$GL(m) = GL_v/GL_r$ G	$L(n) = GL_j/GL_r$
-----------------------	--------------------

Tabla D.1

Cuadro de ANVA para los atributos

Fuente de variación (FV)	Grados libertad (GL)	Suma de cuadrados (SC)	Cuadrados medios (CM)	Fcal	Ftab
Total	(na – 1)	SS (T)			
Tratamientos (A)	(m-1)	SS (A)	$\frac{SS(A)}{(a-1)}$	$\frac{CM(A)}{CM(E)}$	$\frac{GL_{SS(A)}}{GL_{SS(E)}}$
Jueces (B)	(n-1)	SS (B)	$\frac{SS(B)}{(n-1)}$	$\frac{\text{CM}(B)}{\text{CM}(E)}$	$\frac{GL_{SS(B)}}{GL_{SS(E)}}$
Error (E)	(a-1) (n-1)	SS (E)	$\frac{SS(E)}{(a-1)(n-1)}$		

Fuente: Ureña, 1999

A continuación, en la tabla D.2 se plantea la matriz experimental de las variables N, J, y M del diseño experimental y los niveles de variación de los factores.

Tabla D.2

Signos algebraicos para calcular los efectos de un diseño 2³

Combinación o	1	Variable:	5	Interacciones					
tratamientos	N	J	M	NJ	NM	JM	NJM		
1	-	-	-	+	+	+	-		
a	+	-	-	-	-	+	+		
b	-	+	-	-	+	-	+		
ab	+	+	-	+	-	-	-		
С	-	-	+	+	-	-	+		
ac	+	-	+	-	+	-	-		
Вс	1	+	+	-	-	+	-		
Abc	+	+	+	+	+	+	+		

Fuente: Elaboración propia

Resolución del diseño experimental para el proceso de estandarizado

La tabla D.3, muestra los resultados en el proceso de estandarizado para la variable respuesta grados ^oBrix, para obtener néctar de naranja con miel de abeja y jengibre, teniendo en cuenta que N = jugo de naranja; J = agua y M.= miel de abeja.

Tabla D.3

Resultados obtenidos para la variable respuesta ^oBrix en el proceso de estandarizado

Combinac	ión o trata	miontos	Rej	olicas	Total	Simbología
Combinac	ion o trata	illicitios		II	Total	Simbologia
N bajo	J bajo	M bajo	12,7	12,7	25,4	(1)
N alto	J bajo	M bajo	12,5	12,6	25,1	а
N bajo	J alto	M bajo	12,6	12,5	25,1	b
N alto	J alto	M bajo	12,0	11,9	23,9	ab
N bajo	J bajo	M alto	13,1	12,9	26,0	С
N alto	J bajo	M alto	13,0	13,1	26,1	ac
N bajo	J alto	M alto	12,5	12,7	25,2	bc
N alto	J alto	M alto	12,4	12,5	24,9	abc
					201.7	

Fuente: Elaboración propia

Para la estimación de los efectos promedios de los factores principales e interacciones se utilizará:

Efectos:

$$A = \frac{1}{4n}[a - (1) + ab - b + ac - c + abc - bc]$$

$$A = \frac{1}{4(2)}[25,1 - 25,4 + 23,9 - 25,1 + 26,1 - 26 + 24,9 - 25,2] = -0,2125$$

$$B = \frac{1}{4n}[b + ab + bc + abc - (1) - a - c - ac]$$

$$B = \frac{1}{4(2)}[25,1 + 23,9 + 25,2 + 24,9 - 25,4 - 25,1 - 26 - 26,1] = -0,4375$$

$$C = \frac{1}{4n}[c + ac + bc + abc - (1) - a - b - ab]$$

$$C = \frac{1}{4(2)}[26 + 26,1 + 25,2 + 24,9 - 25,4 - 25,1 - 25,1 - 23,9] = 0,3375$$

$$AB = \frac{1}{4n}[abc - bc + ab - b - ac + c - a + (1)]$$

$$AB = \frac{1}{4(2)}[24,9 - 25,2 + 23,9 - 25,1 - 26,1 + 26 - 25,1 + 25,4] = -0,1625$$

$$AC = \frac{1}{4n}[(1) - a + b - ab - c + ac - bc + abc]$$

 $AC = \frac{1}{4(2)}[25,4 - 25,1 + 25,1 - 23,9 - 26 + 26,1 - 25,2 + 24,9] = 0,1625$

BC =
$$\frac{1}{4n}$$
[(1) + a - b - ab - c - ac + bc + abc]
BC = $\frac{1}{4(2)}$ [25,4 + 25,1 - 25,1 - 23,9 - 26 - 26,1 + 25,2 + 24,9] = -0,0625
ABC = $\frac{1}{4n}$ [abc - bc - ac + c - ab + b + a - (1)]
ABC = $\frac{1}{4(2)}$ [24,9 - 25,2 - 26,1 + 26 - 23,9 + 25,1 + 25,1 - 25,4] =-0,0625

Contrastes:

Contraste_A =
$$[a - (1) + ab - b + ac - c + abc - bc]$$

Contraste_A =
$$[25,1-25,4+23,9-25,1+26,1-26+24,9-25,2] = -1,7$$

Contraste_B =
$$[b + ab + bc + abc - (1) - a - c - ac]$$

Contraste_B =
$$[25,1 + 23,9 + 25,2 + 24,9 - 25,4 - 25,1 - 26 - 26,1] = --3,5$$

$$Contraste_{C} = [c + ac + bc + abc - (1) - a - b - ab]$$

Contraste_C =
$$[26 + 26.1 + 25.2 + 24.9 - 25.4 - 25.1 - 25.1 - 23.9] = 2.7$$

$$Contraste_{AB} = [abc - bc + ab - b - ac + c - a + (1)]$$

Contraste_{AB} =
$$[24.9 - 25.2 + 23.9 - 25.1 - 26.1 + 26 - 25.1 + 25.4] = -1.3$$

$$Contraste_{AC} = [(1) - a + b - ab - c + ac - bc + abc]$$

Contraste_{AC} =
$$[25,4 - 25,1 + 25,1 - 23,9 - 26 + 26,1 - 25,2 + 24,9] = 1,3$$

Contraste_{BC} =
$$[(1) + a - b - ab - c - ac + bc + abc]$$

Contraste_{BC} =
$$[25.4 + 25.1 - 25.1 - 23.9 - 26 - 26.1 + 25.2 + 24.9] = -0.5$$

$$Contraste_{ABC} = [abc - bc - ac + c - ab + b + a - (1)]$$

Contraste_{ABC} =
$$[24.9 - 25.2 - 26.1 + 26 - 23.9 + 25.1 + 25.1 - 25.4] = 0.5$$

Suma de cuadrados

$$\begin{array}{lll} SS_{A} = \frac{(Contraste_{A})^{2}}{8n} & SS_{AB} = \frac{(-1,3)^{2}}{8(2)} \\ SS_{A} = \frac{(-1,7)^{2}}{8(2)} & SS_{AB} = 0,105625 \\ SS_{AC} = \frac{(Contraste_{AC})^{2}}{8n} & SS_{AC} = \frac{(Contraste_{AC})^{2}}{8n} \\ SS_{B} = \frac{(Contraste_{B})^{2}}{8n} & SS_{AC} = \frac{(1,3)^{2}}{8(2)} \\ SS_{B} = \frac{(-3,5)^{2}}{8(2)} & SS_{BC} = \frac{(Contraste_{BC})^{2}}{8n} \\ SS_{C} = \frac{(Contraste_{C})^{2}}{8n} & SS_{BC} = \frac{(-0,5)^{2}}{8(2)} \\ SS_{C} = \frac{(2,7)^{2}}{8(2)} & SS_{BC} = 0,015625 \\ SS_{C} = 0,455625 & SS_{ABC} = \frac{(Contraste_{A})^{2}}{8n} \\ SS_{ABC} = \frac{(Contraste_{AB})^{2}}{8n} & SS_{ABC} = 0,015625 \\ SS_{ABC} = \frac{(0,5)^{2}}{8(2)} & SS_{ABC} = 0,015625 \\ SS_{ABC} = 0,015625 & SS_{ABC} = 0,015625 \\ \end{array}$$

Suma de cuadrados total:

$$SS_T = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} Y_{ijk}^2 - \frac{Y_{...}^2}{8n}$$

$$SS_T = 12,7^2 + 12,5^2 + \dots \dots 12,7^2 + 12,5^2 - \frac{201,7^2}{8(2)}$$

$$SS_T = 1,709$$

Suma del cuadrado del error:

$$SS_E = SS_T - SS_A - SS_B - SS_C - SS_{AB} - SS_{AC} - SS_{BC} - SS_{ABC}$$

 $SS_E = 1,709 - 0,180625 - 0,765625 - 0,455625 - 0,105625 - 0,105625 - 0,015625 - 0,015625$
 $SS_E = 0,06462$

Tabla D.4

ANVA de las variables del proceso de estandarizado para un diseño de 2³

Fuente de variación	Suma de cuadrados	Grados de libertad	Medio de cuadrados	Fcal	Ftab
Total	1,71	17			
Factor N	0,18	1	0,18	*22.36	5,32
Factor J	0,76	1	0,76	*94,78	5,32
Factor M	0,45	1	0,45	*56,40	5,32
Interacción NJ	0,11	1	0,11	*13,07	5,32
Interacción NM	0,10	1	0,11	*13,07	5,32
Interacción JM	0,02	1	0,02	1,93	5,32
Interacción NJM	0,02	1	0,02	1,93	5,32
Error	0,06	8	0,01		

Fuente: Elaboración propia

* Significativo

Cuando Fcal > Ftab se debe controlar en la elaboración del producto

Resolución del diseño experimental para el proceso de homogenizado

El procedimiento se realizó con un equipo de titulación en el Laboratorio Taller de Alimentos (LTA), se agregó 10 ml de néctar de naranja con miel de abeja y jengibre, diez gotas de fenolftaleína y se comienza a titular (dejar caer gota a gota del agente titulante hidróxido de sodio) hasta obtener un ligero vire a rosa, se midió la cantidad de agente titulante gastado (o gasto de bureta) y se utiliza la normalidad de la sustancia, los resultados obtenidos se detallan en el (Anexo D).

Se empleo la siguiente ecuación 4.3, según (Heredia, 2013)

$$% Ac = \frac{6,404 * N * V_f * F}{V}$$

Donde:

V_f = Gasto de bureta (hidróxido de sodio) ml.

N = Normalidad (hidróxido de sodio).

F = Constante (hidróxido de sodio).

V = Volumen en ml de muestra (néctar).

La tabla D.5, muestra los resultados en el proceso de homogenizado para la variable respuesta acidez, para obtener néctar de naranja con miel de abeja y jengibre, teniendo en cuenta que N= jugo de naranja; J = agua y M = miel de abeja.

Tabla D.5

Resultados obtenidos para la variable respuesta acidez en el proceso de homogenizado

Comb	inacián da	tratamiantas	Rep	licas	Total	Cimbología
Comb	inacion de	tratamientos		II	Total	Simbología
N bajo	J bajo	M bajo	0,50	0,48	0,98	(1)
N alto	J bajo	M bajo	0,49	0,48	0,97	а
N bajo	J alto	M bajo	0,41	0,44	0,85	b
N alto	J alto	M bajo	0,44	0,45	0,89	ab
N bajo	J bajo	M alto	0,45	0,46	0,91	С
N alto	J bajo	M alto	0,50	0,47	0,97	ac
N bajo	J alto	M alto	0,37	0,38	0,75	bc
N alto	J alto	M alto	0,45	0,44	0,89	abc
					7.21	

Fuente: Elaboración propia

Para la estimación de los efectos promedios de los factores principales e interacciones se utilizará:

Efectos:

$$A = \frac{1}{4n}[a - (1) + ab - b + ac - c + abc - bc]$$

$$A = \frac{1}{4(2)}[0.97 - 0.98 + 0.89 - 0.85 + 0.97 - 0.91 + 0.89 - 0.75] = -0.02875$$

$$B = \frac{1}{4n}[b + ab + bc + abc - (1) - a - c - ac]$$

$$B = \frac{1}{4(2)}[0.85 + 0.89 + 0.75 + 0.89 - 0.98 - 0.97 - 0.91 - 0.97] = -0.0531$$

$$C = \frac{1}{4n}[c + ac + bc + abc - (1) - a - b - ab]$$

$$C = \frac{1}{4(2)}[0.91 + 0.97 + 0.75 + 0.89 - 0.98 - 0.97 - 0.85 - 0.89] = 0.02125$$

$$AB = \frac{1}{4n}[abc - bc + ab - b - ac + c - a + (1)]$$

$$AB = \frac{1}{4(2)}[0.89 - 0.75 + 0.89 - 0.85 - 0.97 + 0.91 - 0.97 + 0.98] = -0.01625$$

$$AC = \frac{1}{4n}[(1) - a + b - ab - c + ac - bc + abc]$$

$$AC = \frac{1}{4n}[(1) + a - b - ab - c - ac + bc + abc]$$

$$BC = \frac{1}{4n}[(1) + a - b - ab - c - ac + bc + abc]$$

$$BC = \frac{1}{4n}[abc - bc - ac + c - ab + b + a - (1)]$$

$$ABC = \frac{1}{4(2)}[0.89 - 0.75 - 0.97 + 0.91 - 0.89 + 0.85 + 0.97 - 0.98] = 0.00375$$

Contrastes:

$$Contraste_A = [a - (1) + ab - b + ac - c + abc - bc]$$

$$Contraste_A = [0.97 - 0.98 + 0.89 - 0.85 + 0.97 - 0.91 + 0.89 - 0.75] = 0.23$$

$$Contraste_B = [b + ab + bc + abc - (1) - a - c - ac]$$

$$Contraste_B = [0.85 + 0.89 + 0.75 + 0.89 - 0.98 - 0.97 - 0.91 - 0.97] = -0.45$$

$$Contraste_C = [c + ac + bc + abc - (1) - a - b - ab]$$

$$Contraste_C = [0.91 + 0.97 + 0.75 + 0.89 - 0.98 - 0.97 - 0.85 - 0.89] = -0.16$$

$$Contraste_{AB} = [abc - bc + ab - b - ac + c - a + (1)]$$

$$Contraste_{AB} = [0.89 - 0.75 + 0.89 - 0.85 - 0.97 + 0.91 - 0.97 + 0.98] = 0.13$$

$$Contraste_{AC} = [(1) - a + b - ab - c + ac - bc + abc]$$

$$Contraste_{AC} = [0.98 - 0.97 + 0.85 - 0.89 - 0.91 + 0.97 - 0.75 + 0.89] = 0.17$$

$$Contraste_{BC} = [(1) + a - b - ab - c - ac + bc + abc]$$

$$Contraste_{BC} = [0.98 + 0.97 - 0.85 - 0.89 - 0.91 - 0.97 + 0.75 + 0.89] = -0.03$$

$$Contraste_{ABC} = [abc - bc - ac + c - ab + b + a - (1)]$$

$$Contraste_{ABC} = [0.89 - 0.75 - 0.97 + 0.91 - 0.89 + 0.85 + 0.97 - 0.98] = 0.03$$

Suma de cuadrados:

$$SS_A = \frac{(Contraste_A)^2}{8n}$$
 $SS_B = \frac{(-0.45)^2}{8(2)}$
 $SS_A = \frac{(0.23)^2}{8(2)}$
 $SS_A = 0.0126$
 $SS_A = 0.0033$
 $SS_C = \frac{(Contraste_C)^2}{8n}$
 $SS_C = \frac{(-0.17)^2}{8(2)}$
 $SS_C = 0.0018$

$$SS_{AB} = \frac{(Contraste_{AB})^2}{8n}$$

$$SS_{BC} = \frac{(Contraste_{BC})^2}{8n}$$

$$SS_{BC} = \frac{(-0.03)^2}{8(2)}$$

$$SS_{AB} = 0.00105$$

$$SS_{AB} = 0.00105$$

$$SS_{AC} = \frac{(Contraste_{AC})^2}{8n}$$

$$SS_{ABC} = \frac{(Contraste_{AC})^2}{8n}$$

$$SS_{ABC} = \frac{(Contraste_{AC})^2}{8n}$$

$$SS_{ABC} = \frac{(0.17)^2}{8(2)}$$

$$SS_{ABC} = \frac{(0.23)^2}{8(2)}$$

$$SS_{ABC} = 0.00180$$

$$SS_{ABC} = 0.003$$

Suma de cuadrados total:

$$\begin{split} SS_T &= \sum_{i=1} \sum_{j=1} \sum_{k=1} \sum_{l=1} Y_{ijk}^2 - \frac{Y_{...}^2}{8n} \\ SS_T &= 0.50^2 + 0.49^2 + \cdots \dots 0.38^2 + 0.44^2 - \frac{7.21^2}{8(2)} \\ SS_T &= 0.0221 \end{split}$$

Suma del cuadrado del error:

$$\begin{split} SS_E &= SS_T - SS_A - SS_B - SS_C - SS_{AB} - SS_{AC} - SS_{BC} - SS_{ABC} \\ SS_E &= 0.0221 - 0.0033 - 0.0126 - 0.0018 - 0.0010 - 0.0018 - 0.00005 - 0.0033 \\ SS_F &= 0.0018 \end{split}$$

Tabla D.6

ANVA de las variables del proceso de homogenizado para un diseño de 23

Fuente de	Suma de	Grados de	Cuadrados	Fcal	Ftab
varianza	cuadrados	libertad	medios		
Total	0,022	15			
Factor N	0,003	1	0,003	19,59	5,32
Factor J	0,013	1	0,013	75,00	5,32
Factor M	0,002	1	0,002	10,70	5,32
Interacción NJ	0,001	1	0,001	6,26	5,32
Interaccion NM	0,002	1	0,002	10,70	5,32
Interaccion JM	0,000	1	0,000	0,33	5,32
Interaccion NJM	0,000	1	0,000	0,33	5,32
Error experimental	0,001	8	0,000		

Fuente: Elaboración propia

Cuando Fcal>Ftab se debe controlar en la elaboración del producto

ANEXO E RESULTADOS DEL ANÁLISIS ESTADÍSTICO "T" STUDEN

Desarrollo de la prueba estadística "T" Student en el análisis de preferencia para muestra ideal del cuarto prototipo

Según (Ureña-D'Arrigo, 1999), para realizar el análisis estadístico de las pruebas de "T"Student, consta de los siguientes pasos:

1)Planteamiento de la hipótesis

• Hp: no hay diferencia entre las muestras

 Ha: si existe diferencia entre las muestras

2)Nivel de significancia: 0,01 (1%)

3)Prueba de significancia: "T" de Student

4) Suposiciones:

Los datos siguen una distribución normal (N)

Las muestras son iguales aleatoriamente al azar.

5)Criterios de decisión:

• Se acepta la Hp si Tcal <Ttab

• Se rechaza la Hp si tcal>Ttab

Desarrollo de la prueba correctas:14

Numero de observaciones totales: 1*25=25

Calculando el valor medio: M= n*p

Donde:

n= número de ensayos=25 P=probabilidad de ocurrencia= 0,5

M=25*(0,05) M=12,50

Tabla E.1
Datos "T" Student para muestra ideal

NS8 0 0 0 1 0	Tariquia
0 0 0	NT8 1 1 1
0 0 1	1 1
0	1
1	
•	0
0	
	1
0	1
1	0
1	0
0	1
0	1
1	0
1	0
1	0
1	0
1	0
1	0
1	0
1	0
0	1
0	1
1	0
1	0
0	1
1	0
0	1
14	11
	0,42
	0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0

Fuente: Elaboración propia

Calculando la desviación estándar:

S=npq

Q=probabilidad que no ocurra=0,5

S= 25*(0,5)*(0,5) = 6,25

Calculando la "T":

$$Tcal = \frac{X - n * p}{n * p * d}$$

$$Tcal = \frac{14 - 25 * 0.5}{25 * 0.5 * 0.5} = 0.24$$

Calculando Ttab_(1-α; n-1)

GL(n-1): n-1=25-1=24

Nivel de significancia α=0,01

1- α =1-0,01=0,99

Tcal=0,24<Ttab=2,50

ANEXO F TABLAS Y NORMAS BOLIVIANAS

Tabla F.1 "Fisher"

	1 - a =	P(F	f _{16,175,172})	Y2	= grado	s de libo	rtad del	denomia	ador										
VI	1	2	3	4	- 5	6	7	8	9	10	-11	12	13	14	15	16	17	18	19	20
1	161 446	199.499	215.707	224.583	230.160	233.980	236.767	238.084	240,543	241,882	242.981	243.905	244 600	245.363	245.949	246.466	246.917	247.324	247,688	248.01
2	18.513	19.000	19.164	19.247	19.296	19.329	19.353	19.371	19.365	19.396	19,405	19:412	19,419	19-424	19.429	19.433	19,437	19.440	19.443	19.44
3	10.128	9.552	9.277	9.117	9 013	8.941	8.687	8.845	8.812	8.785	8.763	8.745	8.729	8,715	8.703	8.692	8.683	8,675	8 667	8.66
4	7,709	6.944	6.591	6.368	6.256	6.163	6.094	0.041	5.999	5 964	5.936	6.912	5.891	5.873	5.858	5.844	5 832	5.821	5.811	5.80
5	6.608	5.786	5.409	5.192	5 050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	4.655	4.636	4.619	4.604	4.590	4.579	4.568	4.55
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4 099	4.060	4.027	4.000	3.976	3.956	3.938	3.922	3.908	3 896	3.884	3.87
7	5.591	4.737	4.347	4.120	3 972	3 886	3 787	3.726	3.677	3.637	3.603	3.575	3.550	3.529	3.511	3.494	3.480	3.467	3.455	3.44
8	5.318	4.459	4.066	3.838	3 666	3.581	3.500	3.438	3.388	3.347	3.313	3.284	3.259	3.237	3.218	3.202	3.187	3.173	3 161	3.15
9	5.117	4.256	3 863	3 633	3.482	3 374	3.293	3.230	3.179	3.137	3,102	3.073	3.048	3.025	3.006	2.989	2.974	2.960	2.948	2.93
0	4.965	4.103	3.708	3 478	3.326	3217	3.135	3.072	3.020	2.978	2.943	2.913	2 887	2.865	2.845	2.828	2.812	2.798	2.785	2.77
1	4.844	3.962	3 587	3.357	3 204	3.095	3.012	2.948	2.896	2 854	2.818	2.786	2.761	2.739	2.719	2.701	2.685	2.671	2.658	2.64
2	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.649	2.796	2.753	2.717	2.687	2.660	2.637	2.617	2.509	2.583	2.568	2.555	2.54
3	4 667	3.806	3.411	3 179	3.025	2.915	2.832	2.767	2.714	2.671	2.635	2.504	2.577	2.554	2.533	2.515	2.499	2.484	2.471	2.45
4	4 600	3.739	3.344	3.112	2.958	2.848	2.764	2 699	2.646	2.602	2.565	2.534	2.507	2.484	2.463	2.445	2.428	2413	2.400	2.36
5	4,543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.586	2.544	2.507	2.475	2.448	2.424	2.403	2.385	2.368	2.353	2.340	2.32
8	4.494	3.634	3.239	3 007	2.852	2.741	2.657	2.591	2.538	2.491	2.456	2.425	2.397	2373	2.352	2.333	2.317	2.302	2.280	2.27
7	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.413	2.381	2.353	2,329	2,308	2.289	2 272	2.257	2.243	2.23
8	4.414	3.555	3.160	2 928	2.773	2.661	2 577	2.510	2.456	2.412	2.374	2.342	2.314	2.290	2.269	2.250	2.233	2.217	2.203	2.15
9	4.361	3.522	3:127	2 895	2.740	2.028	2.544	2.477	2.423	2.378	2.340	2.308	2.280	2.256	2.234	2.215	2.198	2.182	2.168	2.15
0	4.351	3.493	3.098	2.866	2711	2.599	2.514	2.447	2.393	2.348	2.310	2.278	2.250	2.225	2.203	2.184	2.167	2.151	2.137	2 12
1	4.325	3.467	3.072	2.840	2.685	2.573	2.483	2.420	2.366	2 321	2.283	2.250	2.222	2.197	2170	2.156	2.139	2.123	2.109	2.06
2	4/301	3.443	3.049	2.817	2.661	2.549	2.464	2.397	2.342	2.297	2.250	2.226	2 168	2.173	2.151	2.131	2.114	2 098	2.084	2.07
3	4.279	3.422	3.028	2.796	2 540	2.528	2.442	2.375	2.320	2.275	2.230	2.204	2.175	2.150	2,128	2.109	2.091	2.075	2.001	2.0
4	4.260	3.403	3 009	2.776	2 621	2 508	2.423	2.355	2.300	2.255	2.216	2.183	2.155	2.130	2.108	2.088	2 070	2.054	2.040	2.02
5	4.242	3.385	2.991	2.759	2.603	2.490	2.405	2 337	2.202	2.236	2.198	2 165	2.136	2.111	2.089	2.069	2.051	2 0 3 5	2 021	2.00
6	4.225	3.369	2.975	2.743	2.587	2.474	2.363	2.321	2.265	2.220	2.101	2.146	2.119	2.094	2.072	2.052	2.034	2.018	2.003	1.90
7	4 210	3.354	2.960	2.728	2 572	2.459	2.373	2.303	2.250	2.204	2.166	2 132	2.103	2.078	2.056	2 036	2.018	2.002	1.987	1.90
8	4.196	3.340	2 947	2.714	2.558	2.445	2.359	2.291	2.236	2.190	2.151	2.118	2.089	2.064	2.041	2.021	2.003	1.987	1.972	1.98
9	4.163	3.328	2.934	2.701	2 545	2.432	2.316	2.278	2.223	2.177	2.135	2 104	2.075	2.050	2.027	2 007	1 989	1.973	1,958	1.94
0	4.171	3.316	2 922	2.690	2 534	2.421	2.334	2 260	2.211	2.165	2.126	2.092	2.063	2.037	2.015	1.995	1.976	1.960	1.945	1.00
0	4.065	3.232	2.839	2 606	2.449	2.336	2249	2.180	2 124	2.077	2.038	2.003	1.974	1.948	1.924	1.904	1.885	1.868	1.853	1.63
0	4.004	3.183	2.790	2.557	2.400	2.286	2.109	2.130	2.073	2.026	1.994	1.052	1.921	1.895	1.871	1.850	1.831	1.814	1.798	1.71
0	4.001	3.150	2.758	2 525	2.368	2.254	2.167	2.007	2 040	1.593	1.952	1,917	1.867	1.860	1.636	1.815	1.796	1.778	1.763	1.7
0	3.978	3.128	2.736	2 503	2 346	2.231	2 143	2.074	2.017	1.509	1.928	1.893	1.863	1.836	1.812	1.790	1.771	1.753	1.737	1.7
0	3.960	3.111	2710	2.486	2.329	2214	2.126	2.050	1.999	1.951	1.910	1.675	1.845	1.817	1,793	1.772	1 752	1.734	1.718	3.70
0	3.947	3.098	2.706	2.473	2.316	2.201	2.113	2.043	1.986	1.935	1.807	1,561	1.830	1.803	1.779	1.757	1.737	1.720	1.703	1.64
00	3.936	3.087	2 696	2.463	2.305	2.191	2.103	2.032	1.975	1.927	1.886	1.550	1.819	1.792	1.768	1.740	1.726	1.708	1.691	1.67
00	3.888	3.041	2 650	2.417	2.259	2.144	2.056	1.985	1.927	1.078	1.637	1.801	1.769	1.742	1717	1.694	1.674	1.656	1.639	1.67
00	3.860	3.014	2.623	2.390	2.232	2.117	2.026	1.957	1.899	1.650	1.606	1.772	1.740	1.712	1.686	1.664	1.643	1.625	1.607	1.50
00	3.851	3 005	2.614	2.381	2.223	2.108	2.019	1.948	1.889	1.840	1.798	1.762	1.730	1,702	1.676	1.654	1.633	1.614	1.597	1.58

Tabla F.2 "Tukey"

NUMERO DE TRATAMIENTOS											
2	3	4	5	6	7	8					
18.0	26.7	32,8	37,2	40,5	43,1	45,4					
6.09	8,28	9,80	10,89	11,73	12,43	13,03					
4.50	5,88	6,83	7,51	8,04	8,47	8,85					
3.93	5,00	5,76	6,31	6,73	7,06	7,35					
3.61	4,54	5,18	5,64	5,99	6,28	6,52					
3,46	4,34	4,90	5,31	5,63	5,89	6,12					
3,34	4,16	4,68	5,06	5,35	5,59	5,80					
3,26	4,04	4,53	4,89	5,17	5,40	5,60					
3,20	3,95	4,42	4,76	5,02	5,24	5,43					
3,15	3,88	4,33	4,66	4,91	5,12	5,30					
5.11	3,82	4,26	4,58	4,82	5,03	5,20					
5.08	3,77	4,20	4,51	4,75	4,95	5,12					
5.06	3,73	4,15	4,46	4,69	4,88	5,05					
5.00	3,70	4,11	4,41	4,64	4,83	4,99					
5.01	3,67	4,08	4,37	4,59	4,78	4,94					
3,00	3,65	4,05	4,34	4,56	4,74	4,90					
2,96	3,62	4,02	4,31	4,52	4,70	4,86					
2,97	3,61	4,00	4,28	4,49	4,67	4,83					
- 2,96	3,39	3,98	4,26	4,47	4,64	4,79					
0,93	3,58	3,96	4,24	4,45	4,62	4,77					
	18.0 6.09 4,50 3,93 3.61 3,46 3,34 3,26 3,20 3,13 3,11 3,08 3,01 3,01 3,01 3,01 3,01 3,01 3,01 3,01	18.0 26.7 6.09 8.28 4.50 5.88 3.93 5.00 3.61 4.54 3.96 4.34 3.34 4.16 3.26 4.04 3.20 3.95 3.11 3.82 3.11 3.82 3.08 3.77 3.08 3.73 3.01 3.62 3.01 3.62 3.01 3.62 3.01 3.63 3.01 3.63 3.01 3.63 3.01 3.63 3.01 3.63	2 3 4 18.0 26.7 32.8 6.09 8.28 9.80 4.50 5.88 6.83 3.93 5.00 5.76 3.61 4.54 5.18 3.96 4.34 4.90 3.34 4.16 4.68 3.26 4.04 4.53 3.20 3.95 4.42 3.13 3.88 4.33 3.11 3.82 4.26 3.08 5.77 4.20 3.08 5.77 4.20 3.08 3.73 4.15 3.01 3.62 4.08 3.00 3.65 4.08 3.99 3.62 4.08 3.99 3.62 4.00 3.99 3.62 4.00 3.99 3.62 4.00 3.99 3.62 4.00	2 3 4 5 18.0 26.7 32.8 37.2 6.09 8.28 9.80 10.89 4.50 5.88 6.83 7.51 3.93 5.90 5.76 6.31 3.61 4.54 5.18 5.64 3.86 4.34 4.90 5.31 3.34 4.16 4.68 5.06 3.26 4.04 4.53 4.89 3.20 3.95 4.42 4.76 3.13 3.88 4.33 4.66 3.11 3.82 4.26 4.58 3.18 3.77 4.20 4.51 3.18 3.77 4.20 4.51 3.19 3.70 4.11 4.41 3.01 3.62 4.08 4.37 3.00 3.65 4.08 4.36	18.0 26.7 32.8 37.2 40.5 6.09 8.28 9.80 10.89 11,73 4.50 5.88 6.83 7.51 8.04 3.93 5.90 5.76 6.31 6.73 3.61 4.54 5.18 5.64 5.99 3.46 4.34 4.90 5.31 5.63 3.34 4.16 4.68 5.06 5.35 3.26 4.04 4.53 4.89 5.17 3.20 3.95 4.42 4.76 5.02 3.13 3.88 4.33 4.66 4.91 3.14 3.82 4.26 4.58 4.82 3.18 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.77 4.20 4.51 4.75 3.88 3.78 4.90 4.51 4.75 3.88 3.78 4.90 4.51 4.64 3.90 3.60 4.00 4.21 4.54 3.90 3.60 4.00 4.21 4.56 3.90 3.60 4.00 4.21 4.56 3.90 3.60 4.00 4.21 4.57	18.0 26.7 32.8 37.2 40.5 43,1 6.09 8.28 9.80 10.89 11,73 12,43 14,50 5.88 6.83 7.51 8.04 8.47 1.93 5.00 5.76 6.31 6.73 7.06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					

Tabla F.3 "T" Student

			Tabla I .5	i Stude			
Valores de T	$\Gamma_{u,v}$					$1-\alpha=P (T \le t_{\alpha})$	
1-α	0.8	0.9	0.95	0.975	0.99	0.995	0.999
1.	1.376	3.078	6.314	12.706	31.821	63.656	318.289
2	1.061	1.886	2.920	4.303	6.965	9.925	22.328
3	0.978	1.638	2.353	3.182	4.541	5.841	10.214
4	0.941	1.533	2,132	2.776	3.747	4.604	7.173
5	0.920	1.476	2.015	2.571	3.365	4.032	5.894
6	0.906	1,440	1.943	2.447	3.143	3.707	5.208
7	0.896	1.415	1.895	2.365	2,998	3.499	4.785
8	0.889	1.397	1.860	2.306	2.896	3.355	4.501
9	0.883	1.383	1.833	2.262	2.821	3.250	4.297
10	0.879	1.372	1.812	2.228	2.764	3.169	4.144
11	0.876	1.363	1.796	2.201	2.718	3.106	4.025
12	0.873	1.356	1.782	2.179	2.681	3.055	3.930
13	0.870	1.350	1.771	2,160	2.650	3.012	3.852
14	0.868	1.345	1.761	2.145	2.624	2.977	3.787
15	0.866	1.341	1.753	2.131	2.602	2.947	3.733
16	0.865	1.337	1.746	2.120	2.583	2.921	3.686
17	0.863	1.333	1.740	2.110	2.567	2.898	3.646
18	0.862	1.330	1.734	2.101	2.552	2.878	3.610
19	0.861	1.328	1.729	2.093	2.539	2.861	3.579
20	0.860	1.325	1.725	2.086	2.528	2.845	3.552
21	0.859	1.323	1.721	2.080	2.518	2.831	
22	0.858	1.321	1.717	2.074	2.508	2.819	3.527
23	0.858	1.319	1.714	2.069	2.500		3,505
24	0.857	1.318	1.711	2.064	2.492	2,807	3.485
25	0.856	1.316	1.708	2.060	2.485	2.797	3.467
26	0.856	1.315	1.706	2.056	2.479	2.787	3.450
27	0.855	1.314	1.703	2.052	2.473	2.779	3.435
28	0.855	1.313	1.701	2.048	2.467	2.771	3.421
29	0.854	1.311	1.699	2.045		2.763	3.408
30	0.854	1.310	1.697	2.042	2.462	2.756	3,396
31	0.853	1.300	1.696		2.457	2.750	3.385
32	0.853	1.309	1.694	2.040	2.453	2.744	3.375
33	0.853	1.308	1.692	2.037	2.449	2.738	3.365
34	0.852	1.307		2.035	2.445	2.733	3.356
35	0.852	1.306	1.691	2.032	2.441	2.728	3.348
36	0.852	1.306	1.690	2.030	2.438	2.724	3.340
37	0.851	1.305	1.688	2.028	2.434	2.719	3.333
38	0.851	1.304	1.687	2.026	2.431	2.715	3.326
39	0.851		1,686	2.024	2.429	2.712	3.319
40	0.851	1.304	1.685	2.023	2.426	2.708	3.313
41	0.850	1.303	1.684	2.021	2.423	2.704	3.307
42	0.850	1,303	1.683	2.020	2.421	2.701	3.301
43	0.850		1.682	2.018	2.418	2.698	3.296
44	0.850	1.302	1.681	2.017	2.416	2,695	3.291
45	0.850	1.301	1.680	2.015	2.414	2.692	3.286
46	0.850	1.301	1.679	2.014	2.412	2.690	3.281
47	0.849	1.300	1.679	2.013	2.410	2.687	3.277
48	0.849	1.300	1.678	2.012	2.408	2.685	3.273
49		1.299	1.677	2.011	2.407	2.682	3.269
50	0.849	1.299	1.677	2.010	2.405	2.680	3.265
51	0.849	1.299	1.676	2.009	2.403	2.678	3.261
	0.849	1.298	1.675	2.008	2.402	2.676	3.258
52	0.849	1.298	1.675	2.007	2.400	2.674	3.255
53	0.848	1.298	1.674	2.006	2.399	2.672	3.251
54	0.848	1.297	1.674	2.005	2.397	2.670	3.248
55	0.848	1.297	1.673	2.004	2.396	2.668	3.245
56	0.848	1.297	1.673	2.003	2.395	2.667	3.242
57	0.848	1.297	1.672	2.002	2.394	2.665	3.239
58	0.848	1.296	1.672	2.002	2.392	2.663	3.237
59	0.848	1.296	1.671	2.001	2.391	2.662	3.234
60	0.848	1.298	1.671	2.000	2.390	2.660	3.232

Conservas de vegetales -Néctares de fruta -Generalidades

ICS 67.080.10 Frutas y productos derivados ICS 67.160.20 Bebidas no alcohólicas

Mayo 1978

IBNORCA NORMA BOLIVIANA NB 238

Conservas de vegetales - Néctares de fruta - Generalidades

1 OBJETIVO Y CAMPO DE APLICACIÓN

- 1.1 Esta norma tiene por objeto establecer las características generales que deben presentar los néctares de frutas envasados, en el momento de su expendio o venta y determinar ciertas condiciones comunes entre los mismos.
- 1.2 Se aplicará en productos derivados de frutas, definidos como néctares de frutas, producidos en el país e importados y presentados al usuario en envases que garanticen su preservación, comercialización y consumo.

2 REFERENCIAS

Para la aplicación de la presente norma se deberá consultar las siguientes normas Bolivianas:

NB 235-78 Conservas de vegetales - Frutas - Definiciones

NB 034-73 Envases - Clasificación y requisitos

NB 078-74 Envases metálicos - Definiciones generales

NB 118-75 Envases metálicos - Clasificación y definiciones de las dimensiones

NB 214-77 Muestreo - Muestreo al azar

3 DEFINICIONES

3.1 Néctar de fruta

Producto constituido en proporción del 50% como mínimo, expresado sobre producto total, por el jugo y pulpa frescos o conservados de la misma fruta, finamente dividida, tamizada, homogenizada o no y centrifugada o no, adicionada de una solución de azúcares y si es necesario de ácidos, sometido a un tratamiento térmico que asegure su conservación en recipientes química y bromatológicamente aptos.

4 CLASIFICACIÓN Y DESIGNACIÓN DEL PRODUCTO

- 4.1 Los néctares de frutas se clasificarán de acuerdo con los requisitos establecidos en la norma boliviana correspondiente a cada producto, en las siguientes calidades.
- a) Calidad A; Extra; de Exportación
- b) Calidad B; Especial
- 4.2 Los néctares de frutas se designarán por su nombre, seguido de la calidad y la referencia de la Norma respectiva. Así:

Néctar de Piña - Calidad Extra

N.B. XXX-XX

5 REQUISITOS

5.1 Requisitos generales

- 5.1.1 El néctar deberá ser elaborado bajo condiciones sanitarias apropiadas con frutas en su madurez fisiológica, frescas, sanas, convenientemente lavadas, prácticamente libres de restos de plaguicidas de acuerdo a tolerancias máximas establecidas por la legislación sanitaria del país.
- 5.1.2 Las frutas empleadas en la elaboración de néctares, deberán estar libres de epicarpios, carozos, partes leñosas y semillas.
- 5.1.3 En la elaboración de néctares se podrá emplear pulpas concentradas o conservadas, siempre que reúnan los requisitos anteriormente mencionados.
- 5.1.4 Se permitirá el agregado de ácido ascórbico y si fuese necesario el uso de un estabilizador apropiado como lo determine la norma respectiva; no se permitirá la adición de colorantes artificiales, salvo la autorización de organismos competentes.
- 5.1.5 Solamente se permitirá el uso de aromatizantes o reforzantes de origen vegetal.

5.2 Requisitos físico-químicos

Se considerarán de las siguientes características, aquellas que correspondan a cada uno de los productos en particular.

5.2.1 Acidez

- 5.2.1.1 Acidez titulable; expresada en meq/L y en g/100 cm³, de ácido cítrico anhidro o del ácido predominantes.
- 5.2.1.2 Acidez iónica expresada en unidades de pH.

5.2.2 Sólidos

- 5.2.2.1 Sólidos solubles, por lectura refractométrica expresados en porcentaje en masa/volumen (m/v) o en grados Brix a 20 °C.
- 5.2.2.2 Sólidos en suspensión; expresados en porcentaje masa/volumen (m/v).
- 5.2.2.3 Azúcares totales, azúcares reductores y no reductores, expresados en porcentajes masa/volumen (m/v).
- 5.2.3 Contenido de alcohol etílico; expresado en porcentaje en volumen (v/v) a 15 °C/15 °C.
- 5.2.4 Contenido de cobre, en ppm.
- 5.2.5 Contenido de plomo, en ppm.
- 5.2.6 Contenido de estaño, en ppm.
- 5.2.7 Contenido de arsénico, en ppm.
- 5.2.8 Contenido de sustancias preservadoras, ácido benzoico y otros, en ppm.

5.3 Requisitos organolépticos

Los néctares de frutas deberán cumplir con los siguientes requisitos organolépticos.

5.3.1 Sabor

Semejante al de la fruta fresca y madura prácticamente exenta de gusto a cocido o de oxidado, y de cualquier otro sabor extraño u objetable.

5.3.2 Aroma

Semejante al del jugo y pulpa recién obtenido de la fruta fresca y madura.

5.3.3 Color

Semejante al del jugo y pulpa recién obtenido de la fruta fresca y madura.

5.3.4 Apariencia

Masa suave, de consistencia líquida y homogénea.

5.3.4.1 Defectos

Presencia de semillas, manchas descoloridas o blancuzcas, materias extrañas y partículas vegetales.

5.3.5 Sistema de puntuación

El puntaje individual para cada factor será el que se indica a continuación:

- 5.3.5.1 Sabor bueno, entre 34 y 40 puntos.
- 5.3.5.2 Sabor aceptable entre, 28 y 33 puntos.
- 5.3.5.3 Aroma bueno, entre 17 y 20 puntos.
- 5.3.5.4 Aroma aceptable, entre 14 y 16 puntos.
- 5.3.5.5 Color bueno, entre 17 y 20 puntos.
- 5.3.5.6 Color aceptable, entre 14 y 16 puntos.
- 5.3.5.7 Apariencia y consistencia buenas, prácticamente libre de defectos, entre 17 y 20 puntos.
- 5.3.5.8 Apariencia y consistencia aceptables, razonablemente libre de defectos, entre 14 y 16 puntos.

Resumiendo los "néctares de frutas", deberán cumplir con el puntaje mínimo total y además con el puntaje mínimo asignado a cada factor o característica indicados en la siguiente tabla:

TABLA - Requisitos minimos de puntaje por características

Características	Total	Puntaje minimo para cada calidad			
Caracteristicas	Total	Extra; A; Exportación	B; Especial		
Sabor	40	34	28		
Aroma	20	17	14		
Color	20	17	14		
Apariencia	20	17	14		
TOTAL:	100	85	70		

5.3.5.9 El puntaje total para cada grado de calidad de los "néctares", será de acuerdo a los resultados de los análisis y se clasificaran en:

5.3.5.9.1 Calidad A; Extra; de Exportación

Para este grado de calidad el puntaje total ser superior o igual a 85 puntos, sin que ningún factor individual pueda tener un puntaje inferior al mínimo indicado. Si éste fuera el caso, el "néctar" no podrá calificarse como del grado A, aunque el puntaje total sobrepase los 85 puntos.

5.3.5.9.2 Calidad B; Especial

Para este grado de calidad el puntaje total será superior o igual a 70 puntos, sin que ningún factor individual pueda tener un puntaje inferior al mínimo indicado. Si éste fuera el caso el "néctar" no podrá calificarse como del grado B, aunque el puntaje total sobrepase los 70 puntos, debiendo considerarse fuera de Norma.

5.4 Requisitos microbiológicos

Se considerarán los siguientes:

- 5.4.1 Contenido de bacterias patógenas anaerobias; expresado en colonias por gramo.
- 5.4.2 Contenido de mohos y levaduras; expresado en campos positivos por cada 100 campos (Método Howard).

5.5 Otros requisitos

Los exigidos por el Reglamento de Alimentos y Bebidas, emitido en fecha 1959-04-24 por D.S. Nº 05190.

6 MUESTREO

6.1 Lote

Es una cantidad específica de material de características similares o que es fabricado bajo condiciones de producción presumiblemente uniformes, que se somete a inspección como un conjunto unitario.

6.2 Muestra

Es una porción de material o un grupo de especimenes tornados de un universo dado, o conjunto de especimenes, con el fin de obtener una información sobre la calidad del universo.

Conservas de vegetales -Jugo de naranja -Requisitos

ICS 67.080 Frutas. Hortalizas

Abril 1980

IBNORCA NORMA BOLIVIANA NB 372

Conservas de vegetales - Jugo de naranja - Requisitos

1 OBJETIVO Y CAMPO DE APLICACION

- 1.1 Esta norma tiene por objeto establecer las características específicas que deben presentar el "jugo de naranja" envasado, en el momento de su expendio o venta y determinar ciertas características particulares.
- 1.2 Se aplicará en los productos derivados de frutas, definidos como "jugo de naranja", producidos en el país e importados presentados al consumidor en envases que garanticen su preservación, comercialización y consumo.

2 REFERENCIAS

NB 010-99	Recepción por atributos - Procedimiento de muestreo
NB 078-74	Envases metálicos - Definiciones generales
NB 168-77	Envases metálicos - Forma y dimensiones de envases para conservas alimenticias
NB 214-77	Muestreo - Muestreo al azar
NB 236-78	Conserva de vegetales - Jugos de frutas - Generalidades
NB 314001-09	Etiquetado de alimentos preenvasados
NB 10.6-019	Conservas de vegetales - Determinación de la densidad relativa (en preparación)
NB 10.6-020	Conservas de vegetales - Determinación de la acidez (en preparación)
NB 10.6-022	Conservas de vegetales - Determinación de los sólidos solubles (en preparación)
NB 10.6-023	Conservas de vegetales - Determínación de los sólidos insolubles (en preparación)
NB 10.6-024	Conservas de vegetales - Determinación de acido ascórbico (en preparación)
NB 10.6-025	Conservas de vegetales - Determinación de plomo (en preparación)
NB 10.6-026	Conservas de vegetales - Determinación de arsénico (en preparación)
NB 10.6-027	Conservas de vegetales - Determinación de cobre (en preparación)
NB 10.6-028	Conservas de vegetales - Determinación de estaño (en preparación)
NB 10.6-031	Conservas de vegetales - Determinación de acido benzolco (en preparación)
NB 10.6-032	Conservas de vegetales - Determinación de acido sórbico (en preparación)
NB 10.6-033	Conservas de vegetales - Determinación de azúcares totales (en preparación)
NB 10.6-034	Conservas de vegetales - Determinación de alcohol etílico (en preparación)
NB 10.6-035	Conservas de vegetales - Determinación de anhídrido carbónico (en preparación)

3 DEFINICIONES

3.1 Jugo de naranja

Jugo fresco de naranja (Citrus Sinensis) no fermentado, con o sin el agregado de agua, azúcar y/o conservadores químicos, o bien el producto obtenido diluyendo con agua el jugo

concentrado de naranja hasta lograr la composición del jugo natural y envasados en recipientes químicos y bromatológicamente aptos.

4 CLASIFICACION Y DESIGNACION DEL PRODUCTO

- **4.1** El jugo de naranja, se clasificará, de acuerdo con los requisitos organolépticos especificados en ésta norma boliviana, en las siguientes calidades.
- a) Calidad A, Extra o de exportación
- b) Calidad B, Especial
- **4.2** El jugo de naranja se designará por su nombre, seguidos de la calidad y la referencia a la norma respectiva, Ejemplo:

JUGO DE NARANJA - CALIDAD EXTRA NB 372

5 REQUISITOS

5.1 Requisitos generales

- 5.1.1 El jugo deberá ser extraído, bajo condiciones sanitarias apropiadas, de naranjas maduras, frescas o preconservadas, sanas, limpias, cuidadosamente lavadas y prácticamente libre de restos de insecticidas, fungicidas u otras substancias gruesas y duras.
- 5.1.2 No se permitirá la adición de sustancias que modifiquen la naturaleza del jugo, salvo las estrictamente necesarias y que estén autorizadas por la entidad competente.
- 5.1.2.1 Azúcar refinada u otros edulcorantes.
- 5.1.2.2 Acido natural predominante para ajustar la acidez titulable.
- 5.1.2.3 Acido ascórbico como antioxidante.
- 5.1.2.4 Vitaminas para enriquecer el producto.
- 5.1.3 En la calidad A no se permitirá la adición de colorantes. En la calidad B se permitirá la adición de colorantes previa autorización de las autoridades competentes.
- 5.1.4 Se permitirá la adición de saborizantes (esencias), autorizados por la entidad competente.
- 5.2 Requisitos físicos y químicos
- 5.2.1 El jugo de naranja cumplirá con los requisitos físicos y químicos dados en la tabla 1.

Tabla 1 - Regulsitos para el jugo de naranja

Requisitos	Unidad	Min	Máx	Método de ensayo
Densidad relativa a 20 °C/20 °C	STATE OF THE PARTY OF	1,040	7303	NB 10.6-019
Acidez titulable expresada en acido cítrico anhidro	g/100mL	0,800	1,40	NB 10.6-020
Acidez iónica	pH	4	3	NB 10.6-020
Sólidos solubles, por lectura refractométrica	% (m/m)	8,5	- 12	NB 10.6-022
Sólidos en suspensión	% (m/v)		10	NB 10.6-023
Azúcares totales	% (m/m)	- 7	50	NB 10.6-033
Acido ascórbico	ppm	300	-	NB 10.6-024
Alcohol etilico		No contendrá	角 次。	NB 10.6-034
Anhídrido carbónico		No contendrá	The second	NB 10.6-035
Contenido de plomo	ppm		2	NB 10.6-025
Contenido de arsénico	ppm		0,1	NB 10.6-026
Contenido de cobre	ppm		10	NB 10.6-027
Contenido de estaño	ppm	-	150	NB 10.6-028

5.2.2 Sustancias preservadoras

En concentrados de jugo se permitirá la adición de sustancias preservadoras autorizadas por la entidad competente.

5.3 Requisitos organolépticos

El "jugo de naranja" deberá cumplir con los siguientes requisitos indicados a continuación:

5.3.1 Sabor

Característico del producto convenientemente elaborado exento de gusto a cocido, o de oxidado de terpenos, no admitiéndose en general cualquier otro sabor extraño u objetable.

5.3.2 Aroma

Distintivo, semejante al de jugo fresco.

5.3.3 Color

Brillante, característico, semejante al del jugo recién extraído del fruto maduro.

5.3.4 Apariencia

Deberá ser muy buena, semejante a la del jugo recién obtenido del fruto maduro pudiendo o no contener, sólidos insolubles.

5.3.5 Defectos

Presencia de semillas, manchas descoloridas o blancuzcas, materias extrañas y partículas vegetales.

5.3.6 Sistema de puntuación

El puntaje individual para cada característica será el que se indica a continuación:

5.3.6.1 Sabor y aroma buenos entre 25 y 30 puntos.

- 5.3.6.2 Sabor y aroma aceptables, entre 20 y 24 puntos.
- 5.3.6.3 Color bueno, entre 25 y 30 puntos.
- 5.3.6.4 Color aceptable, entre 20 y 24 puntos.
- 5.3.6.5 Libre de defectos entre 30 y 40 puntos.
- 5.3.6.6 Aceptablemente libre de defectos, entre 25 y 29 puntos.

Resumiendo, el jugo de naranja, deberá cumplir con el puntaje mínimo total y además con el puntaje mínimo, asignado a cada característica indicada en la tabla 2.

Tabla 2 - Requisitos mínimos de puntaje por característica

		Puntaje Minimo para cada calidad			
Característica	Total	Extra A, de exportación	B, especial		
Sabor y aroma	30	25	20		
Color	30	25	20		
Apariencia	40	30	25		
TOTAL	100	80	65		

5.3.6.7 El puntaje total para cada grado de calidad del jugo, será de acuerdo a los resultados de los análisis y se clasificarán en:

5.3.6.7.1 Calidad extra A, de exportación

Para este grado de calidad el puntaje será igual o superior a 80 puntos, sin que ningún factor individual pueda tener un puntaje inferior al mínimo indicado. Si este fuera el caso al "jugo" no podrá calificarse como de grado A, aunque el puntaje total sobrepase los 80 puntos.

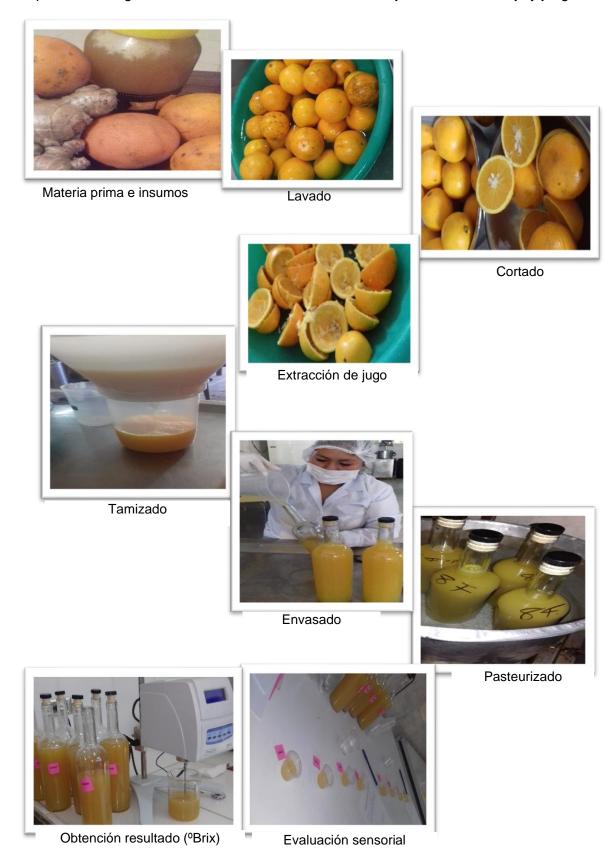
5.3.6.7.2 Calidad B, especial

Para este grado de calidad el puntaje total deberá ser superior o igual a 65 puntos, sin que ningún valor individual pueda tener un puntaje inferior al mínimo indicado. Si este fuera el caso el "jugo" no podrá calificarse como grado B, aunque el puntaje total sobrepase los 65 puntos, debiendo considerarse al producto fuera de norma.

5.4 Requisitos microbiológicos

Se considerarán los siguientes:

- 5.4.1 Contenido de bacterias patógenas anaerobias. No contendrá.
- 5.4.2 Contenido de mohos y levaduras, expresado en campos positivos por cada 100 campos. Máximo 10 campos.
- 5.4.3 Exento de parásitos e insectos y/o sus restos.


5.5 Otros requisitos

Otras condiciones exigidas por la legislación sanitaria del país.

ANEXO G FOTOGRAFIAS

Anexo G.1

Representacion grafica de elaboracion de néctar de naranja con miel de abeja y jengibre

