MATRIZ DEL MODELO ASM1

	Componente Proceso	i	1 S 1	2 S c	3	4	5 X n 11	6 X p (7 $X_{\rm p}$	8 S o	9 Svo	10 5 yrr	11 S.v.	12 X yr	13 S ur	Tasa de reacción, ρ_j [ML ⁻³ T ⁻¹]
1	Crecimiento aeróbico d heterótrofos.	le	51	$-\frac{1}{Y_H}$	11	113	1	71 B,A	Пp	$-\frac{1-Y_H}{Y_H}$	S NO	$-i_{XB}$	S ND	A ND	$-\frac{i_{XB}}{14}$	$\hat{\mu}_{H}\left(\frac{S_{S}}{K_{S}+S_{S}}\right)\left(\frac{S_{o}}{K_{O,H}+S_{o}}\right)X_{B,H}$
2	Crecimiento anóxico de heterótrofos.	•		$-\frac{1}{Y_H}$			1				$-\frac{1-Y_H}{2.86Y_H}$	$-i_{XB}$			$\frac{1-Y_H}{14\cdot 2.86Y_H} - \frac{i_{XB}}{14}$	$\hat{\mu}_{H}\left(\frac{S_{S}}{K_{S}+S_{S}}\right)\left(\frac{K_{O,H}}{K_{O,H}+S_{O}}\right)\left(\frac{S_{NO}}{K_{NO}+S_{NO}}\right)\eta_{g}X_{B,H}$
3	Crecimiento aeróbico d autótrofos.	le						1		$-\frac{4.57}{Y_A}+1$	$\frac{1}{Y_A}$	$-i_{XB}-rac{1}{Y_A}$			$-\frac{i_{XB}}{14}-\frac{1}{7Y_A}$	$\hat{\mu}_{A}\left(\frac{S_{NH}}{K_{NH}+S_{NH}}\right)\left(\frac{S_{o}}{K_{O,A}+S_{o}}\right)X_{B,A}$
4	"Descomposición" de l heterótrofos.	los				$1 - f_p$	-1		f _P					$i_{XB} - f_p i_{XP}$		$b_H X_{B,H}$
5	"Descomposición" de l autótrofos.	los				$1 - f_p$		-1	f _P					$i_{XB} - f_p i_{XP}$		$b_A X_{B,A}$
6	Amonificación de nitrógeno orgánico											1	-1		$\frac{1}{14}$	$k_a S_{ND} X_{B,H}$
 7 "Hidrólisis" de compuestos orgánicos entrampados 8 "Hidrólisis" del nitróg- orgánico entrampado 				1		-1										$\begin{aligned} & k_h \frac{X_S/X_{B,H}}{K_X + (X_S/X_{B,H})} \cdots \\ & \dots \left[\left(\frac{S_o}{K_{O,H} + S_o} \right) + \eta_h \left(\frac{K_{O,H}}{K_{O,H} + S_o} \right) \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) \right] X_{B,H} \end{aligned}$
8 "Hidrólisis" del nitróge orgánico entrampado		eno											1	-1		$ \rho_7\left(\frac{X_{ND}}{X_S}\right) $
Tas obs	sas de conversión servadas [ML ⁻³ T ⁻¹]									$r_i = \sum_{i}$	$\sum_{i} v_{ij} \rho_j$					
observadas $[ML^{-3}T^{-1}]$ Parámetros estequiométricos: Rendimiento heterótrofo: Y_H Rendimiento autótrofo: Y_A Fracción de biomasa que produce productos particulados: f_P Masa N/Masa DQO en biomasa: i_{XB} Masa/Masa DQO en			a orgánica inerte soluble 20)L-3]	to făcilmente biodegradable 201L- ³ 1	las de materia orgánica inerte DOI - ³ 1	to lentamente biodegradable 201L - ³]	sa heterótrofa activa 201L -31	sa autótrofa activa 20)L-3]	tos de partículas derivados de la nposición de la biomasa [M(DQO)L ⁻³]	ao (DQO negativo) QO)L ^{.3}]	y nitrito L ⁻³]	NH ₃ Nitrógeno L ⁻³]	eno orgánico biodegradable soluble L^{-3}]	eno orgánico biodegradable ículas L ⁻³]	iidad - Unidades molares	Parámetros Cinéticos:Crecimiento y descomposición heterótrofa: $\hat{\mu}_H, K_S, K_{O,H}, K_{NO}, b_H$ Crecimiento y decadencia autótrofa: $\hat{\mu}_A, K_{NH}, K_{O,A}, b_A$ Factor de corrección por crecimientoanóxico de heterótrofos: η_g Amonificación: k_a Hidrólis is: k_A, K_X Factor de corrección
pro bio	ductos a partir de masa: <i>i</i> _{XP}		Materié [M(DQ	Sustration [M(DQ	Partícul	Sustration [M(DQ	Biomas [M(DQ	Biomas [M(DQ	Produc descom	Oxígen [M(-D0	Nitrato [M(N)]	√++HN I(N)I]	Nitrógé [M(N)]	Nitróge en partí [M(N)]	Alcalin	por hidrólisis anóxica: η_h

Tabla A1. Matriz de Variables y procesos del modelo ASM1.

Fuente: Henze et al., 2002.

PARÁMETROS DEL MODELO ASM1

Parámetros del modelo ASM1	Símbolo	Unidad	20°C	10°C	Literatura
Parámetros estequitométricos					
Rendimiento heterótrofo	Y_H	g DQO celular formado/g DQO oxidado	0.67	0.67	0.38-0.75
Rendimiento autótrofo	Y_A	g DQO celular formado/g DQO oxidado	0.24	0.24	0.07-0.28
Fracción de biomasa que produce productos particulados	f_p	adimensional	0.08	0.08	-
Masa N/masa DQO en biomasa	i_{XB}	g N/g DQO en biomasa	0.086	0.086	-
Masa N/masa DQO en productos de biomasa	i _{XP}	g N/g DQO en masa endógena	0.06	0.06	-
Parámetros cinéticos					
Velocidad de crecimiento heterótrofo máximo específico	μ_H	1/día	6	3	0.6-13.2
Velocidad de decaimiento heterótrofo	b_H	1/día	0.62	0.2	0.05-1.6
Coeficiente de saturación media para heterótrofos.	K _S	g DQO/m ³	20	20	5-225
Coeficiente de saturación media de oxígeno para heterótrofos	Кон	$g O_2/m^3$	0.2	0.2	0.01-0.2
Coeficiente de saturación media de nitrato para heterótrofos desnitrificantes	K _{NO}	g NO ₃ -N/m ³	0.5	0.5	0.1-0.5
Velocidad de crecimiento autótrofo máximo específico	μ_A	1/día	0.8	0.3	0.2-1.0
Velocidad de decaimiento autótrofo	b_A	1/día	0.2	0.1	0.05-0.2
Coeficiente de saturación media de oxígeno para autótrofos	K _{OA}	$g O_2/m^3$	0.4	0.4	0.4-2.0
Coeficiente de saturación media de amonio para autótrofos	K_{NH}	g NH ₃ -N/m ³	1	1	-
Factor de corrección para crecimiento anoxio de heterótrofos	η_g	adimensional	0.8	0.8	0.6-1.0
Velocidad de amonificación	k _a	m ³ /g DQO/día	0.08	0.04	-
Velocidad de hidrólisis máxima específica	k _h	g DQO lentamente biod./g DQO cel/día	3	1	-
Coeficiente de saturación media para hidrólisis de sustrato lentamente biodegradable	K _X	g DQO lentamente biod./g DQO cel/día	0.03	0.01	-
Factor de corrección para hidrólisis anoxia	η_h	adimensional	0.4	0.4	-

Tabla A2. Parámetros cinéticos y estequiométricos del modelo ASM1.

Fuente: Henze et al, 2002.

TIPOS DE TRATAMIENTO BIOLÓGICO PARA AGUAS RESIDUALES

Tipo	Nombre común	Uso
Procesos aerobios		
	Proceso de lodos activados	Remoción de DBO, nitrificación
	Lagunas aireadas	Remoción de DBO, nitrificación
Crecimiento	Digestión aerobia	Estabilización, remoción de DBO
suspendide	Biorreactor de membrana ^(a)	Remoción de DBO, nitrificación
	Filtros biológicos aireados	Remoción de DBO, nitrificación
	Biorreactor de lecho móvil ^(b)	Remoción de DBO, nitrificación
Construction for the	Reactores con lecho empacado	Remoción de DBO, nitrificación
Crecimiento fijo	Contactores rotativos biológicos	Remoción de DBO, nitrificación
	Filtros de goteo	Remoción de DBO, nitrificación
	Filtro de goteo/lodos activos	Remoción de DBO, nitrificación
Procesos híbridos	Lodos activos de película fija integrada ^(c)	Remoción de DBO, nitrificación
Procesos anoxios		
Crecimiento suspendido	Desnitrificación de crecimiento suspendido	Desnitrificación
Crecimiento fijo	Filtro de desnitrificación de crecimiento suspendido	Desnitrificación
Procesos anaerobio	98	•
	Procesos de contacto anaerobio	Remoción de DBO
Crecimiento suspendido	Digestión anaerobia	Estabilización, destrucción de sólidos, muerte de patógenos
*	Proceso Anammox	Desnitrificación, remoción de amonio
Crecimiento fijo	Lecho fluidizado y empacado anaerobio	Remoción de DBO, estabilización de residuos, desnitrificación
Manta de lodos	Manta de lodo anaeróbico de flujo ascendente ^(d)	Remoción de DBO, especialmente residuos altamente resistentes
Híbrido	Manta de lodo de flujo ascendente/crecimiento fijo	Remoción de DBO

Tabla A3. Principales procesos de tratamiento biológico usado para aguas residuales.

Procesos combinado	os aerobios, anoxios y anaerobios	
Crecimiento suspendido	Procesos simples o de múltiples etapas, procesos patentados	Remoción de DBO, nitrificación, desnitrificación y remoción de fósforo
Híbrido	Procesos de crecimiento suspendido simple o de múltiples etapas con medios de película fija	Remoción de DBO, nitrificación, desnitrificación y remoción de fósforo
Procesos de lagunas	8	
Lagunas aerobias	Lagunas aerobias	Remoción de DBO, nitrificación
Lagunas de maduración (terciarias)	Lagunas de maduración (terciarias)	Remoción de DBO, nitrificación
Lagunas facultativas	Lagunas facultativas	Remoción DBO
Lagunas anaerobias	Lagunas anaerobias	Remoción de DBO (estabilización de residuos)

^(a)MBR

^(b)MBBR

(c)IFAS

(d)UASB

Fuente: Metcalf y Eddy, 1995

CONCENTRACIONES TÍPICAS DE LAS AGUAS RESIDUALES MUNICIPALES

Características del agua residual	Concentraciones	Unidad de concentraciones	Fracciones	Unidad de fracciones
Material orgánico				
DBO	230 - 560	g DBO/m ³	-	-
DBO soluble	200 - 480	g DBO/m ³	-	-
DQO Total	500 - 1200	g DQO/m ³	-	-
DQO suspendida	300 - 720	g DQO/m ³	0.25 - 0.60	g DQO/g DQOt
Ácidos grasos voláti	iles			
AGV (como acetato)	10 - 80	g/m ³	-	-
Material nitrogenad	lo			
N total	30 - 100	g N/m ³	-	-
N Amoniacal	20 - 75	g N/m ³	0.20 - 0.75	g N/g Nt
N Nitrato + Nitrito	0.1 - 0.5	g N/m ³	0 - 0.01	g N/g Nt
N Orgánico	15 - 25	g N/m ³	0.15 - 0.25	g N/g Nt
N Total Kjeldahl	30 - 100	g N/m ³	0.3 - 1.00	g N/g Nt
Material fosforado				
P total	6 - 25	g P/m ³	-	-
Ortho-P	4 - 15	g P/m ³	0.16 - 0.60	g P/ gPt
P orgánico	2 - 10	g P/m ³	0.08 - 0.40	g P/ gPt
Sólidos Suspendidos	8			
SST	250 - 600	g/m ³	-	-
SSV	200 - 480	g/m ³	0.33 - 0.80	g SSV/g SST

Tabla A4. Características típicas de las aguas residuales municipales.

Fuente: Adaptado de Henze et al., 2008.

RELACIONES MÁSICAS TÍPICAS DE LAS AGUAS RESIDUALES MUNICIPALES

	Relación	Unidad	n ^(a)	Media	Std% ^(b)	Mínimo	Máximo
	N_{tot}/DQO_{tot}	g N/ g DQO	12	0.095	17%	0.050	0.150
	N-NH _x /NTK	g N/g N	13	0.684	8%	0.500	0.900
	P _{tot} /DQO _{tot}	g P/g DQO	12	0.016	22%	0.007	0.025
	P-PO ₄ /P _{tot}	g P/g P	12	0.603	16%	0.390	0.800
	DQO _{tot} /DBO ₅	g DQO/g DBO	12	2.06	11%	1.410	3.000
Afluente	$DQO_{fil}\!/DQO_{tot}$	g DQO/g DQO	13	0.343	29%	0.120	0.750
erudo	SST/DQO _{tot}	g SST/g DQO	12	0.503	18%	0.350	0.700
	DQO _{part} /SSV	g DQO/g SSV	11	1.69	12%	1.300	3.000
	SSV/SST	g SS/g SS	12	0.74	20%	0.300	0.900
	DBO ₅ /DBO _u	g DBO/g DBO	7	0.655	7%	0.580	0.740
	Alcalinidad	mol-eq/L	11	5.173	35%	1.500	9.000
	$N_{tot}\!/DQO_{tot}$	g N/ g DQO	9	0.134	35%	0.050	0.360
	N-NH _x /NTK	g N/g N	11	0.755	4%	0.430	0.900
	P_{tot}/DQO_{tot}	g P/g DQO	9	0.023	25%	0.010	0.060
	P-PO ₄ /P _{tot}	g P/g P	10	0.741	12%	0.500	0.900
	DQO _{tot} /DBO ₅	g DQO/g DBO	9	1.874	31%	0.500	3.000
Efluente	$DQO_{\rm fil}/DQO_{\rm tot}$	g DQO/g DQO	10	0.449	31%	0.150	0.750
printano	SST/DQO _{tot}	g SST/g DQO	9	0.38	21%	0.180	0.560
	DQO_{part}/SSV	g DQO/g SSV	9	1.718	14%	1.400	3.500
	SSV/SST	g SS/g SS	9	0.794	7%	0.700	0.909
	DBO_5/DBO_u	g DBO/g DBO	6	0.644	10%	0.533	0.760
	Alcalinidad	mol-eq/L	9	5.711	40%	1.500	9.000
	DQO _{tot} /SSV	g DQO/g SS	9	1.434	7%	1.266	1.600
Lodos	$N_{tot}\!/DQO_{tot}$	g N/ g DQO	7	0.073	35%	0.045	0.116
activados	P _{tot} /DQO _{tot}	g P/g DQO	7	0.02	64%	0.010	0.044
	SSV/SST	g SS/g SS	10	0.739	8%	0.650	0.900

Tabla A5. Síntesis de las relaciones típicas de PTAR municipales a partir del cuestionario GMP.

(a) Número de respuestas de plantas de tratamiento.

(b) Desviación Estándar en (%)

Fuente: Adaptado Rieger et al., 2013.

SUBMODELOS INVOLUCRADOS EN EL PROCESO DE LODOS ACTIVADOS

Tipo de submodelo	Submodelos
	Modelos de reactor (ej. CSTR con volumen fijo o variable).
Modelos	Esquema de flujo: configuración y combinación de reactor (ej. tanques en serie).
hidráulicos y	Flujos de lodo activado de retorno (RAS) y de reciclo interno (IR).
transporte	Flujo de lodos acttivados de rechazo (WAS).
	Separador de flujo: fracción, flujo, bypass, etc.
	Modelos de clarificador punto.
	Modelos de clarificador ideal.
Modelos de	Modelos de clarificador por capas (imitando una sedimentación unidimensional).
clarificador	Modelos de clarificador CFD de más dimensiones (no disponbile en
	simulaciones comerciales).
	Modelos de clarificador reactivo (acoplado con modelo biocinético).
	Modelo del afluente para convertir medidas como DQO total, NTK, P a
	componentes del modelo (variables de estado).
Modelos de	Configuraciones operacionales y otras entradas.
entrada	Constantes (ej. Set-points de controladores)
	Entradas de energía para aireadores superficiales u otras unidades de proceso.
Modelos de	Variables combinadas o compuestas (ej. DQO total, DBO, SST, etc).
salida	Modelos de energía y costos.
Modelos	Ej. ASM1/2d/3, etc.
biocinéticos	Dependencia de la temperatura (ecuación de Arrhenius).
Madalaa da	Modelo para traducir el flujo de aire en kLa.
Niodelos de	Modelo de transferencia de oxígeno.
alleacion	Modelos de equipos de aireación (difusores, tuberías, sistema del soplador).
Modelos prec.	Dosis de sales de hierro o aluminio.
de fósforo	Precipitación de fosfato de calcio y magnesio.
	Modelos de controladores, sensores, actuadores.
	pH
	Transferencia de gas.
Otros	Submodelos del modelado de toda la planta (ej. Modelo de primarios, digestores
submodelos	anaerobios, manejo de lodo, etc).
	Modelos para entalpia (temperatura), costos operacionales, energía, huella de
	carbono, conversión de emisiones de gases de efecto invernadero en unidades
	de carbono, etc)

Tabla A6. Submodelos comunes en un proceso de lodos activados.

Fuente: Adaptado de López Amesquita, 2021.

MODELOS TÍPICOS DE CLARIFICADORES PARA LA SIMULACION CON ASM

	Separación completa de partículas	Pérdida de partículas
a) Modelos de clari	ificador punto	-
	Efluente (sin partículas) RAS	Efluente (Incl. partículas) RAS
b) Modelos de clar	ificador ideal (con volumen)	
Volumen para almacenamiento de lodos	Efluente (sin partículas) Manto de lodos no reactivo RAS	Efluente (Incl. partículas) Manto de lodos no reactivo RAS
Volumen para almacenamiento de lodos y agua clarificada	Efluente (sin partículas) Manto de lodos no reactivo RAS	Efluente (Incl. partículas) Manto de lodos no reactivo RAS
c) Modelos de clari	ificador en capas	•
Unidimensional o modelos de flux		RAS Efluente (Incl. partículas)
d) Modelos CFD de	e más dimensiones	
Típicamente no disponible en simuladores de PTAR		SSLM Xef
e) Modelos de clar	ificador reactivo	•
Aplicable para model	os con volumen descritos arriba	

Tabla A7. Modelos comunes de clarificadores.

Fuente: Adaptado de Rieger et al., 2013.

INFORMACIÓN PROPORCIONADA POR LA PLANTA DE TRATAMIENTO DE SAN BLAS.

102.5464	DAIQ	GENCINALIS	Printing and a second		1.1.1.1.	123/23	1	33.21		1999			17	AMAJIS	STEKO QUIN	K0	19100	1.4.1	State.	222	12.20	14.8-2		Anne	527				DIGTO	ana di sa
	1			T.Am	T. AS	COND	500	1082	per	00	ssr	Color V	sr	55¥	sau	1605	840	PT	OrteP	THEN	HT	NA.	8310	16111	508	Acd	V Ak		cou.r	00.F
Jecha Mucsteba	Codign	Barn A	DESCRIPTION	81	(0)	undern	ran	KTU		161	ngi	P(/Ca	ngi	ng ^o	es/l	ngi	*W ¹	rig)	ng/l	anga	ngi	164	reg/1	ng)	reg/l	189	ingi	rig/i	NM	F/L03ml
					Fat	ere cresteio							_		gradmete	to espect	obternitico	valurantico											Tubes malians	
1/2/2023	SP101A	8:00 AM	Section entrates and plates	16	e 20,0						38,0																			
1/2/2023	SP101B	8:00 AM	Securiorizador Silo 1018	- 10	20,0		0.002525	1			33,0				1							100								
1/2/2023	RA201A	8:00 AM	Beactor 4	11	20,0				7,03		219,0				180,0															
1/2/2023	RA2018	8:00 AM	Fir 2 i for 18	1	20,0				7,28		75,0				100,0															
1/2/2023	CR 201 A	8:00 AM	C. Necientarily 1207.6	16	20,0				100		8000,0																	T		
1/2/2023	CR 201 B	8:00 AM	C Decire La dec 2010	10	20.0						5000.0														1			1		
1/2/2023	CENT	10:00 AM	Carolide entrata	2	22.0	699.0	349.0	76.1	7.67	0.0	155.0	1170.0				208.1	332.0											1		
1/2/2023	CP301 A	10:00 AM	CanalParschall	2	22.0	530.0	265.0	6.0	7.38	5.3	16.0	146.0				13.8	90.0			1000		-	-							
1/2/2023	CENT	20-00PM	Canal de entrada		213	589.0	294.0	99.8	7 37	01	120.0		-		1	1			-			1				1	-	1		
1/2/2023	C 2301 A	20-00 PM	Canalleschel	-	713	511.0	255.0	5.0	7.50	40	12.0		-							-	-	1	-		-	-	-	\top		
2/2/2023	601010	8-00 464	Sedimentador Uso 1034	-	- ages	514,0	200,0	5,0		1.0	52.0	-		-	-				-		-	-	-		1	-	-	1		
2/2/2023	SPIGIO	8-00 AM	Sedimentador Ido 3110	1			-			-	460	-	-	-			-	1			-	-		-	1	-	+	-		
2/2/2023	BADOLA	0.00 AN	Bratero	1	220		1		7.47		40,0	-	-	-	180.0		-	-		-	-	+	-	-	+	1	-	+		
2/2/2023	RAZULA	8:00 AM		20	220		-		7,47	-	150,0	-	-	-	130,0	-		-		-	-	+	1	-	-	-	+	+-		
2/2/2023	RAZULB	8:00 AM	Piecectory #	- 21	22,0			-	7,44		105,0		-	-	170,0	-		-		-	-	+	-	-	+	-	-	+		120-10-1
2/2/2023	CR 201 A	8:00 AM	C. Recircatecian 2015	21	0		-	-			6500,0	-	-	-		-		-		-	-	-	-	-	-	-	+	+	+	
2/2/2023	CR 201 B	8:00 AM	C. Redinadación 2018	21	0	-	-		-		1900,0		-		-		-	-	1000	-	-	+	-	-	-	-	+	+	+	-
2/2/2023	CENT	10:00 AM	Canete en Gib	27	2 21.3	759,0	379,0	84,1	7,72	0,04	179,0		-	-		-	575,0	21,4	51,9		87,3	3	6,0	0,2	53,0		-	-		-
2/2/2023	CP301 A	10:00 AM	GastPaschill	2	21,3	536,0	268,0	4,7	7,58	5,4	13,1	-	-		-	-	106,0	4,6	9,8	48,3	22,3	2	12,0	0,3	65,0			+		
2/2/2023	RA201A	15:30	Franta	21	26,0		-		-				-		180,0		-	-	-	-	-	+	-	-	-		+	+		-
2/2/2023	RA201B	15:30	ReactorB	20	\$ 26,0		-		-				-	-	180,0	-		-		-	-		-	-	-		+	-		
2/2/2023	CENT	20:00PM	Casal de certsaits	2	21,2	551,0	275,0	81,3	6,89	0,0	140,0		-	-	-	-	-	-	-	-		+	-		-	-	-	-		
2/2/2023	CP301 A	20:00 PM	Carpel Parschart	2	21,3	583,0	292,0	9,1	7,10	3,0	26,0	-	_	-	-	_		-		-		-	-	-	-	-	-	-		
3/2/2023	SPIDIA	8:00 AM	Sedirentator Los 1044	1	6		_		_		82,0	-	_		1		-		-			-	-	-	-	-	-	-		
3/2/2023	SP101B	8:00 AM	Sedimentador trio 5030	1	6						87,0	2	_				-					-	-		-		1	-		
3/2/2023	RA201A	8:00 AM	Anador A	1	6 22,3				7,03	-	188,0				200,0								-				-			
3/2/2023	RA201B	8:00 AM	Reactors	3	22,3				7,07		128,0				200,0				-									_		
3/2/2023	CR 201 A	8:00 AM	C. Breitrainine JOLA	1	6 22,0						10100,0	1			1.000								1							
3/2/2023	CR 201 B	8:00 AM	C. Recipcular Not 2008	1	22,0						3700,0																		1	
3/2/2023	CENT	10:00 AM	Calval de contrada	1	22,2	507,0	303,0	63,3	7,43	0,1	160,0	1220,0				207,8	319,0									1.00				
3/2/2023	CP301 A	10:00 AM	Canal Assesse	1	22,6	579,0	289,0	7,0	7,35	5,0	24,0	222,0				14,0	89,0													
5/2/2023	CENT	20:0CPM	Canalide entrada	1	22,9	618,0	310,0	78,5	6,89	0,0	117,0																			
5/2/2023	CP301 A	20:00 PM	CanalPurschall	1	22.7	674,0	337,0	6,5	7,02	4,2	17.0	1000																		
6/2/2023	SP101A	8:00 AM	Sedimentador trio (d)A	1							57.0		-					-	0											
6/2/2023	SP101B	8:00 AM	Sedimentation link 1018-								54.0																			
6/2/2023	RA201A	8:00 AM	Bearlos A		277				6.74		356.0				200.0	1		1				1				1				
6/2/2023	8A201B	8-00 AM		1	22.7		-		6.85		290.0				205.0				-							1		-	-	-
6/2/2022	CR 201 A	8:00 414	and	1					0,00		3102.0		1	-	20010							-	-		1	-	+	1		
6/2/2023	CB 201 B	8.00 AM	A STOLED AND		1		-				1900.0											-			1	1		1		
60/2023	CENT	10-00 444	Caralde entrata	1	222	900.0	400.0	109.0	7.20	0.0	222.0	2170.0	-	-	-	-	556.0			-		-	1		-	1	1	-		-
6/2/2023	CP301 A	10:00 AM	Calabiaschul	20	23.4	646.0	321.0	4.7	7,58	5.4	5.0	99.0	-	1	-	-	83.0	-		-		-	-	-	+	1	+	-	-	1
6/2/2023	CENT	20:00PM	Canalize extends	18	3 212	328.0	164.0	49.9	7.03	0.4	83.0	100	-	-		-	1	1	-		-	-	1		1	1	-	-	-	1

Tabla A8.1. Datos operativos reconciliados del laboratorio del mes de febrero de la PTAR San Blas.

																												-		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
6/2/20	23 CP301 A	20:00 PM	Canal Parschall	11	3 21,4	631,0	315,0	3,5	7,43	5,6	12,0																			
7/2/20	023 SP101A	8:00 AM	Sedimentator Irio 101A	11	7						49,0																			
7/2/20	023 SP101B	8:00 AM	Sedimentador 1no 101%	1 17	7						40,0						1													
7/2/20	023 RA201A	8:00 AM	Beartor A	11	22.0				6,95		437,0			27	70,0															
7/2/20	23 RA201B	8:00 AM	Constant B	11	22.0				6.71		386.0			35	0,0															
7/2/20	123 CR 201 A	8.00 AM	La manufación 2014	1 17	7						1200.0																			
7/2/20	23 CR 201 B	8:00 AM	C. Beckendering 2014	1 17	7						2300.0				-									1						
7/2/20	23 CENT	10:00 AM	Canal de entrata	118	3 22.0	821.0	410.0	70.9	7.73	0.0	148.0	2210.0					1491,0													
7/2/20	23 CP301 A	10:00 AM	Canal Parschall	18	3 21.9	559.0	278.0	2.8	7.30	5.9	12,0	95,0				1	72,0													
7/2/20	23 CENT	11:07 AM	Canal de entrada	1 18	3 22.0	785.0	392.0		7.47	0,1	207.0					1.00														
7/2/20	23 CENT	2-30 PM	Canal de entrada	21	1 23.0	676.0	338.0		6.96	0.0	414.0					1000														
7/2/20	123 CENT	20:00PM	Canal de entrata	1 18	3 20.0	571.0	286.0	137.0	7.02	0.0	268.0								1											
7/2/20	123 CP301 A	20-00 PM	Canal Parschall	118	3 20.0	537.0	271.0	5.3	6.98	5.9	14.0																			
9/2/20	23 501014	8-00 AM	Sedimentador 11ko 103A	1 12	7	00110					70.0				-			1.11												
9/2/20	23 SP101R	8:00 AM	Sedimentador 1nh 1018	1 1			-				71.0										1-1-2									
0/2/20	123 BA201A	8.00 AM	BeartorA	1	7 21.0				6.89		413.0			26	0.0						7			-						
0/1/20	123 RA2018	8-00 AM		1 1	2 21.0				7.01		366.0	1000		25	0.0						1.000									
0/2/20	123 CR 201 A	9-00 AM	Reactor 9	1 17	7 24,0	-	-		1,01		2520.0					-														
8/2/20	23 CR 201 R	8:00 AM	C. Recirculación 2014	1 17		-	1		-		3790.0										1.000		-							
0/2/20	23 CENT	10:00 414	C. Bethculation 2018	1 2	220	796.0	302.0	140.0	7 48	0.1	252.0	1470.0				202.0	609.0				1								8,00E+05	4,00E+05
0/2/20	23 CENT	10:00 AM	Canal Samball And 15	2	22,0	525.0	262.0	4.2	6.95	49	130	1410,0				LOLIO	000,0												4.00E+05	4.00E+05
0/2/20	23 CP301 A A	10:00 AM	(and Parcial Deca IN	2	22,0	523,0	261.0	4,2	6.97	5.8	110	108.0				54	91.0							2412122		-			<1000	<1000
8/2/20	25 CP301D7	10.00 AIV	Canal de anticado	1 20	22,0	523,0 COE 0	202,0	1.76 00	6.0	0.0	256.0	100,0					52,0													
8/2/20	23 CENT	20:00000	Canal Deers hall	1 20	22,4	503,0	303,0	120,00	6,9	5,0	15.0				-								-							
8/2/20	23 CP30LA	20:00 PIV	Carlas Parse non	- 10	22,4	551,0	200,0	4,90	0,7	5,6	77.0							-		-			-	-		-				
9/2/20	JZ3 SPIUIA	8:00 AM	Sed inemiation The Sola				-		-		72,0							-				-		-	-	-				
9/2/20	523 SP1018	8:00 AM	Sedimentador 1no 1018					-	65		73,0			20	20.0											1	+			-
9/2/20	23 RAZUIA	8:00 AM	INP RECOTA	10	23,2		-		6.47		231,0			20	0,0								-							
9/2/20	AZUIB	5:00 AM	Reactor B	10	23,3		-		0,47		220,0	1			,0,0			-					-			-				
9/2/20	23 CR 201 A	8:00 AM	C. Recirculación 201A	10			-				2950,0													+	-	-	+			
9/2/20	23 CR 201 B	8:00 AM	C. Recirculation 2018	10	2 220	7000	170.0	127.0	7.24	0.0	242.0	1800.0			-		494.0	220	62.36	28	86.3		12	0.23	20	1	++			
9/2/20	23 CENT	10:30 AM	Canaloe entrass	24	23,0	760,0	3/9,0	137,0	7,31	0,0	11.0	1000,0				-	900	7.06	17.04	10.3	30.12		10	0.83	63					
9/2/20	023 CP301	10:30 AM	Canal Parchait Desp OV	2.	23,0	568,0	284,0	4,1	0,92	5,1	42.0	122,0				111220	80,0	1,50	17,04	13,3	30,13		- 10	0,05	0.	-	+ +			
9/2/20	023 CENT	20:00PM	Canal de entrada	20	21,0	366,0	182,0	27,00	7,1	0,7	42,0							-					-			-				
9/2/20	023 CP301 A	20:00 PM	Canal Parse hol	20	21,0	599,0	299,0	4,8	1,21	5,1	12,0							-									+			
10/2/2	023 SP101A	8:00 AM	Sedimentador trio 101A	12	5						69,0				-		-	-						-	-		+			
10/2/2	023 SP101B	8:00 AM	Sedimentador 1/io 1015	12	5						69,0		-	2	00	-		-		20 - 9						-				
10/2/2	023 RA201A	8:00 AM	Reactor A	12	5 22,4				6,91		363,0			2	0,0			-		-			-		-		+			
10/2/2	023 RA201B	8:00 AM	Reactor 8	10	5 23,0				6,97		546,0				10,0			-						5		-	+			
10/2/2	023 CR 201 A	8:00 AM	C. Berincularión 201A	12	5			-			5640,0				-										-		++	\vdash		
10/2/2	023 CR 201 B	8:00 AM	C. Becirculación 2018	12	5						2940,0						204.0	-		-				-	-		+	\vdash		
10/2/2	023 CENT	10:00 AM	Canal de entrada	2.	2 23,0	639,0	318,0	68,8	7,25	0,0	140,0	990,0				148,3	284,0					-	-		-		+			
10/2/2	023 CP301	10:00 AM	Canal Parchall Desp UV	2.	2 23,0	566,0	283,0	4,7	7,02	5,4	8,0	81,0				5,2	76,0	-		-					-		+			
12/2/2	023 CENT	20:00PM	Canal de entrada	24	21,7	578,0	289,0	/1,2	7,01	0,0	119,0					-				-	-		-		-	+	+-+			
12/2/2	023 CP301 A	20:00 PM	Canal Parchall	24	1 21,7	595,0	297,0	3,6	6,93	4,7	8,0					-		-		-			-		-		+	\vdash		
13/2/2	023 SP101A	8:00 AM	Sed intentador Trio 101A	22	2	2000	-				49,0								<u> 1</u>				-		-		+ +			
13/2/2	023 SP101B	8:00 AM	Sedamentation 1nio 1018	2:	2		-				50,0										-		-		-	-				
13/2/2	023 RA201A	8:00 AM	Reactor A	22	2 22,0		-		6,65		181,0						-				-				-		+ +			
13/2/2	023 RA201B	8:00 AM	Reactor B	22	2 22,0		-	-	6,84		177,0							-		-		-			-	-	+			
13/2/2	023 CR 201 A	8:00 AM	C. Becirculación 201A	22	2		-				21000,0													-			+-+			
13/2/2	023 CR 201 B	8:00 AM	C. Recirculation 2018	22	2					-	24400,0							-							-					
13/2/2	023 CENT	10:00 AM	Canal de entrada	2	3 22,7	800,0	400,0	81,1	7,17	0,0	173,0	183,0					477,0	-								-				
13/2/2	023 CP301	10:00 AM	Canal Parchall Besp UV	23	3 23,4	603,0	302,0	4,01	6,9	4,7	5,0	62					104,0	-		-	-					-				
13/2/2	023 CENT	20:00PM	Canai de entrada	20	21,0	285,0	142,0	70,2	6,05	0,6	106,0	-				-				-					-	-		\vdash		
13/2/2	023 CP301 A	20:00 PM	Canal Parse hall	20	21,0	627,0	312,0	5,3	6,36	3,4	14,0					_		1							L					

										170	· · ·	1	_					1	1			1	1	1		1	
14/2/2023	SP101A	8:30 AM Sedimentador Iriu 101A	18							47,0		-	-					-	-	-	-	+	-	-			
14/2/2023	SP101B	8:30 AM Sedmentator 1 to 1018	18	-		-				44,0		-					-	-		-		+	-	-			
14/2/2023	RA201A	8:30 AM Reactor A	18	23,0				6,10		403,0		-	220,0					-		-		-	-	-			
14/2/2023	RA201B	8:30 AM Beactors	18	23,0				6,23		349,0	-		230,0			2.1.1		-			-	-	-	+			
14/2/2023	CR 201 A	8:30 AM c. Berinrulación 201A	18							3140,0			-					-			-	-	-	-			
14/2/2023	CR 201 B	8:30 AM C. Recirculation 2018	18							3370,0								-			-	-	-	-	-		
14/2/2023	CENT	10:00 AM Canal de entrada	20	22,0	579,0	290,0	73,9	7,65	2,0	131,0	900,0				281,0					-		-	-	-			
14/2/2023	CP301	10:00 AM Canal Parchall Desp UV	20	22,0	575,0	287,0	3,4	7,47	4,2	11,0	80,0				103,0	-		-		-		-	-	-			
14/2/2023	CENT	20:00PM Canalde entrada	22	23,0	550,0	275,0	59,0	6,83	0,00	98,0									-			-	-	-			
14/2/2023	CP301 A	20:00 PM Canal Parschall	22	23,0	551,0	276,0	3,6	6,95	3,1	9,0								-			-	-	-	-			
15/2/2023	SP101A	8:00 AM Sedimentador 1no 101A	18				la second			92,0											-		-	_			
15/2/2023	SP101B	8:00 AM Sedimentador 110 1018	18							86,0													-				
15/2/2023	RA201A	8:00 AM Beattor A	18	23,0				5,73	1 - march	425,0			240,0									_	-				
15/2/2023	RA201B	8:00 AM Beactors	18	23,0			8	6,56	Sector States	399,0			260,0										-	-			
15/2/2023	CR 201 A	8:00 AM C Becimulación 2014	18							10100,0				1									-				
15/2/2023	CR 201 B	8:00 AM c necisivarian 2010	18						dooran rak	8200,0														-			
15/2/2023	CENT	10:00 AM Canal de entrada	19	23.2	644.0	322.0	44,5	7,64	0,1	97,0	6400,0			112,1	273,0												
15/2/2023	CP301	10:00 AM Canal Parchail Desp UV	19	23.2	542.0	271.0	3,0	7,30	5,4	10,0	78,0			5,4	102,0												
15/2/2023	CENT	20-00PM Lanal de entrada	19	22.2	578.0	289.0	49.2	6,70	0.1	89,0																	
15/2/2023	CP301 A	20-00 PM Canal Parschat	19	22.2	559.0	280.0	7.3	6,63	3.7	13.0																	
16/2/2023	SP101A	8-00 AM Sedimentador 1no 101A	19	in a fee					-/-	43.0																	
16/2/2023	SP101B	8-00 AM Sedimentador 1/io 1015	19							41.0																	
16/2/2023	RA201A	8-00 AM Reactor A	19	22.3			C	6.30		288,0			200,0														
16/2/2023	RA201B	8:00 414	19	223				6.52		279.0			180,0								100000						
16/2/2023	CR 2010	8:00 AM	19	LEID				0,02		8000.0																	
16/2/2023	CR 201 R	8:00 AM	19				1		1.000	6500.0																	
16/2/2023	CENIT	10-00 AM canalde entrata	23	222	771.0	385.0	71.9	7.13	0.0	142.0					392,0	23,6	66,1	38	87,4		9 0,0	1 5	58				ook alke or the se
16/2/2023	CP301	10-00 AM Canal Parchall Desp UV	23	22.5	546.0	273.0	4.1	6.65	5.2	10.0					85,0	4,23	12,73	14,4	29,84		1,0	7 7	14				and the share of
16/2/2023	CENT	20-00PM Carel de entrada	19	198	404.0	202.0	64.3	6.94	0.39	86.0																	100 BBC BB
16/2/2023	CP301 A	20-00 PM canal Patchail	19	198	516.0	271.0	15.3	6.85	4.95	17.0													-				
17/2/2023	SPIOIA	8-00 AM Sedimentador (rio 101A	13	10,0	010,0	2.2/2				49.0		1															
17/2/2023	SP101B	8:00 AM Sedimentator trib 1916	13							48.0																	
17/2/2023	RA201A	8-00 AM Beatler A	13	18.0				6.66		214.0			110,0														
17/2/2023	RA201R	8:00 AM	13	18.0				6.70		157.0			100,0														
17/2/2023	CR 201 A	8:00 AM	13	10,0						5260.0																	
17/2/2023	CR 201 A	8:00 AM	13							5380.0																	
17/2/2023	CENT	10:30 AM Canai de entrada	17	224	540.0	270.0	57.4	7.16	0.58	122.0	900.0			97.1	204,0												
17/2/2023	CD201	10:30 AM Canal Parchail Drise W	17	225	484.0	243.0	19.8	6.62	4.75	19.8	337.0			3.2	79,0												
20/2/2023	PA201A	8:45 ANA Bractor A	22		10 90								180.0			1											
20/2/2023	RA201R	8:45 AM	22	-	-								130,0														
20/2/2023	CENT	20-00PM Casul de entrada	18	21.0	621.0	310.0	61.9	7.73	0.03	104.0																	
21/2/2023	CD201 A	20:00 PM casal Parschat	1.0	21.0	583.0	291.0	7.1	7.48	2 39	17.0									1								
21/2/2023	CP301A	8:00 AM Sedimentation 1/14	17	21,0	565,0	291,0	1,1	7,40	2,00	50.0																	
22/2/2023	SPIUIA	8:00 AM betweendor the 1018	17							48.0												-					
22/2/2023	842016	9:00 AM Bestler A	17	21.0				6.44		340.0			210.0														
22/2/2023	RAZUIA	8:00 AM REALEY	17	21,0	-			6.74		463.0			240.0								-				1		
22/2/2023	CD 201	B-00 AM	17	21,0				0,24		2600.0	1		2-10,0									1					
22/2/2023	CR 201 A	8:00 AIVI C. Recirculación 201A	17			-	1000-20		0 - 10 - 10 - 20	2100.0												1	-				
22/2/2023	CR 201 B	5:00 AIVI c. herin alación 2018	21	22.2	774.0	3970	54.8	7.92	0.05	127.0	890.0			179.6	367.0							1				1,10E+05	7,00E+05
22/2/2023	CENT	10:00 AM Candida entrata	21	22,3	774,0	387,0	54,8	7.92	4.80	220	0.00,0			210,0	00110			-		-		-				<10000	<10000
22/2/2023	CP301	10:00 AM carallax and by	21	22,3	545,0	219,0	5.8	7.14	4,65	12.0	75.0	-		10.6	108.0							-				<100	<100
22/2/2023	CP301	20:00 AM canal can be by	10	22,3	206.0	142.0	9,0	7.22	1.80	210.0	10,0			10,0	100,0							1	-				
22/2/2023	CENT	20:00 PM Canales emand	10	20,7	520.0	265.0	26.6	6.00	2.05	520										-							
22/2/2023	CP301 A		10	20,6	529,0	265,0	20,0	0,30	5,55	140.0	-											-					
23/2/2023	SP101A	8:00 AM Semmentator 100 101A	18	1					1	140,0						-					_	1	_	_	1		

23/2/2023	SP101B	8:00 AM Sed mentador 1rio 1018	18					-	1	70.0											1					
23/2/2023	RA201A	8:00 AM BeactorA	18				1	5.44		252.0		-	190.0					-			-		-	-	-	
23/2/2023	RA201B	8:00 AM	18					6.52	-	292,0			140.0	-						-	-	-				
23/2/2023	CR 201 A	8:00 AM	18					0,52		13100.0		-	140,0	-			-	-		-	-	-		+	-	
23/2/2023	CR 201 B	8:00 AM c Redected to 100	18							6100.0			-							-	-					
23/2/2023	CENT	10.00 AM Canaide entrada	20	219	735.0	368.0	575	854	0.06	127.0	1060.0		-		264.0	10.2		40	61.1		0.12	50			-	
73/2/2023	CP301	10:00 AM Canal Parchall Desp UV	20	221	497.0	248.0	85	7.16	4.68	19.0	136.0				126.0	12.66	17.93	20	20.15	1	0,12	50	-			
23/2/2023	CENT	20:00PM Canal de entrada	19	20.9	589.0	294.0	40.7	7.58	0.10	60.0	130,0		-		120,0	12,00	11,00	25	50,15	1	2,34	04			+	
23/2/2023	CP301 A	20:00 PM Canal Parschatt	19	20.9	517.0	255.0	15.7	6.80	3.95	28.0									-	+					-	
24/2/2023	SP101A	8:00 AM Sed imentation 1rilo 1014	18	1.010	- sarije	200,0	10,1	0,00	54.00	20,0				-						-		-			-	
24/2/2023	SP101B	8:00 AM Sedimentador 1rio 1018	18						51,00	-							-	-	-		-			\vdash		
24/2/2023	RA201A	8:00 AM Reactor A	18	21.8				6.51	238.00				200.0					-			1				-	
24/2/2023	RA201B	8:00 AM Beatlors	18	21.8				6.38	283.00				150.0						-	-	-	-	-			
24/2/2023	CR 201 A	8:00 AM C Berlingster Kin 2014	18						3090.00				200,0				1.17.11.19				-		-		-	
24/2/2023	CR 201 B	8:00 AM C Resimulación 2018	18						2300.00												1		-		-	
24/2/2023	CENT	10:00 AM Canal de entrada	20	21,9	791.0	396,0	56,9	7.72	0.06	138.0	1030.0			430.2	989.0					-						
24/2/2023	CP301	10:00 AM Canal Parchall Desp UV	20	22,0	490,0	247,0	6,1	7,88	3,86	15.0	107.0			11.8	114.0				-		-		1			
26/2/2023	CENT	20:00PM Canal de entrada	18	20,3	615,0	308,0	65,2	8,07	0,02	109,0							1	-		-			-		-	
26/2/2023	CP301 A	20:00 PM Canal Parschall	18	20,5	504,0	252,0	6,9	7,72	5,29	15,0										-					-	
27/2/2023	SP101A	8:00 AM Sedimentador 1rio 101A	18							51,0							0.1.12					-				
27/2/2023	SP101B	8:00 AM Sedimentador 110 1018	18							46,0								-				-			-	
27/2/2023	RA201A	8:00 AM Reactor A	18	21,0				6,80		451,0			280,0												-	
27/2/2023	RA201B	8:00 AM Reactors	18	21,0				6,70		346,0			220,0										0.000			
27/2/2023	CR 201 A	8:00 AM C. Recirculación 201A	18							2000,0													-		-	
27/2/2023	CR 201 B	8:00 AM C. Becisculación 2018	18							1500,0													10.000			
27/2/2023	CENT	10:00 AM Canal the entrada	20	21,9	673,0	337,0	71,5	8,30	0,05	150,0	750,0				383,0											
27/2/2023	CP301	10:00 AM Canal Parchall Desp UV	20	22,3	439,0	220,0	6,2	7,31	4,93	16,0	145,0				106,0			Sec. 1								
27/2/2023	RA201A	15:00 PM Reactor A	21										200,0				1221000									
27/2/2023	RA201B	15:00 PM Reactor B	21										150,0													
27/2/2023	CENT	20:00PM Canal de entrada	20	22,1	658,0	329,0	42,4	7,70	0,03	62,0																
27/2/2023	CP301 A	20:00 PM Canal Parschall	20	22,0	480,0	240,0	9,6	7,36	4,19	21,0																
28/2/2023	SP101A	8:30 AM Sedimentator 3rio 101A	18							51,0					12											
28/2/2023	SP101B	8:30 AM Sedimentator trip 1013	18							48,0																
28/2/2023	RA201A	8:30 AM Reactor A	18		1			6,97		349,0			280,0													
28/2/2023	RA201B	8:30 AM Reactor B	18					6,79		417,0			210,0													
28/2/2023	CR 201 A	8:30 AM C. Recirculation 2014	18							3000,0																
28/2/2023	CR 201 B	8:30 AM C. Recirculación 2018	18							13500,0																
28/2/2023	CENT	10:00 AM Canal de entrada	21	22,0	699,0	349,0	94,6	8,01	0,02	168,0	1490,0				393,0											
28/2/2023	CP301	10:00 AM Canal Parchall Desp UV	21	22,0	451,0	225,0	4,5	7,06	5,11	12,0	88,0				78,0											
28/2/2023	CENT	20:00PM Canalde entrada	17	23,0	525,0	262,0	82,9	7,47	0,01	106,0																
28/2/2023	CP301 A	20:00 PM Canal Parschall	17	23,0	469,0	234,0	9,5	7,11	4,47	23,0																

Fuente: COSAALT.

PERFILES HORARIOS DE CAUDALES DE PURGA Y RECIRCULACIÓN (FECHA 19/02/2023)

Figura A9.1. Perfil horario del caudal de purga de lodos de la PTAR San Blas.

Figura A9.2. Perfil horario del caudal de recirculación de la PTAR San Blas.

ESTADÍSTICA DESCRIPTIVA DE LOS DATOS RECOPILADOS DE CAUDALES Y CONSUMOS DE LA PTAR SAN BLAS

Estadístico	Afluente L/s	Efluente L/s	Reciclo L/s	Purga L/s
Promedio	62.72	61.84	0.38	0.71
Máximo	62.72	69.21	0.77	1.10
Mínimo	62.72	54.30	0.00	0.50
Desv. Estándar	0.00	4.07	0.26	0.15
CV (%)	0.00	6.59	69.06	21.41
Número datos	1.00	22	28	20

Tabla A10.1. Estadística de los caudales del afluente, efluente y recirculación del mes de febrero de2023

Fuente: Elaboración propia.

ESTADÍSTICA DESCRIPTIVA DE LOS DATOS RECOPILADOS DE CAUDALES CONCENTRACIONES DE LA PTAR SAN BLAS

Estadístico	DQO total g/m ³	DBO ₅ g/m ³	SST g SS/m ³	SSV g SS/m ³	N total g N/m ³	NTK g N/m ³	N-NO3 g N/m3
Promedio	238.20	100.09	84.55	67.13	81.11	35.59	11.22
Máximo	238.20	100.09	84.55	67.13	81.11	35.59	11.22
Mínimo	238.20	100.09	84.55	67.13	81.11	35.59	11.22
Desv. Estándar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CV (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Número datos	1	1	1	1	1	1	1

 Tabla A11.1. Estadística de las concentraciones de materia orgánica, particulada y nitrogenada del afluente (febrero).

Fuente: Elaboración propia.

 Tabla A11.2. Estadística de las concentraciones de materia orgánica, particulada y nitrogenada del efluente (febrero).

Estadístico	DQO total g/m ³	DBO ₅ g/m ³	SST g SS/m ³	SSV g SS/m ³	N total g N/m ³	NTK g N/m ³	N-NO ₃ g N/m3
Promedio	94.00	8.68	13.85	10.23	28.08	26.75	13.64
Máximo	126.00	14.00	24.00	17.74	30.15	48.30	20.34
Mínimo	72.00	3.20	8.00	5.91	22.20	14.40	10.83
Desv. Estándar	15.13	4.34	4.17	3.08	3.92	15.01	4.52
CV (%)	16.09	49.98	30.10	30.10	13.97	56.10	33.12
Número datos	18	8	20	20	4	4	4

Fuente: Elaboración propia.

 Tabla A11.3. Estadística de las concentraciones de sólidos en los reactores A y B, y la recirculación (entre abril, mayo)

	Reactor A		Reac	tor B	Recirculación	
Estadístico	SST g SS/m ³	SSV g SS/m ³	SST g SS/m ³	SSV g SS/m ³	SST g SS/m ³	SSV g SS/m ³
Promedio	306.56	226.54	293.56	216.94	4973.35	3680.28
Máximo	451.00	333.29	546.00	403.49	10513.36	7779.89
Mínimo	150.00	110.85	75.00	55.43	1765.81	1306.70
Desv. Estándar	97.85	72.31	129.77	95.90	2795.52	2068.68
CV (%)	31.92	31.92	44.21	44.21	56.21	56.21
Número datos	18	18	18	18	16	16

Fuente: Elaboración propia.

ESTADÍSTICA DESCRIPTIVA DE LOS DATOS RECOPILADOS DE LAS CONDICIONES AMBIENTALES DE LA PTAR SAN BLAS

		Afluente		Efluente		
Estadístico	pH* uds.	Temp* °C	OD* g O ₂ /m ³	pH* uds.	Temp* °C	OD* g O ₂ /m ³
Promedio	7.62	22.32	0.03	7.25	22.42	5.15
Máximo	8.54	23.20	0.10	7.88	23.40	5.90
Mínimo	7.01	21.70	0.00	6.90	21.30	4.65
Desv. Estándar	0.40	0.46	0.04	0.28	0.59	0.37
CV (%)	5.23	2.05	116.65	3.80	2.62	7.28
Número datos	21	19	20	20	19	18

Tabla A12.1. Estadística del pH, temperatura y OD del afluente y efluente del mes de febrero

Fuente: Elaboración propia.

Tabla A12.2. Estadística del	pH, temperatura	y OD del reactor A	y B del mes de febrero
------------------------------	-----------------	--------------------	------------------------

		Reactor A		Reactor B		
Estadístico	pH* uds.	Temp* °C	OD* g O ₂ /m ³	pH* uds.	Temp* °C	OD* g O ₂ /m ³
Promedio	6.77	21.98	2.00	6.74	22.03	2.00
Máximo	7.47	23.20	2.00	7.44	23.30	2.00
Mínimo	6.30	20.00	2.00	6.23	20.00	2.00
Desv. Estándar	0.30	0.90	0.00	0.33	0.94	0.00
CV (%)	4.41	4.09	0.00	4.94	4.27	0.00
Número datos	16	15	18	18	15	18

Fuente: Elaboración propia.

BALANCES DE MASA DE SST PARA EL AJUSTE DE LOS CAUDALES DE LA PTAR SAN BLAS

Ecuación	Flujo	Q _{in} L/s	Q _{aj} L/s	$\begin{matrix} Q_{aj} \\ m^3/d \end{matrix}$	SST g/m ³	Qaj*SST kg/d	Sistema 1	Sistema 2	Sistema 3
1	2	3	4	5	6	7	8	9	10
Q2 - Q3	Q4	68.12	68.12	5885.50	84.55	497.63	497.63		
Q10	Q_8	61.84	67.15	5801.59	13.85	80.32	-80.32		-80.32
	Q9	0.71	0.97	83.89	4973.35	417.24	-417.24		
	Q 7	0.38	3.14	271.38	4973.35	1349.68			
$Q_4 + Q_7$	Q5	68.50	71.26	6156.88	300.04	1847.31		1847.31	
Q5	Q6	68.50	71.26	6156.88	300.06	1847.41		-1847.41	1847.41
Q6 - Q8	Q11	6.66	4.11	355.29	4973.35	1766.98			-1766.98
Entradas (kg/d)	-	-	-	-	-	-	497.63	1847.31	1847.41
Salidas (kg/d)	-	-	-	-	-	-	-497.56	-1847.41	-1847.31
Diferencia (kg/d)	-	-	-	-	-	-	0.07	-0.09	0.10
Desviación (%)	-	-	-	-	-	-	0.01	0.00	0.01

Nota. Qin: Valor inicial de caudal (sin cambios). Qaj: Valor ajustados de caudales. Fuente: Elaboración propia.

EXPRESIONES CINÉTICAS Y BALANCES DE MASA DEL MODELO ASM1

De la matriz de Henze et al. (2002), presentada en su segunda tabla de la publicación, Tabla A.1, se desarrollan las expresiones cinéticas (velocidades de conversión) para cada una de las variables de estado del modelo ASM1.

A14.1. Lista de procesos.

De acuerdo con la matriz, la velocidad de cada procesos (ρ_i) se expresa a continuación:

• j = 1, crecimiento aerobio de heterótrofos.

$$\rho_1 = \hat{\mu}_H \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_O}{K_{O,H} + S_O} \right) X_{B,H}$$

• j = 2, crecimiento anóxico de heterótrofos.

$$\rho_2 = \hat{\mu}_H \left(\frac{S_S}{K_S + S_S}\right) \left(\frac{K_{O,H}}{K_{O,H} + S_o}\right) \left(\frac{S_{NO}}{K_{O,H} + S_{NO}}\right) \eta_g \cdot X_{B,H}$$

• j = 3, crecimiento aerobio de autótrofos.

$$\rho_3 = \hat{\mu}_A \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) \left(\frac{S_O}{K_{O,A} + S_O} \right) X_{B,A}$$

• j = 4, decaimiento de heterótrofos.

$$\rho_4 = b_H \cdot X_{B,H}$$

• j = 5, decaimiento de autótrofos.

$$\rho_5 = b_A \cdot X_{B,A}$$

• j = 6, amonificación de nitrógeno orgánico soluble.

$$\rho_6 = k_a \cdot S_{ND} \cdot X_{B,H}$$

• j = 7, hidrólisis de orgánicos entrampados.

$$\rho_7 = k_h \frac{X_S/X_{B,H}}{K_X + (X_S/X_{B,H})} \left[\left(\frac{S_O}{K_{O,H} + S_O} \right) + \eta_h \left(\frac{K_{O,H}}{K_{O,H} + S_O} \right) \left(\frac{S_{NO}}{K_{O,H} + S_{NO}} \right) \right] X_{B,H}$$

• j = 8, hidrólisis de nitrógeno orgánico entrampado.

$$\rho_8 = \rho_7(X_{ND}/X_S)$$

A14.2. Velocidades de conversión.

Se determina la velocidad de conversión de cada componente del modelo ASM1 (r_i), sumando el producto de los coeficientes estequiométricos (v_{ij}) de la columna respectiva con cada uno de los procesos que afecta la concentración del componente (ρ_j). Matemáticamente:

$$r_i = \sum_j v_{ij} \rho_j$$

A continuación, se expresa la velocidad de conversión de cada componente:

• *S_I* (i=1)

 $r_1 = 0$

• S_S (i=2)

$$r_2 = -\frac{1}{Y_H} \cdot \rho_1 - \frac{1}{Y_H} \cdot \rho_2 + \rho_7$$

• *X_I* (i=3)

$$r_{3} = 0$$

• X_S (i=4)

$$r_4 = (1 - f_P)\rho_4 + (1 - f_P)\rho_5 - \rho_7$$

• *X*_{BH} (i=5)

$$r_5 = \rho_1 + \rho_2 - \rho_4$$

• *X_{BA}* (i=6)

$$r_6 = \rho_3 - \rho_5$$

• X_P (i=7)

$$r_7 = f_P \cdot \rho_3 + f_P \cdot \rho_5$$

• *S*₀ (i=8)

$$r_8 = -rac{1 - Y_H}{Y_H} \cdot
ho_1 - rac{4.57 - Y_A}{Y_A} \cdot
ho_3$$

• *S_{NO}* (i=9)

$$r_{9} = -\frac{1 - Y_{H}}{2.86 \cdot Y_{H}} \cdot \rho_{2} + \frac{1}{Y_{A}} \cdot \rho_{3}$$

• *S_{NH}* (i=10)

$$r_{10} = -i_{XB}\rho_1 - i_{XB}\rho_2 - \left(i_{XB} + \frac{1}{Y_A}\right)\rho_3 + \rho_6$$

• *S_{ND}* (i=11)

$$r_{11} = -\rho_6 + \rho_8$$

• X_{ND} (i=12)

$$r_{12} = (i_{XB} - f_P \cdot i_{XP})\rho_4 + (i_{XB} - f_P \cdot i_{XP})\rho_5 - \rho_8$$

• S_{SALK} (i=13) $r_{13} = -\frac{i_{XB}}{14}\rho_1 + \left(\frac{1-Y_H}{14\cdot 2.86\cdot Y_H} - \frac{i_{XB}}{14}\right)\rho_2 - \left(\frac{i_{XB}}{14} + \frac{1}{7\cdot Y_A}\right)\rho_3 + \frac{1}{14}\rho_6$

A14.3. Balances de masa

Se realizaron balances de masa por componente (i) y balances de caudales.

a) Balances de masa por componente

• Reactor k=1:

Componentes solubles:

$$\frac{dC_{1,i}}{dt} = \frac{1}{V_1} \left(Q_0 \cdot C_{i,0} + Q_{ras} \cdot C_{i,ras} + r_1 \cdot V_1 - Q_1 \cdot C_{i,1} \right)$$

Componentes particulados:

$$\frac{dC_{1,i}}{dt} = \frac{1}{V_1} \left(Q_0 \cdot C_{i,0} + (Q_0 + Q_{ras}) \cdot C_{i,n} - \left(\frac{\sum_{k=1}^n V_k \cdot X_{tot}}{SRT}\right) \left(\frac{C_{i,n}}{X_{tot,n}}\right) + r_1 \cdot V_1 - Q_1 \cdot C_{i,1} \right)$$

• Reactor k=2 hasta 6:

$$\frac{dC_{i,k}}{dt} = \frac{1}{V_k} \left(Q_{k-1} \cdot C_{i,k-1} + r_k \cdot V_k - Q_k \cdot C_{i,k} \right)$$

• Caso especial para el oxígeno (S_0) :

$$\frac{dS_{O,k}}{dt} = \frac{1}{V_k} \left(Q_{k-1} \cdot S_{O,k-1} + r_k \cdot V_k + (K_L a)_k V_k \left(S_O^* - S_{O,k} \right) - Q_k \cdot S_{O,k} \right)$$

Donde la concentración de saturación para el oxígeno es: $S_0^* = 8.637 \ g/m^3$

• Clarificador secundario

Componentes solubles:

$$C_{i,n} = C_{i,e} = C_{i,u}$$

Componentes particulados:

$$C_{i,u} = C_{i,ras} = C_{i,was}$$

b) Balances de caudal

• Reactor k=1:	$Q_1 = Q_0 + Q_r$
• Reactor k=2 hasta 6:	$Q_{k-1} = Q_k$
• Clarificador secundario:	$Q_n = Q_e + Q_u$
	$Q_u = Q_{ras} + Q_{was}$

A14.4. Otras ecuaciones.

Se muestran también las ecuaciones de SRT y eficiencia de remoción, que no han podido ser mostradas hasta ahora en su forma general.

a) Tiempo de retención de sólidos.

$$SRT = \frac{\sum_{k=1}^{n} V_k \cdot X_{tot,k}}{Q_e \cdot SST_e + Q_{was} \cdot SST_{was}}$$

b) Eficiencia de remoción.

$$r = \frac{Q_n \cdot X_{tot,n} + Q_e \cdot X_{tot,e}}{Q_n \cdot X_{tot,n}}$$

MODELO CODFRACTIONS DEL INFLUENT ADVISOR

En esta sección se detalla el modelo *CODfractions* del Influent Advisor perteneciente al software GPS-X. La información mostrada aquí fue recopilada a partir de la descripción del software realizado por Loaiza (2007). En la Figura A15.1 se muestra un esquema de la relación entre las variables compuestas con las variables de estado ASM1, mientras que en la Tabla A15.1 se presentan todos los coeficientes estequiométricos y las ecuaciones involucradas para el cálculo de las variables de estado del modelo y algunas variables compuestas de interés.

Figura A15.1. Variables ASM1 y compuestas de fracciones de materia orgánica y nitrogenada. Fuente: Adaptado de Loaiza Navia, 2007.

Coeficiente	Significado	Fórmula de cálculo
icv	Relación DQO _{part} /SSV	Entrada
fbod	Relación DBO ₅ /DBO _U	Entrada
ivt	Relación SSV/SST	Entrada
frsi	Fracción inerte soluble de DQO _{tot}	Entrada
frss	Fracción rápidamente biodegradable de DQO _{tot}	Entrada
frxi	X _I /DQO _{tot}	Entrada
frxp	X _P /DQO _{tot}	Entrada
frxbh	X _{BH} /DQO _{tot}	Entrada
frxba	X _{BA} /DQO _{tot}	Entrada
frsnh	S _{NH} /NTK _{sol}	Entrada
ixb	i _{XB} (ASM1)	Entrada
ixp	i _{XP} (ASM1)	Entrada
inxs	X _{ND} /X _S	Entrada
Variables ASM1	Significado	Fórmula de cálculo
\mathbf{S}_{I}	Material orgánico inerte soluble	$S_I = frsi*DQO_{tot}$
Ss	Sustrato rápidamente biodegradable	$S_S = frss*DQO_{tot}$
XI	Material orgánico inerte soluble	$X_I = frxi*DQO_{tot}$
Xs	Sustrato lentamente biodegradable	X _s = (1-frss-frsi-frxi-frxp- frxbh-frxba)*DQO _{tot}
X _{BH}	Biomasa heterótrofa activa	$X_{BH} = frxbh*DQO_{tot}$
X _{BA}	Biomasa autótrofa activa	$X_{BA} = frxba*DQO_{tot}$
X _P	Partículas no biodegradables del decaimiento	$X_{IP} = frxp*DQO_{tot}$
S _{ND}	Nitrógeno orgánico biodegradable soluble	$S_{ND} = NTK_{sol} - S_{NH}$
X _{ND}	Nitrógeno orgánico biodegradable particulado	$X_{ND} = inxs * X_S$
Variables compuestas	Significado	Fórmula de cálculo
DBO _{5,sol}	DBO ₅ soluble (filtrada)	$DBO_{sol} = fbod*DBO_{u,sol}$
DBO _{5,part}	DBO₅ particulada	$DBO_{part} = fbod*DBO_{u,part}$
DBO _{u,sol}	DBO última soluble	$DBO_{u,sol} = S_S$
DBO _{u,part}	DBO última particulada	$DBO_{u,part} = X_{BH} + X_{BA} + X_S$
DBO _{u,tot}	DBO última total	$DBO_{u,tot} = DBO_{u,sol} + DBO_{u,part}$
DQO _{sol}	DQO soluble	$DQO_{sol} = (frss+frsi)*DQO_{tot}$
DQO _{part}	DQO particulada	$DQO_{part} = DQO_{tot} - DQO_{sol}$
NTK _{tot}	NTK total	$NTK_{tot} = S_{NH} + S_{ND} + X_{ND}$
NTK _{sol}	NTK soluble	$NTK_{sol} = S_{NH}/frsnh$
NTK _{part}	NTK particulada	$NTK_{part} = NTK_{tot} - NTK_{sol}$
N _{tot}	Nitrógeno total	$N_{tot} = NTK_{tot} + \overline{S_{NO}}$

 Tabla A15. Coeficientes y ecuaciones para calcular variables ASM1 y compuestas.

CÓDIGO EN MATLAB® DEL PROGRAMA DE SIMULACION DE LA PTAR DE SAN BLAS

El programa informático para la simulación de la PTAR de San Blas consta de tres scripts dependientes entre sí: ASM1_cstr.m, ASM1_ptar.m y ASM1_solver.m cuyos códigos, escritos en MATLAB®, son mostrados a continuación.

A16.1. Programa ASM1_cstr.m

```
function [C0,fco] = ASM1_cstr(Ci,c0,op,parm)
   options =
optimoptions('fsolve','Display','off','MaxFunEvals',13000000,'MaxIter',1000000);
   [C0,fco] = fsolve(@nonlineq,c0,options);
   function dCdt=nonlineq(C)
      dCdt=zeros(13,1);
      %Parámetros operacionales
      %-----
      Qi=op(1)*3.6*24; %m3/d
      QR=op(2)*3.6*24; %m3/d
      Q1=Qi+QR; %m3/d
      V=op(3);
      SRT=op(4);
      SOsat=op(7);
      SO=op(8);
      KLa=C(8);
      %Parámetros estequiométricos y cinéticos
      %_____
      YH=parm(1); YA=parm(2); fp=parm(3); iXB=parm(4); iXP=parm(5);
      uH=parm(6); KS=parm(7); KOH=parm(8); KNO=parm(9); bH=parm(10);
      uA=parm(11); KNH=parm(12); KOA=parm(13); bA=parm(14); ng=parm(15);
      ka=parm(16); kh=parm(17); KX=parm(18); nh=parm(19);
      %Tasa de procesos (pj)
      p1 = uH^{*}(C(2)/(KS+C(2)))^{*}(S0/(KOH+S0))^{*}C(5);
      p2 = uH*(C(2)/(KS+C(2)))*(KOH/(KOH+SO))*(C(9)/(KNO+C(9)))*ng*C(5);
      p3 = uA*(C(10)/(KNH+C(10)))*(SO/(KOA+SO))*C(6);
      p4 = bH*C(5);
      p5 = bA*C(6);
      p6 = ka*C(11)*C(5);
      p7 =
kh*((C(4)/C(5))/(KX+C(4)/C(5)))*((S0/(KOH+SO))+nh*(KOH/(KOH+SO))*(C(9)/(KN0+C(9))
)))*C(5);
      p8 = p7*C(12)/C(4);
      %Tasas de conversión (ri)
      %_____
```

```
r1 = 0; %rSI
       r2 = (-1/YH)*p1+(-1/YH)*p2+p7; %rSS
       r3 = 0; %rXI
       r4 = (1-fp)*p4+(1-fp)*p5-p7; %rXS
       r5 = p1+p2-p4; %rXBH
       r6 = p3-p5; %rXBA
       r7 = fp*p4+fp*p5; %rXP
       r8 = -((1-YH)/YH)*p1-((4.57-YA)/YA)*p3; %rS0
       r9 = -((1-YH)/(2.86*YH))*p2+(1/YA)*p3; %rSNO
       r10 = -iXB*p1-iXB*p2-(iXB+1/YA)*p3+p6; %rSNH
       r11 = -p6+p8; %rSND
       r12 = (iXB-fp*iXP)*p4+(iXB-fp*iXP)*p5-p8; %rXND
       r13 = (-iXB/14)*p1+((1-YH)/(14*2.86*YH)-iXB/14)*p2-
(iXB/14+1/(7*YA))*p3+(1/14)*p6; %rSALK
       %Balances de masa por componente(estado estacionario, dCdt=0)
       dCdt(1) = (Qi*Ci(1)+QR*C(1)-Q1*C(1)+r1*V)/V; %dSI/dt=0
       dCdt(2) = (Qi*Ci(2)+QR*C(2)-Q1*C(2)+r2*V)/V; %dSS/dt=0
       dCdt(3) = (Qi*Ci(3)-V*C(3)/SRT+r3*V)/V; %dXI/dt=0op(3)
       dCdt(4) = (Qi*Ci(4)-V*C(4)/SRT+r4*V)/V; %dXS/dt=0
       dCdt(5) = (Qi*Ci(5)-V*C(5)/SRT+r5*V)/V; %dXBH/dt=0
       dCdt(6) = (Qi*Ci(6)-V*C(6)/SRT+r6*V)/V; %dXBA/dt=0
       dCdt(7) = (Qi*Ci(7)-V*C(7)/SRT+r7*V)/V; %dXP/dt=0
       dCdt(8) = (Qi*Ci(8)+QR*SO-Q1*SO+r8*V+KLa*V*(SOsat-SO))/V; %dSO/dt=0
       dCdt(9) = (Qi*Ci(9)+QR*C(9)-Q1*C(9)+r9*V)/V; %dSNO/dt=0
       dCdt(10) = (Qi*Ci(10)+QR*C(10)-Q1*C(10)+r10*V)/V; %dSNH/dt=0
       dCdt(11) = (0i*Ci(11)+0R*C(11)-01*C(11)+r11*V)/V; %dSND/dt=0
       dCdt(12) = (Qi*Ci(12)-V*C(12)/SRT+r12*V)/V; %dXND/dt=0
       dCdt(13) = (Qi*Ci(13)+QR*C(13)-Q1*C(13)+r13*V)/V; %dSALK/dt=0
   end
```

e

end

A16.2. Programa ASM1_ptar.m

```
function [t,Ct,rate] = ASM1 ptar(Ci,c0,op,parm)
tspan = [0, op(10)];
h=0.001; ti=tspan(1);tf=tspan(2); t=(ti:h:tf)'; n = length(t);
N=op(5); ne=N*13; %N=#CSTRs, ne=#EDOs
C0=zeros(1,ne); C0(1:13)=c0;
for r=1:N-1
    CO((13*r+1):13*(r+1))=cO;
end
CO(8+13*(N-1))=op(8);
Ct = ones(n,1)*C0; %Matriz de variables en tspan
c=zeros(13,N); %Matriz de variables en tiempo t
for u = 1:n-1 %Implementando método de Euler
c(:,1)=Ct(u,1:13)';
    for p=1:N-1
        c(:,p+1)=Ct(u,(13*p+1):13*(p+1))';
    end
    [g,rate]=EDO(c,op,parm);
```

```
r1 = 0; %rSI
       r2 = (-1/YH)*p1+(-1/YH)*p2+p7; %rSS
       r3 = 0; %rXI
       r4 = (1-fp)*p4+(1-fp)*p5-p7; %rXS
       r5 = p1+p2-p4; %rXBH
       r6 = p3-p5; %rXBA
       r7 = fp*p4+fp*p5; %rXP
       r8 = -((1-YH)/YH)*p1-((4.57-YA)/YA)*p3; %rS0
       r9 = -((1-YH)/(2.86*YH))*p2+(1/YA)*p3; %rSNO
       r10 = -iXB*p1-iXB*p2-(iXB+1/YA)*p3+p6; %rSNH
       r11 = -p6+p8; %rSND
       r12 = (iXB-fp*iXP)*p4+(iXB-fp*iXP)*p5-p8; %rXND
       r13 = (-iXB/14)*p1+((1-YH)/(14*2.86*YH)-iXB/14)*p2-
(iXB/14+1/(7*YA))*p3+(1/14)*p6; %rSALK
       %Balances de masa por componente(estado estacionario, dCdt=0)
       dCdt(1) = (Qi*Ci(1)+QR*C(1)-Q1*C(1)+r1*V)/V; %dSI/dt=0
       dCdt(2) = (Qi*Ci(2)+QR*C(2)-Q1*C(2)+r2*V)/V; %dSS/dt=0
       dCdt(3) = (Qi*Ci(3)-V*C(3)/SRT+r3*V)/V; %dXI/dt=0op(3)
       dCdt(4) = (Qi*Ci(4)-V*C(4)/SRT+r4*V)/V; %dXS/dt=0
       dCdt(5) = (Qi*Ci(5)-V*C(5)/SRT+r5*V)/V; %dXBH/dt=0
       dCdt(6) = (Qi*Ci(6)-V*C(6)/SRT+r6*V)/V; %dXBA/dt=0
       dCdt(7) = (Qi*Ci(7)-V*C(7)/SRT+r7*V)/V; %dXP/dt=0
       dCdt(8) = (Qi*Ci(8)+QR*SO-Q1*SO+r8*V+KLa*V*(SOsat-SO))/V; %dSO/dt=0
       dCdt(9) = (Qi*Ci(9)+QR*C(9)-Q1*C(9)+r9*V)/V; %dSNO/dt=0
       dCdt(10) = (Qi*Ci(10)+QR*C(10)-Q1*C(10)+r10*V)/V; %dSNH/dt=0
       dCdt(11) = (0i*Ci(11)+0R*C(11)-01*C(11)+r11*V)/V; %dSND/dt=0
       dCdt(12) = (Qi*Ci(12)-V*C(12)/SRT+r12*V)/V; %dXND/dt=0
       dCdt(13) = (Qi*Ci(13)+QR*C(13)-Q1*C(13)+r13*V)/V; %dSALK/dt=0
   end
```

e

end

A16.2. Programa ASM1_ptar.m

```
function [t,Ct,rate] = ASM1 ptar(Ci,c0,op,parm)
tspan = [0, op(10)];
h=0.001; ti=tspan(1);tf=tspan(2); t=(ti:h:tf)'; n = length(t);
N=op(5); ne=N*13; %N=#CSTRs, ne=#EDOs
C0=zeros(1,ne); C0(1:13)=c0;
for r=1:N-1
    CO((13*r+1):13*(r+1))=cO;
end
CO(8+13*(N-1))=op(8);
Ct = ones(n,1)*C0; %Matriz de variables en tspan
c=zeros(13,N); %Matriz de variables en tiempo t
for u = 1:n-1 %Implementando método de Euler
c(:,1)=Ct(u,1:13)';
    for p=1:N-1
        c(:,p+1)=Ct(u,(13*p+1):13*(p+1))';
    end
    [g,rate]=EDO(c,op,parm);
```

```
for g=1:ne
       Ct(u + 1,q) = Ct(u,q) + g(q)*(t(u + 1)-t(u));
   end
end
function [f,rate]=EDO(C,op,parm) %Modelo ASM1
%Parámetros de Operación y Diseño
%------
Qi=op(1)*3.6*24; QR=op(2)*3.6*24; %m3/d
Q=ones(N,1); Q(1)=Qi+QR;
for j=2:N
   Q(j)=Q(j-1);
end
N=op(5); Nanox=op(6); ne=N*13; Vt=op(3); Vo=Vt/N; V=Vo*ones(N,1); SRT=op(4);
SOsat= op(7); SO=ones(1,N); KLa=SO;
for i=1:N
   if i<=Nanox</pre>
       SO(i)=op(11); KLa(i)=C(8,i);
   elseif i==N
       SO(i)=C(8,i); KLa(i)=op(9);
   else
       SO(i)=op(8); KLa(i)=C(8,i);
   end
end
%Parámetros esteguiométricos y cinéticos
%_____
YH=parm(1); YA=parm(2); fp=parm(3); iXB=parm(4); iXP=parm(5);
uH=parm(6); KS=parm(7); KOH=parm(8); KNO=parm(9); bH=parm(10);
uA=parm(11); KNH=parm(12); KOA=parm(13); bA=parm(14); ng=parm(15);
ka=parm(16); kh=parm(17); KX=parm(18); nh=parm(19);
%Tasas de procesos (pj)
p1=zeros(1,N)';p2=p1;p3=p1;p4=p1;p5=p1;p6=p1;p7=p1;p8=p1;
for i=1:N
p1(i) = uH*(C(2,i)/(KS+C(2,i)))*(SO(i)/(KOH+SO(i)))*C(5,i);
p2(i) =
uH*(C(2,i)/(KS+C(2,i)))*(KOH/(KOH+SO(i)))*(C(9,i)/(KNO+C(9,i)))*ng*C(5,i);
p3(i) = uA*(C(10,i)/(KNH+C(10,i)))*(SO(i)/(KOA+SO(i)))*C(6,i);
p4(i) = bH*C(5,i);
p5(i) = bA*C(6,i);
p6(i) = ka*C(11,i)*C(5,i);
p7(i) =
kh*((C(4,i)/C(5,i))/(KX+C(4,i)/C(5,i)))*((SO(i)/(KOH+SO(i)))+nh*(KOH/(KOH+SO(i)))
)*(C(9,i)/(KNO+C(9,i))))*C(5,i);
p8(i) = p7(i)*C(12,i)/C(4,i);
end
%Tasas de conversión (ri)
%_____
r1=zeros(1,N)';r2=r1;r3=r1;r4=r1;r5=r1;r6=r1;r7=r1;r8=r1;r9=r1;r10=r1;
r11=r1;r12=r1;r13=r1; r0H=r1; r0A=r1; rdesN=r1; rate=zeros(3,N);
for j=1:N
```

```
r1(j) = 0; %rSI
r2(j) = (-1/YH)*p1(j)+(-1/YH)*p2(j)+p7(j); %rSS
r3(j) = 0; %rXI
r4(j) = (1-fp)*p4(j)+(1-fp)*p5(j)-p7(j); %rXS
r5(j) = p1(j)+p2(j)-p4(j); %rXBH
r6(j) = p3(j)-p5(j); %rXBA
r7(j) = fp*p4(j)+fp*p5(j); %rXP
r8(j) = -((1-YH)/YH)*p1(j)-((4.57-YA)/YA)*p3(j); %rSO
r9(j) = -((1-YH)/(2.86*YH))*p2(j)+(1/YA)*p3(j); %rSNO
r10(j) = -iXB*p1(j)-iXB*p2(j)-(iXB+1/YA)*p3(j)+p6(j); %rSNH
r11(j) = -p6(j)+p8(j); %rSND
r12(j) = (iXB-fp*iXP)*p4(j)+(iXB-fp*iXP)*p5(j)-p8(j); %rXND
r13(j) = (-iXB/14)*p1(j)+((1-YH)/(14*2.86*YH)-iXB/14)*p2(j)-
(iXB/14+1/(7*YA))*p3(j)+(1/14)*p6(j); %rSALK
rOH(j)=-((1-YH)/YH)*p1(j);
rOA(j)=-((4.57-YA)/YA)*p3(j);
rdesN(j)=-((1-YH)/(2.86*YH))*p2(j);
end
rate(1,:)=rOH; rate(2,:)=rOA; rate(3,:)=rdesN;
%Balances de masa por componente
%_____
dCdt=zeros(13,N); %Matriz de EDOs (dCi,k/dt)
Xtot=zeros(1,N)'; MXtot=0;
for k=1:N
Xtot(k)=C(3,k)+C(4,k)+C(5,k)+C(6,k)+C(7,k); MXtot=MXtot+V(k)*Xtot(k);
end
%Reactor k=1
dCdt(1,1) = (Qi*Ci(1)+QR*C(1,N)-Q(1)*C(1,1)+r1(1)*V(1))/V(1); %dSI1/dt
dCdt(2,1) = (Qi*Ci(2)+QR*C(2,N)-Q(1)*C(2,1)+r2(1)*V(1))/V(1); %dSS1/dt
dCdt(3,1) = (Qi*Ci(3)+(Q(N)*C(3,N)-(MXtot/SRT)*(C(3,N)/Xtot(N))) ...
    -Q(1)*C(3,1)+r3(1)*V(1))/V(1); %dXI1/dt
dCdt(4,1) = (Qi*Ci(4)+(Q(N)*C(4,N)-(MXtot/SRT)*(C(4,N)/Xtot(N))) \dots
    -Q(1)*C(4,1)+r4(1)*V(1))/V(1); %dXS1/dt
dCdt(5,1) = (Qi*Ci(5)+(Q(N)*C(5,N)-(MXtot/SRT)*(C(5,N)/Xtot(N))) \dots
    -Q(1)*C(5,1)+r5(1)*V(1))/V(1); %dXBH1/dt
dCdt(6,1) = (Qi*Ci(6)+(Q(N)*C(6,N)-(MXtot/SRT)*(C(6,N)/Xtot(N))) \dots
    -Q(1)*C(6,1)+r6(1)*V(1))/V(1); %dXBA1/dt
dCdt(7,1) = (Qi*Ci(7)+(Q(N)*C(7,N)-(MXtot/SRT)*(C(7,N)/Xtot(N))) ....
    -Q(1)*C(7,1)+r7(1)*V(1))/V(1); %dXP1/dt
dCdt(8,1) = (Qi*Ci(8)+QR*SO(N)-Q(1)*SO(1)+r8(1)*V(1)+KLa(1)*V(1) \dots
    *(SOsat-SO(1)))/V(1); %dSO1/dt
dCdt(9,1) = (Qi*Ci(9)+QR*C(9,N)-Q(1)*C(9,1)+r9(1)*V(1))/V(1); %dSN01/dt
dCdt(10,1) = (Qi*Ci(10)+QR*C(10,N)-Q(1)*C(10,1)+r10(1)*V(1))/V(1); %dSNH1/dt
dCdt(11,1) = (Qi*Ci(11)+QR*C(11,N)-Q(1)*C(11,1)+r11(1)*V(1))/V(1); %dSND1/dt
dCdt(12,1) = (Qi*Ci(12)+(Q(N)*C(12,N)-(MXtot/SRT)*(C(12,N)/Xtot(N))) ...
    -Q(1)*C(12,1)+r12(1)*V(1))/V(1); %dXND1/dt
dCdt(13,1) = (Qi*Ci(13)+QR*C(13,N)-Q(1)*C(13,1)+r13(1)*V(1))/V(1); %dSALK1/dt
%Reactor k=2 hasta N
for i=2:N
dCdt(1,i) = (Q(i-1)*C(1,i-1)-Q(i)*C(1,i)+r1(i)*V(i))/V(i); %dSIk/dt
dCdt(2,i) = (Q(i-1)*C(2,i-1)-Q(i)*C(2,i)+r2(i)*V(i))/V(i); %dSsk/dt
dCdt(3,i) = (Q(i-1)*C(3,i-1)-Q(i)*C(3,i)+r3(i)*V(i))/V(i); %dXIk/dt
dCdt(4,i) = (Q(i-1)*C(4,i-1)-Q(i)*C(4,i)+r4(i)*V(i))/V(i); %dXSk/dt
```

```
173
```

```
dCdt(5,i) = (Q(i-1)*C(5,i-1)-Q(i)*C(5,i)+r5(i)*V(i))/V(i); %dXBHk/dt
dCdt(6,i) = (Q(i-1)*C(6,i-1)-Q(i)*C(6,i)+r6(i)*V(i))/V(i); %dXBAk/dt
dCdt(7,i) = (Q(i-1)*C(7,i-1)-Q(i)*C(7,i)+r7(i)*V(i))/V(i); %dXPk/dt
dCdt(8,i) = (Q(i-1)*SO(i-1)-Q(i)*SO(i)+r8(i)*V(i)+KLa(i)*V(i) ...
    *(SOsat-SO(i)))/V(i); %dSNOk/dt
dCdt(9,i) = (Q(i-1)*C(9,i-1)-Q(i)*C(9,i)+r9(i)*V(i))/V(i); %dSNOk/dt
dCdt(10,i) = (Q(i-1)*C(10,i-1)-Q(i)*C(10,i)+r10(i)*V(i))/V(i); %dSNHk/dt
dCdt(11,i) = (Q(i-1)*C(11,i-1)-Q(i)*C(11,i)+r11(i)*V(i))/V(i); %dSNDk/dt
dCdt(12,i) = (Q(i-1)*C(12,i-1)-Q(i)*C(12,i)+r12(i)*V(i))/V(i); %dXNDk/dt
dCdt(13,i) = (Q(i-1)*C(13,i-1)-Q(i)*C(13,i)+r13(i)*V(i))/V(i); %dSALKk/dt
end
f=ones(1,ne)'; f(1:13)=dCdt(:,1)';
for j=1:(N-1)
    f((13*j+1):13*(j+1))=dCdt(:,j+1)';
end
end
end
```

A16.3. Programa ASM1 solver.m

```
tic; %Iniciar cronómetro
```

```
%Fraccionamiento del afluente (Caracterización)
%_____
D00ta=238.20; DB05a=100.09; SSTa=84.55; SSVa=67.13; Nta=46.81; %g/m^3
SI=37.95; SS=81.16; XI=21.44; XS=97.66; XBH=0; XBA=0; XP=0; %gDQO/m^3
So=0.03; %-gD00/m^3
SNO=11.221; SNH=24.343; SND=2.705; XND=7.255; %gN/m^3
SALK=8; %molHCO3/m^3
%Valores de variables y parámetros medidos de la planta
%------
%Variables compuestas efluente
DQOte=94.00; DB05e=8.68; %gDQ0/m^3
SSTe=13.85; SSVe=10.23; %gSS/m^3
NH3e=14.30; NO3e=13.64; %gN/m^3
ODe=5.15; % gO2/m^3
%Coeficientes estequiométricos del efluente
icv=1.7741; fbod=0.5597; ivt=0.794;
%Parámetros de operación PTAR
FM=0.66; %d^-1, Relación alimento-microorganismos
SSLM=300.06; %g/m^3, Sólidos suspendidos en el licor mezclado
Mlodos=417.237; %kg/d, Producción de lodos
%Valores iniciales para las variables ASM1 del CSTR simple
SI0=40; SS0=3; XI0=200; XS0=30; XBH0=150; XBA0=90; XP0=1; %gDQ0/m3
KLa0=50; %-gD00/m3
SNO0=0.4; SNH0=0.9; SND0=2.5; XND0=2.7; %gN/m3
```

```
SALK0=8; %molHCO3/m3
```

```
%Parámetros de Operación y Diseño
%-----
Oi=68.12; Or=3.14; Ow=0.97; Oe=67.15; On=71.26; %L/s, Caudales del afluente,
%recirculación, purga de lodos, efluente y licor mezclado del reactor N
Vtot=1920; %m^3, Volumen total de los N reactores
SRT=1.16; %d, Tiempo de retención de sólidos
HRT=7.48; %hrs, Tiempo de retención hidraúlico
N=6; % N° reactores totales,
Nanox=0; % N° reactores anoxios
SOsat=8.637; % gO2/m^3, Concentración de saturación de OD
SOax=0.009; % gO2/m^3, OD fijo en reactores anoxios
SO=2.0; % gO2/m^3, OD fijo en reactores aerobios (menos para el reactor N)
KLa=100; %d^-1, Coeficiente de transferencia de O2
rem=0.95652; %(QN*SST_N-Qe*SST_e)/(QN*SST_N), Eficiencia de clarificador
tsim=100; %d, Tiempo de simulación
%Parámetros estequiométricos
%______
YH = 0.52; % (gDQO formado)/(gDQO oxidado)
YA = 0.20; % (gDQO formado)/(gN oxidado)
fp = 0.08; % adimensional
iXB = 0.086; % gN/gDQO en biomasa
iXP = 0.06; % gN/gDQO en productos particulados
%Parámetros cinéticos
uH = 3.30; \% d^{-1}
KS = 66.0; \% \text{ gD}00/\text{m}^3
KOH = 0.20; % gO2/m^3
KNO = 0.50; % gNO3-N/m^3
bH = 0.44; \% d^{-1}
uA = 1.35; \% d^{-1}
KNH = 1.00; % gNH3-N/m^3
KOA = 0.50; \% gO2/m^3
bA = 0.062; \% d^{(-1)}
ng = 0.90; % adimensional
ka = 0.04; \% m3/(gDQO*d)
kh = 1.80; % g lentamente biodegradable DQO/(gDQO*d)
KX = 0.03; % g lentamente biodegradable DQO/gDQO
nh = 0.40; % adimensional
op = [Qi,Qr,Vtot,SRT,N,Nanox,SOsat,SO,KLa,tsim,SOax];
Ci = [SI,SS,XI,XS,XBH,XBA,XP,So,SNO,SNH,SND,XND,SALK];
c0 = [SI0,SS0,XI0,XS0,XBH0,XBA0,XP0,KLa0,SN00,SNH0,SND0,XND0,SALK0];
parm = [YH,YA,fp,iXB,iXP,uH,KS,KOH,KNO,bH,uA,KNH,KOA,bA,ng,ka,kh,KX,nh];
ef varm =[DQOte,DB05e,SSTe,SSVe,NH3e,NO3e,ODe,FM,SSLM,Mlodos];
[C0,fC0] = ASM1_cstr(Ci,c0,op,parm); %Simulación del CSTR simple
[t,Ct,rate] = ASM1 ptar(Ci,C0,op,parm); %Simulación de la PTAR
CO(8)=op(8);
%RESULTADOS
%Variables ASM1 en los N reactores
%_____
```

```
ptar=zeros(18,N+3); tn=size(Ct,1);
ptar(1:13,1)=Ci; ptar(1:13,2)=C0; req=zeros(5,N+3);
for i=1:N
   req(1,i+2)=sum(Ct(tn,(13*i-11):(13*i-6))); %g/m3, Xtotal
   req(2,i+2)=-rate(1,i); %g/(m3*d), Requerimiento Het. 02
   req(3,i+2)=-rate(2,i); %g/(m3*d), Requerimiento Aut. 02
   req(4,i+2)=req(2,i+2)+req(3,i+2); %g/(m3*d), Requerimiento Total 02
   req(5,i+2)=-rate(3,i); %g/(m3*d), Velocidad de desnitrificación
end
for i=1:N
   ptar(1:13,i+2)=Ct(tn,(13*i-12):13*i);
   ptar(14:18,i+2)=req(:,i+2);
   if i<=Nanox</pre>
   ptar(8,i+2)=op(11);
   elseif i==N
   else
   ptar(8,i+2)=op(8);
   end
end
%Variables ASM1 en el efluente
%_____
ef asm1=ptar(1:13,N+2);
for j=1:13
    if j>=3 && j<=7
       ef_asm1(j)=(1-rem)*ef_asm1(j)*Qn/Qe;
       elseif j==12
           ef asm1(j)=(1-rem)*ef asm1(j)*Qn/Qe;
       else
   end
end
req(1,N+3)=sum(ef_asm1(2:7)); %g/d, Xtotal en efluente
ptar(1:13,N+3)=ef asm1; ptar(14,N+3)=req(1,N+3);
%Variables compuestas en el efluente
%_____
DQOt=0; DBOu=0; DQOpart=0; NTK=0;
for k=1:7; DQOt=DQOt+ef asm1(k);
end
for i=1:3; NTK=NTK+ef_asm1(i+9);
end
for j=1:5; DQOpart=DQOpart+ef_asm1(j+2);
end
for k=1:4
   if k==1
       DBOu=DBOu+ef asm1(k+1);
   else
       DBOu=DBOu+ef_asm1(k+2);
   end
end
DB05=fbod*DB0u; Nt=NTK+ef asm1(9); SSV=D00part/icv; SST=SSV/ivt;
OD=ef_asm1(8); FM=(Ci(1,2))*fbod/((HRT/24)*sum(req(1,3:(N+2)))/(N*icv));
SSLM=ptar(14,N+2)/(icv*ivt);Plodos=((Vtot/N)*sum(req(1,3:(N+2)))/SRT-(1-
rem)*req(1,N+3)*Qn*3.6*24)/1000;
```

```
ef_varc=[DQOt,DBO5,SST,SSV,ef_asm1(10),ef_asm1(9),OD,FM,SSLM,Plodos];
%Tabla de variables ASM1 en los N reactores
%_____
rowNames a =
{'Afluente', 'CSTR', 'Reactor_1', 'Reactor_2', 'Reactor_3', 'Reactor_4', 'Reactor_5', '
Reactor_6', 'Efluente'};
colNames_a =
{'SI', 'SS', 'XI', 'XS', 'XBH', 'XBA', 'XP', 'SO', 'SNO', 'SNH', 'SND', 'XND', 'SALK', 'Xtota
1', 'Req O2Het', 'Req O2Aut', 'Req O2tot', 'rDesN'};
VariablesASM1 Reactores=array2table(ptar, 'RowNames', colNames a, 'VariableNames', r
owNames a);
%Tabla de desviaciones de variables compuestas del efluente
%_____
desv=ones(10,4); desv(:,1)=ef_varc; desv(:,2)=ef_varm;
desv(:,3)=ef_varc-ef_varm;
desv(:,4)=(ef_varc-ef_varm)*100./ef_varm;
rowNames b = {'Calculado', 'Medido', 'Residual', 'PorcDeDesv'};
colNames_b = {'DQOte', 'DBO5e', 'SSTe', 'SSVe', 'N-NH3e', 'NNO3e', 'ODe', 'FM_d-
1','SSLM','PLodos_kg/d'};
VariablesComp Efluente=array2table(desv,'RowNames',colNames b,'VariableNames',ro
wNames_b);
%Tabla de porcentajes de remoción de carga de C y N
%------
remoc=ones(5,3); remoc(:,1)=[DQOta,DBO5a,SSTa,SSVa,Nta];
remoc(:,2)=[ef_varc(1:4),Nt]; remoc(:,3)=(remoc(:,1)-
remoc(:,2))*100./remoc(:,1);
rowNames_c = {'Afluente', 'Efluente', 'Porc_Remocion'};
colNames_c = {'DQOt', 'DB05', 'SST', 'SSV', 'Ntot'};
Porcentaje Remocion=array2table(remoc, 'RowNames', colNames c, 'VariableNames', rowN
ames_c);
%GRÁFICAS
R=1:N;
figure
subplot (2,3,1); plot(t,Ct(:,13*N-12),t,Ct(:,13*N-11),t,Ct(:,13*N-
4),t,Ct(:,13*N-3),t,Ct(:,13*N-2),t,Ct(:,13*N));
xlabel('dias'); ylabel('Concentración g/m3');
legend('SI','SS','SNO','SNH','SND','SALK');
title('Componentes solubles en el último reactor');
subplot (2,3,2); plot(t,Ct(:,13*N-10),t,Ct(:,13*N-8),t,Ct(:,13*N-6));
xlabel('dias'); ylabel('Concentración g/m3'); legend('XI','XBH','XP');
title('Componentes particulados en el último reactor')
subplot (2,3,3); plot(t,Ct(:,13*N-9),t,Ct(:,13*N-7),t,Ct(:,13*N-1));
xlabel('dias'); ylabel('Concentración g/m3');legend('XS','XBA','XND');
title('Componentes particulados en el último reactor')
subplot(2,3,4); plot(R,ptar(1,3:N+2),'-o',R,ptar(4,3:N+2),'-
s',R,ptar(5,3:N+2),'-d',R,ptar(6,3:N+2),'-^',R,ptar(9,3:N+2),'-p');
xlabel('Reactor N°'); ylabel('Concentración g/m3');
legend('SI','XS','XBH','XBA','SNO');
title('Perfil de concentraciones I');
```

```
subplot(2,3,5); plot(R,ptar(2,3:N+2),'-o',R,ptar(10,3:N+2),'-
s',R,ptar(11,3:N+2),'-d',R,ptar(12,3:N+2),'-^',R,ptar(13,3:N+2),'-p');
xlabel('Reactor N°'); ylabel('Concentración g/m3');
legend('SS','SNH','SND','XND','SALK');
title('Perfil de concentraciones II');
subplot(2,3,6); plot(R,ptar(3,3:N+2),'-o',R,ptar(7,3:N+2),'-s');
xlabel('Reactor N°'); ylabel('Concentración g/m3');
legend('XI','XP');
title('Perfil de concentraciones III');
toc %Finalizar cronómetro
```