
MBRE DE LA VIA IIDAD MUESTREADA EA DE LA MUESTRA	ADA : \(\sum_{\text{TRA (m}}\) 229,74341		PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO		
	AND DESIGNATION OF THE PERSON	TIPO DE FALLAS		CAN WAR THE PARTY OF THE PARTY	
CROQUIS	Piel de cocodrilo Exudación Agrictamiento en b Abultamiento y hur Corrugación Depresión Grieta de borde Reflexion de juntas Desnivel carril/berr Torietas long y trar	din ABH m2 COR m2 DEP m2 GB m GR m ns DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huccos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
			TIPO DE FALLAS EXIST		REPORTED TO THE PARTY OF THE PARTY OF
	CARRIL	TIPO DE FALLA	SEVERIDAD		CANTIDAD
	179 (O Don (O	<u>г</u> М Э		9,650 1,020 1,810 7,950	
	1507 (0)				

MBRE DE LA VIA IDAD MUESTREADA EA DE LA MUESTRA	(m 229,74341	PROGRESIVA : EVALUADOR : XAVIER AL	AL	CHA OZ-/O-ZZ
CROQUIS		DE FALLAS		Control of the second second second
	I Piel de cocodrilo PC 2 Exudación 3 Agrietamiento en bloqu BLO 4 Abultamiento y hundin ABH 5 Corrugación COR 6 Depresión DEP 7 Grieta de borde GB 8 Reflexion de juntas GR 9 Desnivel carril/berma DN 10 Grietas long y transy GLT	m2 11 Parcheo m2 12 Pulimiento de agreg. m2 13 Huecos m2 14 Cruce de via ferrea m2 15 Ahuellamiento m2 16 Desplazamiento m 17 Grieta parabolica m 18 Hinchamiento m 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	DESCRIPTION OF THE PROPERTY OF THE PARTY OF	TIPO DE FALLAS EXI		
	CARRIL TIPO DE F	ALLA SEVERID.	AD	CANTIDAD
	DER (O	L		6,320
	DER 10	L		£ 360
	150 10	2		
	C) 057	Я		0,920

ADE LA MUESTRADA		MUNICIPIO URIONDO PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES A	FECHA OZ-10-22
CROOUIS	TIPO DE FALLA	S	Name and the state of the state
5	I Piel de cocodrilo PC m2 2 Exudación EX m2 3 Agrictamiento en bloqu BLO m2 4 Abultamiento y hundin ABII m2 5 Corrugación COR m2 6 Depresión DEP m2 7 Grieta de borde GB m 8 Reflexion de juntas GR m 9 Desnivel carril/berma DN m 10 Grietas long y transv GLT m	11 Parcheo PA m2 12 Pulimiento de agreg. PU m2 13 Huecos HUE und 14 Cruce de via ferrea CVF m2 15 Abuellamiento AHU m2 16 Desplazamiento DES m2 17 Grieta parabolica GP m2 18 Hinchamiento HN m2 19 Desprendimientos de agregados DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	The state of the s	TIPO DE FALLAS EXISTENTES	THE PARTY OF THE P
	CARRIL TIPO DE FALLA	SEVERIDAD	CANTIDAD
	250 (0	L .	7,500
	130 10	L	\$ 210
	DER 10	L	
	DER 10	L	6,400
	DER 10	L	0470
	DER 10	L	Ö ₁ 220

OMBRE DE LA VIA NIDAD MUESTREAD. REA DE LA MUESTR.	(m 229,74341	PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES	FECHA 02-10-22 ALTAMIRANO
A MANAGEMENT	TIPO DE FA	III Parcheo PA m2	FORMA DE LA MUESTRA
CROQUIS	Priel de cocodrilo PC m2 Exudación EX m2 Agrictamiento en bloq BLO m2 Abultamiento y hundin ABH m2 Corrugación COR m2 Depresión DEP m2 Reflexion de juntas GR m Desnivel carril/berma DN m 10. Grictas long y transy GLT m	11 Parcheo	DIMENSIONES 7,30 m
	10. Oricles long y transv OL1	TIPO DE FALLAS EXISTENTES	Charles and Charles and Charles
	CARRIL TIPO DE FALLA	SEVERIDAD	CANTIDAD
	DER	L	0260
	DER +	H	0,294
	Dek 1	М	0,450

Elaborado por: Est. Xavier Alejandro Gonzales

	: 6 (m 229,74341		PROGRESIVA: EVALUADOR: XAVIER ALEJ	AL JANDRO GONZALES	FECHA 02-10-22 ALTAMIRANO
CROQUIS	1 Piel de cocodr 2 Exudación 3 Agrietamiento 4 Abultamiento 5 Corrugación 6 Depresión 7 Grieta de bord 8 Reflexion de ju 9 Desnivel carri	EX m2 orn bloqu BLO m2 y hundin ABH m2 COR m2 DEP m2 le GB m untas GR m b/berma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Abuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	10 Grietas long	y transv GLT m	agregados TIPO DE FALLAS EXISTI SEVERIDAD		
	050 (O	SEVERIDAD		LIDZ ©	
	DEUS	10	<u></u>		0,330
	730 0AL	10	L L		0, 800
	150	10	Ł		0,350 0,320

NIDAD MUESTREAD REA DE LA MUESTR	1 : 7	CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALE	AL	ECHA 02-10-22 TAMIRANO
	September 1	TIPO DE FALLAS	A CONTRACTOR OF THE PARTY OF TH		ON THE RESERVE TO SERVE THE RESERVE THE RE
CROQUIS	1 Piel de cocodri 2 Exudación 3 Agrietamiento de Abultamiento y 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de jur 9 Desnivel carril	EX m2 en bloqu BLO m2 chundin ABIJ m2 COR m2 DEP m2 GB m entas GR m borma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	10 Grietas long y	transv GLT m	agregados TIPO DE FALLAS EXIST	DAG m2	
	CARRIL	TIPO DE FALLA	SEVERIDAD		CANTIDAD
	DER	(0	1.		5,700
	I7Q	10			1,890
	750	10	L		4, 790
	750	10			0,530
	I+O	10	H		2010
		10	A		5,390

MBRE DE LA VIA DAD MUESTREAD, A DE LA MUESTRA	CRUDE AL VALLE DI A : 8 (m. 229,74341	E CONCEPCIÓN - VALL	E DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER AL		AL	HA 02-10 -7027
ALRONAL BOLD		TI	PO DE FALLAS	KAN LO DINA TO BE AND ADDRESS OF THE PARTY O	Caro Calle		The state of the s
CROQUIS	1 Piel de cocodr 2 Exudación 3 Agrictamiento 4 Abultamiento 5 Corrugación 6 Depresión 7 Grieta de bord 8 Reflexion de ju 9 Desnivel carril 10 Grietas long s	EX en bloqt BLO y hundin ABH COR DEP le GB untas GR	m2 m2 m2 m2 m2 m2 m2 m	11 Parcheo 12 Pulimiento de agreg. 13 Huccos 14 Cruce de via ferrea 15 Abuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agrugados	PA PU HUE CVF AIIU DES GP HN	m2 m2 und m2 m2 m2 m2 m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 t
	To: Grietax long	ruanse GET	ALCOHOLD V	TIPO DE FALLAS EXIS		mz	A STATE OF THE PARTY OF THE PAR
	CARRIL	TIPO DE	FALLA	SEVERIDA	D		CANTIDAD
	150 (O	L			6406		
					0,050		
	150	(0)		L			0, 1 00
	130	10		L			0,050
	1.99	(0		L			9, 100 9,
				4			

OMBRE DE LA VIA NIDAD MUESTREAD REA DE LA MUESTR	4 . 0	CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALI	AI	PECHA LAMIRANO
CROQUIS	I Piel de cocodri 2 Exudación 3 Agrietamiento 4 Abultamiento 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de ju 9 Desnivel carril 10 Grietas long y	EX m2 en bloquBLO m2 r hundin ABH m2 COR m2 DEP m2 in GB m mtas GR m borma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	CARRIL	TIPO DE PALLA		TENTES	Marie Company of the
	256	- 10	SEVERIDAD 2,730		CANTIDAD
	DEU.	10	2,300		<u> </u>
	DER	10	1,620		- E
	170	10	9,900		L

MBRE DE LA VIA DAD MUESTREADA EA DE LA MUESTRA		MUNICIPIO URIONDO F. PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES AL	ECHA 02-10-22
STE OF COMME	TIPO DE FA	LLAS	
CROQUIS	1- Piel de cocodrilo PC m2 2- Exudación EX m2 3- A grietamiento en bloqu BLO m2 4- Abultamiento y hundin ABH m2 5- Corrugación COR m2 6- Depresión DEP m2 7- Grieta de borde GB m 8- Reflexion de juntas GR m 9- Desnivel carril/berma DN m 10- Grietas long y transv GLT m	11 - Parcheo PA m2 12 - Pulmiento de agreg. PU m2 13 - Huecos HUE und 14 - Cruce de via ferrea CVF m2 15 - Abuellamiento AHU m2 16 - Desplazamiento DES m2 17 - Grieta parabolica GP m2 18 - Hinchamiento HN m2 19 - Desprendimientos de agregados DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	A CONTRACTOR OF THE PARTY OF TH	TIPO DE FALLAS EXISTENTES	Water State of the Land
	CARRIL TIPO DE FALLA	SEVERIDAD	CANTIDAD
	DER IO	L	7,050
			•

1 Piel de cocodril 2 Exudación 3 Agrietamiento e 4 Abultamiento y 5 Corrugación 6 Depresión 7 Grieta de borde	EX m2 m bloquBLO m2	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea	PA m2 PU m2 HUE und	FORMA DE LA MUESTRA DIMENSIONES
2 Exudación 3 Agrietamiento o 4 Abultamiento y 5 Corrugación 6 Depresión	EX m2 m bloqt BLO m2 hundin ABH m2	12 Pulimiento de agreg. 13 Huccos	PU m2	
8 Reflexion de jur 9 Desnivel carril/	ntas GR m berma DN m	15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	CVF m2 AHU m2 DES m2 GP m2 HN m2	7,30 m
The second second	TO THE PARTY OF			
CARRIL	ER 10	SEVERIDAD		CANTIDAD
		L		1,896
150		-		
	10 Grictas long y	10 Grietas long y transv GLT m CARRIL TIPO DE FALLA 1) では、 10	10 Grietas long y transv GLT m agregados TIPO DE FALLAS EXIST CARRIL TIPO DE FALLA SEVERIDAD	10 Grietas long y transv GLT m agregados DAG m2 TIPO DE FALLAS EXISTENTES CARRIL TIPO DE FALLA SEVERIDAD L

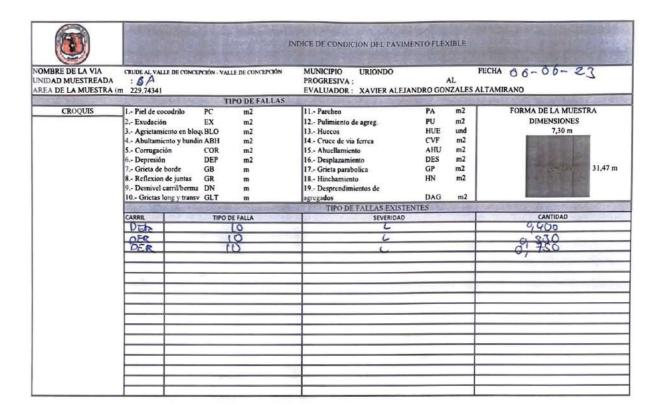
A DE LA MUESTR		ALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA :	AL	CHA 02-10-22
A DE LA MUESTR		TIPO DE FALLAS	EVALUADOR: XAVIER ALE	JANDRO GONZALES ALT	TAMIRANO
CROQUIS	1 Piel de cocodrilo PC 2 Exudación EX 3 Agrictamiento en bloqu BLO 4 Abultamiento y hundin ABH 5 Corrugación COR 6 Depresión DEP 7 Grieta de borde GB 8 Reflexion de juntas GR 9 Desnivel carril/berma DN 10 Grietas long y transy GLT	m2 m2 m2 m2 m2 m2 m m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	6-18-5-3-4-5-4	Rend Park	TIPO DE FALLAS EXIS		
	CARRIL TIPO	DE FALLA	SEVERIDAL	D	CANTIDAD
		5	- N		1 (337
	PER PER	2	H		(R.500
	DER	10	Й		4,780
	DER	10	Ä		2920
	DER	-	М		3,940

IDAD MUESTREADA EA DE LA MUESTRA (I CROQUIS			E CONCEPCIÓN MUNICIPIO URIONDO FECHA Ó 2 - (% - 2022 PROGRESIVA : AL EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO		
CROQUIS		TIPO DE FALLAS	11 Parcheo	PA m2	FORMA DE LA MUESTRA
	2 Exudación 3 Agrietamiento er 4 Abultamiento y l 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de junt 9 Desnivel carril/bo	hundin ABH m2 COR m2 DEP m2 GB m tas GR m erma DN m	12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Abuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2	DIMENSIONES 7,30 m
	10 Grietas long y to	ransv GLT m	agregados TIPO DE FALLAS EXIST	THE RESIDENCE OF THE PARTY OF T	Contract of the last
	CARRIL	TIPO DE FALLA	SEVERIDAD		CANTIDAD 3,200
	DER.	10	Й		1 950 mi 158
	12Q (1	L		0 315	
	150 140	19	i i		1,008

OMBRE DE LA VIA	: 14	DE CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO FECHA 62~ (O - 2 ? PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO		
CROQUIS	1 Piel de coco 2 Exudación 3 Agrictamien 4 Abultamien 5 Corrugación 6 Depresión 7 Grieta de bo 8 Reflexion d 9 Desnivel ca	EX m2 to on bloqu BLO m2 to y hundin ABH m2 COR m2 DEP m2 orde GB m c juntas GR m	11 Parcheo 12 Pulimiento de agreg. 13 Huccos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hunchamiento 19 Desprendimientos de	PA m2 PU m2 HUE und CVF m2 AIIU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	CARRIL	TIPO DE FALLA	agregados TIPO DE FALLAS EXIST SEVERIDAD	ENTES	CANTIDAD CI 478

IDAD MUESTREADA		PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES /	FECHA OL-10 -72 ALTAMIRANO
	TIPO DE FA	LLAS	
CROQUIS	Piel de cocodrilo PC m2 Exudación EX m2 Agrictamiento en bloqu BLO m2 Abultamiento y hundin ABII m2 Corrugación COR m2 Depresión DEP m2 Grieta de borde GB m Reflexion de juntas GR m Desnivel carril/berma DN m 10 - Grietas long y transy GLT m	11 Parcheo PA m2 12 Pullmiento de agreg. PU m2 13 Huecos HUE und 14 Cruce de via ferrea CVF m2 15 Abuellamiento AHU m2 16 Desplazamiento DES m2 17 Grieta parabolica GP m2 18 Hinchamiento HN m2 19 Desprendimientos de agregados DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
		TIPO DE FALLAS EXISTENTES	MINISTER PORTER TO A STATE OF THE STATE OF T
	CARRIL TIPO DE FALLA	SEVERIDAD L	CANTIDAD CI 17-0

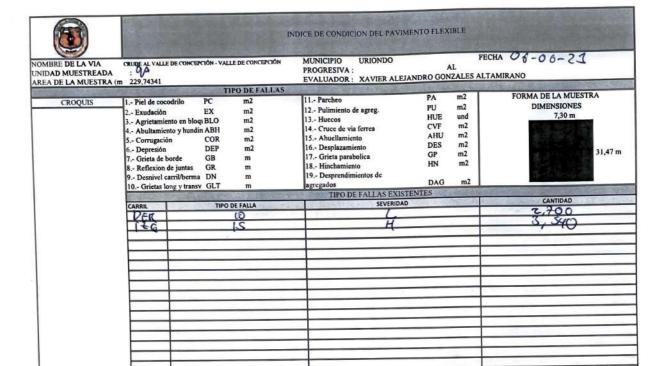
OMBRE DE LA VIA NIDAD MUESTREADA REA DE LA MUESTRA	: 16	NCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALE	AL	CHA 62-10-27
CROQUIS	11 Piel de cocodrilo	TIPO DE FALLAS	Service Control of the Control of th	CONTRACT CONTRACT	
	2 Exudación 3 Agrietamiento en l 4 Abultamiento y hu 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de junta 9 Desnivel carril/ber 10 Grietas long y tra 10 Grietas long y tra	mdin ABH m2 COR m2 DEP m2 GB m s GR m ma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Abuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	TIPO DE FALLAS EXISTENTES CARRIL TIPO DE FALLA SEVERIDAD CAR				
			SEVERIDAL		CISICO
	DER (D			a Uma	
	DER	10	, ,		0,360
	DER	10	4		0,300
	DER	12	Н		7,610


2 E/ 3 A 4 A 5 C 6 D 7 G 8 R	el de cocodrilo xudación grietamiento en bloq bultamiento y hundin orrugación epresión		11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea	PA m2 PU m2 HUE und	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
2 E) 3 A 4 A' 5 C 6 D 7 G 8 R	xudación grietamiento en bloqi bultamiento y hundin orrugación epresión	EX m2 BLO m2 ABH m2	12 Pulimiento de agreg. 13 Huccos	PU m2 HUE und	DIMENSIONES
	rieta de borde eflexion de juntas Desnivel carril/berma		15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	7,30 m
10	Grietas long y transv	GLT m	agregados TIPO DE FALLAS EXIS	The second secon	The second of th
CARR	RIL	TIPO DE FALLA	SEVERIDA		CANTIDAD
D	ER	lo	L	L	0,705
	2Q	10			2,100
7-	26	10		4,286	
7	40	10		3,740	
I	50	10		2,030	
T	देव	10	М		5,000
		10	М		5,390
	Eth	10	Ч		5,600
	EA	10	M		2,400
0	En	(0	<u> </u>		2, 400

MBRE DE LA VIA DAD MUESTREADA A DE LA MUESTRA		CEPCIÓN MUNICIPIO URIONDO PROGRESIVA: EVALUADOR: XAVIER ALEJANDRO GO	FECHA 66 ~ 66 ~ 2.1 AL DINZALES ALTAMIRANO
BANGE BUSE	TIPO DE		AND THE PERSON AND TH
CROQUIS	1- Piel de cocodrilo PC m2 2- Exudación EX m2 3- Agrietamiento en bloqu BLO m2 4- Abultamiento y hundin ABH m2 5- Corrugación COR m2 6- Depresión DEP m2 7- Grieta de borde GB m 8- Reflexion de juntas GR m 9- Desnivel carnil/berma DN m 10- Grietas long y transv GLT m	11 Parcheo	m2 m2 m2 m2
	10 Orietas long y transv OL1	agregados DAG TIPO DE FALLAS EXISTENTES	
	CARRIL TIPO DE FALLA	SEVERIDAD	CANTIDAD
	Der IS	L	5,760
	pèr 15		S,810

OMBRE DE LA VIA NIDAD MUESTREADA REA DE LA MUESTRA	CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE CONCEPCIÓN : 3.4 (m. 229,74341 TIPO DE FALLAS		MUNICIPIO URIONDO FECHA 06 - 06 - 202 PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO		
CROQUIS	1 Piel de cocodrilo 2 Exudación 3 Agrietamiento en 4 Abultamiento y h 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de junt 9 Desnivel carnil/b 10 Grietas long y tr	PC m2 EX m2 bloqu BLO m2 undin ABH m2 COR m2 DEP m2 GB m as GR m rma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huccos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	CARRIL DER DER DER	TIPO DE FALLA	TIPO DE FALLAS EXISTENTES SEVERIDAD L L		2 464 2 437 5 760
		20 21 of 12			

IBRE DE LA VIA CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE CONCEPCIÓN DAD MUESTREADA LA DE LA MUESTRA (m. 229,74341		ON MUNICIPIO URIONDO FE PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALES AL	TAMIRANO
CROQUIS	1 Piel de cocodrilo PC m2 2 Exudación EX m2	11 Parcheo PA m2 12 Pulimiento de agreg. PU m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	3 Agrietamiento en bloqu BLO m2 4 Abultamiento y hundin ABH m2 5 Corrugación COR m2 6 Depresión DEP m2 7 Grieta de borde GB m 8 Reflexion de juntas GR m 9 Desnivel carril/berma DN m 10 Grietas long y transy GLT m	13 Huecos	31,47 r
	CARRIL TIPO DE FALLA	TIPO DE FALLAS EXISTENTES SEVERIDAD	CANTIDAD
	DO PRO	ESENTA FALLAS	


OMBRE DE LA VIA NIDAD MUESTREADA REA DE LA MUESTRA	CRUDE AL VALLE DE CONCENCIÓN - VALLE DE COX	NCEPCIÓN MUNICIPIO URIONDO E PROGRESIVA : EVALUADOR : XAVIER ALEJANDRO GONZALES A	ECHA 06-06-23 LTAMIRANO
CROQUIS	1 Piel de cocodrilo PC m2 - Exudación EX m2 - Exudación EX m2 - Abultamiento en bloqu BLO m2 - Abultamiento y hundim ABH m2 - Corrugación COR m2 - Corregación DEP m2 - Grieta de borde GB m - Reflexion de juntas GR m - Desprivel carril/berma DN m - Grietas long y transv GLT m	11 Parcheo	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 n
	CARRIL TIPO DE FALLA DETI IO DETI IO	SEVERIDAD	7,140 9,500 7,500 7,730

Elaborado por: Est. Xavier Alejandro Gonzales

OMBRE DE LA VIA NIDAD MUESTREADA REA DE LA MUESTRA	:7A	CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALE	AL JANDRO GONZA	FECHA () 6-06-23 LES ALTAMIRANO
CEA DE LA MOESTRA	(III 227,74341	TIPO DE FALLAS	CONTRACTOR OF STREET	MANAGES IN	12 FORMA DE LA MUESTRA
CROQUIS	I Piel de cocodril 2 Exudación 3 Agrictamiento y 4 Abultamiento y 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de ju 9 Desnível carril/	EX m2 en bloqt BLO m2 / hundin ABH m2 COR m2 DEP m2 e GB m intas GR m fberma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huccos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PU mm HUE un CVF n AHU m DES m GP mm	12 FORMA DE LA MUESTRA DIMENSIONES 12 DIMENSIONES 12 7,30 m 12 12 31,47 m 12 12 31,47 m
	10 Grietas long y	transv GLT m	agregados TIPO DE FALLAS EXIS	Dito	
	CARRIL TIPO DE FALLA	SEVERIDAL		CANTIDAD	
	150	(O	L.		1,990
	120	(0)	L.	0,510	
	DER	(0		0.350	
	570	[0	H		1 20
	DER	10			1,00
	150	10			1,00
					- t

MBRE DE LA VIA IDAD MUESTREADA EA DE LA MUESTRA	CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE C	ONCEPCIÓN MUNICIPIO URIONDO PROGRESIVA: EVALUADOR: XAVIER AL	indition to		
CROQUIS	1 Piel de cocodrilo PC m 2 Exudación EX m 3 Agrictamiento en bloqt BLO m 4 Abultamiento y hundin ABII m 5 Corruezación COR m	12. Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m	
	CARRIL TIPO DE FAL TEO TEO TEO O DER	TIPO DE FALLAS EXI	JAD JAD	280 1,280 2,560 3,440	

CROQUIS	I Piel de cocodrilo		EVALUADOR: XAVIER ALEJ	AL JANDRO GONZALES ALT	CHA 06-06-23
CROQUIS		TIPO DE FALLAS	The second second second	CONTRACTOR OF THE	THE STATE OF THE S
	2 Exudación 3 Agrietamiento er 4 Abultamiento y l 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de junt 9 Desnivel carrillò 10 Grietas long y l 10 Grietas long y l	EX m2 1 bloqu BLO m2 nundin ABH m2 COR m2 DEP m2 GB m tas GR m erma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 m
	To Grietas long y t	alisy GL1 III	agregados TIPO DE FALLAS EXIST		AND THE RESERVE OF THE PARTY OF
	CARRIL	TIPO DE FALLA	SEVERIDAD		CANTIDAD
	DER	10			9400
	250 D=U				1 920
	7.50				
	780	100	L		1,1930

OMBRE DE LA VIA CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE CONCEPCIÓN NIDAD MUESTREADA : 1 A- REA DE LA MUESTRA (m. 229,74341			MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALE.	AL	CHA 06- 06- 23 CAMIRANO
	ALD SOMESIES	TIPO DE FALLAS		E CONTRACTOR OF THE PARTY OF TH	
CROQUIS	1 Piel de cocodr 2 Exudación 3 Agrietamiento 4 Abultamiento 5 Corrugación 6 Depresión 7 Grieta de bord 8 Reflexion de j 9 Desnivel carri 10 Grietas long	EX m2 en bloqt BLO m2 y hundin ABH m2 COR m2 DEP m2 de GB m untas GR m t/berma DN m	11 Parcheo 12 Pulimiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m
	10.4 Circus long	y transv (C)	TIPO DE FALLAS EXIST	The second secon	
	CARRIL	TIPO DE FALLA	SEVERIDAD		CANTIDAD
	Dex	(0)	L		0,586
	730				0 8 00
	150	10			1 800
	250	10			7 300
	230	10			9 750

NOMBRE DE LA VIA CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE CONCEPCIÓN INIDAD MUESTREADA INIDAD MUESTRA (m. 229,7434)		PROGRESIVA :				
The state of the s		DE FALLAS		A Marie Spirit Control of the Contro		
CROQUIS	Piel de cocodrilo PC Exudación EX Agrietamiento en bloqu BLO A- Abultamiento y hundin ABH Corrugación COR Depresión DEP Grieta de borde GB Reflexion de juntas GR D- Desnivel carril/berma DN O- Grietas long y transv GLT	m2 11 Parcheo m2 12 Pulimiento de agreg. m2 13 Huccos m2 14 Cruce de via ferrea m2 15 Abuellamiento m2 16 Desplazamiento m 17 Grieta parabolica m 18 Hinchamiento m 19 Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 GP m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 r		
	CARRIL TIPO DE F	TIPO DE FALLAS EXIST		CANTIDAD		
	156 T	SEVERIDAL		0. 368		
	D=0	Ŭ		7 600		
	Deg 18	M		(0, 300		
	150 10			0/280		
	120 12			0,416		

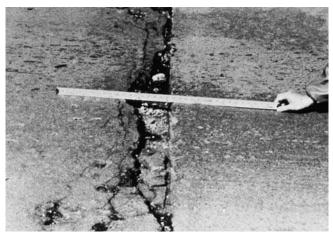
(3)		n	NDICE DE CONDICION DEL PAVIN		
NOMBRE DE LA VIA UNIDAD MUESTREADA AREA DE LA MUESTRA	CRUDE AL VALLE DE : 13A (m. 229,74341	CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALEJ	AL	CHA 06 - 06 - 23
DUR METERS NO. 100 P.	A SURVEY OF	TIPO DE FALLAS	A STATE OF THE REAL PROPERTY.	0.000	The state of the s
CROQUIS	2. Exudación 3. Agrictamiento de Abultamiento y 5. Corrugación 6. Depresión 7. Grieta de borde 8. Reflexion de ju 9. Desnivel carril	EX m2 cn bloq BLO m2 rhundin ABH m2 COR m2 DEP m2 c GB m mtas GR m berma DN m	11 Parcheo 12 Pulmiento de agreg. 13 Huecos 14 Cruce de via ferrea 15 Ahuellamiento 16 Desplazamiento 17 Grieta parabolica 18 Hinchamiento 19 Desprendimientos de	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 m
	10 Grietas long y	transv GLT m	agregados TIPO DE FALLAS EXIST	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	
	CARRIL DEA 130	TIPO DE FALLA	SEVERIDAD M		CANTIDAD 3 D 0 2 C 0 0 4 280

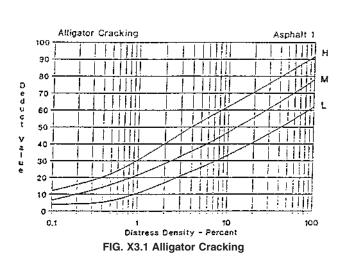
MBRE DE LA VIA IDAD MUESTREAD. EA DE LA MUESTR	CRUDE AL VALLE DE CONCEPCIÓN - VALLE DE COL : [4] A (m. 229,7434)	NCEPCIÓN MUNICIPIO URIONDO PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZ				
	TIPO DE	FALLAS	A CONTRACTOR OF THE PARTY OF TH			
CROQUIS	Piel de cocodrilo PC m2 Exudación EX m2 Agrictamiento en bloqu BLO m2 Agrictamiento y hundin ABH m2 Corrugación COR m2 Coperesión DEP m2 Reflexion de juntas GR m9 Desnivel carril/berma DN m10. Grictas long y transv GLT m	12 Pulimiento de agreg. PU 13 Huecos HUE 14 Cruce de via ferrea CVF 15 Abuellamiento AHU 16 Desplazamiento DES 17 Grieta parabolica GP	m2 FORMA DE LA MUESTRA m2 DIMENSIONES m2 m			
	TIPO DE FALLAS EXISTENTES					
	CARRIL TIPO DE FALLA	SEVERIDAD	CANTIDAD			
	15 0 15 15 0 15		41500			
		-	4,30			

OMBRE DE LA VIA VIDAD MUESTREAD. REA DE LA MUESTR		PROGRESIVA: AL EVALUADOR: XAVIER ALEJANDRO GONZALE:	FECHA O6-06-ZZ		
	TIPO DE F	ALLAS			
CROQUIS	Piel de cocodrilo PC m2 Exudación EX m2 Agrictamiento en bloq BLO m2 A- Abultamiento y hundin ABH m2 Corrugación COR m2 Depressión DEP m2 Grieta de borde GB m Reflexion de juntas GR m D- Desnivel carril/berma DN m 10 Grietas long y transv GLT m	11 Parcheo PA m2 12 Pulimiento de agreg. PU m2 13 Huccos HUE und 14 Cruce de via ferrea CVF m2 15 Abuellamiento AHU m2 16 Desplazamiento DES m2 17 Grieta parabolica GP m2 18 Hinchamiento HN m2 19 Desprendimientos de agregados DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m 31,47 m		
	TIPO DE FALLAS EXISTENTES CARRIL TIPO DE FALLA SEVERIDAD CANTIDAD				
	DER LO	SEVERIDAD	SAJ O		

MBRE DE LA VIA IDAD MUESTREAD. EA DE LA MUESTRA	: 16 A	CONCEPCIÓN - VALLE DE CONCEPCIÓN	MUNICIPIO URIONDO PROGRESIVA : EVALUADOR : XAVIER ALEJ	AL	CHA 06-06-23	
	A SECTION AND ADDRESS OF	TIPO DE FALLAS	THE REPORT OF STREET	Call Cales Friday	SELECTION OF THE PARTY OF THE P	
CROQUIS	1 Piel de cocodrile 2 Exudación 3 Agrictamiento e 4 Abultamiento y 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de jur 9 Desnivel carril/1 10 Grietas long y	EX m2 m bloq BLO m2 hundin ABII m2 COR m2 DEP m2 GB m ntas GR m seema DN m	11. Parcheo 12. Pulimiento de agreg. 13. Huecos 14. Cruce de via ferrea 15. Abuellamiento 16. Desplazamiento 17. Grieta parabolica 18. Hinchamiento 19. Desprendimientos de agregados	PA m2 PU m2 HUE und CVF m2 AHU m2 DES m2 HN m2 DAG m2	FORMA DE LA MUESTRA DIMENSIONES 7,30 m	
	TIPO DE FALLAS EXISTENTES					
	CARRIL	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	SEVERIDAD		CANTIDAD	
		10			926	
		10	-		0,360	
		10	4		0.430	
		12			0,376	
					7000	
			_			

∰ D 6433 − 07

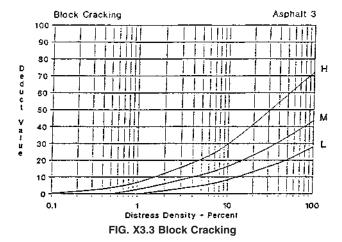


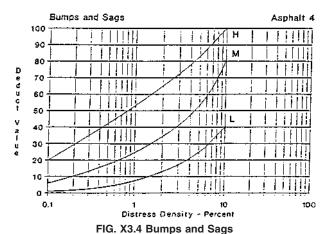

FIG. X2.50 High-Severity Spalling, Joint

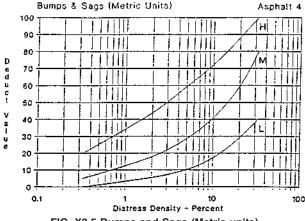
X3. DEDUCT VALUE CURVES FOR ASPHALT

Bleeding

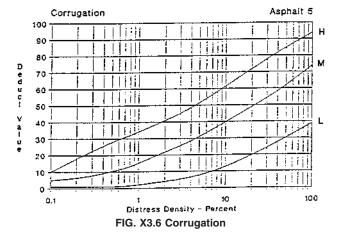
14411

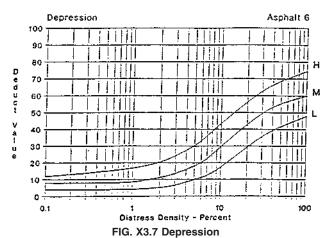

100 90

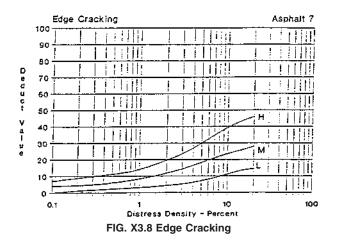



80 Deduct 70 60 50 40 30 20 10 1 10 Distress Density - Percent 100 0.1 FIG. X3.2 Bleeding

Asphalt 2


∰ D 6433 − 07





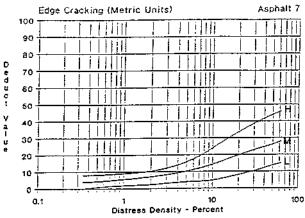


FIG. X3.9 Edge Cracking (metric units)

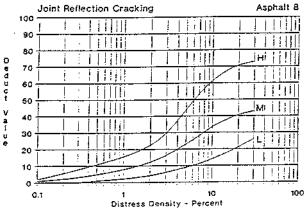


FIG. X3.10 Joint Reflection Cracking

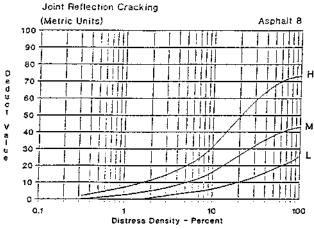


FIG. X3.11 Joint Reflection Cracking (metric units)

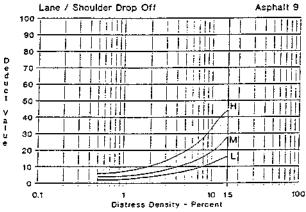


FIG. X3.12 Lane/Shoulder Drop-Off

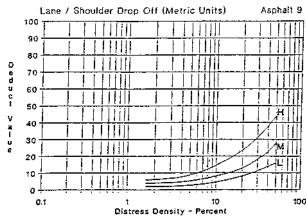


FIG. X3.13 Lane/Shoulder Drop-Off (metric units)

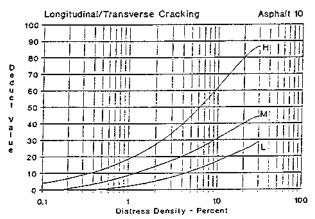


FIG. X3.14 Longitudinal/Transverse Cracking

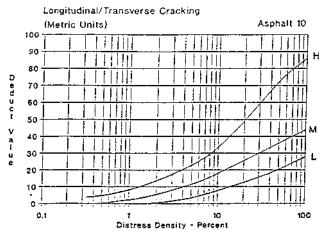


FIG. X3.15 Longitudinal/Transverse Cracking (metric units)

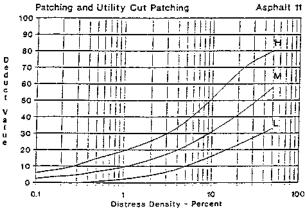
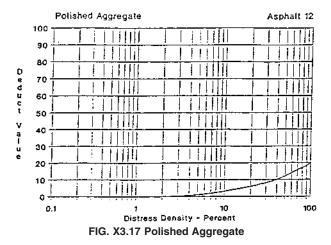
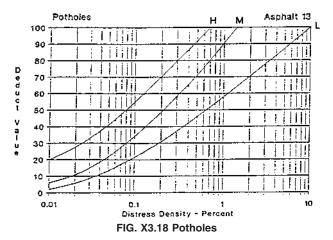
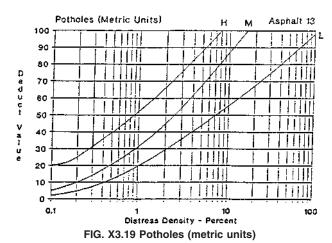
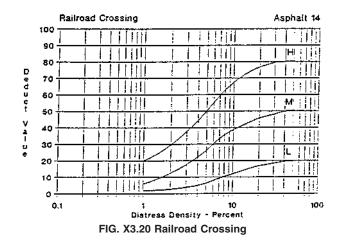
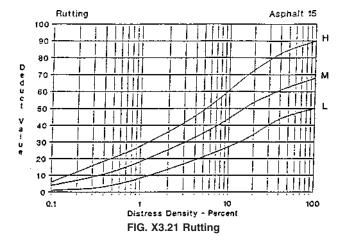
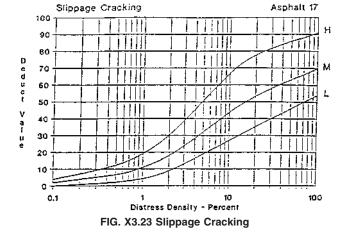
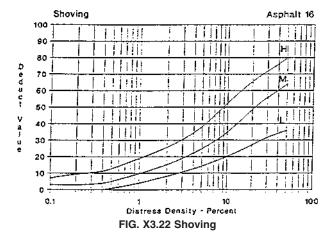
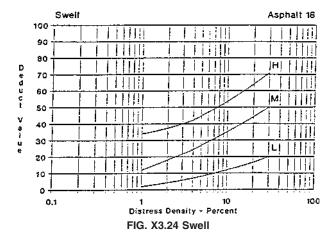






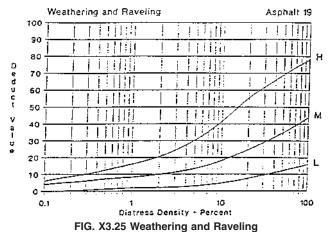
FIG. X3.16 Patching and Utility Cut Patching

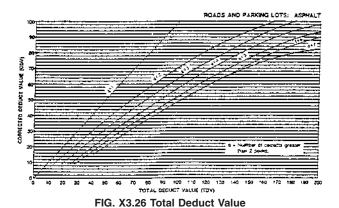


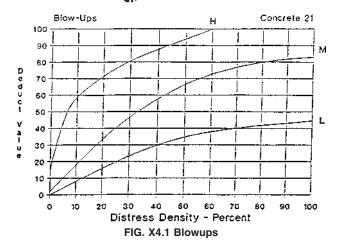


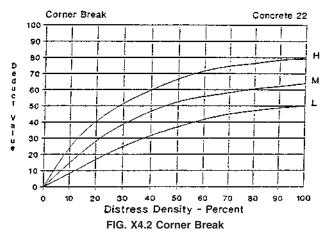


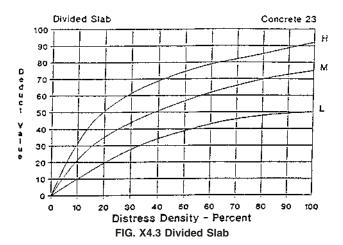

∰ D 6433 − 07



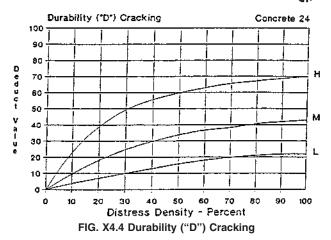


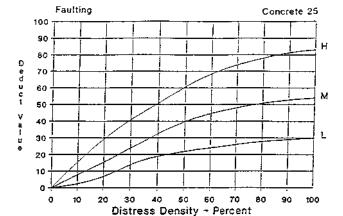






X4. DEDUCT VALUE CURVES FOR CONCRETE





REFERENCES

- (1) PAVER Asphalt Distress Manual, US Army Construction Engineering Laboratories, TR 97/104, June 1997.
- (2) PAVER Asphalt Distress Manual, US Army Construction Engineering Laboratories, TR 97/105, June 1997.
- (3) Carey, W.N., Jr. and Irick, P.E., "The Pavement Serviceability-Performance Concept," *HRB Bulletin* 250, 1960.
- (4) Sayers, M. W., Gillespie, T. D., and Queiroz, C. A. V., "The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements," World Bank Technical Paper No. 45, the International Bank for Reconstruction and Development/the World Bank, Washington, DC, 1986.

Joint Seal Damage Concrete 26

FIG. X4.5 Faulting

Joint seal damage is not rated by density. The severity of the distress is determined by the sealent's overall condition for a particular sample unit.

The deduct values for the three levels of severity are:

LOW 2 points

MEDIUM 4 points

HICH 8 points FIG. X4.6 Rigid Pavement Deduct Values, Distress 26, joint seal damage

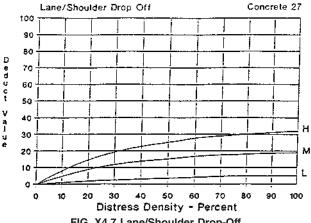


FIG. X4.7 Lane/Shoulder Drop-Off

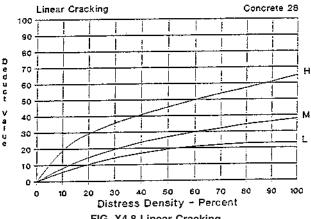
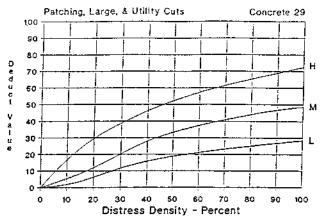
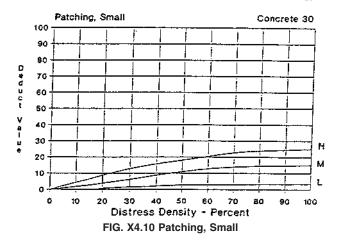
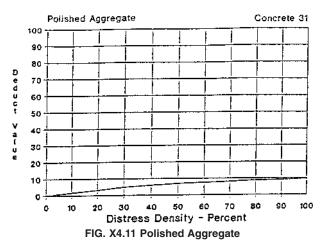
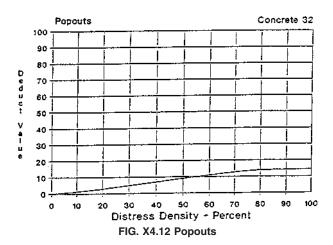
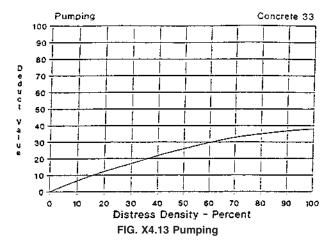
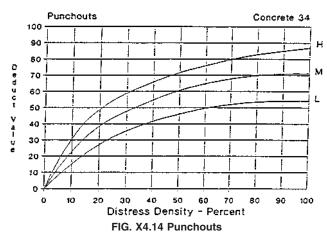
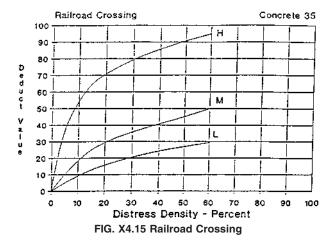
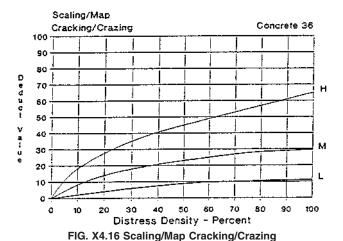


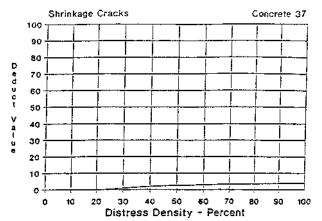
FIG. X4.8 Linear Cracking

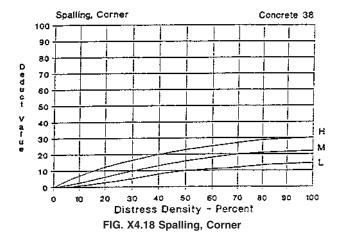






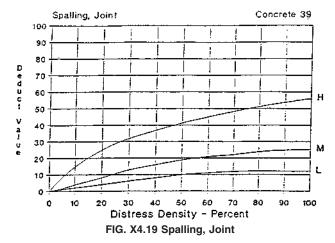

FIG. X4.9 Patching, Large, and Utility Cuts

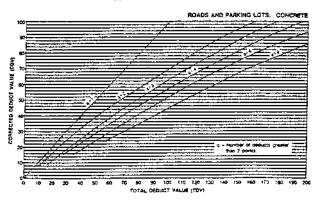












Corrected deduct values for jointed concrete pavement.

FIG. X4.20 Corrected Deduct Values for Jointed Concrete
Pavement

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO UNIDAD MUESTREAD/M - 08 PROGRESIV.

AREA DE LA MUESTR/ 229,74341 EVALUADO URIONDO FECHA KM 0+220,30 AL KM 0+251,77 XAVIER ALEJANDRO GONZALES ALTAMIRANO 13 de octubre del 2022 PROGRESIVA : EVALUADOR :

		TIPO	DE FALLA	S						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	RMA DE LA MUE	STRA
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2	DIMENSIONES		
	3 Agrietamiento en blo	qιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via fer	1 Cruce de via ferrea CVF m2					
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento)	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolio	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	ı DN	m	19 Desprendimien	tos de					
	10 Grietas long y trans	/ GLT	m	agregados		DAG	m2			
				TIPO DE	E FALLAS EXIST	ENTES		_		
		10			11				12	
	L	M	H	L	M	H		L	M	H
	0,70	21,10								
	0.50					_		ļ		
TOTAL POR FALLA	0,70	21,10	0,00	0,00	0,00		0,00	0,00	0,00	0,00
TIDO DE EALLA	GEVERID.	D	_	CÁLCULO DE		NOID + D		1 ,	ULL OR DEDUCE	20
TIPO DE FALLA	SEVERIDA	ID .		TOTAL		NSIDAD		VALOR DEDUCIDO		
10	L			0,70		0,30%		0		
10	M			21,10		9,18%		17,32		
	VALOR TOTAL I	DE DEDUCC	IÓN			VDT=		17.32		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	17,32
Número máximo de valores deducidos (mi)	8,59

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

N°	N° VALORES DEDUCIDOS				VDT	q	VDC			
1	17,32	0	0	0	0	0	0	17,32	1	17,32
									MAX VDC	17.32

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	82,68

CONDICION DEL ESTADO DEL PAVIMENTO :

MUY BUENO

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de UNIDAD MUESTREADAM - 25 PROGRESIVA : KM 0+755,32 AL KM 0+786,79 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO 13 de octubre del 2022

AREA DE LA MUESTRA	1 227,74341			EVALUADOR:	AAVIER ALE	JANDKO	UUNZA	LES ALTAMIK	ANO	
		TIPO DE	FALLAS							
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo PA m2			FORMA DE LA MUESTRA			
	Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2			
	 Agrietamiento en bloc 	րBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundi 	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento	0	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamien	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	lica	GP	m2		229,74 m	31,47 m
	Reflexion de juntas	GR	m	18 Hinchamiento)	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimie	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE I	FALLAS EXIS	TENTES				
		13		14				15		
	L	M	Н	L	M	Н		L	М	Н
								5,76		1
								5,81	ļ	_
TOTAL BOD FALLA	0.00									
TOTAL POR FALLA	0,00	0,00	0,00	0,00	0,00	0,	,00	11,57	0,00	0,00
	1			CÁLCULO DEL						
TIPO DE FALLA	SEVERIDA	D		FOTAL	DENSIDAD			VALOR DEDUCIDO		
15	L			11,57 5,04%			20,86			
	VALOR TOTAL DE DEDUCCIÓN				V	DT=			20,86	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	20,86
Número máximo de valores deducidos (mi)	8,27

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda:

m. Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor valor deducido individual para la unidad de muestreo i.

	N°			VALO	RES DEDUC	CIDOS			VDT	q	VDC
	1	20,86	0	0	0	0	0	0	20,86	1	20,86
ľ										MAX VDC	20,86

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	79,14

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

MUY BUENO

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 d UNIDAD MUESTREADAM - 42 PROGRESIVA : KM 1+290,34 AL KM 1+321,81 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO 13 de octubre del 2022

AREA DE LA MUESTRA 229,/4341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO											
		TIPO DE	FALLAS								
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo		PA	m2	FORM.	A DE LA MUEST	RA	
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2	Ι	DIMENSIONES	ES	
	 Agrietamiento en blo 	qιBLO	m2	13 Huecos		HUE	und		7,30 m		
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via	ferrea	CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamient	to	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamient	o	HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de						
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2				
				TIPO DE	FALLAS EXIS	TENTES					
		10		11			12				
	L	M	H	L	M	Н		L	M	Н	
	6,37										
TOTAL POR FALLA	6,37	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	
				CÁLCULO DEI	L PCI						
TIPO DE FALLA	SEVERIDA	D	1	OTAL	DENS	SIDAD		VA	LOR DEDUCIDO)	
10	L	•		6,37 2,77%		1,56					
	VALOR TOTAL DE	DEDUCCIÓ	N		VDT=			1,56			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,56
Número máximo de valores deducidos (mi)	10,04

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Nümero màximo admisible de "vaiores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	1,56

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 98,44

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) EXCELENTE

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA : 13 de octubre del 2022 UNIDAD MUESTREADA M - 76 PROGRESIVA : KM 2+360,38 AL KM 2+391,85 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

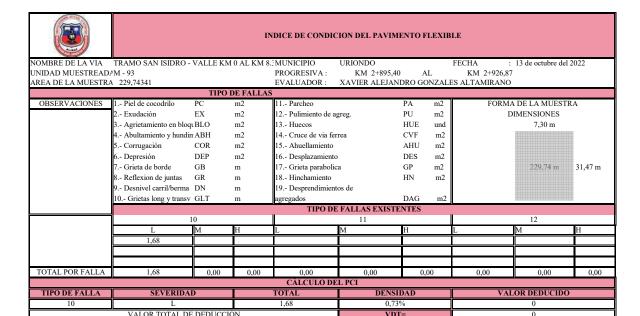
AREA DE LA MUESTRA 229,74341

		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	ΓRA
	Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloc 	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundi 	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamien	to	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP	m2		229,74 m	31,47 m
	Reflexion de juntas	GR	m	18 Hinchamient	0	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO D	E FALLAS EXI	STENTES	8			
		10		11			12			
	L	M	Н	L	M	H		L	M	Н
		8,43	10,24							
TOTAL POR FALLA	0,00	8,43	10,24	0,00	0,00	(0,00	0,00	0,00	0,00
				CÁLCULO DI	EL PCI					
TIPO DE FALLA	TIPO DE FALLA SEVERIDAD T			TOTAL DENSIDAD		VALOR DEDUCIDO				
10	M		8,43 3,67%		,67%			8,44		
10	Н			10,24 4,46%			20,93			
	VALOR TOTAL DE	DEDUCCIÓ	N		VDT=		29,37			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	20,93
Número máximo de valores deducidos (mi)	8,26

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Nümero màximo admisible de "vaiores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i


N°			V.	VDT	q	VDC				
1	20,93	8,44	0	0	0	0	0	29,37	2	21,50
2	20,93	2	0	0	0	0	0	22,93	1	22,93
						•			MAX VDC =	22,93

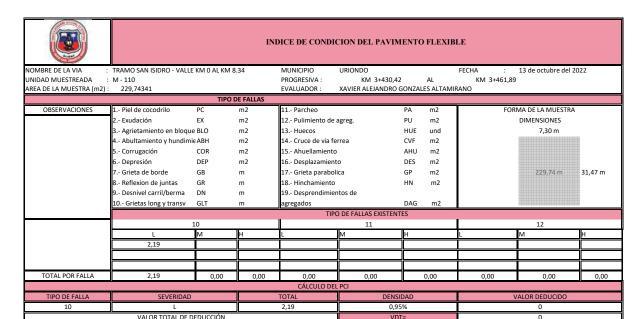
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	77,07

CONDICION DEL ESTADO DEL PAVIMENTO:

MUY BUENO

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18


 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV.; El *mayor valor deducido individual* para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

100- (MAX VDC) INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : 100

CONDICION DEL ESTADO DEL PAVIMENTO: EXCELENTE

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} \big(100 - HDV_i\big)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA	: TRAMO SAN ISIDRO - VAL	LE KM 0 AL KN	л 8.34	MUNICIPIO	URIONDO		FECHA :	13 de octubre de	2022
JNIDAD MUESTREADA	: M - 127			PROGRESIVA:	KM 3+965	,43 AL	KM 3+996,91	<u>l</u>	
REA DE LA MUESTRA (m2): 229,74341			EVALUADOR :	XAVIER ALEJAND	RO GONZALES ALT	TAMIRANO		
		TIPO	DE FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FO	RMA DE LA MUEST	RA
	2 Exudación	EX	m2	12 Pulimiento de a	agreg.	PU m2		DIMENSIONES	
	3 Agrietamiento en bloq	u∈ BLO	m2	13 Huecos		HUE und		7,30 m	
	4 Abultamiento y hundir	mirABH	m2	14 Cruce de via fer	rrea	CVF m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamiento	D	DES m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
				TIPO DI	E FALLAS EXISTEN	TES			
		10			11	12			
	L	M	Н	L	М	Н	L	М	Н
	0,56	3,44							
TOTAL POR FALLA	0,56	3,44	0,00	0,00	0,00	0,00	0,00	0,00	0,00
				CÁLCULO DEL PO	1				
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENSIDAD			VALOR DEDUCIDO	
10	L			0,56	0,24%			0	
10	M			3,44	1,	,50%		3,5	
VALOR TOTAL DE DEDUCCIÓN					VDT=			3,5	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	3,5
Número máximo de valores deducidos (mi)	9,86

 $m_{i}=1.00+\frac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i.

N°		VALORES DEDUCIDOS						VDT	q	VDC
1	0	3,5	0	0	0	0	0	3,5	1	3,50
			·						MAX VDC =	2.5

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO :

			,	NDICE DE CONDIC	ION DEL PAVIME	INTO FLEXIB	LE		
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO		FECHA	:13 de octubre del :	2022
UNIDAD MUESTREADA	M - 144			PROGRESIVA:	KM 4+500,45	AL	KM 4+531,92		
AREA DE LA MUESTRA (1	m 229,74341			EVALUADOR:	XAVIER ALEJANI	DRO GONZALI	ES ALTAMIRANO		
		TIPO I	E FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FORM	A DE LA MUESTI	RA
	2 Exudación	EX	m2	12 Pulimiento de ag	reg.	PU m2	1	DIMENSIONES	
	3 Agrietamiento en bloq	ιBLO	m2	13 Huecos		HUE und		7,30 m	
	4 Abultamiento y hundir	r ABH	m2	14 Cruce de via feri	rea	CVF m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES m2			
	7 Grieta de borde	GB	m	17 Grieta parabolica	a	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			ĺ.
	9 Desnivel carril/berma	DN	m	19 Desprendimiento	os de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
	O y				E FALLAS EXISTEN	NTES			
		10			11			12	
	L	M	Н	L	M	Н	L	M	Н
	7,09								
									Ì
TOTAL POR FALLA	7,09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	н	H.	н	CÁLCULO DEL	PCI	н			н
TIPO DE FALLA	SEVERIDAI)		TOTAL	DENSI	DAD	VA	LOR DEDUCIDO	
10	L			7,09	3,09	1%		2,12	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	2,12
Número máximo de valores deducidos (mi)	9,99

 $m_i = 1.00 + \frac{9}{98} \left(100 - HDV_i \right)$ Equación 3. Carreteras pavimentadas.

Donde: m_i Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El *mayor valor deducido individual* para la unidad de muestreo i

N°			1	VALORES D	EDUCIDOS			VDT	q	VDC
1	2,12	0	0	0	0	0	0	2,12	1	2,12
									MANADO	2.12

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

PCI =	100- (MAX VDC)
PCI =	97,88

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

PROGRESIVA: KM 5+035,47 AL KM 5+066,94
EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO UNIDAD MUESTREADA M - 161 PROGRESIVA AREA DE LA MUESTRA 229,74341 EVALUADOR

AKEA DE LA MOESTRA	227,77571			LVALUADOK.	7071 VIETO AELESAN	IDIO GONZ	ALLS ALTAWIKAN	0	
		TIPO D	E FALLAS						
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	 Parcheo 		PA m2	FORM	IA DE LA MUEST	RA
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU m2	2	DIMENSIONES	
	 Agrietamiento en bloc 	ιBLO	m2	13 Huecos		HUE un	d	7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fer	теа	CVF m	2		
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m	2		
	6 Depresión	DEP	m2	16 Desplazamiento	•	DES m	2		
	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP m2	2	229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m	2		
	9 Desnivel carril/berma	DN	m	19 Desprendimient	tos de				
	10 Grietas long y transv	GLT	m	agregados		DAG n	2		
				TIPO DE I	FALLAS EXISTE	NTES			
		10			11			12	
	L	M	H	L	M	Н	L	M	Н
	1,32								
TOTAL POR FALLA	1,32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
				CÁLCULO DEL	PCI				
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENSI	DAD	VA	LOR DEDUCIDO)
10	L			1,32	0,57	%		0	
	VALOR TOTAL DI	E DEDÚCCIÓ	N		VDT]=		0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_{i}=1.00+rac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donda:

M. Nümero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS VDT q MAX VDC

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO UNIDAD MUESTREADAM - 178 PROGRESIVA : URIONDO FECHA 13 de octubre del 2022 KM 5+570,49 KM 5+601,96

AREA DE LA MUESTR	A 229,74341			EVALUADOR:	XAVIER ALE	JANDRO G	ONZALE	S ALTAMI	RANO	
		TIPO D	E FALLAS							
OBSERVACIONES	ONES 1 Piel de cocodrilo PC		m2	11 Parcheo		PA	m	FOR!	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m		DIMENSIONES	
	 Agrietamiento en bl 	oqıBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hun	din ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiente	0	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamien	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	lica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento)	HN	m2			
	9 Desnivel carril/berm	a DN	m	19 Desprendimie	entos de					
	10 Grietas long y tran	sv GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	ENTES				
		10			11				12	
	L	M	Н	L	M	H	L		M	H
	0,56									
TOTAL POR FALLA	0,56	0,00	0,00	0,00	0,00	0,00)	0,00	0,00	0,00
				CÁLCULO DEL	. PCI					
TIPO DE FALLA	SEVERID.	AD		TOTAL		SIDAD		V	ALOR DEDUCID	0
10	L			0,56	0,2	24%			0	
	VALOR TOTAL I	DE DEDUCCI	ÓN		VI	DT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m_c Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO:

TOTAL POR FALLA

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

dame?										
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO			FECHA :	13 de octubre del 2	022
UNIDAD MUESTREAD	AM - 195			PROGRESIVA:	KM 6+105,51	A	L	KM 6+136,98		
AREA DE LA MUESTR.	A 229,74341			EVALUADOR:	XAVIER ALEJAN	IDRO G	ONZALI	ES ALTAMIRANO		
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	DE LA MUESTR	A
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloq 	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	rABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento	0	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	ENTES				
		4			5				6	
	L	M	Н	L	M	Н		L	M	Н
	2,60									

CÁLCULO DEL PCI

TOTAL

2,60

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

SEVERIDAD

CONDICION DEL ESTADO DEL PAVIMENTO:

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD

1,13% VDT=

VALOR DEDUCIDO

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIOV; El *mayor velor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS			VDT	q	VDC
					MAX VDC =	0
	INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:	PCI	=		100- (MAX VDC)
		PCI	=		100	

NOMBRE DE LA VIA

TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO

URIONDO

FECHA
: 13 de octubre del 2022

UNIDAD MUESTREADA M - 212

PROGRESIVA: KM 6+640,53

AL KM 6+672,00

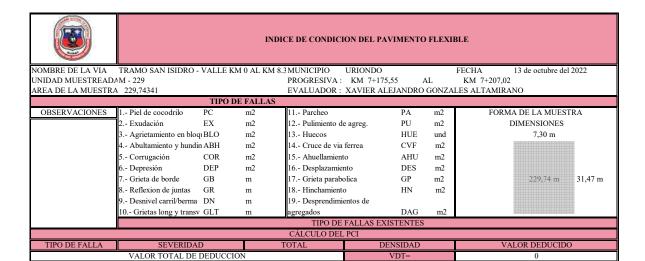
ARFA DE LA MIJESTRA
229 74341

FVALUADOR: YAVIER AL FLANDRO GONZAL ES AL TAMIRANO

AREA DE LA MUESTRA	A 229,74341			EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO						
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA DE LA MUESTRA		TRA
	2 Exudación EX m2		m2	12 Pulimiento d	le agreg.	PU	m2	DIMENSIONES		
	3 Agrietamiento en bloquBLO		m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamien	ito	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamient	to	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimi	ientos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE FALLAS EXISTENTES						
		10		11					12	
	L	M	Н	L	M	Н		L	M	H
		7,38								
TOTAL POR FALLA	0,00	7,38	0,00	0,00 0,00		0,0	00	0,00	0,00	0,00
CÂLCULO DEL PCI										
TIPO DE FALLA	SEVERIDA	.D	1	TOTAL DENSIDAD			VALOR DEDUCIDO			
10	M			7,38 3,21%		7,38				
	VALOR TOTAL DE	DEDUCCIÓ:	N		VI	T=			7,38	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	7,38
Número máximo de valores deducidos (mi)	9,51

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i) \; \mbox{Ecuación 3. Carreteras parimentadas}. \label{eq:mi}$


Donde: $m_{\mathbb{R}}$ Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo L HDV; El mayor valor deducido individual para la unidad de muestreo L

N°	VALORES DEDUCIDOS						VDT	q	VDC	
1	7,38	0	0	0	0	0	0	7,38	1	7,38
					·				MAX VDC =	7,38

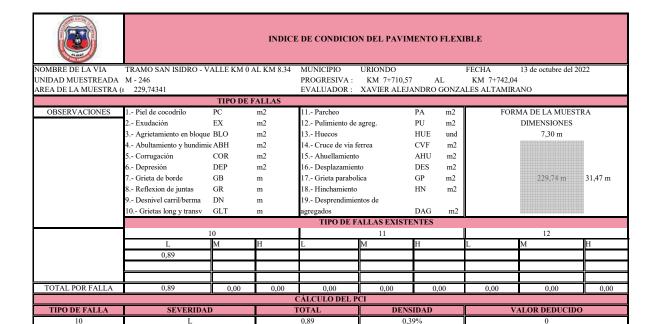
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	92,62

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

VDT

Donde: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor velor deducido individual para la unidad de muestreo i.

 N°
 VALORES DEDUCIDOS
 VDT
 q
 VDC

 MAX VDC
 0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

PCI = 100- (MAX VDC)
PCI = 100

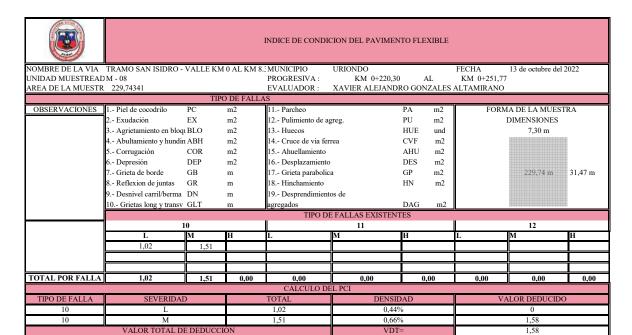
 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

			INDIO	CE DE CONDICION	DEL PAVIMENTO) FLEXIBLE			
	TRAMO SAN ISIDRO - VALLE	KM 0 AL KM 8.	34	MUNICIPIO	URIONDO			13 de octubre de	1 2022
	M - 263			PROGRESIVA:	KM 8+245,59		KM 8+277,06	5	
AREA DE LA MUESTRA (m2):	229,74341			EVALUADOR :	XAVIER ALEJAN	DRO GONZALE	S ALTAMIRANO		
	T	TIPO DE FAL		1					
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2		A DE LA MUES	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU m2	I	DIMENSIONES	
	3 Agrietamiento en bloque	BLO	m2	13 Huecos		HUE und		7,30 m	
	4 Abultamiento y hundimientos		m2	14 Cruce de via fe	rrea	CVF m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamient		DES m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
				TIPO DE FAL	LAS EXISTENTES				
		10	le v		11	ller		12	ller
		M	Н	L	M	Н	L	M	H
	0,62					0,25			
						ļ			
TOTAL POR FALLA	0.62	0,00	0.00	0,00	0.00	0.25	0.00	0.00	0.00
TOTAL POR FALLA		9	0,00	0,00	0,00	0,25	0,00	0,00	0,00
	L		Н	-					
	0.06	IVI	0,21						
	0,08		0,21						
TOTAL POR FALLA	0.06	0,00	0.21						
TOTAL FOR FALLA	0,00	0,00		ÁLCULO DEL PCI					
TIPO DE FALLA	SEVERIDAD			TOTAL	DENS	IDAD	VA	LOR DEDUCIDO)
10	L			0,62	0,27			0	
11	Н			0,25	0,1			6.77	
19	L			0,06	0,03%		0		
19	Н			0,21	0,09%		0		
	VALOR TOTAL DE DE	DUCCIÓN			VD			6,77	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	6,77
Número máximo de valores deducidos (mi)	9,56

 $m_{\rm i} = 1.00 + \frac{9}{98}(100 - HDV_{\rm i})$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Nürmen misemme admissible de "Valories destruction", impayemb francière, parre le urridad de musectros i.


HDV: El mayor valor disducción industrial para la unidad de musectros i.

N°	VALORES DEDUCIDOS						VDT	q	VDC	
1	6,77	0	0	0	0	0	0	6,77	1	6,77
									MAX VDC =	6.77

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	93,23

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,58
Número máximo de valores deducidos (mi)	10.04

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	1,58

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	98,42

CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3MUNICIPIO URIONDO UNIDAD MUESTREADAM - 25 PROGRESIVA : KM 0+755,32 FECHA KM 0+786,79 13 de octubre del 2022 AL

UNIDAD MULBIRLAD.	mivi = 23			I KOOKESI VA	. IXIVI 0 1/33,	32 F	1L	IXIVI 0 : / 00, /	,	
AREA DE LA MUESTR	A 229,74341			EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO						
		TIPO DE	FALLAS							
OBSERVACIONES	1 Piel de cocodrilo PC m2			11 Parcheo	PA m2		FORMA DE LA MUESTRA			
	2 Exudación	EX	m2	12 Pulimiento de agreg.		PU m2	m2	DIMENSIONES 7,30 m		
	3 Agrietamiento en blogtBLO		m2	13 Huecos		HUE	und			
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de vi	a ferrea	CVF	m2	7,30 111		
	5 Corrugación	COR	m2	15 Ahuellamier	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paral	oolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento 19 Desprendimientos de agregados		HN	m2			
	9 Desnivel carril/berma	DN	m							
	10 Grietas long y transv	GLT	m			DAG	m2			
				TIPO DE	FALLAS EXI	STENTES	3			
		10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	5,32									
	0,71									
	1,26									
TOTAL POR FALLA	7,29	0,00	0,00	0,00	0,00	0,	,00	0,00	0,00	0,00
				CÁLCULO DEI	L PCI					
TIPO DE FALLA	SEVERIDA	D	1	TOTAL	DEI	DENSIDAD		VALOR DEDUCIDO		
10	L			7,29	3,17%			2,22		
	VALOR TOTAL DE	DEDUCCIO)N	<u> </u>	,	VDT=			2,22	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	2,22
Número máximo de valores deducidos (mi)	9,98

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Número màximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

N°	N° VALORES DEDUCIDOS				VDT	q	VDC			
1	2,22	0	0	0	0	0	0	2,22		2,22
	·								MAX VDC	2,22

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	97,78
,	

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA :
UNIDAD MUESTREADA M - 42 PROGRESIVA : KM 1+290,34 AL KM 1+321,81
AREA DE LA MIJESTRA 229 74341 FVALUADOR : YAVUER AL FIANDRO GONZALES AL TAMIRANO : 13 de octubre del 2022

AREA DE LA MUESTRA	A 229,74341			EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO						
		TIPO D	E FALLAS							
OBSERVACIONES	ACIONES 1 Piel de cocodrilo PC m2			11 Parcheo PA m2			m2	FORMA DE LA MUESTRA		
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU m2		DIMENSIONES		
	3 Agrietamiento en blo	qı BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via	ı ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamier	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamio	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamien	to	HN	m2			
	9 Desnivel carril/berma	ı DN	m	19 Desprendimientos de						
	10 Grietas long y transv	/ GLT	m	agregados		DAG	m2			
				TIPO I	E FALLAS EX	ISTENTES	3			
		10		11				12		
	L	M	Н	L	M	Н	L		M	Н
	7,22									
TOTAL POR FALLA	7,22	0,00	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
				CÁLCULO D	EL PCI					
TIPO DE FALLA	SEVERIDA	AD .	7	ΓOTAL	DEI	NSIDAD		V.	VALOR DEDUCIDO	
10	L			7,22	,22 3,14%			2,18		
	VALOR TOTAL DE	DEDUCCIO)N		,	/DT=		2,18		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	2,18
Número máximo de valores deducidos (mi)	9,98

 $m_{\rm r}=1.00+rac{9}{98}igl(100-HDV_iigr)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS						VDT	q	VDC	
1	2,18	0	0	0	0	0	0	2,18	1	2,18
									MAX VDC =	2,18

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	97,82

CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA : 13 de octubre del 2022 UNIDAD MUESTREADA M - 59 PROGRESIVA : KM 1+825,36 AL KM 1+856,83 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTRA	A 229,74341			EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO						
		TIPO I	DE FALLAS							
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo		PA m	2 F	FORMA DE LA MUESTRA		
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU m	2	DIMENSIONES		
	3 Agrietamiento en bloquBLO m2		m2	13 Huecos		HUE ur	nd	7,30 m		
	4 Abultamiento y huno	din ABH	m2	14 Cruce de via	ferrea	CVF m	12			
	 Corrugación 	COR	m2	15 Ahuellamien	to	AHU m	2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES m	2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP m	2	264,00 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamient	18 Hinchamiento		2			
	9 Desnivel carril/berm	a DN	m	19 Desprendimi	entos de					
	10 Grietas long y trans	sv GLT	m	agregados		DAG n	n2			
				TIPO DI	E FALLAS EXI	STENTES	·			
		1		2				3		
	L	M	H	L	M	Н	L	M	Н	
	0,25	0,29								
		0,45								
TOTAL POR FALLA	0,25	0,74	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
				CÁLCULO DE						
TIPO DE FALLA	SEVERID	AD		TOTAL	_	NSIDAD		VALOR DEDUCIDO		
1	L			0,25	0,25 0,09%			0		
1	1 M			0,74	0,28%			11,14		
	VALOR TOTAL DE DEDUCCIÓN					VDT= 11.14				

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	11,14
Número máximo de valores deducidos (mi)	9,16

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Nûmeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°			V	ALORES DI	EDUCIDOS			VDT	q	VDC
1	11,14	0	0	0	0	0	0	11,14	1	11,14
	·								MAX VDC =	11,14

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	88,86

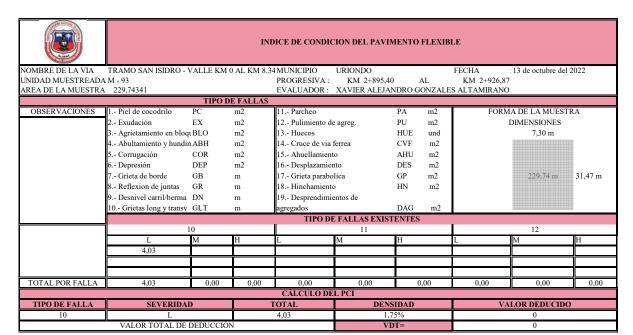
CONDICION DEL ESTADO DEL PAVIMENTO :

	EXCELENTE	
<u> </u>		

and .										
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.	3 MUNICIPIO	URIONDO			FECHA	13 de octubre d	el 2022
UNIDAD MUESTREADA	M - 76			PROGRESIVA	: KM 2+360,3	38	AL	KM 2+391,8	35	
AREA DE LA MUESTRA	229,74341			EVALUADOR :	XAVIER ALEJ	ANDRO (GONZAL	ES ALTAMIRA	NO	
		TIPO DI	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloq 	BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	ABH	m2	14 Cruce de via	a ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamier	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paral	oolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamien	to	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendim	ientos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO D	E FALLAS EXI	STENTE	S			
	1	0			11				12	
	L	M	H	L	M	H		L	M	Н
	10,93									
TOTAL POR FALLA	10,93	0,00	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
				CÁLCULO DI	EL PCI					
TIPO DE FALLA	SEVERIDA)	T	OTAL	DEN	SIDAD		V.	ALOR DEDUCII	00
10	L	•		10,93	4.	,76%	,		4,06	•
	VALOR TOTAL DE I	DEDUCCIÓ!	N		V	DT=			4,06	•

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	4,06
Número máximo de valores deducidos (mi)	9,81

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m_c Número mâximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

	N°			V	ALORES DE	EDUCIDOS			VDT	q	VDC
ĺ	1	4,06	0	0	0	0	0	0	4,06	1	4,06
							•			MAX VDC :	4,06

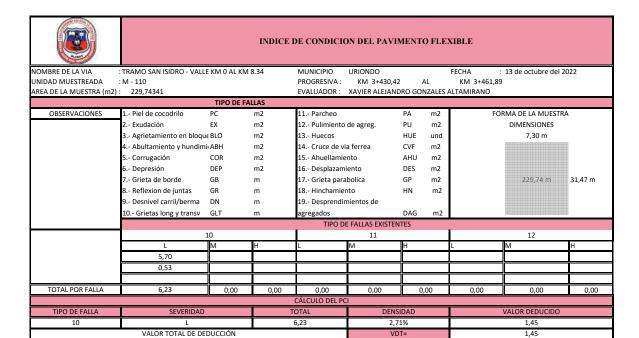
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	95,94

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,45
Número máximo de valores deducidos (mi)	10,05

 $m_{i}=1.00+rac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	1,45

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 98,55

CONDICION DEL ESTADO DEL PAVIMENTO :

4 - Ah				14 - Cruce de via ferrea	CVF	m?	
	grietamiento en bloqu bultamiento y hundim		m2 m2	13 Huecos 14 Cruce de via ferrea	HUE CVF	und m2	7,30 m
	el de cocodrilo cudación	PC EX	m2 m2	 Parcheo Pulimiento de agreg. 	PA PU	m2 m2	FORMA DE LA MUESTRA DIMENSIONES
<u>, , , , , , , , , , , , , , , , , , , </u>	9,74341	TIPO DE				NZALES ALTAN	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

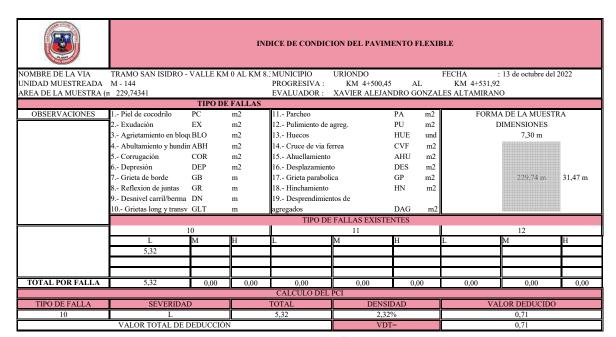
 $m_{i}=1.00+\frac{9}{98}(100-HDV_{i})$ Equación 3. Carreteras pavimentadas.

VDT=

Donde:
m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0


INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

PCI = 100- (MAX VDC)
PCI = 100

EXCELENTE

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0,71
Número máximo de valores deducidos (mi)	10,12

 $m_{i}=1.00+rac{9}{98}[100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donda:

m. Nomer máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,71

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

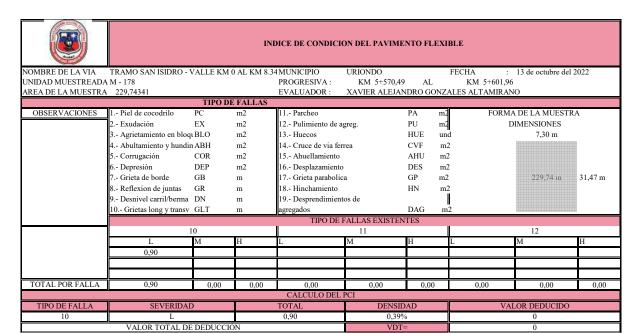
CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.: MUNICIPIO URIONDO FECHA : 13 de octubre del 2022 UNIDAD MUESTREAD M - 161 PROGRESIVA : KM 5+035,47 AL KM 5+066,94 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MOESTR	1 227,74341			EVALUADOR.	ATT VIETC MEES	ni iDito o	OTTE	L3 ALTAWIKA	110	
		TIPO	DE FALLAS	3						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	ΓRA
	Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2		DIMENSIONES	
	 Agrietamiento en blo 	qı BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento	,	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolio	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIS	TENTES				
		10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	1,05									
	0,40									
TOTAL POR FALLA	1,45	0,00	0,00	0,00	0,00	0,	,00	0,00	0,00	0,00
				CÁLCULO DE	L PCI					
TIPO DE FALLA	SEVERIDA	AD .		TOTAL	DEN	SIDAD		VALOR DEDUCIDO		
10	L			1,45	0,	,63%		0		
	VALOR TOTAL D	E DEDUCC	IÓN		V	DT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El *mayor velor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q		VDC
			MAX VDC	=	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL DOL	
CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDVs. El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q		VDC
			MAX VDO	C =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI :	=	100- (MAX VDC)
PCI :	=	100

CONDICION DEL ESTADO DEL PAVIMENTO:

TOTAL POR FALLA

TOTAL POR FALLA

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO			FECHA	13 de octubre del 2	022
UNIDAD MUESTREADA	M - 195			PROGRESIVA:	KM 6+105,51	Al	L	KM 6+136,98		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJAN	DRO GO	NZALI	ES ALTAMIRANO)	
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	A DE LA MUESTR	A
	Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloq 	BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundin	ABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento)	DES	m2			
	7 Grieta de borde	GB	m	 17 Grieta paraboli 	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXISTE	NTES				
		7			8				9	
	L	M	Н	L	M	Н		L	M	Н
			18,50							

0,00

0,00 CÁLCULO DEL PCI

TOTAL 18,50

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	20,16
Número máximo de valores deducidos (mi)	8,33

0,00

0,00

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

0,00

3,94 8,72

18,50

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD 8,05%

3,80% VDT= 0,00

0,00

0,00

0,00

0,00

VALOR DEDUCIDO 20,16

0,00

Donda:

m. Nûmer o máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

0,00

11

N°	VALORES DEDUCIDOS							VDT	q	VDC
1	20,16	8,74	0		0	0	0	28,9	2	21,12
2	20,16	2		0	0	0	0	22,16	1	22,16
				•					MAX VDC	22,16

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	77,84

CONDICION DEL ESTADO DEL PAVIMENTO:

MUY BUENO

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA : 13 de octubre del 2022

TOMBICE BE EIT THE	THE ENTO DE LEVIDIDATO	· · · · · · · · · · · · · · · · · · ·	0.112.11111.0.0	internen ie	CHICHEO			. Leini .	15 de octubre del 2	.022
UNIDAD MUESTREADA	M - 212			PROGRESIVA:	KM 6+640,53	A	AL	KM 6+672,00		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJA	NDRO G	ONZALE:	S ALTAMIRANO		
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	A DE LA MUESTR	:A
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2	Ι	IMENSIONES	
	 Agrietamiento en bloq 	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	1 ABH	m2	14 Cruce de via f	errea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamient	0	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamien	to	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	ica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento	ı	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimie	ntos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	TENTES				
		10			11				12	
	L	M	Н	L	M	Н		L	M	H
		3,20								
		1,95					, and the second		·	
TOTAL POR FALLA	0,00	5,15	0,00	0,00	0,00	0.	,00	0,00	0,00	0,00
				CÁLCULO DE	L PCI					

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	5,15
Número máximo de valores deducidos (mi)	9.71

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: $m_{\rm c}$ Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo t. HDV; El mayor valor deducido individual para la unidad de muestreo t

DENSIDAD

	N°	VALORES DEDUCIDOS							VDT	q	VDC
I	1	5,15	0	0	0	0	0	0	5,15	1	5,15
-										MAX VDC =	5,15

TOTAL

5,15

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

PCI	=	100- (MAX VDC)
PCI		94,85

VALOR DEDUCIDO

CONDICION DEL ESTADO DEL PAVIMENTO:

19

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3MUNICIPIO URIONDO : 13 de octubre del 2022 FECHA KM 7+207,02 UNIDAD MUESTREADAM - 229 PROGRESIVA: KM 7+175,55 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO AREA DE LA MUESTRA 229,74341 TIPO DE FALLAS OBSERVACIONES 1.- Piel de cocodrilo FORMA DE LA MUESTRA PC. m2 11.- Parcheo PA m2 12.- Pulimiento de agreg. m2 DIMENSIONES 2.- Exudación EX PU HUE m2 7,30 m 3.- Agrietamiento en bloqiBLO 13.- Huecos und 4.- Abultamiento y hundin ABH CVF m2 14.- Cruce de via ferrea m2 AHU 5.- Corrugación COR m2 15.- Ahuellamiento m2 DEP 16.- Desplazamiento DES 6.- Depresión m2 m2 7.- Grieta de borde GB 17.- Grieta parabolica GP m2 229,74 m 31,47 m m 8.- Reflexion de juntas GR 18.- Hinchamiento ΗN m2 m 9.- Desnivel carril/berma DN 19.- Desprendimientos de m 10.- Grietas long y transv GLT agregados m TOTAL POR FALLA CÁLCULO DEL PCI VALOR DEDUCIDO TIPO DE FALLA **SEVERIDAD** TOTAL DENSIDAD

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	10,1
Número máximo de valores deducidos (mi)	9,26

 $m_i = 1.00 + \frac{9}{98} \left(100 - HDV_i
ight)$ Ecuación 3. Carreteras pavimentadas.

2.08%

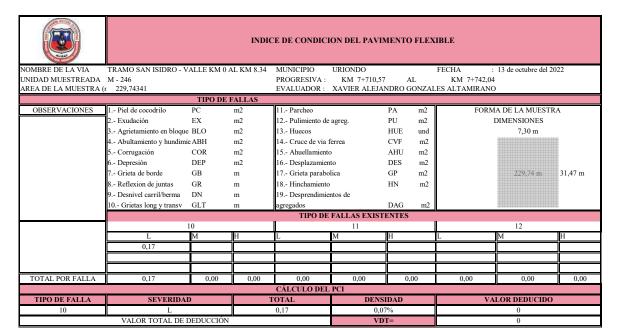
Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°		VALORES DEDUCIDOS							q	VDC
1	10,1	0	0	0	0	0	0	10,1	1	10,10
									MAY VDC -	10.1

4,78

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:

М


VALOR TOTAL DE DEDUCCIÓN

PCI	=	100- (MAX VDC)
PCI	=	89,9
- 0-		02,72

10.1

10.1

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO:

			INDICE D	E CONDICION D	EL PAVIMEN	TO FLEX	IBLE				
	TRAMO SAN ISIDRO - VALLE	KM 0 AL KM	8.34	MUNICIPIO	URIONDO			FECHA	13 de octubre o	del 2022	
	M - 263			PROGRESIVA:				KM 8+277,06			
AREA DE LA MUESTRA (m2)				EVALUADOR :	XAVIER ALE.	JANDRO (GONZA	LES ALTAMIRA	NO		
		TIPO DE FAL		1				11			
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2		MA DE LA MUI		
	2 Exudación	EX	m2	12 Pulimiento de	e agreg.	PU	m2		DIMENSIONE	S	
	3 Agrietamiento en bloque	BLO	m2	13 Huecos		HUE	und		7,30 m		
	,	ABH	m2	14 Cruce de via		CVF	m2				
	5 Corrugación	COR	m2	15 Ahuellamien	-	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamie		DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parab		GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamient		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DE FALL	AS EXISTENTE	ES					
	1	0			11				12		
	L	M	H	L	M	H		L	M	H	
	0,71					1,0	51				
	0,36										
	0,30										
TOTAL POR FALLA	1,37	0,00	0,00	0,00	0,00	1,0	51	0,00	0,00	0,00	
	10			JLO DEL PCI							
TIPO DE FALLA	SEVERIDAD			OTAL		ISIDAD		V.	ALOR DEDUC	IDO	
10	L			1,37		0,60%			0		
11	Н			1,61	0,70%				17,1		
	VALOR TOTAL DE DEDUCCIÓN VDT= 17,1										

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	17,1
Número máximo de valores deducidos (mi)	8,61

Donde: m., Número mitalmo admissibre de "vrálores deducidos", tinduyendo fracción, para la unidad de musetimo J.

HIDV; El mayor valor deducido individual para la unidad de musetireo (.

N°		VALORES DEDUCIDOS							q	VDC
1	17,1	0	0	0	0	0	0	17,1	1	17,10
									MAX VDC :	17.1

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)						
PCI =	82,9						
MUY BUENO							

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de octubre del 2022 UNIDAD MUESTREAD M - 08 PROGRESIVA : KM 0+220,30 AL KM 0+251,77 AREA DE LA MUESTR. 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO UNIDAD MUESTREAD M - 08 AREA DE LA MUESTR. 229,74341

AREA DE LA MUESTR	. 229,74341			EVALUADOR:	AAVIER ALE	JANDRO	GUNZA	LES ALTAMIN	KANU	
		TIPO E	E FALLAS							
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	STRA
	Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2			
	 Agrietamiento en blo 	qıBLO	m2	13 Huecos		HUE	und			
	 4 Abultamiento y hund 	in ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamien	to	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamient	o	HN	m2			
	9 Desnivel carril/berma	ı DN	m	19 Desprendimi	entos de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIS	TENTES				
		10		11			12			
	L	M	H	L	M	H		L	M	H
	11,55	5,00								
TOTAL POR FALLA	11,55	5,00	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
				CÁLCULO DE				1		
TIPO DE FALLA				TOTAL		DENSIDAD		VALOR DEDUCIDO		
10	L			11,55 5,03%			4,32			
10	M			5,00	2,18%			5,01		
	VALOR TOTAL DI	E DEDUCCI	ON		1	VDT=			9,33	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	5,01
Número máximo de valores deducidos (mi)	9,72

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	N* VALORES DEDUCIDOS						VDT	q	VDC	
1	5,01	4,32	0	0	0	0	0	9,33	1	9,33
2	0	0	0	0	0	0	0	0	0	0
									MAX VDC	9,33

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	90,67

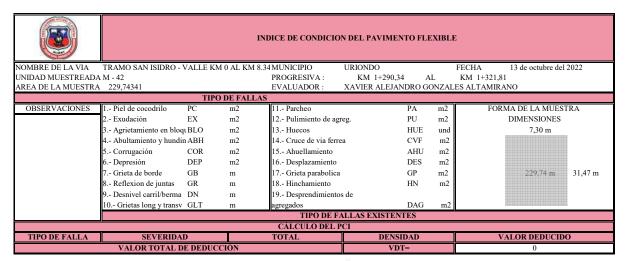
CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de octubre del 2022

UNIDAD MUESTREADA AREA DE LA MUESTRA				KM 0+755,32 XAVIER ALEJAN		ONZA	KM 0+786,79 LES ALTAMIRANO	
		TIPO DE	FALLAS					
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo	P	PA	m2	FORMA DE LA MUESTRA
	2 Exudación	EX	m2	12 Pulimiento d	e agreg. P	U	m2	DIMENSIONES
	 Agrietamiento en blo 	qıBLO	m2	13 Huecos	I	IUE	und	7,30 m
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via	ferrea C	CVF	m2	
	 Corrugación 	COR	m2	15 Ahuellamient	to A	AHU	m2	
	6 Depresión	DEP	m2	16 Desplazamie	nto I	DES	m2	
	7 Grieta de borde	GB	m	17 Grieta parab	olica C	ъP	m2	229,74 m 31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamient	o I	ΙN	m2	
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de			
	10 Grietas long y trans	v GLT	m	agregados	Ι	OAG	m2	
				TIPO DE I	FALLAS EXISTE	NTES	·	
			_	CÁLCULO DEL	PCI			
TIPO DE FALLA	SEVERIDA	AD .	T	OTAL	DENSII	DAD		VALOR DEDUCIDO
	VALOR TOTAL DE	DEDUCCIÓ	N		VDT	`=		0

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: Miller máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.
HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

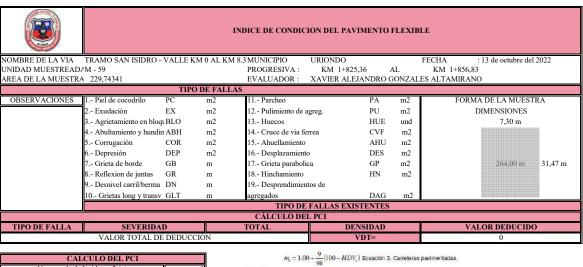
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

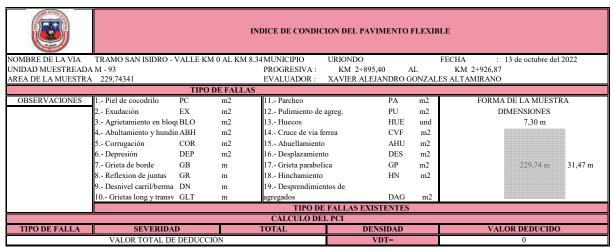
CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO UNIDAD MUESTREADA M - 76 PROGRESIVA URIONDO FECHA : 13 de octubre del 2022 KM 2+360,38 AL KM 2+391,85 XAVIER AL EJANDRO GONZALES AL TAMIRANO PROGRESIVA :

AREA DE LA MUESTR.	A 229,74341			EVALUADOR:	XAVIER ALEJA	ANDRO GO	NZALE	S ALTAMIRAN	1O		
		TIPO I	DE FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA DE LA MUESTRA			
	Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2		DIMENSIONES		
	3 Agrietamiento en bloc	μBLO	m2	13 Huecos		HUE	und		7,30 m		
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fe	errea	CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamiento)	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamien	to	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parabol	ica	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimie	ntos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DI	FALLAS EXIST	TENTES	_				
		10		11					12		
	L	M	Н	L	M	Н		L	M	Н	
		9,15									
TOTAL POR FALLA	0,00	9,15	0,00	0,00	0,00	0,	.00	0,00	0,00	0,00	
				CÁLCULO DE							
TIPO DE FALLA	SEVERIDA	D		TOTAL DE		ENSIDAD		VALOR DEDUCIDO			
10	M	-		9,15	3,	98%		•	9,15	•	
	VALOR TOTAL DI	E DEDUCCIO	ÓN		V	DT=		•	9.15	•	

CALCULO DEL PCI						
Numero de deducidos > 2 (q)	1					
Valor deducido mas alto (HDVi)	9,15					
Número máximo de valores deducidos (mi)	9,34					

 $m_{\rm r} = 1.00 + \frac{9}{98}(100 - HDV_{\rm r})$ Ecuación 3. Carreteras pavimentadas.


Donde: m_c Nûmero mâximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo *i.*HDV; El *mayor valor deducido individual* para la unidad de muestreo *i.*

N°	VALORES DEDUCIDOS						VDT	q	VDC	
1	9,15	0	0	0	0	0	0	9,15	1	9,15
					·				MAX VDC =	9,15

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	90,85

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI						
Numero de deducidos > 2 (q)	0					
Valor deducido mas alto (HDVi)	0					
Número máximo de valores deducidos (mi)	10,18					

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO : EXCELENTE

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 13 de octubre del 2022 UNIDAD MUESTREADA : M - 110 AREA DE LA MUESTRA (m2) : 229,74341 KM 3+430,42 AL KM 3+461,89 PROGRESIVA: EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO TIPO DE FALLAS OBSERVACIONES FORMA DE LA MUESTRA 1.- Piel de cocodrilo m2 11.- Parcheo PA 2.- Exudación EX 3.- Agrietamiento en bloque BLO m2 Pulimiento de agreg. PU m2 DIMENSIONES 7,30 m m2 13.- Huecos HUE und 4.- Abultamiento y hundimi ABH m2 14.- Cruce de via ferrea CVF m2 5.- Corrugación COR m2 15.- Ahuellamiento AHU m2 6.- Depresión DEP m2 16.- Desplazamiento DES m2 7.- Grieta de borde GB m 17.- Grieta parabolica GP m2 229,74 m 31,47 m 8.- Reflexion de juntas HN GR m 18.- Hinchamiento m2 9.- Desnivel carril/berma DN 19.- Desprendimientos de m 10.- Grietas long y transv GLT agregados TIPO DE FALLAS EXISTENTES 11 12 TOTAL POR FALLA 1,00 0,00 0,00 TIPO DE FALLA DENSIDAD ALOR DEDUCIDO 2,85 1,24%

CALCULO DEL PCI					
Numero de deducidos > 2 (q)	0				
Valor deducido mas alto (HDVi)	0				
Número máximo de valores deducidos (mi)	10,18				

 $m_{\rm r}=1.00+\frac{9}{98}(100-HDV_{\rm r})$ Ecuación 3. Carreteras pavimentadas.

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.: El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
		MAX VDC =		0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI = 100- (MAX VDC)
PCI = 100

CONDICION DEL ESTADO DEL PAVIMENTO :

			IND	ICE DE CONDICI	ON DEL PAVIM	IENTO FLEX	IBLE			
NOMBRE DE LA VIA	: TRAMO SAN ISIDRO - VAL	LE KM 0 AL KM	3.34	MUNICIPIO	URIONDO		FECHA :	13 de octubre del :	2022	
UNIDAD MUESTREADA	: M - 127			PROGRESIVA:	KM 3+965,4	3 AL	KM 3+996,91			
AREA DE LA MUESTRA (m2	2): 229,74341			EVALUADOR:	XAVIER ALEJANDR	O GONZALES AL	TAMIRANO			
		TIPO DI	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FOR	MA DE LA MUESTRA	4	
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU m2		DIMENSIONES		
	3 Agrietamiento en bloque BLO r		m2	13 Huecos		HUE und		7,30 m		
	4 Abultamiento y hundimi ABH		m2	14 Cruce de via fer	rea	CVF m2				
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU m2				
	6 Depresión	DEP	m2	16 Desplazamiento	o D	DES m2				
	7 Grieta de borde	GB	m	17 Grieta parabolio	a	GP m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG m2				
				TIPO D	E FALLAS EXISTENT	res				
		10			11		12			
	L	М	Н	L	М	Н	L	M	Н	
	2,48									
TOTAL POR FALLA	2,48	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
				CÁLCULO DEL P						
TIPO DE FALLA	SEVERIDA			TOTAL	DENS	IDAD	V	ALOR DEDUCIDO		
10	L			2,48	1,0	8%		0		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

VALOR TOTAL DE DEDUCCIÓN

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : 100- (MAX VDC) 100 CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA	TRAMO SAN ISIDRO - Y	VALLE KM	0 AL KM 8.34	4 MUNICIPIO	URIONDO			FECHA	: 13 de octubre de	1 2022	
UNIDAD MUESTREADA	M - 144			PROGRESIVA:	KM 4+500,	45 A	L	KM 4+531,9	2		
AREA DE LA MUESTRA (n	229,74341			EVALUADOR:	XAVIER ALEJA	ANDRO G	ONZAL	LES ALTAMIRAN	OV		
		TIPO DE	FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	MA DE LA MUEST	`RA	
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2		DIMENSIONES		
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m		
	 4 Abultamiento y hundir 	n ABH	m2	14 Cruce de via	ferrea	CVF	m2				
	5 Corrugación	COR	m2	15 Ahuellamient	o	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamier	ito	DES	m2				
	7 Grieta de borde	GB	m	n 17 Grieta parabolica GP m2			229,74 m 31,47 m				
	8 Reflexion de juntas	GR	m	18 Hinchamiento)	HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimie	entos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DE	O DE FALLAS EXISTENTES						
	1	13			14				15		
	L	М	Н	L	М	Н		L	М	Н	
										3,54	
TOTAL POR FALLA	0,00	0,00	0,00	0,00	0,00	0,	.00	0,00	0,00	3,54	
				CÁLCULO DEL							
TIPO DE FALLA	SEVERIDAI		1	ΓΟΤΑL	DEN	SIDAD		V	ALOR DEDUCIDO)	
15	VALOR TOTAL DE D			3,54		54%			31,83		
						DT=			31,83		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	31,83
Número máximo de valores deducidos (mi)	7,26

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Nûmero mâximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

I	N°	VALORES DEDUCIDOS							VDT	q	VDC
	1	31,83	0	0	0	0	0	0	31,83	1	31,83
•							•			MAX VDC =	31,83

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	68,17
		·

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

BUENO	

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO UNIDAD MUESTREADAM - 161 PROGRESIVA : KM 5+035,47 FECHA KM 5+066,94 13 de octubre del 2022 AL

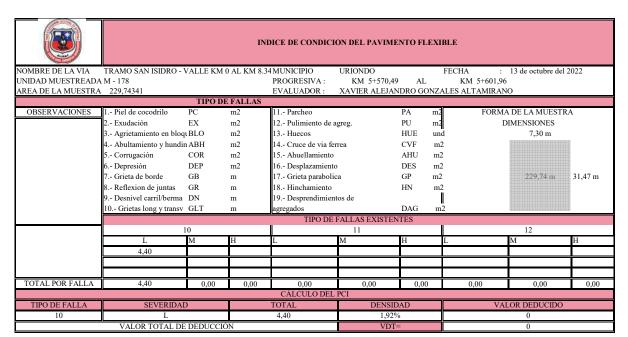
AREA DE LA MUESTR	A 229,74341			EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO						
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	m2	11 Parcheo		PA	m2	FORM	RMA DE LA MUESTRA		
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bl	oqtBLO	m2	13 Huecos		HUE	und			
	4 Abultamiento y hun	din ABH	m2	14 Cruce de vi	a ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamie	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta para	bolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamier	ito	HN	m2			
	9 Desnivel carril/berm	a DN	m	19 Desprendin	nientos de					
	10 Grietas long y tran	sv GLT	m	agregados		DAG	m2			
				TIPO DI	E FALLAS EXI	STENTES	_			
		10		11				12		
	L	M	Н	L	M	Н	L		M	Н
	2,96									
		_	<u> </u>		1	_				
TOTAL POR FALLA	2,96	0,00	0,00	0,00	0,00	0,	00	0,00	0,00	0,00
	"			CÁLCULO DI	EL PCI			·	,	-11
TIPO DE FALLA	SEVERID	SEVERIDAD			TOTAL DENSIDAD			VALOR DEDUCIDO		
10	L			2,96	1	,29%		0		
	VALOR TOTAL DE DEDUCCIÓN				V	VDT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} [100 - HDV_i]$ Ecuación 3. Carreteras pavimentadas.

Donde:

M. Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO :

FECHA : 13 de octubre del 2022 KM 6+136,98 NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.: MUNICIPIO UNIDAD MUESTREAD#M - 195 PROGRESIVA : URIONDO KM 6+105,51

UNIDAD MUESTREAD				PROGRESIVA: KM 6+105,51 AL KM 6+136,98 EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO						
AREA DE LA MUESTR.	A 229,74341			EVALUADOR :	XAVIER ALEJAN	NDRO GONZALE	S ALTAMIRANO			
	· U		DE FALLAS				1			
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo PA m2			FORMA DE LA MUESTRA			
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU m2	DIMENSIONES			
	- · · · · · · · · · · · · · · · · · · ·			13 Huecos		HUE und		7,30 m		
	4 Abultamiento y hundir		m2	14 Cruce de via fe	rrea	CVF m2				
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2				
	6 Depresión	DEP	m2	16 Desplazamiente		DES m2				
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2		229,74 m	31,47 m	
	Reflexion de juntas	GR	m	18 Hinchamiento		HN m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG m2				
				TIPO D	E FALLAS EXIST	TENTES				
		1			2		3			
	L	M	Н	L	М	Н	L	M	Н	
	0,37									
		ļ				1				
TOTAL POR FALLA	0,37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		10	Ivv	<u> </u>	11			12		
	L	M	Н	L	M	Н	L	M	Н	
	0,28	10,30	1				0,41	-	_	
		-	1					-	_	
TOTAL BOD FALL	0.20	40.00					0.44			
TOTAL POR FALLA	0,28	10,30	0,00	0,00	0,00	0,00	0,41	0,00	0,00	
mvn.c. n.u. v. v.				CALCULO D						
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENS		VA	LOR DEDUCIDO)	
1 10	L				0,37 0,16%			3,52		
10	L M		10,30	0,28 0,12% 10,30 4,48%		0				
10	M		1	0,41	,		10,3			
12	VALOR TOTAL DE	DEDUCCI	ÓN	0,41 0,18% VDT=			13,82			
	VALOR TOTAL DI	ייייייייייייייייייייייייייייייייייייייי	OIT		V D	1-		13,02		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	10,3
Número máximo de valores deducidos (mi)	9.24

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El *mayor velor deducido individual* para la unidad de muestreo i.

N°			,	VDT	q	VDC				
1	10,3	3,52	0	0	0	0	0	13,82	1	13,82
2	0	0	0	0	0	0	0	0	0	0,00
									MAY VDC =	13 82

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO UNIDAD MUESTREADA M - 212 PROGRESIVA : KM 6+640,53 FECHA : 13 de octubre del 2022 KM 6+672,00

AREA DE LA MUESTR.	A 229,74341			EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO							
		TIPO D	E FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2		FORMA DE LA MUESTRA			
	Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2	DIMENSIONES			
	3 Agrietamiento en blo	ηιBLO	m2	13 Huecos		HUE	und		7,30 m		
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via	a ferrea	CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamier	nto	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamio	ento	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento HN m2							
	9 Desnivel carril/berma DN m 10 Grietas long y transv GLT m			19 Desprendimientos de							
				agregados DAG m2							
				TIPO I	DE FALLAS EX	ISTENTE	ES				
		10		11				12			
	L	M	Н	L	M	Н		L M		Н	
	2,10			0,00							
TOTAL POR FALLA	2,10	0.00	0,00	0.00	0.00		0.00	0.00	0.00	0.00	
TOTAL POR FALLA	2,10	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	
TIPO DE FALLA	TIPO DE PLAYA I				CÁLCULO DEL PCI			VALOR DEDUCIDO			
	SEVERIDA	שו		OTAL DENSIDAD			VALOR DEDUCIDO				
10	VALOR TOTAL DE	DEDLICCIÓ	N	2,10	0,91%			0			
	VALOR TOTAL DE	DEDUCCIO	N		1	/DT=			0		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda:

M. Nümero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO :

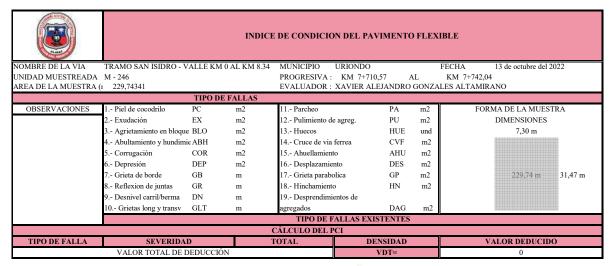
NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO UNIDAD MUESTREADAM - 229 PROGRESIVA : KM 7+175,55 FECHA KM 7+207,02 13 de octubre del 2022 AL

AREA DE LA MUESTR	A 229,74341			EVALUADOR:	XAVIER ALE	JANDRO	GONZAI	LES ALTAMIR	ANO		
		TIPO D	E FALLAS								
OBSERVACIONES	 Piel de cocodrilo 	1 Piel de cocodrilo PC n		11 Parcheo		PA	m2	FORM	ΓRA		
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2		DIMENSIONES		
	3 Agrietamiento en bl	oqı BLO	m2	13 Huecos		HUE	und	7,30 m			
	4 Abultamiento y hun	din ABH	m2	14 Cruce de via	ferrea	CVF	m2				
	5 Corrugación	COR	m2	15 Ahuellamien	to	AHU					
	6 Depresión	m2	16 Desplazamie	nto	DES	m2					
	7 Grieta de borde	GB	m	17 Grieta parabolica		GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	m	18 Hinchamient	o	HN	m2					
	9 Desnivel carril/berm	m	19 Desprendimientos de								
	10 Grietas long y tran	nsv GLT m		n agregados		DAG	m2				
				TIPO DE FALLAS EXISTENTES							
		13		14				15			
	L	М	Н	L	М	Н		L M		Н	
			_					9,06			
			+	1		-					
TOTAL POR FALLA	0,00	0,00	0,00	0,00	0,00	0,	.00	9,06	0,00	0,00	
	11			CÁLCULO DEI	PCI						
TIPO DE FALLA	SEVERID	AD		TOTAL	DE	DENSIDAD		V.	ALOR DEDUCID	0	
15	15 L			9,06	3,94%			18,98			
VALOR TOTAL DE DEDUCCIÓN					VDT=			18 98			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	18,98
Número máximo de valores deducidos (mi)	8,44

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: $m_{\mathbb{R}}$ Número mâximo admisible de "vaiores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i


	N°	VALORES DEDUCIDOS							VDT	q	VDC
	1	18,98	0	0	0	0	0	0	18,98	1	18,98
M									MAX VDC	18,98	

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	81,02

CONDICION DEL ESTADO DEL PAVIMENTO :

MUY BUENO

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i

Ī	N°	VALORES DEDUCIDOS	VDT	q	VDC
ľ				MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	100

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

	INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE											
NOMBRE DE LA VIA :	TRAMO SAN ISIDRO - VALLE	KM 0 AL KM 8.	.34	MUNICIPIO	URIONDO			13 de octubre de	1 2022			
	M - 263			PROGRESIVA:	KM 8+245,59		KM 8+277,06	5				
AREA DE LA MUESTRA (m2):	229,74341			EVALUADOR:	XAVIER ALEJAN	DRO GONZAL	ES ALTAMIRANO					
		TIPO DE FAI	LLAS									
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2		IA DE LA MUES	TRA			
	2 Exudación	EX	m2	12 Pulimiento de ag	reg.	PU m2		DIMENSIONES				
	 Agrietamiento en bloque 	BLO	m2	13 Huecos		HUE und		7,30 m				
	4 Abultamiento y hundimientos	ABH	m2	14 Cruce de via ferr	ea	CVF m2						
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2						
	6 Depresión	DEP	m2	16 Desplazamiento		DES m2						
	7 Grieta de borde	GB	m	17 Grieta parabolica	1	GP m2		229,74 m	31,47 m			
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2						
	9 Desnivel carril/berma	DN	m	19 Desprendimiento	s de							
	10 Grietas long y transv	GLT	m	agregados		DAG m2						
				AS EXISTENTES								
	1	10			11		12					
	L	M	H	L	M	H	L	M	H			
	0,43											
TOTAL POR FALLA	0,43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
			CÁL	CULO DEL PCI								
TIPO DE FALLA	SEVERIDAD		1	TOTAL DENSIDAD			VALOR DEDUCIDO					
10	L			0,43	0,19	0%	0					
	VALOR TOTAL DE DI	EDUCCIÓN			VD	Γ=	0					

CALCULO DEL PCI					
Numero de deducidos > 2 (q)	0				
Valor deducido mas alto (HDVi)	0				
Número máximo de valores deducidos (mi)	10,18				

 $m_{\rm c}=1.00+\frac{9}{98}(100-HDV_{\rm c})$ Equacion 3. Carreteras payimentadas.

Xonde: n. Minnero máximo admisible de "Valorea deducidos", incluyendo fracción, para la unidad de execution i

musictros /.
HDV: El mayor yafor deducido individual para la unidad de muestras.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI = 100- (MAX VDC)
PCI = 100

EVCELENTE

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO UNIDAD MUESTREAD; M - 08 PROGRESIV, AREA DE LA MUESTR; 229,74341 EVALUADOI URIONDO FECHA KM 0+220,30 AL KM 0+251,77 XAVIER ALEJANDRO GONZALES ALTAMIRANO 13 de octubre del 2022 PROGRESIVA : EVALUADOR :

	,,									
		TIP	O DE FALLA	S						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUE	STRA
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en blo	qιBLO	m2	13 Huecos		HUE	und			
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamient	o	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	a DN	m	19 Desprendimier	itos de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
				TIPO DE FALLAS EXISTENTES						
		10		11			12			
	L	M	H	L	M	H		L	M	Н
	0,65	7,95								
TOTAL POR FALLA	0,65	7,95	0,00	0,00	0,00	(0,00	0,00	0,00	0,00
CĂLCULO DEL PCI										
TIPO DE FALLA	SEVERIDAD			TOTAL DENSIDAD			VALOR DEDUCIDO			
10	L			0,65	0,65 0,28%			0		
10	M		7,95		3,46%		7,96			
	VALOR TOTAL I	DE DEDUCC	CIÓN		VDT= 7.96			7,96		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	7,96
Número máximo de valores deducidos (mi)	9,45

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

N°	VALORES DEDUCIDOS						VDT	q	VDC	
1	7,96	0	0	0	0	0	0	7,96	1	7,96
									MAX VDC	7.96

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	92,04

CONDICION DEL ESTADO DEL PAVIMENTO :

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.: MUNICIPIO UNIDAD MUESTREAD#M - 25 PROGRESIVA : AREA DE LA MUESTRA 229,74341 EVALUADOR : URIONDO FECHA : 13 de octubre del 2022 KM 0+755,32 AL KM 0+786,79 XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTR.	A 229,74341			EVALUADOR:	XAVIER ALEJAI	NDRO GO	ONZALI	ES ALTAMIRANO			
			DE FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	ΓRA		
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2	Γ			
	Agrietamiento en bloc	ιBLO	m2	13 Huecos		HUE	und		7,30 m		
	 4 Abultamiento y hundi 	n ABH	m2	14 Cruce de via fe	rrea	CVF	m2				
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamiento)	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DI	E FALLAS EXIST	TENTES					
		10		11			12				
	L	M	Н	L	M	Н		L	M	H	
	0,00	0,92									
	0,00										
	1,43										
TOTAL POR FALLA	1,43	0,92	0,00	0,00	0,00	0,	00	0,00	0,00	0,00	
				CÁLCULO DE	L PCI						
TIPO DE FALLA	SEVERIDAD			TOTAL DENSIDAD				VALOR DEDUCIDO			
10	L			1,43 0,62%				0			
10	M			0,92	0,40%			0			
	VALOR TOTAL DI	E DEDUCCI	ÓN		VDT=			0			

CALCULO DEL PCI					
Numero de deducidos > 2 (q)	0				
Valor deducido mas alto (HDVi)	0				
Número máximo de valores deducidos (mi)	10,18				

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV_i: El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO UNIDAD MUESTREADA M - 42 PROGRESIVA AREA DE LA MUESTRA 229.74341 URIONDO FECHA 13 de octubre del 2022 KM 1+290,34 AL KM 1+321,81 XAVIER ALEJANDRO GONZALES ALTAMIRANO URIONDO PROGRESIVA : EVALUADOR :

AREA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALEJA	ANDRO GO	ONZALI	ES ALTAMIRA	ANO		
		TIPO	DE FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	TRA		
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2				
	3 Agrietamiento en blo	qı BLO	m2	13 Huecos		HUE	und		7,30 m		
	4 Abultamiento y hundi	in ABH	m2	14 Cruce de via fer	теа	CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamiento)	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parabolio	a	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimient	tos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DE I	FALLAS EXISTE	ENTES					
		10		11				12			
	L	M	H	L	M	Н		L	M	H	
	6,71										
TOTAL POR FALLA	6,71	0,00	0,00	0,00	0,00	0,	00	0,00	0,00	0,00	
				CÁLCULO DEL	PCI						
TIPO DE FALLA	SEVERIDA	AD .		TOTAL	DEN	SIDAD		V	VALOR DEDUCIDO		
10	L			6,71	2,	92%		1,85			
	VALOR TOTAL D	E DEDUCC	IÓN		VDT=			1.85			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,85
Número máximo de valores deducidos (mi)	10,01

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i) \; \mbox{Ecuación 3. Carreteras pavimentadas.} \label{eq:minus}$

Donda:

Milliamero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	1,85

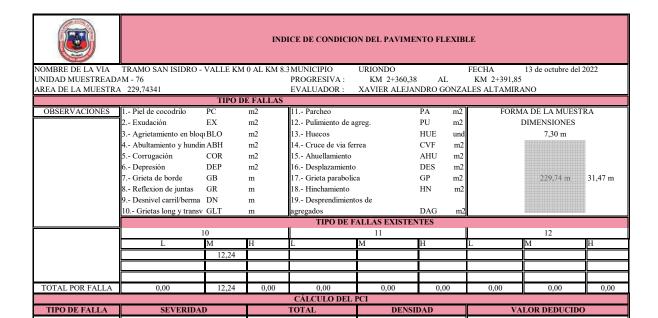
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 98,15

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC :	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

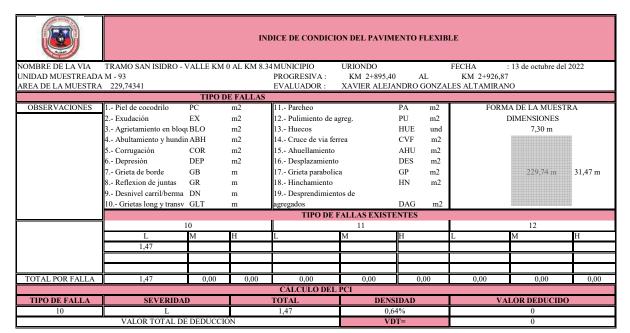
CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	12
Número máximo de valores deducidos (mi)	9,08

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

VDT=

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.


N°	N° VALORES DEDUCIDOS							VDT	q	VDC
1	12	0	0	0	0	0	0	12	1	12,00
									MAX VDC	12

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

100- (MAX VDC) 88

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{99}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDVs El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	= 0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC)

CONDICION DEL ESTADO DEL PAVIMENTO:

*Links											
NOMBRE DE LA VIA	: TRAMO SAN ISIDRO - VALL	E KM 0 AL KN	л 8.34	MUNICIPIO	URIONDO			FECHA	: 13 de octubre del	2022	
JNIDAD MUESTREADA	: M - 110			PROGRESIVA:	KM 3+430,	42	AL	KM 3+461,8	9		
AREA DE LA MUESTRA (m2): 229,74341			EVALUADOR:	XAVIER ALEJA	NDRO GO	NZALES	ALTAMIRANO			
		TIPO DE I	FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FC	DRMA DE LA MUESTI	RA	
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2		DIMENSIONES		
	3 Agrietamiento en bloqu	ı€ BLO	m2	13 Huecos		HUE	und		7,30 m		
	4 Abultamiento y hundim	ii ABH	m2	14 Cruce de via	ferrea	CVF	m2				
	5 Corrugación	COR	m2	15 Ahuellamien	to	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamient	0	HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimi	ientos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO DE	FALLAS EXISTEN	NTES					
		10		11				12			
	L	M	Н	L	М	Н		L	М	Н	
	6,66	7,40									
				<u> </u>					<u> </u>	1	
TOTAL POR FALLA	6,66	7,40	0,00	0,00	0,00	0,	,00	0,00	0,00	0,00	
				CÁLCULO DEL PCI							
TIPO DE FALLA	SEVERIDAD			TOTAL DENSIDAD		ISIDAD)		VALOR DEDUCIDO		
10	L			6,66	2,90%			1,81			
10	M			7,40	3,22%			7,41			
	VDT=			9,22							

	CALCULO DEL PCI	
	Numero de deducidos > 2 (q)	1
	Valor deducido mas alto (HDVi)	7,41
Núm	ero máximo de valores deducidos (mi)	9,5

 $\textit{m}_{i}=1.00+\frac{9}{98}\big(100-HDV_{i}\big)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Namero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	N° VALORES DEDUCIDOS							VDT	q		VDC
1	7,41	1,81	0	0	0	0	0	9,22			9,22
									MAX VDC	=	9,22

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

C)

CONDICION DEL ESTADO DEL PAVIMENTO :

			INDIO	CE DE CONDICIO	ON DEL PAVIM	ENTO FLEX	IBLE		
NOMBRE DE LA VIA :	TRAMO SAN ISIDRO - VALLE	KM 0 AL KM 8	3.34	MUNICIPIO	URIONDO		FECHA :	13 de octubre del 20	022
UNIDAD MUESTREADA :	M - 127			PROGRESIVA:	KM 3+965,43	AL	KM 3+996,91		
AREA DE LA MUESTRA (m2) :	229,74341			EVALUADOR:	XAVIER ALEJANDR	O GONZALES AL	TAMIRANO		
		TIPO DE	FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FORI	MA DE LA MUESTRA	
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU m2		DIMENSIONES	
	3 Agrietamiento en bloqu	€ BLO	m2	13 Huecos		HUE und	7,30 m		
	4 Abultamiento y hundimi	iABH	m2	14 Cruce de via fer	rea	CVF m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamiento)	DES m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
				TIPO D	E FALLAS EXISTENT	ES			
		10			11		12		
	L	M	Н	L	М	Н	L	M	Н
	3,80								
TOTAL POR FALLA	3,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
				CÁLCULO DEL PO					
TIPO DE FALLA	SEVERIDAD			TOTAL DENSIDAD			VALOR DEDUCIDO		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

VALOR TOTAL DE DEDUCCIÓN

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m_c Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

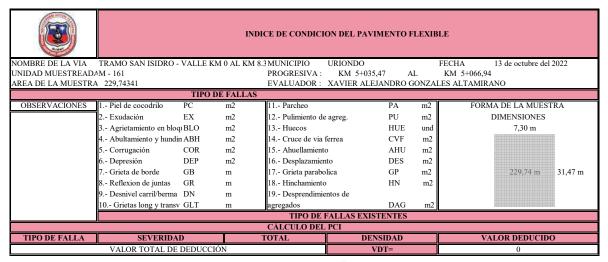
N°	VALORES DEDUCIDOS		VDC				
				MAX VDC =	0		
	INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :	PCI =		100- (MAX VDC			
		PCI =		100			
	CONDICION DEL ESTADO DEL PAVIMENTO :		EXCELENTE				

NOMBRE DE LA VIA	TRAMO SAN ISIDRO - Y	VALLE KM () AL KM 8.34	4 MUNICIPIO	URIONDO			FECHA	:13 de octubre de	1 2022
UNIDAD MUESTREADA	M - 144			PROGRESIVA:	KM 4+500		L	KM 4+531,92		
AREA DE LA MUESTRA (m	229,74341			EVALUADOR:	XAVIER ALEJ	ANDRO G	ONZAI	ES ALTAMIRAN	Ю	
		TIPO DE	FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	IA DE LA MUES	ΓRA
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloq 	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	m2	14 Cruce de via	ferrea	CVF	m2				
1	5 Corrugación COR m			15 Ahuellamien	to	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP	m2		229,74 m	31,47 m
	Reflexion de juntas	GR	m	18 Hinchamient	io	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DI	E FALLAS EXIS	TENTES				
	1	10			11				12	
	L	M	H	L	M	H		L	M	Н
	2,67									
TOTAL POR FALLA	2,67	0,00	0,00	0,00	0,00	0,	00	0,00	0,00	0,00
				CÁLCULO DEL	PCI					
TIPO DE FALLA	SEVERIDAI)		TOTAL	DEN	ISIDAD		VA	ALOR DEDUCID)
10	L	-		2,67	1	1,16%			•	
	VALOR TOTAL DE D	EDUCCIÓN			V	DT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_{i}=1.00+\frac{9}{98}(100-HDV_{i}) \ \mbox{Ecuación 3. Carreteras pavimentadas.} \label{eq:mi}$

Donde: m_i Nûmeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.


N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAYVDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

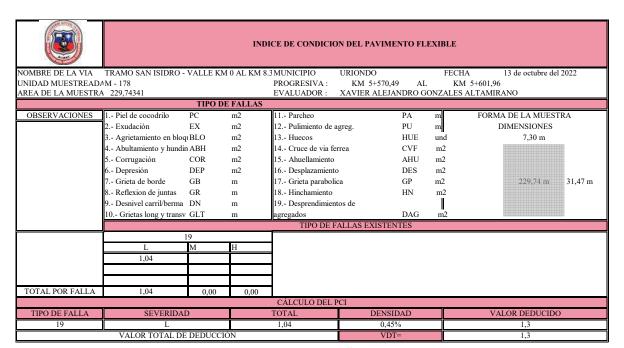
PCI	=	100- (MAX VDC)
PCI	=	100
_		

CONDICION DEL ESTADO DEL PAVIMENTO :

EXCELENTE		
-----------	--	--

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,3
Número máximo de valores deducidos (mi)	10,06

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo *l.*HDV; El *mayor valor deducido individual* para la unidad de muestreo *l.*

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	100

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.: MUNICIPIO UNIDAD MUESTREAD&M - 195 PROGRESIVA : AREA DE LA MUESTRA 229,74341 EVALUADOR : URIONDO FECHA : KM 6+105,51 AL KM 6+136,98 XAVIER ALEJANDRO GONZALES ALTAMIRANO : 13 de octubre del 2022

AREA DE LA MUESTR.	A 229,74341			EVALUADOR :	XAVIER ALEJ	ANDRO G	ONZAL	ES ALTAMIRAN	0	
			DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	IA DE LA MUEST	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de a	agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bloq	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundir 	r ABH	m2	14 Cruce de via fe	errea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiente	o	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	itos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE FALLAS EXISTENTES				6		
		4			5					
	L	M	Н	L	М	Н		L	M	Н
					1,33					
		<u> </u>	<u> </u>		1,00				-	
TOTAL POR FALLA	0,00	0,00	0,00	0,00	2,33	0,	nn	0,00	0,00	0,00
TOTALTORTALLA		10	0,00	0,00			12			
	L	M	Н	L	M	Н		L	M	Н
		2,92	ì		Ì					
			Ì		Ī	Ì				i
TOTAL POR FALLA	0,00	2,92	0,00	0,00	0,00	0,	00	0,00	0,00	0,00
				CÁLCULO DE	EL PCI					
TIPO DE FALLA	SEVERIDA	D		TOTAL	DEN	SIDAD		VA	LOR DEDUCIDO	0
5	M			2,33	1	,02%			16,32	
10	M			2,92		,27%			2,99	
	VALOR TOTAL DE	E DEDUCC:	IÓN		V	DT=			19,31	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	16,32
Número máximo de valores deducidos (mi)	8,68

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras parimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV_i: El *mayor valor deducido individual* para la unidad de muestreo i.

N° VALORES DEDUCIDOS 1 16.32 2.99 0 0 0 0 0						VDT	q	VDC			
	1	16,32	2,99	0	0	0	0	0	19,31	2	13,48
ĺ	2	16,32	2	0	0	0	0	0	18,32	1	18,32
•										MAX VDC =	18,32

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	81,68

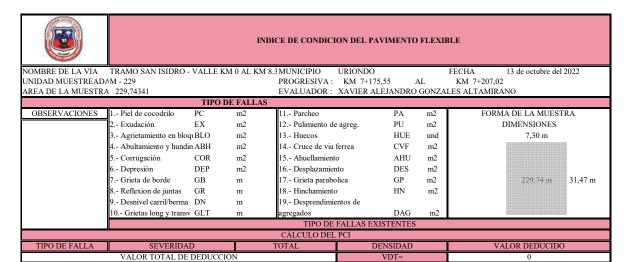
CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3MUNICIPIO URIONDO FECHA UNIDAD MUESTREADAM - 212 PROGRESIVA : KM 6+64,53 AL KM 6+672,00 13 de octubre del 2022

AREA DE LA MUESTRA	229,74341		EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO							
			E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	IA DE LA MUESTI	RA
	2 Exudación	EX	m2	12 Pulimiento de	e agreg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundir 	1 ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamient	ю	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamier	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento	o	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimie	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	TENTES				
	10				11			12		
	L	M	Н	L	M	Н		L	M	Н
				0,16						
TOTAL POR FALLA	0,00	0,00	0,00	0,16	0,00	0,	00	0,00	0,00	0,00
		19	Ivv							
	L	M	H							
	0,32			4						
	1,50 1,01									
TOTAL POR FALLA	2.82	0,00	0.00							
TOTAL FOR FALLA	2,02	0,00	0,00	CÁLCULO DE	I PCI					
TIPO DE FALLA	SEVERIDA	D	1 1	TOTAL		SIDAD	SIDAD VALOR DEDUCIDO			
11	L			0,16		07%		0		
19	L			2,82		23%		2		
	VALOR TOTAL DE	DEDUCCIÓ	N		V	DT=			2	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	2
Número máximo de valores deducidos (mi)	10

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m_c Número máximo admisible de "vaiores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	2

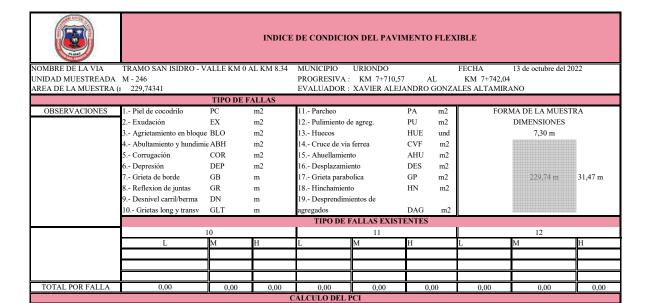
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	98

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HIDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO : EXCELENTE

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

TIPO DE FALLA

10

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD

0,00%

VDT:

Donde: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor velor deducido individual para la unidad de muestreo i.

N° VALORES DEDUCIDOS VDT q VDC MAX VDC 0

TOTAL

0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

PCI = 100- (MAX VDC)
PCI = 100

VALOR DEDUCIDO

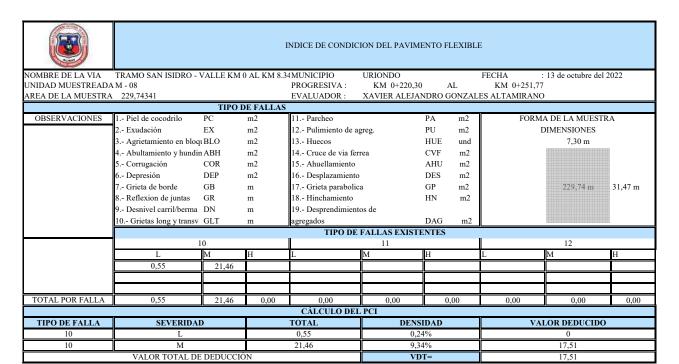
 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

			INDICE DE	CONDICION DE	L PAVIMENTO) FLEX	IBLE	
NOMBRE DE LA VIA	: TRAMO SAN ISIDRO - VALLE	EKM 0 AL KM	8.34	MUNICIPIO	URIONDO			FECHA 13 de octubre del 2022
UNIDAD MUESTREADA	: M - 263			PROGRESIVA:	KM 8+245,59	A	AL	KM 8+277,06
AREA DE LA MUESTRA (m2)	E LA MUESTRA (m2): 229,74341				XAVIER ALEJA	ANDRO	GONZA	LES ALTAMIRANO
		TIPO DE FAL	LAS					
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA DE LA MUESTRA
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2	DIMENSIONES
	3 Agrietamiento en bloque	BLO	m2	13 Huecos		HUE	und	7,30 m
	4 Abultamiento y hundimientos	ABH	m2	14 Cruce de via f	errea	CVF	m2	
	5 Corrugación	COR	m2	15 Ahuellamiento	0	AHU	m2	
	6 Depresión	DEP	m2	16 Desplazamien	nto	DES	m2	
	7 Grieta de borde	GB	m	17 Grieta parabo	lica	GP	m2	229,74 m 31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2	
	9 Desnivel carril/berma	DN	m	19 Desprendimie	ntos de			
	10 Grietas long y transv	GLT	m	agregados		DAG	m2	
				TIPO DE FALLA	S EXISTENTES			
			CÁLCUI	LO DEL PCI				
TIPO DE FALLA	SEVERIDAD		TO	OTAL	DENS	IDAD		VALOR DEDUCIDO
	VALOR TOTAL DE DE	DUCCIÓN			VI	T=		0

CALCULO DEL PCI						
Numero de deducidos > 2 (q)	0					
Valor deducido mas alto (HDVi)	0					
Número máximo de valores deducidos (mi)	10,18					

0			
$m_i = 1.00 + \frac{9}{20}(100 - HDV_i)$	Ecuación 3, 0	Carreteras	pavimentadas.

Dende: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS		q	VDC	
			MAX VDC	0	

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)	
PCI	=	100	
EXCELENTE			

CONDICION DEL ESTADO DEL PAVIMENTO :

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	17,51
Número máximo de valores deducidos (mi)	8,58

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS						VDT	q	VDC
1	17,51	0	0	0	0	0	17,51	1	17,51
	·				·	<u> </u>		MAX VDC =	17,51

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 82,49

CONDICION DEL ESTADO DEL PAVIMENTO:

MUY BUENO

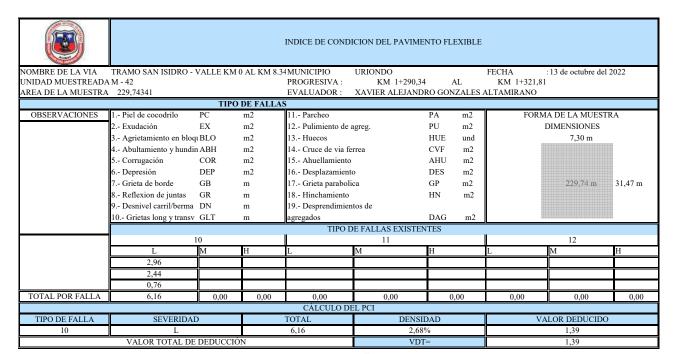
NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO UNIDAD MUESTREAD AM - 25 PROGRESIVA : URIONDO FECHA 13 de octubre del 2022 KM 0+755,32 KM 0+786,79 PROGRESIVA: XAVIER ALEJANDRO GONZALES ALTAMIRANO AREA DE LA MUESTRA 229,74341 EVALUADOR:

		TIPO I	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	A DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2	I	DIMENSIONES	
	 Agrietamiento en bloc 	ηBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fe	errea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamient	io	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabol	ica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimier	ntos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
			TIPO DE FALLAS EXISTENTES							
		13		14			15			
	L	M	Н	L	М	Н		L	M	Н
								5,56		
						_		5,92		_
TOTAL DOD SALLA	0.00	2.22	0.00	0.00	0.00			44.40	0.00	0.00
TOTAL POR FALLA	0,00	0,00	0,00	0,00 CÁLCULO DE	0,00),00	11,49	0,00	0,00
TIPO DE EALLA	TYPO DE CAYA A CENTENDA DE				DENSIDAD		VIII ON PENVIOUS		0	
				TOTAL				VA	LOR DEDUCID	U
15	L L			11,49		5,00%		20,8		
	VALOR TOTAL DE	DEDUCCIO	ON	N		VDT=		20,8		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	20,8
Número máximo de valores deducidos (mi)	8,27

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.	$m_i = 1.00 + \frac{9}{90}(100 - HDV_i)$	Ecuación 3. Carreteras	pavimentadas.
---	--	------------------------	---------------

Donde: m. Número máximo admisibre de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.


N° VALORES DEDUCIDOS						VDT	q	VDC		
1	20,8	0	0	0	0	0	0	20,8	1	20,80
	•				·				MAX VDC =	20,8

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	79,2

CONDICION DEL ESTADO DEL PAVIMENTO:

MUY BUENO

CALCULO DEL PCI					
Numero de deducidos > 2 (q)	0				
Valor deducido mas alto (HDVi)	1,39				
Número máximo de valores deducidos (mi)	10,06				

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$	Ecuación 3. Carreteras pavimentadas.	
--	--------------------------------------	--

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	1,39

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	98,61

CONDICION DEL ESTADO DEL PAVIMENTO:

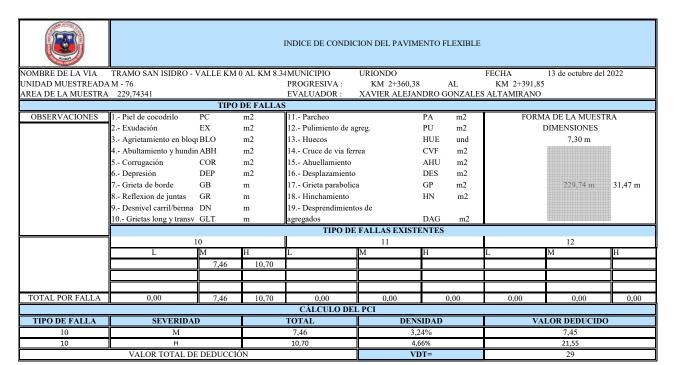
AL INST	INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE									
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KN	1 0 AL KM 8.3				FECHA 13 de octubre del 2022			
UNIDAD MUESTREADA				PROGRESIVA: KM 1+825		ΛL	KM 1+856,83			
AREA DE LA MUESTRA	229,74341			EVALUADOR: XAVIER ALI	EJANDRO	GONZA	LES ALTAMIRANO			
		TIPO I	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo	PA	m2	FORMA DE LA MUESTRA			
	Exudación	EX	m2	Pulimiento de agreg.	PU	m2	DIMENSIONES			
	 Agrietamiento en bloc 	ηBLO	m2	13 Huecos	HUE	und	7,30 m			
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via ferrea	CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamiento	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamiento	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parabolica	GP	m2	264,00 m 31,47 m			
	8 Reflexion de juntas	GR	m	18 Hinchamiento	HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimientos de						
	10 Grietas long y transv	GLT	m	agregados	DAG	m2				
				TIPO DE FALLAS EXIS	TENTES					
				CÁLCULO DEL PCI						
TIPO DE FALLA	SEVERIDA	D		TOTAL DE	NSIDAD		VALOR DEDUCIDO			
	VALOR TOTAL DI	E DEDUCCI	ÓN		VDT=		0			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda:

Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV; El mayor valor deducido individual para la unidad de muestreo i.

Ν°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

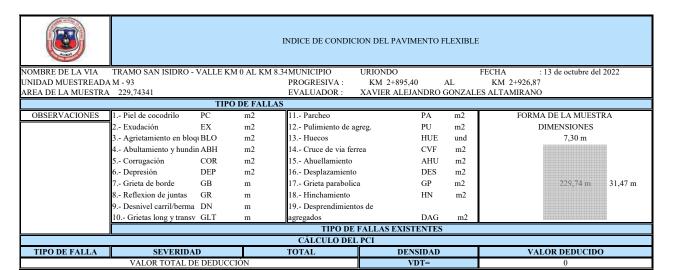
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	21,55
Número máximo de valores deducidos (mi)	8,2

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°		VALORES DEDUCIDOS					VDT	q	VDC		
	1	21,55	7,45	0	0	0	0	0	29	2	21,20
	2	21,55	2	0	0	0	0	0	23,55	1	23,55
								•		MAX VDC =	23.55

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	76,45

CONDICION DEL ESTADO DEL PAVIMENTO : MUY BUENO

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} \left(100 - HDV_i \right)$ Ecuación 3. Carreteras pavimentadas.

Donde: M. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO: EXCELENTE

TOTAL POR FALLA

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

AL max										
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO			FECHA :	13 de octubre del 2	022
UNIDAD MUESTREADA	M - 110			PROGRESIVA:	KM 3+430,42	Al	L	KM 3+461,89		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJA	NDRO G	ONZAL	ES ALTAMIRAN	0	
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	A DE LA MUESTR	A
	Exudación	EX	m2	12 Pulimiento de aș	greg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundir 	ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
					FALLAS EXISTE	ENTES				
	1	.0			11				12	
	L	M	Н	L	M	Н		L	M	Н
	0,80									
1										

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

0,80

SEVERIDAD

L VALOR TOTAL DE DEDUCCIÓN

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD

0,00

0,00

0,00

VALOR DEDUCIDO

0,00

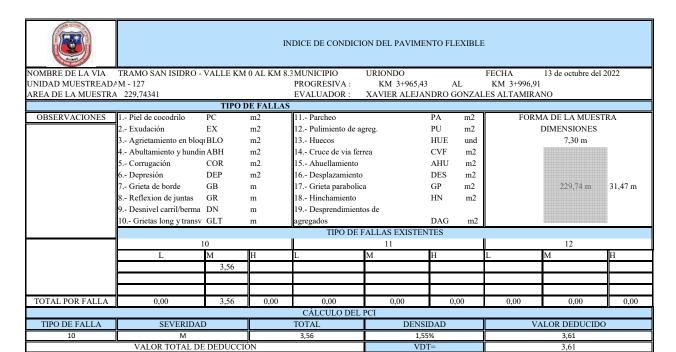
TOTAL

0,00

CÁLCULO DEL PCI

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

0,00


N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =		100- (MAX VDC)
PCI	=	100

CONDICION DEL ESTADO DEL PAVIMENTO:

0,00

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	3,61
Número máximo de valores deducidos (mi)	9,85

$m_i = 1.00 + \frac{9}{90}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentada	s.
---	----

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de musetra (

muestreo i. HDV, El mayor valor deducido individual para la unidad de muestreo i

N°		VALORES DEDUCIDOS				VDT	q	VDC		
1	0	3,61	0	0	0	0	0	3,61	1	3,61
•									MAX VDC	3,61

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	96,39

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

NOMBRE DE LA VIA	TRAMO SAN ISIDRO - '	VALLE KM () AL KM 8.34	MUNICIPIO	URIONDO		FECHA :	13 de octubre del	2022	
UNIDAD MUESTREADA	M - 144			PROGRESIVA:	KM 4+500,45	AL	KM 4+531,92	2		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJAI	NDRO GONZAL	ES ALTAMIRANO			
		TIPO I	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FORM	A DE LA MUESTR	A	
	2 Exudación	EX	m2	12 Pulimiento de ag	reg.	PU m2	I	DIMENSIONES		
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE und		7,30 m		
	4 Abultamiento y hundir	1 ABH	m2	14 Cruce de via ferr	rea	CVF m2				
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2				
	6 Depresión	DEP	m2	16 Desplazamiento		DES m2				
	7 Grieta de borde	GB	m	17 Grieta parabolica	ı	GP m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimiento	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG m2				
				TIPO DE	FALLAS EXIST	ENTES	<u>'</u>			
	1	.0			11			12		
	L	M	Н	L	M	Н	L	M	Н	
	7,05									
	_			_						
TOTAL POR FALLA	7,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
				CÁLCULO DEI	L PCI					
TIPO DE FALLA	SEVERIDAI)		TOTAL DENSIDAD			VA	LOR DEDUCIDO		
10	10 L		7,05		3,0	3.07%		2,09		

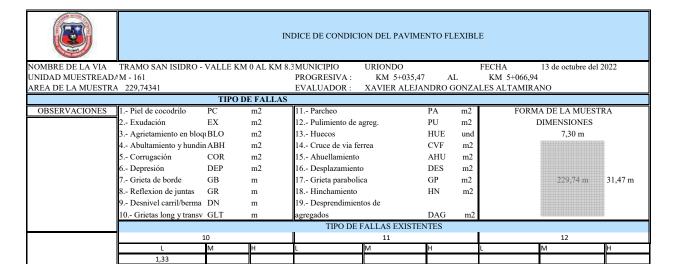
CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	2,09
Número máximo de valores deducidos (mi)	9.99

	VDT=	
$m_i = 1.00$	$+\frac{9}{98}(100-HDV_i)$ Ecuación 3. Carreteras p	pavimentadas.

Donde: m. Namero màximo admistible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°		VALORES DEDUCIDOS					VDT	q	VDC	
1	2,09	0	0	0	0	0	0	2,09	1	2,09
									MAX VDC =	2,09


INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

PCI =	100- (MAX VDC)
PCI =	97,91

2,09

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0

Número máximo de valores deducidos (mi)

1,33

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

TOTAL POR FALLA

TIPO DE FALLA

VDT NO SE VISUALIZARON FALLAS

DENSIDAD

 $m_i = 1.00 + \frac{9}{\cos}(100 - HDV_i)$ Equation 3. Carreteras pavimentadas.

0,00

0,00

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	(

0,00 CÁLCULO DEL PCI

TOTAL

1,33

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

0,00

100- (MAX VDC) PCI 100

0,00

0,00

VALOR DEDUCIDO

CONDICION DEL ESTADO DEL PAVIMENTO: EXCELENTE

			IND	DICE DE CONDICI	ON DEL PAVIN	IENTO FLEX	IBLE			
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.	3MUNICIPIO	URIONDO		FECHA	13 de octubre de	1 2022	
JNIDAD MUESTREAD	AM - 178			PROGRESIVA:	KM 5+570,4	19 AL	KM 5+601,96	5		
REA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALEJA	ANDRO GONZ	ZALES ALTAMIRA	ANO		
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FORM	IA DE LA MUES	TRA	
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU m2	2	DIMENSIONES		
	3 Agrietamiento en blo	qιBLO	m2	13 Huecos		HUE un	d	7,30 m		
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fe	rrea	CVF m2	2			
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2	2			
	6 Depresión	DEP	m2	16 Desplazamiente	o	DES m2	2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2	2	229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2	2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG m	2			
					FALLAS EXIST	ENTES				
		10			11			12		
	L	M	H	L	M	Н	L	M	Н	
	0,59									
		Ĭ				Ī		Ī		
				İ		1	İ	Ī		
TOTAL POR FALLA	0,59	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
	11			CÁLCULO DEL	PCI	-	-			
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENS	SIDAD	VA	LOR DEDUCID	0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

0			
$m_c = 1.00 + \frac{9}{100} (100 - HDV_c)$	Ecuación 3.	Carreteras pavimentadas.	

0,26% VDT=

VALORES DEDUCIDOS VDT q MAX VDC

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

L VALOR TOTAL DE DEDUCCIÓN

PCI =	100- (MAX VDC)
PCI =	100

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO UNIDAD MUESTREADA M - 195 PROGRESIVA : KM 6+105,51 FECHA : 13 de octubre del 2022 KM 6+136,98 AL

AREA DE LA MUESTRA	229,74341	EVALUADOR:	XAVIER ALEJ	ANDRO G	ONZALI	ES ALTAMIRA	NO			
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	RMA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bloc	ηιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamien	to	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamient	o	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DI	E FALLAS EXIS	STENTES				
		4			5				6	
	L	M	Н	L	М	Н		L	М	Н
	1,71									
		<u> </u>				_				
TOTAL POR FALLA	1,71	0,00	0,00	0,00	0,00	0	,00	0,00	0.00	0,00
TOTAL POR FALLA	1,/1	0,00	0,00	CÁLCULO DE		U	,00	0,00	0,00	0,00
TIPO DE FALLA	SEVERIDA	.D		TOTAL DENSIDAD				VALOR DEDUCIDO		
4	L			1,71	0,74%				0	
VALOR TOTAL DE DEDUCCIÓN					VDT=					

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98} \left(100 - HDV_i \right)$ Ecuación 3. Carreteras pavimentadas.

Donde: n. Nümero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS VDT VDC MAX VDC

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO :

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de octubre del 2022 UNIDAD MUESTREADAM - 212 AREA DE LA MUESTRA 229,74341 PROGRESIVA: KM 6+640,53 AL KM 6+672,00 EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO TIPO DE FALLAS OBSERVACIONES 1.- Piel de cocodrilo m2 11.- Parcheo PA FORMA DE LA MUESTRA m2 PU DIMENSIONES 2.- Exudación EXm2 12.- Pulimiento de agreg. 3.- Agrietamiento en bloqiBLO HUE 7,30 m m2 13.- Huecos und m2 CVF m2 4.- Abultamiento y hundin ABH 14.- Cruce de via ferrea AHU 5.- Corrugación COR m2 15.- Ahuellamiento m2 6.- Depresión DEP m2 16.- Desplazamiento DES m2 7.- Grieta de borde GB17.- Grieta parabolica GP m2229,74 m 31,47 m m 3.- Reflexion de juntas GR 18.- Hinchamiento HN m m2 9.- Desnivel carril/berma DN 19.- Desprendimientos de m agregados 10.- Grietas long y transv GLT DAG m m2 TIPO DE FALLAS EXISTENTES 10 11 12 3,92 2,69 TOTAL POR FALLA 0,00 0.00 0.00 0.00 0,00 0.00 0.00 0,00 6,62 CÁLCULO DEL PCI

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	6,62
Número máximo de valores deducidos (mi)	9,58

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD

2.88%

Donda: m_k Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muscitico i

muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	N° VALORES DEDUCIDOS						VDT	q	VDC	
1	6,62	0	0	0	0	0	0	6,62	1	6,62
									MAX VDC	6,62

TOTAL

6,62

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

SEVERIDAD

M

PCI =	100- (MAX VDC)
PCI =	93,38

VALOR DEDUCIDO

6,62

CONDICION DEL ESTADO DEL PAVIMENTO:

MUNICIPIO URIONDO FECHA
PROGRESIVA: KM 7+175,55 AL KM 7+207,02
EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO 13 de octubre del 2022 UNIDAD MUESTREADA M - 229

AREA DE LA MUESTRA	229,74341		EVALUADOR:	XAVIER ALEJANDRO	JONZALE	S ALTAMIRANO				
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo	PA	m2	FORMA DE LA MUESTRA			
	2 Exudación	EX	m2	12 Pulimiento de	agreg. PU	m2	DIMENSIONES			
	 Agrietamiento en bloc 	_l ι BLO	m2	13 Huecos	HUE	und	7,30 m			
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via f	errea CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamiento	AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamien	to DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parabo	lica GP	m2	229,74 m 31,47 m			
	8 Reflexion de juntas	GR	m	18 Hinchamiento	HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimie	ntos de					
	10 Grietas long y transv	GLT	m	agregados	DAG	m2				
	TIPO DE FALLAS EXISTENTES									
	CÁLCULO DEL PCI									
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENSIDAD		VALOR DEDUCIDO			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

VDT=

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

VALOR TOTAL DE DEDUCCIÓN

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA : 13 de octubre del 2022 UNIDAD MUESTREADA M - 246 PROGRESIVA : KM 7+710,57 AL KM 7+742,04 AREA DE LA MUESTRA | 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

		TIPO DE	FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	A DE LA MUEST	RA
	2 Exudación	EX	m2	12 Pulimiento d	e agreg.	PU	m2	1	DIMENSIONES	
	3 Agrietamiento en bloc	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamien	to	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamie	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo	olica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamient	ю	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimi	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	E FALLAS EXIS	TENTES				
		10			11 12					
	L	M	Н	L	M	Н		L	M	Н
	1,01									
TOTAL POR FALLA	1,01	0,00	0,00	0,00	0,00	0,0	00	0,00	0,00	0,00
	CÁLCULO DEL PCI									
TIPO DE FALLA	SEVERIDA	D	1	TOTAL	DENS	SIDAD		VA	LOR DEDUCIDO	
10	10 L					14%			0	
	VALOR TOTAL DE	DEDUCCIÓ	V	•	VI)T=			0	•

CALCULO DEL PCI				
Numero de deducidos > 2 (q)	0			
Valor deducido mas alto (HDVi)	0			
Número máximo de valores deducidos (mi)	10,18			

 $m_{i}=1.00+\frac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donde: Tonde: Tonde: Tonde: Donde: Tonde: Donde: Tonde: To

N°	VALORES DEDUCIDOS	VDT	q	VDC
,			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : PCI = 100- (M

PCI =	100- (MAX VDC)
PCI =	100
	•

CONDICION DEL ESTADO DEL PAVIMENTO : EXCELENTE

TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA 13 de octubre del 2022 UNIDAD MUESTREADA M - 263 AREA DE LA MUESTRA 229,74341 KM 8+245,59 AL KM 8+277,06 XAVIER ALEJANDRO GONZALES ALTAMIRANO PROGRESIVA : EVALUADOR :

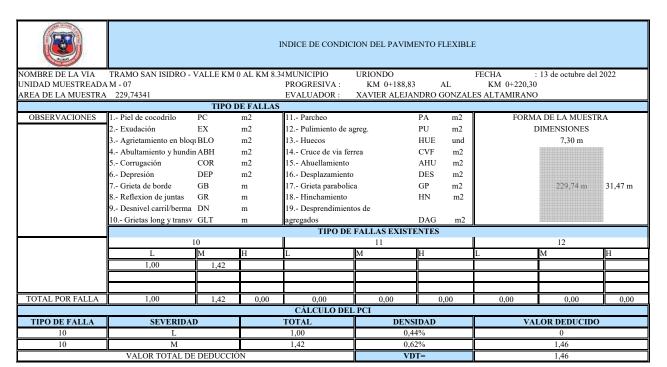
	<u> </u>	TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	MA DE LA MUESTI	RA
	2 Exudación	EX	m2	12 Pulimiento de	e agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bloc	qιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via	ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamient	О	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamier	nto	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabo		GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma		m	19 Desprendimie	entos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	ENTES		_		
		10	lle v		11	Uz v			12	llv v
	L	M	Н	L	M	Н		L	M	Н
	0,59	<u> </u>				-				
		1				-				
TOTAL POR FALLA	0,59	0.00	0,00	0,00	0.00	-	.00	0.00	0.00	0.00
TOTAL FOR FALLA		19	0,00	0,00	0,00	0.	,00	0,00	0,00	0,00
	L	M	H	-						
	0,02		0,26	1						
	,-	1	0,20	1						
TOTAL POR FALLA	0,02	0,00	0,26	1						
CÁLCULO DEL PCI										
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENS	SIDAD		V	ALOR DEDUCIDO	
10	L			0,59	0,2	26%			0	
19	L			0,02		1%			0	
19	Н			0,26		1%			6,01	
	VALOR TOTAL DE	DEDUCCIÓ)N		VI	T=		I	6.01	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	6,01
Número máximo de valores deducidos (mi)	9.63

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde:

n_k Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°		VALORES DEDUCIDOS						VDT	q	VDC
1	6,01	0	0	0	0	0	0	6,01	1	6,01
									MAX VDC	6.01

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 93,99

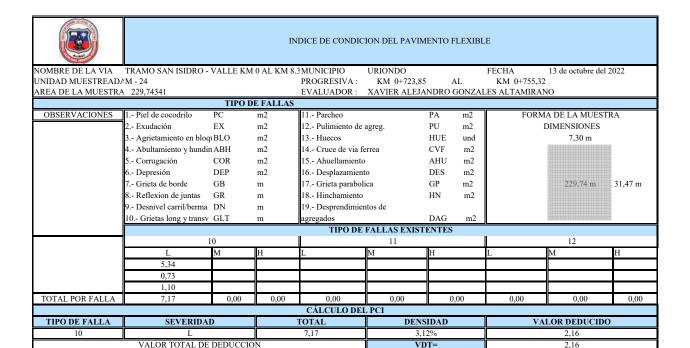
CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,46
Número máximo de valores deducidos (mi)	10.05

$m_i = 1.00 +$	$\frac{9}{9}(100-HDV_i)$	Ecuación 3.	Carreteras pavimentadas
$m_i = 1.00 +$	$\frac{9}{98}(100 - HDV_i)$	Ecuación 3.	Carreteras pavimentadas

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i

 N°
 VALORES DEDUCIDOS
 VDT
 q
 VDC


 1
 1.46
 0
 0
 0
 0
 1.46
 0
 1.46

1,46 0 0 0 0 0 0 1,46 0 1,46 MAX VDC = 1,46

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

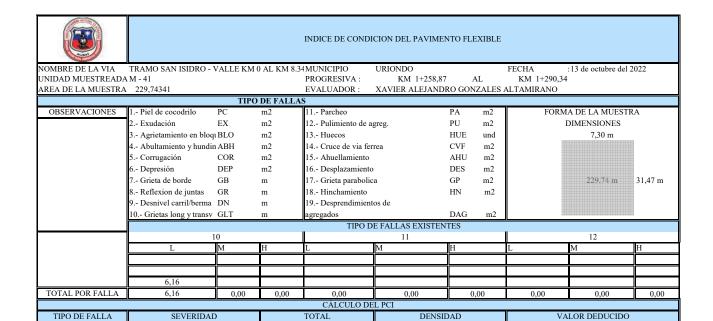
PCI =	100- (MAX VDC)
PCI =	98,54
	/ .

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	2,16
Número máximo de valores deducidos (mi)	9,99

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas	
--	--

Donde: m. Nûmeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS							VDT	q	VDC
1	2,16	0	0	0	0	0	0	2,16	1	2,16
									MAX VDC	2 16

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	97,84

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,39
Número máximo de valores deducidos (mi)	10,06

	VDT=	
$m_i = 1.00$	$+\frac{9}{98}(100-HDV_i)$ Ecuación 3. Carreteras pavi	mentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i.

N°	VALORES DEDUCIDOS								q	VDC
1	1,39	0	0	0	0	0	0	1,39	0	1,39
									MAX VDC =	1,39

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	98,61

1,39

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de octubre del 2022 UNIDAD MUESTREADAM - 58 AREA DE LA MUESTRA 229.74341 KM 1+793,89 AL KM 1+825,36 XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTR	A 229,74341			EVALUADOR	: XAVIER ALI	EJANDRO	GONZA	LES ALTAMIF	RANO		
		TIPO	DE FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	11 Parcheo	PA	m2	FOR	STRA				
	2 Exudación EX m2			12 Pulimiento	de agreg.	PU m2					
	 Agrietamiento en blo 	oqıBLO	m2	13 Huecos		HUE		7,30 m			
	4 Abultamiento y huno	m2	14 Cruce de via	a ferrea	CVF	m2					
	5 Corrugación	m2	15 Ahuellamier	nto	AHU	m2					
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parab	oolica	GP	m2		264,00 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamien	nto	HN	m2				
	9 Desnivel carril/berm	m	19 Desprendim	nientos de	os de						
	10 Grietas long y trans	m	agregados		DAG	m2					
				TIPO DE FALLAS EXISTENTES							
		1			2	2			3		
	L	M	Н	L	M	Н		L	M	Н	
	0,26	0,29									
		0,00									
TOTAL POR FALLA	0,26	0,29	0,00	0,00	0,00	0	,00	0,00	0,00	0,00	
				CÁLCULO D	EL PCI						
TIPO DE FALLA	SEVERIDA		TOTAL	DE	DENSIDAD		VALOR DEDUCIDO		00		
1	L			0,26		0,10%		3,1			
1	M	•		0,29		0,11%			6,69		
	VALOR TOTAL I	DE DEDUCC	IÓN			VDT= 9.79				·	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	6,69
Número máximo de valores deducidos (mi)	9.57

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo ℓ . HDV; El mayor valor deducido individual para la unidad de muestreo ℓ

N°			7	VDT	q	VDC				
1	6,69	3,1	0	0	0	0	0	9,79	1	9,79
2	0	0	0	0	0	0	0	0	0	
	·		•						MAX VDC	9.79

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	90,21

CONDICION DEL ESTADO DEL PAVIMENTO :

				INDICE DE COND		'IMENTO F	FLEXIBLE				
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3		URIONDO			FECHA	:13 de octubre de	el 2022	
UNIDAD MUESTREADA				PROGRESIVA:	KM 2+328		AL	KM 2+360,3			
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALE.	JANDRO G	GONZALE	S ALTAMIRANO)		
	1		DE FALLAS								
	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA	
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2		DIMENSIONES		
	 Agrietamiento en bloq 		m2	13 Huecos		HUE	und		7,30 m		
	 4 Abultamiento y hundi 		m2	14 Cruce de via fe		CVF	m2				
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamien	to	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta parabol	ica	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimier	ntos de						
	10 Grietas long y transv	GLT	m	agregados		DAG	m2				
				TIPO D	E FALLAS EXI	STENTES					
		10			11				12		
	L	M	Н	L	M	Н		L	M	Н	
	10,44	0,91									
TOTAL POR FALLA	10,44	0,91	0,00	0,00	0,00		0,00	0,00	0,00	0,00	
				CÁLCULO DI							
TIPO DE FALLA	SEVERIDA	D		TOTAL	DI	ENSIDAD		V.	ALOR DEDUCIE	00	
10	L			10,44	10,44 4,54%			3,84			
10	M			0,91	0,91 0,40%				0		
	VALOR TOTAL DE	E DEDUCCIO	ÒN			VDT=			3,84		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	3,84
Número máximo de valores deducidos (mi)	9,83

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas	$m_i = 1.00 + \frac{9}{90}(100 - HDV_i)$	Ecuación 3.	Carreteras pavimentadas.
--	--	-------------	--------------------------

Donde: m_i Nûmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°			1	ALORES DI	EDUCIDOS			VDT	q	VDC
1	3,84	0	0	0	0	0	0	3,84	1	3,84
									MAY VDC :	3.84

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : 100- (MAX VDC) 96,16

CONDICION DEL ESTADO DEL PAVIMENTO : EXCELENTE

			Г	NDICE DE CONDIC	CION DEL PAVI	MENTO :	FLEXIBL	Æ		
NOMBRE DE LA VIA	TRAMO SAN ISIDRO	- VALLE KN	4 0 AL KM 8	.3MUNICIPIO	URIONDO			FECHA	:13 de octubre del	2022
UNIDAD MUESTREAD	AM - 92			PROGRESIVA:	KM 2+863,	92	AL	KM 2+895,40)	
AREA DE LA MUESTR.	A 229,74341			EVALUADOR:	XAVIER ALE.	JANDRO	GONZAI	LES ALTAMIRAN	O	
		TIPO	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM.	A DE LA MUEST	TRA
	2 Exudación	EX	m2	12 Pulimiento de	agreg.	PU	m2	Ι	DIMENSIONES	
	 Agrietamiento en blo 	qıBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	lin ABH	m2	14 Cruce de via fe	errea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamient	ю	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berm	a DN	m	19 Desprendimier	ntos de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIS	TENTES	3	•		
		10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	4,09									
TOTAL POR FALLA	4,09	0,00	0,00	0,00	0,00	(0,00	0,00	0,00	0,00
				CÁLCULO DE	L PCI				•	
TIPO DE FALLA	SEVERIDA	AD		TOTAL	DE	NSIDAD		VAl	LOR DEDUCIDO	0
10	Y			4.00	1	700/			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO:

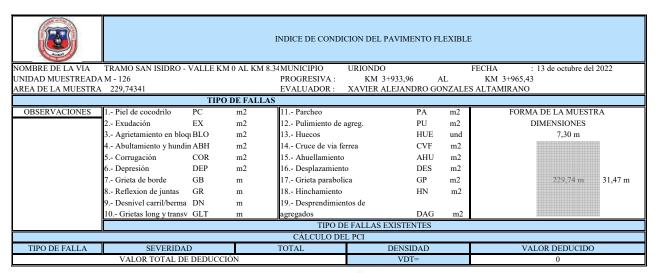
		TIPO DE FALLAS					
AREA DE LA MUESTRA	229,74341		EVALUADOR :	XAVIER ALEJAND	RO GONZ	ALES ALTAMIRA	ANO
UNIDAD MUESTREADA	M - 109		PROGRESIVA:	KM 3+398,94	AL	KM 3+430,	42
NOMBRE DE LA VIA	TRAMO SAN ISIDRO - VAI	LE KM 0 AL KM 8.3	MUNICIPIO	URIONDO		FECHA	:13 de octubre del 2022

		TIPO I	DE FALLAS							
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2		DIMENSIONES	
	 Agrietamiento en blo 	qιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolio	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIS	ΓENTES				
		10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	5,77	0,00								
	0,00	0,00								
	0,28									
TOTAL POR FALLA	6,05	0,00	0,00	0,00	0,00	0.	,00	0,00	0,00	0,00
				CÁLCULO DEL						
TIPO DE FALLA	SEVERIDA	D		TOTAL	DEN	ISIDAD		1	ALOR DEDUCID	0
10	L	•		6,05		,63%	,	1,3		•
<u> </u>	VALOR TOTAL D	E DEDUCCIO	ÓN		1	/DT=		1,3		•

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,3
Número máximo de valores deducidos (mi)	10,06

 $m_i = 1.00 + \frac{9}{98} \big(100 - HDV_i \big)$ Ecuación 3. Carreteras pavimentadas.

Donde: To Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	1,3

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	98,7

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO: EXCELENTE

				INDICE DE CONDI	CION DEL PAVIN	MENTO I	FLEXIBL	E		
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM) AL KM 8.3	4MUNICIPIO	URIONDO			FECHA :	13 de octubre del 2	022
UNIDAD MUESTREADA	AM - 143			PROGRESIVA:	KM 4+468,98	3 /	AL	KM 4+500,45		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJA	NDRO G	ONZALE	S ALTAMIRANO		
		TIPO E	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	DE LA MUESTRA	4
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloq 	ιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiente)	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
					E FALLAS EXIST	ENTES				
		10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	3,84									
TOTAL POR FALLA	3,84	0,00	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
	11		-	CÁLCULO DE	L PCI				•	
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENS	SIDAD		VAL	OR DEDUCIDO	
10	т			2.04	1.6	70/			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO :

NO SE VISUALIZARON FALLAS

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS MAX VDC

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA :13 de octubre del 2022 UNIDAD MUESTREADA M - 177 PROGRESIVA : KM 5+539,02 AL KM 5+570,49 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bloq	ı BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	r ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento	,	DES	m2			
·	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP	m2		229,74 m	31,47 m
(8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
(9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
ļ i				TIPO DE F	ALLAS EXIST	ENTES				
	1	10			11				12	
	L	M	Н	L	M	Н		L	M	Н
	0,76									
Ī										
TOTAL POR FALLA	0,76	0,00	0,00	0,00	0,00	0,	00	0,00	0,00	0,00
				CÁLCULO DEL I	PCI					·
TIPO DE FALLA	SEVERIDAI	D		TOTAL	DEN	SIDAD		V	ALOR DEDUCIE	00
10	L	•		0,76	0,	33%	-		0	
	VALOR TOTAL DE	DEDUCCIO	DN	_	V	DT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$	Ecuación 3. Carreteras pavimentadas.	
--	--------------------------------------	--

Donde: $m_{\rm c}$ Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo ℓ . HDV; El mayor valor deducido individual para la unidad de muestreo ℓ

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA 13 de octubre del 2022 UNIDAD MUESTREADA M - 194 PROGRESIVA : KM 6+074,04 AL KM 6+105,51 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTRA	229,74341			EVALUADOR :	XAVIER ALEJA	NDRO GONZAL	ES ALTAMIRA	NO	
		TIPO D	E FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FOR	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento d	le agreg.	PU m2		DIMENSIONES	
	3 Agrietamiento en bloq	ιBLO	m2	13 Huecos		HUE und		7,30 m	
	4 Abultamiento y hundir	r ABH	m2	14 Cruce de via	ferrea	CVF m2			
	5 Corrugación	COR	m2	15 Ahuellamien	ito	AHU m2			
	6 Depresión	DEP	m2	16 Desplazamie	ento	DES m2			
	7 Grieta de borde	GB	m	17 Grieta parab	olica	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamien	to	HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendim	ientos de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
				TIPO DI	E FALLAS EXIS	TENTES	_		
	7				8			9	
	L	M	Н	L	M	Н	L	M	Н
			16,87						
							1		
TOTAL POR FALLA	0,00	0,00	16,87	0,00	0,00	0,00	0,00	0,00	0,00
		10			11			12	
	L	M	Н	L	M	Н	L	M	Н
		4,82							
		0,00							
		3,93							
TOTAL POR FALLA	0,00	8,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			1 .	CÁLCULO DE					
TIPO DE FALLA	SEVERIDA	U	1	TOTAL		SIDAD	'	ALOR DEDUCII	Ю
7	Н			16,87		34%	<u> </u>	19,31	
10	M WALOR TOTAL DE	DEDLIGGIÁS	. T	8,75		81%		8,76	
	VALOR TOTAL DE	DEDUCCIO	V		V	DT=		28,07	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	19,31
Número móvimo de volores deducidos (mi)	Q //1

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: Donde: $n_{\rm c}$ Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i

N°	VALORES DEDUCIDOS							VDT	q	VDC
1	19,31 8,76 0 0 0 0							28,07	2	20,46
2	19,31	2	0	0	0	0	0	21,31	1	21,31
									MAX VDC	21,31

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI = 78,69	PCI =	100- (MAX VDC)
	PCI =	78,69

CONDICION DEL ESTADO DEL PAVIMENTO :

|--|

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

dinas										
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	3-MUNICIPIO	URIONDO		FECHA	1	13 de octubre del	2022
UNIDAD MUESTREADA	AM - 211			PROGRESIVA: KM 6+609,06 AL KM 6+640,53						
AREA DE LA MUESTRA	A 229,74341			EVALUADOR	:XAVIER ALEJ	ANDRO G	ONZALES	ALTAMIR/	ANO	
		TIPO DE F	ALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	DE LA MUEST	RA
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2	D	IMENSIONES	
	3 Agrietamiento en bloc	ηιBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	in ABH	m2	14 Cruce de vi	a ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamie	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	iento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta para	bolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamier	nto	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendin	nientos de					
	10 Grietas long y transv	GLT GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	TENTES				
	1	10			11				12	
	L	M	Н	L	M	Н	L	1	M	Н
		3,24								
	_								•	
TOTAL POR FALLA	0,00	3,24	0,00	0,00	0,00	0,00	(0,00	0,00	0,00
				CÁLCULO DEL	PCI					
TOTAL POR FALLA	3 Agrietamiento en bloo 4 Abultamiento y hundi 5 Corrugación 6 Depresión 7 Grieta de borde 8 Reflexion de juntas 9 Desnivel carril/berma 10 Grietas long y transv	IN ABH COR DEP GB GR DN GCT IO M 3,24	m2 m2 m2 m2 m m m m	13 Huecos 14 Cruce de vi 15 Ahuellamie 16 Desplazami 17 Grieta paral 18 Hinchamie 19 Desprendin agregados TIPO DE L 0,00	a ferrea nto iento bolica tto nientos de FALLAS EXIST 11 M 0,00	HUE CVF AHU DES GP HN DAG TENTES	und m2 m2 m2 m2 m2 m2 L		7,30 m 229,74 m 12	H

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	3,3
Número máximo de valores deducidos (mi)	0.88

 $m_{c}=1.00+\frac{9}{98}\big(100-HDV_{i}\big)$ Ecuación 3. Carreteras pavimentadas.

Donde:

n_k Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

DENSIDAD

1,41%

N°			VA	LORES DEI	DUCIDOS			VDT	q	VDC
1	3,3	0	0	0	0	0	0	3,3	1	3,30
									MAX VDC =	3,3

TOTAL 3,24

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

SEVERIDAD

PCI =	100- (MAX VDC)
PCI =	96,7

VALOR DEDUCIDO

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA : 13 de octubre del 2022 UNIDAD MUESTREAD∮M - 228 PROGRESIVA : KM 7+144,08 AL KM 7+175,55 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTRA	1 229,74341			EVALUADOR: XA	VIER ALEJANDRO	JONZAL	LES ALTAMIKANO
		TIPO D	E FALLAS				
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo	PA	m2	FORMA DE LA MUESTRA
	Exudación	EX	m2	12 Pulimiento de agr	reg. PU	m2	DIMENSIONES
	 Agrietamiento en blo 	qıBLO	m2	13 Huecos	HUE	und	7,30 m
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via ferro	ea CVF	m2	
	 Corrugación 	COR	m2	15 Ahuellamiento	AHU	m2	
	6 Depresión	DEP	m2	16 Desplazamiento	DES	m2	
	7 Grieta de borde	GB	m	17 Grieta parabolica	GP	m2	229,74 m 31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento	HN	m2	
	9 Desnivel carril/berma	a DN	m	19 Desprendimiento	s de		
	10 Grietas long y trans	v GLT	m	agregados	DAG	m2	
		TIPO DE FA	LLAS EXISTENTES				
		19					
	L	M	H				
		0,50					
TOTAL POR FALLA	0,00	0,50	0,00				
				CÁLCULO DEL P	CI		
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENSIDAD		VALOR DEDUCIDO
19	M			0,50	0,22%		5,86
	VALOR TOTAL DE	DEDUCCIÓ	N		VDT=		5,86

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	5,86
Número máximo de valores deducidos (mi)	9,65

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: To Numero máximo admisibre de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

	N°			VA	ALORES DE	DUCIDOS			VDT	q	VDC
	1	5,86	0	0	0	0	0	0	5,86	1	5,86
_		•					•			MAX VDC =	5,86

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	94,14

CONDICION DEL ESTADO DEL PAVIMENTO :

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO FECHA URIONDO 13 de octubre del 2022 NOMBRE DE LA VIA UNIDAD MUESTREADAM - 245 KM 7+710,57 PROGRESIVA: KM 7+679,09 AL AREA DE LA MUESTRA 229,74341 EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO TIPO DE FALLAS OBSERVACIONES 1.- Piel de cocodrilo FORMA DE LA MUESTRA PA 11.- Parcheo PC m2 m2 PU DIMENSIONES 2.- Exudación EX m212.- Pulimiento de agreg. m2 3.- Agrietamiento en bloqıBLO m213.- Huecos HUE und 7,30 m 4.- Abultamiento y hundin ABH m2 14.- Cruce de via ferrea CVF m2 15.- Ahuellamiento 5.- Corrugación COR m2 AHU m2 DEP m2 16.- Desplazamiento DES 6.- Depresión m2 229,74 m 7.- Grieta de borde 17.- Grieta parabolica GP 31,47 m GB m m2 HN 8.- Reflexion de juntas GR m 18.- Hinchamiento m2 9.- Desnivel carril/berma DN m 19.- Desprendimientos de 10.- Grietas long y transv GLT agregados DAG m m2 TIPO DE FALLAS EXISTENTES 12 0.17 TOTAL POR FALLA 0,17 0,00 0,00 0,00 0,00 0,00 CÁLCULO DEL PCI

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo do voleros doducidos (mi)	10.19

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

DENSIDAD

0.07%

VDT=

Donde: m_L Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo LHDV.; El mayor valor deducido individual para la unidad de muestreo L

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

TOTAL 0.17

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

100- (MAX VDC) 100

VALOR DEDUCIDO

CONDICION DEL ESTADO DEL PAVIMENTO:

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO FECHA 13 de 0 UNIDAD MUESTREADAM - 262 PROGRESIVA : KM 8+214,11 AL KM 8+245,59 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO 13 de octubre del 2022

AREA DE LA MUESTRA 229,74341

REA DE LA MUESTRA	1 229,74341			EVALUADOR	. AAVIER AL	EJANDIC	JONE	ALES ALTAIV	IIKANO	
		TIPO DE	FALLAS							
OBSERVACIONES	 Piel de cocodrilo 	PC	m2	11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en bloq	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi	1ABH	m2	14 Cruce de vi	a ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamie	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta para	oolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamier	nto	HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendin	nientos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXI	STENTES	}			
		10			11				12	
	L	M	H	L	M	Н		L	M	Н
	0,67					1,	44			
	0,41									
	0,30		_							
TOTAL POR FALLA	1,38	0,00	0,00	0,00	0,00	1,	44	0,00	0,00	0,00
		19								
	L	M	Н							
			0,01							
			_							
momit pop pitti	2.00			_						
TOTAL POR FALLA	0,00	0,00	0,01		n cr					
TIPO DE FALLA	CEVEDIDA	<u> </u>		CÁLCULO DEL OTAL		NCIDAD		•	ALOB DEDUCED	0
10	SEVERIDA L	U	1	1,38	-	NSIDAD 0.60%		\	ALOR DEDUCID	U
10	L		╂	1,38		0,00%			16.10	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	16,19
Número máximo de valores deducidos (mi)	8,7

$m_i = 1.00 + \frac{9}{9}(100 - HDV_i)$ Equal	ción 3. Carreteras pavimentadas.
---	----------------------------------

16,19

0,00%

VDT=

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS VDT VDC 16,19

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : 100- (MAX VDC)

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

VALOR TOTAL DE DEDUCCIÓN

MUY BUENO

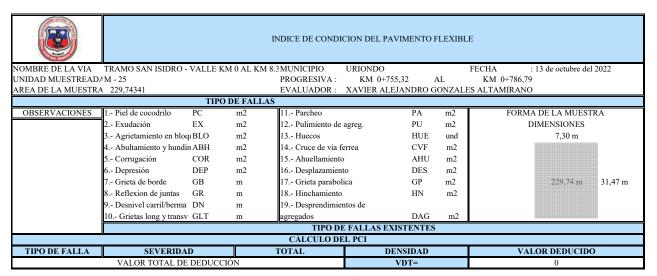
83,81

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO UNIDAD MUESTREAD M - 08 PROGRESIV AREA DE LA MUESTRA 229,74341 EVALUADOR URIONDO FECHA : 13 de octubre del 2022 PROGRESIVA: KM 0+220,30 KM 0+251,77 ALXAVIER ALEJANDRO GONZALES ALTAMIRANO EVALUADOR:

		TIPO I	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	IA DE LA MUEST	RA.
	Exudación	EX	m2	12 Pulimiento de a	igreg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	 4 Abultamiento y hundir 	n ABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento)	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	ENTES				
		10		11			12			
	L	M	H	L	M	Н		L	M	Н
	11,97	4,95								
TOTAL POR FALLA	11,97	4,95	0,00	0,00	0,00	0,	00	0,00	0,00	0,00
	•			CÁLCULO DEI	L PCI					
TIPO DE FALLA	SEVERIDA	D		TOTAL DENSIDAD		VALOR DEDUCIDO)		
10	L			11,97		1%			4,47	
10	M			4,95		6%			4,97	
	VALOR TOTAL DE	DEDUCCI	ÓN	<u> </u>	VI	T=			9,44	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	2
Valor deducido mas alto (HDVi)	4,97
Número máximo de valores deducidos (mi)	9.73

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m_c Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	N° VALORES DEDUCIDOS					VDT	q	VDC		
1	4,97	4,47	0	0	0	0	0	9,44	1	9,44
2	0	0	0	0	0	0	0	0	0	0
									MAX VDC =	9,44

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

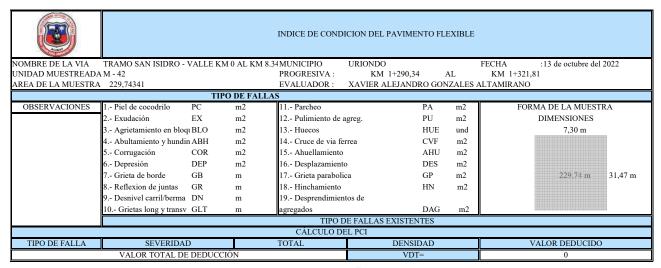
PCI =	100- (MAX VDC)
PCI =	90,56

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_c Número máximo admisible de "valores deducidos", incluyendo fin muestreo i. HDV: El mayor valor deducido individual para la unidad de muestreo i. ro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de


N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

EXCELENTE

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_{\rm c}=1.00+{9\over 98} \left(100-HDV_{\rm c}\right)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
		MAX VDC =	0	

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100

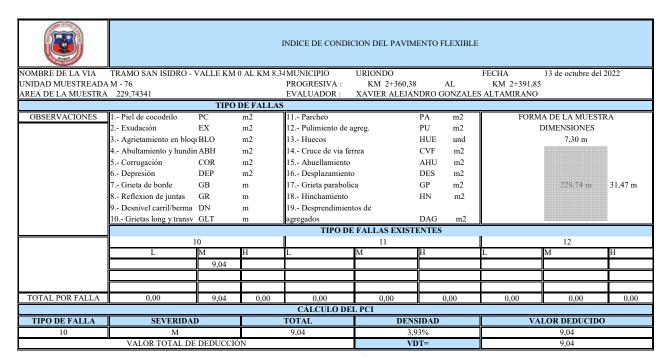
CONDICION DEL ESTADO DEL PAVIMENTO:

			INI	DICE DE CONDICIO	N DEL PAVIMI	ENTO FL	EXIBLE	3	
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO			FECHA 13 de octubre del 2022	
UNIDAD MUESTREADA	M - 59			PROGRESIVA:	KM 1+825,36	, A	L	KM 1+856,83	
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJ	ANDRO	GONZA	LES ALTAMIRANO	
	TIPO DE FALLAS								
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA DE LA MUESTRA	
	2 Exudación	EX	m2	12 Pulimiento de agr	reg.	PU	m2	DIMENSIONES	
	 Agrietamiento en bloq 	ιBLO	m2	13 Huecos		HUE	und	7,30 m	
	4 Abultamiento y hundii	n ABH	m2	14 Cruce de via ferro	ea	CVF	m2		
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2		
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2		
	7 Grieta de borde	GB	m	17 Grieta parabolica		GP	m2	264,00 m 31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2		
	9 Desnivel carril/berma	DN	m	19 Desprendimiento	s de				
	10 Grietas long y transv	GLT	m	agregados		DAG	m2		
					ALLAS EXISTE	NTES			
				CÁLCULO DEL P	CI				
TIPO DE FALLA	SEVERIDAI	D		TOTAL	DEN	SIDAD		VALOR DEDUCIDO	
	VALOR TOTAL DI	E DEDUCCI	ÓN		VI	T=		0	

CALCULO DEL PCI				
Numero de deducidos > 2 (q)	0			
Valor deducido mas alto (HDVi)	0			
Número máximo de valores deducidos (mi)	10,18			

 $m_{i}=1.00+\frac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donde: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	(

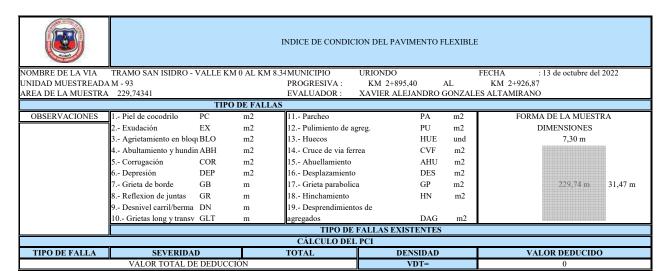
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	9,04
Número máximo de valores deducidos (mi)	9,35

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$	Ecuación 3.	Carreteras pavimentadas.
--	-------------	--------------------------


Donde: m. Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

I	N°	N° VALORES DEDUCIDOS							VDT	q	VDC
I	1	9,04	()	0	0		0	9,04	1	9,04
										MAX VDC :	9,04

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	90,96

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} \left(100 - HDV_i \right)$ Ecuación 3. Carreteras pavimentadas.

Donde: M. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3MUNICIPIO URIONDO FECHA :13 de octubre del 2022 UNIDAD MUESTREAD M - 110 PROGRESIVA : KM 3+430,42 AL KM 3+461,89 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO

AREA DE LA MUESTR	A 229,74341			EVALUADOR	: XAVIER ALE	JANDRO (JONZALI	S ALTAMIRA	.NO	
		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	MA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento	de agreg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en blo	qıBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via	a ferrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamie	nto	AHU	m2			
	6 Depresión	DEP	m2	16 Desplazami	ento	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paral	oolica	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamier	nto	HN	m2			
	9 Desnivel carril/berma	a DN	m	19 Desprendim	nientos de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
				TIPO I	DE FALLAS EXI	STENTES				
		10			11			12		
	L M H			L	M	Н	I	,	M	Н
	2,60	1,02								
TOTAL POR FALLA	2,60	1,02	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
				CÁLCULO D						
TIPO DE FALLA	SEVERIDA	ΔD		TOTAL	DE	NSIDAD		V	ALOR DEDUCID	0
10	L	•		2,60		1,13%		0		
10	M	•		1,02),44%			0	
	VALOR TOTAL DE	E DEDUCCIÓ	ÒΝ		,	VDT=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde:

m. Namero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

 N° VALORES DEDUCIDOS VDT q VDC MAX VDC = 0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI = 100- (MAX VDC)
PCI = 100

CONDICION DEL ESTADO DEL PAVIMENTO:

				NDICE DE CONDICIO		NTO FLEXIBL			
	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.3	MUNICIPIO	URIONDO		FECHA	13 de octubre del	2022
UNIDAD MUESTREAD∮M - 127				PROGRESIVA:	KM 3+965,43		KM 3+996,91		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJAN	IDRO GONZAI	LES ALTAMIRAN	NO.	
		TIPO I	DE FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FORM	IA DE LA MUEST	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de ag	reg.	PU m2		DIMENSIONES	
	 Agrietamiento en bloq 	BLO	m2	13 Huecos		HUE und		7,30 m	
	 4 Abultamiento y hundir 	ABH	m2	14 Cruce de via ferr	ea	CVF m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES m2			
	7 Grieta de borde	GB	m	17 Grieta parabolica	ı	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimiento	s de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
	,			TIPO DE F	ALLAS EXISTEN	TES	-11		
	1	0		11			1	12	
	L	M	Н	L	M	Н	L	M	Н
	2,35								
									1
									1
TOTAL POR FALLA	2,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1	_		CÁLCULO DEL	PCI				
TIPO DE FALLA	SEVERIDAI)		TOTAL	DENSI	DAD	VA	ALOR DEDUCIDO)
10	L			2,35	1,02	2%		0	
	VALOR TOTAL DE	DEDUCCIO	ON		VD	Γ=		0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

9			
$m_i = 1.00 + \frac{9}{90}(100 - HDV_i)$	Ecuación 3.	Carreteras pavimentadas.	

Donde: 90

Donde: m_i Nürmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

Ν°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : PCI = 100- (MA

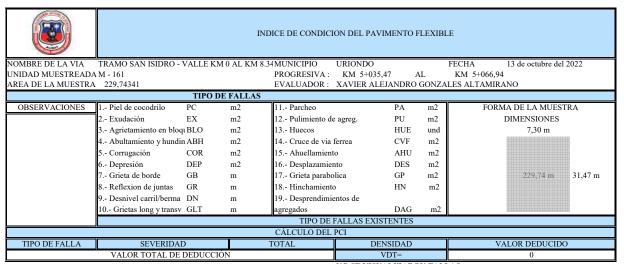
PCI =	100- (MAX VDC)
PCI =	100

				INDICE DE CONDIC	CION DEL PAVIN	MENTO I	FLEXIBL	.Ε		
NOMBRE DE LA VIA	TRAMO SAN ISIDRO - '	VALLE KM () AL KM 8.3	4MUNICIPIO	URIONDO			FECHA :	13 de octubre de	2022
UNIDAD MUESTREADA				PROGRESIVA:	KM 4+500,45		AL	KM 4+531,92		
AREA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALEJA	NDRO (GONZAL	ES ALTAMIRANO		
		TIPO I	DE FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORMA	DE LA MUEST	RA
	2 Exudación	EX	m2	12 Pulimiento de as	greg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	1 ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	TENTES				
	1	.3			14				15	
	L	M	Н	L	М	Н		L	М	Н
										3,54
TOTAL POR FALLA	0,00	0,00	0,00	0,00	0,00	(),00	0,00	0,00	3,54
				CÁLCULO DE						
TIPO DE FALLA	SEVERIDAI)		TOTAL	DENSIDAD			VALOR DEDUCIDO		
15	Н			3,54		54%			31,83	
	VALOR TOTAL DE	DEDUCCIÓ	N		VI	T=			31,83	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	31,83
Número máximo de valores deducidos (mi)	7,26

 $m_{i}=1.00+rac{9}{98}ig(100-HDV_{i}ig)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo *i.*HDV: El *mayor valor deducido individual* para la unidad de muestreo *i.*


N°			,	ALORES DI	EDUCIDOS			VDT	q	VDC
1	31,83	0	0	0	0	0	0	31,83	1	31,83
	•	·							MAX VDC =	31,83

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	68,17

CONDICION DEL ESTADO DEL PAVIMENTO:

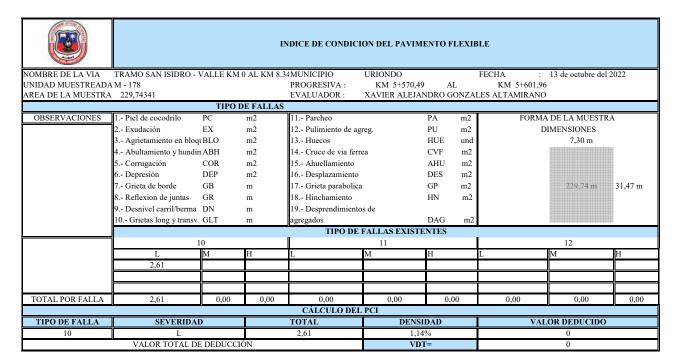
BUENO

NO SE VISUALIZARON FALLAS

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV.; El mayor valor deducido individual para la unidad de muestreo i.


VALORES DEDUCIDOS VDT q VDC

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	100

MAX VDC

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimenta	as.

Donde:
m. Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	100

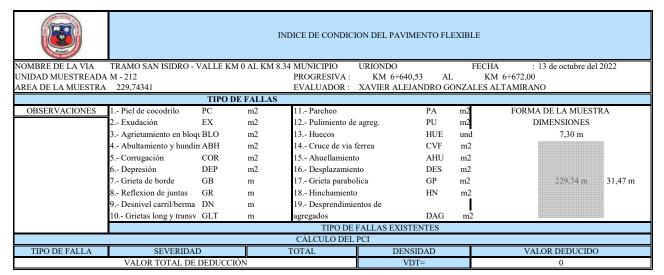
CONDICION DEL ESTADO DEL PAVIMENTO:

EXCELENTE	

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

FECHA : KM 6+136,98 NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO URIONDO : 13 de octubre del 2022 UNIDAD MUESTREAD M - 195 AREA DE LA MUESTRA 229,74341 KM 6+105,51 AL PROGRESIVA: XAVIER ALEJANDRO GONZALES ALTAMIRANO EVALUADOR:

		TIPO D	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	IA DE LA MUES	TRA
	2 Exudación	EX	m2	12 Pulimiento de agreg.		PU	m2	DIMENSIONES		
	3 Agrietamiento en bloqtBLO		m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundir	1 ABH	m2	14 Cruce de via fer	rea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	os de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE I	FALLAS EXIST	ENTES				
		1			2				3	
	L	М	Н	L	М	Н		L	M	Н
TOTAL POR FALLA	0,00	0.00	0,00	0.00	0,00	_	00	0,00	0,00	0.00
TOTAL POR FALLA		0,00	0,00	0,00	11	0,	,00	0,00	12	0,00
	L	M	Н	T	M	Н		T	M	Н
	0,42	10.54	11	L	141	-		0,35	141	
	0,12	10,54				1		0,55		-
					1	1				
TOTAL POR FALLA	0,42	10,54	0,00	0,00	0,00	0,	,00	0,35	0,00	0,00
				CÁLCULO DEL	PCI	-1				
TIPO DE FALLA SEVERIDAD				TOTAL	DENSIDAD			VALOR DEDUCIDO		0
1 L				0,00	0,	00%			0	
10 L				0,42		18%			0	•
10	M			10,54		59%			10,56	
12	L			0,35		15%		0		
	VALOR TOTAL DI	E DEDUCCIO	ÓN		V	T=			10,56	


CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	10,56
Número máximo de valores deducidos (mi)	9,21

 $m_{c}=1.00+\frac{9}{98}(100-HDV_{i})$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°			V	ALORES D	EDUCIDOS			VDT	q	VDC
1	10,56	0	0	0	0	0	0	10,56	1	10,56
2	0	0	0	0	0	0	0	0	0	0,00
									MAY VDC -	10.56

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:	PCI	=	100- (MAX VDC)
	PCI	=	89,44

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_{c}=1.00+\frac{9}{98}(100-HDV_{c})$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo I.

muestreo i. HDV, El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI = 100- (MAX VDC)
PCI = 100

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

TIPO DE FALLA

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO UNIDAD MUESTREADAM - 229 PROGRESIVA : 13 de octubre del 2022 URIONDO FECHA : KM 7+207,02 PROGRESIVA: KM 7+175,55 AL AREA DE LA MUESTRA 229,74341 EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO TIPO DE FALLAS OBSERVACIONES 1.- Piel de cocodrilo FORMA DE LA MUESTRA 1.- Parcheo PU DIMENSIONES EX m2 m2 2.- Exudación 12.- Pulimiento de agreg. 13.- Huecos HUE und 7,30 m Agrietamiento en bloqiBLO m2 4.- Abultamiento y hundin ABH m2 CVF m2 14.- Cruce de via ferrea 5.- Corrugación COR AHU m215.- Ahuellamiento m2 DEP 6.- Depresión m2 16.- Desplazamiento DES m2 7.- Grieta de borde GBm 17.- Grieta parabolica GP m2 229,74 m 31,47 m 8.- Reflexion de juntas 18.- Hinchamiento HN m2 m 9.- Desnivel carril/berma DN m 19.- Desprendimientos de 10.- Grietas long y transv GLT gregados DAG m TIPO DE FALLAS EXISTENTES 4,68 4,45 TOTAL POR FALLA CÁLCULO DEL PCI

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	19,04
Número máximo de volores deducidos (mi)	8 11

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Equación 3. Carreteras pavimentadas	
--	--

DENSIDAD

VDT=

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i

N°			VALC	RES DEDU	CIDOS			VDT	q	VDC
1	19,04	0	0	0	0	0	0	19,04	1	19,04

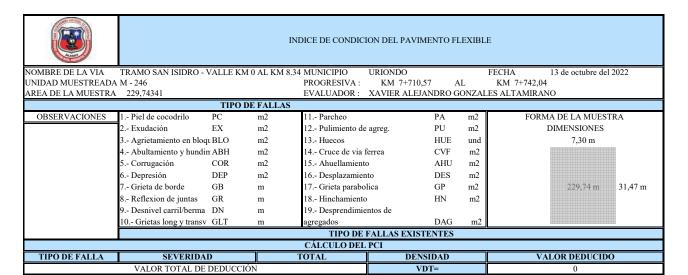
TOTAL 9,13

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

SEVERIDAD

VALOR TOTAL DE DEDUCCIÓN

PCI =	100- (MAX VDC)
PCI =	80,96


VALOR DEDUCIDO

19,04

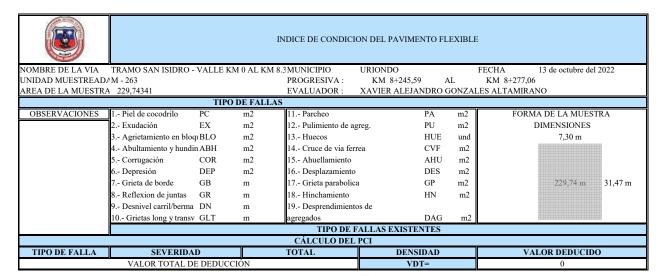
19,04

CONDICION DEL ESTADO DEL PAVIMENTO:

MUY BUENO

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ E	Ecuación 3. Carreteras pavimentadas.
--	--------------------------------------


Donde: m_i Número máximo admisibe de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

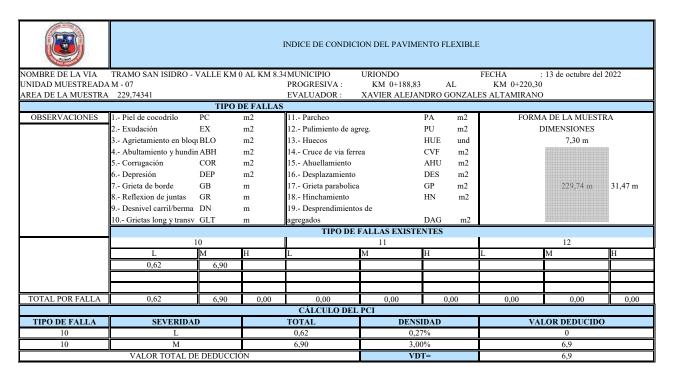
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

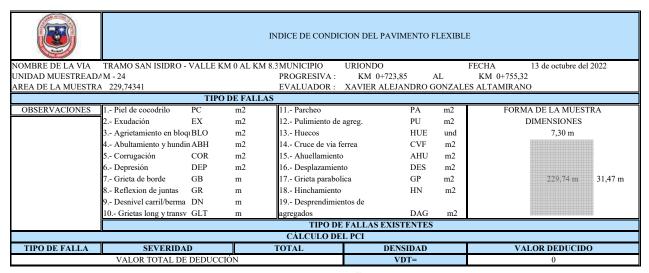

Donda: m. Númeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100


CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	6,9
Número máximo de valores deducidos (mi)	9,55

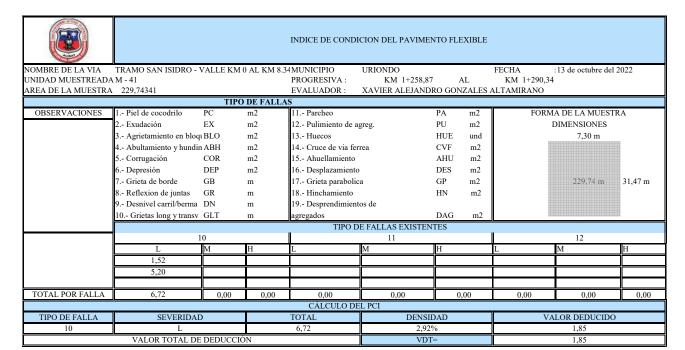
$m_i = 1.00 + rac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimen	adas.
--	-------

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor velor deducido individual para la unidad de muestreo i

N°				VAL	ORES DEDU	JCIDOS			VDT	q	VDC
	1	5,9	0	0	0	0	0	0	6,9	1	6,9
										MAXVDC =	6.9

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :	PCI	=	100- (MAX VDC)
	PCI	=	93,1

CALCULO DEL PCI		
Numero de deducidos > 2 (q)	0	
Valor deducido mas alto (HDVi)	0	
Número máximo de valores deducidos (mi)	10,18	


 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m_i Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El *mayor valor deducido individual* para la unidad de muestreo i

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	1,85
Número máximo de valores deducidos (mi)	10,01

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	1,85

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	98,15

CONDICION DEL ESTADO DEL PAVIMENTO:

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO UNIDAD MUESTREAD M - 58 PROGRESIV. AREA DE LA MUESTRA 229,74341 EVALUADO URIONDO FECHA 13 de octubre del 2022 KM 1+793,89 KM 1+825,36 EVALUADOR: XAVIER ALEJANDRO GONZALES ALTAMIRANO

		TIPO	E FALLAS							
OBSERVACIONES 1 Piel de cocodrilo PC m2				11 Parcheo PA			m2	FORMA DE LA MUESTRA		
	2 Exudación	EX	m2	12 Pulimiento de a	greg.	PU	m2		DIMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE und		7,30 m		
	 Abultamiento y hundir 	1ABH	m2	14 Cruce de via fer	теа	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento	•	DES m2				
	7 Grieta de borde	GB	m	17 Grieta parabolio	a	GP	m2		264,00 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimient	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
		TIPO DE FALLAS EXISTENTES								
		1		2		2		3		
	L	M	Н	L	M	Н		L	M	Н
TOTAL POR FALLA	0,00	0,00	0,00	0,00	0,00		,00	0,00	0,00	0,00
TOTALTORTALLA	0,00	0,00	0,00	CÁLCULO DEL			,00	0,00	0,00	0,00
TIPO DE FALLA	SEVERIDAI)	I			ENSIDAD		VALOR DEDUCIDO		00
1	L			0,00		0,00%		,	0	
1	M			0,00	0,00%			0		
	VALOR TOTAL DE	E DEDUCCI	ÓN		,	VDT=		0		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda: m_c Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo t. HDV: El *mayor valor deducido individual* para la unidad de muestreo t

Ν°			1	VDT	q	VDC				
1	0	0	0	0	0	0	0	0	0	0,00
2	0	0	0	0	0	0	0	0	0	0,00
MAX									MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

CONDICION DEL ESTADO DEL PAVIMENTO:

EXCELENTE

				INDICE DE CONDI	CION DEL PAVIM	ИЕНТО І	FLEXIBLE				
NOMBRE DE LA VIA	TRAMO SAN ISIDRO - '	VALLE KM	0 AL KM 8.3	4MUNICIPIO	URIONDO			FECHA	:13 de octubre de	1 2022	
UNIDAD MUESTREADA				PROGRESIVA:	KM 2+328,9		AL	KM 2+360,3			
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJA	NDRO (GONZALE	S ALTAMIRANO)		
	11		DE FALLAS								
				11 Parcheo		PA	m2	FOR	MA DE LA MUES	TRA	
	2 Exudación EX m2			Pulimiento de agreg.		PU	m2		DIMENSIONES		
	 Agrietamiento en bloq 		m2	13 Huecos		HUE	und		7,30 m		
	 4 Abultamiento y hundir 	1 ABH	m2	14 Cruce de via fe	rrea	CVF	m2				
	 5 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2				
	6 Depresión	DEP	m2	16 Desplazamiento	0	DES	m2				
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m	
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2				
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de	le					
	10 Grietas long y transv GLT m		m	agregados DAG m2							
			TIPO DE FALLAS EXISTENTES								
	1	10		11			12				
	L	M	Н	L	M	Н		L	M	H	
	0,00	12,19									
							•		_		
TOTAL POR FALLA	0,00	12,19	0,00	0,00	0,00		0,00	0,00	0,00	0,00	
			•	CÁLCULO DE	L PCI		•	•			
TIPO DE FALLA	SEVERIDAI	0		TOTAL	DEN	SIDAD		V	ALOR DEDUCID	0	
10	M			12,19		5,30%			11,95		
	VALOR TOTAL DE	DEDUCCIÓ	ON		VDT = 11,93			11,95			

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	11,95
Número máximo de valores deducidos (mi)	9,09

$m_i = 1.00 + \frac{1}{100} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.	$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carrete	ras pavimentadas.
---	--	-------------------

Donde: To Numero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	N° VALORES DEDUCIDOS								q	VDC
	11,95	0	0	0	0	0	0	11,95	1	11,95
	MAX VDC									11,95

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :	PCI =	100- (MAX VDC)

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$ EXCELENTE

ALIJAS .				INDICE DE CONDIC	ION DEL PAVI	MENTO F	LEXIBLE			
NOMBRE DE LA VIA	TRAMO SAN ISIDRO	VALLE KM	0 AL KM 8.3	34MUNICIPIO	URIONDO	•	•	FECHA	: 13 de octubre de	1 2022
UNIDAD MUESTREADA	A M - 92			PROGRESIVA:	KM 2+863,	92	AL	KM 2+895,4	0	
AREA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALE.	JANDRO (GONZALI	ES ALTAMIRAN	0	
		TIPO	DE FALLAS	S						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2	FORM	AA DE LA MUEST	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de ag	greg.	PU	m2		DIMENSIONES	
	3 Agrietamiento en blo	qı BLO	m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hund	in ABH	m2	14 Cruce de via feri	rea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiento		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta parabolic	a	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berm	a DN	m	19 Desprendimiento	os de					
	10 Grietas long y trans	v GLT	m	agregados		DAG	m2			
	Ü				FALLAS EXIS	TENTES				
	1	10			11				12	
	L	M	Н	L	M	Н	<u> </u>	L	M	Н
	1,45									
							•			
TOTAL POR FALLA	1,45	0,00	0,00	0,00	0,00	(0,00	0,00	0,00	0,00
				CÁLCULO DEI	PCI					
TIPO DE FALLA	SEVERIDA	AD .		TOTAL	DE	NSIDAD		VA	LOR DEDUCID	0
10	-	-		1.45				ir -	0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

VALOR TOTAL DE DEDUCCIÓN

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

0,63% VDT=

Donda: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0,00

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:	PCI =	100- (MAX VDC)		
	PCI =	100		

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

di mat				.5.62.52.661.516	1011 DDD 111111		<i>EETHD E</i>	.5		
	TRAMO SAN ISIDRO -	VALLE KM	0 AL KM 8.	MUNICIPIO	URIONDO			FECHA	:13 de octubre de	1 2022
UNIDAD MUESTREADA				PROGRESIVA:	KM 3+398,94		AL	KM 3+430,42		
AREA DE LA MUESTRA	229,74341			EVALUADOR:	XAVIER ALEJA	ANDRO	GONZAI	LES ALTAMIRAN	10	
			E FALLAS							
	1 Piel de cocodrilo	PC		11 Parcheo		PA	m2		A DE LA MUEST	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU	m2	1	DIMENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE	und		7,30 m	
	 Abultamiento y hundir 	1 ABH	m2	14 Cruce de via fe	rrea	CVF	m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiente	o	DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO DE	FALLAS EXIST	ENTES				
	1	10			11 12				12	
	L	M	Н	L	M	Н		L	M	Н
	0,00	1,98								
	1,88	4,24								
	4,19									
TOTAL POR FALLA	6,07	6,22	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
				CÁLCULO DEI	_ PCI					
TIPO DE FALLA	SEVERIDAI)		TOTAL	DEN	SIDAD		VA	LOR DEDUCIDO)
10	L 6,07			6,07	2,64%				1,32	
10	M			6,22		71%		6,23		
	VALOR TOTAL DE	DEDUCCIO	ÒN		VI	DT=			7,55	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	1
Valor deducido mas alto (HDVi)	6,23
Número máximo de valores deducidos (mi)	9.61

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Namero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°			VALO	RES DEDU	ICIDOS			VDT	q	VDC
1	6,23	1,32	0	0	0	0	0	7,55	1	7,55
					'					

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	92,45

CONDICION DEL ESTADO DEL PAVIMENTO:

				INDICE DE CONDI		IENTO F	LEXIBL			
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE K	M 0 AL KM 8.		URIONDO				13 de octubre de	1 2022
UNIDAD MUESTREADA				PROGRESIVA:	KM 3+933,9		AL	KM 3+965,43		
AREA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALEJA	NDRO G	ONZAL.	ES ALTAMIRANO		
	u-		DE FALLAS							
	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA	m2		A DE LA MUES	ΓRA
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU	m2	D	IMENSIONES	
	 Agrietamiento en bloc 		m2	13 Huecos		HUE	und		7,30 m	
	4 Abultamiento y hundi		m2	14 Cruce de via fe	rrea	CVF	m2			
	5 Corrugación	COR	m2	15 Ahuellamiento		AHU	m2			
	6 Depresión	DEP	m2	16 Desplazamiente		DES	m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP	m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN	m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG	m2			
				TIPO D	E FALLAS EXIST	ENTES		_		
		10			11			12		
	L	M	Н	L	M	Н		L	M	Н
	3,81									
										_
										_
TOTAL POR FALLA	3,81	0,00	0,00	0,00	0,00	0	,00	0,00	0,00	0,00
	u-			CÁLCULO DE						
TIPO DE FALLA	SEVERIDA	D		TOTAL		SIDAD		VAI	LOR DEDUCIDO)
10	L			3,81 1,66%			0			
	VALOR TOTAL DI	E DEDUCC	ION		VI	T=			0	

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavi	imentadas.
--	------------

VALORES DEDUCIDOS q MAX VDC

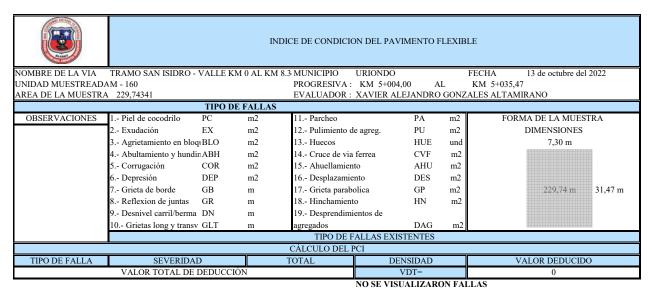
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO : 100- (MAX VDC) 100

				INDICE DE CONDI	CION DEL PAVIN	MENTO FLEX	KIBLE			
NOMBRE DE LA VIA	TRAMO SAN ISIDRO -	VALLE KM) AL KM 8.3	4MUNICIPIO	URIONDO		FECHA	: 13	de octubre del 2	2022
UNIDAD MUESTREAD	A M - 143			PROGRESIVA:	KM 4+468,98			1 4+500,45		
AREA DE LA MUESTRA	A 229,74341			EVALUADOR:	XAVIER ALEJA	NDRO GONZ	ZALES ALTA	MIRANO		
		TIPO I	E FALLAS							
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m	2	FORMA DE	E LA MUESTR	A
	2 Exudación	EX	m2	12 Pulimiento de a	igreg.	PU m	2	DIME	ENSIONES	
	 Agrietamiento en bloq 	ıBLO	m2	13 Huecos		HUE ur	nd		7,30 m	
	4 Abultamiento y hundi	1 ABH	m2	14 Cruce de via fe	rrea	CVF m	12			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m	12			
	6 Depresión	DEP	m2	16 Desplazamiento)	DES m	12			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m	2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m	12			
	9 Desnivel carril/berma	DN	m	19 Desprendimien	tos de					
	10 Grietas long y transv	GLT	m	agregados		DAG n	n2			
				TIPO DI	E FALLAS EXIST	TENTES				
		10			11				12	
	L	M	Н	L	M	Н	L	M		Н
	1,77									
					_				•	
					_				•	
TOTAL POR FALLA	1,77	0,00	0,00	0,00	0,00	0,00	(0,00	0,00	0,00
				CÁLCULO DE	L PCI					
TIPO DE FALLA	SEVERIDA	D		TOTAL	DENS	SIDAD		VALOR	DEDUCIDO	
10	L			1,77	0.7	77%		0		

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10.18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Namero màximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100
,	

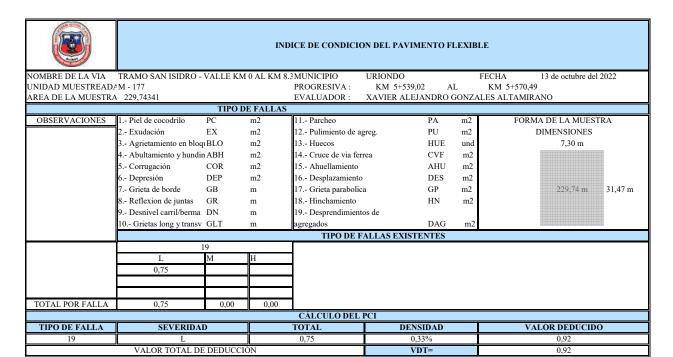
CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

NO SE VISUALIZARON FALLAS

 $m_{i}=1.00+\frac{9}{98}\big(100-HDV_{i}\big)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo /.


muestreo i. HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	100

 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0,92
Número máximo de valores deducidos (mi)	10,1

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: Milmero máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDV; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC	
			MAX VDC	0	

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO:

PCI	=	100- (MAX VDC)
PCI	=	100

CONDICION DEL ESTADO DEL PAVIMENTO:

INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

URIONDO FECHA 13 de KM 6+074,04 AL KM 6+105,51 XAVIER ALEJANDRO GONZALES ALTAMIRANO NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.3 MUNICIPIO 13 de octubre del 2022 UNIDAD MUESTREADAM - 194 AREA DE LA MUESTRA 229.74341 PROGRESIVA:

AREA DE LA MUESTR	A 229,74341			EVALUADOR :	XAVIER ALEJ	ANDRO GONZA	LES ALTAMII	RANO	
		TIPO	DE FALLAS						
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo		PA m2	FOR	MA DE LA MUE	STRA
	Exudación	EX	m2	12 Pulimiento de a	agreg.	PU m2		DIMENSIONES	
	 Agrietamiento en bloc 	ηBLO	m2	13 Huecos		HUE und		7,30 m	
	4 Abultamiento y hundi	n ABH	m2	14 Cruce de via fe	rrea	CVF m2			
	 Corrugación 	COR	m2	15 Ahuellamiento		AHU m2			
	6 Depresión	DEP	m2	16 Desplazamient	o	DES m2			
	7 Grieta de borde	GB	m	17 Grieta paraboli	ca	GP m2		229,74 m	31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento		HN m2			
	9 Desnivel carril/berma	DN	m	19 Desprendimier	itos de				
	10 Grietas long y transv	GLT	m	agregados		DAG m2			
				TIPO DE I	FALLAS EXISTI	ENTES	•		
		4			5			6	
	L	М	Н	L	М	Н	L	М	Н
					0,99				
					1,35				
TOTAL BOD 54114	2.00								
TOTAL POR FALLA	0,00	0,00	0,00	0,00	2,34	0,00	0,00	0,00	0,00
	L	10 M	H	T	11 M	Н	T	12 M	Н
	L	0,00	П	IL	M	н	L	IVI	н
		2,97	_	<u> </u>	1	<u> </u>	1	1	-
		0,00				1			+
TOTAL POR FALLA	0,00	2,97	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TOTALTORTALIA	3,00	2,31	0,00	CÁLCULO DEL		0,00	3,00	0,00	0,00
TIPO DE FALLA SEVERIDAD			TOTAL		DENSIDAD VALOR DEDUCIDO			00	
5	M			2,34	1,	02%		16,32	
10	M		2,97	1,	1,29% 3,04				
	VALOR TOTAL DI	E DEDUCC	IÓN		V	DT=		19,36	

CALCULO DEL PCI						
Numero de deducidos > 2 (q)	2					
Valor deducido mas alto (HDVi)	16,32					
Número máximo de valores deducidos (mi)	8,68					

$m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$	Ecuación 3. Carreteras pavimentadas.
--	--------------------------------------

Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°			V	ALORES D	EDUCIDOS	S		VDT	q	VDC
1	16,32	3,04	0	0	0	0	0	19,36	2	13,52
2	16,32	2	0	0	0	0	0	18,32	1	18,32
	•	•							MAY VDC	18 32

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	81,68

CONDICION DEL ESTADO DEL PAVIMENTO :

MUY BUENO

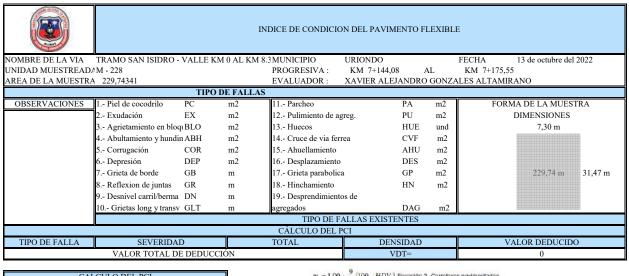
INDICE DE CONDICION DEL PAVIMENTO FLEXIBLE

NOMBRE DE LA VIA TRAMO SAN ISIDRO - VALLE KM 0 AL KM 8.34 MUNICIPIO URIONDO FECHA : 13 UNIDAD MUESTREADA M - 211 PROGRESIVA : KM 6+609,06 AL KM 6+640,53 AREA DE LA MUESTRA 229,74341 EVALUADOR : XAVIER ALEJANDRO GONZALES ALTAMIRANO FECHA : 13 de octubre del 2022 KM 6+640,53

THEE THE ET MCESTIC	227,71511			E.TECHBOR.	THE CHERT HERE THE	OOTILITE	EUTETTE III EUT
		TIPO DE	FALLAS	•		•	
OBSERVACIONES	1 Piel de cocodrilo	PC	m2	11 Parcheo	PA	m2	FORMA DE LA MUESTRA
	2 Exudación	EX	m2	12 Pulimiento de	e agreg. PU	m2	DIMENSIONES
	3 Agrietamiento en bloc	μBLO	m2	13 Huecos	HUI	E und	7,30 m
	4 Abultamiento y hundi	m2	14 Cruce de via	ferrea CVI	F m2		
	 Corrugación 	COR	m2	15 Ahuellamient	o AH	U m2	
	6 Depresión	DEP	m2	16 Desplazamier	nto DES	s m2	
	7 Grieta de borde	GB	m	17 Grieta parabo	dica GP	m2	229,74 m 31,47 m
	8 Reflexion de juntas	GR	m	18 Hinchamiento) HN	m2	
	9 Desnivel carril/berma	DN	m	19 Desprendimio	entos de		
	10 Grietas long y transv	GLT	m	agregados	DAG	G m2	
				TIPO DE	FALLAS EXISTENTES		
19							
	L	M	Н				
	0,25						
	1,48						
	1,04						
TOTAL POR FALLA	2,76	0,00	0,00				
	CALCULO DEL PCI						
TIPO DE FALLA	SEVERIDA	D	1	ГОТАL	DENSIDAD		VALOR DEDUCIDO
19	L			2,76	1,20%		2
_	VALOR TOTAL DE DEDUCCIÓN				VDT=		2

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	2
Número máximo de valores deducidos (mi)	10

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i) \; \mbox{Ecuación 3. Carreteras pavimentadas.} \label{eq:mi}$


Donde: $m_{\rm c}$ Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo ℓ . HDV; El mayor valor deducido individual para la unidad de muestreo ℓ

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	2

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI =	100- (MAX VDC)
PCI =	98

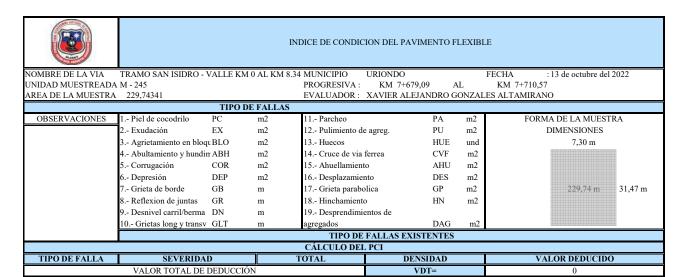
 ${\bf CONDICION\ DEL\ ESTADO\ DEL\ PAVIMENTO:}$

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donda:

m. Númeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.


HDV.: El mayor valor deducido individual para la unidad de muestreo i.

VALORES DEDUCIDOS Ν° VDT VDC

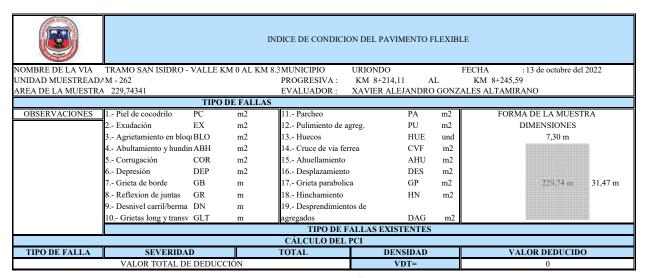
INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98}(100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.


Donde: m. Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV: El mayor velor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

100- (MAX VDC) 100

CONDICION DEL ESTADO DEL PAVIMENTO:

CALCULO DEL PCI	
Numero de deducidos > 2 (q)	0
Valor deducido mas alto (HDVi)	0
Número máximo de valores deducidos (mi)	10,18

 $m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$ Ecuación 3. Carreteras pavimentadas.

Donde: m. Númeiro máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDV.; El mayor valor deducido individual para la unidad de muestreo i.

N°	VALORES DEDUCIDOS	VDT	q	VDC
			MAX VDC =	0

INDICE DE CONDICION DEL ESTADO DEL PAVIMENTO :

PCI	=	100- (MAX VDC)
PCI	=	100

Medición directa tramo 16 (Km 8+214,11 – Km 8+245,59)

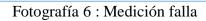
Fotografía 1 : Medición de falla

Punto de medición de la falla

Fotografía 2 : Medición falla

Punto de medición de la falla

Fotografía 3 : Medición falla


Punto de medición de la falla

Medición directa tramo 15 (Km 7+679,09 – Km 7+710,57)			
Fotografía 4: Observación tramo			

Punto de inspección tramo

Medición directa tramo 14 (Km 7+144,08 – Km 7+175,55)

Fotografía 5 : Determinación tramo de muestreo

Punto de medición de la falla

Punto de medición de la falla

Fotografía 7 : Observación tramo

Punto de inspección tramo

Medición directa tramo 13 (Km 6+609,06 – Km 6+640,53)

Fotografía 8 : Determinación tramo de muestreo

Fotografía 9 : Medición falla

Zona de muestreo

Punto de medición de la falla

Fotografía 11 : Medición de falla

Punto de medición de la falla

Punto de medición de la falla

Fotografía 12 : Medición de falla

Punto de medición de falla

Fotografía 13 : Medición de falla

Punto de medición de falla

Medición directa tramo 12 (Km 6+074,04 – Km 6+105,51)

Fotografía 14 : Determinación tramo de muestreo

Fotografía 15 : Medición falla

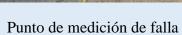
Zona de muestreo

Punto de medición de la falla

Fotografía 16 : Recopilación de información

Fotografía 17 : Medición de falla

Punto de recopilación fotográfica

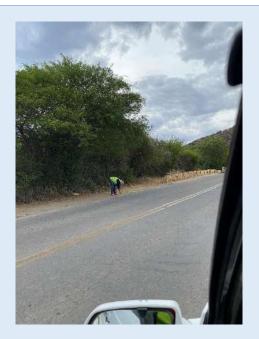

Punto de medición de la falla

Fotografía 18 : Medición de falla

Punto de medición de falla

Fotografía 19 : Medición de falla

Fotografía 20 : Medición de falla

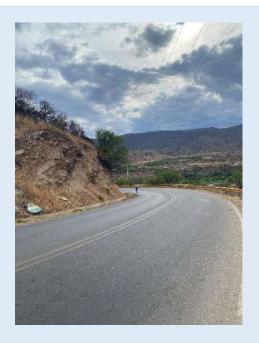

Punto de medición de falla

Determinación tramo de Fotografía 22: muestreo

Fotografía 21 : Medición de falla

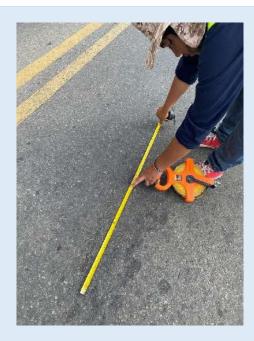
Punto de medición de falla

Punto de medición de falla


Medición directa tramo 11 (Km 5+539,02 – Km 5+570,49)

Fotografía 23 : Medición falla

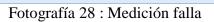
Punto de medición de falla


Fotografía 24 : Medición falla

Punto de medición de falla

Medición directa tramo 10 (Km 5+004,00 – Km 5+035,49)

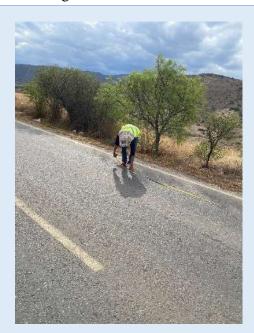
Fotografía 25 : Medición falla


Punto de medición de falla

Medición directa tramo 09 (Km 4+468,98 – Km 4+500,45)

Fotografía 26 : Medición falla

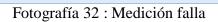
Punto de medición de falla


Punto de medición de falla

Fotografía 27 : Medición falla

Punto de medición de falla

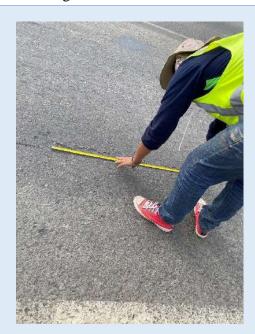
Fotografía 29 : Medición falla


Punto de medición de falla

Medición directa tramo 08 (Km 3+933,96 – Km 3+965,43)

Fotografía 30 : Medición falla

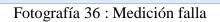
Punto de medición de falla


Punto de medición de falla

Fotografía 31 : Medición falla

Punto de medición de falla


Fotografía 33 : Medición falla


Punto de medición de falla

Medición directa tramo 07 (Km 3+398,94 – Km 3+430,42)

Fotografía 34 : Medición falla

Punto de medición de falla

Punto de medición de falla

Fotografía 38 : Medición falla

Fotografía 35 : Medición falla

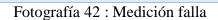
Punto de medición de falla

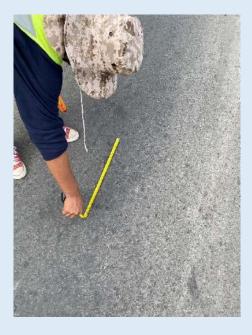
Fotografía 37 : Medición falla

Punto de medición de falla

Fotografía 39 : Medición falla

Punto de medición de falla


Punto de medición de falla


Medición directa tramo 06 (Km 2+683,92 – Km 2+895,40)

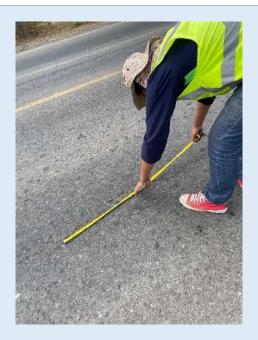
Fotografía 40: Inspección visual de fallas

Punto de medición de falla

Punto de medición de falla

Fotografía 44 : Medición falla

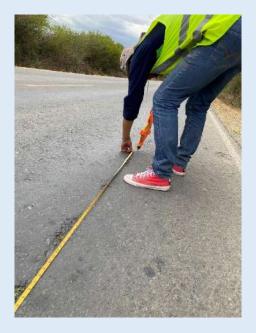
Fotografía 41 : Medición falla


Punto de medición de falla

Fotografía 43 : Medición falla

Punto de medición de falla

Fotografía 45 : Medición falla


Punto de medición de falla

Punto de medición de falla

Medición directa tramo 05 (Km 2+328,91 – Km 2+360,38)

Fotografía 46 : Medición falla

Punto de medición de falla

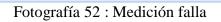
Punto de medición de falla

Fotografía 50 : Medición falla

Fotografía 47 : Medición falla

Punto de medición de falla

Fotografía 49 : Medición falla



Punto de medición de falla

Fotografía 51 : Medición falla

Punto de medición de falla

Punto de medición de falla

Punto de medición de falla

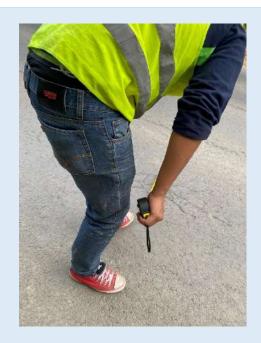
Fotografía 53 : Medición falla

Punto de medición de falla

Medición directa tramo 04 (Km 1+793,89 – Km 1+825,36)

Fotografía 54 : Medición falla

Punto de medición de falla


Fotografía 56 : Medición falla

Punto de medición de falla

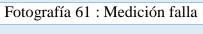
Fotografía 58 : Medición falla

Fotografía 55: Inspección visual de fallas

Punto de medición de falla

Fotografía 57: Inspección visual de fallas

Punto de medición de falla


Punto de medición de falla

Medición directa tramo 03 (Km 1+258,87 – Km 1+290,34)

Fotografía 59 : Medición falla

Punto de medición de falla

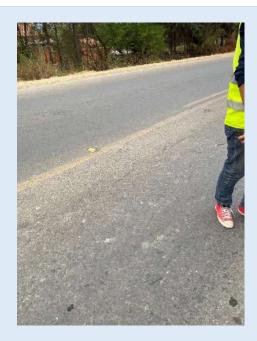
Punto de medición de falla

Fotografía 60 : Medición falla

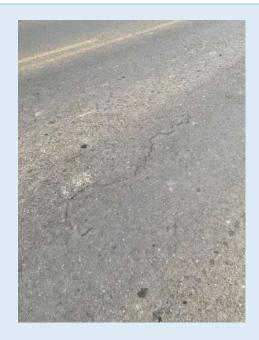
Punto de medición de falla

Medición directa tramo 02 (Km 0+723,85 – Km 0+755,32)

Fotografía 62 : Medición falla


Punto de medición de falla

Fotografía 64 : Medición falla


Punto de medición de falla

Fotografía 63 : Medición falla

Punto de medición de falla

Fotografía 65 : Identificación de fallas

Punto de medición de falla

Fotografía 66 : Identificación de fallas

Punto de medición de falla

Medición directa tramo 01 (Km 0+188,83 – Km 0+220,30)

Fotografía 67: Medición falla

Fotografía 68 : Determinación tramo de muestreo

Punto de medición de falla

Fotografía 69 : Medición falla

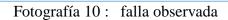
Punto de medición tramo de muestreo

Punto de medición de falla

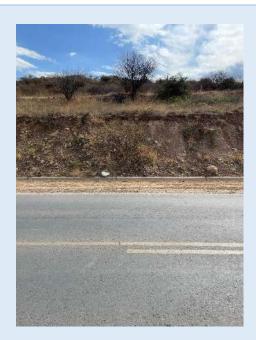
Fotografía 70 : Medición falla

Punto de medición de falla

Fotografía 71 : Medición falla Fotografía 72 : Medición falla Punto de medición de falla Punto de medición de falla Fotografía 73 : Medición falla


Punto de medición de falla

Fotografía 5 : falla observada Fotografía 6 : falla observada Agrietamientos leves Agrietamientos leves Fotografía 7: falla observada Fotografía 8 : falla observada Bacheo mal realizado Agrietamientos leves


Medición directa tramo 15 (Km 7+679,09 – Km 7+710,57)

Fotografía 9: falla observada

Punto de inspección tramo

Punto de inspección tramo

Medición directa tramo 14 (Km 7+144,08 – Km 7+175,55) Fotografía 11: falla observada Fotografía 12 : falla observada Agrietamientos leves Desprendimiento de agregados Fotografía 13 : falla observada Punto de inspección tramo