ANEXO A ESPECIFICACIONES TÉCNICAS DE LOS EQUIPOS UTILIZADOS EN EL LABORATORIO.

ESPECIFICACIONES TÉCNICAS DE LOS EQUIPOS UTILIZADOS EN EL LABORATORIO.

Refractómetro programable digital

Marca	WYA-S		
peso	10kg		
Voltaje	220V±20V 50Hz		
Alto / Ancho / Fondo (exterior)	38 cm 18 cm 33cm		

Balanza analítica

Marca	KERN ABS		
Sensibilidad	0,0001g		
Precisión	0,1mg		
Max	220g		
Voltaje	230 V		

Agitador Magnético

Marca	HANNA HI 190M
Cubierto de Material	ABS plástico
Capacidad máxima de agitación	1 litro
Velocidad mínima	100rpm
Velocidad máxima	1000 rpm
Voltaje	220-240 V 50/60 Hz
Peso	640g

Rota- evaporador

Marca	Heidolph laborota		
potencia	4000 1320W		
Temperatura de baño	30-180°C		
Presión de vacío	575,62mbar 17inHg		

pH-Metro

Marca	Mettler Toledo		
Margen de medición del	0,00 hasta 14,00		
pH/Exactitud	/±0,01		
Margen de medición de la	0,0 hasta		
temperatura/Exactitud	$+100^{\circ}\text{C}/\pm0,5$		
	Máx. 2 puntos, 3		
Calibración	grupos tampón		
	predefinidos		
Alimentación de	100-240 V/50-60		
corriente:	Hz, 9 V DC		
Dimensiones (An*Alt*L)	200x175x52 mm		
Peso	600 g		

Espectrofotómetro U-Vis

	GENESYS 10S UV-VIS
Marca	THERMO FISHER
	SCIENTIFIC
Alimentación	100-240 VAC
	50/60 Hz

Centrífuga

Marca	DAMON /IEC		
	DYSION		
Modelo	HNS		
Velocidad mínima	1000rpm		
Velocidad máxima	9000 rpm		
Voltaje	230 V		

Estufa

Marca	NAPCO
modelo	320-12
Potencia	265Watts
Voltaje	120 V

Licuadora

Marca	Oster BRLY07-ZOO-051 Reversible		
Modelo			
Motor			
Alimentación de corriente	120 V 60 Hz 600 W		
Velocidad	3 niveles		

ANEXO B FOTOGRAFÍAS DEL PROCESO DE OBTENCIÓN DE LOS EXTRACTOS DE ANTOCIANINAS DEL HOLLEJO DE UVA NEGRA.

PROCESO DE OBTENCIÓN DE LOS EXTRACTOS DE ANTOCIANINAS DEL HOLLEJO DE UVA NEGRA.

Fotografía 1 Recepción de la materia prima (Uva Cabernet Sauvignon).

Fotografía 2 Acondicionamiento de la uva (Uva Cabernet Sauvignon).

Fotografía 3

Bandejas de polilentereflalato donde se almacenaron las uvas.

Fotografía 5 Separación del hollejo de la uva congelada.

Fotografía 4

Racimos de la uva Cabernet Sauvignon.

Fotografía 6
Pulpa de la uva Cabernet
Sauvignon.

Fotografía 7

Proceso de Extracción S- L de antocianinas.

Fotografía 8 Filtrado.

Para la extracción S-L de antocianinas, se utilizó como solvente etanol al 96% con pequeñas cantidades de ácido cítrico, el hollejo de uva con el solvente se almacenaron en botellas de vidrio ámbar de 250 ml. Después de la primera maceración se filtra y el hollejo, como muestra la figura 9 se vuelve a poner en contacto con etanol y ácido cítrico.

Hollejo después del filtrado.

Fotografía 9

Son tres procesos de extracción S-L que se realiza con la misma cantidad de etanol y ácido como se muestra en la fotografía 10 y 11.

Fotografía 10

Extracto S-L de antocianinas del hollejo de la uva Tannat.

Fotografía 11

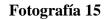
Extracto S-L de antocianinas del hollejo de la uva Cabernet S.

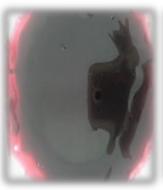
Después de haber realizado las maceraciones, los tres extractos son mezclados en uno solo recipiente, como muestra la fotografía 12, seguidamente el extracto se almacena en frascos de vidrio ámbar de 250 ml.

Fotografía 12

Extracto S-L de antocianinas del hollejo de la uva Tannat.

Fotografía 13


Extracto de antocianinas concentrado en el rota vapor.


El extracto de antocianinas fue concentrado en rota vapor, como muestra la fotografía 13 a una temperatura de 55 ° C y a 90 rpm durante 90 minutos.

Fotografía 14

Concentrado de antocianinas del hollejo de la uva Cabernet Sauvignon.

Hollejo de uva después de 72 horas de maceración.

El concentrado de antocianinas se almacenó en frascos de vidrio ámbar de 50 ml para protegerlos de la luz y se refrigeró a una temperatura de 5°C.

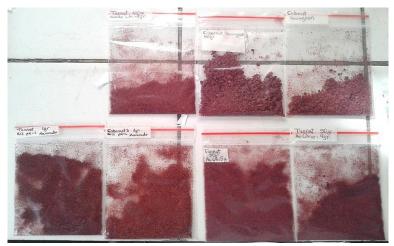
Fotografías tomadas en los respectivos análisis que se hicieron en el concentrado de antocianinas, extracto S-L del hollejo después de la extracción S-L y en el hollejo de uva.

Fotografía 16
Preparación de las soluciones buffer.

Para realizar los análisis en la muestras obtenidas, en primer lugar se hizo la preparación de soluciones buffer.

Fotografía 17 Hollejo después de la extracción S-L de antocianinas Variedad de uva Cabernet Sauvignon y Tannat.

Fotografía 18 Extracto de antocianinas del hollejo ya macerado.


De hollejo, después de la extracción S-L, se pesó 1g y se efectuó una extracción, con etanol y ácido clorhídrico a un pH =1 en tres etapas, manteniendo una relación en peso de muestra-solvente 1:10. En la primera etapa, la mezcla muestra-solvente se agitó con 10 minutos y se abrigó de la luz y el oxígeno. Luego se centrifugó a 4000 rpm durante 30 minutos y se guardó el sobrenadante. Este proceso se realizó dos veces más. Los tres sobrenadantes fueron mezclados y centrifugados a 4000 rpm durante 30 minutos para separar sólidos en suspensión como muestra la fotografía 18. El mismo procedimiento se realizó para el hollejo de la uva Cabernet S. y Tannat.

Fotografía 19
Extractos de antocianinas que aún se obtuvo del hollejo ya macerado.

En la fotografía 19, se muestra los diferentes extractos obtenidos de antocianinas, con etanol y ácido clorhídrico del hollejo que ya fue macerado. Los dos últimos botes son extractos de antocianinas del hollejo de la uva Cabernet S. y Tannat por eso del color más oscuro que los demás.

Fotografía 20 Hollejo después de la extracción de antoninas con etanol y ácido clorhídrico.

Hollejo de la uva Tannat.

Hollejo de la uva Cabernet S.

Fotografía 21

Concentrado de antocianinas en contacto con soluciones buffer de pH=1 y pH= 4.5.

Concentrando del hollejo de la uva Cabernet S.

Concentrando del hollejo de la uva Tannat

El concentrado de antocianinas, el extracto de antocianinas del hollejo ya macerado y el extracto del hollejo de uva, se puso en contacto con las soluciones buffer de cloruro de potasio ajustado con ácido clorhídrico a un pH=1 y solución buffer de acetato de sodio ajustado con ácido acético un pH= 4,5 como muestra la fotografía 21.

Con el fin de determinar su lectura en el espectrofotómetro con longitud de onda de 510 y 700 nm para determinar las antocianinas totales y con longitud de onda de 420 520 y 620nm se determinó la tonalidad y la intensidad de color.

Fotografías tomadas Aplicación del colorante natural en el yogurt natural.

Para la aplicación de colorante, se partió de yogurt natural, en la fotografía 22 muestra el color del yogurt ya con el colorante del hollejo de uva, para llegar a ese color se agregó 0,5 ml de colorante en 30 ml de yogurt.

Fotografía 22 Yogurt con colorante natural del hollejo de uva Cabernet Sauvignon y hollejo de uva Tannat.

Fotografía 23

En la fotografía 23, se muestra el yogurt con menor intensidad de color, debido a que se agregó menor cantidad de colorante en el yogurt, es decir que para 100ml de yogurt natural se agregó 0,3 ml de colorante, como también se agregó 10 g de azúcar y saborizante 0,25 ml.

ANEXO C CÁLCULOS REALIZADOS EN EL PROCESO DE OBTENCIÓN DE COLORANTE NATURAL.

ANEXO C.1

DATOS OBTENIDOS EN EL PROCESO DE OBTENCIÓN DE COLORANTE NATURAL.

°BRIX

Los grados °Brix se determinaron antes (° Brix₁) y después (° Brix₂) del concentrado en el rota vapor

Tabla C.1-1 °Brix del hollejo de la uva Cabernet Sauvignon y la uva Tannat.

	Temperatura	11	Tipo de	Rép	lica I	Répl	ica II
N°	(°C)	pН	muestra	°Brix ₁	° Brix ₂	° Brix ₁	° Brix ₂
1	5	2.5	Cabernet S.	1,3713	1.4203	1,3743	1,4315
2	15	2,5	Cabernet S.	1,3753	1,4309	1,3758	1,4318
3	5	3	Cabernet S.	1,3846	1,4313	1,3745	1,4329
4	15	3	Cabernet S.	1,3876	1,4323	1,3801	1,4349
5	5	2.5	Tannat	1,3636	1,4589	1,3671	1,4351
6	15	2,5	Tannat	1,3651	1,4599	1,3685	1,4354
7	5	3	Tannat	1,3734	1,4694	1,3703	1,4904
8	15	3	Tannat	1,3735	1,4795	1,3706	1,4923

Fuente: Elaboración propia.

ANTOCIANINAS TOTALES EN LA UVA CABERNET SAUVIGNON Y LA UVA TANNAT.

Para determinar directamente la cantidad de antocianinas presentes en la uva, se trituraron 50 g de bayas con una mini procesadora de mano. Posteriormente, se pesó 1 gramo y se efectuó una extracción con etanol y ácido clorhídrico a pH =1 en tres etapas, manteniendo una relación en peso de muestra-solvente 1:10. En la primera etapa, la mezcla muestra-solvente se agitó con 10 minutos y se abrigó de la luz y el oxígeno. Luego se centrifugó a 4000 rpm durante 30 minutos y se guardó el sobrenadante. Al residuo se le realizó una nueva extracción, se centrifugó y se separó el sobrenadante. Con el nuevo residuo de esta segunda etapa se procedió de la misma

manera. Los tres sobrenadantes fueron mezclados y centrifugados a 4000 rpm durante 30 minutos para separar sólidos en suspensión.

Se mezcló 0,5 ml del sobrenadante mezcla con 10 ml de tampón a pH 1 y 0,5 ml del sobrenadante mezcla con 10ml de tampón a pH 4,5. A estas preparaciones se les midió la absorbancia espectrofotométricamente a 510 y 700 nm.

Tabla C.1-2
Lecturas realizadas en el espectrómetro para determinar la absorbancia.

Variedad de	Solución	Longitud de onda.		Longitud de onda.		Cambio en la absorbancia.	Antocianinas totales.
uva.	tampón.	510nm	700nm	ΔΑ	AT		
Cabernet S.	pH=1	0,196	0,016	0,153	2,433		
Cabernet S.	pH=4,5	0,040	0,013	0,133	2,433		
Tannat	pH=1	0,682	0,018	0,566	9,007		
1 ailliat	pH=4,5	0,118	0,020	0,300	9,007		

Fuente: Elaboración propia.

DETERMINACIÓN DE INTENSIDAD DE COLOR Y TONALIDAD EN LA UVA CABERNET SAUVIGNON Y LA UVA TANNAT.

Para la determinación de la intensidad de color y tonalidad en la uva Cabernet Sauvignon y en la uva Tannat se diluyo 0,5 ml de extracto en 10 ml de solución tampón a pH 1 y a pH 4,5. Los valores obtenidos se muestran en la siguiente tabla.

Tabla C.1-3

Datos obtenidos para determinar la tonalidad y la IC en la variedad Tannat y

Cabernet Sauvignon.

Variedad de	Solución	Longitud de onda.			Intensidad	Tonalidad	
uva.	tampón.	420nm	520nm	620nm	de color.		
Cabernet S.	pH=1	0,175	0,428	0,023	0,425544	0.425544 0.2217	0,22177273
Cabernet S.	pH=4,5	0,093	0,076	0,01		0,22177273	
Tannat	pH=1	0,243	0,592	0,029	0,594048	0,24667206	
Tailliat	pH=4,5	0,115	0,098	0,027	0,394048	0,24007200	

ANTOCIANINAS TOTALES EN EL HOLLEJO DE LA UVA CABERNET – SAUVIGNON Y LA UVA TANNAT DESPUÉS DE LA EXTRACCIÓN S-L.

Para determinar directamente la cantidad de antocianinas presentes en el hollejo después de la extracción S-L, se pesó 1 g de hollejo y se efectuó una extracción, con etanol acidificado con ácido clorhídrico a un pH =1 en tres etapas, manteniendo una relación en peso de muestra-solvente 1:10. En la primera etapa, la mezcla muestra-solvente se agitó con 10 minutos y se abrigó de la luz y el oxígeno. Luego se centrifugó a 4000 rpm durante 30 minutos y se guardó el sobrenadante. Al residuo se le realizó una nueva extracción, se centrifugó y se separó el sobrenadante. Con el nuevo residuo, de esta segunda etapa se procedió de la misma manera. Los tres sobrenadantes fueron mezclados y centrifugados a 4000 rpm durante 30 minutos para separar sólidos en suspensión.

Posteriormente se mezcló 5 ml del sobrenadante mezcla con 10 ml de tampón a pH 1 y 5 ml del sobrenadante mezcla con 10 ml de tampón a pH 4.5. A estas preparaciones se les midió la absorbancia espectrofotométricamente, según se describió anteriormente a 510 y 700 nm.

Obteniendo los siguientes valores en la tabla C.1-4.

Tabla C.1-4
Lecturas realizadas en el espectrómetro para determinar la absorbancia.

		Réplic	a I		Réplica II				
	Lectura de		Lectura de		Lectura de		Lectu	Lectura de	
N°	absorbanc			ancia a	absorb	ancia a		ancia a	
	aosoroane	a a pri=1	pH=	=4,5	pН	=1	pH=	=4,5	
	510nm	700nm	510nm	700nm	510nm	700nm	510nm	700nm	
1	0,359	0,031	0,096	0,023	0,341	0,029	0,091	0,020	
2	0,335	0,028	0,089	0,019	0,334	0,026	0,087	0,018	
3	0,321	0,026	0,085	0,017	0,361	0,035	0,099	0,028	
4	0,351	0,030	0,094	0,022	0,342	0,028	0,091	0,027	
5	0,811	0,060	0,245	0,051	0,813	0,010	0,247	0,052	
6	0,820	0,065	0,255	0,053	0,979	0,048	0,334	0,047	
7	0,831	0,045	0,257	0,038	0,842	0,047	0,262	0,039	
8	0,837	0,046	0,270	0,040	0,850	0,045	0,270	0,040	

Fuente: Elaboración propia.

Estos valores obtenidos fueron introducidas a la ecuación descrita anteriormente, dando los siguientes resultados que se muestran en la tabla:

Tabla C.1-5
Antocianinas totales y cambio de absorbancia.

	Temperatura	Tipo de		Rép	lica I	Réplica II	
N°	(°C)	pН	muestra	ΔΑ	AT	ΔΑ	AT
1	5	2.5	Cabernet S.	0,255	2,840	0,241	2,684
2	15	2,5	Cabernet S.	0,237	2,640	0,239	2,662
3	5	3	Cabernet S.	0,227	2,528	0,255	2,840
4	15	3	Cabernet S.	0,249	2,773	0,250	2,785
5	5	2.5	Tannat	0,557	6,204	0,608	6,772
6	15	2,5	Tannat	0,553	6,159	0,644	7,173
7	5	3	Tannat	0,567	6,315	0,572	6,371
8	15	3	Tannat	0,561	6,249	0,575	6,404

DETERMINACIÓN DE INTENSIDAD DE COLOR Y TONALIDAD EN EL HOLLEJO DE LA UVA CABERNET –SAUVIGNON Y LA UVA TANNAT DESPUÉS DE LA EXTRACCIÓN S-L.

Para la determinación de la intensidad de color (IC) y tonalidad en el hollejo después de la extracción S-L, se diluyo 2,5 ml de extracto en 5 ml de solución tampón a pH 1 y a pH 4,5.

Los valores obtenidos se muestran en la siguiente tabla:

Tabla C.1-6
Lecturas realizadas en el espectrofotómetro para determinar la IC después de la extracción S-L.

	Réplica I								
N°	Lectura d	le absorbanc	ia a pH=1	a pH=1 Lectura de absorbancia a pH=4,5					
	420nm	520nm	620nm	420nm	520nm	620nm			
1	0,311	0,438	0,041	0,288	0,173	0,063			
2	0,315	0,437	0,043	0,291	0,174	0,064			
3	0,345	0,572	0,055	0,316	0,213	0,087			
4	0,363	0,542	0,069	0,331	0,242	0,088			
5	0,521	0,749	0,074	0,498	0,307	0,119			
6	0,536	0,782	0,077	0,517	0,322	0,114			
7	0,537	0,714	0,071	0,514	0,318	0,107			
8	0,576	0,709	0,085	0,541	0,327	0,118			

	Réplica II								
N°	Lectura d	le absorbanci	a a pH=1	Lectura d	Lectura de absorbancia a pH=4,5				
	420nm	520nm	620nm	420nm	520nm	620nm			
1	0,316	0,436	0,044	0,292	0,175	0,065			
2	0,36	0,416	0,07	0,312	0,197	0,081			
3	0,351	0,51	0,061	0,325	0,207	0,085			
4	0,37	0,56	0,073	0,334	0,26	0,09			
5	0,529	0,768	0,076	0,511	0,317	0,112			
6	0,442	0,588	0,061	0,411	0,242	0,086			
7	0,557	0,741	0,069	0,494	0,304	0,103			
8	0,586	0,693	0,093	0,565	0,339	0,126			

Los valores obtenidos se introdujeron en la siguiente fórmula: Intensidad de color:

$$\begin{split} \text{IC=} & [(\text{DO}_{420} + \text{DO}_{520} + \text{DO}_{620})_{pH=1} - (\text{DO}_{420} + \text{DO}_{520} + \text{DO}_{620})_{pH=4,\,5}] * \text{FD} \\ & \text{Tonalidad} = & \frac{[(\text{DO}420)pH=1 - (\text{DO}420)pH=4,5]}{[(\text{DO}520)pH=1 - (\text{DO}520)pH=4,5]} \times \text{FD} \end{split}$$

Los resultados que se introducen en la fórmula, se muestran en la siguiente tabla.

Tabla C.1-7

Datos obtenidos para determinar la IC en el hollejo después de la extracción S-L

	Réplica I								
N°	$\sum DO (pH=1)$	$\sum DO (pH=4.5)$	\sum DO (pH=1) - \sum DO (pH=4,5)	FD	IC				
1	0,79	0,524	0,266	0,667	0,177				
2	0,795	0,529	0,266	0,667	0,177				
3	0,972	0,616	0,356	0,667	0,237				
4	0,974	0,661	0,313	0,667	0,209				
5	1,344	0,924	0,42	0,667	0,280				
6	1,395	0,953	0,442	0,667	0,295				
7	1,322	0,939	0,383	0,667	0,255				
8	1,37	0,986	0,384	0,667	0,256				

	Réplica II								
N°	∑ DO (pH=1)	$\sum_{\text{(pH=4.5)}} DO$	\sum DO (pH=1) - \sum DO (pH=4,5)	FD	IC				
1	0,796	0,532	0,264	0,667	0,176				
2	0,846	0,59	0,256	0,667	0,171				
3	0,922	0,617	0,305	0,667	0,203				
4	1,003	0,684	0,319	0,667	0,213				
5	1,373	0,94	0,433	0,667	0,289				
6	1,091	0,739	0,352	0,667	0,235				
7	1,367	0,901	0,466	0,667	0,311				
8	1,372	1,03	0,342	0,667	0,228				

Tabla C.1-8

Datos obtenidos para determinar la tonalidad después de la extracción S-L

			Réplica I		
N°	DO ₄₂₀	DO 520	DO ₄₂₀ / DO ₅₂₀	FD	Tonalidad
1	0,023	0,265	0,087	0,667	0,058
2	0,024	0,263	0,091	0,667	0,061
3	0,029	0,359	0,081	0,667	0,054
4	0,032	0,300	0,107	0,667	0,071
5	0,023	0,442	0,052	0,667	0,035
6	0,019	0,460	0,041	0,667	0,028
7	0,023	0,396	0,058	0,667	0,039
8	0,035	0,382	0,092	0,667	0,061

			Réplica II		
N°	DO 420	DO 520	DO ₄₂₀ / DO ₅₂₀	FD	Tonalidad
1	0,024	0,261	0,092	0,667	0,061
2	0,048	0,219	0,219	0,667	0,146
3	0,026	0,303	0,086	0,667	0,057
4	0,036	0,300	0,120	0,667	0,080
5	0,018	0,451	0,040	0,667	0,027
6	0,031	0,346	0,090	0,667	0,060
7	0,063	0,437	0,144	0,667	0,096
8	0,021	0,354	0,059	0,667	0,040

Fuente: Elaboración propia.

ANTOCIANINAS TOTALES EN EL CONCENTRADO.

Para la determinación de antocianinas totales en el concentrado, se tomó una alícuota de 0,01 ml y 5 ml de solución tampón a pH 1 y solución tampón a pH 4,5, con el espectrofotómetro se realizó dos lecturas, una a 510 nm, de longitud de onda y la otra a 700 nm de longitud de onda.

Los resultados obtenidos se muestran en la siguiente tabla C.1-9.

Tabla C.1-9 Lecturas realizadas en el espectrómetro para determinar la absorbancia

		Réplic	a I			Répli	ica II	
	Lacti	Lectura de		ıra de	Lectura de		Lectura de	
N°		ia de ia a pH=1	absorb	ancia a	absorb	ancia a	absorb	ancia a
	absorbanc	1a a p11–1	pH=	=4,5	pН	[=1	pH=	=4,5
	510nm	700nm	510nm	700nm	510nm	700nm	510nm	700nm
1	0,535	0,030	0,402	0,097	0,534	0,032	0,400	0,099
2	0,689	0,031	0,487	0,058	0,690	0,030	0,485	0,055
3	0,691	0,032	0,491	0,06	0,678	0,031	0,480	0,060
4	0,683	0,033	0,429	0,028	0,673	0,031	0,419	0,025
5	0,952	0,032	0,482	0,031	0,962	0,031	0,482	0,027
6	0,974	0,042	0,311	0,029	0,963	0,041	0,300	0,027
7	0,774	0,044	0,300	0,076	0,954	0,042	0,450	0,043
8	0,950	0,033	0,289	0,040	0,959	0,030	0,300	0,040

Fuente: Elaboración propia.

Una vez obtenido las lecturas estos datos se introducirán en las siguientes fórmulas:

Cambio en la absorbancia

$$\Delta A = (A_{510} - A_{700})_{pH=1} - (A_{510} - A_{700})_{pH=4.5}$$

Antocianinas totales

$$\Delta T \left(\frac{mg}{l} \right) = \frac{\Delta A * PM * FD * 1000}{\epsilon * l}$$

Dónde:

AT: Antocianinas totales

ΔA: Cambio en la absorbancia

PM: Masa molecular para cianidina-3-glucósido, 449.2 g/mol

FD: Factor de dilución=0,998

ε: Coeficiente de extinción molar para cianidina-3-glucósido, 26900

1: Longitud de paso de celda, 1cm.

1000: Factor de conversión de gramos a miligramos.

Los resultados obtenidos se detallan en la siguiente tabla.

Tabla C.1-10
Antocianinas totales y cambio de absorbancia.

	Temperatura	nII	Tipo de	Répl	Réplica I		Réplica II	
N°	(°C)	pН	muestra	ΔΑ	AT	ΔA	AT	
1	5	2.5	Cabernet S.	0,200	3,333	0,201	3,350	
2	15	2,5	Cabernet S.	0,228	3,800	0,227	3,783	
3	5	3	Cabernet S.	0,229	3,816	0,230	3,833	
4	15	3	Cabernet S.	0,249	4,150	0,248	4,133	
5	5	2.5	Tannat	0,469	7,816	0,476	7,933	
6	15	2,5	Tannat	0,506	8,433	0,505	8,416	
7	5	3	Tannat	0,650	10,833	0,649	10,816	
8	15	3	Tannat	0,668	11,133	0,668	11,149	

Fuente: Elaboración propia.

DETERMINACIÓN DE INTENSIDAD DE COLOR Y TONALIDAD EN EL CONCENTRADO.

Para la determinación de la intensidad de color y tonalidad en el concentrado, se diluyó 0,01 ml de extracto en 20 ml de solución tampón a pH 1 y a pH 4,5, se les midió la absorbancia a una longitud de onda de 420nm, 520nm y 620nm.

Los valores obtenidos se muestran en la siguiente tabla C.1-11.

Tabla C.1-11
Lecturas realizadas en el espectrómetro para determinar la absorbancia.

	Réplica I								
N°	Lectura d	e absorbanc	ia a pH=1	Lectura de absorbancia a pH=4,5					
	420nm	520nm	620nm	420nm	520nm	620nm			
1	0,120	0,349	0,033	0,066	0,087	0,040			
2	0,129	0,414	0,041	0,072	0,100	0,036			
3	0,176	0,474	0,052	0,076	0,091	0,023			
4	0,193	0,512	0,059	0,079	0,100	0,046			
5	0,229	0,286	0,039	0,072	0,138	0,051			
6	0,233	0,332	0,040	0,079	0,119	0,062			
7	0,254	0,785	0,064	0,089	0,133	0,074			
8	0,268	0,760	0,080	0,135	0,193	0,081			

	Réplica II									
N°	Lectura	de absorbancia	a a pH=1	Lectura	le absorbancia	a a pH=4,5				
	420nm	520nm	620nm	420nm	520nm	620nm				
1	0,118	0,345	0,032	0,065	0,084	0,049				
2	0,125	0,400	0,039	0,068	0,091	0,038				
3	0,169	0,458	0,049	0,075	0,089	0,035				
4	0,198	0,523	0,061	0,080	0,103	0,054				
5	0,232	0,631	0,041	0,077	0,121	0,048				
6	0,246	0,664	0,044	0,088	0,129	0,067				
7	0,249	0,771	0,066	0,089	0,137	0,076				
8	0,263	0,769	0,074	0,118	0,171	0,082				

Fuente: Elaboración propia.

Los valores obtenidos se introdujeron en la siguiente fórmula:

Intensidad de color.

$$IC = [(DO_{420} + \ DO_{520} + DO_{620})_{pH=1} - (DO_{420} + \ DO_{520} + DO_{620})_{pH=4,5}] * \ FD$$

$$Tonalidad = \frac{[(D0420)pH = 1 - (D0420)pH = 4,5]}{[(D0520)pH = 1 - (D0520)pH = 4,5]} \times FD$$

$$DO_{420} = [(DO_{420})_{pH=1} - (DO_{420})_{pH=4,5}]$$

$$DO_{520} = [(DO_{520})_{pH=1} - (DO_{520})_{pH=4,5}]$$

Dando los siguientes resultados se detalla en la tabla.

Tabla C.1-12
Datos obtenidos para determinar intensidad de color.

7.10	Réplica I										
N°	∑ DO (pH=1)	$\sum DO (pH=4.5)$	\sum DO (pH=1) - \sum DO (pH=4,5)	FD	IC						
1	0,502	0,193	0,309	0,999	0,309						
2	0,584	0,208	0,376	0,999	0,376						
3	0,702	0,19	0,512	0,999	0,511						
4	0,764	0,225	0,539	0,999	0,538						
5	0,554	0,261	0,293	0,999	0,293						
6	0,605	0,26	0,345	0,999	0,345						
7	1,103	0,296	0,807	0,999	0,806						
8	1,108	0,409	0,699	0,999	0,698						

.	Réplica II										
N°	∑ DO (pH=1)	∑ DO (pH=4.5)	\sum DO (pH=1) - \sum DO (pH=4,5)	FD	IC						
1	0,495	0,198	0,297	0,999	0,297						
2	0,564	0,197	0,367	0,999	0,367						
3	0,676	0,199	0,477	0,999	0,477						
4	0,782	0,237	0,545	0,999	0,544						
5	0,904	0,246	0,658	0,999	0,657						
6	0,954	0,284	0,67	0,999	0,669						
7	1,086	0,302	0,784	0,999	0,783						
8	1,106	0,371	0,735	0,999	0,734						

Tabla C.1-13

Datos obtenidos para determinar la tonalidad.

		Réplica I									
N°	DO 420	DO ₅₂₀	DO ₄₂₀ / DO ₅₂₀	FD	Tonalidad						
1	0,054	0,262	0,20610687	0,999	0,206						
2	0,057	0,314	0,18152866	0,999	0,181						
3	0,100	0,383	0,26109661	0,999	0,261						
4	0,114	0,412	0,27669903	0,999	0,276						
5	0,157	0,148	1,06081081	0,999	1,060						
6	0,154	0,213	0,72300469	0,999	0,722						
7	0,165	0,652	0,25306748	0,999	0,253						
8	0,133	0,567	0,2345679	0,999	0,234						

		Réplica II									
N°	DO ₄₂₀	DO ₅₂₀	DO ₄₂₀ / DO ₅₂₀	FD	Tonalidad						
1	0,053	0,261	0,20306513	0,999	0,203						
2	0,057	0,309	0,18446602	0,999	0,184						
3	0,094	0,369	0,25474255	0,999	0,254						
4	0,118	0,42	0,28095238	0,999	0,281						
5	0,155	0,51	0,30392157	0,999	0,304						
6	0,158	0,535	0,2953271	0,999	0,295						
7	0,16	0,634	0,25236593	0,999	0,252						
8	0,145	0,598	0,24247492	0,999	0,242						

ANEXO C.2

PROCEDIMIENTO PARA LA RESOLUCIÓN DEL DISEÑO FACTORIAL 2³.

ALGORITMO DE YATES PARA UN DISEÑO 2^K.

Una técnica muy eficiente para calcular la estimulación de los efectos y las correspondientes sumas de cuadrados en un diseño factorial 2^K fue propuesta por Yates (1937), el cual se procede a elaborar un cuadro de algoritmo de la siguiente manera (Ramírez, 2009).

Combinación de tratamientos	Resp (Y;)		Columna I		Columna II		Columna III	Efectos
1	\mathbf{Y}_{1}	Y_1+Y_2	\mathbf{Y}_{9}	$Y_9 + Y_{10}$	Y ₁₇	$Y_{17} + Y_{18}$	∑Yi	
a	Y_2	$Y_3 + Y_4$	Y_{10}	$Y_{11} + Y_{12}$	Y ₁₈	$Y_{10} + Y_{20}$	Y ₂₆	$Y_{26}/n2^{k-1}$
b	Y_3	$Y_5 + Y_6$	Y ₁₁	$Y_{13} + Y_{14}$	Y ₁₉	Y ₂₁ +Y ₂₂	Y ₂₇	$Y_{27}/n2^{k-1}$
ab	Y_4	$Y_7 + Y_8$	Y ₁₂	Y ₁₅ +Y ₁₆	Y_{20}	$Y_{23} + Y_{24}$	Y ₂₈	$Y_{28}/n2^{k-1}$
c	Y_5	Y_2 - Y_1	Y ₁₃	Y ₁₀ Y ₉	Y ₂₃	Y ₁₈ -Y ₁₇	Y ₂₉	$Y_{29}/n2^{k-1}$
ac	Y_6	Y_4-Y_3	Y ₁₄	Y ₁₂ -Y ₁₁	Y ₂₂	Y ₂₀ -Y ₁₉	Y ₃₀	$Y_{30}/n2^{k-1}$
bc	Y_7	Y ₆ -Y ₅	Y ₁₅	$Y_{14} - Y_{13}$	Y ₂₃	$Y_{22}-Y_{21}$	Y ₃₁	$Y_{31}/n2^{k-1}$
abc	Y_8	Y ₈ -Y ₇	Y ₁₆	Y ₁₆ -Y ₁₅	Y ₂₄	Y ₂₄ -Y ₂₃	Y ₃₂	$Y_{32}/n2^{k-1}$
	ΣYi							

Fuente: Ramírez, 2009.

Por lo general, para un diseño factorial 2^K deben construirse K columnas de este tipo, por lo tanto, la columna K es el contraste del efecto representado por la letras minúsculas al comienzo del reglón.

- Para obtener la estimación del efecto se dividen los valores de la columna K por n2^{k-1} y se crea ésta columna.
- ➤ Se obtiene la columna de la suma de cuadrados de los efectos elevando al cuadrado los valores de la columna K, y dividiendo por n2^{k-1}.

REPRESENTACIÓN DEL ANÁLISIS DE VARIANZA (ANOVA) EN EL DISEÑO 2³.

En el cuadro siguiente, se muestra la tabla de análisis de varianza (ANOVA) para un diseño factorial de 2³, en base a la aplicación de la prueba de Fisher (Ramírez, 2009).

Análisis de varianza (ANOVA) para el diseño factorial 2³.

Fuente de variación (FV)	Suma de cuadrados (SC)	Grados de libertad (GL)	Cuadrados medios (CM)	Fisher calculado (Fcal)	Fisher tabulado (Ftab)
Total	SS(T)	n2 ³ -1			
Factor A	SS(A)	(a-1)	$CM(A) = \frac{SS(A)}{(a-1)}$	$\frac{CM(A)}{CM(E)}$	$\frac{V_1}{V_2} = \frac{GL_{SS(A)}}{GL_{SS(E)}}$
Factor B	SS(B)	(b-1)	$CM(B) = \frac{SS(B)}{(b-1)}$	$\frac{\mathrm{CM}(\mathrm{B})}{\mathrm{CM}(\mathrm{E})}$	$\frac{V_1}{V_2} = \frac{GL_{SS(B)}}{GL_{SS(E)}}$
Factor C	SS(C)	(c-1)	$CM(C) = \frac{SS(C)}{(c-1)}$	$\frac{\text{CM(C)}}{\text{CM(E)}}$	$\frac{V_1}{V_2} = \frac{GL_{SS(C)}}{GL_{SS(E)}}$
Interacción AB	SS(AB)	(a-1) (b-1)	$CM(AB) = \frac{SS(AB)}{(a-1)(b-1)}$	CM(AB) CM(E)	$\frac{V_1}{V_2} = \frac{GL_{SS(AB)}}{GL_{SS(E)}}$
Interacción AC	SS(AC)	(a-1) (c-1)	$CM(AC) = \frac{SS(AC)}{(a-1)(c-1)}$	CM(AC) CM(E)	$\frac{V_1}{V_2} = \frac{GL_{SS(AC)}}{GL_{SS(E)}}$
Interacción BC	SS(BC)	(b-1) (c-1)	$CM(BC) = \frac{SS(BC)}{(b-1)(c-1)}$	$\frac{\text{CM(BC)}}{\text{CM(E)}}$	$\frac{V_1}{V_2} = \frac{GL_{SS(BC)}}{GL_{SS(E)}}$
Interacción ABC	SS(ABC)	(a-1) (b-1) (c-1)	$CM(ABC) = \frac{SS(ABC)}{(a-1)(b-1)(c-1)}$	$\frac{CM(ABC)}{CM(E)}$	$\frac{V_1}{V_2} = \frac{GL_{SS(ABC)}}{GL_{SS(E)}}$
Error	SS(E)	(n2 ^{k-1})	$CM(E) = \frac{SS(E)}{(n2^{K-1})}$		

Fuente: Ramírez, 2009.

En la tabla se observa el arreglo matricial y resultados del diseño factorial 2³ de las variables independientes: Temperatura, acidez y tipo de muestra.

Tabla C.2-1
Arreglo matricial y resultado del diseño factorial en el proceso de extracción.

	Combinación		Fact	tores	Variable	Respuesta	
Corridas	de tratamientos		Tuc		Réplica I	Réplica II	
		T	pН	Muestra	периса 1		
1	1	5	2.5	Cabernet S.	3,333	3,350	
2	a	5	3	Cabernet S.	3,816	3,833	
3	b	15	2.5	Cabernet S.	3,800	3,783	
4	ab	15	3	Cabernet S.	4,150	4,133	
5	С	5	2.5	Tannat	7,816	7,933	
6	ac	5	3	Tannat	10,833	10,816	
7	bc	15	2.5	Tannat	8,433	8,416	
8	abc	15	3	Tannat	11,133	11,149	

Fuente: Elaboración propia.

Aplicando la matriz del algoritmo de Yates, se tiene:

Tabla C.2-2

Matriz de algoritmo de yates y resultados.

Combinación de Tratamientos	Resp. Yi		Columna I		Columna II		Columna III	Suma de cuadrados
1	6,683	6,683+7,649	14,332	14,332+15,866	30,198	30,198+76,529	106,727	
T	7,649	7,583+8,283	15,866	37,398+39,131	76,529	1,666+11,333	12,999	10,560
T	7,583	15,749+21,649	37,398	0,966+0,700	1,666	1,534+1,733	3,267	0,667
Н	8,283	16,849+22,282	39,131	5,900+5,433	11,333	-0,266+(-0,467)	-0,733	0,033
Tt	15,749	7,649-6,683	0,966	15,866-14,332	1,534	76,529-30,198	46,331	134,160
TH	21,649	8,283-7,583	0,700	39,131-37,398	1,733	11,333-1,666	9,667	5,840
tH	16,849	21,649-15,749	5,900	0,700-0,966	-0,266	1,733-1,534	0,199	0,002
TtH	22,282	22,282-16,849	5,433	5,433-5,900	-0,467	-0,467-(-0,266)	-0,201	0,002
	106,727							

Fuente: Elaboración propia.

Forma de elaborar la columna de las sumas de los cuadrados; se obtiene elevando al cuadrado los valores de la columna (3) luego dividirlos por $n2^k=2x2^3=16$. Así mismo la suma de la variable respuesta $\sum Y_i=106,727$, debe ser igual al primer valor (106,727) de la columna III.

La suma de cuadrados del total de los factores T.

SS (T) =
$$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \sum_{l=1}^{2} Y_{ijkl}^{2} - \frac{T^{2}}{8n}$$

$$SS(T) = 3,333^{2} + 3,350^{2} + 3,816^{2} + 3,833^{2} + \dots + 8,433^{2} + 8,416^{2} + 11,133^{2} + 11,149^{2} - \frac{106,727^{2}}{8*2}$$

SS(T) = 863,194-711,915

SS(T) = 151,279

La suma de cuadrados de error de los factores E:

$$SS(E) = SS(T) - SS(A) - SS(B) - SS(C) - SS(AB) - SS(AC) - SS(BC) - SS(ABC)$$

$$SS(E) = 151,279-10,560-0,667-0,033-134,160-5,840-0,002-0,002$$

SS(E) = 0.015

En la tabla, se muestra la tabla de análisis de varianza (ANOVA) de la prueba estadística de Fisher

Tabla C.2-3 (ANOVA) para el diseño factorial 2^3 .

Fuente de variación (FV)	Suma de cuadrados (SC)	Grados de libertad (GL)	Cuadrados medios (CM)	Fisher Cal	Fisher Tab
Total	151,264	16 - 1 = 15			
Temperatura	10,560	2 - 1 = 1	10,560	5,280	11,259
pH	0,667	2 - 1 = 1	0,667	333,5	11,259
Tipo de muestra	0,033	2 - 1 = 1	0,033	16,5	11,259
Temperatura-pH	134,160	2 - 1 = 1	134,160	67,080	11,259
Temperatura-tipo de muestra	5,840	2 - 1 = 1	5,840	2,920	11,259
pH-tipo de muestra	0,002	2 - 1 = 1	0,002	1	11,259
Temperatura-pH-muestra	0,002	2 - 1 = 1	0,002	1	11,259
Error	0,0150	$2^3 = 8$	0,002		

ANEXO C.2

TABLA DE FISHER PARA UN NIVEL DE CONFIANZA DEL 99%

 $\begin{array}{ll} \textbf{1} \cdot \alpha = \textbf{0.99} & v_1 & = \text{grados de libertad del numerador} \\ \textbf{1} \cdot \alpha = \textbf{P} \left(\textbf{F} \leq f_{\alpha,v_1,v_2} \right) & v_2 & = \text{grados de libertad del denominador} \end{array}$

\v ₁		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
V2 .	4050 105	4999,340	5403,534		5763.955	_	5928.334	5980.954	6022.397	6055,925		6106,682		6143,004	6156,974				6200,746	6208.682
1 2	98.502	99.000	99,164	99.251	99.302	99.331	99.357	99,375	99.390	99.397	99,408	99,419	99,422	99,426	99.433	99,437	99,441	99,444	99,448	99,448
3	34.116	30.816	29,457	28,710	28.237	27.911	27.671	27,489	27.345	27.228	27.132	27.052	26.983	26.924	26.872	26.826	26.786	26.751	26.719	26.690
4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14,799	14.659	14.548	14.452	14.374	14.306	14.249	14.198	14.154	14.114	14.079	14.048	14.019
5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10,158	10.051	9.963	9.888	9.825	9.770	9.722	9.680	9.643	9.609	9.580	9.553
6	13,745	10.925	9.780	9.148	8.746	8.466	8.260	8.102	7.976	7.874	7.790	7.718	7.657	7.605	7.559	7.519	7.483	7.451	7.422	7.396
7	12,246	9.547	8.451	7.847	7.460	7.191	6.993	6.840	6.719	6.620	6.538	6.469	6.410	6.359	6.314	6.275	6.240	6.209	6.181	6.155
8	11.259	8,649	7.591	7.006	6.632	6.371	6.178	6.029	5.911	5.814	5.734	5.667	5.609	5.559	5.515	5.477	5.442	5.412	5.384	5.359
9	10.562	8.022	6.992	6.422	6.057	5.802	5.613	5.467	5,351	5.257	5.178	5.111	5.055	5.005	4,962	4.924	4.890	4.860	4,833	4.808
10	10.044	7.559	6.552	5,894	5.636	5.386	5.200	5.057	4.942	4.849	4.772	4.706	4.650	4.601	4.558	4.520	4.487	4.457	4.430	4.405
11	9,648	7.206	6.217	5.668	5.316	5,069	4.888	4.744	4.632	4.539	4.462	4.397	4.342	4.293	4.251	4.213	4.180	4.150	4.123	4.099
12	9.330	6.927	5.953	5.412	5.064	4.821	4.640	4.499	4.388	4.296	4.220	4.155	4.100	4.052	4.010	3.972	3,939	3.910	3.883	3.858
13	9.074	6.701	5.739	5.205	4.862	4.520	4.441	4.302	4.191	4.100	4.025	3.960	3.905	3.857	3.815	3.778	3.745	3.716	3.689	3.665
14	8,862	6.515	5.564	5.035	4.695	4.456	4.278	4.140	4.030	3.939	3.864	3.800	3.745	3,698	3.656	3.619	3.586	3.556	3.529	3.505
15	8.683	6.359	5.417	4.893	4.556	4,318	4.142	4.004	3.895	3.805	3.730	3.666	3.612	3.564	3,522	3.485	3.452	3.423	3,396	3.372
16	8.531	6.226	5.292	4.773	4.437	4.202	4.026	3.890	3.780	3.691	3.616	3.553	3.498	3.451	3.409	3.372	3.339	3.310	3.283	3.259
17	8.400	6.112	5.185	4.669	4.336	4.101	3.927	3.791	3.682	3.593	3.518	3.455	3,401	3.353	3.312	3.275	3.242	3.212	3.186	3.162
18	8.285	6.013	5.092	4.579	4.248	4.015	3,841	3.705	3.597	3.508	3.434	3.371	3.316	3.269	3.227	3.190	3.158	3.128	3.101	3.077
19	8.185	5.926	5.010	4.500	4.171	3.939	3.765	3.631	3.523	3.434	3.360	3.297	3.242	3.195	3.153	3.116	3.084	3.054	3,027	3.003
20	8.096	5.849	4.938	4.431	4.103	3.871	3.699	3.564	3.457	3.368	3.294	3.231	3.177	3.130	3.088	3.051	3.018	2.989	2.962	2.938
21	8.017	5.780	4,874	4.369	4.042	3,812	3.640	3.506	3.398	3.310	3.236	3,173	3,119	3.072	3.030	2.993	2.960	2.931	2.904	2.880
22	7.945	5.719	4.817	4.313	3,988	3.758	3.587	3.453	3.346	3.258	3.184	3.121	3.067	3.019	2.978	2.941	2.908	2.879	2.852	2.827
23	7.881	5.664	4.765	4.264	3.939	3.710	3.539	3.406	3.299	3.211	3.137	3.074	3.020	2.973	2.931	2.894	2.861	2.832 2.789	2.805	2.780
24	7.823	5.614	4.718	4.218	3.895	3.667	3.498	3.363 3.324	3.256 3.217	3.168	3.094	3.032 2.993	2.977	2.892	2.850	2.813	2,780	2.751	2.724	2.699
25	7.770	5.568	4.675	4.177	3.855	3,527	3.457	3.288	3.182	3.094	3.021	2.958	2.904	2.857	2.815	2.778	2.745	2.715	2.688	2.664
26	7.721	5.526 5.488	4,637 4,601	4.140	3.818 3.785	3.591 3.558	3.388	3.256	3.149	3.062	2.988	2.926	2.872	2.824	2.783	2.746	2.713	2.683	2.656	2.632
27 28	7.636	5.453	4.568	4.074	3.754	3.528	3.358	3.226	3.120	3.032	2.959	2.896	2.842	2.795	2.753	2.716	2.683	2.653	2.626	2.602
29	7.598	5,420	4.538	4.045	3.725	3,499	3.330	3.198	3.092	3.005	2.931	2.868	2.814	2.767	2.726	2.689	2.656	2.626	2.599	2.574
30	7.562	5.390	4.510	4.018	3.699	3.473	3.305	3.173	3.067	2.979	2,906	2.843	2.789	2.742	2.700	2.563	2.630	2.600	2.573	2.549
40	7.314	5.178	4.313	3.828	3.514	3.291	3.124	2.993	2.888	2.801	2.727	2.665	2.611	2.583	2.522	2.484	2.451	2.421	2.394	2.369
50	7.171	5.057	4.199	3.720	3.408	3.186	3.020	2.890	2.785	2.698	2.625	2.563	2.508	2.461	2.419	2.382	2.348	2.318	2.290	2.265
60	7,077	4,977	4.126	3.649	3.339	3,119	2.953	2.823	2.718	2.832	2.559	2.498	2.442	2.394	2.352	2.315	2.281	2.251	2.223	2,198
70	7.011	4,922	4.074	3,600	3.291	3.071	2.906	2.777	2.672	2.585	2.512	2.450	2.395	2.348	2.306	2.268	2.234	2.204	2.176	2.150
80	6,963	4.881	4.036	3.563	3.255	3,036	2.871	2.742	2.637	2.551	2,478	2.415	2.361	2313	2.271	2.233	2.199	2.169	2.141	2.115
90	6.925	4.849	4.007	3.535	3.228	3.009	2.845	2.715	2.611	2.524	2.451	2.389	2.334	2.286	2.244	2.206	2.172	2.142	2.114	2.088
100	6,895	4.824	3.984	3.513	3.206	2.988	2.823	2.694	2.590	2.503	2.430	2.388	2.313	2.265	2.223	2.185	2.151	2.120	2.092	2.067
200	6.763	4.713	3.881	3.414	3.110	2.893	2,730	2.601	2.497	2411	2.338	2.275	2.220	2172	2.129	2.091	2.057	2.026	1.997	1.971
500	6.688	4,648	3.821	3.357	3.054	2.838	2.675	2.547	2.443	2.358	2.283	2.220	2.168	2.117	2.075	2.036	2.002	1.970	1.942	1.915
1000	6,660	4.626	3.801	3.338	3.036	2.820	2.657	2,529	2.425	2.339	2.265	2.203	2.148	2.099	2.056	2.018	1.983	1.952	1.923	1.897
	•	a por Irene	Patricia Va	aldez v Alfa	170.															

ANEXO C.3 BALANCE DE MATERIA

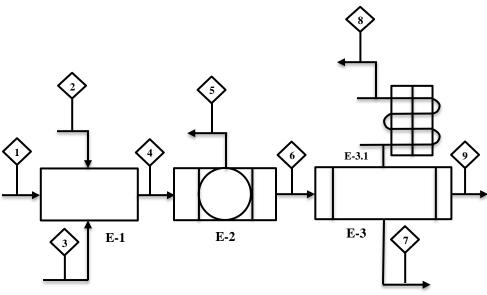


Tabla C.3-1 Lista de equipos

Texto mostrado	Descripción
E-1	Extracción S-L
E-2	filtro
E-3	Rota-evaporador
E-3.1	Condenador del rota evaporador

Fuente: Elaboración propia.

Tabla C.3-2 Corrientes del Proceso

Corriente	Especificación	Datos
C1	Hollejo de uva	50g
C2	Etanol	800ml = 631,2g
C3	Ácido cítrico	1,5g
C4	Extracto S-L	?
C5	Sólidos de hollejo	7g
C6	Extracto S-L libre de hollejo	?
C7	Etanol recuperado	523ml=412,647g
C8	Pérdidas de etanol	?
C9	Colorante natural	?

Fuente: Elaboración propia.

Densidad del Etanol = 0.789 g/ml.

BALANCE DE MATERIA EN EL PROCESO DE EXTRACCIÓN S-L

Se utilizó 50ml de etanol para triturar el hollejo de uva.

$$C1+C2+C3 = C4$$

Total de etanol que entra en el proceso es 800 ml.

$$C4 = 50g + 631, 2g + 1, 5g = 682, 7g$$

BALANCE DE MATERIA EN EL PROCESO DE FILTRADO.

$$C4 = C5 + C6$$

$$C6 = C4-C5 = 682,7g - 7g = 675,7g$$

BALANCE EN EL PROCESO DE EVAPORACIÓN.

$$C6 = C7 + C8 + C9$$

Si 631,2g es al 100%, la cantidad recuperada de etanol en porcentaje es: 65,375 % y el etanol perdido será 34,625% entonces en el balance será:

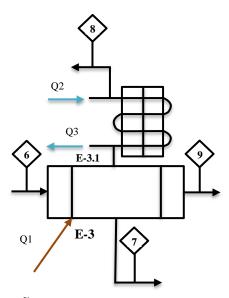
$$C9 = C6-C7-C8 = 675, 7g-412,647g-(631, 2g*0,346) = 675,7g-412,647g-218,395g$$

 $I = 44,658g$ de colorante.

La densidad del colorante natural es:

$$\rho$$
= m/V = 80g/30ml = 2,667 g/ml

Por tanto el colorante obtenido de 50 g de hollejo es:


V = 44,658g / 2,667 g/ml = 16,745ml de colorante.

RENDIMIENTO DEL PROCESO DE EXTRACCIÓN

$$\eta_{e} = \frac{\text{Masa de extracto obtenido}}{\text{Masa inicial del hollejo}} * 100\%$$

$$\eta_e = \frac{44,658g}{50g} * 100 = 89,316\%$$

BALANCE DE ENEGIA EN EL ROTA-EVAPORADOR.

BALANCE EN EL BAÑO DEL ROTA-EVAPORADOR.

$$Q_1 = m_{agua} * Cp*(t_i-t_f)$$

BALANCE EN EL SISTEMA DE EVAPORACIÓN -CONDENSACIÓN.

La bomba de vacío reduce la presión del sistema en 60 kpa, por lo que la presión del sistema es de:

Patm Tarija =101,3Kpa

$$Psist = Patm-Pred$$

$$Psist = (101, 3-60) \text{ Kpa}$$

$$Psis = 41,3 \text{ Kpa}$$

A esta presión la entalpía de vaporización del etanol es:

 $\Delta h_{\text{vap etanol}} = 841 \text{kJ/kg}$

Considerando que el etanol se calienta de 40 °C a 78,4°C, calor sensible y luego se evapora:

$$\begin{aligned} Q_{l} &= Q_{sensible} + Q_{vaporización} \\ Q_{sensible} &= m \; _{Exctracto} \; _{S-L} * Cp_{etanol} * (t_b \text{-} t_a) \end{aligned}$$

Dónde:

t_b=55°C= 328,15°K temperatura de baño

t_a=25°C= 298,15°K temperatura ambiente

Cp_{etanol}= 216,982KJ/kg °K

m Exetracto S-L= 675,7g= 0,6757 kg

$$\begin{aligned} Q_{sensible} &= 0,6757 \text{ kg*}216,982 \text{KJ/kg} \text{ °K*} (328,15\text{-}298,15) \text{ °K} \\ Q_{sensible} &= 4137,\,901 \text{kJ} \\ Q_{vaporización \text{ del etanol}} &= m_{\text{ Exctracto S-L*}} \Delta h_{\text{ vap etanol}} \\ Q_{vaporización \text{ del etanol}} &= 0,6757 \text{ kg*}841 \text{kJ/kg} \\ Q_{vaporización \text{ del etanol}} &= 568.264 \text{kJ} \end{aligned}$$

Reemplazando los valores obtenidos se tiene que:

$$Q_1$$
=4137, 901kJ+568.264kJ
 Q_1 =4706,165kJ

La potencia del calentador de baño es de 1320W por lo tanto, el tiempo mínimo requerido es:

Q=P*Tiempo (t)
Tiempo (t)=
$$Q_1/P= (4706,165kJ)/ (1,320kJ/s)$$
Tiempo (t)=3565,277 segundos

BALANCE EN EL CONDESADOR.

Cantidad de agua necesaria para condesar el etanol.

$$\begin{aligned} Q_2 &= Q_3 \\ Q_{Cedido} &= Q_{Ganado} \\ m_{Exctracto S-L} &* \Delta h_{vap \ etanol} + m_{Exctracto S-L} &* Cp_{etanol} &* (t_{vap} - t_{cond}) \\ &= m_{agua \ utilizada} &* Cp_{agua} &* (t_e - t_s) \end{aligned}$$

Despejando la masa de agua utilizada

$$\begin{split} m_{agua~utilizada} = & [m~_{Exctracto~S-L} * \Delta h~_{vap~etanol} + m~_{Exctracto~S-L} * Cp_{etanol} * (t_{vap} - t_{cond})] / ~Cp_{agua} * (t_s - t_e) \\ m_{agua~utilizada} = & [0,6757~kg*841kJ/kg + 0,6757~kg*216,982KJ/kg~K* (328,15 - 298,15)°K] / 4,184~kJ/kg°K* (304,15 - 290,15)°K \\ m_{agua~utilizada} = & 4966,706/58,576 \\ m_{agua~utilizada} = & 84,791kg \\ Q_3 = & m_{agua~utilizada} * Cp_{agua} * (t_s - t_e) \\ Q_3 = & 84,791kg~*4,184~kJ/kg°K* (304,15 - 290,15)°K \\ Q_2 = & 4966,718~kJ = Q_3 \end{split}$$

ANEXO D ANÁLISIS REALIZADOS EN LABORATORIO.

ANÁLISIS REALIZADOS EN LABORATORIO

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"

Laboratorio Oficial del Ministerio de Salud y Deportes

Red de Laboratorios Oficiales de Análisis de Alimentos

Red Nacional de Laboratorios de Micronutrientes

Laboratorio Oficial del "SENASAG"

CEANID- FOR-43

INFORME DE ANÁLISIS DE LABORATORIO

I. INFO	DRMACIÓN	DEL SO	LICITANTE
---------	----------	--------	-----------

Cliente:	Daysi Colque Valdez				
Solicitante:	Daysi Colque Valdez				
Dirección:	Calle Uruguay N° 941 - Bar	rio 4 de julio			
Teléfono/Fax	60265419	Correo-e		Código	AL 267/16

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Hollejo de uva Tannat			
Fecha y hora de muestreo:	2016-09-14			
Procedencia:	Tarija - Cercado - Tarija - Bolivia			
Lugar de muestreo:	Lugar de elaboración			
Responsable de muestreo:	Daysi Colque Valdez			
Código de la muestra:	732 FQ 473 Fecha de recepción de la muestra: 2016-09-21			2016-09-21
Cantidad recibida:	100 g	Fecha de análisis de la muestra:	Del 201	16-09-21 al 2016-10-03

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO
Acidez (como ac. tartárico)	NB 36002:02	g/I	0,82
Azucares totales	Volumétrico	%	25,43
Humedad	NB 313010:05	%	63,86
Solidos solubles (20°C)	NB 36003:02	° Brix	32,3
NB: Norma Boliviana	% : Parcentaje		,

- 1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio
- 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 03 de octubre de 2016

Ing Halid Aceitung Caceres
JEFE DEL CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ANÁLISIS DE LABORATORIO

	INICODA	AACIÓN	DEL 6	CLICITANITE
١.	INFORN	/IACION	DELS	OLICITANTE

Cliente:	Daysi Colque Valdez			
Solicitante:	Daysi Colque Valdez			
Dirección:	Calle Uruguay N° 941	Barrio 4 de julio	THE PARTY CANADA	
Teléfono/Fax:	60265419	Correo-e	Código	AL 267/16

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Hollejo de uva Cabernet Sauvignon			
Fecha y hora de muestreo:	2016-09-14			
Procedencia:	Tarija - Cercado - Tarija - Bolivia			
Lugar de muestreo:	Lugar de elaboración			
Responsable de muestreo:	Daysi Colque Valdez			
Código de la muestra:	731 FQ 472 Fecha de recepción de la muestra: 2016-09-21			
Cantidad recibida:	100 g	Fecha de análisis de la muestra: Del 2016-09-21 al 2016-10-0		

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO
Acidez (como ac. tartárico)	NB 36002:02	g/l	0,46
Azucares totales	Volumétrico	%	20,58
Humedad	NB 313010:05	%	68,16
Solidos solubles (20°C)	NB 36003:02	° Brix	28,9
NB: Norma Boliviana	% : Porcentaje		

¹⁾ Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

Tarija, 03 de octubre de 2016

Mullifullitation in the state of the state o

²⁾ El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

³⁾ Los datos de la muestra y el muestreo, fueron suministrados por el cliente

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ANÁLISIS DE LABORATORIO

I. INFORMACIÓN DEL SOLICITANTE

Cliente:	Daysi Colque Valdez			
Solicitante:	Daysi Colque Valdez			
Dirección:	Calle Uruguay N° 941	- Barrio 4 de julio	4	
Teléfono/Fax	60265419	Correo-e	 Código	AL 267/16

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Colorante natural variedad de uva Cabernet Sauvignon				
Fecha y hora de muestreo:	2016-09-14				
Procedencia:	Tarija - Cercado - Tarija - Bolivia				
Lugar de muestreo:	Lugar de elaboración				
Responsable de muestreo:	Daysi Colque Valdez				
Código de la muestra:	733 FQ 474 Fecha de recepción de la muestra: 2016-09-21				
Cantidad recibida:	50 ml Fecha de análisis de la muestra: Del 2016-09-21 al 2016-10-03				

III. RESULTADOS

NB 36002:02	g/l	6,45
	-	0,43
Volumétrico	%	41,18
NB 36003:02	° Brix	60,9
	NB 36003:02 % : Parcentaje	AN YORK TO RECEIT OF USE AND CONTROL OF CONT

- 1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio
- 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 03 de octubre de 2016

Ine Mail Aceitung Cáceres JEFE DEL CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ANÁLISIS DE LABORATORIO

	LSOLICITANTE

	2	WINT CHANGE OF DEL SOL	TOTALLIC	
Cliente:	Daysi Colque Valdez			
Solicitante:	Daysi Colque Valdez			(9
Dirección:	Calle Uruguay N° 94	1 - Barrio 4 de julio		
Teléfono/Fax	60265419	Correo-e	Código	AL 267/16

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Colorante natural variedad de uva Tannat					
Fecha y hora de muestreo:	2016-09-14					
Procedencia:	Tarija - Cercado - Tarija - Bolivia					
Lugar de muestreo:	Lugar de elaboración					
Responsable de muestreo:	Daysi Colque Valdez					
Código de la muestra:	734 FQ 475	Fecha de recepción de la muestra:		2016-09-21		
Cantidad recibida:	50 ml	Fecha de análisis de la muestra:	Del 201	16-09-21 al 2016-10-03		

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO
Acidez (como ac. tartárico)	NB 36002:02	g/I	12,95
Azucares totales	Volumétrico	%	38,95
Solidos solubles (20°C)	NB 36003:02	° Brix	69,6
NB: Norma Baliviana	% : Porcentoje		

- 1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio
- 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 03 de octubre de 2016

Ing Adalid Aceituro Cáceres

JEFE DEL CEANID

ANEXO E PANEL DE DEGUSTACIÓN.

PANEL DE DEGUSTACIÓN

Panelista: Mabel Spavedra Fecha 32.1.98.12.016 **CARACTERÍSTICAS** COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA **ORGANOLÉPTICAS** Muestra 2 Muestra 1 (Tannat) Cobernet **SABOR** (Cabernet Sauvignon) TANNAT Si No Observaciones Observaciones Si No Agradable Mucho más rico. V Muy ácido Percepción de alcohol V (Cabernet Sauvignon) (Tannat) **AROMA** Si No Observaciones Si No **Observaciones** Agradable V Percepción de alcohol (Cabernet Sauvignon) (Tannat) **TEXTURA** Si Si No Observaciones No Observaciones Materia extraña V (Cabernet Sauvignon) (Tannat) COLOR Si No Observaciones Si No Observaciones Uniforme 2 V Agradable GRADO DE (Cabernet Sauvignon) (Tannat) **DULZOR** Si No Observaciones Si No Observaciones Agradable

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Panelista: A.da.lio	1 Acei tuno
Panelista: Al.qu. P. Q	

Fecha: 20.1.98.12016

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA				
SABOR	Muestra 1 (Cabernet Sauvignon)			Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones
Agradable	X			X		
Muy ácido		X		X		
Percepción de alcohol		X	•		X	
ADOMA	(Cabernet Sauvignon)			(Tannat)		
AROMA	Si	No	Observaciones	Si	No	Observaciones
Agradable	X		Mayor que la ruestra Z	X		
Percepción de alcohol		X			X	
TEXTURA	(Cabernet Sauvignon)			(Tannat)		
IEXIUKA	Si	No	Observaciones	Si	No	Observaciones
Materia extraña		X			X	
COLOR	(Cabernet Sauvignon)			(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones
Uniforme	X			×		
Agradable		×	Poco colos.	×		
GRADO DE		((Cabernet Sauvignon)		L	(Tannat)
DULZOR	Si	No	Observaciones	Si	No	Observaciones
Agradable	X		Mas intensogie 2.	X		

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2
(Cabernet Sauvignon)	(Tannat)
Agradasle.	Agradasle.

Panelista: G. ERMON. ALVINGE & HUNDRES	

Fecha: 2016/	08	30
I Contar 7		

CARACTERÍSTICAS ORGANOLÉPTICAS	COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA					
SABOR	Muestra 1 (Cabernet Sauvignon)			Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones
Agradable	V			V		
Muy ácido		L	No es mx Aciso		V	No es muy Acies
Percepción de alcohol		V	-		V	
AROMA	(Cabernet Sauvignon)			(Tannat)		
AKUMA	Si	No	Observaciones	Si	No	Observaciones
Agradable	v			V		
Percepción de alcohol		V	No se SIENTE		V	NO SE SIENTE
TEXTURA	(Cabernet Sauvignon)			(Tannat)		
IEAIUKA	Si	No	Observaciones	Si	No	Observaciones
Materia extraña	V			V		
COLOR	(Cabernet Sauvignon)			(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones
Uniforme	V			V		· ·
Agradable	V			V		
GRADO DE		((Cabernet Sauvignon)		l	(Tannat)
DULZOR	Si	No	Observaciones	Si	No	Observaciones
Agradable	/			V		

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1 (Cabernet Sauvignon)		Muestra 2 (Tannat)
LGRUNDABLE	1	A GRASH SLE

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA				
SABOR	Muestra 1 (Cabernet Sauvignon)			Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones
Agradable	V			~		
Muy ácido		V			V	
Percepción de alcohol		V			L	
AROMA	(Cabernet Sauvignon)			(Tannat)		
ARUMA	Si	No	Observaciones	Si	No	Observaciones
Agradable	V			V		
Percepción de alcohol		V			~	
TEXTURA	(Cabernet Sauvignon)			(Tannat)		
IEAIUKA	Si	No	Observaciones	Si	No	Observaciones
Materia extraña					V	
COLOR	(Cabernet Sauvignon)			(Tannat)		
	Si	No	Observaciones	Si	No	Observaciones
Uniforme	1			V		
Agradable	V			V		
GRADO DE		(Cab	ernet Sauvignon)		11_	(Tannat)
DULZOR	Si	No	Observaciones	Si	No	Observaciones
Agradable	V			V		
z mielionem programa por progra	1	1		1		

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Assudable My Agraduble.	Muestra 1 (Cabernet Sauvignon)	Muestra 2 (Tannat)
24. 400	Accede ble	My Agraduble.
	John de Dist	7

Panelista: Ing. Patricia.	Costi/Lo
Fecha:30.108.116	

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA					
SABOR	Muestra 1 (Cabernet Sauvignon)					Muestra 2 (Tannat)	
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	1			V			
Muy ácido		V			V		
Percepción de alcohol		V	-		V		
AROMA	(Cabernet Sauvignon)				(Tannat)		
AROMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	1			V		,	
Percepción de alcohol		V			V		
TEXTURA		((Cabernet Sauvignon)		(Tannat)		
IEATURA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		1			V		
COLOR		((Cabernet Sauvignon)		(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	1			/			
Agradable		V	Le falta intensidad de	V			
GRADO DE		(Cabernet Sauvignon)				(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V		Tiene mejor grado de du	

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1 (Cabernet Sauvignon)	Muestra 2 (Tannat)
Agradalle.	Muy Agradable.

Panelista: Rosanio Diaz De Osopeza M

Fecha: 30/.VIII/.16

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA					
SABOR		((Muestra 1 Cabernet Sauvignon)	Muestra 2 (Tannat)			
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V		Me encanta todo	\checkmark		Prefier el anterior	
Muy ácido	✓		Un pequita acido, super poquito, para mi esta bien	U		acido, pretiero el	
Percepción de alcohol		X	e-		X		
ADOMA		((Cabernet Sauvignon)		(Tannat)		
AROMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V		Es profundo		X	No siento nada	
Percepción de alcohol		N	No la siento		×		
TEXTURA		((Cabernet Sauvignon)			(Tannat)	
IEXIUKA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		X			X		
COLOR		((Cabernet Sauvignon)		(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	\lor		Me encanta		J	Parece Color frutilla	
Agradable	V		tione concordancia con lo dela uva				
GRADO DE	(Cabernet Sauvignon)					(Tannat)	
DULZOR	Si/	No	Observaciones	Si	No	Observaciones	
Agradable				1		Este esta mas	

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2				
(Cabernet Sauvignon)	(Tannat)				
muyagradable '	agradable				

CARACTERÍSTICAS ORGANOLÉPTICAS		COI	LORANTE NATURAL	DEL HO	OLLEJO	DE UVA NEGRA
SABOR		(Cab	Muestra 1 pernet Sauvignon)			Muestra 2 (Tannat)
	Si	No	Observaciones	Si	No	Observaciones
Agradable	V				V	
Muy ácido		X		V		
Percepción de alcohol		X	-		V	errore and the second control of the second
AROMA		(Cab	ernet Sauvignon)			(Tannat)
AROMA	Si	No	Observaciones	Si	No	Observaciones
Agradable	V			i	V	
Percepción de alcohol		V		*	V	The state of the s
TEVTIDA		(Cab	ernet Sauvignon)			(Tannat)

Observaciones

Observaciones

Observaciones

(Cabernet Sauvignon)

(Cabernet Sauvignon)

Si No

Si No

Si No Observaciones

Observaciones

Observaciones

(Tannat)

(Tannat)

TEXTURA

COLOR

Uniforme

Agradable GRADO DE

DULZOR

Agradable

Materia extraña

Si No

No

Si

Si No

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2				
(Cabernet Sauvignon)	(Tannat)				
moy a gradable	agradable				

Panelista: Elizabello Aramayo Colque	
Fecha: 30/. ase./. 2016	

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA					
SABOR		Muestra 1 (Cabernet Sauvignon)				Muestra 2 (Tannat)	
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X		#	
Muy ácido		X			X		
Percepción de alcohol		X	-		X		
AROMA	(Cabernet Sauvignon)			(Tannat)			
AKUMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			
Percepción de alcohol		X			X		
TEXTURA		(C	abernet Sauvignon)		(Tannat)		
IEXIUKA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		X			X		
COLOR		(C	abernet Sauvignon)			(Tannat)	
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	X			X			
Agradable		X	color my palido	Х			
GRADO DE		(Cabernet Sauvignon)				(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2				
(Cabernet Sauvignon)	(Tannat)				
agradade	agra dable				

Panelista: IGNACES VCLDS & UE 7
Fecha³1./08./.C.6

CARACTERÍSTICAS ORGANOLÉPTICAS		COLORANTE NATURAL DEL HOLLEJO DE UVA NEGRA					
SABOR		Muestra 1 (Cabernet Sauvignon)			Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones	
Agradable				1			
Muy ácido					1		
Percepción de alcohol							
ADOMA		(Cabernet Sauvignon)				(Tannat)	
AROMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	/			/			
Percepción de alcohol		7					
TENTED A	(Cabernet Sauv		ernet Sauvignon)			(Tannat)	
TEXTURA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		/			/		
COLOR		(Cab	ernet Sauvignon)		L L	(Tannat)	
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	1			/			
Agradable	/		4.0	/		7	
GRADO DE		(Cabernet Sauvignon)			LL	(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable				/			
					1 (

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1 (Cabernet Sauvignon)	Muestra 2 (Tannat)
muy Agradeble	1 A gradoble
	lu h
(V
Firm	a del panelista

Panelista: Ana Koren Mogro Sanchez

Fecha: 301.08.116

CARACTERÍSTICAS ORGANOLÉPTICAS		C	DLORANTE NATURAL DI	EL HO	LLEJO	DE UVA NEGRA	
SABOR		Muestra 1 (Cabernet Sauvignon)			Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			
Muy ácido		X			X	99	
Percepción de alcohol		X			X		
AROMA		(C	abernet Sauvignon)			(Tannat)	
AROMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			
Percepción de alcohol		X			X		
TEXTURA		(Cabernet Sauvignon)		(Tannat)			
IEAIUKA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		X			\times		
COLOR		(C	abernet Sauvignon)	(Tannat)			
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	X			X			
Agradable		X	color muy pálido		X		
GRADO DE		(C	abernet Sauvignon)			(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2				
(Cabernet Sauvignon)	(Tannat)				
Muy agradable	Agradable				

Panelista:julus.	Pallo	Herber	B
Fecha: 31.1.0.81.66	17.100	7	
Fecha: 3(1,0%) //6			

CARACTERÍSTICAS ORGANOLÉPTICAS		co	LORANTE NATURAL	DEL HO	LLE	IO DE UVA NEGRA	
SABOR		(Ca	Muestra 1 bernet Sauvignon)		Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V			
Muy ácido	V		leve		V		
Percepción de alcohol		V			V		
AROMA		(Ca	bernet Sauvignon)			(Tannat)	
ARUMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	1			V	A.		
Percepción de alcohol	V			V	*		
TEXTURA		(Cabernet Sauvignon)			(Tannat)		
TEXTURA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		V			0		
COLOR		(Ca	bernet Sauvignon)		(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	V			V		ogra dable	
Agradable	V			V			
GRADO DE	(Cabernet Sauvignon)				(Tannat)		
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V			
	1						

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2				
(Cabernet Sauvignon)	(Tannat)				
a gra dable	muy agradoble				

PANEL DE DEGUSTACIÓN

Panelista: Jal Einesto Auad A

Fecha: 31.1.08.1.16

CARACTERÍSTICAS ORGANOLÉPTICAS		COI	ORANTE NATURAL	DEL HO	OLLEJO	DE UVA NEGRA	
SABOR		(Cab	Muestra 1 ernet Sauvignon)		Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V			
Muy ácido							
Percepción de alcohol							
AROMA		(Cab	ernet Sauvignon)		(Tannat)		
AKUMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V			
Percepción de alcohol							
MENTER A		(Cabernet Sauvignon)		(Tannat)			
TEXTURA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		V			1		
COLOR		(Cab	ernet Sauvignon)		(Tannat)		
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	V			V			
Agradable							
GRADO DE		(Cabernet Sauvignon)			L	(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	V			V			

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Panelista:	MONENO LOPEZ
Fecha: 31.1. 8.1.2016	

CARACTERÍSTICAS ORGANOLÉPTICAS		co	LORANTE NATURAL	DEL HO	OLLEJ	O DE UVA NEGRA	
SABOR			Muestra 1 bernet Sauvignon)		Muestra 2 (Tannat)		
	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			
Muy ácido		*		1	X		
Percepción de alcohol		×			X		
AROMA		(Ca	bernet Sauvignon)			(Tannat)	
AKUMA	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			
Percepción de alcohol		X			X		
TEXTURA		(Cabernet Sauvignon)		(Tannat)			
TEXTURA	Si	No	Observaciones	Si	No	Observaciones	
Materia extraña		X			X		
COLOR		(Ca	bernet Sauvignon)	(Tannat)			
COLOR	Si	No	Observaciones	Si	No	Observaciones	
Uniforme	X			X			
Agradable	X				×		
GRADO DE		(Cabernet Sauvignon)				(Tannat)	
DULZOR	Si	No	Observaciones	Si	No	Observaciones	
Agradable	X			X			

CALIFICACIÓN GENERAL

Calificar el producto según el agrado del panelista como: Desagradable, agradable y muy agradable

Muestra 1	Muestra 2
(Cabernet Sauvignon)	(Tannat)
Muy agradable	A gradable