

ANEXO 1 INFORME DE ANÁLISIS FÍSICA-QUÍMICO DE LA PALTA (MATERIA PRIMA)

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"

Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

I. INFORMACIÓN DEL SOLICITANTE						
Cliente:	Zulma Lopez Ríos					
Solicitante:	Zulma Lopez Ríos					
Dirección:	Barrio 3 de mayo					
Teléfono/Fax	74544609	Correo-e	****	Código	AL 029/17	
•		II INFORMACI	ÓN DE LA MUESTRA		712 023/ 21	

Descripción de la muestra:	Palta (materia	prima)					
Codigo de muestreo:	*****	Fecha de vencimiento: ****	***	Lote: *****			
Fecha y hora de muestreo:	2017-01-06	-					
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercado - Tarija Bolivia						
Lugar de muestreo:	Laboratorio de Operaciones Unitarias						
Responsable de muestreo:	Zulma Lopez R	ios					
Código de la muestra:	090 FQ 056	Fecha de recepción de	e la muestra:	2017-03-06			
Cantidad recibida:	1250 g	Fecha de ejecución de ensayo: De 2017-03-06 al 2017-					

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	LIMITES PERMISIBLES Min. Max.	REFERENCIA DE
Ceniza	NB 39034:10	%	1,20	Sin Referencia	Sin Referencia
Fibra	Gravimétrico	%	9,90	Sin Referencia	Sin Referencia
Grasa	NB 313019:06	%	9,82	Sin Referencia	Sin Referencia
Hidratos de Carbono	NB 313010:05	%	8,55	Sin Referencia	Sin Referencia
Humedad	Cálculo	%	78,97	Sin Referencia	Sin Referencia
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	1,46	Sin Referencia	Sin Referencia
Valor energetico	Cálculo	Kcal/100 g	128,42	Sin Referencia	Sin Referencia
NB: Norma Boliviana	Keal: Kiloo	alorias			

#: Porcentaje

ISO: Organización Internacional de Normalización

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 17 de marzo de 2017

Original: Cliente Copia: CEANID

> Dirección: Campus Universitario Facultad de Ciencias y Tecnología Zona "El Tejar" Tel. (591) (4) 6645648 Fax: (591) (4) 6643403 - Email: ceanid@uajms.edu.bo - Casilla 51 - TARIJA - BOLIVIA

ANEXO 2 INFORME DE ANÁLISIS FÍSICO-QUÍMICO DE LAS REBANADAS OSMODESHIDRATADAS DE PALTA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

I. INFORMACIÓN DEL SOLICITANTE						
Cliente:	Zulma Lopez Ríos					
Solicitante:	Zulma Lopez Ríos					
Dirección:	Barrio 3 de mayo					
Teléfono/Fax	74544609	Correo-e	****	Código	AL 029/17	
		II. INFORMACI	ÓN DE LA MUESTRA	1		

Descripción de la muestra:	Rebanadas osmodeshidratadas de palta						
Codigo de muestreo:	*****	Fecha de vencimiento: ******	Lote: *****				
Fecha y hora de muestreo:	2017-01-15	•					
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercado - Tarija Bolivia						
Lugar de muestreo:	Laboratorio de Operaciones Unitarias						
Responsable de muestreo:	Zulma Lopez R	ios					
Código de la muestra:	089 FQ 055	Fecha de recepción de la muestra:	2017-03-06				
Cantidad recibida:	190 g	Fecha de ejecución de ensayo:	De 2017-03-06 al 2017-03-17				

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	LIMITES PERMISIBLES Min. Max.	REFERENCIA DE LOS LIMITES
Ceniza	NB 39034:10	%	1,40	Sin Referencia	Sin Referencia
Fibra	Gravimétrico	%	12,52	Sin Referencia	Sin Referencia
Grasa	NB 313019:06	%	12,55	Sin Referencia	Sin Referencia
Hidratos de Carbono	NB 313010:05	%	75,42	Sin Referencia	Sin Referencia
Humedad	Cálculo	%	7,20	Sin Referencia	Sin Referencia
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	3,46	Sin Referencia	Sin Referencia
Valor energetico	Cálculo	Kcal/100 g	428,47	Sin Referencia	Sin Referencia
NB: Norma Boliviana	Keal: Kiloo	alorias			

%: Parcentaje

130. Organización internacional de Normalización

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 17 de marzo de 2017

Original: Cliente Copia: CEANID

ANEXO 3

CÁLCULO DEL PORCENTAJE DE HUMEDAD DE LAS REBANADAS OSMODESHIDRATADAS DE PALTA (VARIEDAD HASS) OBTENIDA EN FORMA EXPERIMENTAL

Tabla 3.1 Porcentaje de humedad de las rebanadas osmodeshidratas de palta (variedad hass) obtenida en forma experimental de cada ensayo para el diseño experimental 2^3

N° DE		FACTORES	RESPUESTA I	RESPUESTA II	
EXPERIMENTOS	Concentración agente osmótico (%)	Tiempo de obtención (hr)	Temperatura (°C)	Humedad (Y %)	Humedad (Y%)
1	60	2:30	40	23.71	23.57
2	70	2:30	40	25.53	22.91
3	60	2:30	50	25.67	23.62
4	70	2:30	50	26.92	22.41
5	60	3:30	40	24.46	23.08
6	70	3:30	40	24.76	21.97
7	60	3:30	50	25.66	22.56
8	70	3:30	50	26.46	21.52

Fuente: Elaboración propia, 2018

ANEXO 4 DISEÑO FACTORIAL

ANEXO 4.1

3.7.1 RESULTADOS DEL DISEÑO FACTORIAL

Con los datos obtenidos para cada ensayo dado por el diseño de experimentos, se realiza el análisis de varianza, obteniéndose la ecuación que modela la humedad y el rendimiento en función de las variables de proceso estudiadas.

3.7.1.1 INFLUENCIA DE LA CONCENTRACIÓN, TEMPERATURA Y TIEMPO EN LA DETERMINACIÓN DE LA HUMEDAD DE REBANADAS DESHIDRATADAS

Se realiza el análisis de varianza (ANOVA) para los resultados experimentales mostrados en la tabla III-15; para ello se toma en cuenta todos los efectos que se muestran en la tabla III-14. La nomenclatura utilizada se describe en la tabla III-14.

 $\label{eq:continuous} Tabla~N^\circ~III-14:$ Nomenclatura utilizada en el análisis estadístico

Variables	Descripción	Tipo de Efecto
A	Concentración	Efecto principal
В	Temperatura	Efecto principal
C	Tiempo	Efecto principal
AB	Concentración-temperatura	Interacción
AC	Concentración-tiempo	Interacción
ВС	Temperatura- tiempo	Interacción
ABC	Concentración - temperatura- tiempo	Interacción

Fuente: Elaboración propia, 2018

Tabla III-15:

Porcentaje de humedad de las rebanadas osmodeshidratadas de palta del diseño experimental en el proceso de obtención

Experi	Combinación	Concen	Temperatura	Tiempo	Variables	Rep	licas	Total	Simbolo
mento	de Tratamientos	tración (%)	de la solución (°C)	(horas)	Respuesta Y	I	II		gía
1	A bajo, B bajo, C bajo	-1	-1	-1	y 1	23.71	23.57	47.28	(1)
2	A alto, B bajo, C bajo	+1	-1	-1	y 2	25.53	22.91	48.44	a
3	A bajo, B alto, C bajo	-1	+1	-1	y 3	25.67	23.62	49.29	b
4	A alto, B alto, C bajo	+1	+1	-1	У4	26.92	22.41	49.33	ab
5	A bajo, B bajo, C alto	-1	-1	+1	У 5	24.46	23.08	47.54	С
6	A alto, B bajo, C alto	+1	-1	+1	y 6	27.76	21.97	49.73	ac
7	A bajo, B alto, C alto	-1	+1	+1	y 7	25.66	22.56	48.22	bc
8	A alto, B alto, C alto	+1	+1	+1	y 8	26.46	21.52	47.98	abc

Fuente: Elaboración propia, 2018

El análisis de la varianza reparte la variabilidad de la respuesta porcentaje de humedad en segmentos separados para cada uno de los efectos, luego prueba la significancia estadística de cada efecto por comparación de la media cuadrada contra una estimación del error experimental. Los efectos principales de Tiempo (A), Temperatura (B), Concentración (C) y los efectos combinados Tiempo-temperatura (AB), Tiempo- concentración (AC), Temperatura- concentración (BC) y Tiempo-temperatura- concentración (ABC) no son significativos.

3.7.2 METODOLOGÍA DEL DISEÑO EXPERIMENTAL (23)

Según Ramírez, E. (2010), para realizar el análisis del diseño experimental el desarrollo del trabajo de investigación, consta de los siguientes pasos:

1. Planteamiento de hipótesis

Hp: no hay diferencia entre los factores.

Ha: si hay diferencia entre los factores.

2. Nivel de significación: 0.05 (95%)

3. Prueba de significación: "Fisher"

4. Suposiciones:

Los datos siguen una distribución normal (-N).

Los datos son extraídos de un muestreo al azar.

5. Criterios de aceptación o rechazo.

Se acepta Hp si Fcal \leq Ftab

Se acepta Hp si Fcal \geq Ftab

6. Construcción del cuadro ANVA

Para la construcción del cuadro de ANVA, se tomó en cuenta las siguientes expresiones matemáticas.

Donde:

a = 2

b = 2

c = 2

r =2

En base a los resultados de la suma de cuadrados, se procede a construir la tabla de ANVA

Tabla III-16: ANVA para el diseño factorial 2³

			A para el diseno factorial 2º	1	
Fuente de variación (FV)	Suma de cuadrados S(SC)	Grados de libertad (GL)	Cuadrados medios (CM)	Fisher calculado (Fcal.)	Fisher tabulado (Ftab.)
Total	SC(T)	(abcr-1)			
Efecto A (Tiempo)	SC(A)	(a-1)	SC(A)	CM(A)	V1 - GLsc(A)
			(a - 1)	CM(E)	$V2\ GLsc(E)$
Efecto B	SC(B)	(b-1)	SC(B)	CM(B)	V1 - GLsc(B)
(Temperatura)			$\overline{(b-1)}$	$\overline{CM(E)}$	V2 GLsc(E)
Efecto C	SC©	(c-1)	SC(C)	CM(C)	V1 - GLsc(C)
(Concentración)			$\overline{(c-1)}$	$\overline{CM(E)}$	V2 GLsc(E)
Interacción AB	SC(AB)	(a-1)*(b-1)	SC(AB)	CM(AB)	V1 - GLsc(AB)
(Tiempo-			$\overline{(a-1)*(b-1)}$	$\overline{CM(E)}$	V2 GLsc(E)
temperatura)			, , ,	, í	, ,
Interacción AC	SC(AC)	(a-1)*(c-1)	SC(AC)	CM(AC)	V1 - GLsc(AC)
(Tiempo-			$\overline{(a-1)*(c-1)}$	CM(E)	$V2\ GLsc(E)$
concentración)					
Interacción BC	SC(BC)	(b-1)*(c-1)	SC(BC)	CM(BC)	V1 - GLsc(BC)
(Temperatura-			$\overline{(b-1)*(c-1)}$	CM(E)	$V2\ GLsc(E)$
concentración)			22(172)	and and	114 GI (ADG)
Interacción ABC	SC(ABC)	(a-1)*(b-1)*(c-	$\underline{\hspace{1cm}}$ $SC(ABC)$	CM(ABC)	V1 - GLsc(ABC)
(Tiempo-		1)	$\overline{(a-1)*(b-1)*(c-1)}$	CM(E)	$V2\ GLsc(E)$
temperatura-					
concentración)	0.00	1 4/ 1	CC(E)		
Error	SC€	abc*(r-1)	$\frac{SC(E)}{C(E)}$		
			abc*(r-1)		

Fuente: Ramírez, E. 2010.

Tomando en cuenta las ecuaciones del diseño experimental según Ramírez,(2010) se tiene:

Para la estimación de los efectos promedios de los factores principales e interacciones se utilizara el método detallado

Efecto de la concentración (A):

$$A = \frac{1}{4n}[a + ab + ac + abc - (1) - b - c - bc]$$

$$A = \frac{1}{4*2} [48.44 + 49.33 + 49.73 + 47.98 - 47.28 - 49.29 - 47.54 - 48.22]$$

A = 0.394

Efecto de la temperatura (B):

$$B = \frac{1}{4n}[b + ab + bc + abc - (1) - a - ac - c]$$

$$B = \frac{1}{4*2}[49.29+49.33+48.22+47.98-47.28-48.44-49.73-47.54]$$

B = 0.228

Efecto del tiempo(A):

$$C = \frac{1}{4n} [c + ac + bc + abc - (1) - a - b - ab]$$

$$C = \frac{1}{4 \times 2} [47.54 + 49.73 + 48.22 + 47.98 - 47.28 - 48.44 - 49.29 - 49.33]$$

$$C = -0.109$$

Efecto Concentración-temperatura (AB):

AB=
$$\frac{1}{4n}$$
[abc-bc+ab-b-ac+c-a+(1)]

$$AB = \frac{1}{4*2}[47.28-48.22+49.33-49.29-49.73+47.54-48.44+47.28]$$

$$AB = -0.531$$

Efecto Concentración-tiempo y (AC):

$$AC = \frac{1}{4n}[(1)-a+b-ab-c+ac-bc+abc]$$

$$AC = \frac{1}{4*2}[47.28-48.44+49.29-49.33-47.54+49.73-48.22+47.98]$$

AC = 0.094

Efecto Temperatura-tiempo (BC):

$$BC = \frac{1}{4n}[(1) + a - b - ab - c - ac + bc + abc]$$

$$BC = \frac{1}{4*2}[47.28 + 48.44 - 49.29 - 49.33 - 47.54 - 49.73 + 48.22 + 47.98]$$

BC = -0.496

Efecto Concentración-temperatura-tiempo, (ABC):

ABC=
$$\frac{1}{4n}$$
[abc- bc- ac+ c- ab+ b+ a-(1)]

ABC=
$$\frac{1}{4*2}$$
[47.98-48.22-49.73+47.54-49.33+49.29+48.44-47.28]

ABC = -0.164

Encontrando los contrastes para los efectos principales e interacciones

Ya que los contrastes son el resultado de lo que se encuentra entre paréntesis de los efectos; se tiene:

Contraste
$$A = a + ab + ac + abc - (1) - b - c - bc$$

Contraste A = 3.15

Contraste
$$B = b + ab + bc + abc - (1) - a - c - ac$$

Contraste B = 1.83

Contraste
$$C = c + ac + bc + abc - (1) - a - b - ab$$

Contraste c = -0.87

Contraste AB = abc - bc + ab - b - ac + c - a + (1)

Contraste AB = 47.98-48.22+49.33-49.29-49.73+47.54-48.44+47.28

Contraste AB = -3.55

Contraste AC= (1)- a+ b- ab-c+ ac-bc+ abc

Contraste AC= 47.28-48.44+49.29-49.33-47.54+49.73-48.22+47.28

Contraste AC = 0.75

Contraste BC = (1) + a - b - ab - c - ac + bc + abc

Contraste BC= 47.28+ 48.44- 49.29- 49.33- 47.54- 49.73+ 48.22+47.98

Contraste BC = -3.97

Contraste ABC= abc- bc+ ab- b- ac+ c- a+ (1)

Contraste ABC = 47.98 - 48.22 + 49.33 - 49.29 - 49.73 + 47.54 - 48.44 + 47.28

Contraste ABC = -3.55

Calculando la suma de cuadrados de los contrastes:

La suma de cuadrados del factor A:

SS (A) =
$$\frac{\sum_{i=1}^{a} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (A) =
$$\frac{\text{(Contraste A)2}}{8n} = \frac{\text{(3.15)2}}{8*2}$$

SS(A) = 0.620

La suma de cuadrados del factor B:

SS (B) =
$$\frac{\sum_{i=1}^{b} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (B) =
$$\frac{\text{(Contraste B)2}}{8n} = \frac{\text{(1.83)2}}{8*2}$$

$$SS(B) = 0.209$$

La suma de cuadrados del factor C:

SS (C) =
$$\frac{\sum_{i=1}^{c} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (C) =
$$\frac{\text{(Contraste C)2}}{8n} = \frac{(-0.87)2}{8*2}$$

$$SS(C) = 0.047$$

La suma de cuadrados de la interacción de los factores AB:

$$SS (AB) = \frac{\sum_{i=1}^{ab} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (AB) =
$$\frac{\text{(Contraste AB)2}}{8n} = \frac{\text{(-3.55)2}}{8*2}$$

$$SS(AB) = 0.787$$

La suma de cuadrados de la interacción de los factores AC:

SS (AC) =
$$\frac{\sum_{i=1}^{ac} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (AC) =
$$\frac{\text{(Contraste AC)2}}{8n} = \frac{(0.75)2}{8*2}$$

$$SS(AC) = 0.035$$

La suma de cuadrados de la interacción de los factores BC:

SS (BC) =
$$\frac{\sum_{i=1}^{bc} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (BC) =
$$\frac{\text{(Contraste BC)2}}{8n} = \frac{(-3.97)2}{8*2}$$

$$SS(BC) = 0.985$$

La suma de cuadrados de la interacción de los factores ABC:

SS (ABC) =
$$\frac{\sum_{i=1}^{abc} Y2i}{n} - \frac{(y..)2}{abcr}$$

SS (ABC) =
$$\frac{\text{(Contraste ABC)2}}{8n} = \frac{(-3.55)2}{8*2}$$

$$SS (ABC) = 0.787$$

La suma de cuadrados del total de los factores T:

SS (T) =
$$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \sum_{l=1}^{2} Y^{2}_{ijkl} - \frac{T^{2}}{8n}$$

SS (T) =
$$(23.71)^2 + (25.53)^2 + (25.67)^2 + (26.92)^2 + (24.46)^2 + (27.76)^2 + (25.66)^2 + (26.46)^2 + (23.57)^2 + (22.91)^2 + (23.62)^2 + (22.41)^2 + (23.08)^2 + (21.97)^2 + (22.56)^2 + (21.52)^2 - \frac{(387.81)^2}{8*2}$$

$$SS(T) = 9453.014 - 9399.787$$

$$SS(T) = 53.227$$

La suma de cuadrados del error de los factores E:

$$SS(E) = SS(T) - SS(A) - SS(B) - SS(C) - SS(AB) - SS(AC) - SS(BC) - SS(ABC)$$
(ABC)

SS (E) =
$$53.227 - 0.6202 - 0.2093 - 0.0473 - 0.7876 - 0.0352 - 0.9850 - 0.7876$$

$$SS(E) = 49.7548$$

En base a los resultados de la suma de cuadrados, se procede a construir la tabla.

El cuadro de ANVA para el diseño factorial 2³, se muestra la tabla de análisis de varianza (ANVA) de la prueba estadística de Fisher (F).

Nivel de significación: 0.05 (95%)

Tabla III-17:

Análisis de varianza del diseño experimental 2³ en el proceso de obtención de rebanadas deshidratadas de pulpa de palta (*Persea americana Hass*) para un nivel de significancia del 5%

Fuente de variación (FV)	Suma de cuadrados (SC)	Grados de libertad (GL)	Cuadrados medios (CM)	Fisher calculado (Fcal.)	Fisher tabulado (Ftab.)
Total	53.227	16-1=15			
Concentración	0.6202	2-1 = 1	0.6202	0.0997	5.318
Temperatura	0.2093	2-1 = 1	0.2093	0.0336	5.318
Tiempo	0.0473	2-1 = 1	0.0473	0.0076	5.318
Concentración -temperatura	0.7876	2-1 = 1	0.7876	0.1266	5.318
Concentración- Tiempo	0.0352	2-1 = 1	0.0352	0.0056	5.318
Temperatura- Tiempo	0.9850	2-1 = 1	0.9850	0.1583	5.318
Concentración- temperatura- Tiempo	0.7876	2-1 = 1	0.7876	0.1266	5.318
Error	49.7548	2 ³ =8			

Fuente: Elaboración propia, 2018

Nivel de significación: 0.05 (95%)

Los tres efectos principales son significativos (Fcal.) pero el tiempo es más significativo que la temperatura y está más significativa que la concentración.