

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

Versión 01 Fecha de emisión: 2016-10-31

CEANID-FOR-88

INFORME DE ENSAYO

		I. INFORMACI	ÓN DEL SOLICITANTE		
ente:	José Luís Anagua Ze	egarra			
licitante:	José Luís Anagua Ze	egarra			
		olz s/n - Barrio La Loma de S	ian luán		
	76191921	Correo-e	****	Código	AL 210/16
		11 141505555	1	Coulgo	AL 318/16

scripción de la muestra:	Frutilla			
digo de muestreo:	*****	Fecha de vencimiento:	*****	Lote: *****
ha y hora de muestreo:	2016-11-14 H			Lote.
cedencia (Localidad/Prov/ Dpto)	Tarija - Cercado	- Tarija Bolivia		
ar de muestreo:	Lugar de venta			
ponsable de muestreo:	José Luís Anagu	a Zegarra		
digo de la muestra:	944 FQ 578 MB		cepción de la muestra:	2016-11-14
tidad recibida:	1300 g		ecución de ensayo:	De 2016-11-14 al 2016-11-23

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	LIMITES PERMISIBLES Min. Max.	REFERENCIA DE LOS LIMITES
niza	NB 39034:10	%	0,37	Sin Referencia	Sin Referencia
ra	Gravimétrico	%	0,64	Sin Referencia	Sin Referencia
sa	NB 313019:06	%	0,40	Sin Referencia	Sin Referencia
ratos de Carbono	NB 313010:05	%	9,23	Sin Referencia	Sin Referencia
nedad	Cálculo	%	89,31	Sin Referencia	Sin Referencia
teina total (Nx6,25)	NB/ISO 8968-1:08	%	0,69	Sin Referencia	Sin Referencia
or energetico	Cálculo	Kcal/100 g	43,28	Sin Referencia	Sin Referencia
terias aerobias mesófilas	NB 32003:05	UFC/g	2,9 x 10 3	Sin Referencia	Sin Referencia
formes totales	NB 32005:02	UFC/g	1,6 x 10 ²	Sin Referencia	Sin Referencia
hos y levaduras	NB 32006:03	UFC/g	4,0 x 10 1	Sin Referencia	Sin Referencia

orma Baliviana

Kcal: Kilocalorias

is resultados reportados se remiten a la muestra ensayada en el Laboratorio

presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID is datos de la muestra y el muestreo, fueron suministrados por el cliente

arija, 23 de noviembre de 2016

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"
Laboratorio Oficial del Ministerio de Salud y Deportes
Red de Laboratorios Oficiales de Análisis de Alimentos
Red Nacional de Laboratorios de Micronutrientes
Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

			IIVI	OIL	IAIL	DLL	INSATO				
			I. INFO	RMA	CIÓN	N DEL	SOLICITANT	E			
e:	Jose Luis Anagua	Zegarra									
ante:	Jose Luis Anagua	Zegarra									
ión:	La Loma Hugo De	ols									
no/Fax	761191921		Correo-	7			****		ódig	go	AL 162/17
			II. INFO	DRMA	ACIÓ	N DE	LA MUESTRA	4			
pción o	de la muestra:	Pimento	n								
de m	uestreo:	***	*** F	echa d	de ver	ncimier	nto: ****	***		Lote:	*****
y hora	de muestreo:	2017-07	-09								
dencia	(Localidad/Prov/ Dpto)	Tarija B	olivia								
de mu	estreo:	Mercado	o Campesii	no							
nsable	de muestreo:	Jose Luis	s Anagua Z	egarra	а						
o de la	de la muestra: 1320 FQ 1		1045 MB	377		Fecha	de recepción d	le la muestra	a:	20	017-07-11
dad rec	ibida:	700 g				Fecha	de ejecución de	e ensayo:		De 2017-0	7-12 al 2017-07-20
				111.	. RES	ULTA	DOS				
PA	RÁMETRO		A y/o MÉT ENSAYO	ODO	UNI	DAD	RESULTADO	LIMITES Min.	PER	MISIBLES Max.	REFERENCIA DE LOS LIMITES
9		NB	39034:10		9	6	0,43	Sin R	lefe	rencia	Sin Referencia
dad		NB	313010:09	5	9	%	90,50	Sin R	lefe	rencia	Sin Referencia
ina tota	al (Nx6,25)	NB/IS	0 8968-1:	08	9	%	1,21	Sin R	lefe	rencia	Sin Referencia
rmes to	otales	NB	32005:02		UF	C/g	< 10 (*)	Sin R	Refe	rencia	Sin Referencia
richia C	Coli	NB	32006:02		UF	C/g	< 10 (*)	Sin R	Refe	rencia	Sin Referencia
na Bolivian ntaje	na			IFC: Unid : Menor	0.0200000	adora de c	olanias	(*)=	No se	e observa desari	rolla de colonias

resultados reportados se remiten a la muestra ensayada en el Laboratorio resente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 21 de Julio de 2017

ng. Adalid Aceituno Cáceres JIEFE DEL CEANID

: Cliente CEANID

CEANID-FOR-88 Versión 01 Fecha de emisión: 2016-10-31

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

			I. INFO	RMACIÓ	N DEL SOLICITANTE								
Cliente:	Jose Luis Anagua	se Luis Anagua Zegarra											
Solicitante:	lose Luis Anagua Zegarra												
Dirección:	La Loma Hugo D	ols											
Teléfono/Fax	76191921		Correo-	-e	*******	Códig	AL 452/47						
			II. INFO	ORMACIÓ	N DE LA MUESTRA	Cours	go AL 162/17						
Descripción o	le la muestra:	Mermel			ada con pimenton								
Lodigo de muestreo:			and the same of th	echa de ve		1	ote: ******						
echa y hora	de muestreo:	2017-07			- Commented.		Lote: ******						
rocedencia (Localidad/Prov/ Dpto)	Tarija - C	Cercado - 1	Tarija Boliv	ia								
ugar de mue			elaboraci										
esponsable	de muestreo:		Anagua Z										
indigo de la r			1044 MB		Fecha de recepción de la mues	tua.							
Cantidad recibida: 350 g				2100	Fecha de ejecución de ensayo:	tra:	2017-07-11						
					ULTADOS		De 2017-07-12 al 2017-07-20						

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	LIMITES PERMISIBLES Min. Max.	REFERENCIA DE LOS LIMITES
Ceniza	NB 39034:10	%	0,27	Sin Referencia	Sin Referencia
Fbra	Gravimétrico	%	3,18	Sin Referencia	Sin Referencia
Grasa	NB 313019:06	%	0,86	Sin Referencia	Sin Referencia
Hidratos de Carbono	Cálculo	%	61,43	Sin Referencia	Sin Referencia
Humedad	NB 313010:05	%	33,64	Sin Referencia	Sin Referencia
Proteina total (Nx6,25)	NB/ISO 8968-1:08	%	0,62	Sin Referencia	Sin Referencia
valor energetico	Cálculo	Kcal/100 g	255,94	Sin Referencia	Sin Referencia
llahos y levaduras	NB 32006:03	UFC/g	1,9x10 ³	Sin Referencia	Sin Referencia
Coliformes totales	NB 32005:02	UFC/g	< 10 (*)	Sin Referencia	Sin Referencia
Echerichia coli	NB 32005:02	UFC/g	< 10 (*)	Sin Referencia	Sin Referencia
E Korma Boliviana	Kcal: Kiloc	70	(/	J. Herefellela	Jili Kelerelicia

es resultados reportados se remiten a la muestra ensayada en el Laboratorio

Espresente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID de datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 21 de julio de 2017

Ing Adalid Aceitung Cacere JEFE DEL CEANID

CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

		I. IN	FORMA	CIÓN	DEL SOI	ICITANTI							
nte:	Jose Luis Anagua												
itante:		uis Anagua Zegarra											
cción:			Dolz N° 1459 - Barrio La Loma de San Juan										
fono/Fa	× 6665374		гео-е	J1110 UC	*****	****	Cá		** *** ***				
		11.11	VEORMA	CIÓN	DELAI	MUESTRA	Cóc	ligo	AL 131/17				
ripción	de la muestra:	Mermelada de		_			•						
go de m	uestreo:	M 1			imiento:		*****		****				
a y hora	de muestreo:	2017-06-18	recita	ue venc	imiento:			Lote:	****				
	(Localidad/Prov/ Dpto)	Tarija - Cercad	o Tarila I	Deltut-									
r de mu		Lugar de elabo		POIIVIA									
onsable	de muestreo:			101									
	muestra:	Jose Luis Anag	ua Zegarra		asha dan								
idad rec		1102 FQ 851					e la muestra:	2	017-06-20				
luau rec	ibiua.	200 g				jecución de	ensayo:	De 2017-0	06-20 al 2017-06-28				
			III.	RESU	LTADOS								
PA	RÁMETRO	TECNICA y/o I		UNIDA	AD RE	SULTADO	LIMITES PE Min.	RMISIBLES Max.	REFERENCIA DE				
	les (20°C)	NB 36003	3:02	°Brix		75,4		65	NB 36018:09				

s resultados reportados se remiten a la muestra ensayada en el Laboratorio

presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

s datos de la muestra y el muestreo, fueron suministrados por el cliente

s parámetros corresponden a Análisis Fisico Químico

Tarija, 20 de junio de 2017

Adalid Aceitune Cácere JEFE DEL CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			INFO	RME	DE	ENSA	YO						
			I. INFORM	ACIÓI	N DEI	SOLIC	CITANTE						
nte:	Jose Luis Anagua	Zegarra											
itante:	Jose Luis Anagua	agua Zegarra											
cción:	Calle Hugo Lope	Dolz N° 14	459 - Barrio La	Loma	de San	Juan							
fono/Fa	× 6665374		Correo-e		**	*****	***	Có	digo	AL 131/17			
			II. INFORM	IACIÓ	N DE	LA M	UESTRA						
ripción	de la muestra:	Mermel	ada de frutilla l	fortific	ada co	n pimei	ntón						
go de m	uestreo:	N	12 Fecha	de ve	ncimi	ento:	*****	*****	Lote:	****			
a y hora	de muestreo:	2017-06	-18										
edencia	(Localidad/Prov/ Dpto)	Tarija - (Cercado - Tarija	Bolivi	а	- disable							
r de mu	estreo:	Lugar de	e elaboración										
onsable	de muestreo:	Jose Lui	s Anagua Zegar	та				-					
go de la	muestra:	1103 FQ	852		Fech	a de rec	epción de	la muestra	: 2	017-06-20			
idad rec	ibida:	200 g			Fech	a de eje	cución de	ensayo:	De 2017-	06-20 al 2017-06-28			
			II	I. RES	ULTA	ADOS							
PA	RÁMETRO	None of the same	A y/o MÉTODO E ENSAYO	UNI	DAD	RESU	JLTADO	LIMITES P	ERMISIBLES Max.	REFERENCIA DE			
dos solub	oles (20°C)	NB	36003:02	°B	rix	(55,2		65	NB 36018:09			
orma Boliviar		IND	30003.02	0	IIA		33,2		03	NB 300.			

s resultados reportados se remiten a la muestra ensayada en el Laboratorio presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

is datos de la muestra y el muestreo, fueron suministrados por el cliente

is parametros corresponden a Análisis Físico Químico

Tarija, 20 de junio de 2017

lid Aceitupo Cácere JEFE DEL EEANID

al: Cliente CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes

Laboratorio Oficial del "SENASAG"

RELOAA

			INFOR	ME	DE	ENSAYO								
			I. INFORMA	CIÓN	N DEL	SOLICITANTE								
ite:	Jose Luis Anagua	Zegarra												
itante:	Jose Luis Anagua	Zegarra	garra											
ción:	Calle Hugo Lope	z Dolz N° 14	59 - Barrio La L	oma d	e San	Juan								
ono/Fa	6665374		Correo-e		**	*******	Cóc	digo	AL 131/17					
			II. INFORM	ACIÓ	N DE	LA MUESTRA		0-	712 202/21					
ripción o	de la muestra:	Mermela	da de frutilla fi	ortifica	ada co	n pimentón *								
go de m	uestreo:	М				A CONTRACTOR OF THE PARTY OF TH	*****	Lote:	****					
y hora	de muestreo:	2017-06-	18											
edencia	(Localidad/Prov/ Dpto)	Tarija - C	ercado - Tarija	Bolivia	3									
r de mu	estreo:	Lugar de	elaboración											
onsable	de muestreo:	Jose Luis	Anagua Zegarr	а										
go de la	muestra:	1104 FQ	853		Fecha	de recepción de	e la muestra:		2017-06-20					
idad rec	ibida:	200 g			Fecha	de ejecución de	e ensayo:	De 2017	-06-20 al 2017-06-28					
			III	. RES	ULTA	DOS								
PA	RÁMETRO		y/o MÉTODO ENSAYO	UNIC	DAD	RESULTADO	LIMITES PE	RMISIBLES Max.	REFERENCIA DE LOS LIMITES					
	les (20°C)	NB	36003:02	°Br	ix	59,4		65	NB 36018:09					

s resultados reportados se remiten a la muestra ensayada en el Laboratorio presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

s datos de la muestra y el muestreo, fueron suministrados por el cliente s parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

Cliente

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes

Laboratorio Oficial del "SENASAG"

			INFO	RME	DE	ENSAYO			
			I. INFORM	ACIÓN	V DE	LSOLICITANTE			
iente:	Jose Luis Anagua								
licitante:	Jose Luis Anagua	Zegarra					-		
rección:	Calle Hugo Lope	z Dolz N° 145	9 - Barrio La I	Loma	e San	luan			
léfono/Fa	× 6665374		Correo-e			*******	Cód	igo	AL 131/17
-			II. INFORM	ACIÓ	N DE	LA MUESTRA		igo	AL 131/17
scripción (de la muestra:		da de frutilla f						
digo de m	uestreo:	M 4		de ver			*****	Lote:	****
tha y hora	de muestreo:	2017-06-1	18					Lote.	
ocedencia	(Localidad/Prov/ Dpto)	Tarija - Ce	ercado - Tarija	Bolivia	3				
gar de mu	estreo:		elaboración						
sponsable	de muestreo:	Jose Luis A	Anagua Zegari	ra					
digo de la	muestra:	1105 FQ 8	354		Fecha	de recepción de	la muestra:		2017-06-20
ntidad reci	ibida:	200 g				de ejecución de			06-20 al 2017-06-28
			III	. RESI	_			DE 2017-	06-20 at 2017-06-28
PAI	RÁMETRO		y/o MÉTODO NSAYO	UNIC	AD	RESULTADO	LIMITES PER	RMISIBLES Max.	REFERENCIA DE LOS LIMITES
idos solubles (20°C) NR 26002-02 Paris							NB 36018:09		

Norma Baliviana

es resultados reportados se remiten a la muestra ensayada en el Laboratorio

presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

as datos de la muestra y el muestreo, fueron suministrados por el cliente as parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

Adalid Aceitung Cáceres JEFE DEL CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			IN	IFOR	ME	DE	ENSA'	10			
			I. INFO	ORMA	CIÓN	I DEL	SOLICI	TANTE			
Cliente:	Jose Luis Anagua	Zegarra									
Solicitante:	Jose Luis Anagua	Zegarra									
Dirección:	Calle Hugo Lope	z Dolz N° 1	459 - Barr	rio La L	oma d	e San	Juan				
Teléfono/Fax	6665374		Correc	о-е		**	******	**		ódigo	AL 131/17
			II. INF	ORM	ACIÓ	N DE	LA MU	ESTRA		- 0-	, , , , , , , , , , , , , , , , , , , ,
Descripción o	de la muestra:	Merme	lada de fr	utilla fo	ortifica	da co	n piment	ón		-	
Codigo de m	uestreo:		15	Fecha					*****	Lote:	****
Fecha y hora	de muestreo:	2017-06	6-18								
Procedencia	(Localidad/Prov/ Dpto)	Tarija -	Cercado -	Tarija	Bolivia	3					
Lugar de mue	estreo:		e elabora								
Responsable	de muestreo:	Jose Lui	is Anagua	Zegarr	а						
Código de la	muestra:	1106 FC				Fecha	a de rece	oción de	e la muestr	a:	2017-06-20
Cantidad reci	ibida:	200 g				Fecha	a de ejecu	ıción de	ensayo:	De 2017-	-06-20 al 2017-06-28
				111.	RES	ULTA	ADOS				
PA	RÁMETRO		A y/o MÉ E ENSAYO		UNIC	DAD	RESUL	TADO	LIMITES Min.	PERMISIBLES Max.	REFERENCIA DE LOS LIMITES
Sálidos solub	les (20°C)	NE	3 3 6 0 0 3 : 0	2	°Br	ix	62	,4		65	NB 36018:09
Norma Boliviano		-			- 51		02			03	NB 30016:09

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

- Il El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3 Los datos de la muestra y el muestreo, fueron suministrados por el cliente 4 Los parámetros corresponden a Análisis Fisico Químico

Tarija, 20 de junio de 2017

Cliente CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

		l. l	NFORMACI	ON DEL SOLICITANTE						
Cliente:	Jose Luis Anagu	ose Luis Anagua Zegarra								
Solicitante:	Jose Luis Anagu	a Zegarra								
Dirección:	Calle Hugo Lope	ez Dolz N° 1459 -	Barrio La Lom	a de San Juan						
Teléfono/Fax	6665374		orreo-e	********	Código	AL 131/17				
		II.	INFORMAC	IÓN DE LA MUESTRA	Codigo	ML 131/17				
Descripción d	e la muestra:			ficada con pimentón						

Mermelada de	e frutilla fortificada con pimer	ntón	
M 6	Fecha de vencimiento:	*********	Lote: ****
2017-06-18			Lotte
Tarija - Cercad	do - Tarija Bolivia		
Jose Luis Anag	gua Zegarra		
1107 FQ 856	Fecha de rec	epción de la muestra:	2017-06-20
200 g	Fecha de eje	cución de ensavo:	De 2017-06-20 al 2017-06-28
	M 6 2017-06-18 Tarija - Cercad Lugar de elabi Jose Luis Anag 1107 FQ 856	M 6 Fecha de vencimiento: 2017-06-18 Tarija - Cercado - Tarija Bolivia Lugar de elaboración Jose Luis Anagua Zegarra 1107 FQ 856 Fecha de rec	2017-06-18 Tarija - Cercado - Tarija Bolivia Lugar de elaboración Jose Luis Anagua Zegarra 1107 FQ 856 Fecha de recepción de la muestra:

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO	LINUDAD	DECIMENDO	LIMITES PE	RMISIBLES		
PARAIVIETRO	DE ENSAYO	UNIDAD	RESULTADO	Min.	Max.	LOS LIMITES	
icidos solubles (20°C)	NB 36003:02	*Brix	64,4		65	NB 36018:09	

Rorma Boliviana

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente Los parámetros corresponden a **Análisis Fisico Q**uímico

Tarija, 20 de junio de 2017

Adalid Aceitung Cáce JEFE DELCEANID

CEANID-FOR-88 Versión 01 Fecha de emisión: 2016-10-31

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"
Laboratorio Oficial del Ministerio de Salud y Deportes
Red de Laboratorios Oficiales de Análisis de Alimentos
Red Nacional de Laboratorios de Micronutrientes
Laboratorio Oficial del "SENASAG"

		INFOR	ME	DE	ENSAYO				
		. INFORMA	CIÓN	DEL	SOLICITANTE				
Jose Luis Anagua	Zegarra								
Jose Luis Anagua	Zegarra								
Calle Hugo Lope	z Dolz N° 145	9 - Barrio La L	oma de	San	Juan				
× 6665374		Correo-e		**	******		Cód	igo	AL 131/17
		II. INFORM	ACIÓN	N DE	LA MUESTRA				
de la muestra:	Mermela	da de frutilla fo	ortifica	da co	n pimentón				
uestreo:	M	7 Fecha	de ven	cimie	nto: ******	*****		Lote:	****
de muestreo:	2017-06-3	18							
(Localidad/Prov/ Dpto)	Tarija - Ce	rcado - Tarija	Bolivia						
estreo:	Lugar de	elaboración							
de muestreo:	Jose Luis	Anagua Zegarr	а						
muestra:	1108 FQ 8	357		Fecha	de recepción de	la mue	stra:	20	017-06-20
ibida:	200 g			Fecha	de ejecución de	ensayo	:	De 2017-0	06-20 al 2017-06-28
		III.	RESU	JLTA	DOS				
RÁMETRO		y/o MÉTODO ENSAYO	UNID	AD	RESULTADO		ES PE in.	RMISIBLES Max.	REFERENCIA DE LOS LIMITES
les (20°C)	NB 3	6003:02	°Bri	х	54,6			65	NB 36018:09
0									

ios reportados se remiten a la muestra ensayada en el Laboratorio informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

e la muestra y el muestreo, fueron suministrados por el cliente tros corresponden a **Análisis Fisico Quimico**

20 de junio de 2017

ng/Abalid Aceitung Cáceres 1EFE DEL CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"

Laboratorio Oficial del Ministerio de Salud y Deportes

Red de Laboratorios Oficiales de Análisis de Alimentos

Red Nacional de Laboratorios de Micronutrientes

Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

			INFORIVIE DE	LINSATO	,		
		I. IN	IFORMACIÓN DE	L SOLICITA	NTE		
iente:	Jose Luis Anagua	Zegarra					
licitante:	Jose Luis Anagua	a Zegarra					
rección:	Calle Hugo Lope	z Dolz N° 1459 - B	Barrio La Loma de Sa	n Juan			
léfono/Fax	6665374	Cor	reo-e	********	Có	digo	AL 131/17
		II. II	NFORMACIÓN D	E LA MUES	TRA		
escripción o	le la muestra:	Mermelada de	e frutilla fortificada c	on pimentón			
odigo de mi	uestreo:	M 8	Fecha de vencim	niento: **	******	Lote:	****

escripcion de la muestra:	Mermelada de	e frutilla fortificada con pimei	nton	
odigo de muestreo:	M 8	Fecha de vencimiento:	*********	Lote: *****
echa y hora de muestreo:	2017-06-18			
rocedencia (Localidad/Prov/ Dpto)	Tarija - Cercad	do - Tarija Bolivia		
ıgar de muestreo:	Lugar de elabo	oración		
esponsable de muestreo:	Jose Luis Anag	gua Zegarra		
ódigo de la muestra:	1109 FQ 858	Fecha de rec	epción de la muestra:	2017-06-20
antidad recibida:	200 g	Fecha de eje	cución de ensayo:	De 2017-06-20 al 2017-06-28
		III DECLIITADOS		

III. RESULTADOS

				LIMITES PE	RMISIBLES	
PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	Min.	Max.	LOS LIMITES
ólidos solubles (20°C)	NB 36003:02	°Brix	60,8		65	NB 36018:09

Norma Boliviana

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Los parámetros corresponden a Análisis Fisico Químico

Tarija, 20 de junio de 2017

Ing Agalid Aceitung Cáceres
JEFE DEL CEANID

Original: Cliente Copia:CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			I. INFORMA		DE ENS				
ente:	Jose Luis Anagua	Zegarra			011001				
licitante:	Jose Luis Anagua	Zegarra							
ección:	Calle Hugo Lopez	Dolz N° 14	59 - Barrio La L	oma de	San Juan				
éfono/Fax	6665374		Correo-e		*****	****	Cóc	ligo	AL 131/17
			II. INFORM	ACIÓN	DELAN	NUESTRA			
scripción c	de la muestra:	Mermel	ada de frutilla fo	ortificad	da con pim	entón			
digo de mi	uestreo:	R	1 Fecha	de vend	cimiento:	*****	*****	Lote:	****
ha y hora	de muestreo:	2017-06	-18						
cedencia	(Localidad/Prov/ Dpto)	Tarija - (Cercado - Tarija	Bolivia					
ar de mue	estreo:	Lugar de	elaboración						
ponsable	de muestreo:	Jose Luis	Anagua Zegarr	a					
digo de la	muestra:	1110 FQ	859	F	echa de re	ecepción de	la muestra:		2017-06-20
ntidad reci	ibida:	150 g		F	echa de e	jecución de	ensayo:	De 2017	-06-20 al 2017-06-28
			III	. RESU	ILTADOS				
PA	RÁMETRO		A y/o MÉTODO ENSAYO	UNIDA	AD RE	SULTADO	LIMITES PE	RMISIBLE:	REFERENCIA DE LOS LIMITES
idos solub	les (20°C)	NB	36003:02	°Brix	x	71,2		65	NB 36018:09

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente Los parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

inal: Cliente ia:CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

			IIII OI		DE EIGO	710			
			I. INFORMA	CIÓN	DEL SOL	ICITANTE			
nte:	Jose Luis Anagua	Zegarra							
itante:	Jose Luis Anagua	Zegarra							
cción:	Calle Hugo Lope	Dolz N° 14	459 - Barrio La L	oma de	San Juan				
fono/Fa	× 6665374		Correo-e		******	****	Cód	igo	AL 131/17
			II. INFORM	ACIÓN	DELAN	MUESTRA		0-	
ripción	de la muestra:	Mermel	ada de frutilla f	ortificad	da con pim	entón "			
go de m	uestreo:				cimiento:		*****	Lote:	****
a y hora	de muestreo:	2017-06	5-18						
edencia	(Localidad/Prov/ Dpto)	Tarija - (Cercado - Tarija	Bolivia					
r de mu	estreo:	Lugar de	e elaboración						
onsable	de muestreo:	Jose Luis	s Anagua Zegari	ra					
go de la	muestra:	1111 FQ	860	1	Fecha de r	ecepción de	e la muestra:	2	017-06-20
tidad red	ibida:	150 g		1	Fecha de e	jecución de	ensayo:	De 2017-0	06-20 al 2017-06-28
			III	. RESU	ILTADOS				
PA	RÁMETRO	100000	A y/o MÉTODO E ENSAYO	UNID	AD RE	SULTADO	LIMITES PE	RMISIBLES Max.	REFERENCIA DE LOS LIMITES
dos solut	oles (20°C)	NB	36003:02	°Bri	x	72,6		65	NB 36018:09

orma Boliviana

s resultados reportados se remiten a la muestra ensayada en el Laboratorio presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

s datos de la muestra y el muestreo, fueron suministrados por el cliente is parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

alid Aceituno Cácero JEFE DEL CEANID

al: Cliente CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			INFOR	ME [DE E	NSAY	0			
			I. INFORMA	CIÓN	DEL	SOLICI	TANTE			
ente:	Jose Luis Anagua	Zegarra								
icitante:	Jose Luis Anagua	Zegarra								
ección:	Calle Hugo Lope:	z Dolz N° 14	159 - Barrio La Lo	oma de	San J	Juan				
éfono/Fa	6665374		Correo-e		**:	*****	**	Cód	igo	AL 131/17
			II. INFORMA	ACIÓN	DE	LA MU	ESTRA			
scripción	de la muestra:	Mermel	ada de frutilla fo	ortificad	da cor	n piment	ón			
digo de m	uestreo:	R	3 Fecha	de ven	cimie	nto:	*****	*****	Lote:	****
ha y hora	de muestreo:	2017-06	5-18							
cedencia	(Localidad/Prov/ Dpto)	Tarija -	Cercado - Tarija	Bolivia						
gar de mu	estreo:	Lugar d	e elaboración							
sponsable	de muestreo:	Jose Lui	s Anagua Zegarr	а						
digo de la	muestra:	1112 FC	2 861		Fecha	de rece	pción de	la muestra:	2	017-06-20
ntidad red	cibida:	150 g			Fecha	de ejec	ución de	ensayo:	De 2017-0	06-20 al 2017-06-28
			III	RESU	JLTA	DOS				
PA	ARÁMETRO		A y/o MÉTODO E ENSAYO	UNID	AD	RESUI	TADO	LIMITES PE Min.	RMISIBLES Max.	REFERENCIA DE LOS LIMITES
lidos solul	bles (20°C)	NE	3 36003:02	°Bri	X	72	2,4		65	NB 36018:09
Norma Bolivia	na									

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente Los parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

Ing. Agalid Aceitung Cácere JEFE DEL GEANID

gnal: Cliente E CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

			I. INFORMAC						
			I. INFORMA	LIUNI	DELS	OLICITAINTE			
nte:	Jose Luis Anagua	Zegarra							
citante:	Jose Luis Anagua								
cción:	Calle Hugo Lopez	Dolz N° 14	59 - Barrio La Lo	ma de	San Ju	uan			
fono/Fa	x: 6665374		Correo-e			******	Cód	igo	AL 131/17
			II. INFORMA	ACIÓN	DE	LA MUESTRA			
cripción	de la muestra:	Mermel	ada de frutilla fo	rtificad	la con	pimentón			
ligo de m	nuestreo:	R	4 Fecha	de vend	cimier	nto: ******	*****	Lote:	****
ha y hora	a de muestreo:	2017-06	-18						
cedencia	(Localidad/Prov/ Dpto)	Tarija - 0	Cercado - Tarija	Bolivia					
ar de mu	uestreo:	Lugar de	e elaboración						
ponsable	e de muestreo:		s Anagua Zegarr	а					
	a muestra:	1113 FC	2 862		Fecha	de recepción de	e la muestra:	2	017-06-20
ntidad re		150 g			Fecha	de ejecución de	ensayo:	De 2017-0	06-20 al 2017-06-28
Tildud TC		12000	III	. RESU	JLTA	DOS			
P	ARÁMETRO	7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A y/o MÉTODO	UNID	AD	RESULTADO	Min.	ERMISIBLES Max.	REFERENCIA DE
. 1	ubles (20°C)		B 36003:02	°Br	ix	72,6		65	NB 36018:09

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente Los parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

Adalid Aceitume Cácere VIEFE DEL CEANID

Copia:CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INCODME DE ENSAVO

INFOR	RME D	DE ENS	SAYO			
I. INFORMA	IACIÓN I	DEL SO	LICITANTE			
.459 - Barrio La Lo	Loma de	San Juan				
Correo-e		*****	*****	Códi	go	AL 131/17
II. INFORMA	VIACIÓN	DE LA	MUESTRA			
elada de frutilla fo	fortificad	a con pir	mentón			
R 5 Fecha	na de vend	imiento	******	******	Lote:	****
06-18						
- Cercado - Tarija	ija Bolivia					
de elaboración						
uis Anagua Zegarr	arra					
Q 863	F	echa de	recepción de	la muestra:	21	017-06-20
	F	echa de	ejecución de	ensayo:	De 2017-0	6-20 al 2017-06-28
III	III. RESU	ILTADO	S			
CA y/o MÉTODO DE ENSAYO	DO UNIDA	AD R	ESULTADO	LIMITES PE Min.	RMISIBLES Max.	REFERENCIA DE LOS LIMITES
NB 36003:02	°Bri	х	77,6		65	NB 36018:09
					ELIGATO	EENSATO

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente Los parámetros corresponden a **Análisis Fisico Químico**

Tarija, 20 de junio de 2017

lid Aceitung Cáceres MEFE DEL GEANID

inginal: Cliente opia:CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" NTRO DE ANALISIS INVESTIGACION Y DEFADROLOGIA"

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID"
Laboratorio Oficial del Ministerio de Salud y Deportes
Red de Laboratorios Oficiales de Análisis de Alimentos
Red Nacional de Laboratorios de Micronutrientes
Laboratorio Oficial del "SENASAG"

" RELOAA

INFORME DE ENSAYO

		I. INFORMACI	IÓN DEL SOLICITANTE		
Cliente:	Jose Luis Anagua Zeg	garra			
Solicitante:	Jose Luis Anagua Zeg	garra			
		lz N° 1459 - Barrio La Lon	na de San Juan		
Teléfono/Fax		Correo-e	*******	Cádiga	11 424 (47
	Annual Control of the			Código	AL 131

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Mermelada d	e frutilla fortificada con pimentón	
Codigo de muestreo:	R 6	Fecha de vencimiento: *********	Lote: ****
Fecha y hora de muestreo:	2017-06-18		Lote.
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercad	do - Tarija Bolivia	
Lugar de muestreo:	Lugar de elab		
Responsable de muestreo:	Jose Luis Anag	gua Zegarra	
Código de la muestra:	1115 FQ 864	Fecha de recepción de la muestr	ra: 2017-06-20
Cantidad recibida:	150 g	Fecha de ejecución de ensayo:	De 2017-06-20 al 2017-06-28

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO	UNIDAD	RESULTADO	LIMITES PE	RMISIBLES	REFERENCIA DE
	DE ENSAYO			Min.	Max.	LOS LIMITES
Sólidos solubles (20°C)	NB 36003:02	°Brix	65,8		65	NB 36018:09

¹⁾ Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

Tarija, 20 de junio de 2017

ng. Adalid Aceitupo Cáceres JEFE DEL CEANID

Original: Cliente
Copia:CEANID

²⁾ El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

³⁾ Los datos de la muestra y el muestreo, fueron suministrados por el cliente

⁴⁾ Los parámetros corresponden a Análisis Físico Químico

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			INFOR	ME	DE E	ENSA	YO			
			I. INFORMA	CIÓN	DEL	SOLIC	TANTE			
nte:	Jose Luis Anagua	Zegarra								
citante:	Jose Luis Anagua	Zegarra								
ección:	Calle Hugo Lope:	Dolz N° 14	159 - Barrio La L	oma d	e San .	Juan				
éfono/Fax	6665374		Correo-e		- 1	*****	0.00	Cód	igo	AL 131/17
			II. INFORM	ACIÓ	N DE	LA MU	JESTRA			
cripción o	de la muestra:	Mermel	ada de frutilla f	ortifica	ada co	n pimen	tón			
ligo de m	uestreo:	R	7 Fecha	de vei	ncimie	ento:	******	*****	Lote:	****
ha y hora	de muestreo:	2017-06	5-18							
cedencia	(Localidad/Prov/ Dpto)	Tarija -	Cercado - Tarija	Bolivia	а					
ar de mu	estreo:	Lugar de	e elaboración							
ponsable	de muestreo:	Jose Lui	s Anagua Zegar	ra						
digo de la	muestra:	1116 FC	2 865		Fech	a de rec	epción de	la muestra:	2	017-06-20
ntidad red	cibida:	150 g			Fech	a de eje	cución de	ensayo:	De 2017-0	06-20 al 2017-06-28
			II	I. RES	ULTA	ADOS				
PA	ARÁMETRO	and the second second	A y/o MÉTODO E ENSAYO	UNI	DAD	RESU	ILTADO	LIMITES PERMISIBL		REFERENCIA DE LOS LIMITES
lidos solul	bles (20°C)	N	3 36003:02	°B	rix	6	4,4		65	NB 36018:09
Norma Bolivia	no									

Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID

Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Los parametros corresponden a Análisis Fisico Químico

Tarija, 20 de junio de 2017

Agalid Aceituno Cácere SEFE DEL CEANID

gnal: Cliente = CEANID

CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

			INFO	RME	DE	ENSAYO)			
			I. INFORM	ACIÓ	V DE	L SOLICITA	NTE			
Cliente:	Jose Luis Anagua									
Solicitante:	Jose Luis Anagua	a Zegarra								
Dirección:	Calle Hugo Lope		159 - Barrio La	Loma	le San	luan				
Teléfono/Fax			Correo-e			******		Cóc	ligo	AL 131/17
			II. INFORM	IACIÓ	N DE	LA MUES	TRA		igo	AL 151/17
Descripción d	le la muestra:	Mermel	ada de frutilla							
Codigo de mu	iestreo:			de ve			manufacture visit	*****	Lote:	****
echa y hora	de muestreo:	2017-06	-18						LOCC.	E I I I I I I
Procedencia (Localidad/Prov/ Dpto)	Tarija - C	Cercado - Tarija	Bolivia	9					
Lugar de mue	streo:		elaboración					(
Responsable	de muestreo:	Jose Luis	Anagua Zegar	ra						
Código de la r	nuestra:	1117 FQ			Fech	a de recepci	ón de	la muestra:	2	017-06-20
Cantidad reci	bida:	150 g		1 4	Fech	a de ejecució	ón de	ensavo:		06-20 al 2017-06-28
			III	. RES	ULTA	ADOS			002017	0 20 01 2017 00 20
PAR	ÁMETRO		y/o MÉTODO ENSAYO	UNIE	DAD	RESULTA	DO	LIMITES PEI	RMISIBLES Max.	REFERENCIA DE
iólidos soluble	es (20°C)		36003:02	°Br	ix	54,2		IAIIII.	65	NB 36018:09
B: Norma Boliviana								- 0		

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

👢 El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID 🦸 🥬

Los datos de la muestra y el muestreo, fueron suministrados por el cliente

4) Los parámetros corresponden a Análisis Fisico Químico

Tarija, 20 de junio de 2017

Adalid Aceitung Cáceres JEFE DEL CEANID

ginal: Cliente

ANEXO B.1 TEST DE EVALUACIÓN SENSORIAL PARA ELEGIR EL METODO DE ELABORACIÓN DE LA MERMELADA

Set:				
Nombre:			Fecha:	
Instrucciones:				
describe cuanto presente que uste este alimento deb	le gusta o le de ed es el juez y el t e ser considerado	la a continuación esagrada en las o ánico que puede o bueno, malo o in a decidir sobre e	los muestras pre lecir lo que le gu diferente. La sind	esentadas. Tenga sta, nadie sabe si cera expresión de
	(8) GUSTA II (7) GUSTA II (6) GUSTA II (5) NI GUSTI (4) DESAGRI (3) DESAGRI (2) DESAGRI	MUCHISIMO MUCHO MODERADAMI LIGERAMENTI TA NI DISGUST RADA LIGERAM RADA MODERA RADA MUCHO RADA MUCHISI	E A MENTE ADAMENTE	
MUESTRAS	COLOR	AROMA	SABOR	TEXTURA
X				
Y				
Observaciones:				

ANEXO B.2 TEST DE EVALUACIÓN SENSORIAL PARA DETERMINAR LA DOSIFICACIÓN DE INSUMOS DE LA MERMELADA

Set:				
Nombre:			Fecha:	
Instrucciones:				
Utilizando la esc describe cuanto le Tenga presente qua sabe si este alim expresión de su experimental.	e gusta o le desag ue usted es el Jud ento debe ser c	grada en cada una ez y el único que onsiderado buen	de las ocho mues puede decir lo quo, malo o indifer	stras presentadas. ue le gusta, nadie rente. La sincera
	(6) GUSTA L(5) NI GUSTA(4) DESAGR(3) DESAGR(2) DESAGR		ENTE AMENTE	
MUESTRAS	COLOR	AROMA	SABOR	TEXTURA
X1				
X2				
X3				
X4				
X5				
X6				
X7				
X8				
Observaciones:				

.....

ANEXO B.3 TEST DE EVALUACIÓN SENSORIAL DEL PRODUCTO FINAL

Set:								
Nombre:			Fecha:					
Instrucciones:								
Utilizando la escala que se detalla a continuación, anote la puntuación que mejor describe cuanto le gusta o le desagrada en el producto final presentado. Tenga presente que usted es el Juez y el único que puede decir lo que le gusta, nadie sabe si este alimento debe ser considerado bueno, malo o indiferente. La sincera expresión de su sensación personal nos ayudará a decidir sobre el trabajo experimental.								
	(8) GUSTA (7) GUSTA (6) GUSTA (5) NI GUS (4) DESAG (3) DESAG (2) DESAG	A MUCHISIMO A MUCHO A MODERADAM A LIGERAMENT STA NI DISGU GRADA LIGERA GRADA MODER GRADA MUCHO GRADA MUCHI	TE STA AMENTE RADAMENTE)					
MUESTRAS	COLOR	AROMA	SABOR	TEXTURA				
Х3								
Observaciones:								

ANEXO C.1

METODOLOGÍA PARA LA RESOLUCIÓN DEL TESTS DE DUNCAN

Según (Ramírez, 2011), para realizar el análisis estadístico de la prueba de Duncan consta de los siguientes pasos:

1.- Planteamiento de la hipótesis

Hp: No hay diferencia entre tratamientos (muestra).

Ha: Al menos una muestra es diferente de las demás.

2.- Nivel de significancia: 0,05 (5%) ó 0,01 (1%)

3.- Prueba de significancia: "F" de Snedecor.

4.- Suposiciones:

Los datos siguen una distribución normal (~ N).

Los datos son extraídos de un muestreo al azar.

5.- Construcción del cuadro de ANVA:

Para realizar la construcción del cuadro de ANVA, se tomó en cuenta las expresiones matemáticas (C.1), (C.2), (C.3) y (C.4).

> Suma de cuadrados totales SC(T):

$$SC(T) = \sum y_{ij}^2 - \frac{y^2}{b * n}$$
 (C.1)

> Suma de cuadrados del tratamiento SC(A):

$$SC(A) = \frac{\sum y_i^2}{b} - \frac{(y_i)^2}{b * n}$$
 (C.2)

> Suma de cuadrado de los jueces SC(B):

$$SC(B) = \frac{\sum y_j^2}{n} - \frac{(y_i)^2}{b * n} \tag{C.3}$$

Donde:

a = Es el número de tratamientos o muestras

n = Es el número de jueces

> Suma del cuadrado del error SC(B):

$$SC(E) = SC(T) - SC(A) - SC(B)$$
 (C.4)

Los criterios de decisión a tomar en cuenta son:

- ❖ Se acepta la Hp si Fcal < Ftab (no se realiza la prueba de Duncan)
- ❖ Se rechaza la Hp si Fcal > Ftab (se realiza la prueba de Duncan)

6.- Desarrollo de la prueba estadística de Duncan:

Determinar el valor de la varianza muestral de S²/y

$$\frac{S^2}{y} = \sqrt{\frac{CME}{n}} \tag{C.8}$$

7.- Construcción del cuadro de Análisis de Varianza (ANVA)

Tabla C.I Cuadro de análisis de varianza

Fuente de variación (FV)	Suma de cuadrados (SC)	Grados de libertad (GL)	Cuadrados medios (CM)	Fisher calculado (Fcal)	Fisher tabulado (Ftab)
Total	SC(T)	na – 1			
Muestras (A)	SC(A)	(a-1)	$CM(A) = \frac{SC(A)}{(a-1)}$	$\frac{CM(A)}{CM(E)}$	$\frac{v_1}{v_2} = \frac{GL_{SC(A)}}{GL_{SC(E)}}$
Jueces (B)	SC(B)	(n-1)	$CM(B) = \frac{SC(B)}{(n-1)}$	$\frac{CM(B)}{CM(E)}$	$\frac{v_1}{v_2} = \frac{GL_{SC(B)}}{GL_{SC(E)}}$
Error	SC(E)	(a-1)(n-1)	$CM(E) = \frac{SC(E)}{(n-1)(a-1)}$		

Fuente: Ramírez, 2011

ANEXO C.1

Tabla C.1-1 Evaluación sensorial del atributo color para elegir el método de elaboración

ratificato color para cicgir ci						
Jueces	Mue	Muestras				
Jucces	X	Y	Total			
1	8	6	14			
2	6	8	14			
3	8	7	15			
4	7	9	16			
5	8	7	15			
6	9	8	17			
7	7	7	14			
8	8	7	15			
9	7	7	14			
10	8	8	16			
11	7	8	15			
12	6	7	13			
13	9	7	16			
14	8	7	15			
15	7	7	14			
Ż	7,53	7,33	14,87			
ΣΥ	113	110	223			

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 1677 - \frac{223^2}{15*2} = 19,37$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{24869}{15} - \frac{223^2}{15*2} = 0.30$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{3331}{2} - \frac{223^2}{15*2} = 7,87$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (19,37 - 0,30 - 11,20) = 11,20$$

En base a los resultados obtenidos de la tabla C.1-1, se construye el análisis de varianza (tabla C.1-2).

Tabla C.1-2 Análisis de varianza del atributo color para elegir el método de elaboración

miners are variables are married to core parts or each or an error or error							
Fuente de	Suma de	Grados de	Cuadrados				
varianza	cuadrados	libertad	medios	F cal	F tab		
FV	SC	GL	MC				
Total	19,37	29					
Muestras	0,30	1	0,30	0,38	4,60		
Jueces	7,87	14	0,56	0,70	2,48		
Error	11,20	14	0,80				

Fuente: Elaboración propia

ANEXO C.1

Tabla C.1-3 Evaluación sensorial del atributo sabor para elegir el método de elaboración

		•	
Jueces	Mue X	stras Y	Total
1	7	4	11
2	8	7	15
3	9	8	17
4	7	8	15
5	9	8	17
6	4	5	9
7	7	7	14
8	7	6	13
9	7	8	15
10	8	7	15
11	8	6	14
12	7	8	15
13	9	8	17
14	7	8	15
15	9	8	17
Ż	7,53	7,07	14,60
ΣΥ	113	106	219

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 1647 - \frac{219^2}{15*2} = 48,30$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{24005}{15} - \frac{219^2}{15*2} = 1,63$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{3269}{2} - \frac{219^2}{15*2} = 35,80$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (48,30 - 1,63 - 35,80) = 10,87$$

En base a los resultados obtenidos de la tabla C.1-3, se construye el análisis de varianza (tabla C.1-4).

Tabla C.1-4 Análisis de varianza del atributo sabor para elegir el método de elaboración

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F tab
FV	SC	GL	MC		
Total	Γotal 48,30				
Muestras	Muestras 1,63		1,63	2,09	4,60
Jueces 35,80		14	2,56	3,28	2,48
Error	10,87	14	0,78		

Fuente: Elaboración propia

ANEXO C.1

Tabla C.1-5 Evaluación sensorial del atributo textura para elegir el método de elaboración

т	Mue	T 4 1	
Jueces	X	Y	Total
1	7	8	15
2	8	7	15
3	9	8	17
4	6	8	14
5	9	6	15
6	7	7	14
7	8	8	16
8	7	8	15
9	6	6	12
10	9	7	16
11	7	9	16
12	7	8	15
13	7	8	15
14	8	6	14
15	8	5	13
Ż	7,53	7,27	14.80
ΣΥ	113	109	222

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 1674 - \frac{222^2}{15*2} = 31,20$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{24650}{15} - \frac{222^2}{15*2} = 0.53$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{3308}{2} - \frac{222^2}{15*2} = 11,20$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (31,20 - 0,53 - 11,20) = 19,47$$

En base a los resultados obtenidos de la tabla C.1-5, se construye el análisis de varianza (tabla C.1-6).

Tabla C.1-6 Análisis de varianza del atributo textura para elegir el método de elaboración

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F _{cal}	F _{tab}
FV	SC	GL	MC		
Total	31,20	29			
Muestras	estras 0,53		0,53	0,38	4,60
Jueces 11,20		14	0,80	0,58	2,48
Error	19,47	14	1,39		

Fuente: Elaboración propia

ANEXO C.1

Tabla C.1-7 Evaluación sensorial del atributo olor para elegir el método de elaboración

	Mara	0	
Jueces	X	stras Y	Total
1	9	8	17
2	7	8	15
3	8	8	16
4	6	6	12
5	6	7	13
6	9	8	17
7	7	7	14
8	6	5	11
9	8	9	17
10	9	8	17
11	8	7	15
12	8	7	15
13	8	8	16
14	7	8	15
15	7	5	12
Ż	7,53	7,27	14,80
ΣΥ	113	109	222

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 1678 - \frac{222^2}{15*2} = 35,20$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{24650}{15} - \frac{222^2}{15*2} = 0.53$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{3342}{2} - \frac{222^2}{15*2} = 28,20$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (35,20 - 0,53 - 28,20) = 6,47$$

En base a los resultados obtenidos de la tabla C.1-7, se construye el análisis de varianza (tabla C.1-8).

Tabla C.1-8 Análisis de varianza del atributo olor para elegir el método de elaboración

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F tab
FV	SC	GL	MC		
Total	otal 35,20				
Muestras	Muestras 0,53		0,53	1,15	4,60
Jueces 28,20		14	2,01	4,37	2,48
Error 6,47		14	0,46		

Fuente: Elaboración propia

ANEXO C.2

Tabla C.1-9
Evaluación sensorial del atributo color para determinar la dosificación de insumos

Muestras							m . 1		
Jueces	X1	X2	X3	X4	X5	X6	X7	X8	Total
1	8	6	8	7	7	7	8	7	58
2	9	8	8	9	7	7	8	8	64
3	9	5	7	8	7	5	5	5	51
4	8	8	9	7	9	7	7	8	63
5	6	7	8	7	6	5	6	5	50
6	8	7	7	7	9	7	6	7	58
7	7	8	8	8	7	7	7	7	59
8	9	7	6	8	8	7	7	6	58
9	7	5	7	8	9	7	8	8	59
10	7	7	9	8	8	8	7	7	61
11	6	7	7	8	8	8	8	8	60
12	9	7	8	8	6	6	6	6	56
13	6	6	6	8	7	7	7	7	55
14	8	6	7	7	8	8	6	5	52
15	8	5	5	7	7	7	6	6	51
ΣΥ	99	115	115	110	114	103	102	100	858
Ż	6,60	7,67	7,67	7,33	7,60	6,87	6,80	6,67	57,20

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 6227 - \frac{858^2}{15*8} = 113,30$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{91751}{15} - \frac{858^2}{15*8} = 22,63$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{71951}{8} - \frac{858^2}{15*8} = 30,55$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (113,30 - 22,63 - 30,50) = 60,12$$

En base a los resultados obtenidos de la tabla C.1-9, se construye el análisis de varianza (tabla C.1-10).

Tabla C.1-10

Análisis de varianza del atributo color para determinar la dosificación de insumos

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F tab
FV	SC	GL	MC		
Total	113,30	119			
Muestras	22,63	7	3,23	5,29	2,84
Jueces 30,55		14	2,18	3,57	2,78
Error	60,12	98	0,61		

Fuente: Elaboración propia

↓ Desarrollo de la prueba estadística de Duncan

Calculando el valor de varianza muestral del experimento:

$$\frac{S^2}{y} = \sqrt{\frac{CME}{n}}$$

$$\frac{S^2}{y} = \sqrt{\frac{0.61}{15}} = 0.20$$

 \clubsuit Valores de amplitudes estudiantizadas de Duncan con un nivel de significación $\alpha=0.05$. Tabla de Duncan (Anexo E).

Tabla C.1-11 Amplitudes estudiantizadas y límites de significancia de Duncan

Promedio	AES(D)	ALS(D)
2	2,76	0,58
3	2,77	1,72
4	2,80	1,74
5	2,82	1,75
6	2,84	1,76
7	2,87	1,78
8	2,89	1,80

Fuente: Elaboración propia

La tabla C.1-12, muestra los valores promedio de las muestras ordenados de mayor a menor obtenidos de la tabla C.1-9.

Tabla C.1-12 Ordenamiento de los valores promedio de los tratamientos

X2	X3	X5	X4	X6	X7	X8	X1
7,67	7,67	7,60	7,33	6,87	6,80	6,67	6,60

Fuente: Elaboración propia

En base a la tabla C.1-11 y tabla C.1-12, se procede a realizar el análisis estadístico que se muestran en la tabla C.1-13.

Tabla C.1-13 Análisis estadístico de Duncan del atributo color

Tratamientos	Análisis de los valores	Significancia
X2 – X3	0,00 < 0,58	No hay significancia
X2 – X5	0,07 < 1,72	No hay significancia
X2 – X4	0,34 < 1,74	No hay significancia
X2 – X6	0,80 < 1,75	No hay significancia
X2 – X7	0,87 < 1,76	No hay significancia
X2 – X8	1,00 > 0,78	Hay significancia
X2 – X1	1,07 < 1,80	No hay significancia
X3 – X5	0,07 < 0,78	No hay significancia
X3 – X4	0,34 < 0,84	No hay significancia
X3 – X6	0,40 < 0,89	No hay significancia
X3 – X7	0,80 < 0,89	No hay significancia
X3 – X8	1,07 > 0,97	Hay significancia
X3 – X1	1,13 > 0,97	Hay significancia
X5 – X4	0,07 < 0,99	No hay significancia
X5 – X2	0,27 < 0,78	No hay significancia
X5 – X7	0,67 < 0,84	No hay significancia
X5 – X6	0,94 > 0,89	Hay significancia
X5 – X8	1,00 > 0,92	Hay significancia
X4 – X6	0,46 < 0,95	No hay significancia
X4 – X7	0,53 < 0,97	No hay significancia
X4 – X8	0,66 < 0,99	No hay significancia
X4 – X1	0,73 < 0,78	No hay significancia
X6 – X7	0,07 < 0,84	No hay significancia
X6 – X8	0,20 < 0,89	No hay significancia
X6 – X1	0,27 < 0,92	No hay significancia
X7 – X8	0,13 < 0,95	No hay significancia
X7 – X1	0,20 < 0,97	No hay significancia
X8 – X1	0,07 < 0,99	No hay significancia

Fueste: Elaboración propia

ANEXO C.2

Tabla C.1-14
Evaluación sensorial del atributo sabor para determinar la dosificación de insumos

msumos									
Jueces				Mues					Total
	X1	X2	Х3	X4	X5	Х6	X7	X8	
1	7	6	8	7	8	7	9	6	58
2	6	8	7	8	7	8	8	8	60
3	4	8	8	7	8	7	7	4	53
4	6	7	9	6	5	8	5	7	53
5	6	6	6	4	8	5	6	6	47
6	7	7	9	8	8	6	7	7	59
7	7	8	7	7	8	8	8	7	60
8	7	9	8	7	6	6	6	6	55
9	9	6	8	6	8	6	8	7	58
10	7	7	9	8	8	7	9	8	63
11	6	9	6	5	7	7	7	7	54
12	6	9	6	8	9	7	7	5	57
13	6	5	6	8	6	5	6	5	47
14	5	8	8	8	6	7	8	6	56
15	5	8	7	8	7	5	7	6	53
ΣΥ	94	111	112	105	109	99	108	95	833
Ż	6,27	7,40	7,47	7,00	7,27	6,60	7,20	6,33	55,53

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 5955 - \frac{833^2}{15*8} = 172,59$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{87097}{15} - \frac{833^2}{15*8} = 24,06$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{46549}{8} - \frac{833^2}{15*8} = 38,97$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (172,59 - 24,06 - 38,97)$$

En base a los resultados obtenidos de la tabla C.1-14, se construye el análisis de varianza (tabla C.1-15).

Tabla C.1-15

Análisis de varianza del atributo sabor para determinar la dosificación de insumos

		TI DUITIOD			
Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F _{tab}
FV	SC	GL	MC		
Total	172,59	119			
Muestras	24,06	7	3,44	3,07	2,84
Jueces	38,97	14	2,78	2,48	2,78
Error	109,56	98	1,12		

Fuente: Elaboración propia

↓ Desarrollo de la prueba estadística de Duncan

Calculando el valor de varianza muestral del experimento:

$$\frac{S^2}{y} = \sqrt{\frac{CME}{n}}$$

$$\frac{S^2}{y} = \sqrt{\frac{1.12}{15}} = 0,27$$

Valores de amplitudes estudiantizadas de Duncan con un nivel de significación $\alpha = 0.05$. Tabla de Duncan (Anexo E).

Tabla C.1-16 Amplitudes estudiantizadas y límites de significancia de Duncan

<i>j</i>						
Promedio	AES(D)	ALS(D)				
2	3,17	0,86				
3	3,34	0,90				
4	3,46	0,93				
5	3,56	0,96				
6	3,63	0,98				
7	3,70	0,99				
8	3,76	1,01				

Fuente: Elaboración propia

La tabla C.1-17, muestra los valores promedio de las muestras ordenados de mayor a menor obtenidos de la tabla C.1-14.

Tabla C.1-17 Ordenamiento de los valores promedio de los tratamientos

X3	X2	X5	X7	X4	X6	X8	X1
7,47	7,40	7,27	7,20	7,00	6,60	6,33	6,27

Fuente: Elaboración propia

En base a la tabla C.1-16 y tabla C.1-17, se procede a realizar el análisis estadístico que se muestran en la tabla C.1-18.

Tabla C.1-18 Análisis estadístico de Duncan del atributo sabor

Analisis estadístico de Duncan del atributo sabor Análisis de los								
Tratamientos	valores	Significancia						
X3 – X2	0,07 < 0,86	No hay significancia						
X3 – X5	0,20 < 0,90	No hay significancia						
X3 – X7	0,27 < 0,93	No hay significancia						
X3 – X4	0,47 < 0,96	No hay significancia						
X3 – X6	0,87 < 0,98	No hay significancia						
X3 – X8	1,14 > 0,99	Hay significancia						
X3 – X1	1,20 > 1,01	Hay significancia						
X2 – X5	0,13 < 0,86	No hay significancia						
X2 – X7	0,20 < 0,90	No hay significancia						
X2 – X4	0,40 < 0,93	No hay significancia						
X2 – X6	0,80 < 0,96	No hay significancia						
X2 – X8	1,07 > 0,98	Hay significancia						
X2 – X1	1,13 > 0,99	Hay significancia						
X5 – X7	0,07 < 0,86	No hay significancia						
X5 – X4	0,27 < 0,90	No hay significancia						
X5 – X6	0,67 < 0,93	No hay significancia						
X5 – X8	0,94 < 0,96	No hay significancia						
X5 – X1	1,00 > 0,98	Hay significancia						
X7 – X4	0,20 < 0,86	No hay significancia						
X7 – X6	0,60 < 0,90	No hay significancia						
X7 – X8	0,87 < 0,93	No hay significancia						
X7 – X1	0,93 < 0,96	No hay significancia						
X4 – X6	0,40 < 0,86	No hay significancia						
X4 – X8	0,67 < 0,90	No hay significancia						
X4 – X1	0,73 < 0,93	No hay significancia						
X6 – X8	0,27 < 0,86	No hay significancia						
X6 – X1	0,33 < 0,90	No hay significancia						
X8 – X1	0,06 < 0,86	No hay significancia						

Fuente: Elaboración propia

ANEXO C.2

Tabla C.1-19 Evaluación sensorial del atributo textura para determinar la dosificación de insumos

	Muestras								
Jueces	X1	X2	X3	X4	X5	X6	X7	X8	Total
1	8	9	8	8	7	8	8	8	64
2	7	7	6	6	8	8	8	7	57
3	7	7	7	7	8	7	7	7	57
4	7	6	7	6	5	7	6	7	51
5	5	6	7	6	6	5	6	6	47
6	7	6	6	7	6	5	6	7	50
7	7	6	7	6	5	4	4	5	44
8	8	8	9	8	8	7	7	8	63
9	4	8	5	5	5	4	6	5	42
10	9	5	9	8	9	8	9	7	64
11	4	8	7	8	7	6	7	7	54
12	7	7	7	7	7	7	7	7	56
13	9	7	8	7	8	7	8	7	61
14	8	8	8	7	8	9	8	7	63
15	5	7	6	6	4	7	8	9	52
ΣΥ	95	99	114	110	91	94	101	89	793
Ż	6,33	6,60	7,60	7,33	6,07	6,27	6,73	5,93	52,87

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 5509 - \frac{793^2}{15*8} = 284,59$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{78725}{15} - \frac{793^2}{15*8} = 36,99$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{42529}{8} - \frac{793^2}{15*8} = 93,22$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (284,59 - 36,99 - 93,22)$$

En base a los resultados obtenidos de la tabla C.1-19, se construye el análisis de varianza (tabla C.1-20).

Tabla C.1-20 Análisis de varianza del atributo textura para determinar la dosificación de insumos

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F _{cal}	F _{tab}
FV	SC	GL	MC		
Total	284,59	119			
Muestras	36,99	7	5,28	3,34	2,84
Jueces	93,22	14	6,66	4,22	2,78
Error	154,38	98	1,58		

Fuente: Elaboración propia

♣ Desarrollo de la prueba estadística de Duncan

Calculando el valor de varianza muestral del experimento:

$$\frac{S^2}{y} = \sqrt{\frac{CME}{n}}$$

$$\frac{S^2}{y} = \sqrt{\frac{1.58}{15}} = 0.32$$

 \clubsuit Valores de amplitudes estudiantizadas de Duncan con un nivel de significación $\alpha = 0.05$. Tabla de Duncan (Anexo E).

Tabla C.1-21 Amplitudes estudiantizadas y límites de significancia de Duncan

Promedio	AES(D)	ALS(D)
2	2,81	0,90
3	2,95	0,94
4	3,05	0,98
5	3,12	1,00
6	3,18	1,02
7	3,22	1,03
8	3,26	1,04

Fuente: Elaboración propia

La tabla C.1-22, muestra los valores promedio de las muestras ordenados de mayor a menor obtenidos de la tabla C.1-19.

Tabla C.1-22 Ordenamiento de los valores promedio de los tratamientos

X3	X4	X7	X2	X1	X6	X5	X8
7,60	7,33	6,73	6,60	6,33	6,27	6,07	5,93

Fuente: Elaboración propia

En base a la tabla C.1-21 y tabla C.1-22, se procede a realizar el análisis estadístico que se muestran en la tabla C.1-23.

Tabla C.1-23 Análisis estadístico de Duncan del atributo textura

Tratamientos	Análisis de los	Significancia
Tratamentos	valores	Significancia
X3 – X4	0,27 < 0,90	No hay significancia
X3 – X7	0,87 < 0,94	No hay significancia
X3 – X2	1,00 > 0,98	Hay significancia
X3 – X1	1,27 > 1,00	Hay significancia
X3 – X6	1,33 > 1,02	Hay significancia
X3 – X5	1,53 > 1,03	Hay significancia
X3 – X8	1,67 > 1,04	Hay significancia
X4 – X7	0,60 < 0,90	No hay significancia
X4 – X2	0,73 < 0,94	No hay significancia
X4 – X1	1,00 > 0,98	Hay significancia
X4 – X6	1,06 > 1,00	Hay significancia
X4 – X5	1,26 > 1,02	Hay significancia
X4 – X8	1,40 > 1,03	Hay significancia
X7 – X2	0,13 < 0,90	No hay significancia
X7 – X1	0,40 < 0,94	No hay significancia
X7 – X6	0,46 < 0,98	No hay significancia
X7 – X5	0,66 < 1,00	No hay significancia
X7 – X8	0,80 < 1,02	No hay significancia
X2 – X1	0,27 < 0,90	No hay significancia
X2 – X6	0,33 < 0,94	No hay significancia
X2 – X5	0,53 < 0,98	No hay significancia
X2 – X8	0,67 < 1,00	No hay significancia
X1 – X6	0,06 < 0,90	No hay significancia
X1 – X5	0,27 < 0,94	No hay significancia
X1 – X8	0,40 < 0,98	No hay significancia
X6 – X5	0,20 < 0,90	No hay significancia
X6 – X8	0,34 < 0,94	No hay significancia
X5 – X8	0,14 < 0,90	No hay significancia

Fuente: Elaboración propia

ANEXO C.2

Tabla C.1-24
Evaluación sensorial del atributo olor para determinar la dosificación de insumos

msumos										
Jueces				Muest	ras				Total	
Jueces	X1	X2	X3	X4	X5	X6	X7	X8	Total	
1	8	7	8	8	9	6	7	6	51	
2	7	7	7	7	7	8	8	7	51	
3	8	4	8	7	5	5	6	4	39	
4	5	6	9	6	6	8	7	7	49	
5	7	7	7	7	7	9	6	4	47	
6	7	8	8	8	8	7	6	7	52	
7	8	8	7	8	8	8	8	8	55	
8	7	8	7	6	6	6	7	6	46	
9	6	4	5	8	6	7	8	7	45	
10	7	7	8	7	8	9	7	7	53	
11	6	8	7	7	7	8	6	5	48	
12	8	8	7	8	6	8	7	6	50	
13	7	5	6	5	5	6	6	7	40	
14	7	5	7	6	6	6	6	6	42	
15	8	7	8	6	6	6	5	5	43	
ΣΥ	106	99	109	104	100	107	100	92	817	
Ż	7,07	6,60	7,27	6,93	6,67	7,13	6,67	6,13	54,47	

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 4955 - \frac{817^2}{15*8} = 152,59$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{83647}{15} - \frac{817^2}{15*8} = 14,06$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{34029}{8} - \frac{817^2}{15*8} = 42,22$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (152,59 - 14,06 - 42,22)$$

En base a los resultados obtenidos de la tabla C.1-24, se construye el análisis de varianza (tabla C.1-25).

Tabla C.1-25 Análisis de varianza del atributo olor para determinar la dosificación de insumos

Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F _{tab}
Fv	SC	GL	MC		
Total	152,59	119			
Muestras	14,06	7	2,01	2,05	2,84
Jueces	42,22	14	3,02	3,08	2,78
Error	96,31	98	0,98		

Fuente: Elaboración propia

ANEXO C.3

Tabla C.1-26 Evaluación sensorial de los atributos del producto final

Tuesas		Mu	estras	_	Total
Jueces	Color	Sabor	Textura	Olor	Total
1	7	9	7	8	30
2	7	9	7	8	32
3	7	6	9	7	29
4	6	8	8	6	31
5	9	8	8	8	31
6	8	8	7	8	31
7	7	8	8	8	31
8	8	7	9	8	31
9	9	8	7	8	30
10	7	7	6	9	30
11	8	8	8	5	29
12	7	8	8	7	30
13	8	8	9	7	31
14	9	9	8	8	32
15	9	8	8	9	32
ΣΥ	116	119	117	114	466
X	7,73	7,93	7,80	7,60	30,67

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas (C.1), (C.2) y (C.3), se realizó el cálculo del análisis de varianza de los diferentes tratamientos.

♣ Suma de cuadrados totales SC(T)

$$SC(T) = 3668 - \frac{466^2}{15*4} = 48,73$$

♣ Suma de cuadrados del tratamiento SC(A)

$$SC(A) = \frac{54302}{15} - \frac{466^2}{15*4} = 0.87$$

♣ Suma de cuadrados de los jueces SC(B)

$$SC(B) = \frac{14524}{4} - \frac{466^2}{15*4} = 11,73$$

♣ Suma de cuadrados del error SC(E)

$$SC(E) = (48,73 - 0,87 - 11,73)$$

$$SC(E) = 36,13$$

En base a los resultados obtenidos de la tabla C.1-26, se construye la tabla de análisis de varianza (tabla C.1-27).

Tabla C.1-27 Análisis de varianza de los atributos para el producto final

Allalisis	uc varianza u	ic ios anibuto	s para ci prod	aucto III	lai
Fuente de	Suma de	Grados de	Cuadrados		
varianza	cuadrados	libertad	medios	F cal	F tab
FV	SC	GL	MC		
Total	48,73	59			
Muestras	0,87	3	0,29	0,34	2,83
Jueces	11,73	14	0,84	0,98	1,91
Error	36,13	42	0,86		

Fuente: Elaboración propia

ANEXO D.1

PROCEDIMIENTO PARA REALIZAR EL DISEÑO FACTORIAL 2²

Según	(Montgomery,	1991),	el	procedimiento	a	seguir	del	diseño	factorial	2^2	es	el
siguien	te:											

1.- Planteamiento de la hipótesis

Hp. No existen diferencias entre los tratamientos (muestras).

Ha. Si existen diferencias entre las muestras (tratamientos).

2.- Nivel de significancia:

0,05 (5%)

3.- Tipo de prueba de hipótesis:

Fisher

4.- Suposiciones:

Los datos siguen una distribución normal

Los datos son extraídos de un muestreo aleatorio al azar

5.- Criterios de decisión:

Se acepta la Hp si el Fcal<Ftab

Se rechaza la Hp si el Fcal>Ftab

Se procede a plantear la matriz experimental de las variables del diseño experimental y los niveles de los factores

Tabla D.1-1 Diseño experimental

in										
Corridas	combinación de	Factores		Réplica	Réplica	Respuesta				
Corridas	tratamientos	a	b	I	II	Yi				
1	(1)	-1	-1	RI-1	RII-1	RI-1 + RII-1				
2	a	1	-1	RI-2	RII-2	RI-2 + RII-2				
3	b	-1	1	RI-3	RII-3	RI-3 + RII-3				
4	ab	1	1	RI-4	RII-4	RI-4 + RII-4				

Fuente: Montgomery, 1991

DETERMINACIÓN DEL CONTRASTE PARA EL EFECTO PRINCIPAL DE INTERACCIÓN

Contraste A = ab + a - b - 1

Contraste B = ab + b - a - 1

Contraste BA = ab + 1 - a - b

Construcción del cuadrado de ANVA:

El análisis de varianza, se calcula en base a las siguientes expresiones matemáticas:

• Suma totales de cuadrados:

$$SS_{(T)} = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} Y_{ijk}^2 - \frac{Y^2}{ahr}$$
 Ecuación: 1

• Suma de cuadrados de A

$$SS_{(A)} = \frac{(contraste_A)^2}{4*r}$$
 Ecuación: 2

• Suma de cuadrados de B

$$SS_{(B)} = \frac{(contraste_B)^2}{4*r}$$

• Suma de cuadrados de AB

$$SS_{(AB)} = \frac{(contraste_{AB})^2}{4*r}$$
 Ecuación: 4

Ecuación: 3

• Suma total del error

$$SS_{(E)} = SS_{(T)} - SS_{(A)} - SS_{(B)} - SS_{(AB)}$$
 Ecuación: 5

6.- Construcción del cuadrado ANVA

Tabla D.1-2 Análisis de varianza

Midnisis de varianza											
Fuente de	Suma de	Grados de	Cuadrados								
variación	cuadrados	libertad	medios	F _(cal.)	$F_{(tab.)}$						
(FV)	(SC)	(GL)	(CM)								
Total	$SS_{(T)}$	na-1									
				CM(A)	$\frac{V_1}{V_2} = \frac{GL_{SC(A)}}{GL_{SC(E)}}$						
Factor (A)	$SS_{(A)}$	(a-1)	$CM(A) = \frac{SS_{(A)}}{(a-1)}$	CM(E)	$V_2 = GL_{SC(E)}$						
Factor (B)	$SS_{(B)}$	(b-1)	$CM(B) = \frac{SS_{(B)}}{(b-1)}$	CM(B)	$\frac{V_1}{V_2} = \frac{GL_{SC(B)}}{GL_{SC(E)}}$						
. ,			(b-1)	CM(E)	$V_2 \qquad GL_{SC(E)}$						
Interacción(AB)	SS _(AB)	(a-1) (b-1)	$CM(AB) = \frac{SS_{(AB)}}{(a-1)(b-1)}$	CM(AB)	$\frac{V_1}{V_2} = \frac{GL_{SC(AB)}}{GL_{SC(E)}}$						
, ,			(u-1)(b-1)	CM(E)	$V_2 \qquad GL_{SC(E)}$						
Error	SS _(E)	ab(r-1)	$CM(E) = \frac{SS_{(E)}}{ab(r-1)}$								
Г , М ,	1001										

Fuente: Montgomery, 1991

ANEXO D.1

RESULTADOS DEL DISEÑO EXPERIMENTAL DEL TIEMPO DE ESCALDADO PARA L EXTRACCIÓN DE LA PIEL DEL PIMENTÓN

En la tabla D.1-3, se muestran los resultados del tiempo de escaldado del pimentón para la extracción de la piel

Tabla D.1-3
Resultado del tiempo de escaldado para la extracción de la piel del pimentón

		Factores		Répl		
Corridas	Combinación de tratamientos	Тс	T (°C)	R ₁ (min)	R ₂ (min)	Respuesta (Y _i)
1	(1)	Cuartos longitudinales verticales	85	80	82	162
2	Tc	Mitades longitudinales verticales	85	95	90	185
3	T	Cuartos longitudinales verticales	93	35	35	70
4	Tc*T	Mitades longitudinales verticales	93	40	41	81
Total						498

Fuente: Elaboración propia

Donde:

Tc = Tipo de corte del pimentón

T = Temperatura de escaldado (°C)

min = minutos

Con los resultados obtenidos de la tabla D.1-3, se procede a construir la tabla D.1-4, de análisis de varianza para las variables de operación del tiempo de escaldado del pimentón.

Calculando los contrastes:

Contraste Tc = 81 + 185 - 70 - (162) = 34

Contraste
$$T = 81 + 70 - 185 - (162) = -196$$

Contraste $Tc*T = 81 + (162) - 185 - 70 = -12$
 $Yi = 162 + 185 + 70 + 81 = 498$

• Suma totales de cuadrados:

$$SS_{(T)} = (80^2 + 82^2 + 95^2 + 90^2 + 35^2 + 35^2 + 40^2 + 41^2) - \frac{498^2}{2*2*2} = 4979,50$$

• Suma de cuadrados de Tc

$$SS_{(Tc)} = \frac{(34)^2}{4*2} = 144,50$$

• Suma de cuadrados de T

$$SS_{(T)} = \frac{(-196)^2}{4*2} = 4802$$

• Suma de cuadrados de Tc*T

$$SS_{(Tc*T)} = \frac{(-12)^2}{4*2} = 18$$

• Suma total del error

$$SS_{(E)} = 4979,50 - 144,50 - 4802 - 18 = 15$$

Calculando F_{tab} de tablas de Fisher (Anexo E).

Tabla D.1-4 Análisis de varianza del tiempo de escaldado para la extracción de la piel del pimentón

		<u> </u>			
Fuente de variación (FV)	Suma de cuadrados (SC)	Grados de libertad (GL)	Cuadrados medios (CM)	F _(cal.)	F _(tab.)
Total	4979,50	7			
Tipo de corte (Tc)	144,50	1	144,50	38,53	7,71
Temperatura (T)	4802,00	1	4802,00	1280,53	7,71
Interacción (Tc*T)	18,00	1	18,00	4,80	7,71
Error	15,00	4	3,75		

Fuente: Elaboración propia

ANEXO D. 2

REPRESENTACIÓN DE LA MATRIZ EXPERIMENTAL

Según (Ramírez, 2007), el diseño experimental de 2^k, donde el 2 son los niveles y k son los factores se la presenta en una matriz experimental combina entre símbolos geométricos y letras para 8 corridas.

Tabla D.2-1 Matriz experimental del diseño factorial 2³

	Combinación de	Factores			Interacción de los efectos				Respuestas
Corridas	tratamientos	a	b	c	ab	ac	bc	abc	Yi
1	(1)	-1	-1	-1	+1	+1	+1	-1	Y1
2	a	+1	-1	-1	-1	-1	+1	+1	Y2
3	b	-1	+1	-1	-1	+1	-1	+1	Y3
4	С	+1	+1	-1	+1	-1	-1	-1	Y4
5	ab	-1	-1	+1	+1	-1	-1	+1	Y5
6	ac	+1	-1	+1	-1	+1	-1	-1	Y6
7	bc	-1	+1	+1	-1	-1	+1	-1	Y7
8	abc	+1	+1	+1	+1	+1	+1	+1	Y8

Fuente: Ramírez, 2007

DETERMINACIÓN DE LOS CONTRASTES PARA LOS EFECTOS PRINCIPALES E INTERACCIONES

La suma de cuadrados de los efectos pueden ser obtenidos fácilmente ya que a cada una le corresponde un contraste y un solo grado de libertad. Por lo tanto la suma de cuadrados de cualquier efecto de un diseño 2³ con "n" replicas, vendrá dada por el contraste correspondiente al cuadrado entre el total de las observaciones.

$$SS = \frac{(contraste)^2}{8n}$$

La suma de cuadrados para los diferentes efectos principales e interacciones son las siguientes:

Suma de cuadrados del factor A

(Ecuación: 1)

$$SS(A) = \frac{(contraste_A)^2}{8n}$$

> Suma de cuadrados del factor B

(Ecuación: 2)

$$SS(B) = \frac{(contraste_B)^2}{8n}$$

> Suma de cuadrados del factor C

(Ecuación: 3)

$$SS(C) = \frac{(contraste_C)^2}{8n}$$

Suma de cuadrados de las interacciones AB

(Ecuación: 4)

$$SS(AB) = \frac{(contraste_{AB})^2}{8n}$$

Suma de cuadrados de las interacciones AC

(Ecuación: 5)

$$SS(AC) = \frac{\left(contraste_{AC}\right)^2}{8n}$$

Suma de cuadrados de las interacciones BC

(Ecuación: 6)

$$SS(BC) = \frac{(contraste_{BC})^2}{8n}$$

Suma de cuadrados de las interacciones ABC

(Ecuación: 7)

$$SS(ABC) = \frac{(contraste_{ABC})^2}{8n}$$

La suma de cuadrados totales y la suma de cuadrados del error son los siguientes:

Suma de cuadrados del total de los factores T

$$SS(T) = \sum_{i=1}^{n} Y_{ijk}^2 - \frac{\sum_{(Y_j)^2}}{2^{k_* n}}$$

Suma de cuadrados del error de los factores E

$$SS(E) = SS(T) - SS(A) - SS(B) - SS(C) - SS(AB) - SS(AC) - SS(BC) - SS(ABC)$$

PRESENTACIÓN DE ANÁLISIS DE VARIANZA (ANVA) EN EL DISEÑO 2³

La tabla D.2-2, muestra el análisis de varianza (ANVA) para un diseño factorial de 2³ aplicando la prueba estadística de Fisher.

Tabla D.2-2 ANVA para el diseño 2³

Fuente de	Suma de	Grados de	Cuadrados		
Variación	cuadrados	libertad	medios	$F_{\text{(cal.)}}$	$F_{(tab.)}$
(FV)	(SC)	(GL)	(CM)	, ,	. ,
Total	SS(T)	n 2 ³ - 1			
Factor A	SS(A)	(a - 1)	$CM(A) = \frac{SS(A)}{(a-1)}$	CM(A)	V_1 _ $GL_{SS(A)}$
			(a-1)	$\overline{CM(E)}$	$\overline{V_2}^-\overline{GL_{SS(E)}}$
Factor B	SS(B)	(b - 1)	$CM(B) = \frac{SS(B)}{(b-1)}$	CM(B)	$V_1 = GL_{SS(B)}$
			(b-1)	$\overline{CM(E)}$	V_2 $GL_{SS(E)}$
Factor C	SS(C)	(c - 1)	$CM(C) = \frac{SS(C)}{(C-1)}$	CM(C)	$V_1 = GL_{SS(C)}$
			(C-1)	$\overline{\mathrm{CM}(\mathrm{E})}$	V_2 $GL_{SS(E)}$
Factor AB	SS(AB)	(ab - 1)	$CM(AB) = \frac{SS(AB)}{(ab-1)}$	CM(AB)	V_1 _ $GL_{SS(AB)}$
			(ab-1)	CM(E)	V_2 $GL_{SS(E)}$
Factor AC	SS(AC)	(ac - 1)	$CM(AC) = \frac{SS(AC)}{(ac-1)}$	CM(AC)	V_1 _ $GL_{SS(AC)}$
			(ac-1)	CM(E)	V_2 $GL_{SS(E)}$
Factor BC	SS(BC)	(bc - 1)	$CM(BC) = \frac{SS(BC)}{(bc-1)}$	CM(BC)	$V_1 = GL_{SS(BC)}$
			ì í	CM(E)	V_2 $GL_{SS(E)}$
Factor ABC	SS(ABC)	(abc - 1)	$CM(ABC) = \frac{SS(ABC)}{(abc-1)}$	CM(ABC)	V_1 _ $GL_{SS(ABC)}$
			(abc-1)	CM(E)	V_2 $GL_{SS(E)}$
Error	SS(E)	n2 ^{k-1}	$CM(E) = \frac{SS(E)}{n2^{k-1}}$		
experimental			$n2^{k-1}$		

Fuente: Ramírez, 2007

ALGORITMO DE YATES PARA UN DISEÑO FACTORIAL DE 23

Como se puede observar la tabla de ANVA, para encontrar los contrastes de suma de cuadrados de los efectos, los métodos utilizados se complican a medida que K va creciendo al igual que la tabla de signos (Ramírez, 2007).

Yates propone una técnica eficiente para calcular la estimación de los efectos y las correspondientes suma de cuadrados para el diseño de 2^k en el cual se elabora un cuadro de algoritmos tabla D.2-3 y va diseñado de la manera siguiente:

Tabla D.2-3 Cuadro de algoritmo de yates para el diseño factorial 2^3

combinación de tratamientos	(Y _i)		Columna 1		Columna 2		Columna 3
1	Y_1	$Y_1 + Y_2$	Y_9	$Y_9 + Y_{10}$	Y ₁₇	$Y_{17} + Y_{18}$	Y ₂₅
A	Y_2	$Y_3 + Y_4$	Y_{10}	$Y_{11} + Y_{12}$	Y ₁₈	$Y_{19} + Y_{20}$	Y ₂₆
В	Y_3	$Y_5 + Y_6$	Y_{11}	$Y_{13} + Y_{14}$	Y ₁₉	$Y_{21} + Y_{22}$	Y ₂₇
AB	Y_4	$Y_7 + Y_8$	Y ₁₂	$Y_{15} + Y_{16}$	Y ₂₀	$Y_{23} + Y_{24}$	Y ₂₈
С	Y_5	Y ₂ - Y ₁	Y ₁₃	Y ₁₀ - Y ₉	Y ₂₁	Y ₁₈ - Y ₁₇	Y ₂₉
AC	Y_6	Y ₄ - Y ₃	Y ₁₄	Y ₁₂ - Y ₁₁	Y ₂₂	Y ₂₀ - Y ₁₉	Y ₃₀
ВС	Y_7	Y ₆ - Y ₅	Y ₁₅	Y ₁₄ - Y ₁₃	Y ₂₃	Y ₂₂ - Y ₂₁	Y ₃₁
ABC	Y_8	Y ₈ - Y ₈	Y ₁₆	Y ₁₆ - Y ₁₅	Y ₂₄	Y ₂₄ - Y ₂₃	Y ₃₂

Fuente: Ramírez, 2007

- La primera columna está compuesta por las combinaciones de los tratamientos escritos en orden estándar.
- La segunda columna (respuesta Y) contiene las observaciones correspondientes a las combinaciones de tratamientos del reglón.
- ➤ Se calcula la siguiente columna sumando los valores de la columna respuesta por pares adyacentes y la segunda mitad cambiando el signo del primer valor de cada par de columna respuesta y sumando los pares adyacentes.
- ➤ Se crea la columna 1 de la misma forma que la columna respuesta aumentando el número de factores. Así se van creando más columnas hasta completar el número de factores de estudio.

ANEXO D.2

DISEÑO EXPERIMENTAL DEL CONTENIDO DE SÓLIDOS PARA LA MERMELADA DE FRUTILLA FORTIFICADA CON PIMENTÓN

En la tabla D.2-4, se muestran los resultados de los análisis de laboratorio (CEANID, 2017), (Anexo A) para el contenidos de sólidos de las muestras de mermelada de frutilla fortificada con pimentón.

Tabla D.2-4
Diseño experimental en el proceso del contenido de sólidos para la mermelada de frutilla fortificado con pimentón

	11 uui	1a 101	unca	uo coi	i piinentoi	LI .	
Corridas	Combinación	F	actore	es	Réplica	Réplica	Respuestas
		A	В	C	I	II	Yi
1	(1)	-1	-1	-1	75,40	71,20	146,60
2	Pim.	1	-1	-1	65,20	72,60	137,80
3	Pec.	-1	1	-1	59,40	72,40	131,80
4	Pim.*Pec.	1	1	-1	59,20	72,60	131,80
5	Azúc.	-1	-1	1	62,40	77,60	140,00
6	Pim.* Azúc.	1	-1	1	64,40	65,80	130,20
7	Pec.* Azúc.	-1	1	1	54,60	64,40	119,00
8	Pim.* Pec.* Azúc.	1	1	1	60,80	54,20	115,00
Total	1	1	1	1	1		1052,20

Fuente: Elaboración propia

Donde:

Pim. = Pimentón

Pec. = Pectina

Azúc. = Azúcar

En la tabla D.2-5, se muestra el desarrollo de la matriz del algoritmo de Yates.

Tabla D.2-5

Desarrollo de la matriz de algoritmo de yates del contenido de sólidos para la mermelada de frutilla fortificada con pimentón

					_		
Combinación	Respuesta	Cálculo	Columna	Cálculo	Columna	Cálculo	Columna
	\mathbf{Y}_{i}	1	I	2	II	3	III
(1)	146,60	1 + 2	284,40	9 + 10	548,00	17 + 18	1052,20
Pim.	137,80	3 + 4	263,60	11 + 12	504,20	19 + 20	-22,60
Pec.	131,80	5+6	270,20	13 + 14	-8,80	21 + 22	-57,00
Pim.*Pec.	131,80	7 + 8	234,00	15 + 16	-13,80	23 + 24	14,60
Azúc.	140,00	2 - 1	-8,80	10 - 9	-20,80	18 - 17	-43,80
Pim.* Azúc.	130,20	4 - 3	0,00	12 - 11	-36,20	20 - 19	-5,00
Pec.* Azúc.	119,00	6 - 5	-9,80	14 - 13	8,80	22 - 21	-15,40
Pim.* Pec.* Azúc.	115,00	8 - 7	-4,00	16 - 15	5,80	24 - 23	-3,00

Fuente: Elaboración propia

De acuerdo a las expresiones matemáticas mencionadas en el (Anexo D.2), se realiza los cálculos del diseño experimental 2³ de las muestras de la mermelada de frutilla fortificada con pimentón, en base a los contrastes y los resultados de la tabla D.2-5.

Calculo de la suma de cuadrados del factor (Pim.):

SS (Pim.) =
$$\frac{(-22,60)^2}{8*(2)}$$
 = 31,92 (Ecuación: 1)

Calculo de la suma de cuadrados del factor (Pec.):

SS (Pec.) =
$$\frac{(-57,00)^2}{8*(2)}$$
 = 203,06 (Ecuación: 2)

Calculo de la suma de cuadrados del factor (Pim.* Pec.):

SS (Pim.* Pec.) =
$$\frac{(14,60)^2}{8*(2)}$$
 = 13,32 (Ecuación: 3)

Calculo de la suma de cuadrados del factor (Azúc.):

SS (Azúc.) =
$$\frac{(-43,80)^2}{8*(2)}$$
 =119,90 (Ecuación: 4)

Calculo de la suma de cuadrados del factor (Pim.*Azúc.):

SS (Pim.*Azúc.) =
$$\frac{(-5,00)^2}{8*(2)}$$
 = 1,56 (Ecuación: 5)

> Calculo de la suma de cuadrados del factor (Pec.*Azúc.):

SS (Pec.*Azúc.) =
$$\frac{(-15,40)^2}{8*(2)}$$
 = 14,82 (Ecuación: 6)

➤ Calculo de la suma de cuadrados del factor (Pim.* Pec.*Azúc.):

SS (Pim.* Pec.*Azúc.) =
$$\frac{(-3,00)^2}{8*(2)}$$
 = 0,56 (Ecuación: 7)

> Suma de cuadrados del total de los factores (T):

SS (T) =
$$75,40^2 + 71,20^2 + 65,20^2 + \dots + 60,80^2 + 54,20^2 - \frac{(1052,20)^2}{2^3*2} = 781,94$$

Suma de cuadrados del error de los factores (E):

$$SS(E) = 781,94 - 31,92 - 203,06 - 13,32 - 119,90 - 1,56 - 14,82 - 0,56$$

$$SS(E) = 396,80$$

> Suma de grados de libertad

$$GL(T) = n*2^{k-1} = 15$$
 $GL(Pim.*Pec.) = (Pim.*Pec.) - 1 = 1$

$$GL(Pim.) = Pim. -1 = 1$$
 $GL(Pim.*Azúc.) = (Pim.*Azúc.) -1 = 1$

$$GL(Pec.) = Pec. -1 = 1$$
 $GL(Pec.*Azúc.) = (Pec.*Azúc.) -1 = 1$

$$GL(Az\acute{u}c.) = Az\acute{u}c. -1 = 1 \qquad GL(Pim.*Pec.*Az\acute{u}c.) = (Pim.*Pec.*Az\acute{u}c.) -1 = 1$$

$$GL(E) = 8$$

> Suma de cuadrados medios

$$CM(Pim.) = \frac{SS(Pim.)}{(Pim.-1)} \Rightarrow CM(Pim.) = 31,92$$

$$CM(Pec.) = \frac{SS(Pec.)}{(Pec.-1)} \Rightarrow CM(Pec.) = 203,06$$

$$CM(Pim.*Pec.) = \frac{SS(Pim.*Pec.)}{(Pim.*Pec.-1)} \Rightarrow CM(Pim.*Pec.) = 13,32$$

$$CM(Azúc.) = \frac{SS(Azúc.)}{(Azúc.-1)} \Rightarrow CM(Azúc.) = 119,90$$

$$CM(Pim.*Azúc.) = \frac{SS(Pim.*Azúc.)}{(Pim.*Azúc.-1)} \Rightarrow CM(Pim.*Azúc.) = 1,56$$

$$CM(Pec.*Azúc.) = \frac{SS(Pec.*Azúc.)}{(Pec.*Azúc.-1)} \Rightarrow CM(Pec.*Azúc.) = 14,82$$

$$CM(Pim.*Pec.*Azúc.) = \frac{SS(Pim.*Pec.*Azúc.)}{(Pim.*Pec.*Azúc.-1)} \Rightarrow CM(Pim.*Pec.*Azúc.) = 0,56$$

$$CM(E) = \frac{SS(E)}{n(r-1)}$$
 \Longrightarrow $CM(E) = 49,60$

> Determinación de Fisher calculado

$$F_{\text{cal.}}(\text{Pim.}) = \frac{CM(Pim.)}{CM(E)}$$
 \Rightarrow $F_{\text{cal.}}(\text{Pim.}) = 0.64$

$$F_{\text{cal.}}(\text{Pec.}) = \frac{CM(\text{Pec.})}{CM(E)}$$
 \Rightarrow $F_{\text{cal.}}(\text{Pec.}) = 4,09$

$$F_{\text{cal.}}(\text{Pim.*Pec.}) = \frac{CM(Pim.*Pec.)}{CM(E)}$$
 \Rightarrow $F_{\text{cal.}}(\text{Pim.*Pec.}) = 0,27$

$$F_{\text{cal.}}(Az\acute{\text{uc.}}) = \frac{CM(Az\acute{\text{uc.}})}{CM(E)}$$
 \Rightarrow $F_{\text{cal.}}(Az\acute{\text{uc.}}) = 2,42$

$$F_{cal.}(Pim.*Azúc.) = \frac{CM(Pim.*Azúc.)}{CM(E)}$$
 \Rightarrow $F_{cal.}(Pim.*Azúc.) = 0,03$

$$F_{cal.}(Pec.*Az\acute{u}c.) = \frac{\textit{CM}(\textit{Pec}.*Az\acute{u}c.)}{\textit{CM}(\textit{E})} \qquad \qquad \Rightarrow \qquad F_{cal.}(Pec.*Az\acute{u}c.) = 0,30$$

$$F_{\text{cal.}}(\text{Pim.*Pec.*Az\'uc.}) = \frac{\textit{CM(Pim.*Pec.*Az\'uc.})}{\textit{CM(E)}} \qquad \Rightarrow \qquad F_{\text{cal.}}(\text{Pim.*Pec.*Az\'uc.}) = 0.01$$

El cálculo de F_{tab}, se recurre a la tabla de Fisher (Anexo E).

En la tabla D.2-6, se muestra el análisis de varianza para la mermelada de frutilla fortificada con pimentón.

Tabla D.2-6 Análisis de varianza para el contenido de sólidos de la mermelada de frutilla fortificada con pimentón

	101 tilledad	con pinicitu	,		
Fuente de	Suma de	Grados de	Cuadrados		
variación	cuadrados	libertad	medios	$F_{cal.}$	F _{tab.}
(FV)	(SC)	(GL)	(CM)		
Total	781,94	15			
Factor (Pim.)	31,92	1	31,92	0,64	5,32
Factor (Pec.)	203,06	1	203,06	4,09	5,32
Interacción	13,32	1	13,32	0,27	5,32
(Pim.*Pec.)					
Factor (Azúc.)	119,90	1	119,90	2,42	5,32
Interacción	1,56	1	1,56	0,03	5,32
(Pim.*Azúc.)					
Interacción	14,82	1	14,82	0,30	5,32
(Pec.*Azuc.)					
Interacción	0,56	1	0,56	0,01	5,32
(Pim.*Pec.*Azúc.)					
Error experimental	396,80	8	49,60		

Fuente: Elaboración propia

-
Dr.
Belle
- 111
MARK
DE FISH
(I)
41
11
bile
1000
111
MAN
Rend
- 14-
100
109
die
.0
1
1000
63
800
RIBUG
m
-
800
Pul
L.
-
-
DIS
W
FREE
- 3000
1
- Q
-
111
MM
DE
Seed
*
T
100
ESF
W
111
MA
N
M
-
U
-
7
AL
AL
VAL
VALOR
VAL.
5. VAL
5. VAL
a 5. VAL
la 5. VAL
ola 5. VAL
bla 5. VAL
abla 5. VAL

1 - a = 0.9 1 - a = P (F £ f_{a,n1,n2})

n₁ = grados de libertad del numerador n₂ = grados de libertad del denominador

/																				
nz/	-	2	3	4	2	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20
-	39.864	49.500	53.593	55.833	57.240	58.204	58.906	59.439	59.857	60.195	60.473	60.705	60.902	61.073	61.220	61.350	61.465	61.566	61.658	61.740
2	8.526	9.000	9.162	9.243	9.293	9.326	9.349	9.367	9.381	9.392	9.401	9.408	9.415	9.420	9.425	9.429	9.433	9.436	9.439	9.441
3	5.538	5.462	5.391	5.343	6.309	5.285	5.266	5.252	5.240	5.230	5.222	5.216	5.210	5.205	5.200	5.196	5.193	5.190	5.187	5.184
4	4.545	4.325	4.191	4.107	4.051	4.010	3.979	3.955	3.936	3.920	3.907	3.896	3.886	3.878	3.870	3.864	3.858	3.853	3.848	3.844
2	4.060	3.780	3.619	3.520	3.453	3.405	3.368	3.339	3.316	3.297	3.282	3.268	3.257	3.247	3.238	3.230	3.223	3.217	3.212	3.207
9	3.776	3.463	3.289	3.181	3.108	3.055	3.014	2.983	2.958	2.937	2.920	2.905	2.892	2.881	2.871	2.863	2.855	2.848	2.842	2.836
7	3.589	3.257	3.074	2.961	2.883	2.827	2.785	2.752	2.725	2.703	2.684	2.668	2.654	2.643	2.632	2.623	2.615	2.607	2.601	2.595
8	3.458	3.113	2.924	2.806	2.726	2.668	2.624	2.589	2.561	2.538	2.519	2.502	2.488	2.475	2.464	2.454	2.446	2.438	2.431	2.425
6	3.360	3.006	2.813	2.693	2.611	2.551	2.505	2.469	2.440	2.416	2.396	2.379	2.364	2.351	2.340	2.330	2.320	2.312	2.305	2.298
10	3.285	2.924	2.728	2.605	2.522	2.461	2.414	2.377	2.347	2.323	2.302	2.284	2.269	2.255	2.244	2.233	2.224	2.215	2.208	2.201
11	3.225	2.860	2.660	2.536	2.451	2.389	2.342	2.304	2.274	2.248	2.227	2.209	2.193	2.179	2.167	2.156	2.147	2.138	2.130	2.123
12	3.177	2.807	2.606	2.480	2.394	2.331	2.283	2.245	2.214	2.188	2.166	2.147	2.131	2.117	2.105	2.094	2.084	2.075	2.067	2.060
13	3.136	2.763	2.560	2.434	2.347	2.283	2.234	2.195	2.164	2.138	2.116	2.097	2.080	2.066	2.053	2.042	2.032	2.023	2.014	2.007
14	3.102	2.726	2.522	2.395	2.307	2.243	2.193	2.154	2.122	2.095	2.073	2.054	2.037	2.022	2.010	1.998	1.988	1.978	1.970	1.962
15	3.073	2.695	2.490	2.361	2.273	2.208	2.158	2.119	2.086	2.059	2.037	2.017	2.000	1.985	1.972	1.96.1	1.950	1.941	1.932	1.924
16	3.048	2.668	2.462	2.333	2.244	2.178	2.128	2.088	2.055	2.028	2.005	1.985	1.968	1.953	1.940	1.928	1.917	1.908	1.899	1.891
17	3.026	2.645	2.437	2.308	2.218	2.152	2.102	2.061	2.028	2.001	1.978	1.958	1.940	1.925	1.912	1.900	1.889	1.879	1.870	1.862
18	3.007	2.624	2.416	2.286	2.196	2.130	2.079	2.038	2.005	1.977	1.954	1.933	1.916	1.900	1.887	1.875	1.864	1.854	1.845	1.837
19	2.990	2.606	2.397	2.266	2.176	2.109	2.058	2.017	1.984	1.956	1.932	1.912	1.894	1.878	1.865	1.852	1.841	1.831	1.822	1.814
20	2.975	2.589	2.380	2.249	2.158	2.091	2.040	1.999	1.965	1.937	1.913	1.892	1.875	1.859	1.845	1.833	1.821	1.811	1.802	1.794
21	2.961	2.575	2.365	2.233	2.142	2.075	2.023	1.982	1.948	1.920	1.896	1.875	1.857	1.841	1.827	1.815	1.803	1.793	1.784	1.776
22	2.949	2.561	2.351	2.219	2.128	2.060	2.008	1.967	1.933	1.904	1.880	1.859	1.841	1.825	1.811	1.798	1.787	1.777	1.768	1.759
23	2.937	2.549	2.339	2.207	2.115	2.047	1.995	1.953	1.919	1.890	1.866	1.845	1.827	1.811	1.796	1.784	1.772	1.762	1.753	1.744
24	2.927	2.538	2.327	2.195	2.103	2.035	1.983	1.941	1.906	1.877	1.853	1.832	1.814	1.797	1.783	1.770	1.759	1.748	1.739	1.730
25	2.918	2.528	2.317	2.184	2.092	2.024	1.971	1.929	1.895	1.866	1.841	1.820	1.802	1.785	1.771	1.758	1.746	1.736	1.726	1.718
26	2.909	2.519	2.307	2.174	2.082	2.014	1.961	1.919	1.884	1.855	1.830	1.809	1.790	1.774	1.760	1.747	1.735	1.724	1.715	1.706
27	2.901	2.511	2.299	2.165	2.073	2.005	1.952	1.909	1.874	1.845	1.820	1.799	1.780	1.764	1.749	1.736	1.724	1.714	1.704	1.695
28	2.894	2.503	2.291	2.157	2.064	1.996	1.943	1.900	1.865	1.836	1.811	1.790	1.77.1	1.754	1.740	1.726	1.715	1.704	1.694	1.685
29	2.887	2.495	2.283	2.149	2.057	1.988	1.935	1.892	1.857	1.827	1.802	1.781	1.782	1.745	1.731	1.717	1.705	1.695	1.685	1.676
30	2.881	2.489	2.276	2.142	2.049	1.980	1.927	1.884	1.849	1.819	1.794	1.773	1.754	1.737	1.722	1.709	1.697	1.686	1.676	1.667
40	2.835	2.440	2.228	2.091	1.997	1.927	1.873	1.829	1.793	1.763	1.737	1.715	1.695	1.678	1.662	1.649	1.636	1.625	1.615	1.605
20	2.809	2.412	2.197	2.061	1.966	1.895	1.840	1.796	1.760	1.729	1.703	1.680	1.660	1.643	1.627	1.613	1.600	1.588	1.578	1.568
09	2.791	2.393	2.177	2.041	1.946	1.875	1.819	1.775	1.738	1.707	1.680	1.657	1.637	1.619	1.603	1.589	1.576	1.564	1.553	1.543
20	2.779	2,380	2.164	2.027	1.931	1.860	1.804	1.760	1.723	1.691	1.665	1.641	1.621	1.603	1.587	1.572	1.559	1.547	1.536	1.526
80	2.769	2.370	2.154	2.016	1.921	1.849	1.793	1.748	1.711	1.680	1.653	1.629	1.609	1.590	1.574	1.559	1.546	1.534	1.523	1.513
06	2.762	2.363	2.146	2.008	1.912	1.841	1.785	1.739	1.702	1.670	1.643	1.620	1.599	1.581	1.564	1.550	1.536	1.524	1.513	1.503
100	2.756	2.356	2.139	2.002	1.906	1.834	1.778	1.732	1.695	1.663	1.636	1.612	1.592	1.573	1.557	1.542	1.528	1.516	1.505	1,494
200	2.731	2.329	2.111	1.973	-	1.804	1.747	1.701	1.663	1.631	1.603	1.579	1.558	1.539	1.522	1.507	1.493	1.480	1.468	1.458
200	2.716	2.313	2.095	1.956	175	1.786	1.729	1.683	1.644	1.612	1.583	1.559	1.537	1.518	1.501	1.485	1.471	1.458	1.446	1.435
1000	2.711	2.308	2.089	1.950	1.853	1.780	1.723	1.676	1.638	1.605	1.577	1.552	1.531	1.511	1.494	1.478	1.464	1.451	1.439	1.428
	Elaborada	a por Irene	e Patricia		d															

Tabla 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

1 - a = 0.9 1 - a = P (F £ fa,ni,nz)

n2 n4	21	22	23	24	25	26	27	28	29	30	40	90	09	02	80	06	100	200	200	1000
-	61.815	61.883	61.945	62.002	62.055	62.103	62.148	62.189	62.238	62.265	62.529	62.688	62.794	62.871	62.927	62.972	63.007	63.167	63.264	63.296
7	9.444	9.446	9.448	9.450	9.451	9.453	9.454	9.456	9.457	9.458	9.466	9.471	9.475	9.477	9.479	9.480	9.481	9.486	9.489	9.490
8	5.182	5.180	5.178	5.176	5.175	5.173	5.172	5.170	5.169	5.168	5,160	5.155	5,151	5.149	5.147	5.145	5.144	5.139	5.136	5.135
4	3.841	3.837	3.834	3.831	3.828	3.826	3.823	3.821	3.819	3.817	3.804	3.795	3.790	3.786	3.782	3.780	3.778	3.769.	3.764	3.762
2	3.202	3.198	3.194	3.191	3.187	3.184	3.181	3.179	3.176	3.174	3.157	3.147	3.140	3.135	3.132	3.129	3.126	3.116	3.109	3.107
9	2.831	2.827	2.822	2.818	2.815	2.811	2.808	2.805	2.803	2.800	2.781	2.770	2.762	2.756	2.752	2.749	2.746	2.734	2.727	2.726
7	2.589	2.584	2.580	2.575	2.571	2.568	2.564	2.561	2.558	2.555	2.535	2.523	2.514	2.508	2.504	2.500	2.497	2.484	2.476	2.473
8	2.419	2.414	2.409	2.404	2.400	2.396	2.392	2.389	2.386	2.383	2.361	2.348	2.339	2.333	2.328	2.324	2.321	2.307	2.298	2.295
0	2.292	2.287	2.282	2.277	2.272	2.268	2.265	2.261	2.258	2.255	2.232	2.218	2.208	2.202	2.196	2.192	2.189	2.174	2.165	2.162
10	2.194	2.189	2.183	2.178	2.174	2.170	2.166	2.162	2.159	2.155	2.132	2.117	2.107	2.100	2.095	2.090	2.087	2.071	2.062	2.059
11	2.117	2.111	2.105	2.100	2.095	2.091	2.087	2.083	2.080	2.076	2.052	2.036	2.026	2.019	2.013	5.009	2.005	1.989	1.979	1.975
12	2.053	2.047	2.041	2.036	2.031	2.027	2.022	2.019	2.015	2.011	1.986	1.970	1.960	1.952	1.946	1.942	1.938	1.921	1.911	1.907
13	2.000	1.994	1.988	1.983	1.978	1.973	1.969	1.965	1.961	1.958	1.931	1.915	1.904	1.896	1.890	1.886	1.882	1.864	1.853	1.850
14	1.955	1.949	1.943	1.938	1.933	1.928	1.923	1.919	1.916	1.912	1.885	1.869	1.857	1.849	1.843	1.838	1.834	1.816	1.805	1.801
15	1.917	1.911	1.905	1.899	1.894	1.889	1.885	1.880	1.876	1.873	1.845	1.828	1.817	1.808	1.802	1.797	1.793	1.774	1.763	1.759
16	1.884	1.877	1.871	1.866	1.860	1.855	1.851	1.847	1.843	1.839	1.811	1.793	1.782	1.773	1.766	1.761	1.757	1.738	1.726	1.722
17	1.855	1.848	1.842	1.836	1.831	1.826	1.821	1.817	1.813	1.809	1.781	1.763	1.751	1.742	1.735	1.730	1.726	1.706	1.694	1.690
18	1.829	1.823	1.816	1.810	1.805	1.800	1.795	1.791	1.787	1.783	1.754	1.736	1.723	1.714	1.707	1.702	1.698	1.678	1.665	1.661
19	1.807	1.800	1.793	1.787	1.782	1.777	1.772	1.767	1.763	1.759	1.730	1.711	1.699	1.690	1.683	1.677	1.673	1.652	1.639	1.635
20	1.786	1.779	1.773	1.767	1.761	1.756	1.751	1.746	1.742	1.738	1.708	1.690	1.677	1.667	1.660	1.655	1.650	1.629	1.616	1.612
21	1.768	1.761	1.754	1.748	1.742	1.737	1.732	1.728	1.723	1.719	1.689	1.670	1.657	1.647	1.640	1.634	1.630	1.608	1.595	1.591
22	1.751	1.744	1.737	1.731	1.726	1.720	1.715	1.711	1.706	1.702	1.671	1.652	1.639	1.629	1.622	1.616	1.611	1.590	1.576	1.571
23	1.736	1.729	1.722	1.716	1.710	1.705	1.700	1.695	1.691	1.686	1.655	1.636	1.622	1.613	1.605	1.599	1.594	1.572	1.558	1.554
24	1.722	1.715	1.708	1.702	1.696	1.691	1.686	1.681	1.676	1.672	1.641	1.621	1.607	1.597	1.590	1.584	1.579	1.556	1.542	1.538
25	1.710	1.702	1.695	1.689	1.683	1.678	1.672	1.668	1.663	1.659	1.627	1.607	1.593	1.583	1.576	1.569	1.565	1.542	1.527	1.523
26	1.698	1.690	1.683	1.677	1.671	1.666	1.660	1.656	1.651	1.647	1.615	1.594	1.581	1.570	1.562	1.556	1.551	1.528	1.514	1.509
27	1.687	1.680	1.673	1.666	1.660	1.655	1.649	1.645	1.640	1.636	1.603	1.583	1.569	1.558	1.550	1.544	1.539	1.515	1.501	1.496
28	1.677	1.669	1.662	1,656	1.650	1.644	1.639	1.634	1.630	1.625	1.592	1.572	1.558	1.547	1.539	1.533	1.528	1.504	1.489	1.484
29	1.668	1.660	1.653	1.647	1.640	1.635	1.630	1.625	1.620	1.616	1.583	1.562	1.547	1.537	1.529	1.522	1.517	1.493	1.478	1.472
30	1.659	1.651	1.644	1.638	1.632	1.626	1.621	1.616	1.611	1.606	1.573	1.552	1.538	1.527	1.519	1.512	1.507	1.482	1.467	1.462
40	1.596	1.588	1.581	1.574	1.568	1.562	1.556	1.551	1.546	1.541	1.506	1.483	1.467	1.455	1.447	1.439	1.434	1.406	1.389	1.383
20	1.559	1.551	1.543	1.536	1.529	1.523	1.517	1.512	1.507	1.502	1.465	1.441	1.424	1.412	1.402	1.395	1.388	1.359	1.340	1.333
09	1.534	1.526	1.518	1.511	1.504	1.498	1.492	1.486	1.481	1.476	1.437	1.413	1.395	1.382	1.372	1.364	1.358	1.326	1.306	1.299
70	1.517	1.508	1.500	1.493	1.486	1.479	1.473	1.467	1.462	1.457	1.418	1.392	1.374	1.361	1.350	1.342	1.335	1.302	1.281	1.273
80	1.503	1,495	1.487	1.479	1.472	1.465	1.459	1.453	1.448	1.443	1.403	1.377	1.358	1.344	1.334	1.325	1.318	1.284	1.261	1.253
90	1.493	1.484	1.476	1.468	1.461	1.455	1.448	1.442	1.437	1.432	1.391	1.365	1.346	1.332	1.321	1.312	1.304	1.269	1.245	1.237
100	1.485	1.476	1.468	1.460	1.453	1.446	1.440	1.434	1.428	1.423	1.382	1.355	1,336	1.321	1.310	1.301	1.293	1.257	1.232	1.223
200	1.448	1.438	1.430	1.422	1.414	1.407	1.400	1.394	1.388	1.383	1.339	1.310	1.289	1.273	1.261	1.250	1.242	1.189	1.168	1.157
200	1.425	1.416	1.407	1.399	1.391	1.384	1.377	1.370	1.364	1.358	1.313	1.282	1.260	1.243	1.229	1.218	1.209	1.160	1.122	1.106
1000	1.418	1.408	1.399	1.391	1.383	1.376	1.369	1.362	1.356	1.350	1.304	1.273	1.250	1.232	1.218	1.207	1.197	1.145	1.103	1.084
	Elaborada	la por Irei	por Irene Patricia Valdez y Alfaro	a Valdez	y Alfaro	2														

<u>Tabia 5</u>. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

100						A STATE OF THE PARTY OF THE PAR										1			
	161.446 199.499	215.707	224.583	230.160	233.988	236.767	238.884	240.543	241.882	242.981	243.905	244.690	245.363	245.949	246.466	246.917	247.324	247.688	248.016
0.010	19.000	19.164	19.247	19.296	19.329	19.353	19.371	19.385	19.396	19.405	19.412	19.419	19.424	19.429	19.433	19.437	19.440	19.443	19.446
	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.785	8.763	8.745	8.729	8.715	8.703	8.692	8.683	8.675	8.667	8.660
7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.936	5.912	5.891	5.873	5.858	5.844	5.832	5.821	5.811	5.803
-	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	4.655	4.636	4.619	4.604	4.590	4.579	4.568	4.558
1	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.027	4.000	3.976	3.956	3.938	3.922	3.908	3.896	3.884	3.874
5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637	3.603	3.575	3.550	3.529	3.511	3.494	3.480	3.467	3.455	3.445
5.318	4.459	4.066	3.838	3.688	3.581	3.500	3.438	3.388	3.347	3.313	3.284	3.259	3.237	3.218	3.202	3.187	3.173	3.161	3.150
5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.102	3.073	3.048	3.025	3.006	2.989	2.974	2.960	2.948	2.936
4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.943	2.913	2.887	2.865	2.845	2.828	2.812	2.798	2.785	2.774
4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.818	2.788	2.761	2.739	2.719	2.701	2.685	2.671	2.658	2.646
4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.717	2.687	2.660	2.637	2.617	2.599	2.583	2.568	2.555	2.544
4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.635	2.604	2.577	2.554 -	2.533	2.515	2.499	2.484	2.471	2.459
4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.565	2.534	2.507	2.484	2.463	2.445	2.428	2.413	2.400	2.388
4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.507	2.475	2.448	2.424	2.403	2.385	2.368	2.353	2.340	2.328
4	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.456	2.425	2.397	2.373	2.352	2.333	2.317	2.302	2.288	2.276
4.451	3.592	3.197	-, 2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.413	2.381	2.353	2.329	2.308	2.289	2.272	2.257	2.243	2.230
4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.374	2.342	2.314	2.290	2.269	2.250	2.233	2.217	2.203	2.191
4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.340	2.308	2.280	2.256	2.234	2.215	2.198	2.182	2.168	2.155
4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348	2.310	2.278	2.250	2.225	2.203	2.184	2.167	2.151	2.137	2.124
4.325	3.467	3.072	2.840	2.685	2.573	2.488	2.420	2.366	2.321	2.283	2.250	2.222	2.197	2.176	2.156	2.139	2.123	2.109	2.096
4.301	3.443	3.049	2.817	2.661	2.549	2.464	2.397	2.342	2.297	2.259	2.226	2.198	2.173	2.151	2.131	2.114	2.098	2.084	2.071
4.279	3.422	3.028	2.796	2.640	2.528	2.442	2.375	2.320	2.275	2.236	2.204	2.175	2.150	2.128	2.109	2.091	2.075	2.061	2.048
4.260	3.403	3.009	2.776	2.621	2.508	2.423	2.355	2.300	2.255	2.216	2.183	2.155	2.130	2.108	2.088	2.070	2.054	2.040	2.027
4.242	3.385	2.991	2.759	2.603	2.490	2.405	2.337	2.282	2.236	2.198	2.165	2.136	2.111	2.089	2.069	2.051	2.035	2.021	2.007
4.225	3.369	2.975	2.743	2.587	2.474	2.388	2.321	2.265	2.220	2.181	2.148	2.119	2.094	2.072	2.052	2.034	2.018	2.003	1.990
4.210	3.354	2.960	2.728	2.572	2.459	2.373	2.305	2.250	2.204	2.166	2.132	2.103	2.078	2.056	2.036	2.018	2.002	1.987	1.974
4.196	3.340	2.947	2.714	2.558	2.445	2.359	2.291	2.236	2.190	2.151	2.118	2.089	2.064	2.041	2.021	2.003	1.987	1.972	1.959
4.183	3.328	2.934	2.701	2.545	2.432	2.346	2.278	2.223	2.177	2.138	2.104	2.075	2.050	2.027	2.007	1.989	1.973	1.958	1.945
4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165	2.126	2.092	2.063	2.037	2.015	1.995	1.976	1.960	1.945	1.932
4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.180	2.124	2.077	2.038	2.003	1.974	1.948	1.924	1.904	1.885	1.868	1.853	1.839
4.034	3.183	2.790	2.557	2.400	2.286	2.199	2.130	2.073	2.026	1.986	1.952	1.921	1.895	1.871	1.850	1.831	1.814	1.798	1.784
4.001	3.150	2.758	2.525	2.368	2.254	2.167	2.097	2.040	1.993	1.952	1.917	1.887	1.860	1.836	1.815	1.796	1.778	1.763	1.748
3.978	3.128	2.736	2.503	2.346	2.231	2.143	2.074	2.017	1.969	1.928	1.893	1.863	1.836	1.812	1.790	1.77.1	1.753	1.737	1.722
3.960	3.111	2.719	2.486	2.329	2.214	2.126	2.056	1.999	1.951	1.910	1.875	1.845	1.817	1.793	1.772	1.752	1.734	1.718	1.703
3.947	3.098	2.706	2.473	2.316	2.201	2.113	2.043	1.986	1.938	1.897	1.861	1.830	1.803	1.779	1.757	1.737	1.720	1.703	1.688
3.936	3.087	2.696	2.463	2.305	2.191	2.103	2.032	1.975	1.927	1.886	1.850	1.819	1.792	1.768	1.746	1.726	1.708	1.691	1.676
3.888	3.041	2.650	2.417	2.259	2.144	2.056	1.985	1.927	1.878	1.837	1.801	1.769	1.742	1.717	1.694	1.674	1.656	1.639	1.623
3.860	3.014	2.623	2.390	2.232	2.117	2.028	1.957	1.899	1.850	1.808	1.772	1.740	1.712	1.686	1.664	1.643	1.625	1.607	1.592
3.851	3 005	2 614	2 381	2222	2 408	2019	1 048	4 880	4 040	4 700	4 757	4 720	4 700	4 R78	1 854	4 633	1 614	4 507	1 581

n.W.

Tabia 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

1 - a = 0.95 1 - a = P (F £ f_{a,n_1,n_2})

	2			97	17	2	67	3	1	200	3	2	00	200	201	201	200	000
248.579 248.	8.823	3 249.052	2 249.260	249.453	249.631	249.798	249.951	250.096	251.144	251.774	252.196	252.498	252.723	252.898	253.043	253.676	254.062	254.186
	8.643	45		8.630	8.626	8.623	8.620	8.617	8.594	8.581	8.572	8.566	8.561	8.557	8.554	8.540	8.532	8.529
	5.781			5.763	5.759	5.754	5.750	5.746	5.717	5.699	5.688	5.679	5.673	5.668	5.664.	5.646	5.635	5.632
4.541	4.534	4.527	4.521	4.515	4.510	4.505	4.500	4.496	4.464	4.444	4.431	4.422	4.415	4.409	4.405	4.385	4.373	4.369
3.856	3.849	3.841	3.835	3.829	3.823	3.818	3.813	3.808	3.774	3.754	3.740	3.730	3.722	3.716	3.712	3.690	3.678	3.673
3.426	3.418	3.410	3.404	3.397	3.391	3.386	3.381	3.376	3.340	3.319	3.304	3.294	3.286	3.280	3.275	3.252	3.239	3.234
-	3.123	3.115	3.108	3.102	3.095	3.090	3.084	3.079	3.043	3.020	3.005	2.994	2.986	2.980	2.975	2.951	2.937	2.932
	2.908	2.900	2.893	2.886	2.880	2.874	2.869	2.864	2.826	2.803	2.787	2.776	2.768	2.761	2.756	2.731	2.717	2.712
2.754	2.745	2.737	2.730	2.723	2.716	2.710	2.705	2.700	2.661	2.637	2.621	2.609	2.601	2.594	2.588	2.563	2.548	2.543
2.626	2.617	2.609	2.601	2.594	2.588	2.582	2.576	2.570	2.531	2.507	2.490	2.478	2.469	2.462	2.457	2.431	2.415	2.410
2.523	2.514	2.505	2.498	2.491	2.484	2.478	2.472	2.466	2.426	2.401	2.384	2.372	2.363	2.356	2.350	2.323	2.307	2.302
2.438	2.429	2.420	2.412	2.405	2.398	2.392	2.386	2.380	2.339	2.314	2.297	2.284-	2.275	2.267	2.261	2.234	2.218	2.212
2.367	2.357	2.349	2.341	2.333	2,326	2.320	2.314	2.308	2.266	2.241	2.223	2.210	2.201	2.193	2.187	2.159	2.142	2.136
2.306		2.288	2.280	2.272	2.265	2.259	2.253	2.247	2.204	2.178	2.160	2.147	2.137	2.130	2.123	2.095	2.078	2.072
2.254		2.235	2.227	2.220	2.212	2.206	2.200	2.194	2.151	2.124	2.106	2.093	2.083	2.075	2.068	2.039	2.022	2.016
		- 2.190	2.181	2.174	2.167	2.160	2.154	2.148	2.104	2.077	2.058	2.045	2.035	2.027	2.020	1.991	1.973	1.967
2.168		2.150	2.141	2.134	2.126	2.119	2.113	2.107	2.063	2.035	2.017	2.003	1.993	1.985	1.978	1.948	1.929	1.923
	2.123	2.114	2.106	2.098	2.090	2.084	2.077	2.071	2.026	1.999	1.980	1.966	1.955	1.947	1.940	1.910	1.891	1.884
2.102		2.082	2.074	2.066	2.059	2.052	2.045	2.039	1.994	1.966	1.946	1.932	1.922	1.913	1.907	1.875	1.856	1.850
2.073	_	2.054	2.045	2.037	2.030	2.023	2.016	2.010	1.965	1.936	1.916	1.902	1.891	1.883	1.876	1.845	1.825	1.818
2.048		2.028	2.020	2.012	2.004	1.997	1.990	1.984	1.938	1.909	1.889	1.875	1.864	1.856	1.849	1.817	1.797	1.790
2.025	2.014		1.996	1.988	1.981	1.973	1.967	1.96.1	1.914	1.885	1.865	1.850	1.839	1.830	1.823	1.791	1.77.1	1.764
2.003	1.993	1.984	1.975	1.967	1.959	1.952	1.945	1.939	1.892	1.863	1.842	1.828	1.816	1.808	1.800	1.768	1.747	1.740
1.984	1.974	1.964	1.955	1.947	1.939	1.932	1.926	1.919	1.872	1.842	1.822	1.807	1.796	1.787	1.779	1.746	1.725	1.718
1.966	1.956	1.946	1.938	1.929	1.921	1.914	1.907	1.901	1.853	1.823	1.803	1.788	1.776	1.767	1.760	1.726	1.705	1.698
1,950	1.940	1.930	1.921	1.913	1.905	1.898	1.891	1.884	1.836	1.806	1.785	1.770	1.758	1.749	1.742	1.708	1.686	1.679
1.935	1.924	1.915	1.906	1.897	1.889	1.882	1.875	1.869	1.820	1.790	1.769	1.754	1.742	1.733	1.725	1.691	1.669	1.662
1.921	1.910	1.901	1.891	1.883	1.875	1.868	1.861	1.854	1.806	1.775	1.754	1.738	1.726	1.717	1.710	1.675	1.653	1.645
1,908	1.897	1.887	1.878	1.870	1.862	1.854	1.847	1.841	1.792	1.761	1.740	1.724	1.712	1.703	1.695	1.660	1.637	1.630
1.814	1.803	1.793	1.783	1.775	1.766	1.759	1.751	1.744	1.693	1.660	1.637	1.621	1.608	1.597	1.589	1.551	1.526	1.517
1.759	1.748	1.737	1.727	1.718	1.710	1.702	1.694	1.687	1.634	1.599	1.576	1.558	1.544	1.534	1.525	1.484	1.457	1.448
1.722	1.711	1.700	1.690	1.681	1.672	1.664	1.656	1.649	1.594	1.559	1.534	1.516	1.502	1.491	1.481	1.438	1.409	1.399
1.696	1.685	1.674	1.864	1.654	1.646	1.637	1.629	1.622	1.566	1.530	1.505	1.486	1.471	1.459	1.450	1.404	1.374	1.364
1.677	1.665	1.654	1.644	1.634	1.626	1.617	1.609	1.602	1.545	1.508	1.482	1.463	1.448	1.436	1.426	1.379	1.347	1.336
1.662	1.650	1.639	1.629	1.619	1.610	1.601	1.593	1.586	1.528	1.491	1.465	1.445	1.429	1.417	1.407	1.358	1.326	1.314
1.650	1.638	1.627	1.616	1.607	1.598	1.589	1.581	1.573	1.515	1.477	1.450	1.430	1.415	1.402	1.392	1.342	1.308	1,296
1.596	1.583	1.572	1.561	1.551	1.542	1.533	1.524	1.516	1.455	1,415	1.386	1.364	1.346	1.332	1.321	1.263	1.221	1.205
,563	1.551	1.539	1.528	1.518	1.508	1.499	1.490	1.482	1.419	1.376	1.345	1.322	1.303	1.288	1.275	1.210	1.159	1.138
4 550	4 540	4 500	4 547	1 507	4 407	4 400	4 470	, , , ,	-	4 000	, 000	-	4 000	4 070	0000	-	****	4 440

n.W.

Tabla 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

1 - a = 0.975
n₁ = grados de libertad del numerador 1 - a = P (\mathbb{E} £ \mathbf{f}_{a,n_1,n_2})
n₂ = grados de libertad del denominador

															The second second second			
8	864.151	899.599	921.835	937.114	948.203	956.643	963.279	968.634	973.028	976.725	979.839	982.545	984.874	986.911	988.715	990.345	991.800	993.081
	39.166	39.248	39.298	39,331	39.356	39.373	39.387	39.398	39.407	39.415	39.421	39.427	39.431	39.436	39.439	39.442	39.446	39.448
	15.439	15.101	14.885	14.735	14.624	14.540	14.473	14.419	14.374	14.337	14.305	14.277	14.253	14.232	14.213	14.196	14.181	14.167
	9.979	9.604	9.364	9.197	9.074	8.980	8.905	8.844	8.794	8.751	8.715	8.684	8.657	8.633	8.611.	8.592	8.575	8.560
	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.568	6.525	6.488	6.456	6.428	6.403	6.381	6.362	6.344	6.329
	6.599	6.227	5.988	5.820	5.695	2.600	5.523	5.461	5.410	5.366	5.329	5.297	5.269	5.244	5.222	5.202	5.184	5.168
	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.709	4.666	4.628	4.596	4.568	4.543	4.521	4.501	4.483	4.467
	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295	4.243	4.200	4.162	4.130	4.101	4.076	4.054	4.034	4.016	3.999
	8.003	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.912	3.868	3.831	3.798	3.769	3.744	3.722	3.701	3.683	3.667
	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.665	3.621	3.583	3.550	3.522	3.496	3.474	3.453	3.435	3.419
	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3,526	3.474	3.430	3.392	3.359	3.330	3.304	3.282	3.261	3.243	3.226
	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.321	3.277	3.239	3.206	3.177	3.152	3.129	3,108	3.090	3.073
	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.197	3.153	3.115	3.082 -	3.053	3.027	3.004	2.983	2.965	2.948
	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	3.095	3.050	3.012	2.979	2.949	2.923	2.900	2.879	2.861	2.844
4.765	4.153	3.804	3.576	3,415	3.293	3.189	3.123	3.060	3.008	2.963	2.925	2.891	2.862	2.836	2.813	2.792	2.773	2.756
	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.934	2.889	2.851	2.817	2.788	2.761	2.738	2.717	2.698	2.681
4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.870	2.825	2.786	2.753	2.723	2.697	2.673	2.652	2.633	2.616
4.580	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.814	2.769	2.730	2.696	2.667	2.640	2.617	2.596	2.576	2.559
4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.765	2.720	2.681	2.647	2.617	2.591	2.567	2.546	2.526	2.509
-	3.859	3,515	3.289	3.128	3.007	2.913	2.837	2.774	2.721	2.676	2.637	2.603	2.573	2.547	2.523	2.501	2.482	2.464
4.420	3.819	3.475	3.250	3.090	2.969	2.874	2.798	2.735	2.682	2.637	2.598	2.564	2.534	2.507	2.483	2.462	2.442	2.425
4.383	3.783	3.440	3.216	3.055	2.934	2.839	2.763	2.700	2.647	2.602	2.563	2.528	2.498	2.472	2.448	2.426	2.407	2.389
4.349	3.750	3.408	3.183	3.023	2.902	2.808	2.731	2.668	2.615	2.570	2.531	2.497	2.466	2.440	2.416	2.394	2.374	2.357
4.319	3.721	3.379	3.155	2.995	2.874	2.779	2.703	2.640	2,586	2.541	2.502	2.468	2.437	2.411	2.386	2.365	2.345	2.327
4.291	3.694	3.353	3.129	2.969	2.848	2.753	2.677	2.613	2.560	2.515	2.476	2.441	2.411	2.384	2.360	2.338	2.318	2.300
4.265	3.670	3.329	3.105	2.945	2.824	2.729	2.653	2.590	2.536	2.491	2.452	2.417	2.387	2.360	2.335	2.314	2.294	2.276
4.242	3.647	3.307	3.083	2.923	2.802	2.707	2.631	2.568	2.514	2.469	2.429	2.395	2.364	2.337	2.313	2.291	2.271	2.253
4.221	3.626	3.286	3.063	2.903	2.782	2.687	2.611	2.547	2.494	2.448	2.409	2.374	2.344	2.317	2.292	2.270	2.251	2.232
4.201	3.607	3.267	3.044	2.884	2.763	2.669	2.592	2.529	2.475	2.430	2.390	2.355	2.325	2.298	2.273	2.251	2.231	2.213
4.182	3.589	3.250	3.026	2.867	2.746	2.651	2.575	2.511	2.458	2.412	2.372	2.338	2.307	2.280	2.255	2.233	2.213	2.195
4.051	3.463	3.126	2.904	2.744	2.624	2.529	2.452	2.388	2.334	2.288	2.248	2.213	2.182	2.154	2.129	2.107	2.086	2.068
3.975	3.390	3.054	2.833	2.674	2.553	2.458	2.381	2.317	2.263	2.216	2.176	2.140	2.109	2.081	2.056	2.033	2.012	1.993
3.925	3.343	3.008	2.786	2.627	2.507	2.412	2.334	2.270	2.216	2.169	2.129	2.093	2.061	2.033	2.008	1.985	1.964	1.944
3.890	3.309	2.975	2.754	2.595	2.474	2.379	2.302	2.237	2.183	2.136	2.095	2.059	2.028	1.999	1.974	1.950	1.929	1.910
3.864	3.284	2.950	2.730	2.571	2.450	2.355	2.277	2.213	2.158	2.111	2.071	2.035	2.003	1.974	1.948	1.925	1.904	1.884
3.844	3.265	2.832	2.711	2.552	2.432	2.336	2.259	2.194	2.140	2.092	2.051	2.015	1.983	1.955	1.929	1.905	1.884	1.864
3.828	3.250	2.917	2.696	2.537	2.417	2.321	2.244	2.179	2.124	2.077	2.036	2.000	1.968	1.939	1.913	1.890	1.868	1.849
3.758	3.182	2.850	2.630	2.472	2.351	2.256	2.178	2.113	2.058	2.010	1.969	1.932	1.900	1.870	1.844	1.820	1.798	1.778
3.716	3.142	2.811	2.592	2.434	2.313	2.217	2.139	2.074	2.019	1.971	1.929	1.892	1.859	1.830	1.803	1.779	1.757	1.736
3 703	3 120	2 700	2 570	2 424	2 300	2 204	2426	2000	2000	4 050	4 046	4 070	4 040	4 040	4 700	4 700	4 740	4 700

nik,

Tabla 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

1 - a = 0.975 1 - a = P (F £ f_{a,ni,n2})

-		Comme comme				-	-						****	01000	****			
T- 10	30.455	997.272	998.087	998.843	999.542	1000.240	1000.823	1001.405	1005.596	1008.098	1009.787	1011.009	1011.911	1012.610	1013.163	1015.724	30 406	1017.761
14.144	14.134	14.124	14.115	14.107	14.100	14.093	14.086	14.081	14.036	14.010	13.992	13.979	13.970	13.962	13.956	13.929	13.913	13,908
8.533	8.522	8.511	8.501	8.492	8.483	8.475	8.468	8.461	8.411	8.381	8.360	8.346	8.335	8.326	8.319	8.288	8.270	8.264
6.301	6.289	6.278	6.268	6.258	6.250	6.242	6.234	6.227	6.175	6.144	6.123	6.107	960.9	6.087	6.080	6.048	6.028	6.022
5.141	5.128	5.117	5.107	2003	5.088	5.080	5.072	5.065	5.012	4.980	4.959	4.943	4.932	4.923	4.915	4.882	4.862	4.856
4.439	4.426	4.415	4.405	4.395	4.386	4.378	4.370	4.362	4.309	4.276	4.254	4.239	4.227	4.218	4.210	4.176	4.156	4.149
11	3.959	3.947	3.937	3.927	3.918	3.909	3.901	3.894	3.840	3.807	3.784	3.768	3.756	3.747	3.739	3.705	3.684	3.677
38	3.626	3.614	3.604	3.594	3.584	3.576	3.568	3.560	3.505	3.472	3.449	3.433	3.421	3.411	3.403	3.368	3.347	3.340
3.390	3.377	3.365	3.355	3.345	3.335	3.327	3.319	3.311	3.255	3.221	3.198	3.182	3.169	3.160	3.152	3.116	3.094	3.087
16	3.184	3.173	3.162	3.152	3,142	3.133	3.125	3.118	3.061	3.027	3.004	2.987	2.974	2.964	2.956	2.920	2.898	2.890
43	3.031	3.019	3.008	2.998	2.988	2.979	2.971	2.963	2.906	2.871	2.848	2.831	2.818	2.808	2.800	2.763	2.740	2.733
2.918	2.905	2.893	2.882	2.872	2.862	2.853	2.845	2.837	2.780	2.744	2.720	2.703-	2.690	2.680	2.671	2.634	2.611	2.603
2.814	2.801	2.789	2.778	2.767	2.758	2.749	2.740	2.732	2.674	2.638	2.614	2.597	2.583	2.573	2.565	2.526	2.503	2.495
726	2.713	2.701	2.689	2.679	2.669	2.660	2.652	2.644	2.585	2.549	2.524	2.506	2.493	2.482	2.474	2.435	2.411	2.403
651	2.637	2.625	2.614	2.603	2.594	2.584	2.576	2.568	2.509	2.472	2.447	2.429	2.415	2.405	2.396	2.357	2.333	2.324
585	2.572	2.560	2.548	2.538	2.528	2.519	2.510	2.502	2.442	2.405	2.380	2.362	2.348	2.337	2.329	2.289	2.284	2.256
2.529	2.515	2.503	2.491	2.481	2.471	2.461	2.453	2.445	2.384	2.347	2.321	2.303	2.289	2.278	2.269	2.228	2.204	2.195
478	2.465	2.452	2.441	2.430	2.420	2.411	2.402	2.394	2.333	2.295	2.270	2.251	2.237	2.226	2.217	2.176	2.150	2.142
434	2.420	2.408	2.396	2.385	2.375	2.366	2.357	2.349	2.287	2.249	2.223	2.205	2.190	2.179	2.170	2.128	2.103	2.094
2.394	2.380	2.368	2.356	2.345	2.335	2.325	2.317	2.308	2.246	2.208	2.182	2.163	2.148	2.137	2.128	2.086	2.060	2.051
358	2.344	2.332	2.320	2.309	2.299	2.289	2.280	2.272	2.210	2.171	2.145	2.125	2.111	5.099	2.090	2.047	2.021	2.012
2.325	2.312	2.299	2.287	2.276	2.266	2.256	2.247	2.239	2.176	2.137	2.111	2.091	2.077	2.065	2.056	2.013	1.986	1.977
2.296	2.282	2.269	2.257	2.246	2.236	2.226	2.217	2.209	2.146	2.107	2.080	2.060	2.045	2.034	2.024	1.981	1.954	1.945
2.269	2.255	2.242	2.230	2.219	2.209	2.199	2.190	2.182	2.118	2.079	2.052	2.032	2.017	2.005	1.996	1.952	1.924	1.915
244	2.230	2.217	2.205	2.194	2.184	2.174	2.165	2.157	2.093	2.053	2.026	2.006	1.991	1.979	1.969	1.925	1.897	1.888
2.222	2.208	2.195	2.183	2.171	2.161	2,151	2.142	2.133	2.069	2.029	2.002	1.982	1.966	1.954	1.945	1.900	1.872	1.862
2.201	2.187	2.174	2.161	2.150	2.140	2.130	2.121	2.112	2.048	2.007	1.980	1.959	1.944	1.932	1.922	1.877	1.848	1.839
181	2.167	2.154	2.142	2.131	2.120	2.110	2.101	2.092	2.028	1.987	1.959	1.939	1.923	1.911	1.901	1.855	1.827	1.817
2.163	2.149	2.136	2.124	2.112	2.102	2.092	2.083	2.074	2.009	1.968	1.940	1.920	1.904	1.892	1.882	1.835	1.806	1.797
980	2.020	2.007	1.994	1.983	1.972	1.962	1.952	1.943	1.875	1.832	1.803	1.781	1.764	1.751	1.741	1.691	1.659	1.648
1.960	1.945	1.931	1.919	1.907	1.895	1.885	1.875	1.866	1.796	1.752	1.721	1.698	1.681	1.667	1.656	1.603	1.569	1.557
1.911	1.896	1.882	1.869	1.857	1.845	1.835	1.825	1.815	1.744	1.699	1.667	1.643	1.625	1.611	1.599	1.543	1.507	1.495
1.876	1.861	1.847	1.833	1.821	1,810	1.799	1.789	1.779	1.707	1,660	1.628	1.604	1.585	1.570	1.558	1.500	1.463	1.449
1.850	1.835	1.820	1.807	1.795	1.783	1.772	1.762	1.752	1.679	1.632	1.599	1.574	1.555	1.540	1.527	1.467	1.428	1.414
1.830	1.814	1.800	1.787	1.774	1.763	1.752	1.741	1.731	1.657	1.610	1.576	1.551	1.531	1.516	1.503	1.441	1.401	1.386
1.814	1.798	1.784	1.770	1.758	1.746	1.735	1.725	1.715	1.640	1.592	1.558	1.532	1.512	1.496	1.483	1.420	1.378	1.363
1.742	1.726	1.712	1.698	1.685	1.673	1.661	1.650	1.640	1.562	1.511	1.474	1.447	1.425	1.407	1.393	1.320	1.269	1.250
700	1.684	1.669	1.655	1.641	1.629	1.617	1.606	1.596	1.515	1.462	1.423	1.394	1.370	1.351	1.336	1.254	1.192	1.166
0000	4 000	, , , ,	4000	4 000	* * * *	4 000	1 204	101	*	*****	***	-	4 250	4 222	4 240			4 433

0.4

Tabla 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

		1 - a =0.99	66.0			n,	= grados	de liberta	= grados de libertad del numerador	nerador											
1		1-9	P(F£	fa,nı,n2)		n ₂	= grados	de liberta	ed del den	ominador											
1,55,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	2/2	-	2	e	4	5	9	7	00	0	10	11	12	13	4	15	16	17	18	19	20
444 444 <th>-</th> <th>4052.185</th> <th>100</th> <th>5403.534</th> <th>5624.257</th> <th>5763.955</th> <th>5858.950</th> <th>5928.334</th> <th>5980.954</th> <th>6022.397</th> <th>6055.925</th> <th>6083.399</th> <th>6106.682</th> <th>6125.774</th> <th>6143.004</th> <th>6156.974</th> <th>6170.012</th> <th>6181.188</th> <th>6191.432</th> <th>6200.746</th> <th>6208.662</th>	-	4052.185	100	5403.534	5624.257	5763.955	5858.950	5928.334	5980.954	6022.397	6055.925	6083.399	6106.682	6125.774	6143.004	6156.974	6170.012	6181.188	6191.432	6200.746	6208.662
3.11.00 1.00.00 <t< th=""><th>2</th><th>98.502</th><th>99.000</th><th>99.164</th><th>99.251</th><th>99.302</th><th>99.331</th><th>99.357</th><th>99.375</th><th>99.390</th><th>99.397</th><th>89.408</th><th>99.419</th><th>99.422</th><th>99.426</th><th>99.433</th><th>99.437</th><th>99.441</th><th>99.444</th><th>99.448</th><th>99.448</th></t<>	2	98.502	99.000	99.164	99.251	99.302	99.331	99.357	99.375	99.390	99.397	89.408	99.419	99.422	99.426	99.433	99.437	99.441	99.444	99.448	99.448
	3	34.116	30.816	29.457	28.710	28.237	27.911	27.671	27.489	27.345	27.228	27.132	27.052	26.983	26.924	26.872	26.826	26.786	26.751	26.719	26.690
(12.28) (13.274) (12.08) (11.42.24) (12.08.24) (12.04.24) (11.04.24) (12.04.24)	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659	14.546	14.452	14.374	14.306	14.249	14.198	14.154	14.114	14.079	14.048	14.019
13.74 13.40 <th< td=""><th>2</th><td>16.258</td><td>13.274</td><td>12.060</td><td>11.392</td><td>10.967</td><td>10.672</td><td>10,456</td><td>10.289</td><td>10.158</td><td>10.051</td><td>9.963</td><td>9.888</td><td>9.825</td><td>9.770</td><td>9.722</td><td>9.680</td><td>9.643</td><td>8.609</td><td>9.580</td><td>9.553</td></th<>	2	16.258	13.274	12.060	11.392	10.967	10.672	10,456	10.289	10.158	10.051	9.963	9.888	9.825	9.770	9.722	9.680	9.643	8.609	9.580	9.553
12.246 64.47 7.64.1 7.64.1 7.64.1 7.64.1 7.64.1 6.47.2 6.47.2 6.47.2 6.47.2 6.47.2 6.47.2 6.47.2 6.47.2 6.47.2 6.67.2 </td <th>9</th> <td>13.745</td> <td>10.925</td> <td>9.780</td> <td>9.148</td> <td>8.746</td> <td>8.466</td> <td>8.260</td> <td>8.102</td> <td>7.976</td> <td>7.874</td> <td>7.790</td> <td>7.718</td> <td>7.857</td> <td>7.605</td> <td>7.559</td> <td>7.519</td> <td>7.483</td> <td>7.451</td> <td>7.422</td> <td>7.396</td>	9	13.745	10.925	9.780	9.148	8.746	8.466	8.260	8.102	7.976	7.874	7.790	7.718	7.857	7.605	7.559	7.519	7.483	7.451	7.422	7.396
11.2.9. 6.4.2. 5.6.9. 6.6.9. 4.6.9. 4.7.9. 4.7.9. 4.6.9. 4.6.9. 4.7.9. 4.7.9. 4.6.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.6.9. 4.7.9. 4.7.9. 4.0.9. 4.7.9.	7	12.246	9.547	8.451	7.847	7.460	7.191	6.993	6.840	6.719	6.620	6.538	6.469	6.410	6.359	6.314	6.275	6.240	6.209	6.181	6.155
442 442 <th>00</th> <td>11.259</td> <td>8.649</td> <td>7.591</td> <td>7.006</td> <td>6.632</td> <td>6.371</td> <td>6.178</td> <td>6.029</td> <td>5.911</td> <td>5.814</td> <td>5.734</td> <td>5.667</td> <td>5.609</td> <td>6.559</td> <td>5.515</td> <td>5.477</td> <td>5.442</td> <td>5.412</td> <td>5.384</td> <td>5.359</td>	00	11.259	8.649	7.591	7.006	6.632	6.371	6.178	6.029	5.911	5.814	5.734	5.667	5.609	6.559	5.515	5.477	5.442	5.412	5.384	5.359
0.00 6.00 4.00 <th< td=""><th>6</th><td>10,562</td><td>8.022</td><td>6.992</td><td>6.422</td><td>6.057</td><td>5.802</td><td>5.613</td><td>5.467</td><td>5.351</td><td>5.257</td><td>5.178</td><td>5.111</td><td>5.055</td><td>5.005</td><td>4.962</td><td>4.924</td><td>4.890</td><td>4.860</td><td>4.833</td><td>4.808</td></th<>	6	10,562	8.022	6.992	6.422	6.057	5.802	5.613	5.467	5.351	5.257	5.178	5.111	5.055	5.005	4.962	4.924	4.890	4.860	4.833	4.808
94.64 72.06 6.27 5.68 6.38 6.39 6.44 4.74 4.39 4.40 4.39 4.30 4.30 4.25 4.21 4.10 4.23 4.10 4.13 4.10 4.13 4.10 <	10	10.044	7.559	8.552	5.994	5.636	5.386	5.200	5.057	4.942	4.849	4.772	4.706	4.650	4.601	4.558	4.520	4.487	4.457	4.430	4.405
9330 6367 6369 6440 4420 4420 420 4100 4100 3470 3476 3140 3480	11	9.646	7.206	6.217	5.668	5.316	5.069	4.886	4.744	4.632	4.539	4.462	4.397	4.342	4.293	4.251	4.213	4.180	4.150	4.123	4.099
99074 6779 5789 5266 4862 4469 4471 4190 4190 4100 3080 3680 <t< td=""><th>12</th><td>9.330</td><td>6.927</td><td>5.953</td><td>5.412</td><td>5.064</td><td>4.821</td><td>4.640</td><td>4.499</td><td>4.388</td><td>4.296</td><td>4.220</td><td>4.155</td><td>4.100</td><td>4.052</td><td>4.010</td><td>3.972</td><td>3.939</td><td>3.910</td><td>3.883</td><td>3.858</td></t<>	12	9.330	6.927	5.953	5.412	5.064	4.821	4.640	4.499	4.388	4.296	4.220	4.155	4.100	4.052	4.010	3.972	3.939	3.910	3.883	3.858
6862 6564 6574 4889 4869 3746 3669 3669 3780 3694 3569 3694 3696 3697 4869 3641 3669 3669 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3696 3697 3697 3696 3697 3696 3697 3697 3696 3697 3697 3697 3696 3697 3697 3697 3697 3697 3697 3696 3799 3697 3697 3697 3697 3697 <th< td=""><th>13</th><td>9.074</td><td>6.701</td><td>5.739</td><td>5.205</td><td>4.862</td><td>4.620</td><td>4.441</td><td>4.302</td><td>4.191</td><td>4.100</td><td>4.025</td><td>3.960</td><td>3.905</td><td>3.857</td><td>3.815</td><td>3.778</td><td>3.745</td><td>3.716</td><td>3.689</td><td>3.665</td></th<>	13	9.074	6.701	5.739	5.205	4.862	4.620	4.441	4.302	4.191	4.100	4.025	3.960	3.905	3.857	3.815	3.778	3.745	3.716	3.689	3.665
6.65 6.47 4.88 4.56 4.14 4.004 3.896 3.730 3.66 3.64 3.62 3.44 3.750 3.66 3.46 3.46 3.896 3.730 3.66 3.46 3.46 3.780 3.46 3.46 3.780 3.46	14	8.862	6.515	5.564	5.035	4.695	4.456	4.278	4.140	4.030	3.939	3.864	3.800	3.745	3.698	3.656	3.619	3.586	3.556	3.529	3.505
45.24 5.22 4.773 4.477 4.202 4.703 4.477 4.407 3.780 3.880 3.481	15	8.683	6.359	5.417	4.893	4.556	4.318	4.142	4.004	3.895	3.805	3.730	3.666	3.612	3.564	3.522	3.485	3.452	3.423	3.396	3.372
8440 6112 5186 4689 4689 4736 4101 3227 3791 3689 3459 3451 3358 3151 3275 3189 3272 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3122 3189 3189 3189 3189 3189 3264 3189 3289 3264 3289 <th< td=""><th>16</th><td>8.531</td><td>6.226</td><td>5.292</td><td>4.773</td><td>4.437</td><td>4.202</td><td>4.026</td><td>3.890</td><td>3.780</td><td>3.691</td><td>3.616</td><td>3.553</td><td>3.498</td><td>3.451</td><td>3.409</td><td>3.372</td><td>3.339</td><td>3.310</td><td>3.283</td><td>3.259</td></th<>	16	8.531	6.226	5.292	4.773	4.437	4.202	4.026	3.890	3.780	3.691	3.616	3.553	3.498	3.451	3.409	3.372	3.339	3.310	3.283	3.259
6.01 6.02 4.57 4.248 4.014 3.044 3.749 3.371 3.371 3.246 3.247 3.146 3.247 3.146 3.247 3.146 3.247 3.146 3.247 3.146 3.247 3.146 3.247 3.146 3.247 3.146 3.147 3.048 3.748 3.247 3.147 3.146 3.048 3.247 3.146 3.148 3.146 3.247 3.146 3.148 3.146 3.247 3.147 3.040 3.048 3.041 3.047 3.048 3.048 3.047 3.149 3.047 3.049 3.047 3.149 3.047 3.049 3.047 3.049 3.047 3.049 3.047 3.049 3.047 3.047 3.049 3.047 3.047 3.049 3.047 3.047 3.049 3.048 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.047 3.	17	8.400	6.112	5.185	4.669	4.336	4.101	3.927	3.791	3.682	3.593	3.518	3.455	3.401	3.353	3.312	3.275	3.242	3.212	3.186	3.162
6.10.6 5.82.6 5.01.0 4.50.0 4.171 3.839 3.76.5 3.64.4 3.32.7 3.24.2 3.14.5 3.14.5 3.14.9 3.08.4 3.08.4 3.22.7 3.24.5 3.14.5 3.14.9 3.08.4 4.43.7 3.69.4 3.69.4 3.25.4 3.24.7 3.36.7 3.08.4 3.08.4 3.08.4 3.08.4 3.08.4 3.08.4 4.43.4 4.10.2 3.88.7 3.68.4 3.24.6 3.24.7 3.24.9 3.08.4 3.09.4 <th>18</th> <td>8.285</td> <td>6.013</td> <td>5.092</td> <td>4.579</td> <td>4.248</td> <td>4.015</td> <td>3.841</td> <td>3.705</td> <td>3.597</td> <td>3.508</td> <td>3.434</td> <td>3.371</td> <td>3.316</td> <td>3.269</td> <td>3.227</td> <td>3.190</td> <td>3.158</td> <td>3.128</td> <td>3.101</td> <td>3.077</td>	18	8.285	6.013	5.092	4.579	4.248	4.015	3.841	3.705	3.597	3.508	3.434	3.371	3.316	3.269	3.227	3.190	3.158	3.128	3.101	3.077
6.046 6.840 4.938 4.431 4.103 3.871 3.669 3.664 3.274 3.294 3.234 3.249 3.240 <th< td=""><th>19</th><td>8.185</td><td>5.926</td><td>5.010</td><td>4.500</td><td>4.171</td><td>3.939</td><td>3.765</td><td>3.631</td><td>3.523</td><td>3.434</td><td>3.360</td><td>3.297</td><td>3.242</td><td>3.195</td><td>3.153</td><td>3.116</td><td>3.084</td><td>3.054</td><td>3.027</td><td>3.003</td></th<>	19	8.185	5.926	5.010	4.500	4.171	3.939	3.765	3.631	3.523	3.434	3.360	3.297	3.242	3.195	3.153	3.116	3.084	3.054	3.027	3.003
6017 5780 4,874 4,389 4,042 3,898 3,298 3,298 3,173 3,119 3,072 3,070 2,993 2,998 2,998 3,298 3,298 3,288 3	20	8.096	5.849	4.938	4.431	4.103	3.871	3.699	3.564	3.457	3.368	3.294	3.231	3.177	3.130	3.088	3.051	3.018	2.989	2.962	2.938
7.945 5.719 4.817 4.313 3.989 3.756 3.457 3.446 3.229 3.144 3.121 3.067 3.019 2.978 2.941 2.949 2.949 3.759 3.740 3.259 3.741 3.059 3.249 2.849 2.849 <th< td=""><th>21</th><td>8.017</td><td>5.780</td><td>4.874</td><td>4.369</td><td>4.042</td><td>3.812</td><td>3.640</td><td>3.506</td><td>3.398</td><td>3.310</td><td>3.236</td><td>3.173</td><td>3.119</td><td>3.072</td><td>3.030</td><td>2.993</td><td>2.960</td><td>2.931</td><td>2.904</td><td>2.880</td></th<>	21	8.017	5.780	4.874	4.369	4.042	3.812	3.640	3.506	3.398	3.310	3.236	3.173	3.119	3.072	3.030	2.993	2.960	2.931	2.904	2.880
7.881 5.664 4.766 4.264 3.899 3.710 3.599 3.074 3.074 3.074 3.072 2.973 2.893 2.894 <th< td=""><th>22</th><td>7.945</td><td>5.719</td><td>4.817</td><td>4.313</td><td>3.988</td><td>3.758</td><td>3.587</td><td>3,453</td><td>3.346</td><td>3.258</td><td>3.184</td><td>3.121</td><td>3.067</td><td>3.019</td><td>2.978</td><td>2.941</td><td>2.908</td><td>2.879</td><td>2.852</td><td>2.827</td></th<>	22	7.945	5.719	4.817	4.313	3.988	3.758	3.587	3,453	3.346	3.258	3.184	3.121	3.067	3.019	2.978	2.941	2.908	2.879	2.852	2.827
7.82 5.64 4.716 4.218 3.865 3.65 3.256 3.108 3.004 2.897 2.890 2.889 2.889 2.789 2.789 2.899 2.	23	7.881	5.664	4.785	4.264	3.939	3.710	3.539	3.406	3.299	3.211	3.137	3.074	3.020	2.973	2.931	2.894	2.861	2.832	2.805	2.780
7.770 5.568 4.875 4.177 3.856 3.627 3.457 3.247 3.217 3.129 3.056 2.893 2.882 2.882 2.881 2.879 2.778 2.878 2.868 2.888 2.894 <th< td=""><th>24</th><td>7.823</td><td>5.614</td><td>4.718</td><td>4.218</td><td>3.895</td><td>3.667</td><td>3.496</td><td>3.363</td><td>3.256</td><td>3.168</td><td>3.094</td><td>3.032</td><td>2.977</td><td>2.930</td><td>2.889</td><td>2.852</td><td>2.819</td><td>2.789</td><td>2.762</td><td>2.738</td></th<>	24	7.823	5.614	4.718	4.218	3.895	3.667	3.496	3.363	3.256	3.168	3.094	3.032	2.977	2.930	2.889	2.852	2.819	2.789	2.762	2.738
7721 5526 4.837 4.140 3.818 3.541 3.288 3.142 3.044 3.041 2.046 2.046 2.047 2.047 2.047 2.047 2.047 2.047 2.047 2.048 2.048 2.042 2.042 2.046 2.047 2.047 2.048 2.047 2.047 2.048 2.047 2.047 2.048 2.048 2.047 2.047 2.048 2.047 2.047 2.048 2.048 2.047 2.047 2.048 2.048 2.047 2.047 2.048 2.048 2.047 2.047 2.048 2.048 2.047 2.047 2.048 2.048 2.048 2.048 2.049 2.049 2.047 2.049 2.048 2.049 2	25	7.770	5.568	4.675	4.177	3.855	3.627	3.457	3.324	3.217	3.129	3.056	2.993	2.939	2.892	2.850	2.813	2.780	2.751	2.724	2.699
7.677 5.488 4.501 4.106 3.786 3.586 3.286 3.149 3.002 2.889 2.892 2.887 2.783 2.746 2.773 2.683 2.686 7.583 5.468 4.604 4.504 4.704 3.754 3.528 3.326 3.149 3.002 2.989 2.842 2.783 2.763 2.689 2.682 2.894 2.894 2.742 2.763 2.689 2.682 2.894 2.8	26	7.721	5.526	4.637	4.140	3.818	3.591	3.421	3.288	3,182	3.094	3.021	2.958	2.904	2.857	2.815	2.778	2.745	2.715	2.688	2.664
7636 5453 4.668 4.074 3.754 3.526 3.226 3.120 3.002 2.986 2.842 2.795 2.796 2.796 2.795 2.796 2.683 2.683 2.683 2.683 2.683 2.683 2.683 2.683 2.685 2.696 2.894 2.796 2.796 2.696 2.693 2.693 2.693 2.693 2.693 2.696 2.844 2.794 2.762 2.693 2.693 2.693 2.693 2.694 2.844 2.794 2.762 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.694 2.844 2.794 2.763 2.693 2	27	7.677	5.488	4.601	4.106	3.785	3.558	3.388	3.256	3.149	3.062	2.988	2.926	2.872	2.824	2.783	2.746	2.713	2.683	2.856	2.632
7586 5420 4,558 4,045 3,725 3,499 3,330 3,198 3,092 2,994 2,984 2,787 2,787 2,986 2,884 2,787 2,789 2,886 2,814 2,787 2,780 2,889 2,889 3,473 3,330 3,148 3,989 3,473 3,089 3,473 3,089 3,473 3,089 3,473 3,089 3,473 3,089 3,473 3,089 2,889 2,889 2,889 2,889 2,889 2,889 2,889 2,889 2,889 2,899 2	28	7.636	5.453	4.568	4.074	3.754	3.528	3.358	3.226	3.120	3.032	2.959	2.896	2.842	2.795	2.753	2.716	2.683	2.653	2.626	2.602
7562 5390 4510 4018 3.689 3.473 3.306 2.173 2.979 2.984 2.786 2.742 2.700 2.683 2.690 2.573 2.990 2.984 2.773 2.683 2.686 2.814 2.727 2.686 2.617 2.683 2.680 2.484 2.484 2.481 2.491 2.394 2.394 2.316 2.294 2.894 2.894 2.895 2.683 2.683 2.683 2.683 2.683 2.683 2.684 2.442 2.394 2.394 2.346 2.346 2.316 2.294 2.294 2.3	29	7.598	5.420	4.538	4.045	3.725	3.499	3.330	3.198	3.092	3.005	2.931	2.868	2.814	2.767	2.726	2.689	2.656	2.626	2.599	2.574
7.314 5.178 4.431 3.828 3.544 3.244 3.249 3.249 2.689 2.689 2.685 2.661 2.663 2.663 2.661 2.663 2.663 2.661 2.663 2.663 2.661 2.442 2.382 2.346 2.349 2.349 2.349 2.349 2.349 2.349 2.349 2.349 2.342 2.349 2.342 2.349 2.342 2.349 2.342 2.349 2.342 2.349 2.342 2.349 2.342 2.349 <th< td=""><th>30</th><td>7.562</td><td>5.390</td><td>4.510</td><td>4.018</td><td>3.699</td><td>3.473</td><td>3.305</td><td>3.173</td><td>3.067</td><td>2.979</td><td>2.906</td><td>2.843</td><td>2.789</td><td>2.742</td><td>2.700</td><td>2.663</td><td>2.630</td><td>2.600</td><td>2.573</td><td>2.549</td></th<>	30	7.562	5.390	4.510	4.018	3.699	3.473	3.305	3.173	3.067	2.979	2.906	2.843	2.789	2.742	2.700	2.663	2.630	2.600	2.573	2.549
7171 5.057 4.199 3.720 3.408 3.160 2.890 2.785 2.653 2.653 2.608 2.441 2.342 2.348 2.391 2.392 2.299 2.409 2.445 2.486 2.486 2.486 2.486 2.486 2.385 2.349 2.291 2.251 2.251 2.291 2.291 2.291 2.291 2.293 2.710 2.486 2.486 2.486 2.385 2.346 2.396 2.271 2.281 2.281 2.291 2.291 2.293 2.710 2.281 2.286 2.486 2.486 2.486 2.385 2.346 2.396 2.396 2.281	40	7.314	5.178	4.313	3.828	3.514	3.291	3.124	2.993	2.888	2.801	2.727	2.665	2.611	2.563	2.522	2.484	2.451	2.421	2.394	2.369
7.077 4.977 4.977 4.977 4.977 4.977 4.977 4.977 4.977 4.977 4.977 2.569 2.569 2.496 2.446 2.364 2.364 2.367 2.281 2.273 2.271 2.281 2.273 2.274 2.274 2.274 2.775 2.675 2.566 2.456 2.389 2.374 2.274 2.747 2.747 2.672 2.451 2.456 2.389 2.374 2.274 2.149 2.389 2.374 2.274 2.141 2.289 2.389 2.374 2.206 2.141 2.561 2.451 2.451 2.389 2.374 2.206 2.141 2.541 2.451 2.451 2.389 2.374 2.206 2.141 2.541 2.451 2.451 2.389 2.374 2.206 2.141 2.389 2.373 2.218 2.141 2.389 2.373 2.218 2.141 2.389 2.373 2.218 2.141 2.389 2.373 2.142 2.142 <th< td=""><th>20</th><td>7.171</td><td>5.057</td><td>4.199</td><td>3.720</td><td>3.408</td><td>3.186</td><td>3.020</td><td>2.890</td><td>2.785</td><td>2.698</td><td>2.625</td><td>2.563</td><td>2.508</td><td>2.461</td><td>2.419</td><td>2.382</td><td>2.348</td><td>2.318</td><td>2.290</td><td>2.265</td></th<>	20	7.171	5.057	4.199	3.720	3.408	3.186	3.020	2.890	2.785	2.698	2.625	2.563	2.508	2.461	2.419	2.382	2.348	2.318	2.290	2.265
7.011 4.922 4.074 3.660 3.261 3.717 2.692 2.756 2.756 2.756 2.756 2.777 2.692 2.657 2.656 2.657 2.478 2.747 2.748 2.747 2.748 2.748 2.346 2.346 2.244 2.747 2.747 2.748 2.747 2.346 2.348 2.244 2.749 2.149 2.749 2.149 2.749 2.149 2.749 2.149 2.749 2.149 2.749 2.141 2.747 2.747 2.446 2.369 2.344 2.269 2.244 2.461 2.369 2.344 2.269 2.244 2.749 2.749 2.149 <th< td=""><th>09</th><td>7.077</td><td>4.977</td><td>4.126</td><td>3.649</td><td>3.339</td><td>3.119</td><td>2.953</td><td>2.823</td><td>2.718</td><td>2.632</td><td>2.559</td><td>2.496</td><td>2.442</td><td>2.394</td><td>2.352</td><td>2.315</td><td>2.281</td><td>2.251</td><td>2.223</td><td>2.198</td></th<>	09	7.077	4.977	4.126	3.649	3.339	3.119	2.953	2.823	2.718	2.632	2.559	2.496	2.442	2.394	2.352	2.315	2.281	2.251	2.223	2.198
6.963 4.881 4.036 3.663 3.256 3.026 2.871 2.742 2.837 2.651 2.476 2.415 2.361 2.313 2.271 2.233 2.199 2.199 2.141 6.895 4.844 3.613 3.226 2.848 3.821 2.895 2.848 2.896 2.348 2.896 2.348 2.896 2.348 2.896 2.848 2.896 2.892 2.893 2.899 2.893 2.899 2.893 2.899 2.893 2.899 2.893 2.899 2.893 2.899 2.893 2.899 2.893 2.899	20	7.011	4.922	4.074	3.600	3.291	3.071	2.906	2.777	2.672	2.585	2.512	2.450	2.395	2.348	2.306	2.268	2.234	2.204	2.176	2.150
6.825 4.849 4.007 3.536 3.228 3.009 2.845 2.715 2.611 2.524 2.451 2.389 2.334 2.286 2.244 2.206 2.172 2.142 2.114 6.895 4.824 3.894 3.513 3.206 2.988 2.823 2.894 2.497 2.414 2.398 2.358 2.313 2.885 2.213 2.185 2.151 2.120 2.082 6.895 6.895 4.713 3.881 3.410 2.893 2.730 2.801 2.497 2.441 2.398 2.220 2.175 2.220 2.177 2.075 2.036 1.997 6.896 4.824 3.821 3.357 3.054 2.838 2.857 2.547 2.443 2.386 2.283 2.220 2.146 2.117 2.075 2.036 2.035 2.035 1.942	80	6.963	4.881	4.036	3.563	3.255	3.036	2.871	2.742	2.637	2.551	2.478	2.415	2.361	2.313	2.271	2.233	2.199	2.169	2.141	2.115
6.895 4.824 3.984 3.513 3.206 2.989 2.823 2.694 2.590 2.503 2.430 2.368 2.313 2.285 2.223 2.185 2.151 2.120 2.092 2.675 4.713 3.881 3.414 3.110 2.893 2.730 2.601 2.447 2.431 2.389 2.275 2.220 2.145 2.129 2.091 2.057 2.056 1.997 6.686 4.648 3.821 3.357 3.054 2.893 2.267 2.443 2.356 2.283 2.220 2.146 2.075 2.075 2.036 2.003 1.902 1.942 6.680 4.626 3.001 3.389 3.005 2.820 2.857 2.859 2.455 2.359 2.265 2.203 2.148 2.099 2.056 2.016 1.983 1.952 1.923	06	6.925	4.849	4.007	3.535	3.228	3.009	2.845	2.715	2.611	2.524	2.451	2.389	2.334	2.286	2.244	2.206	2.172	2.142	2.114	2.088
6.763 4.713 3.881 3.414 3.110 2.883 2.730 2.601 2.487 2.411 2.338 2.275 2.220 2.172 2.129 2.091 2.067 2.026 1.997 6.686 4.648 3.821 2.357 3.054 2.893 2.675 2.583 2.283 2.275 2.283 2.275 2.216 2.086 2.036 2.005 1.970 1.942 6.680 4.626 3.801 3.389 3.005 2.897 2.857 2.529 2.265 2.285 2.205 2.148 2.099 2.065 2.018 1.983 1.952 1.953	100	6.895	4.824	3.984	3.513	3.206	2.988	2.823	2.694	2.590	2.503	2.430	2.368	2.313	2.265	2.223	2.185	2.151	2.120	2.092	2.067
6.686 4.648 3.821 3.357 3.054 2.838 2.675 2.547 2.443 2.356 2.283 2.220 2.166 2.117 2.075 2.036 2.002 1.970 1.942 6.680 4.626 3.801 3.338 3.036 2.820 2.657 2.529 2.425 2.339 2.265 2.203 2.148 2.099 2.056 2.018 1.983 1.952 1.923	200	6.763	4.713	3.881	3.414	3.110	2.893	2.730	2.601	2.497	2.411	2.338	2.275	2.220	2.172	2.129	2.091	2.057	2.026	1.997	1.971
6.660 4,626 3,801 3,338 3,036 2,820 2,657 2,529 2,425 2,339 2,265 2,203 2,148 2,099 2,056 2,018 1,983 1,952 1,923	200	989'9	4.648	3.821	3.357	3.054	2.838	2.675	2.547	2.443	2.356	2.283	2.220	2.166	2.117	2.075	2.036	2.002	1.970	1.942	1.915
	1000	6.660	4.626	3.801	3.338	3.036	2.820	2.657	2.529	2.425	2.339	2.265	2.203	2.148	2.099	2.056	2.018	1.983	1.952	1.923	1.897

Tabla 5. VALORES F DE LA DISTRIBUCIÓN F DE FISHER

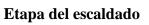
	-
	66
	5
	-
	1,
	m
	Chee
	4
	1
0	1000
-	-
0	
_	0.
0	
- 11	11
	100
CO	C
100	10
_	_

	22	23	24	25	26				30	- 1	20	09	- 1		06	100	200	200	1000
6216.113 6223.097	1.097	6228.685	6234.273	6239.861	6244,518	6249.174	6252.900	6257.091	6260.350	6286.427	6302.260	6312.970	9	4	6330.665	6333.925	6349.757	6359.536	6362.796
99	99.455	99.455	99.455	99.459	99.462	99.462	99.462	99.462	99.466	99.477	99.477	99,484	99.484	99.484	99.488	99.491	99.491	99.499	99.499
20	26.639	26.617	26.597	26.579	26.562	26.546	26.531	26.517	26.504	26.411	26.354	26.316	26.289	26.269	26.253	26.241	26.183	26.148	26.137
-	13.970	13.948	13.929	13.911	13.894	13.878	13.864	13.850	13.838	13.745	13.690	13.652	13.626	13.605	13.590	13.577	13.520	13.486	13,475
3	9.506	9.485	9.466	9.449	9.433	9.418	9.404	9.391	9.379	9.291	9.238	9.202	9.176	9.157	9.142	9.130	9.075	9.042	9.032
***	7.351	7.331	7.313	7.296	7.281	7.266	7.253	7.240	7.229	7.143	7.091	7.057	7.032	7.013	6.998	6.987	6.934	6.901	6.891
	6.111	6.092	6.074	6.058	6.043	6.029	6.016	6.003	5.992	5.908	5.858	5.824	5.799	5.781	5.766	5.755	5.702	5.671	5.660
	5.316	5.297	5.279	5.263	5.248	5.234	5.221	5.209	5.198	5.116	5.065	5.032	5.007	4.989	4.975	4.963	4.911	4.880	4.869
	4.765	4.746	4.729	4.713	4.698	4.684	4.672	4.660	4.649	4.567	4.517	4.483	4.459	4.441	4.426	4.415	4.363	4.332	4.321
	4.363	4.344	4.327	4.311	4.296	4.283	4.270	4.258	4.247	4.165	4.115	4.082	4.058	4.039	4.025	4.014	3.962	3.930	3.920
	4.057	4.038	4.021	4.005	3.990	3.977	3.964	3.952	3.941	3.860	3.810	3.776	3.752	3.734	3.719	3.708	3.656	3.624	3.613
	3.816	3.798	3.780	3.765	3.750	3.736	3.724	3.712	3.701	3.619	3.569	3.535	3.511	3.493	3.478	3.467	3.414	3.382	3.372
	3.622	3.604	3.587	3.571	3.556	3.543	3.530	3.518	3.507	3.425	3.375	3.341	3.317	3.298	3.284	3.272	3.219	3.187	3.176
	3,463	3.444	3.427	3.412	3.397	3.383	3.371	3.359	3.348	3.266	3.215	3.181	3.157	3.138	3.124	3.112	3.059	3.026	3.015
	3.330	3.311	3.294	3.278	3.264	3.250	3.237	3.225	3.214	3.132	3.081	3.047	3.022	3.004	2.989	2.977	2.923	2.891	2.880
	3.216	3.198	3.181	3.165	3.150	3.137	3.124	3.112	3.101	3.018	2.967	2.933	2.908	2.889	2.875	2.863	2.808	2.775	2.764
	3,119	3.101	3.083	3.068	3.053	3.039	3.026	3.014	3.003	2.920	2.869	2.835	2.810	2.791	2.776	2.764	2.709	2.676	2.664
	3.035	3.016	2.999	2.983	2.968	2.955	2.942	2.930	2.919	2.835	2.784	2.749	2.724	2.705	2.690	2.678	2.623	2.589	2.577
	2.961	2.942	2.925	2.909	2.894	2.880	2.868	2.855	2.844	2.761	2.709	2.674	2.649	2.630	2.614	2.602	2.547	2.512	2.501
	2.895	2.877	2.859	2.843	2.829	2.815	2.802	2.790	2.778	2.695	2.643	2.608	2.582	2.563	2.548	2.535	2.479	2.445	2.433
	2.837	2.818	2.801	2.785	2.770	2.756	2.743	2.731	2.720	2.636	2.584	2.548	2.523	2.503	2.488	2.476	2.419	2.384	2.372
	2.785	2.766	2.749	2.733	2.718	2.704	2.691	2.679	2.667	2.583	2.531	2.495	2.469	2.450	2.434	2.422	2.365	2.329	2.317
	2.738	2.719	2.702	2.686	2.671	2.657	2.644	2.632	2.620	2.536	2.483	2.447	2.421	2.401	2.386	2.373	2.316	2.280	2.268
	2.695	2.676	2.659	2.643	2.628	2.614	2.601	2.589	2.577	2.492	2.440	2.403	2.377	2.357	2.342	2.328	2.271	2.235	2.223
	2.657	2.638	2.620	2.604	2.589	2.575	2.562	2.550	2.538	2.453	2.400	2.364	2.337	2.317	2.302	2.289	2.230	2.194	2.182
	2.621	2.602	2.585	2.569	2.554	2.540	2.526	2.514	2.503	2.417	2.364	2.327	2.301	2.281	2.265	2.252	2.193	2.156	2.144
	2.589	2.570	2.552	2.536	2.521	2.507	2.494	2.481	2.470	2.384	2.330	2.294	2.267	2.247	2.231	2.218	2.159	2.122	2.109
	2.559	2.540	2.522	2.508	2.491	2.477	2.464	2.451	2.440	2.354	2.300	2.263	2.236	2.216	2.200	2.187	2.127	2.090	2.077
	2.531	2.512	2.495	2.478	2.463	2.449	2.436	2.423	2.412	2.325	2.271	2.234	2.207	2.187	2.171	2.158	2.097	2.060	2.047
	2.506	2.487	2.469	2.453	2.437	2.423	2.410	2.398	2.386	2.299	2.245	2.208	2.181	2.160	2.144	2.131	2.070	2.032	2.019
	2.325	2.306	2.288	2.271	2.256	2.241	2.228	2.215	2.203	2.114	2.058	2.019	1.991	1.969	1.952	1.938	1.874	1.833	1.819
	2.221	2.202	2.183	2.167	2.151	2.136	2.123	2.110	2.098	2.007	1.949	1.909	1.880	1.857	1.839	1.825	1.757	1.713	1.698
	2.153	2.134	2.115	2.098	2.083	2.068	2.054	2.041	2.028	1.936	1.877	1.836	1.806	1.783	1.764	1.749	1.678	1.633	1.617
	2.106	2.086	2.067	2.050	2.034	2.019	2.005	1.992	1.980	1.886	1.826	1.785	1.754	1.730	1.711	1.695	1.622	1.574	1.558
	2.070	2.050	2.032	2.015	1.999	1.983	1.969	1.956	1.944	1.849	1.788	1.746	1.714	1.690	1.671	1.655	1.579	1.530	1.512
	2.043	2.023	2.004	1.987	1.971	1.956	1.942	1.928	1.916	1.820	1.759	1.716	1.684	1.859	1.639	1.623	1.546	1.494	1.476
	2.021	2.001	1.983	1.965	1.949	1.934	1.919	1.906	1.893	1.797	1.735	1.692	1.659	1.634	1.614	1.598	1.518	1.466	1.447
	1.925	1.905	1.886	1.868	1.851	1.836	1.821	1.807	1.794	1.694	1.629	1.583	1.548	1.521	1.499	1.481	1.391	1.328	1.304
	1.869	1.848	1.829	1.810	1.794	1.778	1.763	1.749	1.735	1.633	1.566	1.517	1.481	1.452	1.428	1.408	1.308	1.232	1.201
	1.850	1.829	1.810	1.791	1.774	1.758	1.743	1.729	1.716	1.613	1.544	1.495	1.458	1.428	1.404	1.383	1.278	1.195	1.159
	Por Irene P	Elaborada por Irene Patricia Valdez y Alfaro.	lez v Alfaro																

0.34,

ANEXO F

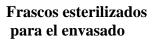
Materia prima frutilla


Materia prima pimentón

Tipo de corte mitades longitudinal verticales

Tipo de corte cuartos longitudinal verticales

Pulpa de pimentón



Pulpa de frutilla

Escaldado de los frascos de vidrio

Etapa de concentración de la mermelada

Evaluación sensorial de mermelada de frutilla fortificada con pimentón

la

Mermelada de frutilla fortificada con pimentón