### **ANEXOS**

# ANEXO 1 Reporte fotográfico

### Granulometría de los agregados ASTM C 136

Fotografía 1 Juego de tamices para la granulometría del agregado grueso



Fotografía 2 Peso retenido en tamices del agregado grueso





Fotografía 3 Juego de tamices para granulometría del agregado fino



Fotografía 4 Peso retenido en tamices del agregado fino











### Peso específico y absorción del agregado fino ASTM C 128

Fotografía 5 Muestra de agregado fino saturada



Fotografía 6 Control de humedad optima de la muestra de agregado fino



Fotografía 7 Peso inicial de muestra de agregado fino



Fotografía 8 Matraz con la muestra y agua hasta la marca de calibración



Fotografía 9 Muestras en recipientes antes de entrar al horno



### Peso específico y absorción del agregado grueso ASTM C 127

Fotografía 10 Agregado grueso saturado superficialmente seco





Fotografía 11 Agregado grueso sumergido en cesto metálico





Fotografía 12 Agregado grueso secado en horno





#### Peso unitario ASTM C 29

Fotografía 13 Peso unitario suelto del agregado fino



Fotografía 14 Peso unitario compactado del agregado fino



Fotografía 15 Peso unitario suelto del agregado grueso





Fotografía 16 Peso unitario compactado del agregado grueso



### Desgaste del agregado grueso con la máquina de los Ángeles ASTM C 131

Fotografía 17 Máquina de desgaste de los ángeles



Fotografía 18 Recolección del material después del proceso de desgaste



Fotografía 19 Material lavado retenido en tamiz  $N^{\circ}$  12



Fotografía 20 Peso del material seco



### Finura del cemento ASTM C 430

Fotografía 21 Juego de tamices  $N^{\circ}$  40 y 200



Fotografía 22 Muestra de 50 gr de cemento

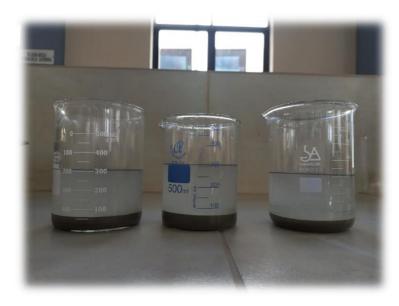


Fotografía 23 Peso de muestra de cemento retenido en el tamiz  $N^{\circ}$  40 y 200





### Peso específico del cemento hidráulico ASTM C 188


Fotografía 24 Muestra de 64 gr de cemento



Fotografía 25 Vaso de precipitado con gasolina



Fotografía 26 Vaso de precipitado introducida la muestra de cemento



Fotografía 27 Baño maría a los recipientes para mantener la temperatura



### Resistencia a la compresión ASTM C 192, ASTM C 39 y la resistencia a la tracción por flexión ASTM C 192 y ASTM C 78

### Elaboración de probetas cilíndricas y prismáticas

Fotografía 28 Engrasado de los moldes



Fotografía 29 Agregado de los materiales en la mezcladora.



Fotografía 30 Mezclado de los agregados en seco



Fotografía 31 Agregando el agua para finalizar la mezcla



Fotografía 32 Mezcla de concreto según la dosificación definida.





Fotografía 33 Utilización del cono de Abrams.





Fotografía 34 Medición del asentamiento de la mezcla



Fotografía 35 Llenado del hormigón en los moldes correspondientes



Fotografía 36 Compactación de la mezcla por capas



Fotografía 37 Llenado del hormigón en molde.



Fotografía 38 Probetas cilíndricas y prismáticas 24 horas después su elaboración



Fotografía 39 Probetas en su proceso de fraguado



Fotografía 40 Probeta sometida a la fuerza de compresión.



Fotografía 41 Lectura de los datos obtenidos.



Fotografía 42 Vista de la rotura de probeta cilíndrica



Fotografía 43 Viga sometida a la fuerza de flexotracción.



Fotografía 44 Vista de la rotura de probeta prismática



## ANEXO 2 Planillas

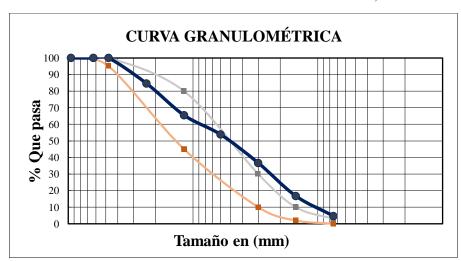




#### GRANULOMETRÍA - AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Mateo Muestra: N°1 AFSM

Laboratorista: María Angela Vaca López Fecha: 28 de marzo del 2023

Peso total (gr) = 500

| Tamices | Tamaño<br>(mm) | Peso<br>retenido | Reter<br>acumu |                       | % Que<br>pasa del |         | е pasa<br>ГО Т-27) |
|---------|----------------|------------------|----------------|-----------------------|-------------------|---------|--------------------|
|         | (IIIII)        | (gr)             | (gr) (%)       |                       | total             | (MADII) | 10 1-21)           |
| 3/8     | 9,50           | 0,00             | 0,00           | 0,00                  | 100,0             | 100     | 100                |
| 1/4     | 6,30           | 0,00             | 0,00           | 0,00                  | 100,0             |         |                    |
| N°4     | 4,75           | 0,00             | 0,00           | 0,00                  | 100,0             | 95      | 100                |
| N°8     | 2,36           | 70,10            | 70,10          | 14,02                 | 86,0              |         |                    |
| Nº16    | 1,18           | 98,70            | 168,80         | 33,76                 | 66,2              | 45      | 80                 |
| N°30    | 0,60           | 60,20            | 229,00         | 45,80                 | 54,2              |         |                    |
| N°50    | 0,30           | 92,20            | 321,20         | 64,24                 | 35,8              | 10      | 30                 |
| N°100   | 0,15           | 95,70            | 416,90         | 83,38                 | 16,6              | 2       | 10                 |
| N°200   | 0,08           | 53,60            | 470,50         | 0,50 94,10 <b>5,9</b> |                   | 0       | 3                  |
| BASE    |                | 28,70            | 499,20         | 99,84                 | 0,2               |         |                    |

MF = 3,35



María Angela Vaca López **Laboratorista** 

Ing. José Ricardo Arce Avendaño Encargado de laboratorio de suelos

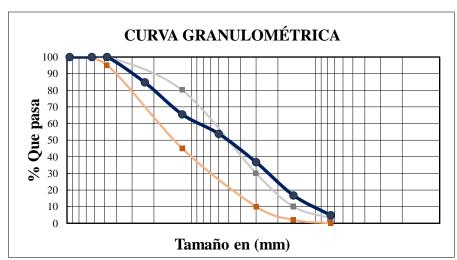




#### GRANULOMETRÍA - AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Mateo Muestra: N°2 AFSM

Laboratorista: María Angela Vaca López Fecha: 28 de marzo del 2023

Peso total (gr) = 500

| Tamices | Tamaño (mm) | Peso Retenido retenido acumulado |        |       | % Que<br>pasa del | % Que pasa<br>(AASHTO T-27) |     |  |
|---------|-------------|----------------------------------|--------|-------|-------------------|-----------------------------|-----|--|
|         | (11111)     | (gr)                             | (gr)   | (%)   | total             | (AASH10 1-21)               |     |  |
| 3/8     | 9,50        | 0,00                             | 0,00   | 0,00  | 100,0             | 100                         | 100 |  |
| 1/4     | 6,30        | 0,00                             | 0,00   | 0,00  | 100,0             |                             |     |  |
| N°4     | 4,75        | 0,00                             | 0,00   | 0,00  | 100,0             | 95                          | 100 |  |
| N°8     | 2,36        | 70,60                            | 70,60  | 14,12 | 85,9              |                             |     |  |
| Nº16    | 1,18        | 94,60                            | 165,20 | 33,04 | 67,0              | 45                          | 80  |  |
| N°30    | 0,60        | 65,90                            | 231,10 | 46,22 | 53,8              |                             |     |  |
| N°50    | 0,30        | 80,60                            | 311,70 | 62,34 | 37,7              | 10                          | 30  |  |
| Nº100   | 0,15        | 96,80                            | 408,50 | 81,70 | 18,3              | 2                           | 10  |  |
| N°200   | 0,08        | 65,50                            | 474,00 | 94,80 | 5,2               | 0                           | 3   |  |
| BASE    |             | 25,10                            | 499,10 | 99,82 | 0,2               |                             |     |  |

MF = 3,32



María Angela Vaca López

Laboratorista

Ing. José Ricardo Arce Avendaño Encargado de laboratorio de suelos

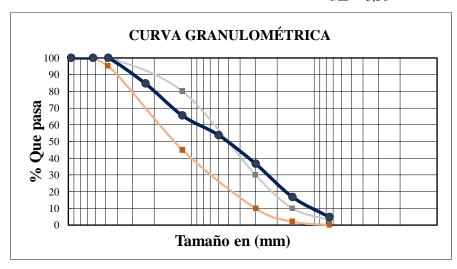




#### GRANULOMETRÍA - AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Mateo Muestra: N°3 AFSM

Laboratorista: María Angela Vaca López Fecha: 28 de marzo del 2023

Peso total (gr) = 500

| Tamices | Tamaño | Peso<br>retenido | Reter<br>acum |       | % Que<br>pasa del |              | ue pasa |  |
|---------|--------|------------------|---------------|-------|-------------------|--------------|---------|--|
|         | (mm)   | (gr)             | (gr)          | (%)   | total             | (AASHTO T-27 |         |  |
| 3/8     | 9,50   | 0,00             | 0,00          | 0,00  | 100,0             | 100          | 100     |  |
| 1/4     | 6,30   | 0,00             | 0,00          | 0,00  | 100,0             |              |         |  |
| N°4     | 4,75   | 0,00             | 0,00          | 0,00  | 100,0             | 95           | 100     |  |
| N°8     | 2,36   | 76,70            | 76,70         | 15,34 | 84,7              |              |         |  |
| Nº16    | 1,18   | 95,90            | 172,60        | 34,52 | 65,5              | 45           | 80      |  |
| N°30    | 0,60   | 58,30            | 230,90        | 46,18 | 53,8              |              |         |  |
| N°50    | 0,30   | 85,60            | 316,50        | 63,30 | 36,7              | 10           | 30      |  |
| N°100   | 0,15   | 99,70            | 416,20        | 83,24 | 16,8              | 2            | 10      |  |
| N°200   | 0,08   | 60,10            | 476,30        | 95,26 | 4,7               | 0            | 3       |  |
| BASE    |        | 22,60            | 498,90        | 99,78 | 0,2               |              |         |  |

MF = 3,38



María Angela Vaca López

Laboratorista

Ing. José Ricardo Arce Avendaño **Encargado de laboratorio de suelos** 





#### GRANULOMETRÍA - AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión

en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Lorenzo Muestra: N°1 AGCRSL

Laboratorista: María Angela Vaca López Fecha: 29 de marzo del 2023

Peso total (gr) = 15000

| Tamices | Peso<br>Tamaño retenido |         | Retenio<br>acumul |       | % Que<br>pasa del | % Que pasa |     |
|---------|-------------------------|---------|-------------------|-------|-------------------|------------|-----|
|         | (mm)                    | (gr)    | (gr)              | (%)   | total             | (ADC)      |     |
| 2 1/2"  | 63                      | 0,00    | 0,00              | 0,00  | 100,0             | )          |     |
| 2       | 50,8                    | 0,00    | 0,00              | 0,00  | 100,0             | 100        | 100 |
| 1 1 /2  | 38,10                   | 0,00    | 0,00              | 0,00  | 100,0             | 95         | 100 |
| 1       | 25,40                   | 2443,70 | 2443,70           | 16,29 | 83,7              |            |     |
| 3/4     | 19,05                   | 9126,00 | 11569,70          | 77,13 | 22,9              | 35         | 100 |
| 1/2     | 12,50                   | 3033,20 | 14602,90          | 97,35 | 2,6               | 25         | 80  |
| 3/8     | 9,50                    | 258,90  | 14861,80          | 99,08 | 0,9               |            |     |
| 1/4     | 6,30                    | 93,70   | 14955,50          | 99,70 | 0,3               | 10         | 30  |
| N°4     | 4,75                    | 41,70   | 14997,20          | 99,98 | 0,0               | 0          | 5   |
| BASE    | 0                       | 1,50    | 14998,70          | 99,99 | 0,0               |            |     |

TMN = 1 1/2 "



María Angela Vaca López

Laboratorista

Ing. José Ricardo Arce Avendaño **Encargado de laboratorio de suelos** 



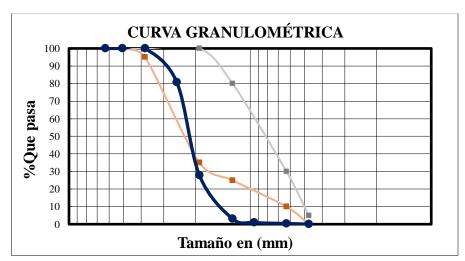


#### GRANULOMETRÍA - AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión

en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Lorenzo Muestra: N°2 AGCRSL

Laboratorista: María Angela Vaca López Fecha: 29 de marzo del 2023

Peso total (gr) = 15000

| Tamices | Tamaño | Peso Retenido acumulado |          | % Que<br>pasa del | % Que pasa |          |     |
|---------|--------|-------------------------|----------|-------------------|------------|----------|-----|
|         | (mm)   | (gr)                    | (gr)     | (%)               | total      | - I (AD) |     |
| 2 1/2"  | 63     | 0,00                    | 0,00     | 0,00              | 100,0      | 0,0      |     |
| 2       | 50,8   | 0,00                    | 0,00     | 0,00              | 100,0      | 100      | 100 |
| 1 1 /2  | 38,10  | 0,00                    | 0,00     | 0,00              | 100,0      | 95       | 100 |
| 1       | 25,40  | 3544,90                 | 3544,90  | 23,63             | 76,4       |          |     |
| 3/4     | 19,05  | 8232,70                 | 11777,60 | 78,52             | 21,5       | 35       | 100 |
| 1/2     | 12,50  | 2918,50                 | 14696,10 | 97,97             | 2,0        | 25       | 80  |
| 3/8     | 9,50   | 215,30                  | 14911,40 | 99,41             | 0,6        |          |     |
| 1/4     | 6,30   | 47,40                   | 14958,80 | 99,73             | 0,3        | 10       | 30  |
| N°4     | 4,75   | 39,30                   | 14998,10 | 99,99             | 0,0        | 0        | 5   |
| BASE    | 0      | 1,10                    | 14999,20 | 99,99             | 0,0        |          |     |

TMN = 1 1/2 "



María Angela Vaca López **Laboratorista** 

Ing. José Ricardo Arce Avendaño Encargado de laboratorio de suelos



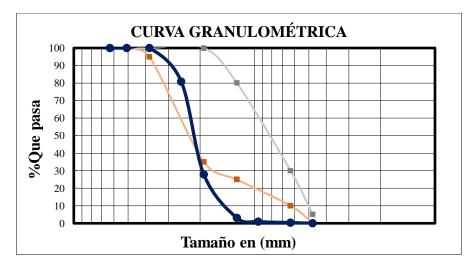


#### GRANULOMETRÍA - AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión

en capas de rodadura de pavimentos rígidos con agregado grueso de

concreto reciclado


Procedencia: San Lorenzo Muestra: N°3 AGCRSL

Laboratorista: María Angela Vaca López Fecha: 29 de marzo del 2023

Peso total (gr) = 15000

| Tamices | Peso<br>Tamaño retenido |         | Reteni<br>acumul |        | % Que<br>pasa del | % Que pasa |     |
|---------|-------------------------|---------|------------------|--------|-------------------|------------|-----|
|         | (mm)                    | (gr)    | (gr)             | (%)    | total             | (ABC)      |     |
| 2 1/2"  | 63                      | 0,00    | 0,00             | 0,00   | 100,0             |            |     |
| 2       | 50,8                    | 0,00    | 0,00             | 0,00   | 100,0             | 100        | 100 |
| 1 1 /2  | 38,10                   | 0,00    | 0,00             | 0,00   | 100,0             | 95         | 100 |
| 1       | 25,40                   | 2875,40 | 2875,40          | 19,17  | 80,8              |            |     |
| 3/4     | 19,05                   | 7944,20 | 10819,60         | 72,13  | 27,9              | 35         | 100 |
| 1/2     | 12,50                   | 3719,50 | 14539,10         | 96,93  | 3,1               | 25         | 80  |
| 3/8     | 9,50                    | 318,70  | 14857,80         | 99,05  | 0,9               |            |     |
| 1/4     | 6,30                    | 85,10   | 14942,90         | 99,62  | 0,4               | 10         | 30  |
| N°4     | 4,75                    | 55,20   | 14998,10         | 99,99  | 0,0               | 0          | 5   |
| BASE    | 0                       | 1,20    | 14999,30         | 100,00 | 0,0               |            |     |

TMN = 1 1/2 ''



María Angela Vaca López Laboratorista Ing. José Ricardo Arce Avendaño Encargado de laboratorio de suelos



### UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON Y RESISTENCIA DE MATERIALES

#### PESO UNITARIO COMPACTADO - AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Mateo Identificación muestra: AFSM Laboratorista: María Angela Vaca López Fecha: 11 de abril del 2023

|               |                              | (                                | Calibració                     | n                                |                                               |                                             |                                            |  |
|---------------|------------------------------|----------------------------------|--------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------|--|
| Muestra<br>N° | Peso<br>del<br>molde<br>(gr) | Diametro<br>del<br>molde<br>(cm) | Altura<br>del<br>molde<br>(cm) | Volumen<br>del<br>molde<br>(cm³) | Peso molde<br>+ muestra<br>compactada<br>(gr) | Peso de la<br>muestra<br>compactada<br>(gr) | Peso<br>unitario<br>compactado<br>(gr/cm³) |  |
| 4             | 2605,00                      | 15,20                            | 16,50                          | 2994,06                          | 7750,00                                       | 5145,00                                     | 1,72                                       |  |
| 5             | 2605,00                      | 15,20                            | 16,50                          | 2994,06                          | 7620,00                                       | 5015,00                                     | 1,67                                       |  |
| 6             | 2605,00                      | 15,20                            | 16,50                          | 2994,06                          | 7720,00                                       | 5115,00                                     | 1,71                                       |  |
|               | •                            |                                  |                                |                                  |                                               | Promedio                                    | 1,70                                       |  |

María Angela Vaca López
LABORATORISTA

Ing. Moisés Díaz Ayarde DOC. RESP. LABORATORIO DE HORMIGON Y RESISTENCIA DE MATERIALES UAJMS



#### PESO UNITARIO SUELTO – AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Mateo Identificación muestra: AFSM Laboratorista: María Angela Vaca López Fecha: 20 de abril del 2023

|               |                           |                                  | Calibración                    | l                                |                                           |                                         |                                                     |  |
|---------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------|--|
| Muestra<br>N° | Peso del<br>molde<br>(gr) | Diametro<br>del<br>molde<br>(cm) | Altura<br>del<br>molde<br>(cm) | Volumen<br>del<br>molde<br>(cm³) | Peso molde<br>+ muestra<br>suelta<br>(gr) | Peso de la<br>muestra<br>suelta<br>(gr) | Peso<br>unitario<br>suelto<br>(gr/cm <sup>3</sup> ) |  |
| 7             | 2605,00                   | 15,20                            | 16,50                          | 2994,06                          | 7150,00                                   | 4545,00                                 | 1,52                                                |  |
| 8             | 2605,00                   | 15,20                            | 16,50                          | 2994,06                          | 7190,00                                   | 4585,00                                 | 1,53                                                |  |
| 9             | 2605,00                   | 15,20                            | 16,50                          | 2994,06                          | 7160,00                                   | 4555,00                                 | 1,52                                                |  |
|               |                           |                                  |                                |                                  |                                           | Promedio                                | 1,52                                                |  |

María Angela Vaca López

LABORATORISTA

DOC. RESP



#### PESO UNITARIO COMPACTADO – AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Lorenzo Identificación muestra: AGCRSL Laboratorista: María Angela Vaca López Fecha: 31 de marzo del 2023

|               | Peso<br>del<br>molde<br>(gr) | (                                | Calibración                    | 1                                | D 1.1.                                        | D J. I.                                     | Peso<br>unitario<br>compactado<br>(gr/cm³) |  |
|---------------|------------------------------|----------------------------------|--------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------|--|
| Muestra<br>N° |                              | Diametro<br>del<br>molde<br>(cm) | Altura<br>del<br>molde<br>(cm) | Volumen<br>del<br>molde<br>(cm³) | Peso molde<br>+ muestra<br>compactada<br>(gr) | Peso de la<br>muestra<br>compactada<br>(gr) |                                            |  |
| 4             | 5840,00                      | 21,30                            | 28                             | 9977,16                          | 18835,00                                      | 12995,00                                    | 1,30                                       |  |
| 5             | 5840,00                      | 21,30                            | 28                             | 9977,16                          | 19020,00                                      | 13180,00                                    | 1,32                                       |  |
| 6             | 5840,00                      | 21,30                            | 28                             | 9977,16                          | 18975,00                                      | 13135,00                                    | 1,32                                       |  |
|               |                              |                                  |                                |                                  |                                               | Promedio                                    | 1,31                                       |  |

María Angela Vaca López LABORATORISTA



#### PESO UNITARIO SUELTO – AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Lorenzo Identificación muestra: AGCRSL

Laboratorista: María Angela Vaca López Fecha: 21 de abril del 2023

|               |                           |                                  | Calibración                                     | ļ       | Peso                                 | D J. l.                                 | D                                      |  |
|---------------|---------------------------|----------------------------------|-------------------------------------------------|---------|--------------------------------------|-----------------------------------------|----------------------------------------|--|
| Muestra<br>N° | Peso del<br>molde<br>(gr) | Diametro<br>del<br>molde<br>(cm) | Altura del del molde (cm) Volumen del del molde |         | molde +<br>muestra<br>suelta<br>(gr) | Peso de la<br>muestra<br>suelta<br>(gr) | Peso<br>unitario<br>suelto<br>(gr/cm³) |  |
| 7             | 5740,00                   | 21,30                            | 28                                              | 9977,16 | 17340,00                             | 11600,00                                | 1,16                                   |  |
| 8             | 5740,00                   | 21,30                            | 28                                              | 9977,16 | 17160,00                             | 11420,00                                | 1,14                                   |  |
| 9             | 5840,00                   | 21,30                            | 28                                              | 9977,16 | 17590,00                             | 11750,00                                | 1,18                                   |  |
|               |                           |                                  |                                                 |         |                                      | Promedio                                | 1,16                                   |  |

María Angela Vaca López LABORATORISTA



#### PESO ESPECÍFICO – AGREGADO FINO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Mateo Identificación muestra: AFSM Laboratorista: María Angela Vaca López Fecha: 3 de abril del 2023

| Muestra<br>N° | Peso<br>muestra<br>(gr) | Peso<br>matraz<br>+ agua<br>(gr) | Peso<br>matraz<br>+ agua<br>+<br>muestra<br>(gr) | Peso<br>muestra<br>seca<br>(gr) | Peso<br>específico<br>a granel<br>''p <sub>RS</sub> ''<br>(gr/cm³) | Peso<br>específico<br>s.s.s<br>''p <sub>RT</sub> ''<br>(gr/cm <sup>3</sup> ) | Peso<br>específico<br>aparente<br>''p <sub>N</sub> ''<br>(gr/cm <sup>3</sup> ) | Absorción<br>(%) |
|---------------|-------------------------|----------------------------------|--------------------------------------------------|---------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|
| 10            | 500,00                  | 535,00                           | 1035,00                                          | 493,00                          | 2,57                                                               | 2,60                                                                         | 2,66                                                                           | 1,42             |
| 11            | 500,00                  | 529,80                           | 1029,80                                          | 493,00                          | 2,57                                                               | 2,61                                                                         | 2,67                                                                           | 1,42             |
| 12            | 500,00                  | 495,60                           | 995,60                                           | 493,00                          | 2,58                                                               | 2,61                                                                         | 2,67                                                                           | 1,42             |
|               |                         |                                  | ]                                                | 2,57                            | 2,61                                                               | 2,67                                                                         | 1,42                                                                           |                  |

María Angela Vaca López
LABORATORISTA



#### PESO ESPECÍFICO – AGREGADO GRUESO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Lorenzo Identificación muestra: AGCRSL

Laboratorista: María Angela Vaca López Fecha: 14 de abril del 2023

| Muestra<br>N° | Peso<br>muestra<br>seca<br>"A"<br>(gr) | Peso<br>muestra<br>saturada<br>sup. seca<br>"B"<br>(gr) | Peso<br>muestra<br>sat.<br>dentro<br>del agua<br>"C"<br>(gr) | Peso<br>específico<br>a granel<br>"ρ <sub>RS</sub> "<br>(gr/cm <sup>3</sup> ) | Peso<br>específico<br>s.s.s<br>'' $\rho_{RT}$ ''<br>(gr/cm <sup>3</sup> ) | Peso<br>específico<br>aparente<br>''ρ <sub>N</sub> ''<br>(gr/cm <sup>3</sup> ) | Absorción<br>(%) |
|---------------|----------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|
| 10            | 4635,00                                | 5000,00                                                 | 2856,00                                                      | 2,16                                                                          | 2,33                                                                      | 2,61                                                                           | 7,87             |
| 11            | 4635,00                                | 5000,00                                                 | 2854,50                                                      | 2,16                                                                          | 2,33                                                                      | 2,60                                                                           | 7,87             |
| 12            | 4625,00                                | 5000,00                                                 | 2855,00                                                      | 2,16                                                                          | 2,33                                                                      | 2,61                                                                           | 8,11             |
|               |                                        |                                                         | Promedio                                                     | 2,16                                                                          | 2,33                                                                      | 2,61                                                                           | 7,95             |

María Angela Vaca López
LABORATORISTA



#### PESO ESPECÍFICO – CEMENTO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: Fancesa Identificación muestra: CPF Laboratorista: María Angela Vaca López Fecha: 21 de abril del 2023

| Muestra<br>N° | Peso del<br>cemento<br>Portland<br>(gr) | Volumen<br>inicial del<br>líquido<br>(ml) | Volumen<br>final del<br>líquido<br>(ml) | Volumen<br>total<br>desplazado<br>(ml) | Peso<br>específico<br>del<br>cemento<br>(gr/cm <sup>3</sup> ) |
|---------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------|
| 4             | 64,00                                   | 300,00                                    | 320,50                                  | 20,50                                  | 3,12                                                          |
| 5             | 64,00                                   | 300,00                                    | 320,60                                  | 20,60                                  | 3,11                                                          |
| 6             | 64,00                                   | 300,00                                    | 320,60                                  | 20,60                                  | 3,11                                                          |
|               |                                         |                                           |                                         | Promedio                               | 3,11                                                          |

María Angela Vaca López LABORATORISTA



#### FINURA – CEMENTO

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: Fancesa Identificación muestra: CPF Laboratorista: María Angela Vaca López Fecha: 19 de abril del 2023

| Muestra<br>N° | Peso del<br>cemento<br>Portland<br>(gr) | Peso<br>retenido<br>tamiz<br>N°40<br>(gr) | Peso<br>retenido<br>tamiz<br>N°200<br>(gr) | Peso en<br>base<br>(gr) | Finura del<br>cemento<br>Portland<br>(%) |
|---------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------|------------------------------------------|
| 1             | 50,00                                   | 0,19                                      | 2,52                                       | 46,96                   | 5,04                                     |
| 2             | 50,00                                   | 0,00                                      | 2,56                                       | 47,10                   | 5,12                                     |
| 3             | 50,00                                   | 0,12                                      | 2,49                                       | 47,10                   | 4,98                                     |
|               |                                         |                                           |                                            | Promedio                | 5,05                                     |

María Angela Vaca López
LABORATORISTA



#### **DESGASTE DE LOS ANGELES**

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en

capas de rodadura de pavimentos rígidos con agregado grueso de concreto

reciclado

Procedencia: San Lorenzo Identificación muestra: AGCRSL

Laboratorista: María Angela Vaca López Fecha: 28 de julio del 2023

| Gra      | dación      | A                              | В      | C             | D             |  |  |  |
|----------|-------------|--------------------------------|--------|---------------|---------------|--|--|--|
| Diá      | metro       | Cantidad de material a emplear |        |               |               |  |  |  |
| Pasa     | Retenido    |                                |        |               |               |  |  |  |
|          |             | 1250 ±                         |        |               |               |  |  |  |
| 1 1/2"   | 1"          | 25                             |        |               |               |  |  |  |
|          |             | 1251 ±                         |        |               |               |  |  |  |
| 1"       | 3/4"        | 25                             |        |               |               |  |  |  |
|          |             | 1252 ±                         | 2500 ± |               |               |  |  |  |
| 3/4"     | 1/2"        | 10                             | 10     |               |               |  |  |  |
|          |             | 1253 ±                         | 2500 ± |               |               |  |  |  |
| 1/2"     | 3/8"        | 10                             | 10     |               |               |  |  |  |
| 3/8"     | 1/4"        |                                |        | $2500 \pm 10$ |               |  |  |  |
| 1/4"     | N°4         |                                |        | $2500 \pm 10$ |               |  |  |  |
| N°4      | N°8         |                                |        |               | $5000 \pm 10$ |  |  |  |
|          | <u>.</u>    |                                | 5000 ± |               |               |  |  |  |
| Peso     | o total     | 10                             | 10     | $5000 \pm 10$ | $5000 \pm 10$ |  |  |  |
| N° de    | esferas     | 12                             | 11     | 8             | 6             |  |  |  |
| N° de re | voluciones  | 500                            | 500    | 500           | 500           |  |  |  |
| Tiempo   | de rotación | 15                             | 15     | 15            | 15            |  |  |  |

| Muestra | Gradación | Peso<br>inicial | Peso<br>final | % de<br>desgaste | Especificación<br>ABC |
|---------|-----------|-----------------|---------------|------------------|-----------------------|
| 13      | A         | 5000,00         | 3342,20       | 33,16%           | 40 % MAX              |

María Angela Vaca López
LABORATORISTA



#### ENSAYO DE RESISTENCIA A COMPRESION DE PROBETAS CILINDRICAS DE HORMIGON SIMPLE

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en capas de rodadura de pavimentos rígidos con agregado grueso de concreto reciclado

Laboratorista: María Angela Vaca López Identificación muestra: H-28/MAVL

|    |                | F. de     | F. de     | Edad   | Lectura | Carga    | Resistencia           | Proyección 28    |
|----|----------------|-----------|-----------|--------|---------|----------|-----------------------|------------------|
| Nº | Identificación | Vaciado   | Rotura    | (días) | (KN)    | (kg)     | (Kg/cm <sup>2</sup> ) | días<br>(kg/cm²) |
| 1  | CILIND. N°1    | 8/5/2023  | 16/5/2023 | 8      | 462,6   | 47185,20 | 260,03                | 350,04           |
| 2  | CILIND. N°2    | 8/5/2023  | 16/5/2023 | 8      | 422,2   | 43064,40 | 237,32                | 319,47           |
| 3  | CILIND. N°3    | 8/5/2023  | 16/5/2023 | 8      | 369,5   | 37686,41 | 207,69                | 279,58           |
| 4  | CILIND. N°4    | 8/5/2023  | 16/5/2023 | 8      | 489,8   | 49959,60 | 275,32                | 370,63           |
| 5  | CILIND. N°5    | 8/5/2023  | 16/5/2023 | 8      | 478,4   | 48800,27 | 268,93                | 362,03           |
| 6  | CILIND. N°6    | 8/5/2023  | 16/5/2023 | 8      | 468,6   | 47797,20 | 263,41                | 354,58           |
| 7  | CILIND. N°7    | 8/5/2023  | 16/5/2023 | 8      | 466,3   | 47562,60 | 262,11                | 352,84           |
| 8  | CILIND. N°8    | 8/5/2023  | 16/5/2023 | 8      | 504,0   | 51408,00 | 283,30                | 381,37           |
| 9  | CILIND. N°9    | 9/5/2023  | 17/5/2023 | 8      | 383,2   | 39086,40 | 215,40                | 289,96           |
| 10 | CILIND. N°10   | 9/5/2023  | 17/5/2023 | 8      | 407,9   | 41605,80 | 229,29                | 308,65           |
| 11 | CILIND. N°11   | 9/5/2023  | 17/5/2023 | 8      | 441,2   | 44998,16 | 247,98                | 333,82           |
| 12 | CILIND. N°12   | 9/5/2023  | 17/5/2023 | 8      | 479,0   | 48855,68 | 269,24                | 362,44           |
| 13 | CILIND. N°13   | 9/5/2023  | 18/5/2023 | 9      | 386,5   | 39423,00 | 217,26                | 284,44           |
| 14 | CILIND. N°14   | 9/5/2023  | 18/5/2023 | 9      | 433,4   | 44206,80 | 243,62                | 318,96           |
| 15 | CILIND. N°15   | 9/5/2023  | 18/5/2023 | 9      | 493,0   | 50286,00 | 277,12                | 362,82           |
| 16 | CILIND. N°16   | 9/5/2023  | 18/5/2023 | 9      | 510,6   | 52081,20 | 287,01                | 375,78           |
| 17 | CILIND. N°17   | 10/5/2023 | 19/5/2023 | 9      | 421,6   | 43003,20 | 236,99                | 310,28           |
| 18 | CILIND. N°18   | 10/5/2023 | 19/5/2023 | 9      | 436,8   | 44553,60 | 245,53                | 321,46           |
| 19 | CILIND. N°19   | 10/5/2023 | 19/5/2023 | 9      | 492,1   | 50194,20 | 276,62                | 362,16           |
| 20 | CILIND. N°20   | 10/5/2023 | 19/5/2023 | 9      | 489,3   | 49908,60 | 275,04                | 360,10           |
| 21 | CILIND. N°21   | 11/5/2023 | 19/5/2023 | 8      | 481,2   | 49082,40 | 270,49                | 364,12           |
| 22 | CILIND. N°22   | 11/5/2023 | 19/5/2023 | 8      | 529,5   | 54009,00 | 297,64                | 400,67           |
| 23 | CILIND. N°23   | 11/5/2023 | 19/5/2023 | 8      | 435,3   | 44400,60 | 244,69                | 329,39           |
| 24 | CILIND. N°24   | 11/5/2023 | 19/5/2023 | 8      | 525,5   | 53601,00 | 295,39                | 397,64           |
| 25 | CILIND. N°25   | 15/5/2023 | 25/5/2023 | 10     | 394,2   | 40210,24 | 221,59                | 282,89           |
| 26 | CILIND. N°26   | 15/5/2023 | 25/5/2023 | 10     | 487,0   | 49670,38 | 273,73                | 349,44           |
| 27 | CILIND. N°27   | 15/5/2023 | 25/5/2023 | 10     | 395,1   | 40300,20 | 222,09                | 283,52           |
| 28 | CILIND. N°28   | 15/5/2023 | 25/5/2023 | 10     | 498,2   | 50818,19 | 280,05                | 357,52           |
| 29 | CILIND. N°29   | 15/5/2023 | 25/5/2023 | 10     | 465,0   | 47430,31 | 261,38                | 333,68           |
| 30 | CILIND. N°30   | 15/5/2023 | 25/5/2023 | 10     | 452,3   | 46134,60 | 254,24                | 324,57           |

María Angela Vaca López LABORATORISTA



#### ENSAYO DE RESISTENCIA A TRACCION EN VIGAS DE HORMIGON SIMPLE

Trabajo final: Correlación entre la resistencia a compresión y la resistencia a flexión en capas de rodadura de pavimentos rígidos con agregado grueso de concreto reciclado

Laboratorista: María Angela Vaca López Identificación muestra: H-28/MAVL

| N° | Identificación | Fecha de<br>vaciado | Fecha de<br>rotura | Edad<br>(días) | Dim.<br>"a"<br>(cm) | Carga<br>"F"<br>(KN) | Carga<br>"F"<br>(kg) | Flextr<br>(fct,f)<br>(kg/cm²) | Tracción<br>(fct)<br>(kg/cm²) | Res. trac.<br>(fct) 28<br>días<br>(kg/cm²) |
|----|----------------|---------------------|--------------------|----------------|---------------------|----------------------|----------------------|-------------------------------|-------------------------------|--------------------------------------------|
| 1  | VIGA N° 1      | 8/5/2023            | 17/5/2023          | 9              | 15,1                | 28,4                 | 2896,8               | 38,11                         | 19,06                         | 24,95                                      |
| 2  | VIGA N° 2      | 8/5/2023            | 17/5/2023          | 9              | 15,4                | 23,4                 | 2386,8               | 30,19                         | 15,10                         | 19,76                                      |
| 3  | VIGA N° 3      | 8/5/2023            | 17/5/2023          | 9              | 15,2                | 32,6                 | 3325,2               | 43,18                         | 21,59                         | 28,26                                      |
| 4  | VIGA N° 4      | 8/5/2023            | 17/5/2023          | 9              | 15,5                | 24,5                 | 2499,0               | 31,20                         | 15,60                         | 20,43                                      |
| 5  | VIGA N° 5      | 9/5/2023            | 18/5/2023          | 9              | 15,5                | 28,3                 | 2886,6               | 36,04                         | 18,02                         | 23,60                                      |
| 6  | VIGA N° 6      | 9/5/2023            | 18/5/2023          | 9              | 15,6                | 26,6                 | 2713,2               | 33,45                         | 16,72                         | 21,90                                      |
| 7  | VIGA N° 7      | 10/5/2023           | 19/5/2023          | 9              | 15,0                | 25,1                 | 2560,2               | 34,14                         | 17,07                         | 22,35                                      |
| 8  | VIGA N° 8      | 10/5/2023           | 19/5/2023          | 9              | 15,2                | 26,9                 | 2743,8               | 35,63                         | 17,81                         | 23,32                                      |
| 9  | VIGA N° 9      | 10/5/2023           | 19/5/2023          | 9              | 15,5                | 28,6                 | 2917,2               | 36,43                         | 18,21                         | 23,85                                      |
| 10 | VIGA N° 10     | 10/5/2023           | 19/5/2023          | 9              | 15,4                | 29,1                 | 2968,2               | 37,55                         | 18,77                         | 24,58                                      |
| 11 | VIGA N° 11     | 10/5/2023           | 19/5/2023          | 9              | 15,4                | 30,2                 | 3080,4               | 38,97                         | 19,48                         | 25,51                                      |
| 12 | VIGA N° 12     | 10/5/2023           | 19/5/2023          | 9              | 15,5                | 29,8                 | 3039,6               | 37,96                         | 18,98                         | 24,85                                      |
| 13 | VIGA N° 13     | 11/5/2023           | 19/5/2023          | 8              | 15,4                | 27,2                 | 2774,4               | 35,10                         | 17,55                         | 23,62                                      |
| 14 | VIGA N° 14     | 11/5/2023           | 19/5/2023          | 8              | 15,4                | 25,4                 | 2590,8               | 32,77                         | 16,39                         | 22,06                                      |
| 15 | VIGA N° 15     | 11/5/2023           | 19/5/2023          | 8              | 15,4                | 28,8                 | 2937,6               | 37,16                         | 18,58                         | 25,01                                      |
| 16 | VIGA N° 16     | 11/5/2023           | 19/5/2023          | 8              | 15,4                | 29,7                 | 3029,4               | 38,32                         | 19,16                         | 25,79                                      |
| 17 | VIGA N° 17     | 15/5/2023           | 25/5/2023          | 10             | 15,5                | 27,9                 | 2845,8               | 35,54                         | 17,77                         | 22,68                                      |
| 18 | VIGA N° 18     | 15/5/2023           | 25/5/2023          | 10             | 15,5                | 28,9                 | 2947,8               | 36,81                         | 18,40                         | 23,50                                      |
| 19 | VIGA N° 19     | 15/5/2023           | 25/5/2023          | 10             | 15,4                | 26,2                 | 2672,4               | 33,81                         | 16,90                         | 21,58                                      |
| 20 | VIGA N° 20     | 15/5/2023           | 25/5/2023          | 10             | 15,6                | 26,2                 | 2672,4               | 32,94                         | 16,47                         | 21,03                                      |
| 21 | VIGA N° 21     | 17/5/2023           | 26/5/2023          | 9              | 15,4                | 28,8                 | 2937,6               | 37,16                         | 18,58                         | 24,33                                      |
| 22 | VIGA N° 22     | 17/5/2023           | 26/5/2023          | 9              | 15,3                | 27,5                 | 2805,0               | 35,95                         | 17,97                         | 23,53                                      |
| 23 | VIGA N° 23     | 18/5/2023           | 26/5/2023          | 8              | 15,7                | 31,0                 | 3162,0               | 38,48                         | 19,24                         | 25,90                                      |
| 24 | VIGA N° 24     | 18/5/2023           | 26/5/2023          | 8              | 15,5                | 28,5                 | 2907,0               | 36,30                         | 18,15                         | 24,43                                      |
| 25 | VIGA N° 25     | 18/5/2023           | 26/5/2023          | 8              | 15,5                | 27,4                 | 2794,8               | 34,90                         | 17,45                         | 23,49                                      |
| 26 | VIGA N° 26     | 18/5/2023           | 26/5/2023          | 8              | 15,4                | 26,8                 | 2733,6               | 34,58                         | 17,29                         | 23,27                                      |
| 27 | VIGA N° 27     | 22/5/2023           | 30/5/2023          | 8              | 15,6                | 27,3                 | 2784,6               | 34,33                         | 17,16                         | 23,10                                      |
| 28 | VIGA N° 28     | 22/5/2023           | 30/5/2023          | 8              | 15,8                | 28,2                 | 2876,4               | 34,57                         | 17,28                         | 23,27                                      |
| 29 | VIGA N° 29     | 22/5/2023           | 30/5/2023          | 8              | 15,5                | 25,6                 | 2611,2               | 32,61                         | 16,30                         | 21,95                                      |
| 30 | VIGA N° 30     | 22/5/2023           | 30/5/2023          | 8              | 15,5                | 27,9                 | 2845,8               | 35,54                         | 17,77                         | 23,92                                      |

María Angela Vaca López LABORATORISTA

## ANEXO 3 Dosificación

#### Dosificación de mezclas de hormigón según ACI

#### a) Selección del asentamiento

Asentamientos recomendados para diversos tipos de construcción y sistemas de colocación y compactación.

| Consistencia  | Asentamiento (mm)                          | Ejemplo de<br>tipo de<br>construcción                                        | Sistema de colocación                                                     | Sistema de compactación                                                                |
|---------------|--------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Muy seca      | 0-20                                       | Prefabricados de alta resistencia, revestimiento de pantallas de cimentación | Con vibradores de formaleta; hormigones de proyección neumática (lanzado) | Secciones sujetas a vibración extrema, puede requerirse presión                        |
| Seca          | 20-35                                      | Pavimentos                                                                   | Pavimentadoras<br>con terminadora<br>vibratoria                           | Secciones<br>sujetas a<br>vibración<br>intensa                                         |
| Semi - seca   | Pavimentos, fundaciones en hormigón simple |                                                                              | Colocación con<br>máquinas<br>operadas<br>manualmente                     | Secciones<br>simplemente<br>reforzadas, con<br>vibración                               |
| Media         | 50-100                                     | Elementos<br>compactados a<br>mano, losas<br>muros, vigas                    | Colocación<br>manual                                                      | Secciones<br>medianamente<br>reforzadas, sin<br>vibración                              |
| Húmeda        | 100-150                                    | Elementos<br>estructurales<br>esbeltos                                       | Bombeo                                                                    | Secciones<br>bastante<br>reforzadas, sin<br>vibración                                  |
| Muy<br>húmeda | 1 150 o más 1 milotes                      |                                                                              | Tubo-embudo<br>Tremie                                                     | Secciones altamente reforzadas, sin vibración (normalmente no adecuados para vibrarse) |

#### b) Selección del tamaño máximo del agregado

Tamaños máximos de agregados según el tipo deconstrucción.

| Dimensión                       | Tamaño máximo en pulgadas (mm)        |                          |                         |                                      |  |
|---------------------------------|---------------------------------------|--------------------------|-------------------------|--------------------------------------|--|
| mínima de<br>la sección<br>(cm) | Muros reforzados,<br>vigas y columnas | Muros<br>sin<br>refuerzo | Losas muy<br>reforzadas | Losas sin refuerzo o poco reforzadas |  |
| 6 - 15                          | 1/2"(12) - 3/4"(19)                   | 3/4"(19)                 | 3/4"(19) - 1"(25)       | 3/4"(19) -1 3/4"(38)                 |  |
| 19 - 29                         | 3/4"(19) - 1 1/2"(38)                 | 1 1/2"(38)               | 1 1/2"(38)              | 1 1/2"(38) - 3"(76)                  |  |
| 30 - 74                         | 1 1/2"(38) - 3"(76)                   | 3"(76)                   | 1 1/2"(38) - 3"(76)     | 3"(76)                               |  |
| 75 o más                        | 1 1/2"(38) - 3"(76)                   | 6"(152)                  | 1 1/2"(38) - 3"(76)     | 3"(76) - 6"(152)                     |  |

Tamaño máximo del agregado = 1 1/2"

#### c) Estimación del contenido de aire

Sin aire incorporado.

#### d) Estimación del contenido de agua de mezclado

Requerimiento aproximado de agua de mezclado para diferentes asentamientos y tamaños máximos de agregado, con partículas de forma angular y textura rugosa, en hormigón con aire incluido.

|        |        |      | Tamaño máximo del agregado, en mm (pulg) |      |      |        |      |        |      |
|--------|--------|------|------------------------------------------|------|------|--------|------|--------|------|
| Asenta | miento | 9,51 | 12,7                                     | 19   | 25,4 | 38,1   | 50,8 | 64     | 76,1 |
|        |        | 3/8" | 1/2"                                     | 3/4" | 1"   | 1 1/2" | 2"   | 2 1/2" | 3"   |
| mm     | pulg   |      | Agua de mezclado, en Kg/m³ de hormigón   |      |      |        |      |        |      |
| 0      | 0      | 198  | 176                                      | 166  | 152  | 143    | 132  | 130    | 122  |
| 25     | 1      | 206  | 183                                      | 174  | 158  | 149    | 138  | 136    | 128  |
| 50     | 2      | 211  | 189                                      | 179  | 164  | 155    | 144  | 142    | 134  |
| 75     | 3      | 216  | 193                                      | 183  | 169  | 159    | 149  | 146    | 138  |
| 100    | 4      | 219  | 196                                      | 186  | 172  | 163    | 152  | 150    | 141  |
| 125    | 5      | 222  | 200                                      | 190  | 176  | 167    | 156  | 153    | 144  |
| 150    | 6      | 226  | 205                                      | 194  | 180  | 171    | 161  | 157    | 148  |
| 175    | 7      | 230  | 210                                      | 199  | 185  | 177    | 166  | 162    | 153  |
| 200    | 8      | 235  | 215                                      | 204  | 190  | 182    | 177  | 169    | 158  |

Agua de mezclado =  $151 \text{ kg/m}^3$ 

#### e) Determinación de la resistencia de diseño

Resistencia de diseño cuando no hay datos que permitandeterminar la desviación estándar.

| Resistencia específica $f_{ck}$ en $(kg/cm^2)$ | Resistencia de diseño de la mezcla $f_{cm}$ en $(kg/cm^2)$ |
|------------------------------------------------|------------------------------------------------------------|
| Menos de 210 kg/cm <sup>2</sup>                | $f ck + 70 \text{ kg/cm}^2$                                |
| De 210 a 350 kg/cm <sup>2</sup>                | $f ck + 85 \text{ kg/cm}^2$                                |
| Más de 350 kg/cm <sup>2</sup>                  | $f ck + 100 \text{ kg/cm}^2$                               |

Resistencia específica =  $280 \text{ kg/cm}^2$ 

#### f) Selección de la relación agua-cemento

Correspondencia entre la resistencia a la compresión a los28 días de edad y la relación agua-cemento para los cementos colombianos, pórtland tipo I, en hormigones con aire incluido.

| Resistencia a la                 | Relación agua-cemento en peso |             |                 |  |
|----------------------------------|-------------------------------|-------------|-----------------|--|
| compresión<br>Kg/cm <sup>2</sup> | Límite superior               | Línea media | Límite inferior |  |
| 140                              | -                             | 0,65        | 0,58            |  |
| 175                              | -                             | 0,59        | 0,52            |  |
| 210                              | 0,65                          | 0,54        | 0,49            |  |
| 230                              | 0,63                          | 0,52        | 0,47            |  |
| 245                              | 0,61                          | 0,5         | 0,46            |  |
| 280                              | 0,55                          | 0,44        | 0,41            |  |
| 315                              | 0,51                          | 0,41        | 0,39            |  |
| 350                              | 0,46                          | 0,37        | 0,36            |  |

Relación agua-cemento = 0,41

#### g) Cálculo del contenido de cemento

Volumen de agregado grueso, seco y compactado convarilla, por volumen de hormigón para diferentesmódulos de finura de la arena.

| Tamaño máximo<br>nominal |        | Módulo de finura de la arena |      |      | na   |
|--------------------------|--------|------------------------------|------|------|------|
| mm                       | pulg   | 2,4                          | 2,6  | 2,8  | 3    |
| 9,5                      | 3/8"   | 0,5                          | 0,48 | 0,46 | 0,44 |
| 12,7                     | 1/2"   | 0,59                         | 0,57 | 0,55 | 0,53 |
| 19                       | 3/4"   | 0,66                         | 0,64 | 0,62 | 0,6  |
| 25,4                     | 1"     | 0,71                         | 0,69 | 0,67 | 0,65 |
| 38,1                     | 1 1/2" | 0,75                         | 0,73 | 0,71 | 0,69 |
| 50,8                     | 2"     | 0,78                         | 0,76 | 0,74 | 0,72 |
| 76,1                     | 3"     | 0,82                         | 0,8  | 0,78 | 0,76 |
| 152                      | 6"     | 0,87                         | 0,85 | 0,83 | 0,81 |

Volumen de agregado grueso = 0,70

#### Cálculos

Datos iniciales:

Peso unitario compactado de agregado grueso =  $1313 \text{ kg/m}^3$ 

Peso específico de agregado grueso =  $2,61 \text{ gr/cm}^3$ 

Peso específico de cemento = 3,11 gr/cm<sup>3</sup>

Peso específico de agregado fino = 2,67 gr/cm<sup>3</sup>

Modulo finura de agregado fino = 3,35

Contenido de agregado grueso = Volumen de hormigón \* Peso unitario compactado de agregado grueso

Contenido de agregado grueso = 919,10 kg/m<sup>3</sup>

Contenido de cemento = Agua de mezclado/ Relación agua-cemento

Contenido de cemento =  $368,29 \text{ kg/m}^3$ 

Volumen de agregado grueso=Contenido de agregado grueso/Peso específico de agregado grueso

Volumen de agregado grueso = 352,55 l/m<sup>3</sup>

Volumen de cemento = Contenido de cemento/Peso específico de cemento

Volumen de cemento =  $118,35 \text{ l/m}^3$ 

Volumen de agregado fino = 1000 - volumen de cemento - agua de mezclado - volumen de agregado grueso

Volumen de agregado fino =  $378,10 \text{ l/m}^3$ 

Contenido de agregado fino = volumen de agregado fino \* peso específico de agregado fino

Contenido de agregado fino =  $1009,17 \text{ kg/m}^3$ 

#### Dosificación

| Cemento | Arena | Grava | Agua |
|---------|-------|-------|------|
| 1       | 2,74  | 2,50  | 0,41 |

#### Peso de material para probetas cilíndricas

Volumen probeta cilíndrica =  $\pi$ \*R^2\*h

Datos iniciales:

 $\pi = 3,14$ 

r = 7,5 cm

h = 30 cm

Volumen probeta cilíndrica =  $5301,44 \text{ cm}^3 = 0,0053 \text{ m}^3$ 

Volumen para 4 probetas cilíndricas =  $0.021 \text{ m}^3$ 

Peso de cada material

Agregado grueso = 19,49 kg

Cemento = 7.81 kg

Agua = 3,20 kg

Agregado fino = 21,40 kg

#### Peso de material para probetas prismáticas

Volumen vigas = a\*b\*h

a = 15 cm

b = 15 cm

h = 45 cm

Volumen viga =  $10125 \text{ cm}^3 = 0.010 \text{ m}^3$ 

Volumen para 2 vigas =  $0.020 \text{ m}^3$ 

Peso de cada material

Agregado grueso 18,61 kg

Cemento 7, 46 kg

Agua = 3,06 kg

Agregado fino 20, 44 kg

# ANEXO 4 Costos

#### Análisis de precio unitario

N° de item: 1 Unidad: m³
Item: Mezcla de concreto simple con agregado

Mondo: Po

grueso reciclado

Moneda: Bs

| 81 | ueso reciciado                                                                                  |                |            |                   |                |
|----|-------------------------------------------------------------------------------------------------|----------------|------------|-------------------|----------------|
|    | Descripcion                                                                                     | Unidad         | Cantidad   | Precio productivo | Costo<br>total |
| 1  | MATERIALES                                                                                      |                |            | productivo        | total          |
| 1  | Cemento portland IP-40                                                                          | kg             | 369,00     | 0,9               | 332,10         |
| 2  | Agregado grueso de concreto reciclado                                                           | $m^3$          | 0,35       | 80                | 28,00          |
| 3  | Agregado fino común                                                                             | $m^3$          | 0,38       | 95                | 36,10          |
| 4  | Agua                                                                                            | m <sup>3</sup> | 0,15       | 2,93              | 0,44           |
|    |                                                                                                 |                |            |                   |                |
|    |                                                                                                 |                | TOTAL MA   | ATERIALES=        | 396,64         |
|    |                                                                                                 |                | 1          |                   | 1              |
|    | MANO DE OBRA                                                                                    | -              |            |                   |                |
| 2  | Albañil                                                                                         | hr             | 1,60       | 20,50             | 32,80          |
| 3  | Ayudante                                                                                        | hr             | 4,80       | 15,00             | 72,00          |
|    |                                                                                                 | GLIDTO         | TAL MANG   | DE ODB 4          | 104.00         |
|    |                                                                                                 |                |            | DE OBRA =         | 104,80         |
|    | CARGAS SOCIALES = (% DEL SUBTOTAL DE MA (71.18%)                                                | ANO DE O       | OBRA)      | 71,18%            | 74,60          |
| ]  | IMPUESTOS IVA MANO DE OBRA = (%DE SUMA DE; SUBTOTAL DE MANO DE OBRA + CARGAS SOCIALES) (14.94%) |                |            | 14,94%            | 26,80          |
|    | TOTAL MANO DE OF                                                                                |                |            | DE OBRA =         | 206,20         |
|    |                                                                                                 | 1              |            |                   |                |
| 3  | EQUIPO, MAQUINARIA Y HERRAMIENTAS                                                               |                |            |                   |                |
| 1  | Mezcladora                                                                                      | hr             | 1,00       | 22,00             | 22,00          |
| 2  | Vibradora                                                                                       | hr             | 0,80       | 15,00             | 12,00          |
|    |                                                                                                 |                |            |                   |                |
| HI | ERRAMIENTAS = (% DEL TOTAL DE MANO DE OBI                                                       | RA) (5%)       | ı          | 5,00%             | 10,31          |
|    | TOTAL DOLLAR                                                                                    |                |            |                   |                |
|    | TOTAL, EQUIPO, MA                                                                               | QUINARI        | A Y HERRA  | AMIENTAS =        | 44,31          |
| 4  | GASTOS GENERALES YADMINISTRATIVOS                                                               |                |            |                   |                |
| GA | ASTOS GENERALES = (% DE 1+2+3) (10%)                                                            |                |            | 10,00%            | 64,71          |
|    | TOTAL GASTOS GENI                                                                               | ERALES Y       | ADMINIS    | TRATIVOS =        | 64,71          |
|    |                                                                                                 |                |            |                   | •              |
| 5  | ·UTILIDAD                                                                                       |                |            |                   |                |
| U' | TILIDAD = (% DE 1 + 2 + 3 + 4) (10%)                                                            |                |            | 10,00%            | 71,19          |
|    |                                                                                                 | ,              | TOTAL DE   | UTILIDAD =        | 71,19          |
|    |                                                                                                 |                |            |                   |                |
|    | IMPUESTOS                                                                                       |                |            |                   |                |
| IM | IPUESTOS IT = (% DE 1+2+3+4+5) (3,09%)                                                          |                |            | 3,09%             | 24,20          |
|    |                                                                                                 | TO             | OTAL DE IN | MPUESTOS =        | 24,20          |
|    |                                                                                                 |                |            |                   |                |

807,25

TOTAL PRECIO UNITARIO 1+2+3+4+5+6 (Bs.) =

# ANEXO 5 Diseño de capa de rodadura de pavimento rígido

#### Diseño de pavimento rígido con método AASHTO

$$\log(W_{18}) = Z_R * So + 7,35 * \log(D+1) - 0,06 + \frac{\log\left(\frac{\Delta PSI}{4,5-1,5}\right)}{1 + \frac{1,624 * 10^7}{(D+1)^{8,46}}} + (4,22 - 0,32 * Pt) * \log\left(\frac{MR * Cd * (D^{0,75} - 1,132)}{215,63 * J * \left(D^{0,75} - \frac{18,42}{K}\right)^{0,25}}\right)$$

#### Donde:

W<sub>(18)</sub> = Número de cargas de 18 kips (80 kN) previstas

 $Z_R$  = Valor de Z correspondiente a la curva estandarizada, para una confiabilidad R.

 $S_o$  = Desvío estándar de todas las variables

D = Espesor de la losa de pavimento, en pulg

ΔPSI = Pérdida de serviciabilidad prevista en el diseño

 $P_t$  = Serviciabilidad final

MR = Módulo de rotura, en psi

Cd = Coeficiente de drenaje

J = Coeficiente de transferencia de carga

Ec = Módulo de elasticidad del concreto, en psi

K = Módulo de reacción de la subrasante (coeficiente de balastro), en pci (psi/pulg)

#### a) Tráfico

$$W_{(18)} = TPDA * GF * DD * LD * TF * 365$$

#### Donde:

TPDA = Tráfico promedio diario anual inicial

GF = Factor de crecimiento

DD = Factor de distribución direccional

LD = Factor de distribución por carril

TF = Factor de camiones

| Año  | Normal | Derivado | Generado | Total | Índice crecimiento |
|------|--------|----------|----------|-------|--------------------|
| 2005 | 90     | 120      | 83       | 293   |                    |
| 2006 | 96     | 127      | 86       | 309   | 5,46               |
| 2007 | 102    | 135      | 88       | 325   | 5,18               |
| 2008 | 108    | 144      | 91       | 343   | 5,54               |
| 2009 | 114    | 153      | 94       | 361   | 5,25               |
| 2010 | 121    | 163      | 96       | 380   | 5,26               |
| 2011 | 129    | 173      | 99       | 401   | 5,53               |
| 2012 | 136    | 185      | 103      | 424   | 5,74               |
| 2013 | 145    | 196      | 105      | 446   | 5,19               |
| 2014 | 154    | 209      | 108      | 471   | 5,61               |
| 2015 | 163    | 222      | 112      | 497   | 5,52               |
| 2016 | 173    | 236      | 115      | 524   | 5,43               |
| 2017 | 183    | 251      | 119      | 553   | 5,53               |
| 2018 | 195    | 267      | 122      | 584   | 5,61               |
| 2019 | 206    | 284      | 126      | 616   | 5,48               |
| 2020 | 219    | 303      | 130      | 652   | 5,84               |
| 2021 | 232    | 321      | 133      | 686   | 5,21               |
| 2022 | 247    | 342      | 138      | 727   | 5,98               |
| 2023 | 262    | 364      | 141      | 767   | 5,50               |
| 2024 | 278    | 388      | 146      | 812   | 5,87               |

TPDA = 767

Índice de crecimiento = 5,51 %

Periodo de diseño = 20 años

$$GF = \frac{\left(1 + \frac{i}{100}\right)^{n} - 1}{\frac{i}{100}}$$

$$GF = 34,91$$

$$DD = 1$$

$$LD = 0.5$$

$$TF = 1$$

$$W_{(18)} = 4886842,11$$

#### b) Confiabilidad

| Tipo de camino                    | Zona urbana | Zona rural |
|-----------------------------------|-------------|------------|
| Rutas interestatales y autopistas | 85 – 99,9   | 80 – 99,9  |
| Arterias principales              | 80 – 99     | 75 – 99    |
| Colectoras                        | 80 – 95     | 75 – 95    |
| Locales                           | 50 – 80     | 50 - 80    |

#### Confiabilidad R = 80 %

|                 | 1               |
|-----------------|-----------------|
| Confiabilidad R | Desviación      |
| %               | normal estandar |
| 70              | $Z_R$           |
| 50              | 0,000           |
| 60              | 0,253           |
| 70              | 0,524           |
| 75              | 0,674           |
| 80              | 0,841           |
| 85              | 1,037           |
| 90              | 1,282           |
| 91              | 1,340           |
| 92              | 1.405           |
| 93              | 1,476           |
| 94              | 1,555           |
| 95              | 1,645           |
| 96              | 1,751           |
| 97              | 1,881           |
| 98              | 2,054           |
| 99              | 2,327           |
| 99,9            | 3,090           |
| 99,99           | 3,750           |

#### c) Desviación estándar

| Condición de diseño                                                                    | Desviación estandar |               |  |
|----------------------------------------------------------------------------------------|---------------------|---------------|--|
|                                                                                        | Pav. rígido         | Pav. flexible |  |
| Variación en la predicción del comportamiento del pavimento sin errores en el tránsito | 0,34                | 0,44          |  |
| Variación en la predicción del comportamiento del pavimento con errores en el tránsito | 0,39                | 0,49          |  |

$$S_0 = 0.34$$

#### d) Serviciabilidad

| Serviciabilidad inicial   |  |  |  |
|---------------------------|--|--|--|
| Pav. rígido Pav. flexible |  |  |  |
| 4,5 4,2                   |  |  |  |

$$P_0 = 4,5$$

| Serviciabilidad final | Clasificación                           |
|-----------------------|-----------------------------------------|
| 3,00                  | Autopistas                              |
| 2,50                  | Colectores                              |
| 2,25                  | Calles comerciales e industriales       |
| 2,00                  | Calles residenciales y estacionamientos |

$$P_t = 2$$

$$\Delta PSI = P_o$$
 -  $P_t$ 

$$\Delta$$
PSI = 2,5

#### e) Drenaje

| Calidad de<br>drenaje | % de tiempo en que el pavimento está expuesto a niveles de humedad próximos a la saturación $1-5\%$ $5-25\%$ $>25\%$ |             |             |      |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|-------------|-------------|------|--|--|--|--|
| Excelente             | 1,25 – 1,20                                                                                                          | 1,20 – 1,15 | 1,15 – 1,10 | 1,10 |  |  |  |  |
| Bueno                 | 1,20 – 1,15                                                                                                          | 1,15 – 1,10 | 1,10 – 1,00 | 1,00 |  |  |  |  |
| Regular               | 1,15 – 1,10                                                                                                          | 1,10 – 1,00 | 1,00 - 0,90 | 0,90 |  |  |  |  |
| Pobre                 | 1,10 – 1,00                                                                                                          | 1,00 - 0,90 | 0,90 - 0,80 | 0,80 |  |  |  |  |
| Muy pobre             | 1,00 - 0,90                                                                                                          | 0,90 - 0,80 | 0,80 - 0,70 | 0,70 |  |  |  |  |

| Año      | Días de lluvia |
|----------|----------------|
| 2009     | 80             |
| 2010     | 50             |
| 2011     | 76             |
| 2012     | 61             |
| 2015     | 59             |
| 2017     | 59             |
| 2018     | 79             |
| 2019     | 73             |
| 2020     | 62             |
| 2021     | 93             |
| 2022     | 61             |
| Promedio | 68             |

% tiempo de humedad al año = 19 %

Cd = 0.9

#### f) Transferencia de carga

| Soporte           |     |                                 |     |                                          |     |          |              |
|-------------------|-----|---------------------------------|-----|------------------------------------------|-----|----------|--------------|
| lateral           | Si  | No                              | Si  | No                                       | Si  | No       |              |
| ESALs en millones | •   | dores con<br>uerzo de<br>ratura |     | Sin pasadores (fricción entre agregados) |     | ón entre | Tipo         |
| Hasta 0,3         | 2,7 | 3,2                             | 2,8 | 3,2                                      | _   | _        | Calles y     |
| 0,3-1             | 2,7 | 3,2                             | 3   | 3,4                                      | -   | _        | caminos      |
| 1 – 3             | 2,7 | 3,2                             | 3,1 | 3,6                                      | _   | _        | vecinales    |
| 3 – 10            | 2,7 | 3,2                             | 3,2 | 3,8                                      | 2,5 | 2,9      | Caminos      |
| 10 – 30           | 2,7 | 3,2                             | 3,4 | 4,1                                      | 2,6 | 3        | principales  |
| más de 30         | 2,7 | 3,2                             | 3,6 | 4,3                                      | 2,6 | 3,2      | y autopistas |

J = 3,2

#### g) Características de subrasante

$$MR = 46,76 \text{ kg/cm}^2 = 665,07 \text{ psi}$$

$$fc = 349,31 \text{ kg/cm}^2$$

$$Ec = 15000 * \sqrt{fc} = 280347,55 \text{ kg/cm}^2 = 3987383,23 \text{ psi}$$

Para un CBR malo

CBR = 3

$$K = 0.25 + 5.15 * log (CBR\%) = 2.71 kg/cm^3 = 97.78 pci$$

Espesor de la losa de pavimento

$$D = 8.6 \text{ pulg} = 21.84 \text{ cm}$$

Para un CBR regular

$$CBR = 10$$

$$K = 4.51 + 0.89 * (log (CBR\%))^{4.34} = 5.40 kg/cm^3 = 195.03 pci$$

Espesor de la losa de pavimento

$$D = 8,27 \text{ pulg} = 21,01 \text{ cm}$$

Para un CBR bueno

$$CBR = 30$$

$$K = 4.51 + 0.89 * (log (CBR\%))^{4.34} = 7.86 kg/cm^3 = 283.78 pci$$

Espesor de la losa de pavimento

$$D = 7.91 \text{ pulg} = 20.09 \text{ cm}$$