Anexo 1. Tablas del Servicio de Conservación de Recursos Naturales (NRCS)

Tabla 2-2a. Números de curvas de escorrentía para zonas urbanas $^{1/}\,$

Descripción de la cubi	Números de curva para el grupo hidrológico del suelo										
Tipo de cubierta y estado hidrológico	A	В	C	D							
Zonas urbanas completamente desarrolladas (vegetación establecida)											
Espacios abiertos (césped, parques, campos de golf, c	ementerios, etc.) ^{3/}										
Mal estado (cubierta herbácea < 50%)		68	79	86	89						
Estado aceptable (cubierta herbácea del 50% al 75%)		49	69	79	84						
Buen estado (cubierta herbácea > 75%)		39	61	74	80						
Zonas impermeables:											
Aparcamientos pavimentados, tejados, calzadas, etc. (excluida la calzada)		98	98	98	98						
Calles y carreteras:		•									
Pavimentado; aceras y alcantarillas pluviales (excluida la calzada de paso)		98	98	98	98						
Pavimentado; zanjas abiertas (incluida la calzada de		83	89	92	93						
paso)		76	0.5	89	91						
Grava (incluida la calzada de paso)		72	85 82	87	89						
Tierra (incluida la calzada de paso) Zonas urbanas del desierto occidental:		12	82	8/	89						
		(2	77	85	88						
Paisajismo desértico natural (sólo zonas permeables) Paisajismo desértico artificial (barrera impermeable		63	//	83	88						
contra las malas hierbas, arbustos desérticos con mantillo de arena o grava de 1 a 2 pulgadas y bordes de cuenca)		96	96	96	96						
Distritos urbanos:			l .	l .							
Comercial y empresarial	85	89	92	94	95						
Industrial	72	81	88	91	93						
Distritos residenciales por tamaño medio de parcela:	, -	01	00	/ 1	,,,						
1/8 acre o menos (casas adosadas)	65	77	85	90	92						
1/4 acre	38	61	75	83	87						
1/3 acre	30	57	72	81	86						
1/2 acre	25	54	70	80	85						
1 acre	20	51	68	79	84						
2 acres	12	46	65	77	82						
Desarrollo de zonas urbanas					-						
Zonas recién niveladas (sólo zonas permeables, sin vegetación) 4/	77	86	91	94							
Tierras ociosas (los CN se determinan utilizando tipos	s de cubierta similares a los de la tabla	a 2-2c).									

- 1. Condición de escorrentía media, y $I_a = 0.2S$.
- 2. El porcentaje medio de superficie impermeable indicado se ha utilizado para elaborar los CN compuestos. Otros supuestos son los siguientes: las zonas impermeables están conectadas directamente al sistema de drenaje, las zonas impermeables tienen un CN de 98 y las zonas permeables se consideran equivalentes a espacios abiertos en buenas condiciones hidrológicas.

- 3. Los CN mostrados son equivalentes a los de los pastos. Los CN compuestos pueden calcularse para otras combinaciones de tipo de cubierta de espacio abierto.
- 4. (CN = 98) y el CN de superficie permeable. Los CN de área permeable se suponen equivalentes a los arbustos desérticos en malas condiciones hidrológicas.

Fuente: Technical Release 55 Urban Hydrology for Small Watersheds

Tabla 2-2b. Números de curvas de escorrentía para tierras agrícolas cultivadas 1/

Des	cripción de la cubierta		Números de curva para el grupo hidrológico del suelo						
Tipo de cubierta	Tratamiento ^{2/}	Condición hidrológica ^{3/}	A	В	C	D			
	Suelo desnudo	-	77	86	91	94			
Barbecho	Cobertura de residuos de	Pobre	76	85	90	93			
	cultivos (CR)	Buena	74	83	88	90			
	Fila recta (SR)	Pobre	72	81	88	91			
	Tha reeta (Six)	Buena	67	78	85	89			
	SR + CR	Pobre	71	80	87	90			
	SK + CK	Buena	64	75	82	85			
	Contorneado (C)	Pobre	70	79	84	88			
Cultivos en hileras	Contorneado (C)	Buena	65	75	82	86			
Cultivos en inicias	C + CR	Pobre	69	78	83	87			
	C + CK	Buena	64	74	81	85			
	Contorneado y aterrazado	Pobre	66	74	80	82			
	(C&T)	Buena	62	71	78	81			
	C&T+ CR	Pobre	65	73	79	81			
	C&1+CK	Buena	61	70	77	80			
	SR	Pobre	65	76	84	88			
	SK	Buena	63	75	83	87			
	SR + CR	Pobre	64	75	83	86			
	SK + CK	Buena	60	72	80	84			
	С	Pobre	63	74	82	85			
Daguañas granas	C	Buena	61	73	81	84			
Pequeños granos	C + CR	Pobre	62	73	81	84			
	C + CR	Buena	60	72	80	83			
	C&T	Pobre	61	72	79	82			
	C&I	Buena	59	70	78	81			
	C&T+ CR	Pobre	60	71	78	81			
	C&I+CR	Buena	58	69	77	80			
	CD	Pobre	66	77	85	89			
T . 1 . 1	SR	Buena	58	72	81	85			
Leguminosas de siembra directa o al voleo o	С	Pobre	64	75	83	85			
		Buena	55	69	78	83			
praderas de rotación	CAT	Pobre	63	73	80	83			
	C&T	Buena	51	67	76	80			

- 1. Condición de escorrentía media, y I_a=0,2S
- 2. La cubierta de residuos de cultivos sólo se aplica si los residuos están en al menos el 5% de la superficie durante todo el año.
- 3. La condición hidrológica se basa en una combinación de factores que afectan a la infiltración y la escorrentía, entre los que se incluyen: a) la densidad y el dosel de las zonas vegetales, b) cantidad de cobertura a lo largo de todo el año, c) cantidad

de hierba o leguminosas de siembra cercana, d) porcentaje de cobertura de residuos en la superficie del terreno (bueno \geq 20%), y e) grado de rugosidad de la superficie. Pobre: Los factores perjudican la infiltración y tienden a aumentar la escorrentía. Bueno: Los factores favorecen la infiltración media y superior a la media y tienden a

disminuir la escorrentía.

Fuente: Technical Release 55 Urban Hydrology for Small Watersheds

Tabla 2-2c. Números de curvas de escorrentía para otras tierras agrícolas ^{1/}

Descripción de la cubierta		Números de curva para el grupo hidrológico del suelo					
Descripción de la cubierta	Condición hidrológica	A	В	C	D		
Dostos musdamos o mostigaloss formaio continuo mano el	Pobre	68	79	86	89		
Pastos, praderas o pastizales: forraje continuo para el pastore. ² /	Regular	49	69	79	84		
pastore. 7	Buena	39	61	74	80		
Pradera: hierba continua, protegida del pastoreo y generalmente segada para la producción de heno.	_	30	58	71	78		
M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pobre	48	67	77	83		
Matorral-mezcla de maleza y hierba con el matorral como elemento principal. ^{3/}	Regular	35	56	70	77		
como elemento principal.	Buena	30 4/	48	65	73		
C	Pobre	57	73	82	86		
Combinación de bosque y hierba (huerto o explotación forestal). 5/	Regular	43	65	76	82		
forestar).	Buena	32	58	72	79		
	Pobre	45	66	77	83		
Bosque. ^{6/}	Regular	36	60	73	79		
	Buena	30 4/	55	70	77		
Explotaciones agrícolas: edificios, caminos, vías de acceso y terrenos circundantes.	_	59	74	82	86		

- 1. Condición de escorrentía media, y $I_a = 0.2S$.
- 2. *Pobre*: < 50% cubierta vegetal o muy pastoreada sin mantillo.

Regular: 50 a 75% de cubierta vegetal y sin pastoreo intenso.

Buena: > 75% de cubierta vegetal y pastoreo ligero u ocasional.

3. *Pobre*: < 50% de cubierta vegetal.

Regular: 50 a 75% de cubierta vegetal.

Buena: > 75% de cobertura del suelo.

- 4. El número de curva real es inferior a 30; utilizar CN = 30 para los cálculos de escorrentía.
- 5. Los CN indicados se han calculado para zonas con un 50% de cubierta forestal y un 50% de cubierta herbácea (pastos). Otras combinaciones de condiciones pueden calcularse a partir de los CN para bosques y pastos.

6. *Pobre*: La hojarasca forestal, los árboles pequeños y la maleza son destruidos

por el pastoreo intensivo o la quema regular.

Regular: Los bosques se pastan, pero no se queman, y algo de hojarasca

forestal

cubre el suelo.

Bueno: Los bosques están protegidos del pastoreo y la hojarasca y la

maleza

cubren adecuadamente el suelo.

Fuente: Technical Release 55 Urban Hydrology for Small Watersheds

Tabla 2-2d. Números de curvas de escorrentía para pastizales áridos y semiáridos $^{1/}$

Descripción de la cubierta		Números de curva para el grupo hidrológico del suelo					
Descripción de la cubierta	Condición hidrológica ^{2/}	A 3/	В	C	D		
Herbáceo-mezcla de hierba, maleza y matorral de bajo	Pobre		80	87	93		
crecimiento, siendo el matorral el elemento menor.	Regular		71	81	89		
crecimiento, siendo el matorial el elemento menor.	Buena		62	74	85		
Mazala da mahla álama tamblán agaba da mantaña anaz y atmas	Pobre		66	74	79		
Mezcla de roble, álamo temblón, caoba de montaña, arce y otros arbustos.	Regular		48	57	63		
aroustos.	Buena		30	41	48		
	Pobre			85	89		
Piñón-juniper-piñón, enebro o ambos; sotobosque de hierba.	Regular		58	73	80		
	Buena		41	61	71		
	Pobre		67	80	85		
Artemisa con sotobosque herbáceo.	Regular		51	63	70		
	Buena		35	47	55		
Arbustos desérticos: las plantas principales son el arbusto salado,	Pobre	63	77	85	88		
el palo verde, el arbusto creosote, el arbusto negro, el palo verde,	Regular	55	72	81	86		
la bursa, el mezquite y los cactus.	Buena	49	68	79	84		

1. Condición de escorrentía media, y I_a , = 0,2S. Para el rango en regiones húmedas, utilice la Tabla 2-2c.

2. *Pobre*: < 30% de cobertura del suelo (hojarasca, hierba y matorral).

Regular: 30 a 70% de cobertura del suelo.

Buena: > 70% de cobertura del suelo.

3. Los números de curva del grupo A sólo se han desarrollado para los arbustos desérticos.

Fuente: Technical Release 55 Urban Hydrology for Small Watersheds

Tabla 3. Números de curvas de escorrentía condición II. $I_a = 0.2S$

NT.	D	gicos	CI •0• •/			
N	Descripción de la Unidades de Vegetación	A	В	C	D	Clasificación
1	Bosque denso a ralo mayormente siempre verde, transicional, montano	25	55	70	77	Bosque bueno
2	Bosque ralo mayormente siempre verde, transicional, montano	34	58	72	77	Bosque regular
3	Bosque ralo mayormente caducifolio, transicional, montano.	36	60	73	79	Bosque regular
4	Matorral semidenso, medio a alto, mayormente siempre verde, transicional, montano.	35	56	70	77	Maleza regular
5	Matorral denso, medio a alto, mayormente caducifolio, semideciduo, montano.	35	56	70	77	Maleza regular
6	Matorral denso a ralo, medio a alto, mayormente caducifolio, semideciduo, montano	35	56	70	77	Maleza regular
7	Matorral ralo a denso, alto, xeromórfico, deciduo por sequía, montano.	48	67	77	83	Maleza pobre
8	Matorral ralo a semidenso, alto, xeromórfico, deciduo por sequía, montano.	48	67	77	83	Maleza pobre
9	Matorral ralo, alto, xeromórfico, deciduo por sequía, montano. Tierras eriales	77	86	91	94	Maleza pobre
10	Vegetación herbácea, graminoide baja, con sinusia arbustiva, montano.	25	59	75	83	Pradera C regular
11	Vegetación herbácea, graminoide intermedia, sin sinusia arbustiva, montano.	25	59	75	83	Pradera C regular
12	Vegetación herbácea, graminoide baja, sin sinusia arbustiva, montano.	25	59	75	83	Pradera C regular
13	Vegetación herbácea, graminoide baja, mixto, montano.	25	59	75	83	Pradera regular
14	Vegetación herbácea, graminoide baja, mixto, montano	25	59	75	83	Pradera regular
15	Áreas antrópicas y matorral, xeromórfico deciduo por sequía, montano.	57	71	80	85	
16	Áreas antrópicas (cultivos agrícolas) Matorrales	67	78	85	89	Cultivo hilera SR Buena
17	Matorral denso, medio, mayormente caducifolio, deciduo por sequía, subalpino	35	56	70	77	Maleza regular
18	Vegetación herbácea, graminoide intermedia, con sinusia arbustiva, subalpino	25	59	75	83	Pradera regular
19	Vegetación herbácea graminoide baja sin sinusia arbustiva, cespitoso, subalpino	63	73	80	83	Granos pequeños C y T pobre
20	Vegetación herbácea, graminoide baja, sin sinusia arbustiva, cespitoso, subalpino.	61	73	81	84	Granos pequeños C buena
21	Áreas antrópicas (cultivos aerícolas)	63	75	83	87	Granos pequeños SR buena
22	Vegetación herbácea graminoide baja, sin sinusia arbustiva, alpino	65	76	84	85	Granos pequeños. Pobre
23	Plantaciones forestales	45	66	77	83	Bosque malo
24	Río Tolomosa, río Tilo Molino, río Pinos, Sola, Queñual	59	74	82	86	Cascos de estancia
25	Embalse San Jacinto	100	100	100	100	Cuerpo de agua
26	Poblaciones de San Andrés y Tolomosa	74	84	90	92	Superficie dura
27	Matorral ralo a semidenso, alto, xeromórfico, deciduo por sequía, montano moderadamente degradado	67	78	85	89	Hilera SR buena MD
	Matorral ralo a semidenso, alto, xeromórfico,					Hilera SR mala D
28	deciduo por sequía, montano degradado a muy degradado	72	81	88	91	MD

29	Vegetación herbácea, graminoide baja, montano ligeramente degradado	49	69	79	84	Pradera regular
30	Vegetación herbácea, graminoide baja, montano moderadamente degradado	65	75	82	86	Hilera C buena MD
31	Vegetación herbácea, graminoide baja, montano degradado a muy degradado	68	79	86	89	Pradera mala D MD

Fuente: Documento Hidrología. ESTUDIO TESA: "CONSTRUCCIÓN PRESA IPA"

Tabla 4. Número de curvas de escorrentía para complejos hidrológicos de tierras para cuencas en condición II. $I_a=0.2S$

Uso de suelos y cubierta	Tratamiento	Condición para la	Grupo	hidroló	gico del	suelo
Oso de suelos y cubierta	o método	infiltración	A	В	C	D
Barbecho	SR		77	86	91	94
	SR	Mala	72	81	88	91
	SR	Buena	67	78	85	89
Cultivo en hilera	C	Mala	70	79	84	88
Cultivo en intera	C	Buena	65	75	82	86
	C & T	Mala	66	74	80	82
	C & T	Buena	62	71	78	81
	SR	Mala	65	76	84	88
	SR	Buena	63	75	83	87
Gramíneas	C	Mala	63	74	82	85
Grammeas	С	Buena	61	73	81	84
	C & T	Mala	61	72	79	82
	C & T	Buena	59	70	78	81
	SR	Mala	66	77	85	89
	SR	Buena	58	72	81	85
Legumbres tupidas o	C	Mala	64	75	83	85
rotación de praderas	С	Buena	55	69	78	83
	C & T	Mala	63	73	80	83
	C & T	Buena	51	67	76	80
		Mala	68	79	86	89
		Regular	49	69	79	84
Duadana a nastinal		Buena	39	61	74	80
Pradera o pastizal	С	Mala	47	67	81	88
	С	Regular	25	59	75	83
	С	Buena	6	35	70	79
Pradera (permanente)			30	58	71	78
		Mala	45	66	77	78
Bosques (lotes de bosques)		Regular	36	60	73	79
		Buena	25	55	70	77
Cascos de los ranchos (alquerías)			59	74	82	86
Caminos fangosos			72	82	87	89
Superficie dura			74	84	90	92

SR: Hileras rectas

C: Por líneas de nivel

C & T: Terrazas a nivel

Fuente: HIDROLOGÍA APLICADA. Estilita Ruiz Romera, Miren Martínez Santos

Tabla de Contenido – Anexo 3

A	nexo 3	Estudio hidrológico	.109
1	Reg	ristros pluviométricos	.109
2	Ana	ilisis de precipitación	.110
	2.1	Análisis de consistencia	.110
	2.2	Análisis de homogeneidad	.113
	2.2.	1 Test de Mann Kendall	.113
	2.2.	Prueba estadística t de Student	.113
3	Pre	cipitaciones máximas	.114
	3.1	Lluvias máximas horarias	.116
	3.2	Hietograma de diseño	.118
4	Caı	ıdal de máxima crecida	.122
	4.1	Número de Curva (CN)	.122
	4.2	Simulación de crecidas en HEC-HMS	.122
	4.3	Caudales máximos generados	.130
		Índice de Tablas	
T	abla 1.	Registro de precipitación de las estaciones próximas a la cuenca	.110
T	abla 2.	Resumen análisis de consistencia método dobles acumuladas	.112
T	abla 3.	Resumen análisis de homogeneidad	.114
T	abla 4.	Precipitaciones máximas en 24 horas	.114
T	abla 5.	Serie de datos de Pmax	.115
T	abla 6.	Delta teórico para diferentes distribuciones	.115
T	abla 7.	Pmax para diferentes T	.116
T	abla 8.	Lluvias máximas horarias para diferentes duraciones y periodos de retorno	.116
T	abla 9.	Int. máximas [mm/h] para diferentes duraciones y periodos de retorno	.117
T	abla 10). Hietograma de diseño para periodo de retorno T=25 años	.118
T	abla 11	. Hietograma de diseño para periodo de retorno T=50 años	.119
T	abla 12	2. Hietograma de diseño para periodo de retorno T=100 años	.120
T	abla 13	. Hietogramas para simulación en HEC-HMS	.121
T	abla 14	Parámetros ingresados al modelo HEC-HMS	.124

Tabla 15. Caudales máximos según periodo de retorno
Tabla 16. Hidrograma de crecidas
Índice de Figuras
Figura 1. Ubicación de las estaciones próximas a la cuenca (SENAMHI)109
Figura 2. Análisis de consistencia doble masa acumulada
Figura 3. Curvas I.D.F. para diferentes periodos de retorno
Figura 4. Tormenta de diseño para T=25 años
Figura 5. Tormenta de diseño para T=50 años
Figura 6. Tormenta de diseño para T=100 años
Figura 7. Hietograma de diseño para HEC-HMS
Figura 8. Esquema de drenaje en HEC-HMS
Figura 9. Resultados generados para T = 25 años
Figura 10. Hidrograma generado para T = 25 años
Figura 11. Resultados generados para T = 25 años
Figura 12. Resultados generados para T = 50 años
Figura 13. Hidrograma generado para T = 50 años
Figura 14. Resultados generados para T = 50 años
Figura 15. Resultados generados para T = 100 años
Figura 16. Hidrograma generado para T = 100 años
Figura 17. Resultados generados para T = 100 años
Figura 18. Hidrograma de crecidas

Anexo 3. Estudio hidrológico

1 Registros pluviométricos

La información pluviométrica utilizada, consiste de registros a nivel mensual, provenientes de la red del Servicio Nacional de Meteorología e Hidrología (SENAMHI), las estaciones fueron seleccionadas en base a criterios de mayor disponibilidad de datos y proximidad al área de estudio, según el manual de hidrología de la FAO pueden ser utilizadas las estaciones dentro del radio de 50 km circundantes a la unidad hidrográfica analizada. Existen dos estaciones dentro del área de aporte; en el análisis de consistencia el promedio de las estaciones se utiliza como estación patrón, en el siguiente mapa, se presenta la ubicación de las estaciones próximas a la cuenca.

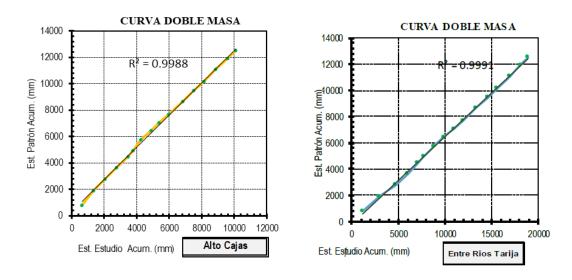
336082 345082 354082 354082 363082 372082 381082 390082 390082 408082 408082 1280001 12800001 1280001 1280001 1280001 1280001 1280001 1280001 1280001

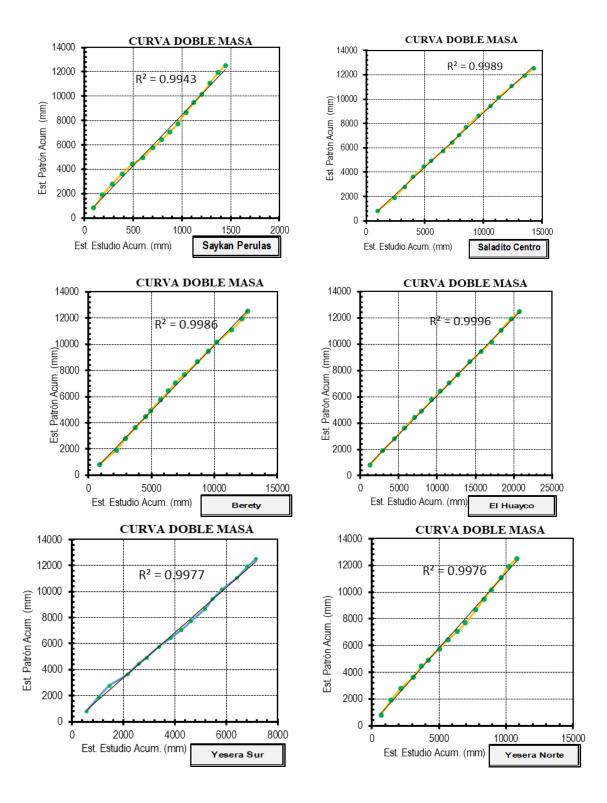
Figura 1. Ubicación de las estaciones próximas a la cuenca (SENAMHI)

Se ha trabajado en el intervalo 2005 – 2020 para la información pluviométrica por ser este intervalo el que presenta menos lagunas de información en los registros manejados.

Tabla 1. Registro de precipitación de las estaciones próximas a la cuenca

	DATOS DE: PRECIPITACIÓN TOTAL (mm)																				
N	Estación	-	iodo mible	Peri Utili	iodo zado	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1	Alto Cajas	1977	2020	2005	2020																
2	El Pajonal (Entre Ríos Tarija)	1943	2020	2005	2020																
3	Saykan Las Perulas	2001	2020	2005	2020																
4	Saladito Centro	2005	2020	2005	2020																
5	Berety	1979	2020	2005	2020																
6	El Huayco	2006	2019	2006	2019																
7	Yesera Sur	2002	2020	2005	2020																
8	Yesera Norte	1977	2020	2005	2020																
9	Itaú	1973	2019	2005	2019																
10	Tarupayo	1979	2020	2005	2020																
11	Narváez	1978	2020	2005	2020																


Fuente: Elaboración propia.


2 Análisis de precipitación

2.1 Análisis de consistencia

Utilizando la precipitación media de todas las estaciones como estación patrón, se realiza el análisis de consistencia con los datos de precipitaciones medias anuales de cada estación.

Figura 2. Análisis de consistencia doble masa acumulada

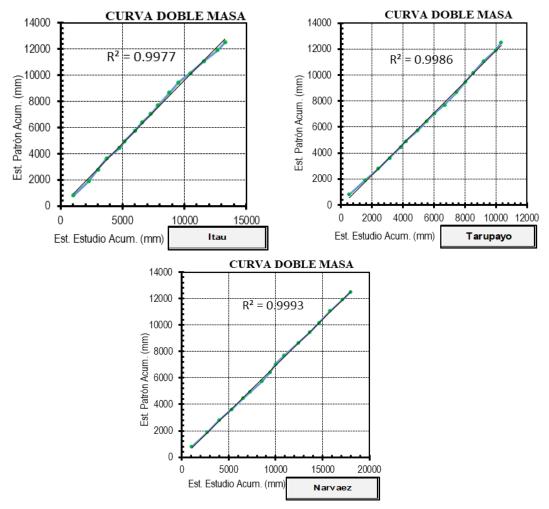
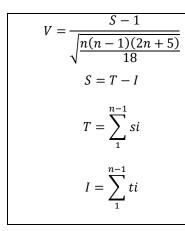


Tabla 2. Resumen análisis de consistencia método dobles acumuladas


N°	Estación	Coof D2 (0/)	Consistencia de	Periodos	Año			
14	Estacion	Coef. R2 (%)	datos	analizados	Inicial	Final		
1	Alto Cajas	99.88	Consistente	16	2005	2020		
2	Entre Ríos Tarija	99.91	Consistente	16	2005	2020		
3	Saykan Perulas	99.43	Consistente	16	2005	2020		
4	Saladito Centro	99.89	Consistente	16	2005	2020		
5	Berety	99.86	Consistente	16	2005	2020		
6	El Huayco	99.96	Consistente	16	2005	2020		
7	Yesera Sur	99.77	Consistente	16	2005	2020		
8	Yesera Norte	99.76	Consistente	16	2005	2020		
9	Itaú	99.77	Consistente	16	2005	2020		
10	Tarupayo	99.86	Consistente	16	2005	2020		
11	Narváez	99.93	Consistente	16	2005	2020		

2.2 Análisis de homogeneidad

2.2.1 Test de Mann Kendall

La prueba de homogeneidad de Mann-Kendall es un test no paramétrico, tiene una hipótesis nula sencilla y fácil de satisfacer. Este test detecta cualquier forma de tendencia, ya sean lineales o en forma de saltos, siempre que den una tendencia global, este test no es adecuado para series que presentan un componente estacional. La prueba de homogeneidad de Mann-Kendall es en realidad un test estadístico que conduce a elegir alguna de las siguientes respuestas:

- Hipótesis nula: Todos los valores de la serie son datos aleatorios de una sola población (es una serie homogénea).
- Hipótesis alternativa: Es una serie no homogénea con tendencia monótona.

Donde

N = Número de registros

S = Índice de desviación calculado

si = Número de valores de xj > xi para i < j < n

ti = Número de valores de xj < xi para i < j < n

Luego se elige un nivel de significancia α o valor de confiabilidad en función al cual se definirá la condición de homogeneidad de la serie. Este índice se relaciona con un valor de Vcrit a través de la función de distribución normal.

$\alpha =$	0.50%	1.00%	2.50%	5.00%	10.00%
α =	0,005	0,01	0,025	0,05	0,1
Vcrit	2.58	2.33	1.96	1.64	1.28

2.2.2 Prueba estadística t de Student

Si se considera una serie Q_i^j para $i = 1, 2, 3, ..., n_j$, del sitio j, la cual se divide en dos conjuntos de tamaño $n_1 = n_2 = \frac{n_j}{2}$, entonces el estadístico de prueba se define con la siguiente expresión.

$$t_d = \frac{\overline{x_1} - \overline{x_2}}{\left[\frac{n_{1*}s_1^2 + n_2 * s_2^2}{n_1 + n_2 - 2} * \left(\frac{1}{n_1} + \frac{1}{n_{21}}\right)\right]^{1/2}}$$

Donde:

 $\overline{x_1}$, s_1^2 = Son la media y la varianza de la primera parte del registro de tamaño n_1 $\overline{x_1}$, s_{21}^2 = Son la media y la varianza de la primera parte del registro de tamaño n_2

El valor absoluto de t_d se compara con el valor de la distribución t de Student, de dos colas y con $v = n_1 + n_2$ -2 grados de libertad y para un nivel de significancia: $\alpha = 0.05$.

Si y solo el valor absoluto de t_d es mayor que aquel de la distribución t de Student, se concluye que la diferencia entre las medias es evidencia de inconsistencia, y por lo tanto la serie Q_i^j se considera no homogénea. En caso contrario la serie es homogénea.

Tabla 3. Resumen análisis de homogeneidad

N°	Estación	Test de Mann- Kendall	Prueba estadística de t de Student	
1	Alto Cajas	Homogénea	Homogénea	
2	Entre Ríos Tarija	Homogénea	Homogénea	
3	Saykan Perulas	Homogénea	Homogénea	
4	Saladito Centro Homogénea		Homogénea	
5	Berety Homogénea		Homogénea	
6	El Huayco	Homogénea	Homogénea	
7	Yesera Sur	Homogénea	Homogénea	
8	Yesera Norte	No Homogénea	Homogénea	
9	Itaú	Homogénea	Homogénea	
10	Tarupayo	Homogénea	Homogénea	
11	Narváez	Homogénea	Homogénea	

Fuente: Elaboración propia.

Según el análisis se utilizaron las 11 estaciones para calcular las series de datos para la cuenca del río Pajonal.

3 Precipitaciones máximas

La precipitación máxima en 24 horas para la cuenca fue calculada a la base de datos históricos de lluvias máximas en 24 horas registradas en las estaciones de la tabla siguiente.

Tabla 4. Precipitaciones máximas en 24 horas

Año	Alto Cajas	Entre Ríos Tarija	Saykan Perulas	Saladito Centro	Berety	El Huayco	Yesera Sur	Yesera Norte	Itaú	Tarupayo	Narváez
2005	25.8	95	57	72.7	****	****	46	52.5	71	30	62
2006	35.8	65.8	74.2	92.8	90	83.5	39	43.5	104	73.9	80
2007	56.5	85.8	78	66.3	57	107.5	46	56	52	95.2	80
2008	40.6	93.3	48.2	81.3	31	94.1	54	68	67.5	62.6	82
2009	30.6	56.7	40.8	91.5	72.4	45	34.3	40	104.6	75.3	86.6
2010	23.3	55.9	20.2	80	50.2	39	34	43	34	45.3	75
2011	38.3	70.8	53.2	120.7	75.2	77	47	64.5	96.8	76	100.6
2012	43.5	55.8	35.2	40.3	75.3	50	37	35	59	140	57.5
2013	30.8	82.3	19.7	68.3	42	68	43	53	85	57	49.3
2014	40.2	69	57.2	40.2	62.3	40	46	43.5	****	48	84.5

2015	48.2	59	78.3	92	75.2	68	34.5	55	60	83	167
2016	37.2	111	63	89	78.8	85	48	34.5	60.2	63.5	77
2017	49.00	75.00	60.1	84.20	67.00	88	40	59.2	94	64.5	64.50
2018	46.00	65.00	76.2	111.00	79.00	80.00	34.00	47.00	95.00	38.00	65.00
2019	29.50	101.00	59.2	85.50	****	****	48.00	72.40	102.00	100.00	111.50
2020	33.00	69.00	79.5	84.00	****	****	63.00	****	****	48.50	67.00

A partir de estas series de datos podemos interpolar con el método IDW hacia el centro de gravedad de la cuenca del río Pajonal. de coordenadas UTM E: 369048.896 N: 7630839.363

Tabla 5. Serie de datos de Pmax

Año	P máx.
2005	78.70
2006	74.70
2007	76.20
2008	71.30
2009	63.10
2010	51.00
2011	74.60
2012	59.70
2013	62.70
2014	62.70
2015	72.00
2016	89.00
2017	71.40
2018	70.50
2019	92.30
2020	69.20

Fuente: Elaboración propia.

Con apoyo del software hidroesta y con datos de las precipitaciones máximas en 24 horas interpoladas se ha realizado el análisis de ajuste a las leyes de distribución como son: gamma de 2 parámetros, gamma de 3 parámetros (Pearson TIII), distribución Gumbel, log-Gumbel, mediante el test Smirnov Kolmogorov, se estima el menor Δ teórico del test para calcular la precipitación máxima con la ley de mejor ajuste.

Tabla 6. Delta teórico para diferentes distribuciones

Distribución	Δ teórico
Gamma de 2 P	0.0866
Gamma de 3 P	0.08889
Log Pearson TIII	0.1107
Gumbel	0.1348

Log Gumbel	0.1646
Δ teórico min	0.0866

Con el ajuste realizado se calcula las precipitaciones máximas para diferentes periodos de retorno con la ley gamma de 2 P.

Tabla 7. Pmax para diferentes T

T (años)	Pmáx gamma de 2 P
2	70.72
5	79.51
10	84.38
20	88.55
25	89.79
30	90.77
50	93.39
100	96.72
500	103.61
1000	106.29
5000	111.75
10000	113.65

Fuente: Elaboración propia.

3.1 Lluvias máximas horarias

La generación de precipitaciones máximas inferiores a la horaria, los podemos calcular a partir de los coeficientes de desagregación, en este caso se utilizó los coeficientes de desagregación de la estación Tarija Aeropuerto.

Tabla 8. Lluvias máximas horarias para diferentes duraciones y periodos de retorno

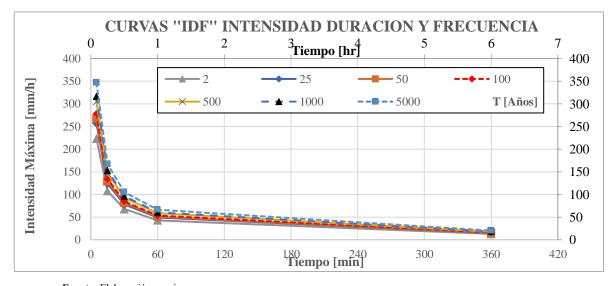
Dura	Duración Period			eriodo d	e Retorn	o T [años	Coeficiente de desagregación TARIJA AEROPUERTO			
(hr)	(min)	2	25	50	100	500	1000	5000	Intervalo	Coef.
0.08	5	14.52	18.44	19.18	19.86	21.28	21.83	22.95	5 min \ 30 min	0.40
0.25	15	26.87	34.11	35.48	36.74	39.36	40.38	42.45	15 min \ 30 min	0.74
0.50	30	36.30	46.09	47.94	49.65	53.19	54.56	57.37	30 min \ 1 hr	0.77
1.00	60	47.15	59.86	62.26	64.48	69.08	70.86	74.50	1 hr \ 24 hr	0.59
6.00	360	62.33	79.14	82.31	85.25	91.32	93.68	98.50	6 hr \ 24 hr	0.78
24.00	1440	79.91	101.46	105.53	109.29	117.08	120.11	126.28	24 hr \ 1 día	1.13

Fuente: Elaboración propia.

Las intensidades máximas se las calcula dividiendo la precipitación máxima entre el intervalo de tiempo de duración. Imax [mm/h] = Pmax [mm] / Duración (hr).

Tabla 9. Int. máximas [mm/h] para diferentes duraciones y periodos de retorno

Duración	Duración		Periodo de Retorno T [años]								
(hr)	(min)	2	25	50	100	500	1000	5000			
0.083	5	174.26	221.25	230.12	238.33	255.31	261.91	275.37			
0.250	15	107.46	136.44	141.91	146.97	157.44	161.51	169.81			
0.500	30	72.61	92.19	95.89	99.30	106.38	109.13	114.74			
1.000	60	47.15	59.86	62.26	64.48	69.08	70.86	74.50			
6.000	360	10.39	13.19	13.72	14.21	15.22	15.61	16.42			
24.000	1440	3.33	4.23	4.40	4.55	4.88	5.00	5.26			


El cálculo de las intensidades máximas podemos generalizarlas mediante el ajuste de las curvas IDF con datos de intensidad máxima calculada, esto a través de regresión por mínimos cuadrados mediante la ecuación de Bernard.

EC. IDF BERNARD
$$I = \frac{K \times T^m}{t^L}$$

$$I = \frac{626.7420 \times T^{0.056288}}{t^{0.66513}}$$

$$k = 626.7420391, m = 0.056288303, L = 0.6651$$

Figura 3. Curvas I.D.F. para diferentes periodos de retorno

3.2 Hietograma de diseño

A partir de las ecuaciones de regresión IDF, podemos calcular las intensidades para la duración de la tormenta de diseño de duración igual al tiempo de concentración de la cuenca, con estos datos podemos calcular el hietograma de la tormenta a través del método de bloque alterno. Se recomienda que el intervalo de simulación sea menor a 0.29 de T lag Δ t < 0.29*T lag.

 $\Delta t < 0.29*T lag.$

T lag = 0.6* Tc T lag = tiempo de rezago

Tc = 260 minutos

 $T \log = 156 \text{ minutos}$

 $\Delta t < 45.2 \text{ minutos}$

 $\Delta t = 20 \text{ minutos}$

Tiempo base mínimo

Tb min = 5 * Tc

Tb mínimo = 1300 minutos

Tormenta de diseño para una duración igual al tiempo de concentración Tc.

Tabla 10. Hietograma de diseño para periodo de retorno T=25 años

Duración [min]	I (mm/h)	P[mm]	ΔР	Orden	P[mm]
20	102.43	34.14	34.14	13	2.13
40	64.60	43.06	8.92	11	2.39
60	49.33	49.33	6.26	9	2.76
80	40.74	54.31	4.99	7	3.30
100	35.12	58.53	4.21	5	4.21
120	31.11	62.21	3.68	3	6.26
140	28.08	65.51	3.30	1	34.14
160	25.69	68.51	3.00	2	8.92
180	23.75	71.26	2.76	4	4.99
200	22.15	73.82	2.56	6	3.68
220	20.79	76.21	2.39	8	3.00
240	19.62	78.47	2.25	10	2.56
260	18.60	80.60	2.13	12	2.25
		Σ	80.60	Σ	80.60

Figura 4. Tormenta de diseño para T=25 años

Tabla 11. Hietograma de diseño para periodo de retorno T=50 años

■ mm de precipitación por instante tiempo

Duración [min]	I (mm/h)	P[mm]	ΔР	Orden	P[mm]
20	106.50	35.50	35.50	13	2.22
40	67.17	44.78	9.28	11	2.49
60	51.29	51.29	6.51	9	2.87
80	42.36	56.48	5.19	7	3.43
100	36.51	60.86	4.38	5	4.38
120	32.34	64.69	3.83	3	6.51
140	29.19	68.12	3.43	1	35.50
160	26.71	71.23	3.11	2	9.28
180	24.70	74.10	2.87	4	5.19
200	23.03	76.76	2.66	6	3.83
220	21.61	79.25	2.49	8	3.11
240	20.40	81.59	2.34	10	2.66
260	19.34	83.81	2.22	12	2.34
		Σ	83.81	Σ	83.81

Figura 5. Tormenta de diseño para T=50 años

Tabla 12. Hietograma de diseño para periodo de retorno T=100 años

■ mm de precipitación por instante tiempo

Duración [min]	I (mm/h)	P[mm]	ΔР	Orden	P[mm]
20	110.74	36.91	36.91	13	2.30
40	69.84	46.56	9.64	11	2.59
60	53.33	53.33	6.77	9	2.98
80	44.04	58.72	5.39	7	3.56
100	37.97	63.28	4.56	5	4.56
120	33.63	67.26	3.98	3	6.77
140	30.35	70.83	3.56	1	36.91
160	27.77	74.06	3.24	2	9.64
180	25.68	77.04	2.98	4	5.39
200	23.94	79.81	2.77	6	3.98
220	22.47	82.40	2.59	8	3.24
240	21.21	84.84	2.44	10	2.77
260	20.11	87.14	2.30	12	2.44
		Σ	87.14	Σ	87.14

Figura 6. Tormenta de diseño para T=100 años

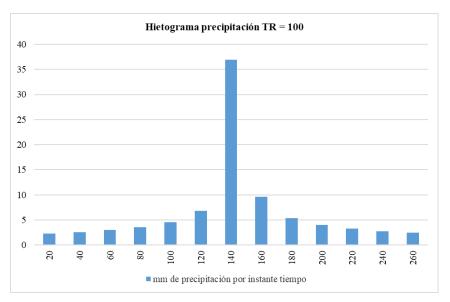


Tabla 13. Hietogramas para simulación en HEC-HMS

Tiempo	Tiempo	T 25	T 50	T 100
min	hr	Pmax	Pmax	Pmax
20	0.33	2.13	2.22	2.30
40	0.67	2.39	2.49	2.59
60	1.00	2.76	2.87	2.98
80	1.33	3.30	3.43	3.56
100	1.67	4.21	4.38	4.56
120	2.00	6.26	6.51	6.77
140	2.33	34.14	35.50	36.91
160	2.67	8.92	9.28	9.64
180	3.00	4.99	5.19	5.39
200	3.33	3.68	3.83	3.98
220	3.67	3.00	3.11	3.24
240	4.00	2.56	2.66	2.77
260	4.33	2.25	2.34	2.44

Hietograma de Diseño 40 35 Precipitación (mm) 30 25 20 15 10 5 1.33 1.67 2.33 3.33 4.33 T 25 4.21 6.26 34.14 8.92 3.68 2.56 2.25 T 50 6.51 35.5 9.28 5.19 2.34 3.43 4.38 3.83 3.11 2.66 5.39 ■T 100 2.98 3.56 4.56 6.77 36.91 9.64 3.98 3.24 2.77 2.44

Figura 7. Hietograma de diseño para HEC-HMS

4 Caudal de máxima crecida

4.1 Número de Curva (CN)

El coeficiente de escorrentía equivalente para el método del NRCS es el CN, su valor depende de elementos como el tipo de suelo, cobertura vegetal, pendiente del terreno, geología y otros factores de incidentes. Estos valores se estiman mediante cruce de mapas temáticos de los factores mencionados y se validan con inspección directa en campo. Los valores encontrados en el mapa se ponderan para el área de la cuenca, en este caso tenemos CN = 62.07.

4.2 Simulación de crecidas en HEC-HMS

El modelo HEC-HMS fue empleado para la modelación de las avenidas debido a su potencial en la simulación hidrológica, gran capacidad del algoritmo de cálculo y su amplio uso internacional. El modelo tiene un carácter lineal y semi-distribuido; posibilitando estimar los hidrogramas de salida en una cuenca o varias subcuencas a partir de eventos extremos de precipitación. Para ello aplica algunos de los métodos de cálculo de hidrogramas de diseño, pérdidas por infiltración, flujo base y conversión en escorrentía directa. La simulación calcula la transformación de lluvia-caudal en el modelo de la cuenca, siendo los datos requeridos un modelo meteorológico y las especificaciones de

control que definen el período para realizar la simulación y el intervalo a utilizar (USACE, 2013).

El método para estimar pérdidas se hizo a través del método del número de curva del NRCS, la transformación de precipitación efectiva en escurrimiento se hizo a través del método del hidrograma unitario del NRCS. Natural Resources Conservation Service.

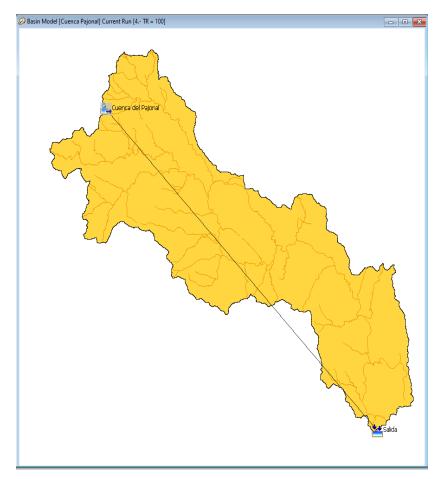
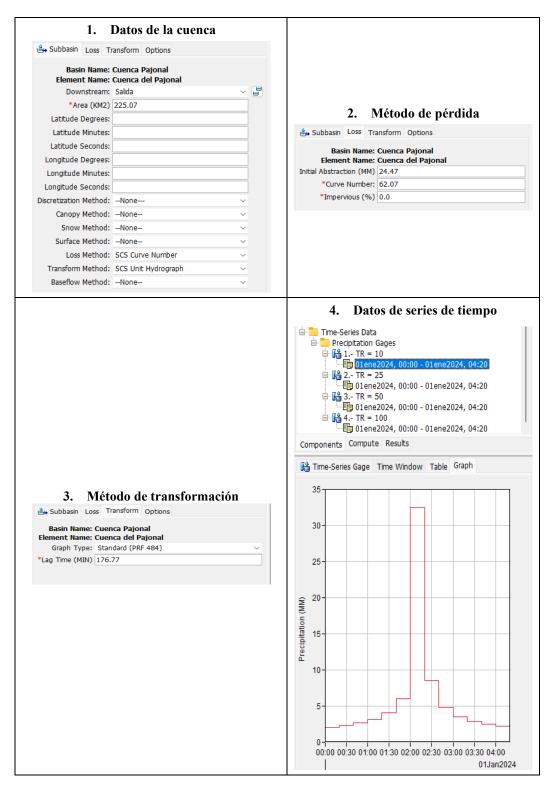



Figura 8. Esquema de drenaje en HEC-HMS

Fuente: Elaboración propia.

La simulación de crecidas se realizó para períodos de retorno de 25, 50 y 100 años (probabilidades de ocurrencia de 4%, 2% y 1%).

Tabla 14. Parámetros ingresados al modelo HEC-HMS

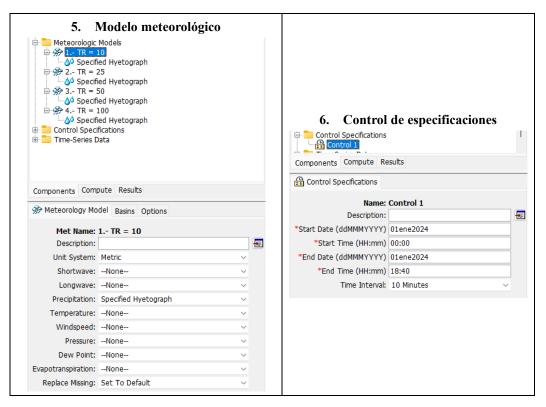


Figura 9. Resultados generados para T = 25 años

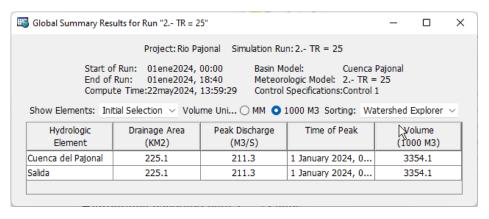


Figura 10. Hidrograma generado para T = 25 años

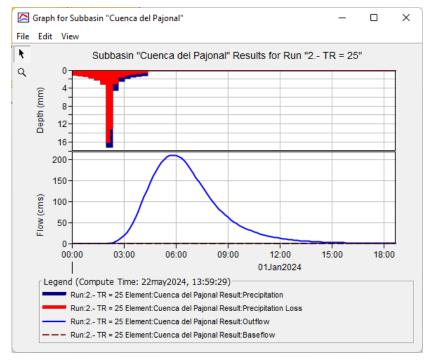


Figura 11. Resultados generados para T = 25 años

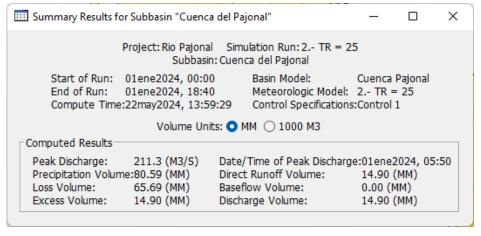


Figura 12. Resultados generados para T = 50 años

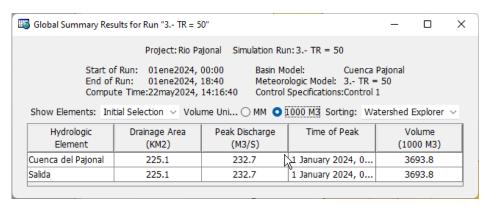


Figura 13. Hidrograma generado para T = 50 años

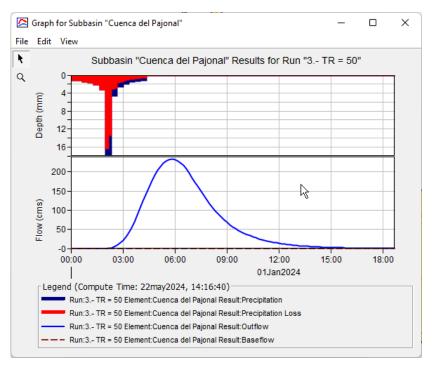


Figura 14. Resultados generados para T = 50 años

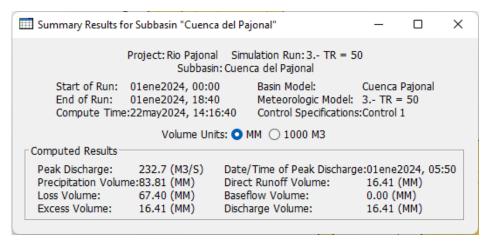


Figura 15. Resultados generados para T = 100 años

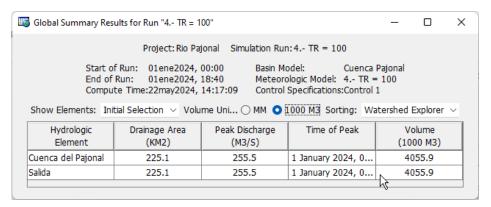


Figura 16. Hidrograma generado para T = 100 años

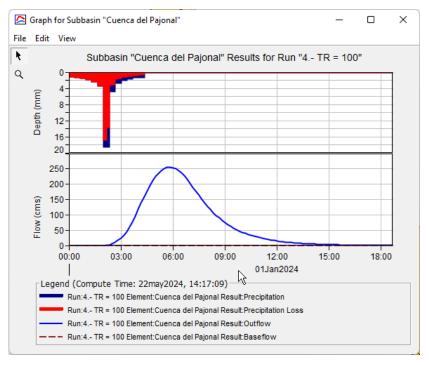
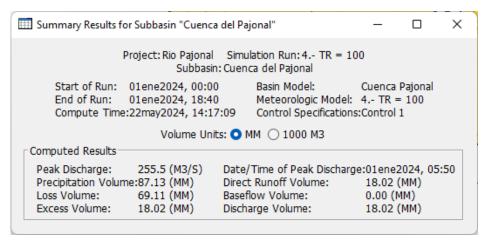



Figura 17. Resultados generados para T = 100 años

4.3 Caudales máximos generados

Tabla 15. Caudales máximos según periodo de retorno

T	(años)	25	50	100
Qmáx	(m^3/s)	211.30	232.70	255.50

Fuente: Elaboración propia.

Figura 18. Hidrograma de crecidas

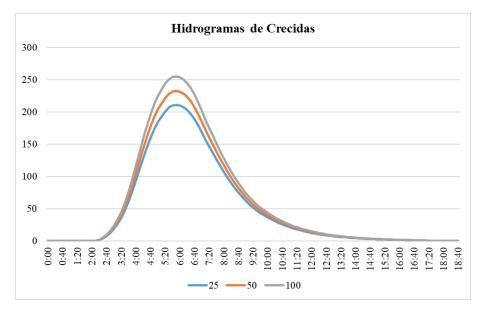


Tabla 16. Hidrograma de crecidas

	T años	25	50	100
FECHA	HORA	Q (m ³ /s)	Q (m ³ /s)	Q (m ³ /s)
01/01/2024	0:00	0.00	0.00	0.00
01/01/2024	0:10	0.00	0.00	0.00
01/01/2024	0:20	0.00	0.00	0.00
01/01/2024	0:30	0.00	0.00	0.00
01/01/2024	0:40	0.00	0.00	0.00
01/01/2024	0:50	0.00	0.00	0.00
01/01/2024	1:00	0.00	0.00	0.00
01/01/2024	1:10	0.00	0.00	0.00
01/01/2024	1:20	0.00	0.00	0.00
01/01/2024	1:30	0.00	0.00	0.00
01/01/2024	1:40	0.00	0.00	0.00
01/01/2024	1:50	0.00	0.00	0.00
01/01/2024	2:00	0.00	0.00	0.00
01/01/2024	2:10	0.20	0.30	0.30
01/01/2024	2:20	1.40	1.60	1.90
01/01/2024	2:30	3.70	4.20	4.80
01/01/2024	2:40	7.50	8.50	9.70

01/01/2024	2:50	12.60	14.30	16.10
01/01/2024	3:00	19.00	21.40	24.00
01/01/2024	3:10	26.80	30.10	33.70
01/01/2024	3:20	36.30	40.80	45.60
01/01/2024	3:30	47.80	53.60	59.80
01/01/2024	3:40	61.40	68.80	76.70
01/01/2024	3:50	77.10	86.30	96.10
01/01/2024	4:00	94.10	105.10	116.90
01/01/2024	4:10	111.50	124.30	138.00
01/01/2024	4:20	128.50	143.00	158.50
01/01/2024	4:30	144.70	160.80	178.00
01/01/2024	4:40	159.60	177.10	195.80
01/01/2024	4:50	172.90	191.60	211.50
01/01/2024	5:00	184.10	203.80	224.70
01/01/2024	5:10	193.50	213.90	235.70
01/01/2024	5:20	201.40	222.40	244.80
01/01/2024	5:30	207.20	228.60	251.40
01/01/2024	5:40	210.40	231.90	254.80
01/01/2024	5:50	211.30	232.70	255.50
01/01/2024	6:00	210.40	231.50	254.00
01/01/2024	6:10	207.70	228.40	250.40
01/01/2024	6:20	203.30	223.40	244.80
01/01/2024	6:30	197.10	216.50	237.10
01/01/2024	6:40	189.20	207.60	227.30
01/01/2024	6:50	179.60	197.00	215.40
01/01/2024	7:00	168.90	185.00	202.20
01/01/2024	7:10	157.70	172.70	188.70
01/01/2024	7:20	146.80	160.70	175.50
01/01/2024	7:30	136.20	149.10	162.80
01/01/2024	7:40	126.00	137.90	150.50
01/01/2024	7:50	116.20	127.10	138.70
01/01/2024	8:00	106.90	116.90	127.50
01/01/2024	8:10	98.00	107.20	117.00
01/01/2024	8:20	89.80	98.20	107.10
01/01/2024	8:30	82.10	89.80	98.00
01/01/2024	8:40	75.00	82.00	89.50
01/01/2024	8:50	68.40	74.80	81.70
01/01/2024	9:00	62.30	68.20	74.50
01/01/2024	9:10	56.80	62.20	67.90
01/01/2024	9:20	51.90	56.70	61.90
01/01/2024	9:30	47.40	51.80	56.60
01/01/2024	9:40	43.30	47.40	51.70
01/01/2024	9:50	39.60	43.30	47.30
01/01/2024	10:00	36.30	39.70	43.30
01/01/2024	10:10	33.20	36.30	39.70
01/01/2024	10:20	30.40	33.30	36.30
01/01/2024	10:30	27.80	30.40	33.20
01/01/2024	10:40	25.40	27.80	30.40

01/01/2024	10:50	23.20	25.40	27.70
01/01/2024	11:00	21.20	23.20	25.30
01/01/2024	11:10	19.30	21.10	23.10
01/01/2024	11:20	17.70	19.30	21.10
01/01/2024	11:30	16.10	17.70	19.30
01/01/2024	11:40	14.80	16.10	17.60
01/01/2024	11:50	13.50	14.80	16.10
01/01/2024	12:00	12.40	13.50	14.80
01/01/2024	12:10	11.30	12.40	13.50
01/01/2024	12:20	10.30	11.30	12.30
01/01/2024	12:30	9.40	10.30	11.30
01/01/2024	12:40	8.60	9.40	10.30
01/01/2024	12:50	7.90	8.60	9.40
01/01/2024	13:00	7.20	7.90	8.60
01/01/2024	13:10	6.60	7.20	7.90
01/01/2024	13:20	6.00	6.60	7.20
01/01/2024	13:30	5.50	6.00	6.60
01/01/2024	13:40	5.00	5.50	6.00
01/01/2024	13:50	4.60	5.00	5.50
01/01/2024	14:00	4.20	4.60	5.00
01/01/2024	14:10	3.90	4.20	4.60
01/01/2024	14:20	3.50	3.90	4.20
01/01/2024	14:30	3.20	3.60	3.90
01/01/2024	14:40	3.00	3.30	3.60
01/01/2024	14:50	2.70	3.00	3.30
01/01/2024	15:00	2.50	2.70	3.00
01/01/2024	15:10	2.30	2.50	2.80
01/01/2024	15:20	2.10	2.30	2.50
01/01/2024	15:30	1.90	2.10	2.30
01/01/2024	15:40	1.80	1.90	2.10
01/01/2024	15:50	1.60	1.80	1.90
01/01/2024	16:00	1.50	1.60	1.80
01/01/2024	16:10	1.30	1.50	1.60
01/01/2024	16:20	1.20	1.30	1.40
01/01/2024	16:30	1.10	1.20	1.30
01/01/2024	16:40	0.90	1.00	1.10
01/01/2024	16:50	0.80	0.90	0.90
01/01/2024	17:00	0.70	0.70	0.80
01/01/2024	17:10	0.50	0.60	0.60
01/01/2024	17:20	0.40	0.50	0.50
01/01/2024	17:30	0.30	0.40	0.40
01/01/2024	17:40	0.30	0.30	0.30
01/01/2024	17:50	0.20	0.20	0.30
01/01/2024	18:00	0.20	0.20	0.20
01/01/2024	18:10	0.10	0.10	0.20
01/01/2024	18:20	0.10	0.10	0.10
01/01/2024	18:30	0.10	0.10	0.10
01/01/2024	18:40	0.00	0.00	0.00
oroción propia				

Tabla de Contenido – Anexo 4

Anexo 4. Estudio hidráulico	133	
1 Breve descripción		
2 HEC-RAS	133	
2.1 Tipo de modelamiento usado	135	
2.2 Modelo de terreno de elevación	136	
2.3 Coeficientes de Manning	137	
2.4 Condiciones de contorno	138	
2.4.1 Condiciones de contorno aguas arriba	139	
2.4.2 Condiciones de contorno aguas abajo	140	
3 Configuración del programa	141	
3.1 Configuración de la malla 2D	141	
3.2 Líneas de quiebre	142	
3.3 Región de refinamiento de la malla	142	
3.4 Configuración de los datos de flujo no permanent	te144	
4 RAS Mapper	145	
4.1 Sistema de referencia espacial	145	
5 Ejecución y configuración del modelo	148	
5.1 Resumen de la configuración del programa	150	
6 Resultados	152	
6.1 Tirantes	152	
6.2 Velocidades	152	
6.3 Tirante en el estribo izquierdo del puente	153	
6.4 Tirante en el estribo derecho del puente	154	
6.5 Tirante en el pilar del puente	154	
7 Resumen	156	
Índice de Tablas		
Tabla 1. Resumen de los coeficientes de Manning	137	
Tabla 2. Hidrograma de flujo para 100 años	139	
Tabla 3. Resumen de los tirantes	156	

Índice de Mapas

Mapa 1. Área de inundación	135
Mapa 2. DEM del área de inundación	136
Mapa 3. Coeficientes de Manning	138
Índice de Gráficos	
Gráfico 1. Representación esquemática en RAS Mapper	141
Gráfico 2. Configuración de la malla	141
Gráfico 3. Líneas de quiebre	142
Gráfico 4. Región de refinamiento	143
Gráfico 5. Espaciado de la región de refinamiento	143
Gráfico 6. Datos de flujo no permanente	144
Gráfico 7. Hidrograma de flujo	144
Gráfico 8. Pendiente del modelo	145
Gráfico 9. Referencia especial del modelo	146
Gráfico 10. Terreno en formato HDF	146
Gráfico 11. Nuevos datos para los coeficientes de Manning	147
Gráfico 12. Opciones y tolerancias 2D de cálculo	149
Gráfico 13. Configuración de la ejecución del modelo	150
Gráfico 14. Tirantes en el tramo de estudio	152
Gráfico 15. Velocidades en tramo de estudio	153
Gráfico 16. Tirante en el estribo izquierdo del puente	153
Gráfico 17. Tirante en el estribo derecho del puente	154
Gráfico 18. Tirante en el pilar del puente	154
Índice de Fotografías	
Fotografía 1. Composición del lecho aguas arriba del puente	147
Fotografía 2. Composición del lecho aguas arriba del puente	147
Fotografía 3. Composición del lecho aguas abajo del puente	148
Fotografía 4. Composición del lecho en el pilar central del puente	148
Fotografía 5. Marca alta de agua en el puente	155

Anexo 4. Estudio hidráulico

1 Breve descripción

Todos los modelos, numéricos o a escala, son representaciones simplificadas del mundo real (prototipo). Afortunadamente, hay numerosos problemas de ingeniería práctica para los cuales los modelos numéricos simplificados del prototipo son suficientes para proporcionar descripciones utilizables del comportamiento del sistema. El desafío para el modelador es seleccionar un modelo apropiado para resolver su problema particular de ingeniería, reconociendo al mismo tiempo que el modelo no es una representación perfecta del prototipo. La selección de un modelo comienza con el desarrollo de una comprensión de qué aspectos del complejo sistema del mundo real son los más importantes para el problema de ingeniería que se está tratando.

2 HEC-RAS

La aplicación de los modelos numéricos para describir el comportamiento de un flujo de agua se convierte en la actualidad en una herramienta de mucha importancia debido a que existe la necesidad imperiosa de predecir los fenómenos naturales para anticipar el comportamiento y tomar ciertas medidas preventivas y correctivas sobre la zona de influencia del paso del agua.

Inicialmente los modelos numéricos basaban su aplicación en que el flujo simulado sea unidimensional (1D), es decir que solo se consideraba el componente de la velocidad en la dirección del flujo, lo que resultaba en una gran limitante para conocer el comportamiento real del agua con mayor precisión; siendo esto una de las causas, el hecho de que no se ajustaba adecuadamente a la morfología del terreno por donde circula el flujo de agua.

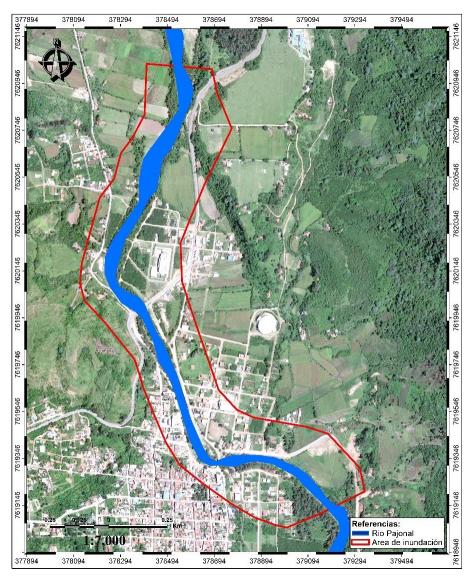
En la actualidad los modelos numéricos, asistidos con la capacidad de procesamiento de los nuevos ordenadores, permiten adecuarse a un esquema en dos dimensiones (2D), donde predominan las dimensiones horizontales sobre la vertical, y de esta manera conocer con mayor precisión las variables hidráulicas cuantificables (calado, velocidad, caudal, etc.) sobre la planicie de influencia al paso del agua.

Hydrologic Engineering Center River Analysis System (HEC-RAS) es una herramienta que ha venido evolucionando, y que a la fecha en su versión 5.0.1, cuenta con una extensión que permite simular el flujo de agua combinando modelos 1D y 2D, así como solo modelamiento 2D; basa su aplicación en las ecuaciones de la onda de difusión y saint venant las cuales se resuelven mediante el algoritmo de volúmenes finitos implícitos. Lo novedoso de esta nueva versión, es que incorpora la ventana de interface RAS Mapper en la que se introduce el modelo digital de elevación, el cual es fundamental para la simulación en 2D.

Las simulaciones hidráulicas permiten un análisis de la interrelación entre la topografía del cauce de un rio, los volúmenes de agua y los sedimentos transportados, y muestra de qué manera las obstrucciones u obras hidráulicas que se presentan en el cauce influyen en el nivel de agua. La extensión HEC-GeoRAS es una poderosa herramienta técnica y constituye de hecho el estándar internacional en los estudios relativos a inundaciones.

Utilizando la extensión GeoRAS, es posible obtener el alineamiento del cauce principal y las características de las bancas y secciones transversales como insumo para el modelo HEC-RAS. Esta información permite realizar el análisis hidráulico del tramo en cuestión a partir de las condiciones de contorno y la calibración de los parámetros del modelo, fundamentalmente el coeficiente de rugosidad de Manning, utilizando datos registrados de niveles en varias secciones transversales.

HEC-GeoRAS es un conjunto de herramientas y utilidades para procesar datos georreferenciados en ArcGIS. La interface permite preparar los datos geométricos para ser utilizados con HEC-RAS, así como convertir los resultados del cálculo para ser visualizados o tratados en ArcGIS. La extensión permite a los usuarios en Sistemas de Información Geográfica (SIG) crear un archivo de importación a HEC-RAS que contiene datos geométricos de un Modelo Digital de Elevación (MDE) existente y conjuntos de datos complementarios.


HEC-GeoRAS crea un archivo de importación, llamado aquí RAS GIS Import File, incluyendo el cauce del rio, secciones transversales, etc. Datos complementarios relativos a la definición geométrica de las alineaciones de los diques, las zonas de flujo inefectivas,

obstáculos, y de las zonas de almacenamiento pueden ser escritos en el archivo RAS GIS Import File.

2.1 Tipo de modelamiento usado

HEC-RAS en sus versiones más recientes ya puede realizar tránsitos bidimensionales (2D) dentro de la porción de análisis de flujo no permanente del software. En este estudio se usó el modelamiento bidimensional en flujo no permanente.


Para modelar toda el área de inundación se usa una malla de área de flujo 2D junto con un polígono que representa los coeficientes de rugosidad de Manning.

Mapa 1. Área de inundación

2.2 Modelo de terreno de elevación

Es esencial tener un modelo detallado y preciso del terreno para crear un modelo hidráulico detallado y preciso. La calidad de los datos del terreno puede ser un factor limitante en la calidad del modelo hidráulico que el usuario puede crear. Los datos del terreno provienen de muchas fuentes, formatos y niveles de detalle diferentes. Actualmente, HEC-RAS utiliza datos de grillas en varios formatos para representar el terreno.

Mapa 2. DEM del área de inundación

2.3 Coeficientes de Manning

Los coeficientes de rugosidad representan la resistencia a los flujos de inundación en canales y llanuras de inundación. Todos los cálculos hidráulicos que implican flujo en canales abiertos requieren una evaluación de las características de rugosidad del canal. A falta de un procedimiento cuantitativo satisfactorio, esta evaluación sigue siendo principalmente un arte.

Los datos de rugosidad necesarios para un modelo incluyen estimaciones de los coeficientes de rugosidad del terreno, o valores de fricción superficial, para el canal y las áreas de la llanura de inundación derecha e izquierda para cada sección transversal del modelo.

Tabla 1. Resumen de los coeficientes de Manning

N°	Detalle	n	Área (km²)	Porcentaje
1	Antrópicos	0.045	0.011	1.28
2	Bosques ralos o vegetación de río	0.16	0.105	12.53
3	Bosques tupidos	0.08	0.129	15.31
4	Caminos	0.05	0.137	16.27
5	Cultivos intensivos	0.06	0.060	7.18
6	Pastos ralos	0.07	0.035	4.20
7	Praderas	0.035	0.161	19.07
8	Rio	0.025	0.115	13.61
9	Zonas urbanas	0.055	0.089	10.54
TOTAL			0.842	100.00

Fuente: Elaboración propia.

Para asignar los coeficientes de Manning a la llanura de inundación se delimito los sectores con la ayuda de un programa de SIG.

378940 intropicos = 0.045

Mapa 3. Coeficientes de Manning

2.4 Condiciones de contorno

Las condiciones de contorno se requieren en los limites externos al modelo y deben definirse para todos los intervalos de tiempo. Por lo tanto, las condiciones de contorno en los modelos de flujo no permanente se especifican a menudo como datos de series de tiempo en lugar de valores fijos que se utilizan en los modelos de flujo permanente. Los hidrogramas de caudal de entrada (que describen el caudal de entrada a lo largo del tiempo) se definen a menudo en los limites aguas arriba. En los limites aguas abajo,

generalmente se suele definir un tirante normal (en cuyo caso el modelo generará el nivel de agua en cada intervalo de tiempo dependiendo del flujo en ese intervalo de tiempo).

2.4.1 Condiciones de contorno aguas arriba

La condición de contorno usado aguas arriba es el hidrograma de flujo calculado para cien años de periodo de retorno, esta condición de contorno puede ser aguas arriba o aguas abajo, pero comúnmente es más usado como una condición de contorno aguas arriba.

Tabla 2. Hidrograma de flujo para 100 años

N	Flujo (m ³ /s)	N	Flujo (m³/s)
1	0.30	51	36.30
2	0.30	52	33.20
3	1.90	53	30.40
4	4.80	54	27.70
5	9.70	55	25.30
6	16.10	56	23.10
7	24.00	57	21.10
8	33.70	58	19.30
9	45.60	59	17.60
10	59.80	60	16.10
11	76.70	61	14.80
12	96.10	62	13.50
13	116.90	63	12.30
14	138.00	64	11.30
15	158.50	65	10.30
16	178.00	66	9.40
17	195.80	67	8.60
18	211.50	68	7.90
19	224.70	69	7.20
20	235.70	70	6.60
21	244.80	71	6.00
22	251.40	72	5.50
23	254.80	73	5.00
24	255.50	74	4.60
25	254.00	75	4.20
26	250.40	76	3.90
27	244.80	77	3.60
28	237.10	78	3.30
29	227.30	79	3.00
30	215.40	80	2.80
31	202.20	81	2.50
32	188.70	82	2.30
33	175.50	83	2.10
34	162.80	84	1.90
35	150.50	85	1.80
36	138.70	86	1.60
37	127.50	87	1.40
38	117.00	88	1.30

39	107.10	89	1.10
40	98.00	90	0.90
41	89.50	91	0.80
42	81.70	92	0.60
43	74.50	93	0.50
44	67.90	94	0.40
45	61.90	95	0.30
46	56.60	96	0.30
47	51.70	97	0.20
48	47.30	98	0.20
49	43.30	99	0.10
50	39.70	100	0.10

2.4.2 Condiciones de contorno aguas abajo

Probablemente, la condición de contorno aguas abajo más común y más utilizada en HEC-RAS tanto en flujo permanente y flujo no permanente es la asunción de tirante normal. Esta opción, asume que su río fluye bajo condiciones de flujo normal (flujo uniforme) en el contorno aguas abajo del modelo. Esta opción permite proporcionar una pendiente de energía, y luego HEC-RAS volverá a calcular automáticamente el tirante utilizando la ecuación de Manning. La popularidad de este método se debe a su facilidad de uso y a sus propiedades semi dinámicas (es decir, a medida que cambia el flujo, también lo hará el tirante del contorno aguas abajo).

La ecuación de Manning, tal y como se utiliza hoy en día, es.

$$V = \frac{k}{n} R^{2/3} s_o^{1/2}$$

Donde:

k = 1.486 para el sistema inglés y 1.0 para el sistema internacional

n = El coeficiente de rugosidad de Manning

La *n* de Manning tiene el mismo valor si se utiliza en el sistema de unidades inglesas o en el Sistema Internacional (SI).

Para este tipo de condición de contorno, se debe introducir el valor de la pendiente de energía. Este valor se utiliza para calcular el tirante normal (ecuación de Manning) en esa ubicación. Se puede calcular un tirante normal para cada perfil basándose en la pendiente introducida por el usuario. Cuando se aplique esta condición de contorno, debe colocarse

lo suficientemente lejos aguas abajo, de forma que cualquier error que produzca no afecte a los resultados en el tramo de estudio, el valor usado es de 0.004.

3 Configuración del programa

Para simular la llanura de inundación de la zona donde se encuentra emplazado el puente se usó una malla de área de flujo 2D.

Menage (the Print Land Admit to 1)

Gráfico 1. Representación esquemática en RAS Mapper

Fuente: Elaboración propia.

3.1 Configuración de la malla 2D

La malla del área de flujo 2D general se configuro con tamaño de celda de 10 metros, para toda la extensión del área de inundación.

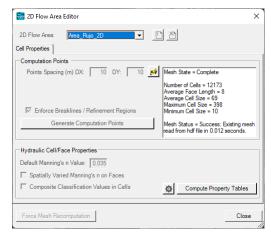


Gráfico 2. Configuración de la malla

3.2 Líneas de quiebre

Después de que se cree la malla computacional, se añadió líneas de quiebre para forzar la malla a alinear las caras de las celdas computacionales a lo largo de las líneas de quiebre. En general, las líneas de quiebre se incorporó en los márgenes donde termina la llanura de inundación que son una barrera para el flujo, y que controle el flujo/dirección. Luego se alineo las caras de la malla 2D para las áreas que son barreras para el flujo con el fin de capturar con precisión el terreno elevado con las caras de las celdas.

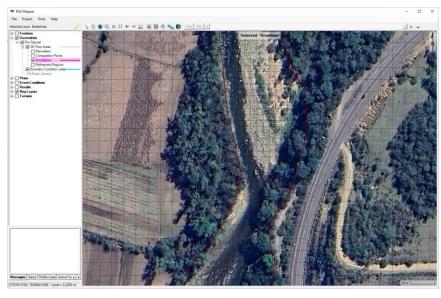
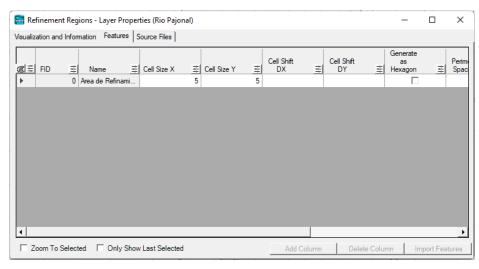


Gráfico 3. Líneas de quiebre

Fuente: Elaboración propia.

3.3 Región de refinamiento de la malla

Las regiones de refinamiento son una herramienta de edición de la malla que permite refinar o hacer más gruesa un área de la malla. Se utilizo una región de refinamiento para densificar un área en la que se deseen obtener resultados más detallados debido a los rápidos cambios en el terreno o en la elevación de la lámina del agua, o para simplificar un área en la que la elevación de la lámina del agua no varíe mucho y en las que se quiso reducir el número de puntos de cálculo en el área de flujo 2D. Esta región de refinamiento se usó para crear una buena malla en zona del canal principal del modelo.


The Project Tools Help
Selected User Platformer Regions

| Total Plants | Total Line | Total Lin

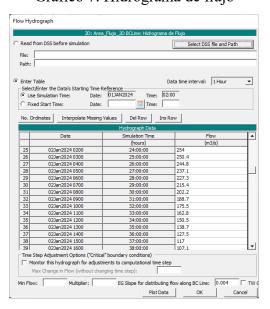
Gráfico 4. Región de refinamiento

La configuración de la región de refinamiento se utilizó un tamaño de celda X de 5 metros y un tamaño de celda Y de 5 metros. Un tamaño mucho menor que la malla del área de flujo 2D.

Gráfico 5. Espaciado de la región de refinamiento

3.4 Configuración de los datos de flujo no permanente

Los datos de flujo no permanente fueron configurados de la siguiente forma para las dos condiciones de contornos (aguas arriba y aguas abajo) del modelo.


Gráfico 6. Datos de flujo no permanente

Fuente: Elaboración propia.

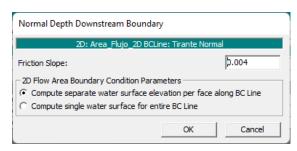

Aguas arriba del modelo se introdujo un hidrograma de caudal de entrada lateral de 100 años de periodo de retorno (1%).

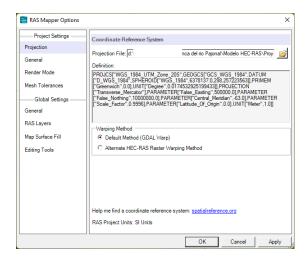
Gráfico 7. Hidrograma de flujo

Aguas abajo del modelo se introdujo la pendiente del modelo que se calculó en 0.004 una pendiente moderada.

Gráfico 8. Pendiente del modelo

Fuente: Elaboración propia.

4 RAS Mapper


El módulo de RAS Mapper es una interfaz a la que se accede desde el programa principal de HEC-RAS y proporciona una visualización geoespacial de la geometría de HEC-RAS, los resultados de la simulación y otros datos geoespaciales pertinentes para ayudar a crear eficazmente modelos hidráulicos fluviales.

4.1 Sistema de referencia espacial

El primer paso para crear un proyecto en el RAS Mapper es establecer el sistema de coordenadas en el que se va a trabajar para los datos geoespaciales del proyecto. El establecimiento de la proyección para un proyecto asegurará que el terreno y los datos geométricos estén todos en un sistema de coordenadas común y le permitirá utilizar los datos de fondo de otro sistema de coordenadas para ayudar en el desarrollo y análisis del modelo.

La georreferencia establecida en el modelo es el UTM WGS 84 Zona 20 Sur, es la posición espacial donde se ubica el proyecto.

Gráfico 9. Referencia especial del modelo

Los datos del terreno se exportaron de un DEM de extensión *.tif, luego el programa lo convierte a un terreno de extensión *.hdf

Proper Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Profes Lives | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

| Managem Vises | Actor For a | 1.3

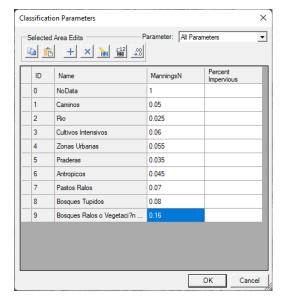

| Ma

Gráfico 10. Terreno en formato HDF

Fuente: Elaboración propia.

Los coeficientes de Manning se exportaron desde polígonos creados en ArcGIS. El programa los convierte a un formato ráster, anulando así el coeficiente de Manning por defecto y utilizando en su lugar estos nuevos datos personalizados creados específicamente para el área de inundación.

Gráfico 11. Nuevos datos para los coeficientes de Manning

Fotografía 1. Composición del lecho aguas arriba del puente

Fuente: Elaboración propia

Fotografía 2. Composición del lecho aguas arriba del puente

Fotografía 3. Composición del lecho aguas abajo del puente

Fotografía 4. Composición del lecho en el pilar central del puente

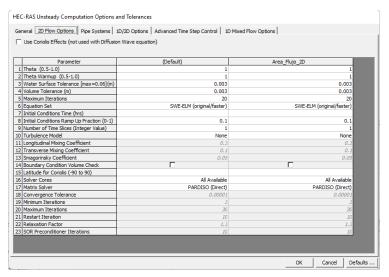
Fuente: Elaboración propia

5 Ejecución y configuración del modelo

En la configuración del modelo se activó el preprocesamiento geométrico, la simulación de flujo no permanente y el post procesamiento. El intervalo del tiempo computacional se configuro en 3 segundos. Este intervalo se determinó resolviendo la condición de Courant, se obtendría lo siguiente para el intervalo de tiempo:

$$C = \frac{V_w \Delta t}{\Delta X} \le 1.0$$

Por lo tanto, asumiendo un número de Courant de 1 se obtiene:


$$\Delta t \le \frac{\Delta X}{V_w} = \frac{10}{2.75} = 3.64 \ segundos$$

Donde:

Símbo	lo Descripción	Unidades
C	Numero de Courant	
ΔT	Intervalo de tiempo	segundo
ΔX	Tamaño promedio de las celdas	metros
V_{w}	Velocidad de la onda de la inundación	metros/segundo
]	Fuente: Manual de usuario de modelamiento 2D de Hydrologic En	ngineering Center, 2023

Para la solución del modelo se usó las ecuaciones de aguas poco profundas (SWE-EM), este método utiliza un esquema de solución explícito para resolver las ecuaciones. Aunque este método es más conservador en cuanto al momentum, requiere intervalos de tiempo computacional más pequeños (es decir, en general, debe seleccionarse un intervalo de tiempo adecuado para asegurar que el número de Courant sea inferior a 1,0).

Gráfico 12. Opciones y tolerancias 2D de cálculo

Fuente: Elaboración propia.

La configuración de la ejecución del modelo en flujo no permanente, se realizó con los siguientes datos, fecha de inicio 1 de junio del 2024, hora de inicio 02:00, fecha de finalización 1 de junio del 2024 y hora de finalización 18:30, intervalo de cálculo de 3 segundos, el intervalo de salida del mapeo en 30 segundos, y el intervalo de salida del hidrograma de 5 minutos.

L Unsteady Flow Analysis X File Options Help Plan: Modelo_100 Short ID: 100 Rio Pajonal Geometry File: ▾ Unsteady Flow File: Hidrograma Final Plan Description Programs to Run Geometry Preprocessor Unsteady Flow Simulation Sediment Post Processor Floodplain Mapping Simulation Time Window 01JAN2024 Starting Date: Starting Time: 02:00 01JAN2024 18:30 Ending Date: Ending Time: Computation Settings Computation Interval: 3 Second Hydrograph Output Interval: 5 Minute 30 Second Mapping Output Interval: Detailed Output Interval: 5 Minute Project DSS Filename: d: \Aldo Consultorias \Cuenca del rio Pajonal \Modelo HEC-RA! Compute

Gráfico 13. Configuración de la ejecución del modelo

5.1 Resumen de la configuración del programa

- Se estableció una proyección de coordenadas horizontales para usarla en el modelo, desde el RAS Mapper. Esto se hace normalmente seleccionando un archivo de proyección existente de un archivo shapefile de ESRI o de otra capa de mapeo.
- 2. Se desarrollo un modelo de terreno en el RAS Mapper. El modelo del terreno es un requisito para el modelamiento 2D, ya que se utiliza para establecer las propiedades geométricas e hidráulicas de las celdas 2D y las caras de las celdas. También se necesita un modelo de terreno para realizar cualquier mapeo de inundaciones en el RAS Mapper.
- 3. Se elaboro un conjunto de datos de capas de la n de Manning usando ArcGIS, utilizando capas de datos de cobertura terrestre y capas de polígonos, con el fin de establecer los valores de la n de Manning dentro de las áreas de flujo 2D. Además, el HEC-RAS tiene una opción para los polígonos definidos por el usuario que se puede utilizar para anular los valores de la n de Manning de base. Estos polígonos definidos por el usuario pueden ser usados como zonas de calibración.

- 4. Se incorporo cualquier capa de mapeo adicional que pueda ser necesaria para la visualización, como la fotografía aérea, la ubicación de la presa, las redes de carreteras, el puente, etc.
- Desde el interior del RAS Mapper se dibuja un polígono límite para el área de flujo
 2D a modelar. O puede importarse las coordenadas de los límites X, Y de otra fuente.
- 6. Utilizando el editor de área de flujo 2D, se creó la malla computacional 2D para el área de flujo 2D.
- 7. Editar la malla del área de flujo 2D para mejorarla, como, por ejemplo: agregar líneas de quiebre adicional; usar la opción de regiones de refinamiento para aumentar o disminuir la densidad de las celdas según sea necesario; añadir, mover o eliminar centros de celdas donde sea necesario. Se usó la herramienta de región de refinamiento de la malla para hacer una malla bonita del canal.
- 8. Es importante ejecutar el preprocesamiento geométrico 2D del RAS Mapper para crear las tablas de propiedades hidráulicas de las celdas y las caras de la grilla.
- 9. Se introdujo todos los datos de las condiciones iniciales y de contorno necesarios para el área de flujo 2D en el editor de datos de flujo no permanente.
- 10. Desde la ventana de simulación de flujo no permanente, se estableció las opciones y configuraciones de cálculo necesarias para las áreas de flujo 2D.
- 11. Finalmente se ejecutó la simulación de flujo no permanente.

6 Resultados

6.1 Tirantes

Los tirantes en la llanura de inundación próximos al puente varían, desde 0 metros, hasta 4.71 metros en el canal mismo del tramo de estudio.

Gráfico 14. Tirantes en el tramo de estudio

Fuente: Elaboración propia.

6.2 Velocidades

Las velocidades en las zonas de la planicie de inundación generalmente son de agua estancada, con una velocidad de 0 m/s. Sin embargo, en el canal del tramo, las velocidades alcanzan un valor de 1.30 m/s.

RAS Mapper
| Fac Paper
| Fa

Gráfico 15. Velocidades en tramo de estudio

6.3 Tirante en el estribo izquierdo del puente

El tirante máximo que se registró en el estribo izquierdo del puente fue de 3.29 metros.

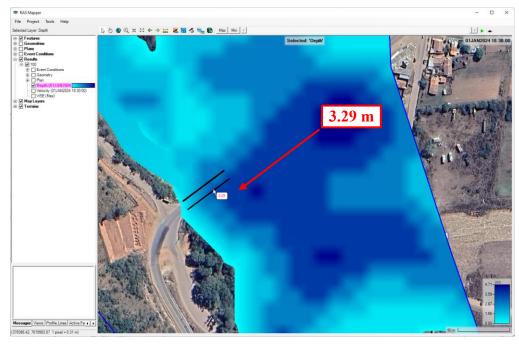


Gráfico 16. Tirante en el estribo izquierdo del puente

6.4 Tirante en el estribo derecho del puente

El tirante máximo que se registró en el estribo derecho del puente fue de 3.26 metros.

The Project Tools Help

Statement layer Dark

Fig. Plane

Fig. Pla

Gráfico 17. Tirante en el estribo derecho del puente

Fuente: Elaboración propia.

6.5 Tirante en el pilar del puente

El tirante máximo que se registró cerca del pilar del puente fue de 3.11 metros.

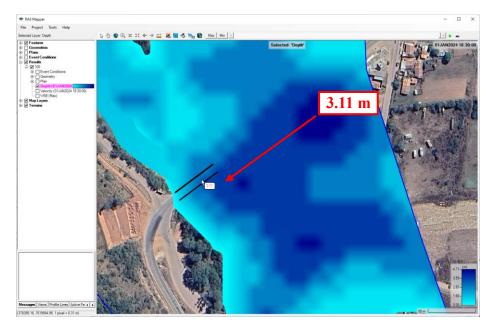


Gráfico 18. Tirante en el pilar del puente

Este valor se aproxima al medido en el puente Salinas. El valor calculado es de 3.29 metros, mientras que la marca más alta registrada en el puente es de 3.40 metros.

Fotografía 5. Marca alta de agua en el puente

7 Resumen

En la siguiente tabla se resumen los tirantes calculados por HEC-RAS para tres ubicaciones dentro del puente: uno en el estribo izquierdo, otro en el pilar del tablero del puente y el tercero en el estribo derecho.

Tabla 3. Resumen de los tirantes

Tirantes calculados en el puente Salinas de Entre Ríos Periodo de retorno de 100 años (1%)			
Perfil	Caudal máximo m ³ /segundo	Valor del tirante	
Estribo izquierdo del puente	255.5	3.29	
Estribo derecho del puente	255.5	3.26	
Tirante en el pilar del puente	255.5	3.11	