# UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA QUÍMICA



# SIMULACIÓN DE LA PLANTA DE PRODUCCIÓN DE AMONIACO-UREA DE BULO-BULO COCHABAMBA

Por:

## CARLOS ALEJANDRO VARGAS JIMÉNEZ

Modalidad de graduación (Modelación y Simulación de Procesos) presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de licenciatura en Ingeniería Química.

TARIJA-BOLIVIA

#### **Dedicatoria**

Dedico este trabajo a mis docentes, quienes han sido faros de sabiduría, guiándome a través de las complejidades del conocimiento. A cada uno de ustedes, les agradezco sinceramente por su dedicación, paciencia y compromiso con mi aprendizaje.

Quiero dedicar estas páginas a los futuros alumnos que se aventurarán en este apasionante camino académico. Que encuentren en estas líneas no solo conocimiento, sino también inspiración para enfrentar sus propios desafíos y descubrimientos. Que este trabajo sirva como un faro que ilumine sus propios proyectos y que encuentren en cada página la motivación para explorar, aprender y contribuir al crecimiento del conocimiento.

# ÍNDICE

| Paginas                                                                             |
|-------------------------------------------------------------------------------------|
| Advertenciai                                                                        |
| Dedicatoriaii                                                                       |
| Agradecimiento                                                                      |
| Pensamientoiv                                                                       |
| RESUMENviii                                                                         |
| Antecedentes                                                                        |
| Objetivos : General y específicos                                                   |
| Objetivo General                                                                    |
| Objetivos Específicos                                                               |
| Justificación                                                                       |
| CAPÍTULO I                                                                          |
| MARCO TEÓRICO                                                                       |
| 1.1. Generalidades del amoniaco                                                     |
| 1.1.1. Información general del Amoniaco6                                            |
| 1.2. Descripción de la industria química de la Urea                                 |
| 1.2.1. Información general                                                          |
| 1.2.2. Principales empresas productoras de Urea a nivel intercontinental y nacional |
| 1.3. Procesos de obtención de Amoniaco y Urea                                       |
| 1.3.1. Procesos de obtención de amoniaco a nivel industrial16                       |
| 1.3.1.1. Proceso de obtención de amoniaco con reformado de vapor19                  |

| 1.3.1.2. Proceso de obtención de amoniaco por oxidación parcial         | 27     |
|-------------------------------------------------------------------------|--------|
| 1.3.1.3. Resultado de la producción de amoniaco                         | 27     |
| 1.3.1.4. Proceso de obtención con amoniaco verde                        | 30     |
| 1.3.2. Proceso de producción de Urea a nivel industrial                 | 34     |
| 1.3.2.1. Proceso de obtención de urea por el proceso thermo-urea        | 34     |
| 1.3.2.1.1. Obtención de CO <sub>2</sub>                                 | 36     |
| 1.3.2.1.2. Obtención de amoniaco                                        | 37     |
| 1.3.2.1.3. Formación de carbamato                                       | 38     |
| 1.3.2.1.4. Degradación del carbamato y reciclado                        | 39     |
| 1.3.2.1.5. Síntesis de urea                                             | 40     |
| 1.3.2.1.6. Formación de Biuret                                          | 40     |
| 1.3.2.1.7. Deshidratación, concentración y granulación                  | 41     |
| 1.4. Planta de Bulo-Bulo Cochabamba                                     | 42     |
| 1.4.1. Historia de la planta de Bulo-Bulo                               | 42     |
| 1.4.2. Proceso de obtención de amoniaco en la planta de Bulo-Bulo       | 44     |
| 1.4.3. Equipos que intervienen en la producción de amoniaco             | 46     |
| 1.4.3.1. Reformado primario y secundario (reactor de lecho fijo multitu | bular) |
|                                                                         |        |
| 1.4.3.2. Conversión shift y metanizacion                                |        |
| 1.4.3.3. Eliminación del CO <sub>2</sub>                                |        |
| 1.4.3.4. Metanización                                                   | 57     |
| 1.4.3.5. Compresión del gas de síntesis                                 | 62     |
| 1.4.4. Proceso de obtención de urea en la planta de bulo-bulo           | 65     |

| 1.4.5. Equipos que intervienen en la producción de Urea                    |
|----------------------------------------------------------------------------|
| 1.4.5.1. Reactor de síntesis de carbamato                                  |
| 1.4.5.2. Sección de síntesis condensador de carbamato-reactor y stripper70 |
| 1.4.5.3. Sección de purificación: descomponedor de alta presión,           |
| descomponedor de baja presión, separador flash, tanque de sol urea73       |
| 1.4.5.4. Sección de concentración: evaporador y separador final75          |
| 1.4.5.5. Sección de granulación                                            |
| 1.5. Simuladores de procesos químicos                                      |
| 1.5.1. Aplicaciones de la simulación de procesos                           |
| 1.5.1.1. Diseños asistidos por ordenador                                   |
| 1.5.1.2. Optimización de procesos                                          |
| 1.5.1.3. Solución de problemas de funcionamiento                           |
| 1.5.1.4. Otras aplicaciones                                                |
| 1.5.1.4.1. Análisis de convergencia82                                      |
| 1.5.1.4.2. Análisis de sensibilidad82                                      |
| 1.5.2. Tipos de simuladores de procesos83                                  |
| 1.5.2.1. Simuladores de secuencia modular                                  |
| 1.5.2.2. Simuladores simultáneos u orientados a ecuaciones                 |
| 1.5.2.3. Simuladores híbridos                                              |
| 1.5.3. Aspen Plus y Aspen Hysys                                            |
| 1.5.4. Paquetes termodinámicos                                             |
| 1.5.4.1. Ecuaciones de estado                                              |
| 1.5.4.2. Modelos de coeficiente de actividad91                             |

| 1.5.5. Selección del modelo termodinámico                               | 91  |
|-------------------------------------------------------------------------|-----|
| 1.5.6. Selección del Modelo de Propiedades                              | 92  |
| 1.5.6.1. Validar las propiedades físicas                                | 92  |
| 1.5.7. Componentes Hipotéticos                                          | 93  |
| 1.5.8. Selección del modelo de propiedad                                | 93  |
| 1.5.9. Reacciones químicas                                              | 98  |
| 1.5.9.1. Estequiometria                                                 | 98  |
| 1.5.9.2. Conversión                                                     | 99  |
| 1.5.9.3. Selectividad                                                   | 99  |
| 1.5.10. Ecuaciones para el diseño de reactores                          | 100 |
| 1.5.10.1. Modelos disponibles en Aspen Plus                             | 100 |
| 1.5.10.2. Módulos disponibles en Aspen Hysys                            | 103 |
| CAPÍTULO II                                                             |     |
| ANALISIS Y SELECCIÓN DE VARIABLES                                       |     |
| 2.1. Análisis de las variables del proceso                              | 106 |
| 2.1.1. Variables del Proceso de obtención de amoniaco                   | 107 |
| 2.1.2. Variables del proceso de obtención de Urea                       | 108 |
| 2.2. Selección de variables independientes y de respuesta dependientes  | 109 |
| 2.2.1. Selección de variables independientes del proceso de ob amoniaco |     |
| 2.2.1.1. Presión y temperatura                                          |     |
| 2.2.1.2. Dimensiones de los reactores flujo pistón                      |     |
|                                                                         |     |

| 2.2.1.3. Caudal de alimentación de gas natural y vapor de agua al inicio de proceso |
|-------------------------------------------------------------------------------------|
| 2.2.2. Variables de respuesta dependientes del proceso de obtención de amoniaco     |
|                                                                                     |
| 2.2.2.1. Porcentaje de conversión de los reactores flujo pistón                     |
| 2.2.2.2. Rendimiento del proceso de obtención de amoniaco                           |
| 2.2.3. Selección de variables independientes del proceso de obtención de urea       |
| 2.2.3.1. Presión y temperatura                                                      |
| 2.2.3.2. Caudal de alimentación de gas natural y de vapor de agua 111               |
| 2.2.3.3. Relación de alimentación de CO <sub>2</sub> : NH <sub>3</sub>              |
| 2.2.3.4. Presión de vacío en el concentrador de urea                                |
| 2.2.4. Selección de variable de respuesta dependientes del proceso de obtención     |
| de urea112                                                                          |
| 2.2.4.1. Rendimiento del proceso de obtención de urea                               |
| 2.2.4.2. Temperatura de vacío en el concentrador de urea                            |
| 2.3. Selección del programa de simulación de procesos (Aspen Hysys-Aspen Plus)      |
|                                                                                     |
| CAPÍTULO III                                                                        |
| IDENTIFICACIÓN Y SELECCIÓN DEL MODELO                                               |
| 3.1. Identificación de modelos termodinámicos                                       |
| 3.1.1. Ecuaciones de estado                                                         |
| 3.1.1.1. Redlich–Kwong                                                              |
| 3.1.1.2. Soave–Redlich–Kwong                                                        |

| 3.1.1.3. Peng–Robinson                                                          |  |
|---------------------------------------------------------------------------------|--|
| 3.1.2. Modelos de coeficiente de actividad                                      |  |
| 3.1.2.1. Modelo Van Laar                                                        |  |
| 3.1.2.2. Modelo de Wilson                                                       |  |
| 3.1.2.3. NTRL (Nonrandom Two Liquids)                                           |  |
| 3.1.2.4. UNIQUAC                                                                |  |
| 3.1.2.4. UNIFAC                                                                 |  |
| 3.2. Selección del modelo termodinámico                                         |  |
| 3.2.1. Selección del modelo termodinámico para la producción de Amoniaco        |  |
| 3.2.1. Selección del modelo termodinámico para el uso de la amina en el proceso |  |
| de obtención de amoniaco                                                        |  |
| 3.2.2. Construcción del componente hipotético carbamato de amonio 127           |  |
| 3.2.3. Selección del modelo termodinámico para el proceso de obtención de       |  |
| Urea                                                                            |  |
| CAPÍTULO IV                                                                     |  |
| DESARROLLO DEL MODELO DE SIMULACIÓN                                             |  |
| 4.1. Desarrollo del modelo                                                      |  |
| 4.1.1. Desarrollo del modelo de producción de amoniaco                          |  |
| 4.1.1.1. Componentes para la simulación de producción de amoniaco (I) 132       |  |
| 4.1.1.2. Paquetes termodinámicos en la simulación de producción de amoniaco     |  |
| 4.1.1.3. Reacciones químicas en la simulación de obtención de amoniaco134       |  |
| 1                                                                               |  |

| 4.1.1.4. Construcción del proceso de obtención de amoniaco en Aspen Hysys    |
|------------------------------------------------------------------------------|
| 4.1.1.5. Base de diseño de la simulación de producción de amoniaco 140       |
| 4.1.1.6. Balance de materia del modelo de producción de amoniaco 143         |
| 4.1.2. Desarrollo del modelo de producción de urea                           |
| 4.1.2.1. Componentes para la simulación de producción de amoniaco 154        |
| 4.1.2.2. Paquete termodinámico para la simulación de obtención de Urea 155   |
| 4.1.2.3. Reacciones químicas en la simulación de obtención de Urea 156       |
| 4.1.2.4. Construcción del proceso de obtención de urea en Aspen Hysys. 157   |
| 4.1.2.5. Base de diseño de la simulación de producción de urea161            |
| 4.1.2.6. Balance de materia del modelo de producción de urea                 |
|                                                                              |
| CAPÍTULO V                                                                   |
| CAPÍTULO V<br>EVALUACIÓN DE LOS RESULTADOS                                   |
|                                                                              |
| EVALUACIÓN DE LOS RESULTADOS                                                 |
| <b>EVALUACIÓN DE LOS RESULTADOS</b> 5.1. Validación del modelo de simulación |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |
| EVALUACIÓN DE LOS RESULTADOS  5.1. Validación del modelo de simulación       |

| 5.2.2.3. Validación reactor de degradación de carbamato                                                                |
|------------------------------------------------------------------------------------------------------------------------|
| 5.2.2.4. Validación del evaporador de vacío                                                                            |
| 5.3. Análisis de sensibilidad                                                                                          |
| 5.3.1. Análisis de sensibilidad en el modelo de producción de amoniaco 187                                             |
| 5.3.1.1. Reactor shift de alta temperatura y baja temperatura                                                          |
| 5.3.1.2. Reactor flujo pistón cama 1                                                                                   |
| 5.3.1.3. Reactor flujo pistón cama 2                                                                                   |
| 5.3.1.4. Reactor flujo pistón cama 3                                                                                   |
| 5.3.1.5. Producción de amoniaco en función de la relación de $H_2/N_2 \dots 101$                                       |
| 5.3.1.6. Producción de amoniaco en función de la relación vapor de agua/Alimentación                                   |
| 5.3.2. Análisis de sensibilidad en el modelo de producción de urea206                                                  |
| 5.3.2.1. Producción de carbamato y urea en función del porcentaje del total de dióxido de carbono que entra al reactor |
| 5.3.2.2. Producción de urea final en función del porcentaje del total de dióxido de carbono que entra al sistema       |
| 5.3.2.3. Temperatura de la urea en función de la presión de vacío del evaporador                                       |
| 5.3.3. Análisis de sensibilidad global                                                                                 |
| 5.4. Análisis y discusión de los resultados                                                                            |
| 5.4.1. Análisis y discusión reactor shift de alta y baja temperatura212                                                |
| 5.4.2. Análisis y discusión reactor flujo pistón (cama1-cama2-cama3)213                                                |
| 5.4.3. Análisis y discusión de la producción de amoniaco en función de la relación H <sub>2</sub> /N <sub>2</sub>      |

| 5.4.4. Análisis y discusión de la producción de amoniaco en función de la          |
|------------------------------------------------------------------------------------|
| relación H <sub>2</sub> O/Alimentación                                             |
| 5.4.5. Análisis y discusión relación de alimentación optima214                     |
| 5.4.6. Producción de carbamato y urea en función del porcentaje del total de       |
| dióxido de carbono que entra al reactor214                                         |
| 5.4.7. Análisis de la producción de urea final en función del porcentaje del total |
| de dióxido de carbono que entra al sistema                                         |
| 5.4.8. Análisis y discusión temperatura en función de la presión de vacío del      |
| separador flash de urea                                                            |
| 5.5.9. Análisis de sensibilidad global                                             |
| CAPÍTULO VI                                                                        |
| CONCLUSIONES Y RECOMENDACIONES                                                     |
| Conclusiones                                                                       |
| Recomendaciones                                                                    |
| Bibliografía                                                                       |
|                                                                                    |

### ÍNDICE DE TABLAS

|             | raginas                                                                |
|-------------|------------------------------------------------------------------------|
| Tabla I-1.  | Propiedades del amoniaco como combustible                              |
| Tabla I-2.  | Especificaciones típicas del amoniaco anhidro de grado comercial7      |
| Tabla I-3.  | Instalaciones de producción de amoniaco en la Unión Europea 20179      |
| Tabla I-4.  | Ficha técnica de la urea                                               |
| Tabla I-5.  | Procesos y materias primas aplicados en la producción de amoniaco 18   |
|             | Diferencias de costos y demandas de energía total en la producción de  |
|             | Composiciones del gas de proceso en la entrada y salida del reformador |
|             | Composición del gas de proceso en la entrada y salida del reformador   |
|             | Composición en la entrada y salida de la conversión shift a alta       |
|             | . Composición en la entrada y salida de la conversión shift a baja     |
| Tabla I-11. | Valores de temperatura máxima y mínima para la Metanacion59            |
| Tabla I-12. | Tabla de composición del gas antes y después de la Metanación61        |
|             | Cambio de temperatura en cada cama, contenido de amoniaco por cada     |
|             | Algunos modelos integrados disponibles en Aspen Plus91                 |
|             | Resumen de módulos disponibles en Aspen Plus                           |
| Tabla I-16  | Resumen de módulos disponibles en Aspen Hysys 104                      |

| Tabla II-1. Com    | puestos involucrados        | en el proceso de obtención             | de    |
|--------------------|-----------------------------|----------------------------------------|-------|
| Amoniaco           |                             |                                        | .106  |
| Tabla II-2. Com    | puestos involucrados en e   | el proceso de obtención de Urea        | . 107 |
| Tabla II-3. Matr   | iz comparativa de los sim   | nuladores de procesos químicos         | .114  |
| Tabla III-1. Valo  | res sugeridos para el pará  | ámetro α en el modelo NRTL             | .122  |
|                    |                             | polares en el proceso de obtención     |       |
| Tabla III-3. Com   | paración de las estructura  | as del carbamato de amonio             | .128  |
| Tabla III-4. Infor | mación requerida para cr    | rear el componente hipotético          | .128  |
|                    |                             | polares en el proceso de obtención     |       |
| •                  | •                           | simulación de la sección de obtenció   |       |
| -                  | -                           | imulación de la sección de purificaci  | •     |
| -                  | -                           | simulación de la sección circuit       |       |
|                    |                             | ujo masico de gas natural, vapor de ag |       |
| Tabla IV-5. Cond   | liciones de trabajo del ref | formador primario y secundario         | . 141 |
| Tabla IV-6. Cond   | liciones de trabajo de los  | reactores shift                        | . 141 |
| Tabla IV-7. Cond   | liciones de trabajo del sej | parador flash                          | .142  |
|                    | · ·                         | s absorbedores y desorbedores de dió   |       |
| Tabla IV-9. Cond   | liciones de trabajo de la s | sección de metanización                | .142  |

| Tabla IV-10.               | Condiciones de trabajo de la sección circuito de producción de     |
|----------------------------|--------------------------------------------------------------------|
| amoniaco y alma            | acenaje                                                            |
| Tabla IV-11.               | Balance de materia global del proceso de obtención de              |
| amoniaco                   | 145                                                                |
| Tabla IV-12.               | Balance de materia sección de obtención de gas de síntesis de      |
| amoniaco                   | 146                                                                |
| Tabla IV-13.               | Balance de materia sección de purificación del gas de síntesis de  |
| amomaco                    | 148                                                                |
| Tabla IV-14.               | Balance de materia sección de metanización                         |
| Tabla IV-15.               | Balance de materia sección circuito de producción de               |
| amoniaco                   |                                                                    |
| Tabla IV-16.               | Balance de materia sección de almacenaje de amoniaco               |
| Tabla IV-17.               | Equipos involucrados en la simulación de la sección de compresión  |
| de CO <sub>2</sub> y bombe | o de amoniaco                                                      |
| Tabla IV-18.               | Equipos involucrados en la simulación de la sección Reactor de     |
| carbamato, react           | or de urea y reactor de descomposición de carbamato160             |
| Tabla IV-19.               | Equipos involucrados en la simulación de la sección absorbedor de  |
| carbamato, desc            | componedor de carbamato de alta-baja presión y condensador de      |
| carbamato-recirc           | culación160                                                        |
| Tabla IV-20.               | Equipos involucrados en la simulación de la sección concentrador y |
| evaporador de va           | acío161                                                            |
| Tabla IV-21.               | Condiciones de trabajo del flujo másico del amoniaco y             |
| amoniaco                   | 162                                                                |
| Tabla IV-22.               | Condiciones de trabajo de los reactores de obtención de urea 162   |
| Tabla IV-23.               | Condiciones de trabajo del absorbedor de carbamato163              |
|                            |                                                                    |

| Tabla IV-24. | Condiciones de trabajo del reactor de condensación de               |
|--------------|---------------------------------------------------------------------|
| Tabla IV-25. | Condiciones de trabajo del descomponedor de carbamato de alta y     |
|              |                                                                     |
| Tabla IV-26. | Condiciones de trabajo del concentrador de urea y evaporador de     |
| Tabla IV-27. | Balance de materia global del proceso de obtención de urea 166      |
| Tabla IV-28. | Balance de materia sección de reactores de carbamato y urea 167     |
| Tabla IV-29. | Balance de materia sección de absorbedor de carbamato168            |
| Tabla IV-30. | Balance de materia sección condensador de carbamato170              |
| Tabla IV-31. | Balance de materia sección descomponedor de carbamato de alta y     |
| baja presión | 172                                                                 |
| Tabla IV-32. | Balance de materia sección de concentrador y evaporador al vacío de |
| urea         | 173                                                                 |
| Tabla V-1.   | Validación reformador primario174                                   |
| Tabla V-2.   | Validación reformador secundario                                    |
| Tabla V-3.   | Validación del reactor shift alta temperatura                       |
| Tabla V-4.   | Validación del reactor shift baja temperatura                       |
| Tabla V-5.   | Validación del reactor flujo pistón                                 |
| Tabla V-6.   | Datos de validación del modelo de simulación de obtención de        |
| urea         | 182                                                                 |
| Tabla V-7.   | Validación del reactor de síntesis de carbamato                     |
| Tabla V-8.   | Validación reactor de obtención de urea                             |
| Tabla V-9.   | Validación reactor de degradación de carbamato                      |

| Tabla V-10.            | Validación del evaporador de vacío                                                              |
|------------------------|-------------------------------------------------------------------------------------------------|
| Tabla V-11.            | Sensibilidad de los reactores shift de alta y baja temperatura187                               |
| Tabla V-12.            | Sensibilidad de la CAMA 1 en función de su geometría189                                         |
| Tabla V-13. trabajo    | Sensibilidad de la CAMA 1 en función de las condiciones de                                      |
| Tabla V-14.            | Sensibilidad de la CAMA 2 en función de su geometría193                                         |
| Tabla V-15. trabajo    | Sensibilidad de la CAMA 2 en función de las condiciones de                                      |
| Tabla V-16.            | Sensibilidad de la CAMA 3 en función de su geometría197                                         |
| Tabla V-17. constantes | Sensibilidad de la cama 3 en función de la temperatura a presiones                              |
|                        | Producción de amoniaco en función de la relación de alimentación de                             |
|                        | Producción de amoniaco en función de la relación vapor de ación                                 |
|                        | Producción de carbamato y urea en función del porcentaje del total de bono que entra al reactor |
|                        | Producción de urea final en función del porcentaje del total de dióxido e entra al reactor      |
|                        | Temperatura de la urea en función de la presión de vacío del                                    |
|                        | Sensibilidad de la producción de urea y amoniaco en función del gas de                          |

## ÍNDICE DE FIGURAS

|                      | r agmas                                                          |
|----------------------|------------------------------------------------------------------|
| Fig. 1-1.            | Principales productores de amoniaco en el mundo (2023)           |
| Fig. 1-2.            | Capacidad y producción de amoníaco y urea entre 2016 y 202012    |
| Fig. 1-3.            | Diagrama de equilibrio entre fases del sistema NH3-CO2 y H2O14   |
| Fig. 1-4.            | Métodos de producción de amoniaco                                |
| Fig. 1-5.            | Métodos de producción de amoniaco en 2020                        |
| Fig. 1-6.            | Producción de amoniaco mediante reformado con vapor20            |
| Fig. 1-7. secundario | Ejemplo de una sección radiante de un reformador y un reformador |
| Fig. 1-8.            | Diagrama de bloques para la producción de amoniaco por oxidación |
| Fig. 1-9.            | Métodos de producción de amoniaco verde                          |
| _                    | Planta de producción de amoniaco verde de pequeña escala de app  |
| Fig. 1-11.           | Diagrama del proceso completo de producción de urea              |
| Fig. 1-12.           | Diagrama de obtención de CO <sub>2</sub>                         |
| Fig. 1-13.           | Diagrama de obtención de amoniaco                                |
| Fig. 1-14.           | Diagrama de síntesis de Urea                                     |
| Fig. 1-15.           | Empresas pre-seleccionadas                                       |
| Fig. 1-16            | Cronograma de implementación de amoniaco-urea de Bulo-Bulo43     |
| Fig. 1-17.           | Producción de amoniaco mediante el proceso KBR45                 |
| Fig. 1-18.           | Reactor lecho fijo multitubular                                  |
| Fig. 1-19.           | Proceso de reformado primario y secundario                       |

| Fig. 1-20. | Reformador secundario                                                       | 50    |
|------------|-----------------------------------------------------------------------------|-------|
| Fig. 1-21. | Proceso de conversión shift y metanizacion                                  | 52    |
| Fig. 1-22. | Proceso de eliminación de CO <sub>2</sub>                                   | 56    |
| Fig. 1-23. | Torre de absorción Bulo-Bulo                                                | 57    |
| Fig. 1-24. | Proceso de Metanacion                                                       | 59    |
| Fig. 1-25. | Proceso de general de Shift, eliminación de CO, CO <sub>2</sub> y metanador | 60    |
| Fig. 1-26. | Proceso de secado del gas de síntesis                                       | 62    |
| Fig. 1-27. | Proceso de obtención de amoniaco                                            | 63    |
| Fig. 1-28. | Diagrama del reactor donde ocurre la reacción entre el N2 y H2              | 64    |
| Fig. 1-29. | Proceso de obtención de Urea en la planta de amoniaco-urea                  | 66    |
| Fig. 1-30. | Diagrama de flujo del proceso de obtención de urea                          | 66    |
| Fig. 1-31. | Diagrama de producción de urea divido por secciones                         | 67    |
| Fig. 1-32. | Diagrama de flujo del bombeo de amoniaco                                    | 69    |
| Fig. 1-33. | Diagrama de flujo de compresión de CO <sub>2</sub>                          | 70    |
| Fig. 1-34. | Diagrama de la sección de síntesis de la planta de urea                     | 71    |
| Fig. 1-35. | Diagrama de la sección de síntesis de urea                                  | 73    |
| Fig. 1-36. | Diagrama del proceso de la sección de purificación                          | 74    |
| Fig. 1-37. | Diagrama de proceso de concentración                                        | 75    |
| Fig. 1-38. | Diagrama del proceso de granulación de urea en la planta de amor            | niaco |
| urea       |                                                                             | 77    |
| Fig. 1-39. | Esquema de cálculo de un diagrama de flujo                                  | 85    |
| Fig. 1-40. | Primeros pasos para la sección del modelo de propiedad                      | 95    |
| Fig. 1-41. | Procedimiento para compuestos polares no electrolíticos                     | 96    |

| Fig. 3-1.  | Modelos termodinámicos más comunes empleados en Aspen Hysys 115         |  |
|------------|-------------------------------------------------------------------------|--|
| Fig. 3-2.  | Primeros pasos para la sección de modelo de propiedad                   |  |
| Fig. 4-1.  | Diagrama de bloques para la construcción de la simulación de obtención  |  |
| de amoniac | 0130                                                                    |  |
| Fig. 4-2.  | Diagrama de bloques para la construcción de la simulación de obtención  |  |
| de urea    |                                                                         |  |
| Fig. 4-3.  | Lista de componentes uno para la producción de amoniaco                 |  |
| Fig. 4-4.  | Lista de componentes para el uso de la amina                            |  |
| Fig. 4-5.  | Selección del modelo termodinámico numero 1                             |  |
| Fig. 4-6.  | Selección del modelo para el uso de la amina                            |  |
| Fig. 4-7.  | Reacciones de la simulación de producción de amoniaco                   |  |
| Fig. 4-8.  | Simulación de la producción de amoniaco en Aspen Hysys136               |  |
| Fig. 4-9.  | Diagrama de bloques del balance de materia del proceso de obtención de  |  |
| amoniaco   | 144                                                                     |  |
| Fig. 4-10. | Sección de obtención de los reactores de gas de síntesis de amoniaco en |  |
| Aspen Hysy | vs145                                                                   |  |
| Fig. 4-11. | Sección de purificación del gas de síntesis de amoniaco en Aspen        |  |
| Hysys      |                                                                         |  |
| Fig. 4-12. | Sección de metanización en Aspen Hysys                                  |  |
| Fig. 4-13. | Sección de circuito de producción de amoniaco en Aspen Hysys151         |  |
| Fig. 4-14. | Sección de almacenaje de amoniaco en Aspen Hysys152                     |  |
| Fig. 4-15. | Lista de componentes tres para la producción de urea154                 |  |
| Fig. 4-16. | Construcción de la molécula carbamato de amonio con la estructura       |  |
| UNIFAC155  |                                                                         |  |

| Fig. 4-17.          | Selección del modelo termodinámico numero 3                     | 156 |
|---------------------|-----------------------------------------------------------------|-----|
| Fig. 4-18.          | Reacciones de la simulación de producción de urea               | 156 |
| Fig. 4-19.          | Simulación de la producción de urea en Aspen Hysys              | 158 |
| Fig. 4-20.          | Sub-Flowsheet                                                   | 159 |
| Fig. 4-21. urea     | Diagrama de bloques del balance de materia del proceso de obter |     |
| Fig. 4-22.          | Sección de reactores de carbamato y urea en Aspen Hysys         | 166 |
| Fig. 4-23.          | Sección de absorbedor de carbamato en Aspen Hysys               | 168 |
| Fig. 4-24.          | Sección condensador de carbamato en Aspen Hysys                 | 170 |
| Fig. 4-25.<br>Hysys | Sección descomponedor de carbamato de alta y baja presión en    |     |
|                     | Sección de concentrador y evaporador al vacío de urea en        |     |
| Fig. 5-1.           | Reformador primario simulado en Aspen Hysys                     | 175 |
| Fig. 5-2.           | Reformador secundario Hysys                                     | 176 |
| Fig. 5-3.           | Reactor shift de alta temperatura simulado en Aspen Hysys       | 178 |
| Fig. 5-4.           | Reactor shift de baja temperatura simulado en Aspen Hysys       | 179 |
| Fig. 5-5.           | Reactor flujo pistón simulado en Aspen Hysys                    | 180 |
| Fig. 5-6.           | Validación reactor de carbamato                                 | 183 |
| Fig. 5-7.           | Validación reactor de obtención de urea                         | 184 |
| Fig. 5-8.           | Validación del reactor de degradación de carbamato              | 185 |
| Fig. 5-9.           | Validación separador de vacío flash                             | 186 |
| Fig. 5-10.          | Evaluación de la Cama 1 en función de la longitud del reactor   | 190 |
| Fig. 5-11.          | Evaluación de la cama 1 en función del volumen del reactor      | 190 |

| Fig. 5-12.           | Sensibilidad de la cama 1 en función de la temperatura a presiones        |  |
|----------------------|---------------------------------------------------------------------------|--|
| constantes.          | 192                                                                       |  |
| Fig. 5-13.           | Sensibilidad de la cama 1 en función de la presión a temperaturas         |  |
| constantes.          | 192                                                                       |  |
| Fig. 5-14.           | Evaluación de la CAMA 2 en función del volumen del reactor 194            |  |
| Fig. 5-15.           | Evaluación de la CAMA 2 en función de la longitud del reactor194          |  |
| Fig. 5-16.           | Sensibilidad de la cama 1 en función de la temperatura a presiones        |  |
|                      | Sensibilidad de la cama 2 en función de la presión a temperaturas         |  |
| C                    |                                                                           |  |
| Fig. 5-18.           | Evaluación de la CAMA 3 en función del volumen del reactor 198            |  |
| Fig. 5-19.           | Evaluación de la CAMA 3 en función del largo del reactor                  |  |
| Fig. 5-20.           | Sensibilidad de la cama 3 en función de la temperatura a presiones        |  |
| constantes.          | 200                                                                       |  |
| _                    | Sensibilidad de la cama 3 en función de la presión a temperaturas         |  |
| constantes.          | 200                                                                       |  |
| Fig. 5-22.           | Producción de amoniaco en función de la relación de alimentación de airea |  |
| $H_2/N_2$            |                                                                           |  |
| Fig. 5-23.           | Producción de amoniaco en función de la relación de vapor de              |  |
| agua/Alimentación    |                                                                           |  |
| Fig. 5-24.           | Relación optima de alimentación                                           |  |
| Fig. 5-25.           | Producción de carbamato en función de la cantidad de dióxido de carbono   |  |
| que entra al reactor |                                                                           |  |
| Fig. 5-26.           | Producción de urea en función de la cantidad de dióxido de carbono que    |  |
| entra al rea         | ctor                                                                      |  |

| Fig. 5-27.   | Producción de urea final en función del porcentaje del total de dióxido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| carbono que  | entra al reactor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09 |
| · ·          | Temperatura de la urea en función de la presión de vacío de control de con |    |
| Fig. 5-29.   | Análisis de la producción de urea y amoniaco en función del gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de |
| alimentación | n2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 |

#### ÍNDICE DE ANEXOS

- Anexo 1 Simulación de los reactores de obtención del gas de síntesis de amoniaco
- Anexo 2 Sección de purificación del gas de síntesis de amoniaco
- Anexo 3 Sección de Metanacion
- Anexo 4 Circuito de producción de amoniaco
- Anexo 5 Sección de almacenaje de amoniaco
- Anexo 6 Sección de compresión de CO2 y bombeo de amoniaco
- Anexo 7 Reactor de carbamato
- Anexo 8 Reactor de urea
- Anexo 9 Reactor de descomposición de carbamato en amoniaco y dióxido de carbono
- **Anexo 10** Absorbedor de carbamato
- Anexo 11 Descomponedor de carbamato de alta y baja presión
- Anexo 12 Condensador de carbamato y recirculación
- Anexo 13 Concentrador y evaporador de vacío
- **Anexo 14** Reporte de todas las corrientes de materia de la producción de amoniaco en Aspen Hysys
- **Anexo 15** Reporte de la composición de todas las corrientes de materia de la producción de amoniaco en Aspen Hysys
- **Anexo 16** reporte de la composición de todas las corrientes de energía de la producción de amoniaco en Aspen Hysys
- **Anexo 17** Reporte de todas las corrientes de materia de la producción de urea en Aspen Hysys
- **Anexo 18** Reporte de la composición de todas las corrientes de materia de la producción de urea en Aspen Hysys

**Anexo 19** Reporte de la composición de todas las corrientes de energía de la producción de urea en Aspen Hysys

Anexo 20 Reporte de la reacción de reformador primario

Anexo 21 Reporte de la reacción del reformador secundario

Anexo 22 Reporte de la reacción de shift

Anexo 23 Reporte de la reacción del metanador

Anexo 24 Reporte de la reacción de amoniaco

Anexo 25 Reporte de la reacción de obtención de carbamato

Anexo 26 Reporte de la reacción de obtención de urea

Anexo 27 Reporte de la reacción degradación de carbamato