UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL

"COMPARACIÓN DEL USO DEL ADITIVO IÓNICO CON-AID EN DIFERENTES TIPOS DE SUELOS"

Por:

MICHAEL SEBASTIAN ESCALANTE ARMELLA

Modalidad de Graduación Proyecto de Grado presentado a consideración de la Universidad Autónoma "Juan Misael Saracho" como requisito para optar por el Grado Académico de Licenciatura en Ingeniería Civil

JULIO del 2013

TARIJA – BOLIVIA

	el Zambrana TE GUIA	
Ing. Luis Alberto Yurquina DECANO FACULTAD DE CIENCIAS Y TECNOLOGIA	Lic. Gustavo Succi. VICE DECANO FACULTAD DE CIENCIAS Y TECNOLOGIA	
APROBADO POR:		
TRIBUNAL:		
Inc. I via	Allegate Vivaguine	
ing. Luis	Alberto Yurquina	
Ing. Mar	io Luis Ticona C.	
Ing.	Laura Soto S.	

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo éstas responsabilidad del autor.

DEDICATORIA

A Dios:

Por haberme dado fortaleza cuando a punto de caer he estado y permitirme realizar un logro más en mi vida.

A mi Familia

Mis padres y hermanos por estar siempre conmigo y creer en mí.

A mis Docentes:

Por su apoyo así como por la sabiduría que me transmitieron en el desarrollo de mi formación profesional.

A mis amigos:

Por los momentos compartidos en mi estadía en la universidad, a mis queridos compañeros de laboratorio porque juntos llegamos hasta este punto.

AGRADECIMIENTO

A Dios por haberme dado la vida.

A mi Padre y mi Madre por todo el esfuerzo que realizaron para apoyarme en mis estudios pues de no haber sido así nada hubiera sido posible.

Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa.

Mahatma Gandhi

ÍNDICE

CAPITULO I

INTRODUCCIÓN

		Página
1.1.	Justificación	2
1.2.	Problema	3
1.3.	Hipótesis	3
1.4.	Objetivos	3
	1.4.1. Objetivo General	3
	1.4.2. Objetivos Específicos	3
1.5	Alcance	4
	CAPITULO II	
	CAPITULOII	
	CARACTERÍSTICAS DE LOS SUELOS Y LA	SUBRASANTE
2.1	Los Suelos	5
2.2	Tamaño de las Partículas del Suelo	6
2.3	Análisis Mecánico del Suelo	7
	2.3.1. Análisis por Cribado	8
	2.3.2. Análisis Hidrométrico	10
	2.3.3. Curva de Distribución Granulométrica	11
2.4	Plasticidad de los Suelos.	12
	2.4.1. Estados de Consistencia	13
	2.4.1.1 Limite Liquido	

	2.4.1.2 Limite Plástico1	5
	2.4.2. Carta de Plasticidad1	6
2.5	Clasificación de Suelos1	8
	2.5.1. Clasificación AASHTO1	8
	2.5.2. Clasificación SUCS	21
2.6	Compactación de los Suelos.	24
	2.6.1. Principios Generales	24
	2.6.2. Contenido de Humedad	26
	2.6.3. Prueba Proctor Modificado	27
2.7	Capacidad de Soporte de los Suelos	29
	2.7.1 Evaluación en Laboratorio	80
2.8	Las Arcillas	31
	2.8.1. Suelos Expansivos.	31
	2.8.2. Características	1
	2.8.3. Tipos de Arcilla	1
	2.8.4 Efecto de las Arcillas en Obras Civiles	32
2.9	La Subrasante	34
	2.9.1 Definición y Características	4
	2.9.2 Subrasante sobre Suelos Blandos	55
	2.9.3 Estabilización de la Subrasante	66
	CA DVIVI O III	
	CAPITULO III	
	TIPOS DE ESTABILIZACIONES DE SUELOS – ESTABILIZACION	
	CON AID	
CON-AID		
3.1.	La Estabilización de Suelos	57
	Propiedades de los Suelos que más se Estudian en Estabilización	
	r	-

	3.3.1 Estabilidad Volumétrica	39
	3.3.2 Resistencia	39
	3.3.3 Permeabilidad	40
	3.3.4 Compresibilidad	40
	3.3.5 Durabilidad	41
3.3.	Tipos de Estabilización.	41
	3.2.1. Estabilización Mecánica	41
	3.2.1.1. Estabilización por Compactación	41
	3.2.1.2. Estabilización por mezcla de Suelos	42
	3.2.2. Estabilización por Medios Eléctricos	43
	3.2.3. Estabilización por Calcinación o Tratamiento Térmico	43
	3.2.4. Estabilización por Drenaje.	43
	3.2.5. Estabilización Química.	44
	3.2.5.1. Estabilización de Suelos con Asfalto	44
	3.2.5.2. Estabilización de Suelo-Cemento	44
	3.2.5.3. Estabilización de Suelos con Cal	45
	3.2.6. Estabilización Química de Suelos con Nuevas Tecnologías	46
	3.2.6.1. Estabilización con Polímeros.	46
	3.2.6.2. Estabilización con Enzimas Orgánicas	47
	3.2.6.3. Estabilización Iónica.	47
3.4.	Tecnología de Estabilización Iónica CON-AID.	48
	3.4.1 Reacción Química.	51
	3.4.2 Proceso Constructivo.	55
	3.4.2.1 Sugerencia-Ensayos Previos	55
	3.4.2.2 Proceso de Estabilización	56
	3.4.3 CON-AID (Especificaciones)	57

CAPITULO IV

APLICACIÓN PRÁCTICA

4.1. Caracterización de los Suelos en Estudio.	60
4.1.1. Selección de las Muestras.	60
4.1.2. Ubicación de las Muestras.	61
4.1.3. Obtención de las Muestras	62
4.1.4. Denominación de las Muestras	62
4.1.5. Resumen de Resultados	64
4.2. Estabilización de las Muestras.	65
4.2.1. Proceso de Estabilización.	65
4.2.2. Denominación de las Muestras Estabilizadas	67
4.2.3. Resumen de Resultados (Estabilizados)	68
4.3. Análisis de Resultados.	71
4.3.1. Límites de Consistencia	71
4.3.2. Compactación.	74
4.3.3. Expansión o Hinchamiento	77
4.3.4 California Bearing Ratio	79
4.3.5 Cantidad Idónea de Aditivo Para Cada Suelo	82
4.3.6 Comparación del uso de CON-AID frente al uso de CAL	84
CAPITULO V	
CONCLUSIONES Y RECOMENDACIONES	
5.1. Conclusiones	
5.2. Recomendaciones	90

BIBLIOGRAFIA

ANEXOS

ANEXO 1 MEMORIA DE LABORATORIOS

ANEXO 2 PLANILLAS DE CÁLCULO

ANEXO 3 PRECIOS UNITARIOS

ÍNDICE DE FIGURAS

	Pagina
Figura II-1 Tamices	8
Figura II-2 Hidrómetro.	11
Figura II-3 Curva Granulométrica.	12
Figura II-4 Estados de Consistencia.	13
Figura II-5 Equipo de Casa Grande (LL).	14
Figura II-6 Limite Plástico.	16
Figura II-7 Carta de Plasticidad.	17
Figura II-8 Curva de Compactación.	25
Figura II-9 Prueba de Proctor Modificado	27
Figura III-1 Estabilización CON-AID.	49
Figura III-2 Molécula CON-AID.	52
Figura III-3 CON-AID en las Arcillas.	53
Figura III-4 Partícula de Arcilla Estabilizada.	54
Figura IV-1 Zona el Parada el Norte	61
Figura IV-2 Zona el Portillo	61

Figura IV-3 Zona el Tejar	62
Figura IV-4 Extracción Material Parada el Norte.	63
Figura IV-5 Extracción Material Mercado el Sur.	63
Figura IV-6 Muestras en Laboratorio	63
Figura IV-7 Estabilización de las Muestras (1)	65
Figura IV-8 Estabilización de las Muestras (2).	65
Figura IV-9 Estabilización de las Muestras (3)	66
Figura IV-10 Estabilización de las Muestras (4)	66
Figura IV-11 Influencia de CON-AID en el contenido de arcilla	71
Figura IV-12 Influencia de CON-AID en los límites de consistencia suelo (A-4)	72
Figura IV-13 Influencia de CON-AID en los límites de consistencia suelo (A-6)	73
Figura IV-14 Influencia de CON-AID en los límites de consistencia suelo (A-7)	74
Figura IV-15 Influencia de CON-AID en la densidad máxima del suelo (A-4)	75
Figura IV-16 Influencia de CON-AID en la densidad máxima del suelo (A-6)	76
Figura IV-17 Influencia de CON-AID en la densidad máxima del suelo (A-7)	77
Figura IV-18 Influencia de CON-AID en la expansión del suelo (A-4)	78
Figura IV-19 Influencia de CON-AID en la expansión del suelo (A-6)	79
Figura IV-20 Influencia de CON-AID en la expansión del suelo (A-7)	79
Figura IV-21 Influencia de CON-AID en el CBR del suelo (A-4)	80
Figura IV-22 Influencia de CON-AID en el CBR del suelo (A-6)	81

Figura IV-23 Influencia de CON-AID en el CBR del suelo (A-7)	82
Figura IV-24 Influencia de CON-AID y CAL en el CBR del suelo	87
Figura IV-25 Precio Unitario aproximado de CON-AID y CAL	87

ÍNDICE DE TABLAS

	Pagina
Tabla II-1 Tamaños de las Partículas del Suelo	6
Tabla II-2 Abertura de Tamices.	7
Tabla II-3 Clasificación AASHTO	20
Tabla II-4 Clasificación SUCS; Suelos Tipo Grava	22
Tabla II-5 Clasificación SUCS; Suelos Arenosos	23
Tabla II-6 Clasificación SUCS; Suelos Arcillosos	23
Tabla II-7 Especificaciones Prueba de Proctor Modificado	28
Tabla IV-1 Clasificación de las Muestras en Estudio	64
Tabla IV-2 Descripción de las Muestras en Estudio.	64
Tabla IV-3 Análisis Mecánico de los Muestras en Estudio	64
Tabla IV-4 Promedio CBR	68
Tabla IV-5 Clasificación suelos estabilizados.	69
Tabla IV-6 Descripción suelos estabilizados.	69
Tabla IV-7 Análisis Mecánico suelos estabilizados	70
Tabla IV-8 Cantidad idónea de aditivo Suelo A-4.	83
Tabla IV-9 Cantidad idónea de aditivo Suelo A-6.	84
Tabla IV-10 Cantidad idónea de aditivo Suelo A-7	84