## ANEXO 1 PLANILLAS DE CÁLCULO DEL PCI

## 1.1. Planillas de cálculo PCI de unidades de muestra aleatorias

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                                          |        |                                        |                   |             |       |          |
|------------------------------------------------|------------------------------------------|--------|----------------------------------------|-------------------|-------------|-------|----------|
|                                                | ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE" |        |                                        |                   |             |       |          |
| Progresiva inicio:                             | 0+000                                    | ESQUE  | ESQUEMA 0+030                          |                   |             |       |          |
| Progresiva Fin:                                | 0+030                                    |        |                                        |                   |             | J /   |          |
| Área (m²):                                     | 210                                      |        |                                        |                   |             |       |          |
| Fecha:                                         | 24/08/2023                               |        |                                        |                   |             |       | 7 ml/    |
| Unidad de muestra:                             | U1                                       |        |                                        |                   |             | 1     |          |
| Inspeccionado por:                             |                                          |        |                                        |                   | 0+000       | Y     |          |
| Univ. Gerardo Maurio                           | cio Vaca Valdez                          |        |                                        | BOP               | Sta + 0+000 |       | 5        |
| Falla                                          | ı                                        | Unidad |                                        | Fa                | lla         |       | Unidad   |
| 1Piel de cocodrilo                             |                                          | m²     | 11Parcheo                              | 1                 |             |       | m²       |
| 2Exudación                                     | 2Exudación                               |        |                                        | 12Agregado pulido |             |       |          |
| 3Fisuras en bloque                             |                                          | m²     | 13Huecos                               |                   |             |       | N°       |
| 4Elevación-Hundim                              | iento                                    | m      | 14Acceso a puentes-Rejillas de drenaje |                   |             |       | m²       |
| 5Corrugaciones                                 |                                          | m²     | 15Ahuellamiento                        |                   |             |       | m²       |
| 6Depresiones                                   |                                          | m²     | 16Deformación por empuje               |                   |             |       | m²       |
| 7Fisuras de borde                              |                                          | m      | 17Deslizamiento n                      |                   |             | m²    |          |
| 8Fisuras de reflexión                          | n de juntas                              | m      | 18Hinchamiento m <sup>2</sup>          |                   |             | m²    |          |
| 9Desnivel Carril-Be                            | rma                                      | m      | 19Disgregación-Desintegración m²       |                   |             |       | m²       |
| 10Fisuras long. y tra                          | insversales                              | m      |                                        |                   |             |       |          |
| Tipe                                           | o de Falla                               |        | Severidad                              | Total             | Densidad    | Valor | deducido |
| 7Fisuras de borde (n                           |                                          | L      | 1,55                                   | 0,74              | 1           | ,44   |          |
| 10Fisuras longitudir                           | es (m)                                   | L      | 1,52                                   | 0,72              |             | ),00  |          |
| 11Parcheo (m²)                                 |                                          | L      | 42,09                                  | 20,05             | 2           | 3,72  |          |
| 11Parcheo (m²)                                 |                                          |        | M                                      | 25,95             | 12,36       | 3     | 3,74     |
| 11Parcheo (m²)                                 |                                          |        | Н                                      | 1,63              | 0,78        | 1     | 8,06     |

| N° |       |       | •     | Valor de | ducido |   |   | Total | ~ | VDC   |
|----|-------|-------|-------|----------|--------|---|---|-------|---|-------|
| 11 | 1     | 2     | 3     | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1  | 33,74 | 23,72 | 18,06 | 1,44     |        |   |   | 76,96 | 3 | 48,68 |
| 2  | 33,74 | 23,72 | 2,00  | 1,44     |        |   |   | 60,90 | 2 | 44,63 |
| 3  | 33,74 | 2,00  | 2,00  | 1,44     |        |   |   | 39,18 | 1 | 39,18 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 48,68 |

| PCI = 100-VDC |
|---------------|
|---------------|

| PCI = | 51.32 | Condición del pavimento | REGULAR |
|-------|-------|-------------------------|---------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                  |                         |                                        |          |       |          |       |
|------------------------------------------------|------------------|-------------------------|----------------------------------------|----------|-------|----------|-------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                  |                         |                                        |          |       |          |       |
| Progresiva inicio:                             | 0+270            |                         | ESQUEMA                                |          |       |          | 0     |
| Progresiva Fin:                                | 0+300            |                         |                                        |          |       |          | 01240 |
| Área (m²):                                     | 210              |                         |                                        |          |       |          |       |
| Fecha:                                         | 24/08/2023       |                         |                                        | -O-T     |       |          | `     |
| Unidad de muestra:                             | U10              | -13                     | 006+0                                  | A. A.    | 2     |          |       |
| Inspeccionado por:                             |                  | -13                     | 5                                      | 1        | 15    |          |       |
| Univ. Gerardo Maurio                           | cio Vaca Valdez  |                         |                                        |          | 79975 |          |       |
| Falla                                          | Unidad           |                         | Fal                                    | lla      |       | Unidad   |       |
| 1Piel de cocodrilo                             | m²               | 11Parcheo               |                                        |          |       | m²       |       |
| 2Exudación                                     | m²               | 12Agregado pulido       |                                        |          |       | m²       |       |
| 3Fisuras en bloque                             | m²               | m <sup>2</sup> 13Huecos |                                        |          |       | N°       |       |
| 4Elevación-Hundim                              | iento            | m                       | 14Acceso a puentes-Rejillas de drenaje |          |       | m²       |       |
| 5Corrugaciones                                 |                  | m²                      | 15Ahuellamiento                        |          |       | m²       |       |
| 6Depresiones                                   |                  | m²                      | 16Deformación por empuje               |          |       | m²       |       |
| 7Fisuras de borde                              |                  | m                       | 17Deslizamiento m                      |          |       | m²       |       |
| 8Fisuras de reflexión                          | n de juntas      | m                       | 18Hinchamiento                         |          |       |          | m²    |
| 9Desnivel Carril-Be                            | rma              | m                       | 19Disgregación-Desintegración m²       |          |       |          | m²    |
| 10Fisuras long. y tra                          | nsversales       | m                       |                                        |          |       |          |       |
| Tipo                                           |                  | Severidad               | Total                                  | Densidad | Valor | deducido |       |
| 7Fisuras de borde (n                           | ·                | M 1,85 0,88 3,52        |                                        |          | ,52   |          |       |
| 11Parcheo (m²)                                 | ·                | ·                       | L 14,05 6,69 11,68                     |          |       | 1,68     |       |
| 19Disgregación-Des                             | integración (m²) |                         | L                                      | 7,37     | 3,51  | 7        | ,31   |

| <b>№</b> 10 | Valor deducido |      |      |   |   |   |   | Total |   | VDC   |
|-------------|----------------|------|------|---|---|---|---|-------|---|-------|
| N°          | 1              | 2    | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1           | 11,68          | 7,31 | 3,52 |   |   |   |   | 22,51 | 3 | 11,76 |
| 2           | 11,68          | 7,31 | 2,00 |   |   |   |   | 20,99 | 2 | 14,79 |
| 3           | 11,68          | 2,00 | 2,00 |   |   |   |   | 15,68 | 1 | 15,68 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 15,68 |

| PCI = 84,32   Condición del pavimento   MUY BUENO | PCI = |
|---------------------------------------------------|-------|
|---------------------------------------------------|-------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                    |                  |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |
|------------------------------------------------|--------------------|------------------|----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                    |                  |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |
| Progresiva inicio:                             | 0+540              |                  | <b>ESQUEMA</b> >                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |
| Progresiva Fin:                                | 0+570              |                  |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24°               |
| Área (m²):                                     | 210                |                  | _                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ST 0+240          |
| Fecha:                                         | 24/08/2023         |                  |                                        |          | and the same of th |          | Sta               |
| Unidad de muestra:                             | U19                | 0+570            |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5 sta=0+543       |
| Inspeccionado por:                             |                    | 3                |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | \Q\(\frac{1}{2}\) |
| Univ. Gerardo Maurio                           | cio Vaca Valdez    |                  |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |
| Falla                                          | Unidad             |                  | Fal                                    | lla      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unidad   |                   |
| 1Piel de cocodrilo                             | m²                 | 11Parcheo        |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²       |                   |
| 2Exudación                                     |                    | m²               | 12Agregado pulido                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | m²                |
| 3Fisuras en bloque                             | 3Fisuras en bloque |                  | 13Huecos                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | N°                |
| 4Elevación-Hundim                              | iento              | m                | 14Acceso a puentes-Rejillas de drenaje |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drenaje  | m²                |
| 5Corrugaciones                                 |                    | m²               | 15Ahuellamiento                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²       |                   |
| 6Depresiones                                   |                    | m²               | 16Deformación por empuje               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²       |                   |
| 7Fisuras de borde                              |                    | m                | 17Deslizamiento                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²       |                   |
| 8Fisuras de reflexión                          | n de juntas        | m                | 18Hinchamiento                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | m²                |
| 9Desnivel Carril-Be                            | rma                | m                | 19Disgregación-Desintegración          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | m²                |
| 10Fisuras long. y tra                          | m                  |                  |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |
| Tipe                                           |                    | Severidad        | Total                                  | Densidad | Valor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | deducido |                   |
| 4Elevación-Hundim                              |                    | L                | 0,77                                   | 0,37     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,73     |                   |
| 7Fisuras de borde (n                           |                    | M 2,80 1,34 3,01 |                                        |          | ,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |
| 11Parcheo (m²)                                 |                    |                  | L                                      | 0,16     | 0,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C        | ),27              |

| NTO | Valor deducido |      |      |   |   |   |   |       |   | VDC  |
|-----|----------------|------|------|---|---|---|---|-------|---|------|
| N°  | 1              | 2    | 3    | 4 | 5 | 6 | 7 | Total | q | VDC  |
| 1   | 3,01           | 2,73 | 0,27 |   |   |   |   | 6,01  | 2 | 0,00 |
| 2   | 3,01           | 2,00 | 0,27 |   |   |   |   | 5,28  | 1 | 5,28 |

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 5.28 |

PCI = 94,72 Condición del pavimento EXCELENTE

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                 |        |                                        |          |              |       |          |
|------------------------------------------------|-----------------|--------|----------------------------------------|----------|--------------|-------|----------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                 |        |                                        |          |              |       |          |
| Progresiva inicio:                             | 0+810           | ESQUEN | MA OC STA O O TRANS                    | 3044     | .0           |       |          |
| Progresiva Fin:                                | 0+840           |        | CSta LO                                | 0+80     |              |       |          |
| Área (m²):                                     | 210             |        |                                        |          |              |       |          |
| Fecha:                                         | 24/08/2023      |        |                                        |          |              |       |          |
| Unidad de muestra:                             | U28             |        |                                        |          |              |       |          |
| Inspeccionado por:                             |                 | ]      |                                        |          |              |       | \ ,      |
| Univ. Gerardo Maurio                           | cio Vaca Valdez |        |                                        |          |              | 0+810 | 1        |
| Falla                                          | Unidad          | Falla  |                                        |          | Unidad       |       |          |
| 1Piel de cocodrilo                             |                 | m²     | 11Parcheo                              |          |              |       | m²       |
| 2Exudación                                     |                 | m²     | 12Agregado pulido                      |          |              |       | m²       |
| 3Fisuras en bloque                             |                 | m²     | n <sup>2</sup> 13Huecos                |          |              |       | N°       |
| 4Elevación-Hundim                              | iento           | m      | 14Acceso a puentes-Rejillas de drenaje |          |              | m²    |          |
| 5Corrugaciones                                 |                 | m²     | 15Ahuellamiento m                      |          |              | m²    |          |
| 6Depresiones                                   |                 | m²     | 16Deformación por empuje m             |          |              | m²    |          |
| 7Fisuras de borde                              |                 | m      | 17Deslizamiento m²                     |          |              |       | m²       |
| 8Fisuras de reflexión                          | n de juntas     | m      | 18Hinchar                              | niento   |              |       | m²       |
| 9Desnivel Carril-Be                            | rma             | m      | 19Disgreg                              | ación-De | sintegración |       | m²       |
| 10Fisuras long. y tra                          | m               |        |                                        |          |              |       |          |
| Tipo de Falla                                  |                 |        | Severidad                              | Total    | Densidad     | Valor | deducido |
| 10Fisuras longitudinales y transversales (r    |                 |        | L                                      | 13,76    | 6,55         | 5     | 5,49     |
| 18Hinchamiento (m²)                            |                 |        | L                                      | 0,87     | 0,41         | C     | 0,00     |

| NTO |      |      | , | Total |   | VDC |   |       |   |      |
|-----|------|------|---|-------|---|-----|---|-------|---|------|
| N°  | 1    | 2    | 3 | 4     | 5 | 6   | 7 | Total | q | VDC  |
| 1   | 5,49 | 4,01 |   |       |   |     |   | 9,50  | 2 | 0,00 |
| 2   | 5,49 | 2,00 |   |       |   |     |   | 7,49  | 1 | 7,49 |

M

0,14

0,07

4,01

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 7.49 |

19.-Disgregación-Desintegración (m²)

| PCI = 9 | 92,51 | Condición del pavimento | EXCELENTE |
|---------|-------|-------------------------|-----------|
|---------|-------|-------------------------|-----------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                   |       |                                        |       |          |         |     |
|------------------------------------------------|-------------------|-------|----------------------------------------|-------|----------|---------|-----|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                   |       |                                        |       |          |         |     |
| Progresiva inicio:                             | 1+080             |       |                                        | ESQU  | EMA      |         |     |
| Progresiva Fin:                                | 1+110             |       |                                        |       |          |         |     |
| Área (m²):                                     | 210               | 10    |                                        |       |          |         |     |
| Fecha:                                         | 24/08/2023        | 1×    |                                        |       | 2        | () 1 () |     |
| Unidad de muestra:                             | U37               |       |                                        |       |          | 210     | 0   |
| Inspeccionado por:                             |                   |       |                                        |       |          |         |     |
| Univ. Gerardo Mauricio Vaca Valdez             |                   |       |                                        |       |          | +       |     |
| Falla                                          | Unidad            |       | Fa                                     | lla   |          | Unidad  |     |
| 1Piel de cocodrilo                             |                   | m²    | 11Parcheo                              |       |          |         | m²  |
| 2Exudación                                     |                   | m²    | 12Agregado pulido                      |       |          | m²      |     |
| 3Fisuras en bloque                             |                   | m²    | 13Huecos                               |       |          |         | N°  |
| 4Elevación-Hundim                              | iento             | m     | 14Acceso a puentes-Rejillas de drenaje |       |          | drenaje | m²  |
| 5Corrugaciones                                 |                   | m²    | 15Ahuellamiento                        |       |          | m²      |     |
| 6Depresiones                                   |                   | m²    | 16Deformación por empuje               |       |          |         | m²  |
| 7Fisuras de borde                              |                   | m     | 17Deslizamiento                        |       |          | m²      |     |
| 8Fisuras de reflexión                          | n de juntas       | m     | 18Hinchamiento m <sup>2</sup>          |       |          | m²      |     |
| 9Desnivel Carril-Be                            | rma               | m     | 19Disgregación-Desintegración m²       |       |          | m²      |     |
| 10Fisuras long. y tra                          | nsversales        | m     |                                        |       |          |         |     |
| Tipo                                           | Severidad         | Total | Densidad                               | Valor | deducido |         |     |
| 4Elevación-Hundimiento (m)                     |                   |       | L                                      | 4,58  | 2,18     | 7       | ,02 |
| 12Agregado pulido (m²)                         |                   |       | L                                      | 43,52 | 20,73    | 6       | ,63 |
| 15Ahuellamiento (m²)                           |                   |       | L                                      | 0,84  | 0,40     | 3       | ,60 |
| 19Disgregación-Des                             | sintegración (m²) |       | L                                      | 0,08  | 0,04     | 0       | ,24 |

| NTO |      | 7    | Total |      | VDC |   |   |       |   |       |
|-----|------|------|-------|------|-----|---|---|-------|---|-------|
| N°  | 1    | 2    | 3     | 4    | 5   | 6 | 7 | Total | q | VDC   |
| 1   | 7,02 | 6,63 | 3,60  | 0,24 |     |   |   | 17,49 | 3 | 7,32  |
| 2   | 7,02 | 6,63 | 2,00  | 0,24 |     |   |   | 15,89 | 2 | 10,92 |
| 3   | 7,02 | 2,00 | 2,00  | 0,24 |     |   |   | 11,26 | 1 | 11,26 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 11.26 |

| PCI = | 88,74 | Condición del pavimento | EXCELENTE |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ                                           | TODO PCI (ÍND                            | ICE DE C | ONDICIÓN                               | DEL PA | VIMENTO  | )         |          |  |
|----------------------------------------------|------------------------------------------|----------|----------------------------------------|--------|----------|-----------|----------|--|
| 7                                            | ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE" |          |                                        |        |          |           |          |  |
| Progresiva inicio:                           | 1+350                                    | ESQUE    | MA Z Z                                 | ok (   | 1+380    |           |          |  |
| Progresiva Fin:                              | 1+380                                    |          |                                        |        | 1 1/1    | ,         |          |  |
| Área (m²):                                   | 210                                      |          | 18 A                                   |        |          |           |          |  |
| Fecha:                                       | 24/08/2023                               |          |                                        |        |          |           |          |  |
| Unidad de muestra:                           | U46                                      |          | SC Sta                                 | -1-357 |          |           |          |  |
| Inspeccionado por:                           |                                          | 52       | SC Sta                                 | = 1    |          |           |          |  |
| Univ. Gerardo Maurio                         | cio Vaca Valdez                          | 2015     |                                        | 1      | +350     |           |          |  |
| Falla                                        | 1                                        | Unidad   |                                        | Fa     | lla      |           | Unidad   |  |
| 1Piel de cocodrilo                           |                                          | m²       | 11Parcheo                              | ı      |          |           | m²       |  |
| 2Exudación                                   |                                          | m²       | 12Agregado pulido                      |        |          |           | m²       |  |
| 3Fisuras en bloque                           |                                          | m²       | 13Huecos                               |        |          |           | N°       |  |
| 4Elevación-Hundim                            | iento                                    | m        | 14Acceso a puentes-Rejillas de drenaje |        |          |           | m²       |  |
| 5Corrugaciones                               |                                          | m²       | 15Ahuellamiento                        |        |          |           | m²       |  |
| 6Depresiones                                 |                                          | m²       | 16Deformación por empuje m²            |        |          | m²        |          |  |
| 7Fisuras de borde                            |                                          | m        | 17Deslizamiento m <sup>2</sup>         |        |          | m²        |          |  |
| 8Fisuras de reflexión                        | n de juntas                              | m        | 18Hinchamiento m <sup>2</sup>          |        |          | m²        |          |  |
| 9Desnivel Carril-Be                          | rma                                      | m        | 19Disgregación-Desintegración m²       |        |          |           | m²       |  |
| 10Fisuras long. y tra                        | insversales                              | m        |                                        |        |          |           |          |  |
| Tipe                                         | o de Falla                               |          | Severidad                              | Total  | Densidad | Valor     | deducido |  |
| 2Exudación (m²)                              |                                          | L        | 78,05                                  | 37,17  | 9        | ,71       |          |  |
| 4Elevación-Hundimiento (m)                   |                                          |          | L                                      | 0,98   | 0,47     | 0,47 1,39 |          |  |
| 7Fisuras de borde (m)                        |                                          |          | L                                      | 2,75   | 1,31     | 2         | 2,17     |  |
| 10Fisuras longitudinales y transversales (m) |                                          |          | L                                      | 0,44   | 0,21     |           | 0,00     |  |
| 19Disgregación-Des                           | sintegración (m²)                        |          | L                                      | 0,26   | 0,13     |           | ),33     |  |

| N° |      |      | 7    | Total | ~ | VDC |   |       |   |       |
|----|------|------|------|-------|---|-----|---|-------|---|-------|
| 11 | 1    | 2    | 3    | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1  | 9,71 | 2,17 | 1,39 | 0,33  |   |     |   | 13,60 | 2 | 9,20  |
| 2  | 9,71 | 2,00 | 1,39 | 0,33  |   |     |   | 13,43 | 1 | 13,43 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 13.43 |

| DOL   | 100 | TIDO |  |
|-------|-----|------|--|
| PCI = | 100 | ·vDC |  |

| PCI = | 86,57 | Condición del pavimento | EXCELENTE |
|-------|-------|-------------------------|-----------|

| MÉ                         | TODO PCI (ÍND       | ICE DE C      | ONDICIÓN                               | DEL PA    | VIMENTO      | )     |          |
|----------------------------|---------------------|---------------|----------------------------------------|-----------|--------------|-------|----------|
| 7                          | ZONA DE ESTU        | DIO "TO       | MATITAS-E                              | RQUIS     | NORTE''      |       |          |
| Progresiva inicio:         | 1+620               | ESQUEMA 1+650 |                                        |           |              |       |          |
| Progresiva Fin:            | 1+650               |               |                                        |           |              |       |          |
| Área (m²):                 | 210                 |               |                                        |           |              |       |          |
| Fecha:                     | 24/08/2023          |               |                                        |           |              |       |          |
| Unidad de muestra:         | U55                 |               |                                        | <b>'</b>  |              |       |          |
| Inspeccionado por:         |                     |               | Sy.                                    |           |              |       |          |
| Univ. Gerardo Maurio       | cio Vaca Valdez     |               |                                        | 1+6       | 20           |       |          |
| Falla                      | ı                   | Unidad        |                                        | Fal       | lla          |       | Unidad   |
| 1Piel de cocodrilo         |                     | m²            | 11Parcheo                              |           |              |       | m²       |
| 2Exudación                 |                     | m²            | 12Agregado pulido                      |           |              | m²    |          |
| 3Fisuras en bloque         |                     | m²            | 13Huecos                               |           |              |       | N°       |
| 4Elevación-Hundim          | iento               | m             | 14Acceso a puentes-Rejillas de drenaje |           |              |       | m²       |
| 5Corrugaciones             |                     | m²            | 15Ahuella                              | miento    |              |       | m²       |
| 6Depresiones               |                     | m²            | 16Deforma                              | ación por | empuje       |       | m²       |
| 7Fisuras de borde          |                     | m             | 17Deslizar                             | miento    |              |       | m²       |
| 8Fisuras de reflexión      | n de juntas         | m             | 18Hinchar                              | niento    |              |       | m²       |
| 9Desnivel Carril-Be        | rma                 | m             | 19Disgreg                              | ación-De  | sintegración |       | m²       |
| 10Fisuras long. y tra      | insversales         | m             |                                        |           |              |       |          |
| Tipo                       | o de Falla          |               | Severidad                              | Total     | Densidad     | Valor | deducido |
| 4Elevación-Hundimiento (m) |                     |               | M                                      | 2,13      | 1,01         | 1     | 2,75     |
| 7Fisuras de borde (m)      |                     |               | L                                      | 2,42      | 1,15         | 1     | ,93      |
| 7Fisuras de borde (m)      |                     |               | Н                                      | 3,94      | 1,88         | 1     | 0,52     |
| 10Fisuras longitudin       | ales y transversal  | es (m)        | L                                      | 4,41      | 2,10         | (     | ),29     |
| 10Fisuras longitudin       | ales y transversale | es (m)        | M                                      | 8,11      | 3,86         | 8     | 3,88     |

| N°   |       |       | ,    | Valor de | ducido |   |   | Total | VDC |       |
|------|-------|-------|------|----------|--------|---|---|-------|-----|-------|
| IN . | 1     | 2     | 3    | 4        | 5      | 6 | 7 | Total | q   | VDC   |
| 1    | 12,75 | 10,52 | 8,88 | 1,93     | 0,29   |   |   | 34,37 | 3   | 20,06 |
| 2    | 12,75 | 10,52 | 2,00 | 1,93     | 0,29   |   |   | 27,49 | 2   | 19,99 |
| 3    | 12,75 | 2,00  | 2,00 | 1,93     | 0,29   |   |   | 18,97 | 1   | 18,97 |

Máximo valor deducido corregido

VDC = 20,06

| PCI = | 79,94 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                            |                         |                 |           |                |         |          |
|------------------------------------------------|----------------------------|-------------------------|-----------------|-----------|----------------|---------|----------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                            |                         |                 |           |                |         |          |
| Progresiva inicio:                             | 1+890                      | ESQUEMA 1+920           |                 |           |                |         |          |
| Progresiva Fin:                                | 1+920                      |                         |                 |           |                |         |          |
| Área (m²):                                     | 210                        |                         |                 |           |                |         |          |
| Fecha:                                         | 24/08/2023                 |                         | ~ \             |           |                |         |          |
| Unidad de muestra:                             | U64                        |                         | 2835            |           |                | /       |          |
| Inspeccionado por:                             |                            |                         |                 |           |                | 7       |          |
| Univ. Gerardo Maurio                           | cio Vaca Valdez            |                         |                 |           | 1+890          |         |          |
| Falla                                          | 1                          | Unidad                  |                 | Fal       | lla            |         | Unidad   |
| 1Piel de cocodrilo                             |                            | m²                      | 11Parcheo       |           |                |         | m²       |
| 2Exudación                                     |                            | m²                      | 12Agregad       | lo pulido |                |         | m²       |
| 3Fisuras en bloque                             |                            | m <sup>2</sup> 13Huecos |                 |           | N°             |         |          |
| 4Elevación-Hundim                              | iento                      | m                       | 14Acceso        | a puentes | -Rejillas de d | drenaje | m²       |
| 5Corrugaciones                                 |                            | m²                      | 15Ahuella       | miento    |                |         | m²       |
| 6Depresiones                                   |                            | m²                      | 16Deforma       | ación por | empuje         |         | m²       |
| 7Fisuras de borde                              |                            | m                       | 17Deslizamiento |           |                | m²      |          |
| 8Fisuras de reflexión                          | n de juntas                | m                       | 18Hinchamiento  |           |                | m²      |          |
| 9Desnivel Carril-Be                            | rma                        | m                       | 19Disgrega      | ación-De  | sintegración   |         | m²       |
| 10Fisuras long. y tra                          | insversales                | m                       |                 |           |                |         |          |
| Tipe                                           | Tipo de Falla              |                         |                 | Total     | Densidad       | Valor   | deducido |
| 4Elevación-Hundim                              | 4Elevación-Hundimiento (m) |                         |                 | 7,50      | 3,57           | 23      | 3,95     |
| 10Fisuras longitudinales y transversales (m)   |                            | es (m)                  | L               | 17,97     | 8,56           | 6       | ,74      |
| 11Parcheo (m²)                                 | 11Parcheo (m²)             |                         | M               | 18,62     | 8,87           | 29      | 9,78     |
| 19Disgregación-Des                             | sintegración (m²)          |                         | L               | 0,09      | 0,04           | 0       | ,24      |

| <b>№</b> 10 |       |       | ,    | Valor de | ducido |   |   | Total |   | , VDC |
|-------------|-------|-------|------|----------|--------|---|---|-------|---|-------|
| N°          | 1     | 2     | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1           | 29,78 | 23,95 | 6,74 | 0,24     |        |   |   | 60,71 | 3 | 38,46 |
| 2           | 29,78 | 23,95 | 2,00 | 0,24     |        |   |   | 55,97 | 2 | 41,18 |
| 3           | 29,78 | 2,00  | 2,00 | 0,24     |        |   |   | 34,02 | 1 | 34,02 |

Máximo valor deducido corregido

VDC = 41,18

| PCI = | 58,82 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                       |                               |                                        |           |          |               |          |
|------------------------------------------------|-----------------------|-------------------------------|----------------------------------------|-----------|----------|---------------|----------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                       |                               |                                        |           |          |               |          |
| Progresiva inicio:                             | 2+160                 | ESQUE                         | MA \\                                  | 2+        | 190      |               |          |
| Progresiva Fin:                                | 2+190                 | _~~                           | \                                      |           |          |               |          |
| Área (m²):                                     | 210                   |                               | 4                                      |           |          |               |          |
| Fecha:                                         | 24/08/2023            |                               |                                        | }         |          |               |          |
| Unidad de muestra:                             | U73                   |                               |                                        |           |          | \ \tilde{\nu} |          |
| Inspeccionado por:                             |                       |                               |                                        |           |          | 2045          | A        |
| Univ. Gerardo Maurio                           |                       |                               |                                        | 2+160     |          |               |          |
| Falla                                          | Unidad                |                               | Fal                                    | lla       |          | Unidad        |          |
| 1Piel de cocodrilo                             |                       | m²                            | 11Parcheo                              |           |          |               | m²       |
| 2Exudación                                     |                       | m²                            | 12Agregac                              | lo pulido |          |               | m²       |
| 3Fisuras en bloque                             |                       | m²                            | 13Huecos                               |           |          | N°            |          |
| 4Elevación-Hundim                              | iento                 | m                             | 14Acceso a puentes-Rejillas de drenaje |           |          | m²            |          |
| 5Corrugaciones                                 |                       | m²                            | 15Ahuellamiento                        |           |          | m²            |          |
| 6Depresiones                                   |                       | m²                            | 16Deformación por empuje               |           |          | m²            |          |
| 7Fisuras de borde                              |                       | m                             | 17Deslizar                             | niento    |          |               | m²       |
| 8Fisuras de reflexión                          | n de juntas           | m                             | 18Hinchar                              | niento    |          |               | m²       |
| 9Desnivel Carril-Be                            | m                     | 19Disgregación-Desintegración |                                        |           | m²       |               |          |
| 10Fisuras long. y tra                          | nsversales            | m                             |                                        |           |          |               |          |
| Tipe                                           | Tipo de Falla         |                               |                                        | Total     | Densidad | Valor         | deducido |
| 7Fisuras de borde (n                           | 7Fisuras de borde (m) |                               |                                        | 1,16      | 0,55     | 4             | ,45      |
| 13Huecos (N°)                                  |                       |                               | M                                      | 2,00      | 0,95     | 3             | 1,00     |

| NTO |       | Valor deducido |   |   |   |   |   |       | Total a VD |       |  |
|-----|-------|----------------|---|---|---|---|---|-------|------------|-------|--|
| N°  | 1     | 2              | 3 | 4 | 5 | 6 | 7 | Total | q          | VDC   |  |
| 1   | 31,00 | 4,45           |   |   |   |   |   | 35,45 | 2          | 26,36 |  |
| 2   | 31,00 | 2,00           |   |   |   |   |   | 33,00 | 1          | 33,00 |  |

| Máximo v<br>deducido co |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| <b>VDC</b> = 33,00      |  |  |  |  |  |

| PCI = | 67,00 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                                              |         |                                  |           |                |         |          |  |  |
|------------------------------------------------|----------------------------------------------|---------|----------------------------------|-----------|----------------|---------|----------|--|--|
| 7                                              | ZONA DE ESTU                                 | DIO "TO | MATITAS-E                        | RQUIS     | NORTE"         |         |          |  |  |
| Progresiva inicio:                             | 2+430                                        |         | 61676                            | 2*460     |                |         |          |  |  |
| Progresiva Fin:                                | 2+460                                        | ۔ د.ځ   | SC Star 2+461 8767 2+460         |           |                |         |          |  |  |
| Área (m²):                                     | 210                                          | 50      |                                  |           |                |         |          |  |  |
| Fecha:                                         | 24/08/2023                                   |         |                                  |           |                |         |          |  |  |
| Unidad de muestra:                             | U82                                          |         |                                  |           |                |         |          |  |  |
| Inspeccionado por:                             |                                              |         |                                  |           |                |         |          |  |  |
| Univ. Gerardo Maurio                           | cio Vaca Valdez                              | ESQUE   | MA                               |           | 2              | 430     |          |  |  |
| Falla                                          | ı                                            | Unidad  |                                  | Fal       | lla            |         | Unidad   |  |  |
| 1Piel de cocodrilo                             |                                              | m²      | 11Parcheo                        |           |                |         | m²       |  |  |
| 2Exudación                                     |                                              | m²      | m <sup>2</sup> 12Agregado pulido |           |                | m²      |          |  |  |
| 3Fisuras en bloque                             |                                              | m²      | <sup>2</sup> 13Huecos N°         |           |                | N°      |          |  |  |
| 4Elevación-Hundim                              | iento                                        | m       | 14Acceso                         | a puentes | -Rejillas de d | drenaje | m²       |  |  |
| 5Corrugaciones                                 |                                              | m²      | 15Ahuella                        | miento    |                |         | m²       |  |  |
| 6Depresiones                                   |                                              | m²      | 16Deforma                        | ación por | empuje         |         | m²       |  |  |
| 7Fisuras de borde                              |                                              | m       | 17Deslizai                       | niento    |                |         | m²       |  |  |
| 8Fisuras de reflexión                          | n de juntas                                  | m       | 18Hinchar                        | niento    |                |         | m²       |  |  |
| 9Desnivel Carril-Be                            | rma                                          | m       | 19Disgreg                        | ación-De  | sintegración   |         | m²       |  |  |
| 10Fisuras long. y tra                          | nsversales                                   | m       |                                  |           |                |         |          |  |  |
| Tipe                                           | o de Falla                                   |         | Severidad                        | Total     | Densidad       | Valor   | deducido |  |  |
| 10Fisuras longitudin                           | 10Fisuras longitudinales y transversales (m) |         |                                  | 4,12      | 1,96           | 0       | ,10      |  |  |
| 13Huecos (N°)                                  |                                              |         | M                                | 2,00      | 0,95           | 3       | 1,00     |  |  |
| 19Disgregación-Des                             | integración (m²)                             |         | L                                | 8,08      | 3,85           | 2       | ,96      |  |  |

| NTO |       |      | 1    | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1   | 31,00 | 2,96 | 0,10 |          |        |   |   | 34,06 | 2 | 25,25 |
| 2   | 31,00 | 2,00 | 0,10 |          |        |   |   | 33,10 | 1 | 33,10 |

Máximo valor deducido corregido

VDC = 33,10

| <b>PCI</b> = 66, | 90 Condici | ón del pavimento | BUENO |
|------------------|------------|------------------|-------|

| MÉ                    | TODO PCI (ÍND       | ICE DE C | ONDICIÓN                         | DEL PA    | VIMENTO        | )       |          |
|-----------------------|---------------------|----------|----------------------------------|-----------|----------------|---------|----------|
| 7                     | ZONA DE ESTU        |          |                                  | RQUIS     | NORTE"         |         |          |
| Progresiva inicio:    | 2+700               |          | ×130                             | ESC       | UEMA           |         |          |
| Progresiva Fin:       | 2+730               | 1        |                                  |           |                |         |          |
| Área (m²):            | 210                 |          |                                  |           |                |         |          |
| Fecha:                | 24/08/2023          |          |                                  |           |                |         |          |
| Unidad de muestra:    | U91                 |          |                                  |           |                |         |          |
| Inspeccionado por:    |                     |          |                                  |           |                | 8       |          |
| Univ. Gerardo Maurio  | cio Vaca Valdez     |          |                                  |           | 2              | 100     |          |
| Falla                 | l                   | Unidad   |                                  | Fa        | lla            |         | Unidad   |
| 1Piel de cocodrilo    |                     | m²       | 2 11Parcheo                      |           |                | m²      |          |
| 2Exudación            |                     | m²       | m <sup>2</sup> 12Agregado pulido |           |                | m²      |          |
| 3Fisuras en bloque    |                     | m²       | m <sup>2</sup> 13Huecos          |           |                | N°      |          |
| 4Elevación-Hundim     | iento               | m        | 14Acceso                         | a puentes | -Rejillas de d | drenaje | m²       |
| 5Corrugaciones        |                     | m²       | 15Ahuella                        | miento    |                |         | m²       |
| 6Depresiones          |                     | m²       | 16Deforma                        | ación por | empuje         |         | m²       |
| 7Fisuras de borde     |                     | m        | 17Deslizar                       | niento    |                |         | m²       |
| 8Fisuras de reflexión | n de juntas         | m        | 18Hinchar                        | niento    |                |         | m²       |
| 9Desnivel Carril-Be   | rma                 | m        | 19Disgreg                        | ación-De  | sintegración   |         | m²       |
| 10Fisuras long. y tra | nsversales          | m        |                                  |           |                |         |          |
| Tipo                  | o de Falla          |          | Severidad                        | Total     | Densidad       | Valor   | deducido |
| 10Fisuras longitudin  | ales y transversale | es (m)   | L                                | 4,59      | 2,19           | C       | ),46     |
| 13Huecos (N°)         |                     |          | M                                | 1,00      | 0,48           | 19      | 9,84     |
| 19Disgregación-Des    | integración (m²)    |          | L                                | 1,06      | 0,51           | 1       | ,42      |

| N° |       |      | ,    | Valor de | ducido |   |   | Total |   | VDC   |
|----|-------|------|------|----------|--------|---|---|-------|---|-------|
| IN | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1  | 19,84 | 1,42 | 0,46 |          |        |   |   | 21,72 | 1 | 21,72 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 21,72 |

| D/T     | = 100-VDC   |  |
|---------|-------------|--|
| 1 ( ) 1 | — 1WV- Y DX |  |

| PCI = | 78,28 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|       |       |                         |           |

| MÉ'                   | TODO PCI (ÍND    | ICE DE C  | ONDICIÓN   | DEL PA                       | VIMENTO        | )       |          |
|-----------------------|------------------|-----------|------------|------------------------------|----------------|---------|----------|
| 7                     | ZONA DE ESTU     |           |            | RQUIS I                      | NORTE''        |         |          |
| Progresiva inicio:    | 2+970            |           | 3400       | ES                           | QUEMA          |         |          |
| Progresiva Fin:       | 3+000            |           | 3          |                              |                |         |          |
| Área (m²):            | 210              |           |            |                              |                |         |          |
| Fecha:                | 24/08/2023       |           |            |                              |                | 125     |          |
| Unidad de muestra:    | U100             |           |            |                              |                | 95      |          |
| Inspeccionado por:    |                  |           |            |                              |                | 10      |          |
| Univ. Gerardo Maurio  | cio Vaca Valdez  |           |            |                              | 22             | ,oTO    |          |
| Falla Unidad Falla    |                  |           |            | Unidad                       |                |         |          |
| 1Piel de cocodrilo    |                  | m²        | 11Parcheo  |                              |                |         | m²       |
| 2Exudación            |                  | m²        | 12Agregac  | lo pulido                    |                |         | m²       |
| 3Fisuras en bloque    |                  | m²        | 13Huecos   |                              |                |         | N°       |
| 4Elevación-Hundim     | iento            | m         | 14Acceso   | a puentes                    | -Rejillas de d | drenaje | m²       |
| 5Corrugaciones        |                  | m²        | 15Ahuella  | miento                       |                |         | m²       |
| 6Depresiones          |                  | m²        | 16Deform   | ación por                    | empuje         |         | m²       |
| 7Fisuras de borde     |                  | m         | 17Deslizar | niento                       |                |         | m²       |
| 8Fisuras de reflexión | n de juntas      | m         | 18Hinchar  | 3Hinchamiento m <sup>2</sup> |                |         | m²       |
| 9Desnivel Carril-Be   | m                | 19Disgreg | ación-De   | sintegración                 |                | m²      |          |
| 10Fisuras long. y tra | nsversales       | m         |            |                              |                |         |          |
| Tipe                  | o de Falla       |           | Severidad  | Total                        | Densidad       | Valor   | deducido |
| 10Fisuras longitudin  | es (m)           | L         | 3,42       | 1,63                         | (              | ),06    |          |
| 19Disgregación-Des    | integración (m²) |           | L          | 0,32                         | 0,15           | (       | ),35     |

| N°  |      | Valor deducido |   |   |   |   |   | Total |   | VDC  |
|-----|------|----------------|---|---|---|---|---|-------|---|------|
| IN. | 1    | 2              | 3 | 4 | 5 | 6 | 7 | Total | q | VDC  |
| 1   | 0,35 | 0,06           |   |   |   |   |   | 0,41  | 1 | 0,41 |

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 0,41 |

| DCI | 1   | UU-, | VD           | $\mathbf{C}$ |  |
|-----|-----|------|--------------|--------------|--|
| PUI | = 1 |      | $\mathbf{v}$ |              |  |

| PCI = 9 | 9,59 | Condición del pavimento | EXCELENTE |
|---------|------|-------------------------|-----------|
|---------|------|-------------------------|-----------|

| MÉ                                           | TODO PCI (ÍND                      | ICE DE C | ONDICIÓN                               | DEL PA           | VIMENTO      | )        |          |
|----------------------------------------------|------------------------------------|----------|----------------------------------------|------------------|--------------|----------|----------|
|                                              | ZONA DE ESTU                       |          |                                        |                  |              | <u> </u> |          |
| Progresiva inicio:                           | 3+240                              |          |                                        | ESQUEN           | MA ==        |          |          |
| Progresiva Fin:                              | 3+270                              |          |                                        |                  |              |          | 3+240    |
| Área (m²):                                   | 210                                | 2        |                                        |                  |              | +        | 3+       |
| Fecha:                                       | 24/08/2023                         |          |                                        |                  |              |          |          |
| Unidad de muestra:                           | U109                               | 2+270    |                                        |                  |              |          |          |
| Inspeccionado por:                           | Inspeccionado por:                 |          | 2                                      |                  |              |          |          |
| Univ. Gerardo Maurio                         | Univ. Gerardo Mauricio Vaca Valdez |          |                                        |                  |              |          |          |
| Falla                                        | Unidad                             | Falla    |                                        |                  |              | Unidad   |          |
| 1Piel de cocodrilo                           |                                    | m²       | 11Parcheo                              |                  |              |          | m²       |
| 2Exudación                                   |                                    | m²       | 12Agregado pulido                      |                  |              |          | m²       |
| 3Fisuras en bloque                           |                                    | m²       | 13Huecos                               |                  |              |          | N°       |
| 4Elevación-Hundim                            | iento                              | m        | 14Acceso a puentes-Rejillas de drenaje |                  |              | drenaje  | m²       |
| 5Corrugaciones                               |                                    | m²       | 15Ahuella                              | miento           |              |          | m²       |
| 6Depresiones                                 |                                    | m²       | 16Deformación por empuje               |                  |              | m²       |          |
| 7Fisuras de borde                            |                                    | m        | 17Deslizamiento                        |                  |              |          | m²       |
| 8Fisuras de reflexión                        | n de juntas                        | m        | 18Hinchamiento                         |                  |              | m²       |          |
| 9Desnivel Carril-Be                          | rma                                | m        | 19Disgreg                              | ación-De         | sintegración |          | m²       |
| 10Fisuras long. y tra                        | 10Fisuras long. y transversales m  |          |                                        |                  |              |          |          |
| Tipo de Falla                                |                                    |          | Severidad                              | Total            | Densidad     | Valor    | deducido |
| 10Fisuras longitudinales y transversales (m) |                                    |          | L                                      | L 3,82 1,82 0,08 |              | ,08      |          |
| 13Huecos (N°)                                |                                    |          | L                                      | 2,00             | 0,95         | 13       | 8,55     |

| NIO | Valor deducido |      |   |   |   |   |   | Total | ~ | VDC   |
|-----|----------------|------|---|---|---|---|---|-------|---|-------|
| 11  | 1              | 2    | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1   | 18,55          | 0,08 |   |   |   |   |   | 18,63 | 1 | 18,63 |

Máximo valor deducido corregido

VDC = 18,63

PCI = 100-VDC

PCI = 81,37 Condición del pavimento MUY BUENO

| MÉ'                   | MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |  |  |
|-----------------------|------------------------------------------------|---------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------|--|--|
| 7                     | ZONA DE ESTU                                   | DIO ''TOI     | MATITAS-E                              | RQUIS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NORTE"       |        |          |  |  |
| Progresiva inicio:    | 3+510                                          |               |                                        | ES ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUEMA        |        |          |  |  |
| Progresiva Fin:       | 3+540                                          |               | 0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le           |        |          |  |  |
| Área (m²):            | 210                                            |               | 3+540                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |  |  |
| Fecha:                | 24/08/2023                                     |               | 2                                      | The state of the s |              |        | 10       |  |  |
| Unidad de muestra:    | U118                                           |               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | LO     | 3+5      |  |  |
| Inspeccionado por:    |                                                |               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (1)    |          |  |  |
| Univ. Gerardo Maurio  |                                                |               |                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |          |  |  |
| Falla                 | Unidad                                         |               | Fal                                    | lla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Unidad |          |  |  |
| 1Piel de cocodrilo    |                                                | m²            | 11Parcheo                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | m²       |  |  |
| 2Exudación            | 2Exudación                                     |               | 12Agregado pulido                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | m²       |  |  |
| 3Fisuras en bloque    |                                                | m²            | 13Huecos                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | N°       |  |  |
| 4Elevación-Hundim     | iento                                          | m             | 14Acceso a puentes-Rejillas de drenaje |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | m²       |  |  |
| 5Corrugaciones        |                                                | m²            | 15Ahuellamiento                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | m²       |  |  |
| 6Depresiones          |                                                | m²            | 16Deforma                              | ación por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | empuje       |        | m²       |  |  |
| 7Fisuras de borde     |                                                | m             | 17Deslizai                             | niento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        | m²       |  |  |
| 8Fisuras de reflexión | n de juntas                                    | m             | 18Hinchar                              | niento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        | m²       |  |  |
| 9Desnivel Carril-Be   | rma                                            | m             | 19Disgreg                              | ación-De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sintegración |        | m²       |  |  |
| 10Fisuras long. y tra | nsversales                                     | m             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |  |  |
| Tipo                  | o de Falla                                     |               | Severidad                              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Densidad     | Valor  | deducido |  |  |
| 2Exudación (m²)       | 2Exudación (m²)                                |               |                                        | 43,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20,56        | 6      | 5,03     |  |  |
| 7Fisuras de borde (n  |                                                | L 6,10 2,90 3 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,38          |        |          |  |  |
| 13Huecos (N°)         |                                                | ·             | L                                      | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,48         | 10     | 0,54     |  |  |

| NTO |       |      | ,    | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q |       |
| 1   | 10,54 | 6,03 | 3,38 |          |        |   |   | 19,95 | 3 | 9,95  |
| 2   | 10,54 | 6,03 | 2,00 |          |        |   |   | 18,57 | 2 | 12,93 |
| 3   | 10,54 | 2,00 | 2,00 |          |        |   |   | 14,54 | 1 | 14,54 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14,54 |

| PCI = | 85,46 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ                    | TODO PCI (ÍND         | ICE DE C | ONDICIÓN                               | DEL PA   | VIMENTO      | )       |          |
|-----------------------|-----------------------|----------|----------------------------------------|----------|--------------|---------|----------|
| 7                     | ZONA DE ESTU          | DIO "TO  | MATITAS-E                              | RQUIS    | NORTE''      |         |          |
| Progresiva inicio:    | 3+780                 |          |                                        | ESQU     | JEMA <       | 5       |          |
| Progresiva Fin:       | 3+810                 |          |                                        |          | Ì            |         |          |
| Área (m²):            | 210                   | 27       |                                        |          |              |         |          |
| Fecha:                | 24/08/2023            | क्       |                                        |          |              | 7       |          |
| Unidad de muestra:    | U127                  |          |                                        |          |              |         | 0        |
| Inspeccionado por:    |                       |          |                                        |          |              |         | 3+76     |
| Univ. Gerardo Maurio  | cio Vaca Valdez       |          |                                        | 7        | 055          |         | 1,3      |
| Falla                 |                       | Unidad   |                                        | Fal      | lla          |         | Unidad   |
| 1Piel de cocodrilo    |                       | m²       | 11Parcheo                              |          |              |         | m²       |
| 2Exudación            | 2Exudación            |          | 12Agregado pulido                      |          |              |         | m²       |
| 3Fisuras en bloque    |                       | m²       | 13Huecos                               |          |              |         | N°       |
| 4Elevación-Hundim     | iento                 | m        | 14Acceso a puentes-Rejillas de drenaje |          |              | drenaje | m²       |
| 5Corrugaciones        |                       | m²       | 15Ahuellamiento                        |          |              |         | m²       |
| 6Depresiones          |                       | m²       | 16Deformación por empuje               |          |              |         | m²       |
| 7Fisuras de borde     |                       | m        | 17Deslizai                             | miento   |              |         | m²       |
| 8Fisuras de reflexión | n de juntas           | m        | 18Hinchamiento                         |          |              |         | m²       |
| 9Desnivel Carril-Ber  | rma                   | m        | 19Disgreg                              | ación-De | sintegración |         | m²       |
| 10Fisuras long. y tra | nsversales            | m        |                                        |          |              |         |          |
| Tipo                  | Tipo de Falla         |          |                                        | Total    | Densidad     | Valor   | deducido |
| 7Fisuras de borde (n  | 7Fisuras de borde (m) |          | L 4,55 2,17                            |          | 3            | 3,23    |          |
| 19Disgregación-Des    | integración (m²)      | ·        | M 2,32 1,11                            |          | ç            | ,02     |          |
| 19Disgregación-Des    | integración (m²)      |          | Н                                      | 2,45     | 1,17         | 1       | 6,85     |

| NTO |       |      | ,    | Valor de | ducido |   |   | Total | q | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total |   |       |
| 1   | 16,85 | 9,02 | 3,23 |          |        |   |   | 29,10 | 3 | 16,37 |
| 2   | 16,85 | 9,02 | 2,00 |          |        |   |   | 27,87 | 2 | 20,30 |
| 3   | 16,85 | 2,00 | 2,00 |          |        |   |   | 20,85 | 1 | 20,85 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 20,85 |

| PCI = | 79,15 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ                    | MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                   |                                        |          |              |        |          |  |  |  |
|-----------------------|------------------------------------------------|-------------------|----------------------------------------|----------|--------------|--------|----------|--|--|--|
| 7                     | ZONA DE ESTU                                   |                   | MATITAS-E                              | RQUIS I  | NORTE"       |        |          |  |  |  |
| Progresiva inicio:    | 4+000                                          | PX CO             |                                        | ESQ      | UEMA         |        |          |  |  |  |
| Progresiva Fin:       | 4+030                                          | O <sub>X</sub>    |                                        |          |              |        |          |  |  |  |
| Área (m²):            | 210                                            |                   |                                        |          |              | _      |          |  |  |  |
| Fecha:                | 25/08/2023                                     |                   |                                        |          |              |        |          |  |  |  |
| Unidad de muestra:    | U135                                           |                   |                                        |          |              |        |          |  |  |  |
| Inspeccionado por:    |                                                |                   |                                        |          |              |        | 6        |  |  |  |
| Univ. Gerardo Maurio  |                                                |                   |                                        |          | D            |        |          |  |  |  |
| Falla                 | Unidad                                         |                   | Fal                                    | lla      |              | Unidad |          |  |  |  |
| 1Piel de cocodrilo    | m²                                             | 11Parcheo         |                                        |          |              | m²     |          |  |  |  |
| 2Exudación            | m²                                             | 12Agregado pulido |                                        |          |              | m²     |          |  |  |  |
| 3Fisuras en bloque    | 3Fisuras en bloque                             |                   | 13Huecos                               |          |              |        | N°       |  |  |  |
| 4Elevación-Hundim     | iento                                          | m                 | 14Acceso a puentes-Rejillas de drenaje |          |              |        | m²       |  |  |  |
| 5Corrugaciones        |                                                | m²                | 15Ahuellamiento                        |          |              |        | m²       |  |  |  |
| 6Depresiones          |                                                | m²                | 16Deformación por empuje               |          |              |        | m²       |  |  |  |
| 7Fisuras de borde     |                                                | m                 | 17Deslizamiento                        |          |              |        | m²       |  |  |  |
| 8Fisuras de reflexión | n de juntas                                    | m                 | 18Hinchan                              | niento   |              |        | m²       |  |  |  |
| 9Desnivel Carril-Be   | rma                                            | m                 | 19Disgreg                              | ación-De | sintegración |        | m²       |  |  |  |
| 10Fisuras long. y tra | insversales                                    | m                 |                                        |          |              |        |          |  |  |  |
| Tipe                  | o de Falla                                     |                   | Severidad                              | Total    | Densidad     | Valor  | deducido |  |  |  |
| 7Fisuras de borde (n  | n)                                             |                   | M                                      | 2,27     | 1,08         | 5      | 5,63     |  |  |  |
| 10Fisuras longitudir  | 10Fisuras longitudinales y transversales (m)   |                   |                                        | 11,50    | 5,48         | 4      | ,68      |  |  |  |
| 13Huecos (N°)         |                                                | M                 | 2,00                                   | 0,95     | 3            | 1,00   |          |  |  |  |
| 15Ahuellamiento (m    | n²)                                            |                   | L                                      | 2,73     | 1,30         | 9      | ,73      |  |  |  |
| 19Disgregación-Des    | sintegración (m²)                              | •                 | Н                                      | 2,45     | 1,17         | 1      | 6,85     |  |  |  |

| N° |       |       | 7    | Valor de | ducido |   |   | Total | q | VDC   |
|----|-------|-------|------|----------|--------|---|---|-------|---|-------|
| 11 | 1     | 2     | 3    | 4        | 5      | 6 | 7 | Total |   |       |
| 1  | 31,00 | 16,85 | 9,73 | 5,63     | 4,68   |   |   | 67,89 | 5 | 33,73 |
| 2  | 31,00 | 16,85 | 9,73 | 5,63     | 2,00   |   |   | 65,21 | 4 | 36,13 |
| 3  | 31,00 | 16,85 | 9,73 | 2,00     | 2,00   |   |   | 61,58 | 3 | 39,03 |
| 4  | 31,00 | 16,85 | 2,00 | 2,00     | 2,00   |   |   | 53,85 | 2 | 39,70 |
| 5  | 31,00 | 2,00  | 2,00 | 2,00     | 2,00   |   |   | 39,00 | 1 | 39,00 |

Máximo valor deducido corregido

VDC = 39,70

| PCI = | 60.30 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|       |       |                         |       |

| MÉ'                   | TODO PCI (ÍND   | ICE DE C  | ONDICIÓN                               | DEL PA    | VIMENTO)     | )    |                |
|-----------------------|-----------------|-----------|----------------------------------------|-----------|--------------|------|----------------|
|                       | ZONA DE ESTU    | DIO "TO   | MATITAS-E                              | RQUIS N   | NORTE''      |      |                |
| Progresiva inicio:    | 4+270           |           |                                        | ESQU      | EMA          |      |                |
| Progresiva Fin:       | 4+300           |           | C                                      |           |              |      |                |
| Área (m²):            | 210             | 0         | X X X                                  |           |              |      |                |
| Fecha:                | 25/08/2023      |           |                                        |           |              |      |                |
| Unidad de muestra:    | U144            |           |                                        |           |              |      |                |
| Inspeccionado por:    |                 |           |                                        |           |              |      |                |
| Univ. Gerardo Maurio  | cio Vaca Valdez |           |                                        |           |              | DXX  |                |
| Falla                 | Falla           |           |                                        | Falla     |              |      |                |
| 1Piel de cocodrilo    | m²              | 11Parcheo |                                        |           |              | m²   |                |
| 2Exudación            | m²              | 12Agregac | do pulido                              |           |              | m²   |                |
| 3Fisuras en bloque    |                 | m²        | 13Huecos                               |           |              |      | N°             |
| 4Elevación-Hundim     | iento           | m         | 14Acceso a puentes-Rejillas de drenaje |           |              |      | m²             |
| 5Corrugaciones        |                 | m²        | 15Ahuellamiento                        |           |              |      | m²             |
| 6Depresiones          |                 | m²        | 16Deform                               | ación por | empuje       |      | m²             |
| 7Fisuras de borde     |                 | m         | 17Deslizamiento                        |           |              |      | m²             |
| 8Fisuras de reflexión | n de juntas     | m         | 18Hinchar                              | niento    |              |      | m²             |
| 9Desnivel Carril-Be   | rma             | m         | 19Disgreg                              | ación-Des | sintegración |      | m²             |
| 10Fisuras long. y tra | nsversales      | m         |                                        |           |              |      |                |
| Tipo de Falla         |                 |           | Severidad                              | Total     | Densidad     |      | alor<br>lucido |
| 2Exudación (m²)       | 2Exudación (m²) |           |                                        | 102,92    | 49,01        | 1    | 2,19           |
| 15Ahuellamiento (m    |                 | L         | 1,37                                   | 0,65      | 5            | 5,45 |                |

| N° |       | Valor deducido |      |   |   |   |   | Total | ~ | VDC   |
|----|-------|----------------|------|---|---|---|---|-------|---|-------|
| 11 | 1     | 2              | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 12,19 | 5,45           | 0,22 |   |   |   |   | 17,86 | 2 | 12,40 |
| 2  | 12,19 | 2,00           | 0,22 |   |   |   |   | 14,41 | 1 | 14,41 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14.41 |

19.-Disgregación-Desintegración (m²)

PCI = 100-VDC

| PCI = 85,59 Condición del pavimento MUY BUENO | ción del pavimento MUY BUENO |
|-----------------------------------------------|------------------------------|
|-----------------------------------------------|------------------------------|

0,03

0,02

0,22

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                   |           |                                        |        |          |       |          |  |  |
|------------------------------------------------|-------------------|-----------|----------------------------------------|--------|----------|-------|----------|--|--|
| 7                                              | ZONA DE ESTU      | DIO "TO   | MATITAS-E                              | RQUIS  | NORTE"   |       |          |  |  |
| Progresiva inicio:                             | 4+540             |           |                                        | ESQU   | EMA      |       |          |  |  |
| Progresiva Fin:                                | 4+570             |           |                                        |        |          |       | -        |  |  |
| Área (m²):                                     | 210               | 4+570     |                                        |        |          |       |          |  |  |
| Fecha:                                         | 25/08/2023        | 4+        |                                        |        |          |       |          |  |  |
| Unidad de muestra:                             | U153              |           |                                        |        |          |       | 4+540    |  |  |
| Inspeccionado por:                             |                   |           |                                        |        |          |       | 44       |  |  |
| Univ. Gerardo Maurio                           | cio Vaca Valdez   |           |                                        |        |          |       |          |  |  |
| Falla                                          | Falla             |           |                                        | Falla  |          |       | Unidad   |  |  |
| 1Piel de cocodrilo                             | m²                | 11Parcheo |                                        |        |          | m²    |          |  |  |
| 2Exudación                                     | m²                | 12Agregac | do pulido                              |        |          | m²    |          |  |  |
| 3Fisuras en bloque                             | m²                | 13Huecos  |                                        |        |          | N°    |          |  |  |
| 4Elevación-Hundim                              | iento             | m         | 14Acceso a puentes-Rejillas de drenaje |        |          |       | m²       |  |  |
| 5Corrugaciones                                 |                   | m²        | 15Ahuellamiento                        |        |          |       | m²       |  |  |
| 6Depresiones                                   |                   | m²        | 16Deformación por empuje               |        |          |       | m²       |  |  |
| 7Fisuras de borde                              |                   | m         | 17Deslizar                             | miento |          |       | m²       |  |  |
| 8Fisuras de reflexión                          | n de juntas       | m         | 18Hinchamiento                         |        |          |       | m²       |  |  |
| 9Desnivel Carril-Be                            | rma               | m         | 19Disgregación-Desintegración          |        |          |       | m²       |  |  |
| 10Fisuras long. y tra                          | nsversales        | m         |                                        |        |          |       |          |  |  |
| Tipe                                           | Tipo de Falla     |           |                                        | Total  | Densidad | Valor | deducido |  |  |
| 2Exudación (m²)                                |                   | L         | 95,38                                  | 45,42  | 1        | 1,44  |          |  |  |
| 4Elevación-Hundim                              |                   | L         | 0,48                                   | 0,23   | C        | ,00   |          |  |  |
| 19Disgregación-Des                             | sintegración (m²) |           | L                                      | 10,09  | 4,80     | 3     | ,24      |  |  |

| NTO |       | Valor deducido |   |   |   |   |   | Total |   | VDC   |
|-----|-------|----------------|---|---|---|---|---|-------|---|-------|
| N°  | 1     | 2              | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1   | 11,44 | 3,24           |   |   |   |   |   | 14,68 | 2 | 10,01 |
| 2   | 11,44 | 2,00           |   |   |   |   |   | 13,44 | 1 | 13,44 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 13.44 |

| PCI = | 86,56 | Condición del pavimento | EXCELENTE |
|-------|-------|-------------------------|-----------|
|       |       |                         |           |

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                  |           |                                  |                |          |       |          |  |  |
|------------------------------------------------|------------------|-----------|----------------------------------|----------------|----------|-------|----------|--|--|
| 7                                              | ZONA DE ESTU     | DIO "TO   | MATITAS-E                        | RQUIS          | NORTE"   |       |          |  |  |
| Progresiva inicio:                             | 4+810            |           |                                  | ESQU           | EMA      |       |          |  |  |
| Progresiva Fin:                                | 4+840            |           |                                  |                |          |       |          |  |  |
| Área (m²):                                     | 210              |           | 940                              |                |          |       |          |  |  |
| Fecha:                                         | 25/08/2023       |           | 4+840                            |                |          |       |          |  |  |
| Unidad de muestra:                             | U162             |           |                                  |                |          |       |          |  |  |
| Inspeccionado por:                             |                  |           |                                  |                |          | 4+810 |          |  |  |
| Univ. Gerardo Maurio                           | cio Vaca Valdez  |           |                                  |                |          | 4     |          |  |  |
| Falla                                          | 1                | Unidad    |                                  | Fal            | lla      |       | Unidad   |  |  |
| 1Piel de cocodrilo                             | m²               | 11Parcheo |                                  |                | m²       |       |          |  |  |
| 2Exudación                                     | m²               | 12Agregac | lo pulido                        |                |          | m²    |          |  |  |
| 3Fisuras en bloque                             | m²               | 13Huecos  |                                  |                |          | N°    |          |  |  |
| 4Elevación-Hundim                              | m                | 14Acceso  | a puentes                        | -Rejillas de d | drenaje  | m²    |          |  |  |
| 5Corrugaciones                                 |                  | m²        | 15Ahuellamiento                  |                |          |       | m²       |  |  |
| 6Depresiones                                   |                  | m²        | 16Deformación por empuje         |                |          |       | m²       |  |  |
| 7Fisuras de borde                              |                  | m         | 17Deslizamiento                  |                |          |       | m²       |  |  |
| 8Fisuras de reflexión                          | n de juntas      | m         | 18Hinchar                        | niento         |          |       | m²       |  |  |
| 9Desnivel Carril-Be                            | rma              | m         | 19Disgregación-Desintegración m² |                |          | m²    |          |  |  |
| 10Fisuras long. y tra                          | nsversales       | m         |                                  |                |          |       |          |  |  |
| Tipo                                           | o de Falla       |           | Severidad                        | Total          | Densidad | Valor | deducido |  |  |
| 2Exudación (m²)                                |                  |           | L                                | 22,66          | 10,79    | 3     | 3,60     |  |  |
| 10Fisuras longitudinales y transversales (m)   |                  |           | L                                | 0,49           | 0,23     | (     | 0,00     |  |  |
| 13Huecos (N°)                                  | 13Huecos (N°)    |           |                                  | 1,00           | 0,48     | 1     | 0,54     |  |  |
| 19Disgregación-Des                             | integración (m²) |           | L                                | 3,26           | 1,55     | 2     | 2,17     |  |  |

| <b>№</b> 10 |       |      | Valor deducido Total a |   |   |   | VDC |       |   |       |
|-------------|-------|------|------------------------|---|---|---|-----|-------|---|-------|
| N°          | 1     | 2    | 3                      | 4 | 5 | 6 | 7   | Total | q | VDC   |
| 1           | 10,54 | 3,60 | 2,17                   |   |   |   |     | 16,31 | 3 | 5,75  |
| 2           | 10,54 | 3,60 | 2,00                   |   |   |   |     | 16,14 | 2 | 11,11 |
| 3           | 10,54 | 2,00 | 2,00                   |   |   |   |     | 14,54 | 1 | 14,54 |

Máximo valor deducido corregido

VDC = 14,54

| PCI = | 85,46 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                    |                          |                                  |           |                |                  |        |  |
|------------------------------------------------|--------------------|--------------------------|----------------------------------|-----------|----------------|------------------|--------|--|
| 7                                              | ZONA DE ESTU       | DIO "TO                  |                                  |           | NORTE''        |                  |        |  |
| Progresiva inicio:                             | 5+080              |                          | 2090 1219                        | ESC       | QUEMA          |                  |        |  |
| Progresiva Fin:                                | 5+110              | 100                      |                                  | >         |                |                  |        |  |
| Área (m²):                                     | 210                | 43                       |                                  |           |                |                  |        |  |
| Fecha:                                         | 25/08/2023         |                          |                                  |           |                |                  |        |  |
| Unidad de muestra:                             | U171               | _                        |                                  |           |                |                  | ~      |  |
| Inspeccionado por:                             | Inspeccionado por: |                          |                                  |           |                |                  |        |  |
| Univ. Gerardo Maurio                           | cio Vaca Valdez    |                          |                                  |           | 4              | ₹ <sup>®</sup> > |        |  |
| Falla                                          | 1                  | Unidad                   |                                  | Fa        | lla            |                  | Unidad |  |
| 1Piel de cocodrilo                             |                    | m <sup>2</sup> 11Parcheo |                                  |           |                | m²               |        |  |
| 2Exudación                                     |                    | m²                       | 12Agregado pulido                |           |                |                  | m²     |  |
| 3Fisuras en bloque                             |                    | m²                       | 13Huecos                         |           |                |                  | N°     |  |
| 4Elevación-Hundim                              | iento              | m                        | 14Acceso                         | a puentes | -Rejillas de o | drenaje          | m²     |  |
| 5Corrugaciones                                 |                    | m²                       | 15Ahuella                        | miento    |                |                  | m²     |  |
| 6Depresiones                                   |                    | m²                       | 16Deforma                        | ación por | empuje         |                  | m²     |  |
| 7Fisuras de borde                              |                    | m                        | 17Deslizar                       | niento    |                |                  | m²     |  |
| 8Fisuras de reflexión                          | n de juntas        | m                        | 18Hinchar                        | niento    |                |                  | m²     |  |
| 9Desnivel Carril-Be                            | rma                | m                        | 19Disgregación-Desintegración m² |           |                | m²               |        |  |
| 10Fisuras long. y tra                          | nsversales         | m                        |                                  |           |                |                  |        |  |
| Tipo                                           |                    | Severidad                | Total                            | Densidad  | Valor          | deducido         |        |  |
| 4Elevación-Hundimiento (m)                     |                    |                          | L                                | 5,00      | 2,38           | 7                | ,26    |  |
| 7Fisuras de borde (m)                          |                    |                          | M                                | 19,40     | 9,24           | 1:               | 3,34   |  |
| 13Huecos (N°)                                  | •                  | M                        | 1,00                             | 0,48      | 1              | 9,84             |        |  |
| 15Ahuellamiento (m                             | n <sup>2</sup> )   |                          | L                                | 2,35      | 1,12           | 8                | 3,63   |  |

| N° |       |       | 7    | Valor de | ducido |   |   | Total | q | VDC   |
|----|-------|-------|------|----------|--------|---|---|-------|---|-------|
| 11 | 1     | 2     | 3    | 4        | 5      | 6 | 7 | Total |   |       |
| 1  | 19,84 | 13,34 | 8,63 | 7,26     |        |   |   | 49,07 | 4 | 25,35 |
| 2  | 19,84 | 13,34 | 8,63 | 2,00     |        |   |   | 43,81 | 3 | 26,67 |
| 3  | 19,84 | 13,34 | 2,00 | 2,00     |        |   |   | 37,18 | 2 | 27,74 |
| 4  | 19,84 | 2,00  | 2,00 | 2,00     |        |   |   | 25,84 | 1 | 25,84 |

Máximo valor deducido corregido

VDC = 27,74

| PCI = | 72,26 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|       | /     | -                       |           |

| MÉ'                                | MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                                  |                          |           |                |         |          |  |  |
|------------------------------------|------------------------------------------------|----------------------------------|--------------------------|-----------|----------------|---------|----------|--|--|
| 7                                  | ZONA DE ESTU                                   | DIO "TO                          | MATITAS-E                | RQUIS I   | NORTE''        |         |          |  |  |
| Progresiva inicio:                 | 5+350                                          |                                  | ESQUEMA                  |           |                |         |          |  |  |
| Progresiva Fin:                    | 5+380                                          |                                  |                          |           |                |         |          |  |  |
| Área (m²):                         | 210                                            |                                  |                          |           |                |         |          |  |  |
| Fecha:                             | 25/08/2023                                     |                                  |                          | 7         |                | 0       |          |  |  |
| Unidad de muestra:                 | U180                                           | 088                              |                          |           |                | 5+350   |          |  |  |
| Inspeccionado por:                 |                                                | 5+380                            |                          |           |                | 75      |          |  |  |
| Univ. Gerardo Mauricio Vaca Valdez |                                                |                                  |                          |           |                |         | 2096.471 |  |  |
| Falla                              | Falla Unidad Falla                             |                                  |                          |           |                | Unidad  |          |  |  |
| 1Piel de cocodrilo                 |                                                | m²                               | m <sup>2</sup> 11Parcheo |           |                |         | m²       |  |  |
| 2Exudación                         |                                                | m <sup>2</sup> 12Agregado pulido |                          |           |                | m²      |          |  |  |
| 3Fisuras en bloque                 |                                                | m <sup>2</sup> 13Huecos          |                          |           | N°             |         |          |  |  |
| 4Elevación-Hundim                  | iento                                          | m                                | 14Acceso                 | a puentes | -Rejillas de o | drenaje | m²       |  |  |
| 5Corrugaciones                     |                                                | m²                               | 15Ahuella                | miento    |                |         | m²       |  |  |
| 6Depresiones                       |                                                | m²                               | 16Deform                 | ación por | empuje         |         | m²       |  |  |
| 7Fisuras de borde                  |                                                | m                                | 17Deslizai               | niento    |                |         | m²       |  |  |
| 8Fisuras de reflexión              | n de juntas                                    | m                                | 18Hinchar                | niento    |                |         | m²       |  |  |
| 9Desnivel Carril-Be                | rma                                            | m                                | 19Disgreg                | ación-De  | sintegración   |         | m²       |  |  |
| 10Fisuras long. y tra              | m                                              |                                  |                          |           |                |         |          |  |  |
| Tipo                               | Tipo de Falla                                  |                                  |                          |           | Densidad       | Valor   | deducido |  |  |
| 2Exudación (m²)                    |                                                |                                  | M                        | 65,34     | 31,11          | 22      | 2,78     |  |  |
| 7Fisuras de borde (m)              |                                                |                                  | L                        | 0,33      | 0,16           | 0       | ,00      |  |  |
| 19Disgregación-Des                 | integración (m²)                               |                                  | L                        | 0,37      | 0,18           | 0       | ,38      |  |  |

| N  |       | Valor deducido |   |   |   |   |   | Total |   | VDC   |
|----|-------|----------------|---|---|---|---|---|-------|---|-------|
| 11 | 1     | 2              | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 22,78 | 0,38           |   |   |   |   |   | 23,16 | 1 | 23,16 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 23,16 |

| DOL   | 100 T | TDC |  |
|-------|-------|-----|--|
| PCI = | 100-1 | טטע |  |

| PCI = | 76,84 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÉ                    | TODO PCI (ÍND   | ICE DE C                      | ONDICIÓN                               | DEL PA                   | VIMENTO) | )  |               |
|-----------------------|-----------------|-------------------------------|----------------------------------------|--------------------------|----------|----|---------------|
|                       | ZONA DE ESTU    | DIO "TON                      | MATITAS-E                              | RQUIS                    | NORTE"   |    |               |
| Progresiva inicio:    | 5+620           | ESQUEMA                       |                                        |                          |          |    |               |
| Progresiva Fin:       | 5+650           |                               |                                        |                          |          |    |               |
| Área (m²):            | 210             | (E-31)                        | Z =2105.5                              |                          | 2        |    | //            |
| Fecha:                | 25/08/2023      |                               | 2 -2105.5                              | 506<br>                  |          |    |               |
| Unidad de<br>muestra: | U189            | REO                           |                                        |                          |          |    | 5+620         |
| Inspeccionado por:    |                 | 5+6                           |                                        |                          |          |    | 5             |
| Univ. Gerardo Mauri   | cio Vaca Valdez |                               |                                        |                          |          |    |               |
| Fall                  | Unidad          | Falla                         |                                        |                          | Unidad   |    |               |
| 1Piel de cocodrilo    | m²              | 11Parcheo                     |                                        |                          | m²       |    |               |
| 2Exudación            |                 | m²                            | 12Agregado pulido                      |                          |          | m² |               |
| 3Fisuras en bloque    |                 | m²                            | 13Huecos                               |                          |          | N° |               |
| 4Elevación-Hundin     | niento          | m                             | 14Acceso a puentes-Rejillas de drenaje |                          |          | m² |               |
| 5Corrugaciones        |                 | m²                            | 15Ahuella                              | 15Ahuellamiento          |          |    | m²            |
| 6Depresiones          |                 | m²                            | 16Deforma                              | 16Deformación por empuje |          |    | m²            |
| 7Fisuras de borde     |                 | m                             | 17Deslizar                             | niento                   |          |    | m²            |
| 8Fisuras de reflexió  | n de juntas     | m                             | 18Hinchar                              | niento                   |          |    | m²            |
| 9Desnivel Carril-Be   | m               | 19Disgregación-Desintegración |                                        |                          |          | m² |               |
| 10Fisuras long. y tra | m               |                               |                                        |                          |          |    |               |
| Tipo de Falla         |                 |                               | Severidad                              | Total                    | Densidad |    | alor<br>ucido |
| NO EXISTEN FAL        | LAS             |                               |                                        |                          |          |    |               |

| N° |   | Valor deducido Total |   |   |   |   | ~ | VDC   |   |     |
|----|---|----------------------|---|---|---|---|---|-------|---|-----|
| IN | 1 | 2                    | 3 | 4 | 5 | 6 | 7 | Total | q | VDC |
| 1  |   |                      |   |   |   |   |   |       |   |     |

| Máximo v    | valor   | PCI = | 100-VDC |
|-------------|---------|-------|---------|
| deducido co | rregido |       |         |
| VDC =       | 0,00    |       |         |

| PCI = | 100.00 | Condición del pavimento | EXCELENTE |
|-------|--------|-------------------------|-----------|
|       |        |                         |           |

| MÉ'                      | TODO PCI (ÍND   | ICE DE C | ONDICIÓN        | DEL PA    | VIMENTO        | )       |          |
|--------------------------|-----------------|----------|-----------------|-----------|----------------|---------|----------|
|                          | ZONA DE ESTU    | DIO "TO  | MATITAS-E       | RQUIS     | NORTE''        |         |          |
| Progresiva inicio:       | 5+890           |          |                 | ESQU      | EMA            |         |          |
| Progresiva Fin:          | 5+920           |          |                 |           |                |         |          |
| Área (m²):               | 210             |          |                 |           |                |         | 2        |
| Fecha:                   | 25/08/2023      |          |                 |           |                |         | 684      |
| Unidad de muestra:       | U198            | 0        |                 |           |                |         | R)       |
| Inspeccionado por:       |                 | 5+920    |                 |           |                |         |          |
| Univ. Gerardo Maurio     | cio Vaca Valdez | TO.      |                 | > _       |                |         |          |
| Falla Uni                |                 |          | Falla           |           |                |         | Unidad   |
| 1Piel de cocodrilo       |                 | m²       | 11Parcheo       |           |                |         | m²       |
| 2Exudación               |                 | m²       | 12Agregac       | lo pulido |                |         | m²       |
| 3Fisuras en bloque       |                 | m²       | 13Huecos        |           |                |         | N°       |
| 4Elevación-Hundim        | iento           | m        | 14Acceso        | a puentes | -Rejillas de o | drenaje | m²       |
| 5Corrugaciones           |                 | m²       | 15Ahuella       | miento    |                |         | m²       |
| 6Depresiones             |                 | m²       | 16Deforma       | ación por | empuje         |         | m²       |
| 7Fisuras de borde        |                 | m        | 17Deslizamiento |           |                | m²      |          |
| 8Fisuras de reflexión    | n de juntas     | m        | 18Hinchar       | niento    |                |         | m²       |
| 9Desnivel Carril-Berma n |                 |          | 19Disgreg       | ación-De  | sintegración   |         | m²       |
| 10Fisuras long. y tra    | nsversales      | m        |                 |           |                |         |          |
| Tipo                     | o de Falla      |          | Severidad       | Total     | Densidad       | Valor   | deducido |
| 2Exudación (m²)          |                 |          | L 4,90 2,33 0,4 |           |                | ),40    |          |
| 11Parcheo (m²)           |                 |          | M               | 1,44      | 0,69           | 8       | 3,13     |

| N° | Valor deducido Testal a T |      |   |   |   |   |   | VDC   |   |      |
|----|---------------------------|------|---|---|---|---|---|-------|---|------|
| 11 | 1                         | 2    | 3 | 4 | 5 | 6 | 7 | Total | q | VDC  |
| 1  | 8,13                      | 0,40 |   |   |   |   |   | 8,53  | 1 | 8,53 |

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 8,53 |

| DCI | _ 100 3 | VDC |  |
|-----|---------|-----|--|
| FUL | = 100-  | VDC |  |

PCI = 91,47 Condición del pavimento EXCELENTE

| MÉ'                         | TODO PCI (ÍND                                | ICE DE C  | ONDICIÓN                         | DEL PA    | VIMENTO        | )        |        |
|-----------------------------|----------------------------------------------|-----------|----------------------------------|-----------|----------------|----------|--------|
|                             | ZONA DE ESTU                                 |           |                                  |           |                |          |        |
| Progresiva inicio:          | 6+160                                        |           |                                  | ESQ       | UEMA           |          |        |
| Progresiva Fin:             | 6+190                                        |           |                                  |           |                |          |        |
| Área (m²):                  | 210                                          | 90        |                                  |           |                | ଣ        |        |
| Fecha:                      | 25/08/2023                                   | 06+190    |                                  |           |                |          |        |
| Unidad de muestra:          | U207                                         |           |                                  |           |                |          | 6      |
| Inspeccionado por:          |                                              |           |                                  |           |                |          | 37     |
| Univ. Gerardo Maurio        | cio Vaca Valdez                              |           |                                  |           |                |          |        |
| Falla                       | ı                                            | Unidad    |                                  | Fa        | lla            |          | Unidad |
| 1Piel de cocodrilo          |                                              | m²        | 11Parcheo                        |           |                | m²       |        |
| 2Exudación                  |                                              | m²        | 12Agregac                        | lo pulido |                |          | m²     |
| 3Fisuras en bloque          |                                              | m²        | 13Huecos                         |           |                |          | N°     |
| 4Elevación-Hundim           | iento                                        | m         | 14Acceso                         | a puentes | -Rejillas de o | drenaje  | m²     |
| 5Corrugaciones              |                                              | m²        | 15Ahuella                        | miento    |                |          | m²     |
| 6Depresiones                |                                              | m²        | 16Deforma                        | ación por | empuje         |          | m²     |
| 7Fisuras de borde           |                                              | m         | 17Deslizamiento                  |           |                |          | m²     |
| 8Fisuras de reflexión       | n de juntas                                  | m         | 18Hinchar                        | niento    |                |          | m²     |
| 9Desnivel Carril-Be         | rma                                          | m         | 19Disgregación-Desintegración m² |           |                | m²       |        |
| 10Fisuras long. y tra       | nsversales                                   | m         |                                  |           |                |          |        |
| Tipo                        |                                              | Severidad | Total                            | Densidad  | Valor          | deducido |        |
| 4Elevación-Hundimiento (m²) |                                              |           | L                                | 0,40      | 0,19           | (        | 0,00   |
| 10Fisuras longitudin        | 10Fisuras longitudinales y transversales (m) |           |                                  | 0,33      | 0,16           | (        | 0,00   |
| 19Disgregación-Des          | integración (m²)                             |           | L                                | 0,05      | 0,03           |          | ),23   |

| Ι, | N°  |      |      | , | Valor de | ducido |   |   | Total q VDC |   |      |  |
|----|-----|------|------|---|----------|--------|---|---|-------------|---|------|--|
|    | IN. | 1    | 2    | 3 | 4        | 5      | 6 | 7 | Total       | q | VDC  |  |
|    | 1   | 0,23 | 0,00 |   |          |        |   |   | 0,23        | 1 | 0,23 |  |

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 0,23 |

| DCI _ | 100-VDC  |  |
|-------|----------|--|
| PUI=  | 100-9170 |  |

PCI = 99,77 Condición del pavimento EXCELENTE

| MÉ'                                          | MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                            |                                  |           |                |         |          |  |
|----------------------------------------------|------------------------------------------------|----------------------------|----------------------------------|-----------|----------------|---------|----------|--|
| 7                                            | ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                            |                                  |           |                |         |          |  |
| Progresiva inicio:                           | 6+430                                          | 6×460                      |                                  | ES        | QUEMA          |         |          |  |
| Progresiva Fin:                              | 6+460                                          | Exm                        |                                  |           |                |         |          |  |
| Área (m²):                                   | 210                                            |                            |                                  |           | 5              | 2130    |          |  |
| Fecha:                                       | 25/08/2023                                     |                            |                                  |           |                |         |          |  |
| Unidad de muestra:                           | U216                                           |                            | 7                                |           |                |         |          |  |
| Inspeccionado por:                           |                                                |                            |                                  |           |                | * CO    |          |  |
| Univ. Gerardo Maurio                         | cio Vaca Valdez                                |                            |                                  |           |                | 9       |          |  |
| Falla                                        | ı                                              | Unidad                     |                                  | Fal       | lla            |         | Unidad   |  |
| 1Piel de cocodrilo                           |                                                | m²                         | 11Parcheo                        |           |                |         | m²       |  |
| 2Exudación                                   |                                                | m²                         | 12Agregac                        | lo pulido |                |         | m²       |  |
| 3Fisuras en bloque                           |                                                | m <sup>2</sup> 13Huecos N° |                                  |           | N°             |         |          |  |
| 4Elevación-Hundim                            | iento                                          | m                          | 14Acceso                         | a puentes | -Rejillas de o | drenaje | m²       |  |
| 5Corrugaciones                               |                                                | m²                         | 15Ahuella                        | miento    |                |         | m²       |  |
| 6Depresiones                                 |                                                | m²                         | 16Deforma                        | ación por | empuje         |         | m²       |  |
| 7Fisuras de borde                            |                                                | m                          | 17Deslizar                       | niento    |                |         | m²       |  |
| 8Fisuras de reflexión                        | n de juntas                                    | m                          | 18Hinchamiento m                 |           |                | m²      |          |  |
| 9Desnivel Carril-Be                          | rma                                            | m                          | 19Disgregación-Desintegración m² |           |                | m²      |          |  |
| 10Fisuras long. y tra                        | nsversales                                     | m                          |                                  |           |                |         |          |  |
| Tipo                                         | o de Falla                                     |                            | Severidad                        | Total     | Densidad       | Valor   | deducido |  |
| 1Piel de cocodrilo (m²)                      |                                                |                            | L                                | 1,85      | 0,88           | 8       | 3,96     |  |
| 10Fisuras longitudinales y transversales (m) |                                                |                            | L                                | 1,43      | 0,68           | (       | 0,00     |  |
| 11Parcheo (m²)                               | 11Parcheo (m²)                                 |                            |                                  | 3,04      | 1,45           | 1       | 1,99     |  |
| 13Huecos (N°)                                |                                                |                            | M 1,00 0,48 19,84                |           |                | 9,84    |          |  |

| <b>N</b> TO | Valor deducido |       |      |   |   |   |   | Total |   | VDC   |
|-------------|----------------|-------|------|---|---|---|---|-------|---|-------|
| N°          | 1              | 2     | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1           | 19,84          | 11,99 | 8,96 |   |   |   |   | 40,79 | 3 | 24,55 |
| 2           | 19,84          | 11,99 | 2,00 |   |   |   |   | 33,83 | 2 | 25,06 |
| 3           | 19,84          | 2,00  | 2,00 |   |   |   |   | 23,84 | 1 | 23,84 |

Máximo valor deducido corregido

VDC = 25,06

| PCI = | 74,94 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÉ                    | TODO PCI (ÍND                           | ICE DE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ONDICIÓN                 | DEL PA      | VIMENTO      | )        |        |
|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|--------------|----------|--------|
| 7                     | ZONA DE ESTU                            | DIO "TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MATITAS-E                | RQUIS       | NORTE''      |          |        |
| Progresiva inicio:    | 6+700                                   | ESQUEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ИA                       |             |              |          |        |
| Progresiva Fin:       | 6+730                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | NO          |              | e e      |        |
| Área (m²):            | 210                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,                       | 140         |              | 001      | to     |
| Fecha:                | 25/08/2023                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |              |          | )      |
| Unidad de muestra:    | U225                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                        |             |              |          |        |
| Inspeccionado por:    |                                         | Marine Ma | 0+130                    |             | 2140         |          |        |
| Univ. Gerardo Maurio  | cio Vaca Valdez                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |              |          |        |
| Falla                 |                                         | Unidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Falla                    |             |              |          | Unidad |
| 1Piel de cocodrilo    | m²                                      | 11Parcheo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |             |              | m²       |        |
| 2Exudación            | m²                                      | 12Agregac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lo pulido                |             |              | m²       |        |
| 3Fisuras en bloque    | 3Fisuras en bloque                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |             |              |          | N°     |
| 4Elevación-Hundim     | iento                                   | m 14Acceso a puentes-Rejillas de drenaje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |             |              | m²       |        |
| 5Corrugaciones        |                                         | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15Ahuellamiento          |             |              |          | m²     |
| 6Depresiones          |                                         | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16Deformación por empuje |             |              |          | m²     |
| 7Fisuras de borde     |                                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17Deslizai               | miento      |              |          | m²     |
| 8Fisuras de reflexión | n de juntas                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18Hinchamiento           |             |              |          | m²     |
| 9Desnivel Carril-Ber  | rma                                     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19Disgreg                | ación-De    | sintegración |          | m²     |
| 10Fisuras long. y tra | nsversales                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |             |              |          |        |
| Tipo                  |                                         | Severidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total                    | Densidad    | Valor        | deducido |        |
| 4Elevación-Hundim     | 4Elevación-Hundimiento (m)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 2,55        | 1,21         | 4        | 1,51   |
|                       | 10Fisuras longitudinales y transversale |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | L 0,89 0,42 |              | (        | ),00   |
| 15Ahuellamiento (m    | (2)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                        | 1,32        | 0,63         | 5        | 5,31   |

| NTO | Valor deducido |      |   |   |   |   | Total |       | VDC |      |
|-----|----------------|------|---|---|---|---|-------|-------|-----|------|
| N°  | 1              | 2    | 3 | 4 | 5 | 6 | 7     | Total | q   | VDC  |
| 1   | 5,31           | 4,51 |   |   |   |   |       | 9,82  | 2   | 0,00 |
| 2   | 5,31           | 2,00 |   |   |   |   |       | 7,31  | 1   | 7,31 |

Máximo valor deducido corregido

VDC = 7,31

PCI = 100-VDC

PCI = 92,69 Condición del pavimento EXCELENTE

| MÉ'                   | TODO PCI (ÍND              | ICE DE C                                | ONDICIÓN                               | DEL PA   | VIMENTO | )        |      |
|-----------------------|----------------------------|-----------------------------------------|----------------------------------------|----------|---------|----------|------|
| 7                     | ZONA DE ESTU               | DIO "TO                                 | MATITAS-E                              | RQUIS    | NORTE'' |          |      |
| Progresiva inicio:    | 6+970                      |                                         |                                        | ESQU     | EMA     |          |      |
| Progresiva Fin:       | 7+000                      |                                         |                                        |          |         |          |      |
| Área (m²):            | 210                        | 2155                                    |                                        |          |         |          |      |
| Fecha:                | 25/08/2023                 | (E-38) Z =2153E                         |                                        |          |         |          |      |
| Unidad de muestra:    | U234                       | 000000000000000000000000000000000000000 |                                        |          |         |          |      |
| Inspeccionado por:    | 77                         |                                         |                                        |          | 2       | 0        |      |
| Univ. Gerardo Maurio  | io Vaca Valdez             |                                         |                                        |          |         |          |      |
| Falla                 | Unidad                     | Falla                                   |                                        |          |         | Unidad   |      |
| 1Piel de cocodrilo    | m²                         | 11Parcheo                               |                                        |          |         | m²       |      |
| 2Exudación            | m²                         | 12Agregac                               | lo pulido                              |          |         | m²       |      |
| 3Fisuras en bloque    | 3Fisuras en bloque         |                                         |                                        |          |         |          | N°   |
| 4Elevación-Hundim     | iento                      | m                                       | 14Acceso a puentes-Rejillas de drenaje |          |         |          | m²   |
| 5Corrugaciones        |                            | m²                                      | 15Ahuellamiento                        |          |         |          | m²   |
| 6Depresiones          |                            | m²                                      | 16Deformación por empuje               |          |         |          | m²   |
| 7Fisuras de borde     |                            | m                                       | 17Deslizar                             | miento   |         |          | m²   |
| 8Fisuras de reflexión | n de juntas                | m                                       | 18Hinchar                              | niento   |         |          | m²   |
| 9Desnivel Carril-Be   | rma                        | m                                       | 19Disgregación-Desintegración          |          |         |          | m²   |
| 10Fisuras long. y tra | nsversales                 | m                                       |                                        |          |         |          |      |
| Tipo                  | -                          | Severidad                               | Total                                  | Densidad | Valor   | deducido |      |
| 4Elevación-Hundim     | 4Elevación-Hundimiento (m) |                                         |                                        | 13,34    | 6,35    | 1        | 1,92 |
| 7Fisuras de borde (m) |                            |                                         | M                                      | 0,97     | 0,46    | 4,14     |      |
| 19Disgregación-Des    | integración (m²)           |                                         | L                                      | 13,43    | 6,40    | 3        | 3,82 |

| NTO |       |      | ,    | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q |       |
| 1   | 11,92 | 4,14 | 3,82 |          |        |   |   | 19,88 | 3 | 9,88  |
| 2   | 11,92 | 4,14 | 2,00 |          |        |   |   | 18,06 | 2 | 12,55 |
| 3   | 11,92 | 2,00 | 2,00 |          |        |   |   | 15,92 | 1 | 15,92 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 15,92 |

| 1 C1 –   04,00   Condicion del payiniento   MO I DUENO | PCI = | 84,08 | Condición del pavimento | MUY BUENO |
|--------------------------------------------------------|-------|-------|-------------------------|-----------|
|--------------------------------------------------------|-------|-------|-------------------------|-----------|

| MÉ'                                          | TODO PCI (ÍND    | ICE DE C       | ONDICIÓN                      | DEL PA           | VIMENTO        | )       |                  |
|----------------------------------------------|------------------|----------------|-------------------------------|------------------|----------------|---------|------------------|
| 7                                            | ZONA DE ESTU     | DIO "TO        | MATITAS-E                     | RQUIS I          | NORTE"         |         |                  |
| Progresiva inicio:                           | 7+240            |                |                               | ESQUE            | MA VEREIN      | 65      |                  |
| Progresiva Fin:                              | 7+270            |                |                               |                  | 722x           |         |                  |
| Área (m²):                                   | 210              |                |                               | - 1 <sup>2</sup> | 222 A.D.       | Op X    |                  |
| Fecha:                                       | 25/08/2023       |                |                               | 69.55A           |                |         |                  |
| Unidad de muestra:                           | U243             | CINCING SEA    |                               |                  |                |         |                  |
| Inspeccionado por:                           |                  | S. W. J. W. S. |                               |                  |                |         |                  |
| Univ. Gerardo Maurio                         | cio Vaca Valdez  |                | 2                             | OLXXV            |                |         |                  |
| Falla                                        | 1                | Unidad         |                               | Falla            |                |         | Unidad           |
| 1Piel de cocodrilo                           | m²               | 11Parcheo      |                               |                  |                | m²      |                  |
| 2Exudación                                   | m²               | 12Agregac      | lo pulido                     |                  |                | m²      |                  |
| 3Fisuras en bloque                           | m²               | 13Huecos       |                               |                  |                | N°      |                  |
| 4Elevación-Hundim                            | iento            | m              | 14Acceso                      | a puentes        | -Rejillas de o | drenaje | m²               |
| 5Corrugaciones                               |                  | m²             | 15Ahuellamiento               |                  |                |         | m²               |
| 6Depresiones                                 |                  | m²             | 16Deformación por empuje      |                  |                |         | m²               |
| 7Fisuras de borde                            |                  | m              | 17Deslizamiento               |                  |                |         | m²               |
| 8Fisuras de reflexión                        | n de juntas      | m              | 18Hinchamiento                |                  |                |         | m²               |
| 9Desnivel Carril-Be                          | rma              | m              | 19Disgregación-Desintegración |                  |                |         | m²               |
| 10Fisuras long. y tra                        | nsversales       | m              |                               |                  |                |         |                  |
| Tipo                                         | Tipo de Falla    |                |                               | Total            | Densidad       | Valor   | deducido         |
| 2Exudación (m²)                              |                  |                | L                             | 59,85            | 28,50          | 7       | <sup>7</sup> ,86 |
| 4Elevación-Hundimiento (m)                   |                  |                | L 11,20 5,33 10,76            |                  |                | 0,76    |                  |
| 10Fisuras longitudinales y transversales (m) |                  |                | L 6,04 2,88 1                 |                  | ,77            |         |                  |
| 19Disgregación-Des                           | integración (m²) |                | L                             | 0,06             | 0,03           |         | ),23             |

| NTO |       |      | ,    | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1   | 10,76 | 7,86 | 1,77 | 0,23     |        |   |   | 20,62 | 2 | 14,50 |
| 2   | 10,76 | 2,00 | 1,77 | 0,23     |        |   |   | 14,76 | 1 | 14,76 |

| Máximo v<br>deducido co |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| <b>VDC</b> = 14,76      |  |  |  |  |  |

| PCI = | 85,24 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ'                   | TODO PCI (ÍND          | ICE DE C | ONDICIÓN                      | DEL PA                                 | VIMENTO  | )     |          |
|-----------------------|------------------------|----------|-------------------------------|----------------------------------------|----------|-------|----------|
| 7                     | ZONA DE ESTU           | DIO "TO  | MATITAS-E                     | RQUIS I                                | NORTE"   |       |          |
| Progresiva inicio:    | 7+510                  | ESQUEN   | ЛA                            |                                        | 2155     |       |          |
| Progresiva Fin:       | 7+540                  |          |                               |                                        |          | Zex.  |          |
| Área (m²):            | 210                    |          |                               |                                        |          |       |          |
| Fecha:                | 25/08/2023             |          |                               |                                        |          |       |          |
| Unidad de muestra:    | U252                   |          |                               |                                        |          |       |          |
| Inspeccionado por:    |                        |          |                               |                                        |          |       |          |
| Univ. Gerardo Maurio  |                        | ///0     | t\$+2                         |                                        |          |       |          |
| Falla                 | Falla                  |          |                               | Falla                                  |          |       | Unidad   |
| 1Piel de cocodrilo    |                        | m²       | 11Parcheo                     | 11Parcheo                              |          |       | m²       |
| 2Exudación            |                        | m²       | 12Agregado pulido             |                                        |          | m²    |          |
| 3Fisuras en bloque    |                        | m²       | 13Huecos                      |                                        |          | N°    |          |
| 4Elevación-Hundim     | iento                  | m        | 14Acceso                      | 14Acceso a puentes-Rejillas de drenaje |          |       | m²       |
| 5Corrugaciones        |                        | m²       | 15Ahuella                     | miento                                 |          |       | m²       |
| 6Depresiones          |                        | m²       | 16Deforma                     | ación por                              | empuje   |       | m²       |
| 7Fisuras de borde     |                        | m        | 17Deslizar                    | miento                                 |          |       | m²       |
| 8Fisuras de reflexión | n de juntas            | m        | 18Hinchar                     | niento                                 |          |       | m²       |
| 9Desnivel Carril-Be   | 9Desnivel Carril-Berma |          | 19Disgregación-Desintegración |                                        |          |       | m²       |
| 10Fisuras long. y tra | m                      |          |                               |                                        |          |       |          |
| Tipo                  | Tipo de Falla          |          |                               | Total                                  | Densidad | Valor | deducido |
| 19Disgregación-Des    | integración (m²)       |          | L                             | 12,21                                  | 5,82     | 3     | 3,63     |

| N° | Valor deducido Total q |   |   |   |   |   |   | VDC   |   |      |
|----|------------------------|---|---|---|---|---|---|-------|---|------|
| 11 | 1                      | 2 | 3 | 4 | 5 | 6 | 7 | Total | q | VDC  |
| 1  | 3,63                   |   |   |   |   |   |   | 3,63  | 1 | 3,63 |

| Máximo v<br>deducido co |      |
|-------------------------|------|
| VDC =                   | 3,63 |

| PCI = | 100-VDC |
|-------|---------|
|       |         |

| PCI = | 96,37 | Condición del pavimento | EXCELENTE |
|-------|-------|-------------------------|-----------|

| MÉ'                   | TODO PCI (ÍND       | ICE DE C | ONDICIÓN                               | DEL PA       | VIMENTO      | )       |          |
|-----------------------|---------------------|----------|----------------------------------------|--------------|--------------|---------|----------|
| 7                     | ZONA DE ESTU        | DIO "TO  | MATITAS-E                              | RQUIS I      | NORTE''      |         |          |
| Progresiva inicio:    | 7+780               | ESQUEN   | ИΑ                                     | 084          | + _          |         |          |
| Progresiva Fin:       | 7+810               |          |                                        |              |              |         |          |
| Área (m²):            | 210                 |          |                                        |              |              |         |          |
| Fecha:                | 25/08/2023          |          |                                        | \ \          |              |         |          |
| Unidad de muestra:    | U261                |          |                                        |              |              |         |          |
| Inspeccionado por:    |                     |          |                                        | $\mathbb{N}$ |              |         |          |
| Univ. Gerardo Maurio  | cio Vaca Valdez     |          |                                        |              | )L8+L        |         |          |
| Falla                 | l                   | Unidad   |                                        | Fal          | lla          |         | Unidad   |
| 1Piel de cocodrilo    |                     | m²       | 11Parcheo                              |              |              |         | m²       |
| 2Exudación            |                     | m²       | 12Agregac                              | lo pulido    |              |         | m²       |
| 3Fisuras en bloque    |                     | m²       | 13Huecos                               |              |              |         | N°       |
| 4Elevación-Hundim     | iento               | m        | 14Acceso a puentes-Rejillas de drenaje |              |              | drenaje | m²       |
| 5Corrugaciones        |                     | m²       | 15Ahuella                              | miento       |              |         | m²       |
| 6Depresiones          |                     | m²       | 16Deforma                              | ación por    | empuje       |         | m²       |
| 7Fisuras de borde     |                     | m        | 17Deslizar                             | niento       |              |         | m²       |
| 8Fisuras de reflexión | n de juntas         | m        | 18Hinchar                              | niento       |              |         | m²       |
| 9Desnivel Carril-Be   | rma                 | m        | 19Disgreg                              | ación-De     | sintegración |         | m²       |
| 10Fisuras long. y tra | nsversales          | m        |                                        |              |              |         |          |
| Tipe                  | o de Falla          |          | Severidad                              | Total        | Densidad     | Valor   | deducido |
| 10Fisuras longitudin  | ales y transversale | es (m)   | L                                      | 9,45         | 4,50         | 3       | ,80      |
| 13Huecos (N°)         | ·                   | ·        | L                                      | 1,00         | 0,48         | 10      | 0,54     |
| 19Disgregación-Des    | integración (m²)    |          | L                                      | 5,22         | 2,49         | 2       | ,50      |

| <b>№</b> 10 |       |      | 1    | Valor de | ducido |   |   | Total |   | VDC   |
|-------------|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°          | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1           | 10,54 | 3,80 | 2,50 |          |        |   |   | 16,84 | 3 | 6,45  |
| 2           | 10,54 | 3,80 | 2,00 |          |        |   |   | 16,34 | 2 | 11,26 |
| 3           | 10,54 | 2,00 | 2,00 |          |        |   |   | 14,54 | 1 | 14,54 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14,54 |

| PCI = | 85,46 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ'                   | TODO PCI (ÍND   | ICE DE C | ONDICIÓN   | DEL PA    | VIMENTO        | )       |          |  |
|-----------------------|-----------------|----------|------------|-----------|----------------|---------|----------|--|
|                       | ZONA DE ESTU    | DIO "TO  | MATITAS-E  | RQUIS     | NORTE"         |         |          |  |
| Progresiva inicio:    | 8+000           |          | í          | 2157      |                | ES      | QUEMA    |  |
| Progresiva Fin:       | 8+030           | 00+      |            |           |                |         |          |  |
| Área (m²):            | 210             | 8+000    |            |           |                |         |          |  |
| Fecha:                | 26/08/2023      | 0        |            |           |                | 00      |          |  |
| Unidad de muestra:    | U269            |          |            |           |                | 8+030   |          |  |
| Inspeccionado por:    |                 |          | 2157       |           |                | 0       |          |  |
| Univ. Gerardo Maurio  | cio Vaca Valdez |          | 213/       |           |                |         |          |  |
| Falla                 | ı               | Unidad   | Falla      |           |                | Unidad  |          |  |
| 1Piel de cocodrilo    |                 | m²       | 11Parcheo  |           |                |         | m²       |  |
| 2Exudación            |                 | m²       | 12Agregac  | lo pulido |                |         | m²       |  |
| 3Fisuras en bloque    |                 | m²       | 13Huecos   |           |                |         | N°       |  |
| 4Elevación-Hundim     | iento           | m        | 14Acceso   | a puentes | -Rejillas de d | drenaje | m²       |  |
| 5Corrugaciones        |                 | m²       | 15Ahuella  | miento    |                |         | m²       |  |
| 6Depresiones          |                 | m²       | 16Deforma  | ación por | empuje         |         | m²       |  |
| 7Fisuras de borde     |                 | m        | 17Deslizar | niento    |                |         | m²       |  |
| 8Fisuras de reflexión | n de juntas     | m        | 18Hinchar  | niento    |                |         | m²       |  |
| 9Desnivel Carril-Be   | rma             | m        | 19Disgreg  | ación-De  | sintegración   |         | m²       |  |
| 10Fisuras long. y tra | nsversales      | m        |            |           |                |         |          |  |
| Tipe                  | o de Falla      |          | Severidad  | Total     | Densidad       | Valor   | deducido |  |
| 7Fisuras de borde (n  | n)              |          | M          | 8,55      | 4,07           | 9       | 9,56     |  |
| 13Huecos (N°)         |                 |          | L          | 1,00      | 0,48           | 1       | 0,54     |  |

| NTO |       |      | 7 | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|---|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3 | 4        | 5      | 6 | 7 | Total | q | VDC   |
| 1   | 10,54 | 9,56 |   |          |        |   |   | 20,10 | 2 | 14,08 |
| 2   | 10,54 | 2,00 |   |          |        |   |   | 12,54 | 1 | 12,54 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14,08 |

| DOI    | 100-V           | $\mathbf{D}$ |  |
|--------|-----------------|--------------|--|
| PI 1 — | 1 1 1 1 1 1 - V |              |  |
|        |                 |              |  |

| PCI = 85,92 Condición del pavimento MUY BUE |
|---------------------------------------------|
|---------------------------------------------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                                 |                    |                                        |                |          |         |               |  |  |  |  |
|------------------------------------------------|---------------------------------|--------------------|----------------------------------------|----------------|----------|---------|---------------|--|--|--|--|
| ZONA DE ESTUDIO ''TOMATITAS-ERQUIS NORTE''     |                                 |                    |                                        |                |          |         |               |  |  |  |  |
| Progresiva inicio:                             | 8+150                           | 8+150 ESQUEMA 2.15 |                                        |                |          |         |               |  |  |  |  |
| Progresiva Fin:                                | 8+180                           |                    |                                        |                |          |         |               |  |  |  |  |
| Área (m²):                                     | 210                             |                    |                                        |                |          |         | %<br>+        |  |  |  |  |
| Fecha:                                         | 26/08/2023                      |                    | 8+4                                    |                |          |         | 8+180         |  |  |  |  |
| Unidad de<br>muestra:                          | U274                            |                    | 150                                    |                |          |         |               |  |  |  |  |
| Inspeccionado por:                             |                                 |                    |                                        |                |          |         | .51           |  |  |  |  |
| Univ. Gerardo Mauri                            | cio Vaca Valdez                 | 2152               |                                        |                |          |         | 2151          |  |  |  |  |
| Falla                                          | Unidad                          | Falla              |                                        |                |          | Unidad  |               |  |  |  |  |
| 1Piel de cocodrilo                             | m²                              | 11Parcheo          |                                        |                |          | m²      |               |  |  |  |  |
| 2Exudación                                     |                                 | m²                 | 12Agregado pulido                      |                |          |         | m²            |  |  |  |  |
| 3Fisuras en bloque                             |                                 | m²                 | 13Huecos                               |                |          |         | N°            |  |  |  |  |
| 4Elevación-Hundim                              | iento                           | m                  | 14Acceso a puentes-Rejillas de drenaje |                |          | lrenaje | m²            |  |  |  |  |
| 5Corrugaciones                                 |                                 | m²                 | 15Ahuellamiento                        |                |          |         | m²            |  |  |  |  |
| 6Depresiones                                   |                                 | m²                 | 16Deformación por empuje               |                |          |         | m²            |  |  |  |  |
| 7Fisuras de borde                              |                                 | m                  | 17Deslizamiento                        |                |          |         | m²            |  |  |  |  |
| 8Fisuras de reflexió                           | 8Fisuras de reflexión de juntas |                    |                                        | 18Hinchamiento |          |         | m²            |  |  |  |  |
| 9Desnivel Carril-Berma                         |                                 |                    | 19Disgregación-Desintegración          |                |          |         | m²            |  |  |  |  |
| 10Fisuras long. y tra                          | ansversales                     | m                  |                                        |                |          |         |               |  |  |  |  |
| Tip                                            | Tipo de Falla                   |                    |                                        | Total          | Densidad | •       | alor<br>ucido |  |  |  |  |
| NO EXISTEN FAL                                 | LAS                             |                    |                                        |                |          |         |               |  |  |  |  |

| N° |   |   |   | Total a VD( |   |   |   |       |   |     |
|----|---|---|---|-------------|---|---|---|-------|---|-----|
| IN | 1 | 2 | 3 | 4           | 5 | 6 | 7 | Total | q | VDC |
| 1  |   |   |   |             |   |   |   |       | 1 |     |

| Máximo v<br>deducido co |  |
|-------------------------|--|
| VDC =                   |  |

PCI = 100,00 Condición del pavimento EXCELENTE

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                  |                   |                                        |          |              |          |          |  |  |
|------------------------------------------------|------------------|-------------------|----------------------------------------|----------|--------------|----------|----------|--|--|
| ZONA DE ESTUDIO ''TOMATITAS-ERQUIS NORTE''     |                  |                   |                                        |          |              |          |          |  |  |
| Progresiva inicio:                             | 8+300            | ESQUEMA System    |                                        |          |              |          | ,        |  |  |
| Progresiva Fin:                                | 8+330            | ۵.                |                                        |          |              | 7.5      |          |  |  |
| Área (m²):                                     | 210              | 61 <sup>40</sup>  |                                        |          |              |          | <u> </u> |  |  |
| Fecha:                                         | 26/08/2023       |                   | 00                                     |          |              | \        | 8+330    |  |  |
| Unidad de muestra:                             | U279             |                   | 8+300                                  |          |              |          | 30       |  |  |
| Inspeccionado por:                             |                  |                   | 0                                      |          |              |          |          |  |  |
| Univ. Gerardo Maurio                           | cio Vaca Valdez  |                   |                                        |          |              |          | 2145     |  |  |
| Falla                                          | Unidad           |                   | Fal                                    | lla      |              | Unidad   |          |  |  |
| 1Piel de cocodrilo                             | m²               | 11Parcheo         |                                        |          |              | m²       |          |  |  |
| 2Exudación                                     | m²               | 12Agregado pulido |                                        |          |              | m²       |          |  |  |
| 3Fisuras en bloque                             | m²               | 13Huecos          |                                        |          |              | N°       |          |  |  |
| 4Elevación-Hundim                              | iento            | m                 | 14Acceso a puentes-Rejillas de drenaje |          |              |          | m²       |  |  |
| 5Corrugaciones                                 |                  | m²                | 15Ahuellamiento                        |          |              |          | m²       |  |  |
| 6Depresiones                                   |                  | m²                | 16Deformación por empuje               |          |              |          | m²       |  |  |
| 7Fisuras de borde                              |                  | m                 | 17Deslizamiento n                      |          |              |          |          |  |  |
| 8Fisuras de reflexión                          | n de juntas      | m                 | 18Hinchamiento                         |          |              |          | m²       |  |  |
| 9Desnivel Carril-Be                            | rma              | m                 | 19Disgreg                              | ación-De | sintegración |          | m²       |  |  |
| 10Fisuras long. y tra                          | nsversales       | m                 |                                        |          |              |          |          |  |  |
| Tipe                                           |                  | Severidad         | Total                                  | Densidad | Valor        | deducido |          |  |  |
| 2Exudación (m²)                                |                  | L                 | 67,55                                  | 32,17    | 8            | 5,66     |          |  |  |
| 13Huecos (N°)                                  |                  | L                 | 1,00                                   | 0,48     | 10           | 0,54     |          |  |  |
| 19Disgregación-Des                             | integración (m²) | ·                 | L                                      | 3,09     | 1,47         | 2        | ,14      |  |  |

| NTO |       |      | 1    | Valor de | ducido |   |   | Total |   | a VDC |  |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|--|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q | VDC   |  |
| 1   | 10,54 | 8,66 | 2,14 |          |        |   |   | 21,34 | 3 | 10,94 |  |
| 2   | 10,54 | 8,66 | 2,00 |          |        |   |   | 21,20 | 2 | 14,96 |  |
| 3   | 10,54 | 2,00 | 2,00 |          |        |   |   | 14,54 | 1 | 14,54 |  |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14,96 |

| PCI = | 85,04 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ'                   | TODO PCI (ÍND    | ICE DE C                | ONDICIÓN                               | DEL PA | VIMENTO   | )      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------|------------------|-------------------------|----------------------------------------|--------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7                     | ZONA DE ESTU     | DIO "TO                 | MATITAS-E                              | RQUIS  |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Progresiva inicio:    | 8+450            | ESQUEN                  | <b>ESQUEMA</b> 7 2141.0 2139           |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Progresiva Fin:       | 8+480            |                         | 2 N=7624370<br>2 Z=2140.2              |        | =312668.7 | 2100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Área (m²):            | 210              | E-51                    | 2 N=7624370<br>52) Z=2140.2            | es (   |           | 8+A80  | - Company of the Control of the Cont |  |
| Fecha:                | 26/08/2023       |                         |                                        |        |           | 180    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Unidad de muestra:    | U284             |                         | 84450                                  |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Inspeccionado por:    |                  |                         | 55                                     |        | 2139      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Univ. Gerardo Maurio  | cio Vaca Valdez  |                         | 2140                                   |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Falla                 | Unidad           |                         | Fa                                     | lla    |           | Unidad |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1Piel de cocodrilo    | m²               | 11Parcheo               |                                        |        |           | m²     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2Exudación m²         |                  |                         | 12Agregado pulido                      |        |           |        | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 3Fisuras en bloque    | m²               | m <sup>2</sup> 13Huecos |                                        |        |           | N°     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4Elevación-Hundim     | iento            | m                       | 14Acceso a puentes-Rejillas de drenaje |        |           |        | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 5Corrugaciones        |                  | m²                      | 15Ahuellamiento                        |        |           |        | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6Depresiones          |                  | m²                      | 16Deformación por empuje               |        |           | m²     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7Fisuras de borde     |                  | m                       | 17Deslizamiento                        |        |           |        | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 8Fisuras de reflexión | n de juntas      | m                       | 18Hinchamiento                         |        |           |        | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 9Desnivel Carril-Be   | rma              | m                       | 19Disgregación-Desintegración n        |        |           | m²     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10Fisuras long. y tra | nsversales       | m                       |                                        |        |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tipo                  | o de Falla       |                         | Severidad                              | Total  | Densidad  | Valor  | deducido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 2Exudación (m²)       |                  |                         | L                                      | 58,63  | 27,92     | 7      | ',72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 13Huecos (N°)         |                  |                         | L                                      | 1,00   | 0,48      | 1      | 0,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 19Disgregación-Des    | integración (m²) |                         | L                                      | 3,96   | 1,89      | 2      | 2,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| NTO |       |      | 7    | Valor de | ducido |   |   | Total |   | VDC   |
|-----|-------|------|------|----------|--------|---|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4        | 5      | 6 | 7 | Total | q |       |
| 1   | 10,54 | 7,72 | 2,27 |          |        |   |   | 20,53 | 3 | 10,37 |
| 2   | 10,54 | 7,72 | 2,00 |          |        |   |   | 20,26 | 2 | 14,21 |
| 3   | 10,54 | 2,00 | 2,00 |          |        |   |   | 14,54 | 1 | 14,54 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 14,54 |

| PCI = | 85,46 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                 |              |                                        |       |          |         |          |
|------------------------------------------------|-----------------|--------------|----------------------------------------|-------|----------|---------|----------|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |                 |              |                                        |       |          |         |          |
| Progresiva inicio:                             | 8+600           | ESQUEMA 2134 |                                        |       |          |         |          |
| Progresiva Fin:                                | 8+630           |              |                                        |       |          | 8+03    | e e      |
| Área (m²):                                     | 210             | 2135         |                                        |       |          |         |          |
| Fecha:                                         | 26/08/2023      |              | 84                                     |       |          |         | 2134     |
| Unidad de muestra:                             | U289            |              | 8+600                                  |       |          |         |          |
| Inspeccionado por:                             |                 |              |                                        |       |          |         |          |
| Univ. Gerardo Maurio                           | cio Vaca Valdez | 6            | 2135                                   |       |          |         |          |
| Falla                                          |                 | Unidad       | Falla                                  |       |          | Unidad  |          |
| 1Piel de cocodrilo                             |                 | m²           | 11Parcheo                              |       |          | m²      |          |
| 2Exudación                                     |                 | m²           | 12Agregado pulido                      |       |          | m²      |          |
| 3Fisuras en bloque                             |                 | m²           | 13Huecos                               |       |          |         | N°       |
| 4Elevación-Hundimiento                         |                 | m            | 14Acceso a puentes-Rejillas de drenaje |       |          | drenaje | m²       |
| 5Corrugaciones                                 |                 | m²           | 15Ahuellamiento                        |       |          |         | m²       |
| 6Depresiones                                   |                 | m²           | 16Deformación por empuje               |       |          | m²      |          |
| 7Fisuras de borde                              |                 | m            | 17Deslizamiento                        |       |          | m²      |          |
| 8Fisuras de reflexión de juntas                |                 | m            | 18Hinchamiento                         |       |          | m²      |          |
| 9Desnivel Carril-Berma                         |                 | m            | 19Disgregación-Desintegración          |       |          | m²      |          |
| 10Fisuras long. y tra                          | m               |              |                                        |       |          |         |          |
| Tipo de Falla                                  |                 |              | Severidad                              | Total | Densidad | Valor   | deducido |
| 2Exudación (m²)                                |                 |              | L                                      | 62,44 | 29,73    | 8       | ,14      |
| 13Huecos (N°)                                  | ·               | L            | 2,00                                   | 0,95  | 18,55    |         |          |
| 19Disgregación-Des                             |                 | L            | 5,00                                   | 2,38  | 2        | ,45     |          |

| <b>№</b> 10 | Valor deducido |      |      |   |   |   |   | Total | - | VDC   |
|-------------|----------------|------|------|---|---|---|---|-------|---|-------|
| N°          | 1              | 2    | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1           | 18,55          | 8,14 | 2,45 |   |   |   |   | 29,14 | 3 | 16,40 |
| 2           | 18,55          | 8,14 | 2,00 |   |   |   |   | 28,69 | 2 | 20,95 |
| 3           | 18,55          | 2,00 | 2,00 |   |   |   |   | 22,55 | 1 | 22,55 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 22,55 |

| PCI = | 77,45 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉ'                   | TODO PCI (ÍND | ICE DE C  | ONDICIÓN                               | DEL PA            | VIMENTO      | )      |          |
|-----------------------|---------------|-----------|----------------------------------------|-------------------|--------------|--------|----------|
|                       | ZONA DE ESTU  |           |                                        |                   |              | •      |          |
| Progresiva inicio:    | 8+750         | 2130      | -                                      |                   |              | ES     | QUEMA    |
| Progresiva Fin:       | 8+780         |           |                                        | Œ                 | -53) £120    | €      |          |
| Área (m²):            | 210           |           | 8+750                                  |                   | -7.3         | 0.001  | 2128 -   |
| Fecha:                | 26/08/2023    |           | 50                                     |                   |              |        | 00<br>+  |
| Unidad de muestra:    | U294          |           | 129                                    |                   |              | 00     | +70      |
| Inspeccionado por:    |               | 29        |                                        |                   |              |        |          |
| Univ. Gerardo Maurio  |               |           |                                        | 2128 -            |              |        |          |
| Falla                 | Unidad        | Falla     |                                        |                   |              | Unidad |          |
| 1Piel de cocodrilo    | m²            | 11Parcheo |                                        |                   |              | m²     |          |
| 2Exudación            | 2Exudación    |           |                                        | 12Agregado pulido |              |        |          |
| 3Fisuras en bloque    |               | m²        | 13Huecos                               |                   |              |        | N°       |
| 4Elevación-Hundim     | iento         | m         | 14Acceso a puentes-Rejillas de drenaje |                   |              |        | m²       |
| 5Corrugaciones        |               | m²        | 15Ahuella                              | miento            |              |        | m²       |
| 6Depresiones          |               | m²        | 16Deforma                              | ación por         | empuje       |        | m²       |
| 7Fisuras de borde     |               | m         | 17Deslizar                             | niento            |              |        | m²       |
| 8Fisuras de reflexión | n de juntas   | m         | 18Hinchar                              | niento            |              |        | m²       |
| 9Desnivel Carril-Be   | rma           | m         | 19Disgreg                              | ación-De          | sintegración |        | m²       |
| 10Fisuras long. y tra | nsversales    | m         |                                        |                   |              |        |          |
| Tipo de Falla         |               |           | Severidad                              | Total             | Densidad     | Valor  | deducido |
| 7Fisuras de borde (m) |               |           | M                                      | 7,22              | 3,44         | 8,88   |          |
| 19Disgregación-Des    |               | L         | 4,67                                   | 2,23              | 2            | 2,39   |          |

| NTO |      |      | 7 |   | Total |   | VDC |       |   |       |
|-----|------|------|---|---|-------|---|-----|-------|---|-------|
| N°  | 1    | 2    | 3 | 4 | 5     | 6 | 7   | Total | q | VDC   |
| 1   | 8,88 | 2,39 |   |   |       |   |     | 11,27 | 2 | 5,08  |
| 2   | 8,88 | 2,00 |   |   |       |   |     | 10,88 | 1 | 10,88 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 10,88 |

PCI = 89,12 Condición del pavimento EXCELENTE

| MÉ'                   | MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |         |                                        |                                  |        |        |          |  |  |
|-----------------------|------------------------------------------------|---------|----------------------------------------|----------------------------------|--------|--------|----------|--|--|
|                       | ZONA DE ESTU                                   | DIO "TO |                                        | RQUIS                            | NORTE" |        |          |  |  |
| Progresiva inicio:    | 8+900                                          |         | 51.55                                  |                                  |        | ES     | QUEMA    |  |  |
| Progresiva Fin:       | 8+930                                          |         |                                        |                                  |        |        |          |  |  |
| Área (m²):            | 210                                            |         | 8+900                                  |                                  |        |        |          |  |  |
| Fecha:                | 26/08/2023                                     | 2125    |                                        |                                  |        |        | 2124 <   |  |  |
| Unidad de muestra:    | U299                                           |         |                                        |                                  |        | 40     | b        |  |  |
| Inspeccionado por:    |                                                |         |                                        |                                  | S      |        |          |  |  |
| Univ. Gerardo Maurio  | cio Vaca Valdez                                |         |                                        |                                  | 21     | 124    |          |  |  |
| Falla                 | Unidad                                         |         | Falla                                  |                                  |        | Unidad |          |  |  |
| 1Piel de cocodrilo    | 1Piel de cocodrilo                             |         |                                        | 11Parcheo                        |        |        | m²       |  |  |
| 2Exudación            |                                                | m²      | 12Agregado pulido                      |                                  |        |        | m²       |  |  |
| 3Fisuras en bloque    |                                                | m²      | 13Huecos                               |                                  |        |        | N°       |  |  |
| 4Elevación-Hundim     | iento                                          | m       | 14Acceso a puentes-Rejillas de drenaje |                                  |        |        | m²       |  |  |
| 5Corrugaciones        |                                                | m²      | 15Ahuellamiento                        |                                  |        |        | m²       |  |  |
| 6Depresiones          |                                                | m²      | 16Deforma                              | ación por                        | empuje |        | m²       |  |  |
| 7Fisuras de borde     |                                                | m       | 17Deslizar                             | niento                           |        |        | m²       |  |  |
| 8Fisuras de reflexión | n de juntas                                    | m       | 18Hinchar                              | niento                           |        |        | m²       |  |  |
| 9Desnivel Carril-Be   | rma                                            | m       | 19Disgregación-Desintegración          |                                  |        |        | m²       |  |  |
| 10Fisuras long. y tra | m                                              |         |                                        |                                  |        |        |          |  |  |
| Tipe                  | Tipo de Falla                                  |         |                                        | Severidad Total Densidad Valor o |        |        | deducido |  |  |
| 13Huecos (N°)         |                                                |         | L                                      | 1,00                             | 0,48   | 1      | 0,54     |  |  |

| N° |       |   | 7 |   | Total | a | VDC |        |   |       |
|----|-------|---|---|---|-------|---|-----|--------|---|-------|
| 17 | 1     | 2 | 3 | 4 | 5     | 6 | 7   | 1 otai | q | VDC   |
| 1  | 10,54 |   |   |   |       |   |     | 10,54  | 1 | 10,54 |

| Máximo valor<br>deducido corregido |
|------------------------------------|
| <b>VDC</b> = 10,54                 |

|--|

| PCI = | 89,46 | Condición del pavimento | EXCELENTE |
|-------|-------|-------------------------|-----------|

| MÉ                    | TODO PCI (ÍND      | ICE DE C      | ONDICIÓN                               | DEL PA   | VIMENTO      | )     |          |
|-----------------------|--------------------|---------------|----------------------------------------|----------|--------------|-------|----------|
| 7                     | ZONA DE ESTU       | DIO "TOI      | MATITAS-E                              | RQUIS    | NORTE''      |       |          |
| Progresiva inicio:    | 9+050              |               | SHOOT                                  | 2        |              | ES    | QUEMA    |
| Progresiva Fin:       | 9+080              |               | OS.                                    | (2)      | 119          |       |          |
| Área (m²):            | 210                | 2119          |                                        |          |              |       |          |
| Fecha:                | 26/08/2023         |               |                                        |          |              | 1     | 2118     |
| Unidad de muestra:    | U304               |               |                                        |          |              | o X   |          |
| Inspeccionado por:    |                    |               |                                        |          |              | 200   |          |
| Univ. Gerardo Maurio  | cio Vaca Valdez    |               |                                        |          |              |       |          |
| Falla                 | Falla              |               |                                        | Falla    |              |       | Unidad   |
| 1Piel de cocodrilo    | m²                 | 11Parcheo     |                                        |          |              | m²    |          |
| 2Exudación            | m²                 | 12Agregac     | lo pulido                              |          |              | m²    |          |
| 3Fisuras en bloque    | 3Fisuras en bloque |               |                                        |          |              |       | N°       |
| 4Elevación-Hundim     | iento              | m             | 14Acceso a puentes-Rejillas de drenaje |          |              |       | m²       |
| 5Corrugaciones        |                    | m²            | 15Ahuellamiento                        |          |              |       | m²       |
| 6Depresiones          |                    | m²            | 16Deformación por empuje               |          |              |       | m²       |
| 7Fisuras de borde     |                    | m             | 17Deslizai                             | niento   |              |       | m²       |
| 8Fisuras de reflexión | n de juntas        | m             | 18Hinchar                              | niento   |              |       | m²       |
| 9Desnivel Carril-Ber  | rma                | m             | 19Disgreg                              | ación-De | sintegración |       | m²       |
| 10Fisuras long. y tra | nsversales         | m             |                                        |          |              |       |          |
| Tipo                  | Tipo de Falla      |               |                                        | Total    | Densidad     | Valor | deducido |
| 2Exudación (m²)       |                    | L             | 37,80                                  | 18,00    | 5            | 5,40  |          |
| 13Huecos (N°)         |                    | L 1,00 0,48 1 |                                        | 1        | 0,54         |       |          |
| 19Disgregación-Des    |                    | L             | 0,82                                   | 0,39     | 1            | ,16   |          |

| NTO |       |      | 1    | Total |   | VDC |   |       |   |       |
|-----|-------|------|------|-------|---|-----|---|-------|---|-------|
| N°  | 1     | 2    | 3    | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1   | 10,54 | 5,40 | 1,16 |       |   |     |   | 17,10 | 2 | 11,83 |
| 2   | 10,54 | 2,00 | 1,16 |       |   |     |   | 13,70 | 1 | 13,70 |

Máximo valor deducido corregido

VDC = 13,70

PCI = 100-VDC

PCI = 86,30 Condición del pavimento EXCELENTE

| MÉ                    | TODO PCI (ÍND                            | ICE DE C          | ONDICIÓN   | DEL PA    | VIMENTO        | )       |          |
|-----------------------|------------------------------------------|-------------------|------------|-----------|----------------|---------|----------|
|                       | ZONA DE ESTU                             | DIO "TO           |            |           | NORTE''        |         |          |
| Progresiva inicio:    | 9+200                                    |                   | 005*6      | C1/4 .    |                | ES      | QUEMA    |
| Progresiva Fin:       | 9+230                                    |                   | 000        |           |                |         |          |
| Área (m²):            | 210                                      | 19                |            |           |                |         |          |
| Fecha:                | 26/08/2023                               |                   |            |           |                |         |          |
| Unidad de muestra:    | U309                                     |                   | Clify -    |           |                |         |          |
| Inspeccionado por:    |                                          |                   |            |           | SEL            | XO TO   | Tr       |
| Univ. Gerardo Maurio  |                                          |                   |            |           |                |         |          |
| Falla                 | Unidad                                   |                   | Fa         | lla       |                | Unidad  |          |
| 1Piel de cocodrilo    | m²                                       | 11Parcheo         |            |           |                | m²      |          |
| 2Exudación            | m²                                       | 12Agregado pulido |            |           |                | m²      |          |
| 3Fisuras en bloque    | m²                                       | 13Huecos          |            |           |                | N°      |          |
| 4Elevación-Hundim     | 4Elevación-Hundimiento                   |                   |            | a puentes | -Rejillas de o | drenaje | m²       |
| 5Corrugaciones        |                                          | m²                | 15Ahuella  | m²        |                |         |          |
| 6Depresiones          |                                          | m²                | 16Deforma  | m²        |                |         |          |
| 7Fisuras de borde     |                                          | m                 | 17Deslizar | niento    |                |         | m²       |
| 8Fisuras de reflexión | n de juntas                              | m                 | 18Hinchar  | niento    |                |         | m²       |
| 9Desnivel Carril-Be   | rma                                      | m                 | 19Disgreg  | ación-De  | sintegración   |         | m²       |
| 10Fisuras long. y tra | nsversales                               | m                 |            |           |                |         |          |
| Tipe                  | o de Falla                               |                   | Severidad  | Total     | Densidad       | Valor   | deducido |
| 2Exudación (m²)       |                                          |                   | L          | 32,55     | 15,50          | 4       | ,78      |
| 4Elevación-Hundim     |                                          | L                 | 7,05       | 3,36      | 8              | 3,43    |          |
| 10Fisuras longitudin  | 10Fisuras longitudinales y transversales |                   |            | 0,36      | 0,17           | C       | 0,00     |
| 13Huecos (N°)         |                                          |                   | L          | 1,00      | 0,48           | 10      | 0,54     |
| 19Disgregación-Des    | sintegración (m²)                        |                   | L          | 2,85      | 1,36           | 2       | 2,11     |

| N° |       |      | 7    | Valor de | ducido |   |   | Total  | q   | VDC   |
|----|-------|------|------|----------|--------|---|---|--------|-----|-------|
| 11 | 1     | 2    | 3    | 4        | 5      | 6 | 7 | 1 otai | VDC |       |
| 1  | 10,54 | 8,43 | 4,78 | 2,11     |        |   |   | 25,86  | 4   | 8,69  |
| 2  | 10,54 | 8,43 | 4,78 | 2,00     |        |   |   | 25,75  | 3   | 14,03 |
| 3  | 10,54 | 8,43 | 2,00 | 2,00     |        |   |   | 22,97  | 2   | 16,38 |
| 4  | 10,54 | 2,00 | 2,00 | 2,00     |        |   |   | 16,54  | 1   | 16,54 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 16,54 |

| PCI = | 83,46 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|
|-------|-------|-------------------------|-----------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                  |         |                               |           |                |        |                                        |
|------------------------------------------------|------------------|---------|-------------------------------|-----------|----------------|--------|----------------------------------------|
|                                                | ZONA DE ESTU     | DIO "TO | MATITAS-E                     | RQUIS N   | NORTE''        |        |                                        |
| Progresiva inicio:                             | 9+350            | · ·     |                               | _         |                | ES     | QUEMA                                  |
| Progresiva Fin:                                | 9+380            | Sy      |                               | 2109      |                |        |                                        |
| Área (m²):                                     | 210              |         |                               |           |                |        |                                        |
| Fecha:                                         | 26/08/2023       |         |                               |           |                |        |                                        |
| Unidad de muestra:                             | U314             |         |                               | 2109      |                |        |                                        |
| Inspeccionado por:                             |                  |         |                               | 109       |                | C      | ×××××××××××××××××××××××××××××××××××××× |
| Univ. Gerardo Maurio                           | cio Vaca Valdez  |         |                               |           |                | Š      |                                        |
| Falla                                          |                  | Unidad  |                               | Fal       | la             |        | Unidad                                 |
| 1Piel de cocodrilo                             |                  | m²      | 11Parcheo                     | 11Parcheo |                |        | m²                                     |
| 2Exudación                                     |                  | m²      | 12Agregado pulido             |           |                |        | m²                                     |
| 3Fisuras en bloque                             |                  | m²      | 13Huecos                      |           |                |        | N°                                     |
| 4Elevación-Hundim                              | iento            | m       | 14Acceso                      | a puentes | -Rejillas de d | renaje | m²                                     |
| 5Corrugaciones                                 |                  | m²      | 15Ahuella                     | miento    |                |        | m²                                     |
| 6Depresiones                                   |                  | m²      | 16Deformación por empuje      |           |                |        | m²                                     |
| 7Fisuras de borde                              |                  | m       | 17Deslizamiento               |           |                |        | m²                                     |
| 8Fisuras de reflexión                          | n de juntas      | m       | 18Hinchamiento                |           |                |        | m²                                     |
| 9Desnivel Carril-Be                            | rma              | m       | 19Disgregación-Desintegración |           |                |        | m²                                     |
| 10Fisuras long. y tra                          | nsversales       | m       |                               |           |                |        |                                        |
| Tipo de Falla                                  |                  |         | Severidad                     | Total     | Densidad       |        | alor<br>ucido                          |
| 2Exudación (m²)                                |                  |         | L                             | 105,00    | 50,00          | 1:     | 2,40                                   |
| 13Huecos (N°)                                  |                  |         | L                             | 1,00      | 0,48           | 1      | 0,54                                   |
| 19Disgregación-Des                             | integración (m²) |         | L                             | 10,35     | 4,93           | 3      | ,28                                    |

| N° |       |       | ,    | Total | ~ | VDC |   |       |   |       |
|----|-------|-------|------|-------|---|-----|---|-------|---|-------|
| 11 | 1     | 2     | 3    | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1  | 12,40 | 10,54 | 3,28 |       |   |     |   | 26,22 | 3 | 14,35 |
| 2  | 12,40 | 10,54 | 2,00 |       |   |     |   | 24,94 | 2 | 17,95 |
| 3  | 12,40 | 2,00  | 2,00 |       |   |     |   | 16,40 | 1 | 16,40 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 17,95 |

| PCI = | 82,05 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÍ                                | ÉTODO PCI (ÍND | ICE DE C | ONDICIÓN                      | DEL PAV    | VIMENTO)       |       |          |
|-----------------------------------|----------------|----------|-------------------------------|------------|----------------|-------|----------|
|                                   | ZONA DE ESTU   |          |                               |            |                |       |          |
| Progresiva inicio:                | 9+500          |          | 99                            | 5          |                | ES    | QUEMA    |
| Progresiva Fin:                   | 9+530          |          | 94.00                         |            |                |       |          |
| Área (m²):                        | 210            | CHOX     |                               |            |                |       |          |
| Fecha:                            | 26/08/2023     |          |                               |            |                |       |          |
| Unidad de muestra:                | U319           |          |                               |            |                |       | 9+       |
| Inspeccionado por:                |                |          |                               |            |                | 0     | 57<br>50 |
| Univ. Gerardo Mauricio            | o Vaca Valdez  |          |                               |            | 2              | 103   |          |
| Falla                             | ı              | Unidad   |                               | Fa         |                |       | Unidad   |
| 1Piel de cocodrilo                |                | m²       | 11Parcheo                     |            |                |       | m²       |
| 2Exudación                        |                | m²       | 12Agregac                     | lo pulido  |                |       | m²       |
| 3Fisuras en bloque                |                | m²       | 13Huecos                      |            |                |       | N°       |
| 4Elevación-Hundimie               | nto            | m        | 14Acceso                      | a puentes- | Rejillas de dr | enaje | m²       |
| 5Corrugaciones                    |                | m²       | 15Ahuellamiento               |            |                |       | m²       |
| 6Depresiones                      |                | m²       | 16Deformación por empuje      |            |                | m²    |          |
| 7Fisuras de borde                 |                | m        | 17Deslizamiento               |            |                | m²    |          |
| 8Fisuras de reflexión de juntas   |                | m        | 18Hinchamiento                |            |                |       | m²       |
| 9Desnivel Carril-Berma m          |                | m        | 19Disgregación-Desintegración |            |                | m²    |          |
| 10Fisuras long. y transversales m |                |          |                               |            |                |       |          |
| Tipo                              | o de Falla     |          | Severidad                     | Total      | Densidad       | Valor | deducido |
| 7Fisuras de borde (m)             |                |          | M                             | 10,20      | 4,86           | 1     | 0,27     |

| NIO |       | Valor deducido |   |   |   |   |   |       | ~ | VDC   |
|-----|-------|----------------|---|---|---|---|---|-------|---|-------|
| 11  | 1     | 2              | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1   | 10,27 |                |   |   |   |   |   | 10,27 | 1 | 10,27 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
|                         | _     |
| VDC =                   | 10,27 |

| PCI = 100-VDC |
|---------------|
|---------------|

| PCI = 89,73 Condición del | pavimento EXCELENTE |
|---------------------------|---------------------|
|---------------------------|---------------------|

| MÉ'                    | TODO PCI (ÍND    | ICE DE C          | ONDICIÓN                               | DEL PA  | VIMENTO) |        |                |
|------------------------|------------------|-------------------|----------------------------------------|---------|----------|--------|----------------|
| 7                      | ZONA DE ESTU     | DIO "TO           | MATITAS-E                              | RQUIS N | NORTE''  |        |                |
| Progresiva inicio:     | 9+650            |                   |                                        |         |          | ES     | QUEMA          |
| Progresiva Fin:        | 9+680            | 940               |                                        |         |          |        |                |
| Área (m²):             | 210              | 30                |                                        |         |          |        |                |
| Fecha:                 | 26/08/2023       | 2098              |                                        |         |          |        |                |
| Unidad de muestra:     | U324             | 207-              |                                        |         | 9,       |        | 5098           |
| Inspeccionado por:     |                  |                   |                                        |         | S. S.    |        |                |
| Univ. Gerardo Maurio   | io Vaca Valdez   |                   |                                        |         |          |        |                |
| Falla                  | Unidad           |                   | Fal                                    | la      |          | Unidad |                |
| 1Piel de cocodrilo     |                  |                   | 11Parcheo                              |         |          |        | m²             |
| 2Exudación             | m²               | 12Agregado pulido |                                        |         | m²       |        |                |
| 3Fisuras en bloque     | m²               | 13Huecos          |                                        |         | N°       |        |                |
| 4Elevación-Hundimiento |                  | m                 | 14Acceso a puentes-Rejillas de drenaje |         |          | renaje | m²             |
| 5Corrugaciones         |                  | m²                | 15Ahuellamiento                        |         |          | m²     |                |
| 6Depresiones           |                  | m²                | 16Deformación por empuje               |         |          | m²     |                |
| 7Fisuras de borde      |                  | m                 | 17Deslizamiento m                      |         |          | m²     |                |
| 8Fisuras de reflexión  | n de juntas      | m                 | 18Hinchamiento m <sup>2</sup>          |         |          | m²     |                |
| 9Desnivel Carril-Be    | rma              | m                 | 19Disgregación-Desintegración m²       |         |          |        | m²             |
| 10Fisuras long. y tra  | nsversales       | m                 |                                        |         |          |        |                |
| Tipo de Falla          |                  |                   | Severidad                              | Total   | Densidad | -      | alor<br>lucido |
| 2Exudación (m²)        |                  |                   | L 110,08 52,42 12,86                   |         |          | 2,86   |                |
| 7Fisuras de borde (n   |                  | M                 | 6,75                                   | 3,21    | 8        | 3,63   |                |
| 10Fisuras long. y tra  |                  | L 1,25 0,60 0,0   |                                        | ),00    |          |        |                |
| 19Disgregación-Des     | integración (m²) |                   | L                                      | 16,64   | 7,92     |        | 1,28           |

| N° | Valor deducido |      |      |   |   |   |   | Total | ~ | VDC   |
|----|----------------|------|------|---|---|---|---|-------|---|-------|
| 11 | 1              | 2    | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 12,86          | 8,63 | 4,28 |   |   |   |   | 25,77 | 3 | 14,04 |
| 2  | 12,86          | 8,63 | 2,00 |   |   |   |   | 23,49 | 2 | 16,79 |
| 3  | 12,86          | 2,00 | 2,00 |   |   |   |   | 16,86 | 1 | 16,86 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 16,86 |

| PCI = | 100-VDC |
|-------|---------|
|       |         |

| PCI = | 83,14 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|

| MÉ                                  | TODO PCI (ÍND  | ICE DE C                         | CONDICIÓN                              | DEL PA  | VIMENTO) |        |                |
|-------------------------------------|----------------|----------------------------------|----------------------------------------|---------|----------|--------|----------------|
| 7                                   | ZONA DE ESTU   | DIO "TO                          | MATITAS-E                              | RQUIS N | NORTE"   |        |                |
| Progresiva inicio:                  | 9+800          | 008+6                            |                                        |         |          | QUEMA  |                |
| Progresiva Fin:                     | 9+830          |                                  |                                        |         |          |        |                |
| Área (m²):                          | 210            |                                  |                                        | J. E.   | Page 1   |        |                |
| Fecha:                              | 26/08/2023     |                                  |                                        |         |          |        |                |
| Unidad de muestra:                  | U329           |                                  | (                                      |         |          |        |                |
| Inspeccionado por:                  |                |                                  |                                        |         | 8+6      |        |                |
| Univ. Gerardo Maurio                | io Vaca Valdez |                                  | 2894                                   |         |          |        | 2094           |
| Falla                               | Unidad         | Falla                            |                                        |         |          | Unidad |                |
| 1Piel de cocodrilo                  | m²             | 11Parcheo                        |                                        |         | m²       |        |                |
| 2Exudación                          |                | m²                               | 12Agregado pulido                      |         |          | m²     |                |
| 3Fisuras en bloque                  |                | m²                               | 13Huecos                               |         |          | N°     |                |
| 4Elevación-Hundim                   | iento          | m                                | 14Acceso a puentes-Rejillas de drenaje |         |          | m²     |                |
| 5Corrugaciones                      |                | m²                               | 15Ahuellamiento m <sup>2</sup>         |         |          | m²     |                |
| 6Depresiones                        |                | m²                               | 16Deformación por empuje m²            |         |          | m²     |                |
| 7Fisuras de borde                   |                | m                                | 17Deslizamiento m <sup>2</sup>         |         |          |        | m²             |
| 8Fisuras de reflexión               | de juntas      | m                                | 18Hinchamiento m                       |         |          |        | m²             |
| 9Desnivel Carril-Ber                | m              | 19Disgregación-Desintegración m² |                                        |         |          | m²     |                |
| 10Fisuras long. y tra               | m              |                                  |                                        |         |          |        |                |
| Tipo de Falla                       |                |                                  | Severidad                              | Total   | Densidad |        | alor<br>lucido |
| 2Exudación (m²)                     |                |                                  | L                                      | 117,95  | 56,17    | 1:     | 3,57           |
| 10Fisuras long. y transversales (m) |                |                                  | L                                      | 2,95    | 1,40     | (      | ),04           |

| N° |       | Valor deducido |      |   |   |   |   |       | ~ | VDC   |
|----|-------|----------------|------|---|---|---|---|-------|---|-------|
| 11 | 1     | 2              | 3    | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 13,57 | 7,17           | 0,04 |   |   |   |   | 20,78 | 2 | 14,62 |
| 2  | 13,57 | 2,00           | 0,04 |   |   |   |   | 15,61 | 1 | 15,61 |

| Máximo v<br>deducido co |       |
|-------------------------|-------|
| VDC =                   | 15,61 |

19.-Disgregación-Desintegración (m²)

PCI = 100-VDC

| PCI =  | 84.39 | Condición del pavimento | MUY BUENO  |
|--------|-------|-------------------------|------------|
| 1 (1 – | 04,37 | Condicion dei pavimento | MICI DUENO |

36,90

17,57

7,17

| MÉ                    | TODO PCI (ÍND         | ICE DE C          | ONDICIÓN                                 | DEL PA    | VIMENTO) |        |               |
|-----------------------|-----------------------|-------------------|------------------------------------------|-----------|----------|--------|---------------|
| 7                     | ZONA DE ESTU          |                   |                                          | RQUIS N   | NORTE''  |        |               |
| Progresiva inicio:    | 9+950                 | 3030              | <sup>3</sup> 0 <sub>90</sub> ES          |           |          |        |               |
| Progresiva Fin:       | 9+980                 |                   |                                          |           |          |        |               |
| Área (m²):            | 210                   |                   | Z. Z |           |          |        |               |
| Fecha:                | 26/08/2023            |                   | 00'                                      |           |          |        |               |
| Unidad de muestra:    | U334                  |                   |                                          |           |          |        |               |
| Inspeccionado por:    |                       |                   |                                          |           |          | 945    | C2089         |
| Univ. Gerardo Maurio  | io Vaca Valdez        |                   | `?                                       | 290       |          | 8      |               |
| Falla                 | Unidad                |                   | Fal                                      | la        |          | Unidad |               |
| 1Piel de cocodrilo    | 1Piel de cocodrilo m² |                   |                                          | 11Parcheo |          |        |               |
| 2Exudación            | m²                    | 12Agregado pulido |                                          |           |          | m²     |               |
| 3Fisuras en bloque    | m²                    | 13Huecos          |                                          |           |          | N°     |               |
| 4Elevación-Hundim     | iento                 | m                 | 14Acceso a puentes-Rejillas de drenaje   |           |          | renaje | m²            |
| 5Corrugaciones        |                       | m²                | 15Ahuellamiento                          |           |          | m²     |               |
| 6Depresiones          |                       | m²                | 16Deformación por empuje                 |           |          |        | m²            |
| 7Fisuras de borde     |                       | m                 | 17Deslizamiento                          |           |          | m²     |               |
| 8Fisuras de reflexión | n de juntas           | m                 | 18Hinchamiento                           |           |          | m²     |               |
| 9Desnivel Carril-Ber  | rma                   | m                 | 19Disgregación-Desintegración            |           |          |        | m²            |
| 10Fisuras long. y tra | nsversales            | m                 |                                          |           |          |        |               |
| Tipo de Falla         |                       |                   | Severidad                                | Total     | Densidad | •      | alor<br>ucido |
| 2Exudación (m²)       |                       |                   | L 109,73 52,25 12,83                     |           | 2,83     |        |               |
| 6Depresiones (m²)     |                       |                   | L 11,38 5,42 9,99                        |           | ,99      |        |               |
| 10Fisuras long. y tra | nsversales (m)        |                   | L                                        | 0,40      | 0,19     | 0      | ,00           |

| N° |       |      | , | Total | ~ | VDC |   |       |   |       |
|----|-------|------|---|-------|---|-----|---|-------|---|-------|
| 11 | 1     | 2    | 3 | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1  | 12,83 | 9,99 |   |       |   |     |   | 22,82 | 2 | 16,26 |
| 2  | 12,83 | 2,00 |   |       |   |     |   | 14,83 | 1 | 14,83 |

Máximo valor deducido corregido

VDC = 16,26

| BUENO |
|-------|
| ,     |

#### 1.2. Planillas de cálculo PCI de unidades de muestra adicionales

| MÉT                                 | ODO PCI (ÍNDI | CE DE CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONDICIÓN                               | DEL PA | VIMENTO) | )       |          |
|-------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|----------|---------|----------|
|                                     | ONA DE ESTUD  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |        |          |         |          |
| Progresiva inicio:                  | 0+030         | Ctoco The Control of |                                        |        |          |         |          |
| Progresiva Fin:                     | 0+060         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ord                                    |        |          |         |          |
| Área (m²):                          | 210           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |        |          |         |          |
| Fecha:                              | 26/04/2024    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |        |          |         |          |
| Unidad de muestra:                  | UMA 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |        |          |         |          |
| Inspeccionado por:                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |        |          |         |          |
| Univ. Gerardo Mauricio              | Vaca Valdez   | ESQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CMA                                    |        |          | 0+03    | 2/ <     |
| Falla                               |               | Unidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | F      | alla     |         | Unidad   |
| 1Piel de cocodrilo                  |               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11Parche                               | 0      |          |         | m²       |
| 2Exudación                          |               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12Agregado pulido                      |        |          |         | m²       |
| 3Fisuras en bloque                  |               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13Huecos                               |        |          |         | N°       |
| 4Elevación-Hundimien                | ito           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14Acceso a puentes-Rejillas de drenaje |        |          |         | m²       |
| 5Corrugaciones                      |               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15Ahuellamiento                        |        |          |         | m²       |
| 6Depresiones                        |               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16Deformación por empuje               |        |          |         | m²       |
| 7Fisuras de borde                   |               | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17Deslizamiento                        |        |          |         | m²       |
| 8Fisuras de reflexión d             | e juntas      | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18Hinchamiento m                       |        |          |         | m²       |
| 9Desnivel Carril-Berm               | a             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19Disgregación-Desintegración m²       |        |          |         |          |
| 10Fisuras long. y trans             | versales      | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |        |          |         |          |
| Tipo de Falla                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Severidad                              | Total  | Densidad | Valor d | leducido |
| 4Elevación-hundimiento (m)          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                                      | 3,15   | 1,50     | 15      | 5,15     |
| 4Elevación-hundimiento (m)          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                                      | 2,10   | 1,00     | 33      | 3,70     |
| 7Fisuras de borde (m)               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                                      | 3,20   | 1,52     | 2.      | ,48      |
| 10Fisuras long. y transversales (m) |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                      | 5,80   | 2,76     | 1.      | ,54      |
| 11Parcheo (m²)                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                                      | 0,70   | 0,33     | 5       | ,44      |

| NTO |       | Valor deducido |      |      |      |   |   |       |   | VDC   |
|-----|-------|----------------|------|------|------|---|---|-------|---|-------|
| N°  | 1     | 2              | 3    | 4    | 5    | 6 | 7 | Total | q | VDC   |
| 1   | 33,70 | 15,15          | 5,44 | 2,48 | 1,54 |   |   | 58,31 | 4 | 31,82 |
| 2   | 33,70 | 15,15          | 5,44 | 2,00 | 1,54 |   |   | 57,83 | 3 | 36,48 |
| 3   | 33,70 | 15,15          | 2,00 | 2,00 | 1,54 |   |   | 54,39 | 2 | 40,07 |
| 4   | 33,70 | 2,00           | 2,00 | 2,00 | 1,54 |   |   | 41,24 | 1 | 41,24 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 41,24 |

| PCI =  | 58.76 | Condición del pavimento | BUENO  |
|--------|-------|-------------------------|--------|
| 1 01 - | 50,70 | Condicion aci pavimento | DOLLIO |

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |             |                                    |                                        |        |          |          |          |  |  |
|------------------------------------------------|-------------|------------------------------------|----------------------------------------|--------|----------|----------|----------|--|--|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |             |                                    |                                        |        |          |          |          |  |  |
| Progresiva inicio:                             | 0+060       | 1965<br>TS Sta = 0+093 08320 0+090 |                                        |        |          | ((       |          |  |  |
| Progresiva Fin:                                | 0+090       | 1965                               | 1=0+093                                | 0+0    |          | 1) // (/ |          |  |  |
| Área (m²):                                     | 210         | 79 St                              | -                                      | 3      | 1 /      | 11       |          |  |  |
| Fecha:                                         | 26/04/2024  |                                    |                                        |        |          |          | (()      |  |  |
| Unidad de muestra:                             | UMA 2       |                                    |                                        |        | 13/      |          |          |  |  |
| Inspeccionado por:                             |             |                                    |                                        |        |          | $\times$ |          |  |  |
| Univ. Gerardo Mauricio                         | Vaca Valdez | ESQUE                              | CMA                                    |        |          | 0+0      | 20/      |  |  |
| Falla                                          |             | Unidad                             |                                        | F      | alla     |          | Unidad   |  |  |
| 1Piel de cocodrilo                             |             | m²                                 | 11Parche                               | 0      |          |          | m²       |  |  |
| 2Exudación                                     |             | m²                                 | 12Agregado pulido                      |        |          | m²       |          |  |  |
| 3Fisuras en bloque                             |             | m²                                 | 13Huecos                               |        |          |          | N°       |  |  |
| 4Elevación-Hundimien                           | ito         | m                                  | 14Acceso a puentes-Rejillas de drenaje |        |          |          | m²       |  |  |
| 5Corrugaciones                                 |             | m²                                 | 15Ahuellamiento                        |        |          |          | m²       |  |  |
| 6Depresiones                                   |             | m²                                 | 16Deformación por empuje               |        |          |          | m²       |  |  |
| 7Fisuras de borde                              |             | m                                  | 17Deslizamiento m <sup>2</sup>         |        |          |          | m²       |  |  |
| 8Fisuras de reflexión d                        | e juntas    | m                                  | 18Hincha                               | miento |          |          | m²       |  |  |
| 9Desnivel Carril-Berma                         |             |                                    | m 19Disgregación-Desintegración m²     |        |          |          | m²       |  |  |
| 10Fisuras long. y trans                        | versales    | m                                  |                                        |        |          |          |          |  |  |
| Tipo de Falla                                  |             |                                    | Severidad                              | Total  | Densidad | Valor d  | leducido |  |  |
| 4Elevación-hundimiento (m)                     |             |                                    | M                                      | 1,65   | 0,79     | 11       | ,10      |  |  |
| 7Fisuras de borde (m)                          |             |                                    | Н                                      | 5,25   | 2,50     | 11       | ,80      |  |  |
| 11Parcheo (m²)                                 |             |                                    | M                                      | 6,59   | 3,14     | 17       | ',78     |  |  |

| NTO |       |       | Va    | Total | - | VDC |   |       |   |       |
|-----|-------|-------|-------|-------|---|-----|---|-------|---|-------|
| N°  | 1     | 2     | 3     | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1   | 17,78 | 11,80 | 11,10 |       |   |     |   | 40,68 | 3 | 24,48 |
| 2   | 17,78 | 11,80 | 2,00  |       |   |     |   | 31,58 | 2 | 23,26 |
| 3   | 17,78 | 2,00  | 2,00  |       |   |     |   | 21,78 | 1 | 21,78 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 24,48 |

| PCI = 75,52 Condición del pavimento | MUY BUENO |
|-------------------------------------|-----------|
|-------------------------------------|-----------|

| MÉT                        | ODO PCI (ÍNDIO | CE DE CO | ONDICIÓN                                 | DEL PA | VIMENTO) | )       |          |
|----------------------------|----------------|----------|------------------------------------------|--------|----------|---------|----------|
|                            | ONA DE ESTUD   |          |                                          |        |          |         |          |
| Progresiva inicio:         | 0+090          | S. S.    |                                          |        | ESQUEMA  |         | 196      |
| Progresiva Fin:            | 0+120          | 0        |                                          |        |          | 1       | =16254   |
| Área (m²):                 | 210            |          |                                          | X      | TO E     | 2       | 2        |
| Fecha:                     | 26/04/2024     |          |                                          |        |          | /       |          |
| Unidad de muestra:         | UMA 3          |          |                                          |        | 832      | (       | 1        |
| Inspeccionado por:         |                | 196      | 55 _0                                    | *003   | Oto      | 30      | 11       |
| Univ. Gerardo Mauricio     | Vaca Valdez    | 75       | sta = 0                                  |        | 7        |         | 11/1     |
| Falla                      |                | Unidad   |                                          |        | alla     |         | Unidad   |
| 1Piel de cocodrilo         |                | m²       | 11Parcheo                                | )      |          |         | m²       |
| 2Exudación                 |                | m²       | 12Agregado pulido                        |        |          | m²      |          |
| 3Fisuras en bloque         |                | m²       | 13Huecos                                 |        |          | N°      |          |
| 4Elevación-Hundimien       | ito            | m        | m 14Acceso a puentes-Rejillas de drenaje |        |          |         | m²       |
| 5Corrugaciones             |                | m²       | 15Ahuellamiento                          |        |          |         | m²       |
| 6Depresiones               |                | m²       | <sup>2</sup> 16Deformación por empuje    |        |          |         | m²       |
| 7Fisuras de borde          |                | m        | 17Deslizamiento m <sup>2</sup>           |        |          |         | m²       |
| 8Fisuras de reflexión d    | e juntas       | m        | 18Hincha                                 | miento |          |         | m²       |
| 9Desnivel Carril-Berm      | a              | m        | 19Disgregación-Desintegración m²         |        |          |         | m²       |
| 10Fisuras long. y trans    | versales       | m        |                                          |        |          |         |          |
| Tipo de Falla              |                |          | Severidad                                | Total  | Densidad | Valor o | leducido |
| 4Elevación-hundimiento (m) |                |          | M                                        | 3,90   | 1,86     | 16      | 5,91     |
| 11Parcheo (m²)             |                |          | L                                        | 10,94  | 5,21     | 10      | ),28     |
| 11Parcheo (m²)             |                |          | M                                        | 12,81  | 6,10     | 24      | 1,79     |
| 13Huecos (N°)              |                |          | M                                        | 1,00   | 0,48     | 19      | 9,84     |

| <b>N</b> TO |       |       | Va    | Total |   | VDC |   |       |   |       |
|-------------|-------|-------|-------|-------|---|-----|---|-------|---|-------|
| N°          | 1     | 2     | 3     | 4     | 5 | 6   | 7 | Total | q | VDC   |
| 1           | 24,79 | 19,84 | 16,91 | 10,28 |   |     |   | 71,82 | 4 | 40,09 |
| 2           | 24,79 | 19,84 | 16,91 | 2,00  |   |     |   | 63,54 | 3 | 40,30 |
| 3           | 24,79 | 19,84 | 2,00  | 2,00  |   |     |   | 48,63 | 2 | 36,04 |
| 4           | 24,79 | 2,00  | 2,00  | 2,00  |   |     |   | 30,79 | 1 | 30,79 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 40,30 |

| PCI = | 100  | VDC |
|-------|------|-----|
| rci=  | TOO- | VDC |

| PCI = | 59,70 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉT                        | ODO PCI (ÍNDI | CE DE CO | ONDICIÓN                                 | DEL PA | VIMENTO) | )       |          |
|----------------------------|---------------|----------|------------------------------------------|--------|----------|---------|----------|
| Z                          | ONA DE ESTUD  | IO "TOM  | ATITAS-E                                 | RQUIS  | NORTE''  |         |          |
| Progresiva inicio:         | 0+120         | ESQUE    | EMA                                      | /      |          |         | 1        |
| Progresiva Fin:            | 0+150         |          | \$                                       |        |          | 7791000 |          |
| Área (m²):                 | 210           |          |                                          |        | >        | _       | 0        |
| Fecha:                     | 26/04/2024    | YG       |                                          |        |          |         | *        |
| Unidad de muestra:         | UMA 4         | 6        |                                          |        |          |         | 2        |
| Inspeccionado por:         |               |          |                                          |        |          |         |          |
| Univ. Gerardo Mauricio     | Vaca Valdez   |          |                                          |        |          |         |          |
| Falla                      | <u> </u>      | Unidad   |                                          | F      | alla     |         | Unidad   |
| 1Piel de cocodrilo         |               | m²       | 11Parcheo                                | )      |          |         | m²       |
| 2Exudación                 |               | m²       | 12Agregado pulido                        |        |          | m²      |          |
| 3Fisuras en bloque         |               | m²       | 13Huecos                                 |        |          |         | N°       |
| 4Elevación-Hundimien       | to            | m        | m 14Acceso a puentes-Rejillas de drenaje |        |          |         |          |
| 5Corrugaciones             |               | m²       | 15Ahuellamiento                          |        |          |         | m²       |
| 6Depresiones               |               | m²       | 16Deformación por empuje                 |        |          |         | m²       |
| 7Fisuras de borde          |               | m        | 17Deslizamiento                          |        |          | m²      |          |
| 8Fisuras de reflexión d    | e juntas      | m        | 18Hinchamiento m <sup>2</sup>            |        |          |         | m²       |
| 9Desnivel Carril-Berm      | a             | m        | 19Disgregación-Desintegración m²         |        |          | m²      |          |
| 10Fisuras long. y trans    | versales      | m        |                                          |        |          |         |          |
| Tipo                       | de Falla      |          | Severidad                                | Total  | Densidad | Valor o | leducido |
| 4Elevación-hundimiento (m) |               |          | L                                        | 1,85   | 0,88     | 3       | ,52      |
| 4Elevación-hundimiento (m) |               |          | M                                        | 2,80   | 1,33     | 14      | 1,32     |
| 7Fisuras de borde (m)      |               |          | M                                        | 2,10   | 1,00     | 5       | ,50      |
| 10Fisuras long. y trans    | versales (m)  |          | L                                        | 2,75   | 1,31     | 0       | ,03      |
|                            |               |          | 1 1                                      |        | i e      | 1       |          |

| NTO |       |       | Va   | Total | -    | VDC |   |       |   |       |
|-----|-------|-------|------|-------|------|-----|---|-------|---|-------|
| N°  | 1     | 2     | 3    | 4     | 5    | 6   | 7 | Total | q | VDC   |
| 1   | 23,08 | 14,32 | 5,50 | 3,52  | 0,03 |     |   | 46,45 | 4 | 23,52 |
| 2   | 23,08 | 14,32 | 5,50 | 2,00  | 0,03 |     |   | 44,93 | 3 | 27,46 |
| 3   | 23,08 | 14,32 | 2,00 | 2,00  | 0,03 |     |   | 41,43 | 2 | 31,00 |
| 4   | 23,08 | 2,00  | 2,00 | 2,00  | 0,03 |     |   | 29,11 | 1 | 29,11 |

M

11,16

5,31

23,08

| Máximo valor<br>corregio | _     |
|--------------------------|-------|
| VDC =                    | 31,00 |

11.-Parcheo (m²)

| PCI = | 69,00 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉT                                 | ODO PCI (ÍNDI | CE DE CO | ONDICIÓN                      | DEL PA    | VIMENTO)        | )       |          |
|-------------------------------------|---------------|----------|-------------------------------|-----------|-----------------|---------|----------|
| Z                                   | ONA DE ESTUD  | IO "TOM  | ATITAS-E                      | ERQUIS    | NORTE"          |         |          |
| Progresiva inicio:                  | 0+150         | ESQUE    | CMA /                         |           | / /             | 90      |          |
| Progresiva Fin:                     | 0+180         |          | 5                             | /         |                 | 6       |          |
| Área (m²):                          | 210           |          |                               |           |                 |         |          |
| Fecha:                              | 30/04/2024    |          |                               | 5         |                 |         |          |
| Unidad de muestra:                  | UMA 5         |          | 00                            |           |                 |         |          |
| Inspeccionado por:                  |               |          | XXO                           |           |                 |         | 1966     |
| Univ. Gerardo Mauricio              | Vaca Valdez   |          |                               | 1967      |                 |         |          |
| Falla                               |               | Unidad   |                               | F         | alla            |         | Unidad   |
| 1Piel de cocodrilo                  |               | m²       | 11Parcheo                     | 0         |                 |         | m²       |
| 2Exudación                          |               | m²       | 12Agrega                      | do pulido | )               |         | m²       |
| 3Fisuras en bloque                  |               | m²       | 13Huecos                      | 3         |                 |         | N°       |
| 4Elevación-Hundimien                | to            | m        | 14Acceso                      | a puente  | s-Rejillas de o | drenaje | m²       |
| 5Corrugaciones                      |               | m²       | 15Ahuella                     | amiento   |                 |         | m²       |
| 6Depresiones                        |               | m²       | 16Deform                      | nación po | r empuje        |         | m²       |
| 7Fisuras de borde                   |               | m        | 17Deslizamiento               |           |                 |         | m²       |
| 8Fisuras de reflexión de            | e juntas      | m        | 18Hinchamiento m <sup>2</sup> |           |                 |         | m²       |
| 9Desnivel Carril-Berma              | a             | m        | 19Disgreg                     | gación-De | esintegración   |         | m²       |
| 10Fisuras long. y transv            | versales      | m        |                               |           |                 |         |          |
| Tipo                                | de Falla      |          | Severidad                     | Total     | Densidad        | Valor d | leducido |
| 4Elevación-hundimiento (m)          |               |          | M                             | 2,40      | 1,14            | 13      | 3,39     |
| 7Fisuras de borde (m)               |               |          | M                             | 1,60      | 0,76            | 4.      | ,98      |
| 10Fisuras long. y transversales (m) |               |          | L                             | 3,15      | 1,50            | 0.      | ,05      |
| 10Fisuras long. y transversales (m) |               |          | M                             | 1,45      | 0,69            | 1.      | ,67      |
| 11Parcheo (m²)                      |               |          | L                             | 8,40      | 4,00            | 8       | ,00      |
| 11Parcheo (m²)                      |               |          | M                             | 10,70     | 5,09            | 22      | 2,60     |

| N° |       | Valor deducido |      |      |      |      |   |       | ~ | VDC   |
|----|-------|----------------|------|------|------|------|---|-------|---|-------|
| 11 | 1     | 2              | 3    | 4    | 5    | 6    | 7 | Total | q | VDC   |
| 1  | 22,60 | 13,39          | 8,00 | 4,98 | 1,67 | 0,05 |   | 50,69 | 4 | 26,48 |
| 2  | 22,60 | 13,39          | 8,00 | 2,00 | 1,67 | 0,05 |   | 47,71 | 3 | 29,40 |
| 3  | 22,60 | 13,39          | 2,00 | 2,00 | 1,67 | 0,05 |   | 41,71 | 2 | 31,20 |
| 4  | 22,60 | 2,00           | 2,00 | 2,00 | 1,67 | 0,05 |   | 30,32 | 1 | 30,31 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 31,20 |

| PCI = | 68,80 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|

| MÉT                      | ODO PCI (ÍNDI | CE DE CO | ONDICIÓN                      | DEL PA    | VIMENTO       | )       |          |
|--------------------------|---------------|----------|-------------------------------|-----------|---------------|---------|----------|
| ZO                       | ONA DE ESTUD  | IO "TOM  | ATITAS-I                      | ERQUIS    |               |         |          |
| Progresiva inicio:       | 0+180         | ESQUE    | MA                            |           |               | 08,×0   |          |
| Progresiva Fin:          | 0+210         |          |                               |           |               | XO/     |          |
| Área (m²):               | 210           |          |                               |           |               |         | 1967     |
| Fecha:                   | 30/04/2024    |          |                               |           |               |         |          |
| Unidad de muestra:       | UMA 6         | H        |                               |           |               |         |          |
| Inspeccionado por:       |               |          | exo/                          |           | >             |         |          |
| Univ. Gerardo Mauricio   | Vaca Valdez   | 18       |                               |           | 1968          |         |          |
| Falla                    |               | Unidad   |                               | F         | alla          |         | Unidad   |
| 1Piel de cocodrilo       |               | m²       | 11Parche                      | 0         |               |         | m²       |
| 2Exudación               |               | m²       | 12Agregado pulido             |           |               | m²      |          |
| 3Fisuras en bloque       |               | m²       | 13Huecos                      | 8         |               |         | N°       |
| 4Elevación-Hundimien     | to            | m        | 14Acceso                      | a puente  | s-Rejillas de | drenaje | m²       |
| 5Corrugaciones           |               | m²       | 15Ahuell                      | amiento   |               |         | m²       |
| 6Depresiones             |               | m²       | 16Deformación por empuje      |           |               | m²      |          |
| 7Fisuras de borde        |               | m        | 17Desliza                     | miento    |               |         | m²       |
| 8Fisuras de reflexión de | e juntas      | m        | 18Hinchamiento m <sup>2</sup> |           |               |         | m²       |
| 9Desnivel Carril-Berma m |               |          | 19Disgre                      | gación-De | esintegración |         | m²       |
| 10Fisuras long. y trans  | versales      | m        |                               |           |               |         |          |
| Tipo                     | de Falla      |          | Severidad                     | Total     | Densidad      | Valor   | leducido |
| 11Parcheo (m²)           |               |          | L                             | 7,56      | 3,60          | 7       | ,14      |
| 11Parcheo (m²)           |               |          | M                             | 25,60     | 12,19         | 33      | 3,58     |

| N° |       | Valor deducido |   |   |   |   |   |       | ~ | VDC   |
|----|-------|----------------|---|---|---|---|---|-------|---|-------|
| 11 | 1     | 2              | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 33,58 | 7,14           |   |   |   |   |   | 40,72 | 2 | 30,50 |
| 2  | 33,58 | 2,00           |   |   |   |   |   | 35,58 | 1 | 35,58 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 35,58 |

| PCI = | 64,42 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |                |        |                                        |           |               |         |          |  |
|------------------------------------------------|----------------|--------|----------------------------------------|-----------|---------------|---------|----------|--|
| Z                                              | ONA DE ESTUD   | ю "том | ATITAS-E                               | ERQUIS    | NORTE"        |         |          |  |
| Progresiva inicio:                             | 0+210          | ESQUE  | CMA                                    | ~/_       | 0             | - X     |          |  |
| Progresiva Fin:                                | 0+240          | \      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |           |               |         |          |  |
| Área (m²):                                     | 210            |        |                                        |           |               | 7.      | 7        |  |
| Fecha:                                         | 30/04/2024     | ~      | 7//                                    |           |               |         |          |  |
| Unidad de muestra:                             | UMA 7          |        |                                        |           | ~             |         |          |  |
| Inspeccionado por:                             |                | OX     |                                        |           | 5,            |         |          |  |
| Univ. Gerardo Mauricio Vaca Valdez             |                |        |                                        |           |               |         |          |  |
| Falla                                          | Falla          |        |                                        | F         | alla          |         | Unidad   |  |
| 1Piel de cocodrilo                             |                | m²     | 11Parcheo                              |           |               |         |          |  |
| 2Exudación                                     | 2Exudación     |        |                                        | do pulido | )             |         | m²       |  |
| 3Fisuras en bloque                             |                | m²     | 13Huecos                               | }         |               |         | N°       |  |
| 4Elevación-Hundimien                           | ito            | m      | 14Acceso a puentes-Rejillas de drenaje |           |               |         | m²       |  |
| 5Corrugaciones                                 |                | m²     | <sup>2</sup> 15Ahuellamiento           |           |               |         | m²       |  |
| 6Depresiones                                   |                | m²     | 16Deformación por empuje               |           |               |         | m²       |  |
| 7Fisuras de borde                              |                | m      | 17Deslizamiento r                      |           |               |         | m²       |  |
| 8Fisuras de reflexión d                        | e juntas       | m      | 18Hincha                               | miento    |               |         | m²       |  |
| 9Desnivel Carril-Berm                          | a              | m      | 19Disgreg                              | gación-De | esintegración |         | m²       |  |
| 10Fisuras long. y trans                        | versales       | m      |                                        |           |               |         |          |  |
| Tipo                                           | de Falla       |        | Severidad                              | Total     | Densidad      | Valor d | leducido |  |
| 11Parcheo (m²)                                 | 11Parcheo (m²) |        |                                        | 14,50     | 6,90          | 13      | 3,06     |  |
| 11Parcheo (m²)                                 |                | M      | 11,55                                  | 5,50      | 23            | 3,50    |          |  |
| 11Parcheo (m²)                                 |                |        | Н                                      | 2,85      | 1,36          | 21      | ,76      |  |

| NTO | Valor deducido |       |       |   |   |   |   | Total | - | VDC   |
|-----|----------------|-------|-------|---|---|---|---|-------|---|-------|
| N°  | 1              | 2     | 3     | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1   | 23,50          | 21,76 | 13,06 |   |   |   |   | 58,32 | 3 | 36,82 |
| 2   | 23,50          | 21,76 | 2,00  |   |   |   |   | 47,26 | 2 | 35,08 |
| 3   | 23,50          | 2,00  | 2,00  |   |   |   |   | 27,50 | 1 | 27,50 |

| Máximo valor deducido<br>corregido |  |  |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|--|--|
| <b>VDC</b> = 36,82                 |  |  |  |  |  |  |  |

| _  |     |     |    |     |             |     |    |
|----|-----|-----|----|-----|-------------|-----|----|
| D4 | ויי | _ ^ | 10 | Λ   | <b>V</b> /I | ~   | ٠, |
| F  |     | _   | ,  | 17- | v           | ,,, |    |

| PCI = | 63,18 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉT                     | ODO PCI (ÍNDI | CE DE CO    | ONDICIÓN                 | DEL PA    | VIMENTO)      | )                |          |
|-------------------------|---------------|-------------|--------------------------|-----------|---------------|------------------|----------|
|                         | ONA DE ESTUD  |             |                          |           |               |                  |          |
| Progresiva inicio:      | 1+662,53      | 6           |                          |           |               |                  |          |
| Progresiva Fin:         | 1+692,53      | %;<br>\$,5; |                          |           | 2030          |                  |          |
| Área (m²):              | 210           | 146         |                          |           |               |                  | 00       |
| Fecha:                  | 30/04/2024    |             |                          | *         |               |                  | 0500     |
| Unidad de muestra:      | UMA 8         |             |                          |           |               | 60               |          |
| Inspeccionado por:      |               |             |                          |           |               | )<br>}<br>}<br>} |          |
| Univ. Gerardo Mauricio  | Vaca Valdez   | ESQUE       | CMA                      |           |               | 141              |          |
| Falla                   | l             | Unidad      |                          | F         | alla          |                  | Unidad   |
| 1Piel de cocodrilo      |               | m²          | 11Parche                 | 0         |               |                  | m²       |
| 2Exudación              |               | m²          | 12Agregado pulido        |           |               |                  | m²       |
| 3Fisuras en bloque      |               | m²          | 13Huecos                 | S         |               |                  | N°       |
| 4Elevación-Hundimier    | nto           | m           | 14Acceso                 | a puente  | s-Rejillas de | drenaje          | m²       |
| 5Corrugaciones          |               | m²          | 15Ahuellamiento          |           |               |                  | m²       |
| 6Depresiones            |               | m²          | 16Deformación por empuje |           |               |                  | m²       |
| 7Fisuras de borde       |               | m           | 17Deslizamiento          |           |               |                  | m²       |
| 8Fisuras de reflexión d | e juntas      | m           | 18Hincha                 | miento    |               |                  | m²       |
| 9Desnivel Carril-Berm   | a             | m           | 19Disgre                 | gación-De | esintegración |                  | m²       |
| 10Fisuras long. y trans | versales      | m           |                          |           |               |                  |          |
| Tipo                    | de Falla      |             | Severidad                | Total     | Densidad      | Valor d          | leducido |
| 2Exudación (m²)         |               |             | L                        | 150,00    | 71,43         | 16               | ,47      |
| 4Elevación-hundimien    | to (m)        |             | M                        | 2,95      | 1,40          | 14               | ,66      |
| 7Fisuras de borde (m)   |               |             | L                        | 6,75      | 3,21          | 3,44             |          |
| 7Fisuras de borde (m)   |               |             | Н                        | 10,45     | 4,98          | 16,17            |          |
| 10Fisuras long. y trans | versales (m)  |             | L                        | 6,44      | 3,07          | 2,09             |          |
| 10Fisuras long. y trans | versales (m)  |             | M                        | 2,39      | 1,14          | 2,71             |          |

| N° |       |       | Va    | lor dedu | cido |      |   | Total | ~ | VDC   |
|----|-------|-------|-------|----------|------|------|---|-------|---|-------|
| 11 | 1     | 2     | 3     | 4        | 5    | 6    | 7 | Total | q |       |
| 1  | 16,47 | 16,17 | 14,66 | 3,44     | 2,71 | 2,09 |   | 55,54 | 6 | 23,32 |
| 2  | 16,47 | 16,17 | 14,66 | 3,44     | 2,71 | 2,00 |   | 55,45 | 5 | 26,27 |
| 3  | 16,47 | 16,17 | 14,66 | 3,44     | 2,00 | 2,00 |   | 54,74 | 4 | 29,32 |
| 4  | 16,47 | 16,17 | 14,66 | 2,00     | 2,00 | 2,00 |   | 53,30 | 3 | 33,31 |
| 5  | 16,47 | 16,17 | 2,00  | 2,00     | 2,00 | 2,00 |   | 40,64 | 2 | 30,45 |
| 6  | 16,47 | 2,00  | 2,00  | 2,00     | 2,00 | 2,00 |   | 26,47 | 1 | 26,47 |

| Máximo valor<br>corregi |       |
|-------------------------|-------|
| VDC =                   | 33,31 |

| PCI = | 66,69 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

| MÉT                                 | ODO PCI (ÍNDIO | CE DE CO | ONDICIÓN                 | DEL PA    | VIMENTO)        | )       |          |
|-------------------------------------|----------------|----------|--------------------------|-----------|-----------------|---------|----------|
| Z                                   | ONA DE ESTUD   | IO ''TOM | ATITAS-E                 | ERQUIS    | NORTE"          |         |          |
| Progresiva inicio:                  | 3+177,68       | ESQUE    | EMA                      |           |                 |         |          |
| Progresiva Fin:                     | 3+207,68       |          |                          |           |                 |         |          |
| Área (m²):                          | 210            | 88       |                          |           |                 |         |          |
| Fecha:                              | 17/05/2024     | 3+207,68 |                          |           |                 |         | 68       |
| Unidad de muestra:                  | UMA 9          | 3+       |                          |           |                 |         | -177,    |
| Inspeccionado por:                  |                |          |                          |           |                 |         | 34       |
| Univ. Gerardo Mauricio              | Vaca Valdez    |          |                          |           |                 |         | _        |
| Falla                               |                | Unidad   |                          | F         | alla            |         | Unidad   |
| 1Piel de cocodrilo                  |                | m²       | 11Parche                 | 0         |                 |         | m²       |
| 2Exudación                          |                | m²       | 12Agregado pulido        |           |                 |         | m²       |
| 3Fisuras en bloque                  |                | m²       | 13Huecos                 |           |                 |         | N°       |
| 4Elevación-Hundimien                | ito            | m        | 14Acceso                 | a puente  | s-Rejillas de o | drenaje | m²       |
| 5Corrugaciones                      |                | m²       | 15Ahuellamiento          |           |                 |         | m²       |
| 6Depresiones                        |                | m²       | 16Deformación por empuje |           |                 |         | m²       |
| 7Fisuras de borde                   |                | m        | 17Deslizamiento          |           |                 |         | m²       |
| 8Fisuras de reflexión d             | e juntas       | m        | 18Hincha                 | miento    |                 |         | m²       |
| 9Desnivel Carril-Berm               | a              | m        | 19Disgreg                | gación-De | esintegración   |         | m²       |
| 10Fisuras long. y trans             | versales       | m        |                          |           |                 |         |          |
| Tipo                                | de Falla       |          | Severidad                | Total     | Densidad        | Valor o | leducido |
| 2Exudación (m²)                     |                |          | L                        | 75,00     | 35,71           | 9       | ,40      |
| 7Fisuras de borde (m)               |                |          | M                        | 4,20      | 2,00            | 7,10    |          |
| 10Fisuras long. y transversales (m) |                |          | L                        | 4,75      | 2,26            | 0       | ,59      |
| 10Fisuras long. y trans             |                | M        | 0,40                     | 0,19      | 0               | ,00     |          |
| 13Huecos (N°)                       |                | L        | 7,00                     | 3,33      | 37,59           |         |          |
| 13Huecos (N°)                       |                |          | M                        | 1,00      | 0,48            | 19,84   |          |

| N° |       |       | Va   | lor dedu | cido |   |   | Total | ~ | VDC   |
|----|-------|-------|------|----------|------|---|---|-------|---|-------|
| 11 | 1     | 2     | 3    | 4        | 5    | 6 | 7 |       | q | VDC   |
| 1  | 37,59 | 19,84 | 9,40 | 7,10     | 0,59 |   |   | 74,52 | 4 | 41,71 |
| 2  | 37,59 | 19,84 | 9,40 | 2,00     | 0,59 |   |   | 69,42 | 3 | 44,12 |
| 3  | 37,59 | 19,84 | 2,00 | 2,00     | 0,59 |   |   | 62,02 | 2 | 45,41 |
| 4  | 37,59 | 2,00  | 2,00 | 2,00     | 0,59 |   |   | 44,18 | 1 | 44,18 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 45,41 |

| PCI = | 54,59 | Condición del pavimento | REGULAR |
|-------|-------|-------------------------|---------|

| MÉT                      | ODO PCI (ÍNDI | CE DE CO | ONDICIÓN                               | DEL PA    | VIMENTO       | )          |          |
|--------------------------|---------------|----------|----------------------------------------|-----------|---------------|------------|----------|
| ZO                       | ONA DE ESTUD  | IO "TOM  | IATITAS-E                              | ERQUIS    | NORTE"        |            |          |
| Progresiva inicio:       | 3+687,44      |          | A ·                                    | E         | SQUEMA        |            |          |
| Progresiva Fin:          | 3+717,44      | OX N     |                                        |           |               |            |          |
| Área (m²):               | 210           |          |                                        |           |               |            |          |
| Fecha:                   | 17/05/2024    |          |                                        |           |               |            |          |
| Unidad de muestra:       | UMA 10        |          |                                        |           |               |            |          |
| Inspeccionado por:       |               |          |                                        |           |               | 1 AA       |          |
| Univ. Gerardo Mauricio   | Vaca Valdez   |          |                                        |           |               | ry Sobi    |          |
| Falla                    |               | Unidad   |                                        | F         | alla          |            | Unidad   |
| 1Piel de cocodrilo       |               | m²       | 11Parche                               | O         |               |            | m²       |
| 2Exudación               |               | m²       | 12Agregado pulido                      |           |               |            | m²       |
| 3Fisuras en bloque       |               | m²       | m <sup>2</sup> 13Huecos                |           |               |            | N°       |
| 4Elevación-Hundimien     | to            | m        | 14Acceso a puentes-Rejillas de drenaje |           |               |            | m²       |
| 5Corrugaciones           |               | m²       | 15Ahuellamiento m                      |           |               |            | m²       |
| 6Depresiones             |               | m²       | 16Deformación por empuje               |           |               |            | m²       |
| 7Fisuras de borde        |               | m        | 17Deslizamiento m <sup>2</sup>         |           |               |            | m²       |
| 8Fisuras de reflexión de | e juntas      | m        | 18Hincha                               | miento    |               |            | m²       |
| 9Desnivel Carril-Berm    | a             | m        | 19Disgreg                              | gación-De | esintegración |            | m²       |
| 10Fisuras long. y trans  | versales      | m        |                                        |           |               |            |          |
| Tipo                     | de Falla      |          | Severidad                              | Total     | Densidad      | Valor o    | deducido |
| 2Exudación (m²)          |               |          | L                                      | 75,00     | 35,71         | 35,71 9,40 |          |
| 13Huecos (N°)            |               |          | L                                      | 2,00      | 0,95          | 18,55      |          |
| 13Huecos (N°)            |               | M        | 2,00                                   | 0,95      | 5 31,00       |            |          |
| 13Huecos (N°)            |               | Н        | 2,00                                   | 0,95      | 50            | ),95       |          |
| 19Disgregación-Desint    | <u></u>       | M        | 3,71                                   | 1,77      | 9             | ,75        |          |

| NTO. |       | Valor deducido |       |      |      |   |   |        | - | VDC   |
|------|-------|----------------|-------|------|------|---|---|--------|---|-------|
| N°   | 1     | 2              | 3     | 4    | 5    | 6 | 7 | Total  | q | VDC   |
| 1    | 50,95 | 31,00          | 18,55 | 9,75 | 9,40 |   |   | 119,65 | 5 | 61,83 |
| 2    | 50,95 | 31,00          | 18,55 | 9,75 | 2,00 |   |   | 112,25 | 4 | 63,35 |
| 3    | 50,95 | 31,00          | 18,55 | 2,00 | 2,00 |   |   | 104,50 | 3 | 65,25 |
| 4    | 50,95 | 31,00          | 2,00  | 2,00 | 2,00 |   | _ | 87,95  | 2 | 62,77 |
| 5    | 50,95 | 2,00           | 2,00  | 2,00 | 2,00 |   |   | 58,95  | 1 | 58,95 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 65,25 |

| PCI = | 34,75 | Condición del pavimento | MALO |
|-------|-------|-------------------------|------|
|       |       |                         |      |

| MÉT                                 | ODO PCI (ÍNDI | CE DE CO | ONDICIÓN                               | DEL PA    | VIMENTO)      | )       |          |  |
|-------------------------------------|---------------|----------|----------------------------------------|-----------|---------------|---------|----------|--|
| Z                                   | ONA DE ESTUD  | IO "TOM  | ATITAS-E                               | ERQUIS    | NORTE"        |         |          |  |
| Progresiva inicio:                  | 4+610,35      |          |                                        | 7         |               |         |          |  |
| Progresiva Fin:                     | 4+640,35      | 0.35     | 33.35                                  |           |               |         |          |  |
| Área (m²):                          | 210           | 4+64     |                                        |           |               |         |          |  |
| Fecha:                              | 17/05/2024    |          |                                        |           |               |         | 4+610,35 |  |
| Unidad de muestra:                  | UMA 11        | BADE     |                                        |           |               |         | 4        |  |
| Inspeccionado por:                  |               |          |                                        |           |               | 207     | 6        |  |
| Univ. Gerardo Mauricio              | Vaca Valdez   | ESQUE    | CMA                                    |           |               |         |          |  |
| Falla                               | ı             | Unidad   |                                        | F         | alla          |         | Unidad   |  |
| 1Piel de cocodrilo                  |               | m²       | 11Parcheo                              | 0         |               |         | m²       |  |
| 2Exudación                          |               | m²       | 12Agrega                               | do pulido | )             |         | m²       |  |
| 3Fisuras en bloque                  |               | m²       | 13Huecos                               |           |               |         | N°       |  |
| 4Elevación-Hundimien                | nto           | m        | 14Acceso a puentes-Rejillas de drenaje |           |               |         | m²       |  |
| 5Corrugaciones                      |               | m²       | 15Ahuellamiento                        |           |               |         | m²       |  |
| 6Depresiones                        |               | m²       | 16Deformación por empuje               |           |               |         | m²       |  |
| 7Fisuras de borde                   |               | m        | 17Desliza                              | miento    |               |         | m²       |  |
| 8Fisuras de reflexión d             | e juntas      | m        | 18Hincha                               | miento    |               |         | m²       |  |
| 9Desnivel Carril-Berm               | a             | m        | 19Disgreg                              | gación-De | esintegración |         | m²       |  |
| 10Fisuras long. y trans             | versales      | m        |                                        |           |               |         |          |  |
| Tipo                                | de Falla      |          | Severidad                              | Total     | Densidad      | Valor o | leducido |  |
| 1Piel de cocodrilo (m²)             |               |          | L                                      | 1,77      | 0,84          | 8       | ,68      |  |
| 4Elevación-hundimiento (m)          |               |          | L                                      | 7,00      | 3,33          | 8       | ,40      |  |
| 10Fisuras long. y transversales (m) |               |          | L                                      | 11,92     | 5,68          | 4       | ,84      |  |
| 10Fisuras long. y trans             |               | M        | 2,25                                   | 1,07      | 2             | ,55     |          |  |
| 13Huecos (N°)                       | 13Huecos (N°) |          |                                        |           | 0,95          | 18      | 3,55     |  |
| 13Huecos (N°)                       |               |          | M                                      | 2,00      | 0,95          | 31      | ,00      |  |

| N° |       |       | Va   | lor dedu | cido |      |   | Total | ~ | VDC   |
|----|-------|-------|------|----------|------|------|---|-------|---|-------|
| 11 | 1     | 2     | 3    | 4        | 5    | 6    | 7 | Total | q | VDC   |
| 1  | 31,00 | 18,55 | 8,68 | 8,40     | 4,84 | 2,55 |   | 74,02 | 6 | 34,41 |
| 2  | 31,00 | 18,55 | 8,68 | 8,40     | 4,84 | 2,00 |   | 73,47 | 5 | 37,08 |
| 3  | 31,00 | 18,55 | 8,68 | 8,40     | 2,00 | 2,00 |   | 70,63 | 4 | 39,38 |
| 4  | 31,00 | 18,55 | 8,68 | 2,00     | 2,00 | 2,00 |   | 64,23 | 3 | 40,75 |
| 5  | 31,00 | 18,55 | 2,00 | 2,00     | 2,00 | 2,00 |   | 57,55 | 2 | 42,29 |
| 6  | 31,00 | 2,00  | 2,00 | 2,00     | 2,00 | 2,00 |   | 41,00 | 1 | 41,00 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 42,29 |

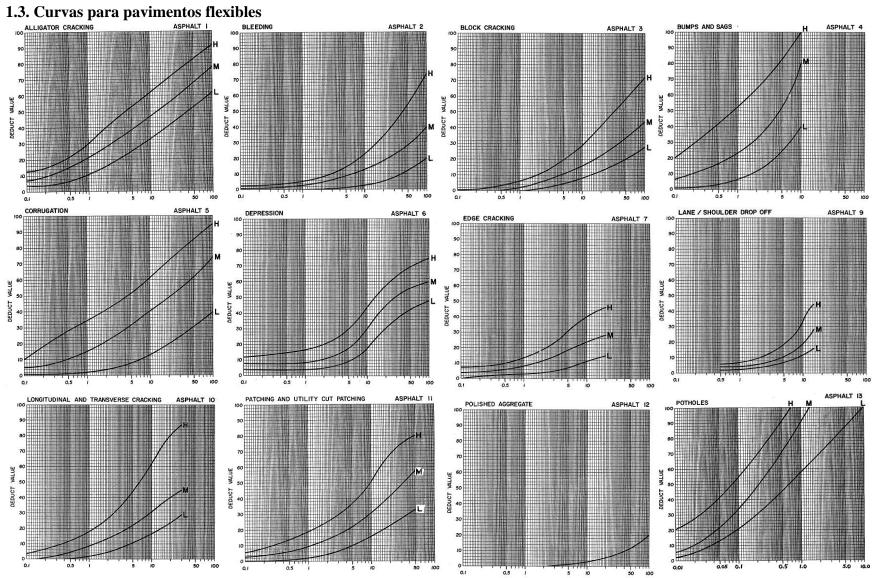
| PCI = | 57,71 | Condición del pavimento | BUENO |
|-------|-------|-------------------------|-------|
|-------|-------|-------------------------|-------|

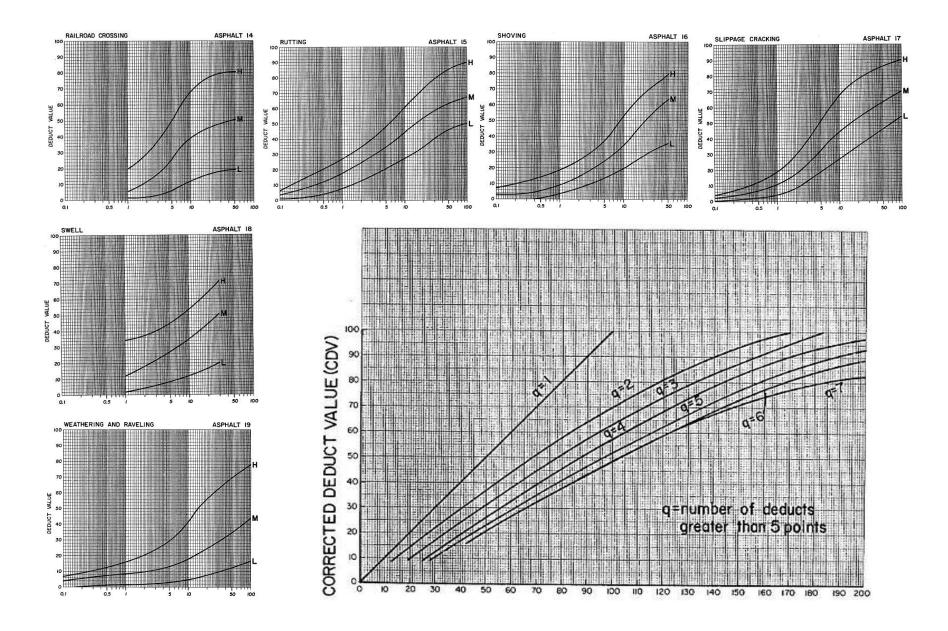
| MÉT                     | ODO PCI (ÍNDI              | CE DE CO                         | ONDICIÓN                               | DEL PA    | VIMENTO  | )       |          |
|-------------------------|----------------------------|----------------------------------|----------------------------------------|-----------|----------|---------|----------|
|                         | ONA DE ESTUD               |                                  |                                        |           |          |         |          |
| Progresiva inicio:      | 5+514,50                   |                                  |                                        | ESQ       | UEMA     |         |          |
| Progresiva Fin:         | 5+514,50                   |                                  |                                        |           |          |         |          |
| Área (m²):              | 210                        |                                  | 00                                     |           |          |         |          |
| Fecha:                  | 21/05/2024                 |                                  |                                        |           |          |         | 00       |
| Unidad de muestra:      | UMA 12                     | i                                | 2+2                                    |           |          |         | 5+541,50 |
| Inspeccionado por:      |                            |                                  |                                        |           |          |         | 2+       |
| Univ. Gerardo Mauricio  | Vaca Valdez                |                                  |                                        |           |          |         |          |
| Falla                   |                            | Unidad                           | Falla                                  |           |          |         | Unidad   |
| 1Piel de cocodrilo      |                            | m²                               | 11Parcheo                              |           |          |         | m²       |
| 2Exudación              |                            | m²                               | 12Agregado pulido                      |           |          |         | m²       |
| 3Fisuras en bloque      |                            | m²                               | 13Huecos                               |           |          |         | N°       |
| 4Elevación-Hundimien    | ito                        | m                                | 14Acceso a puentes-Rejillas de drenaje |           |          | drenaje | m²       |
| 5Corrugaciones          |                            | m²                               | 15Ahuellamiento                        |           |          |         | m²       |
| 6Depresiones            |                            | m²                               | 16Deform                               | nación po | r empuje |         | m²       |
| 7Fisuras de borde       |                            | m                                | 17Desliza                              | amiento   |          |         | m²       |
| 8Fisuras de reflexión d | e juntas                   | m                                | 18Hincha                               | miento    |          |         | m²       |
| 9Desnivel Carril-Berm   | m                          | 19Disgregación-Desintegración m² |                                        |           |          | m²      |          |
| 10Fisuras long. y trans | versales                   | m                                |                                        |           |          |         |          |
| Tipo                    | de Falla                   |                                  | Severidad                              | Total     | Densidad | Valor   | deducido |
| 4Elevación-hundimien    | 4Elevación-hundimiento (m) |                                  |                                        |           | 4,83     | 28      | 3,17     |
| 11Parcheo (m²)          |                            |                                  | L                                      | 2,25      | 1,07     | 2       | ,45      |

| N° | Valor deducido |      |   |   |   |   |   | Total | ~ | VDC   |
|----|----------------|------|---|---|---|---|---|-------|---|-------|
| 11 | 1              | 2    | 3 | 4 | 5 | 6 | 7 | Total | q | VDC   |
| 1  | 28,17          | 2,45 |   |   |   |   |   | 30,62 | 2 | 22,49 |
| 2  | 28,17          | 2,00 |   |   |   |   |   | 30,17 | 1 | 30,17 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 30,17 |

| PCI = 100-VDC |
|---------------|
|---------------|


| PCI = 69,83 Condición del pavimento | BUENO |
|-------------------------------------|-------|
|-------------------------------------|-------|


| MÉTODO PCI (ÍNDICE DE CONDICIÓN DEL PAVIMENTO) |              |             |                                             |           |          |         |          |  |  |  |  |
|------------------------------------------------|--------------|-------------|---------------------------------------------|-----------|----------|---------|----------|--|--|--|--|
| ZONA DE ESTUDIO "TOMATITAS-ERQUIS NORTE"       |              |             |                                             |           |          |         |          |  |  |  |  |
| Progresiva inicio:                             | 6+219        |             |                                             | ESQ       | UEMA     |         |          |  |  |  |  |
| Progresiva Fin:                                | 6+249        |             | 7                                           |           |          |         |          |  |  |  |  |
| Área (m²):                                     | 210          |             |                                             |           |          |         |          |  |  |  |  |
| Fecha:                                         | 21/05/2024   | 6+940       |                                             |           |          | 6+219   |          |  |  |  |  |
| Unidad de muestra:                             | UMA 13       | <del></del> |                                             |           |          | <u></u> |          |  |  |  |  |
| Inspeccionado por:                             |              |             |                                             |           |          |         |          |  |  |  |  |
| Univ. Gerardo Mauricio                         | Vaca Valdez  |             |                                             | _         |          | 5150    |          |  |  |  |  |
| Falla                                          |              | Unidad      |                                             | F         | alla     |         | Unidad   |  |  |  |  |
| 1Piel de cocodrilo                             |              | m²          | 11Parche                                    | 11Parcheo |          |         |          |  |  |  |  |
| 2Exudación                                     |              | m²          | 12Agregado pulido                           |           |          |         |          |  |  |  |  |
| 3Fisuras en bloque                             |              | m²          | m <sup>2</sup> 13Huecos                     |           |          |         |          |  |  |  |  |
| 4Elevación-Hundimien                           | to           | m           | m 14Acceso a puentes-Rejillas de drenaje m² |           |          |         |          |  |  |  |  |
| 5Corrugaciones                                 |              | m²          | n <sup>2</sup> 15Ahuellamiento              |           |          |         |          |  |  |  |  |
| 6Depresiones                                   |              | m²          | 16Deform                                    | m²        |          |         |          |  |  |  |  |
| 7Fisuras de borde                              |              | m           | 17Deslizamiento                             |           |          |         | m²       |  |  |  |  |
| 8Fisuras de reflexión de                       | e juntas     | m           | 18Hinchamiento                              |           |          |         | m²       |  |  |  |  |
| 9Desnivel Carril-Berma                         | a            | m           | 19Disgregación-Desintegración m²            |           |          |         |          |  |  |  |  |
| 10Fisuras long. y transv                       | versales     | m           |                                             |           |          |         |          |  |  |  |  |
| Tipo                                           | de Falla     |             | Severidad                                   | Total     | Densidad | Valor o | leducido |  |  |  |  |
| 1Piel de cocodrilo (m²)                        |              |             | L                                           | 3,27      | 1,56     | 13,70   |          |  |  |  |  |
| 4Elevación-hundimient                          | to (m)       |             | L                                           | 4,10      | 1,95     | 6,66    |          |  |  |  |  |
| 10Fisuras long. y transv                       |              | L           | 4,70                                        | 2,24      | 0,55     |         |          |  |  |  |  |
| 10Fisuras long. y transv                       | versales (m) |             | M                                           | 17,30     | 8,24     | 16,11   |          |  |  |  |  |
| 11Parcheo (m²)                                 |              |             | M                                           | 2,63      | 1,25     | 11,15   |          |  |  |  |  |

| N°  |       |       | Va    | lor dedu | Total | ~ | VDC |       |   |       |
|-----|-------|-------|-------|----------|-------|---|-----|-------|---|-------|
| IN. | 1     | 2     | 3     | 4        | 5     | 6 | 7   | Total | q | VDC   |
| 1   | 16,11 | 13,70 | 11,15 | 6,66     | 0,55  |   |     | 48,17 | 4 | 24,72 |
| 2   | 16,11 | 13,70 | 11,15 | 2,00     | 0,55  |   |     | 43,51 | 3 | 26,46 |
| 3   | 16,11 | 13,70 | 2,00  | 2,00     | 0,55  |   |     | 34,36 | 2 | 25,49 |
| 4   | 16,11 | 2,00  | 2,00  | 2,00     | 0,55  |   |     | 22,66 | 1 | 22,66 |

| Máximo valor<br>corregio |       |
|--------------------------|-------|
| VDC =                    | 26,46 |

| PCI = | 73,54 | Condición del pavimento | MUY BUENO |
|-------|-------|-------------------------|-----------|





## 1.4. Tipos de fallas y niveles de severidad

| <b>&gt;</b> 10 | - E II                                  | T7 * 1 1 |                                                                                                                               | Nivel de severidad                                                                            |                                                                                                |
|----------------|-----------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| N°             | Falla                                   | Unidad   | Bajo (L)                                                                                                                      | Medio (M)                                                                                     | Alto (H)                                                                                       |
| 1              | Piel de<br>cocodrilo                    | m²       | Grietas finas que se desarrollan de forma paralela                                                                            | Patrón o red de grietas que pueden estar ligeramente descascaradas                            | Las piezas o pedazos están bien<br>definidos y descascarados los<br>bordes                     |
| 2              | Exudación                               | m²       | La mancha ha ocurrido solamente en<br>un grado muy ligero, siendo<br>apreciable únicamente durante unos<br>pocos días del año | El asfalto se pega a los zapatos y vehículos<br>únicamente durante unas pocas semanas del año | Gran cantidad de asfalto se pega a<br>los zapatos y vehículos durante<br>varias semanas al año |
| 3              | Agrietamiento en bloque                 | m²       | Grieta sin relleno de ancho menor que 10 mm                                                                                   | Grieta entre 10 mm y 76 mm                                                                    | Grieta de más de 76 mm de ancho                                                                |
| 4              | Abultamiento y hundimiento              | m        | No tienen una consecuencia importante en la calidad de rodaje                                                                 | Producen un efecto medio en la calidad de rodaje                                              | Producen un efecto negativo muy<br>marcado en la calidad de rodaje                             |
| 5              | Corrugación                             | m²       | No tienen una consecuencia importante en la calidad de rodaje.                                                                | Producen un efecto medio en la calidad de rodaje                                              | Producen un efecto negativo muy<br>marcado en la calidad de rodaje                             |
| 6              | Depresión                               | m²       | Máxima profundidad de 13 a 25 mm                                                                                              | Máxima profundidad de 25 a 51 mm.                                                             | Profundidad mayor que 51 mm                                                                    |
| 7              | Grieta de borde                         | m        | Grietas de baja severidad sin disgregación.                                                                                   | Grietas de media severidad con algo de disgregación y rotura de los bordes.                   | Considerable rotura de borde y disgregación en las grietas                                     |
| 8              | Desnivel carril/berma                   | m        | La diferencia en elevación entre el<br>pavimento y el hombrillo está entre 25<br>y 51 mm                                      | La diferencia está entre 51 y 102 mm                                                          | La diferencia es mayor de 102 mm                                                               |
| 9              | Grieta<br>longitudinal y<br>transversal | m        | Grieta sin relleno de ancho menor que 10 mm                                                                                   | Grieta sin relleno de ancho entre 10 mm y 76 mm                                               | Grieta sin relleno de más de 76 mm de ancho                                                    |

| 10 | Parcheo                         | m²    | El parche está en<br>buena y es satisfa                                                                                           |                    | El parche está moderadamente deteriorado o la calidad del tránsito se califica como de severidad media | El parche está muy deteriorado o la calidad del tránsito se califica como de alta severidad                                                                                                                            |
|----|---------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Pulimento de agregados          | m²    |                                                                                                                                   |                    | , sin embargo, el grado de pulimento deberá ser si<br>bilizado como defecto                            | gnificativo antes de ser incluido en                                                                                                                                                                                   |
|    |                                 |       |                                                                                                                                   |                    | Diámetro medio [mm]                                                                                    |                                                                                                                                                                                                                        |
| 12 | Huecos                          | N°    | Profundidad<br>máxima del<br>hueco [mm]                                                                                           | 102 a 203          | 203 a 457                                                                                              | 457 a 762                                                                                                                                                                                                              |
|    |                                 |       | 12,70 a 25,40                                                                                                                     | L                  | L                                                                                                      | M                                                                                                                                                                                                                      |
|    |                                 |       | >25,40 a 50,80                                                                                                                    | L                  | M                                                                                                      | Н                                                                                                                                                                                                                      |
|    |                                 |       | >50,80                                                                                                                            | M                  | M                                                                                                      | Н                                                                                                                                                                                                                      |
| 13 | Cruce de vía<br>férrea          | $m^2$ | No tienen una con importante en la c                                                                                              |                    | Producen un efecto medio en la calidad de rodaje                                                       | Producen un efecto negativo muy marcado en la calidad de rodaje                                                                                                                                                        |
| 14 | Ahuellamiento                   | m²    | Profundidad pron<br>ahuellamiento 6 a                                                                                             |                    | > 13 mm a 25 mm                                                                                        | > 25 mm                                                                                                                                                                                                                |
| 15 | Desplazamiento                  | m²    | No tienen una consecuencia importante en la calidad de rodaje.                                                                    |                    | Producen un efecto medio en la calidad de rodaje.                                                      | Producen un efecto negativo muy marcado en la calidad de rodaje.                                                                                                                                                       |
| 16 | Grieta parabólica               | m²    | Ancho promedio que 10 mm                                                                                                          | de la grieta menor | Ancho promedio de la grieta entre 10 mm y 38 mm                                                        | Ancho promedio de la grieta es mayor de 38 mm                                                                                                                                                                          |
| 17 | Hinchamiento                    | m²    | No es siempre fácil de ver, pero<br>puede ser detectado conduciendo en<br>el límite de velocidad sobre la sección<br>de pavimento |                    | El hinchamiento causa calidad de tránsito de severidad media                                           | El hinchamiento causa calidad de<br>tránsito de alta severidad                                                                                                                                                         |
| 18 | Desprendimiento<br>de agregados | m²    | Han comenzado a<br>agregados o el lig<br>áreas la superficie<br>deprimirse                                                        | gante. En algunas  | Se han perdido los agregados o el ligante. La textura superficial es moderadamente rugosa y "ahuecada" | La textura superficial es muy rugosa<br>y severamente "ahuecada". Las<br>áreas ahuecadas tienen diámetros<br>menores que 10 mm y<br>profundidades menores que 13 mm<br>áreas ahuecadas mayores se<br>consideran huecos |

# ANEXO 2 PLANILLAS DE CÁLCULO DEL IRI



#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



#### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

## EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 0+000 a 0+400

Datos de campo con la Rueda de Merlín

|    |    |    |    | cumpo |    |    |    |    |    |    |
|----|----|----|----|-------|----|----|----|----|----|----|
|    | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 |
| 1  | 23 | 31 | 21 | 24    | 23 | 25 | 25 | 27 | 23 | 22 |
| 2  | 23 | 24 | 26 | 24    | 19 | 28 | 25 | 22 | 26 | 24 |
| 3  | 22 | 22 | 22 | 22    | 21 | 25 | 26 | 25 | 25 | 27 |
| 4  | 23 | 27 | 26 | 22    | 22 | 22 | 24 | 22 | 28 | 24 |
| 5  | 26 | 17 | 25 | 25    | 24 | 28 | 23 | 25 | 23 | 20 |
| 6  | 28 | 28 | 28 | 27    | 26 | 21 | 23 | 24 | 27 | 20 |
| 7  | 27 | 22 | 24 | 22    | 24 | 22 | 25 | 22 | 26 | 24 |
| 8  | 22 | 28 | 26 | 24    | 24 | 23 | 26 | 28 | 24 | 25 |
| 9  | 26 | 24 | 24 | 22    | 25 | 25 | 32 | 23 | 22 | 23 |
| 10 | 25 | 25 | 24 | 24    | 24 | 26 | 24 | 27 | 26 | 25 |
| 11 | 25 | 24 | 26 | 23    | 26 | 28 | 27 | 22 | 27 | 25 |
| 12 | 25 | 25 | 28 | 24    | 25 | 23 | 27 | 24 | 26 | 26 |
| 13 | 14 | 24 | 21 | 23    | 24 | 23 | 22 | 24 | 25 | 25 |
| 14 | 24 | 21 | 25 | 24    | 21 | 26 | 19 | 26 | 29 | 30 |
| 15 | 32 | 33 | 27 | 33    | 16 | 11 | 16 | 22 | 22 | 28 |
| 16 | 19 | 25 | 23 | 24    | 22 | 23 | 24 | 21 | 24 | 28 |
| 17 | 23 | 24 | 24 | 22    | 25 | 23 | 23 | 22 | 19 | 23 |
| 18 | 23 | 24 | 22 | 22    | 28 | 22 | 27 | 23 | 21 | 27 |
| 19 | 23 | 12 | 0  | 28    | 18 | 24 | 21 | 24 | 20 | 19 |
| 20 | 23 | 23 | 24 | 24    | 27 | 22 | 21 | 24 | 24 | 22 |





#### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

#### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(5 - 3)}{5} + 8 + \frac{(14 - 3)}{14}\right) * 5 [mm]$$

$$D = 45.93 \text{ mm}$$

#### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Lf = 15 fc = 1,2 mm

#### Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 55,11 \text{ mm}$$

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

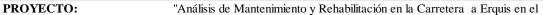
Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4< $IRI$ <15,9)

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$


I.R.I.=  $3.19 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez

#### CARRERA DE INGENIERÍA CIVIL







Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

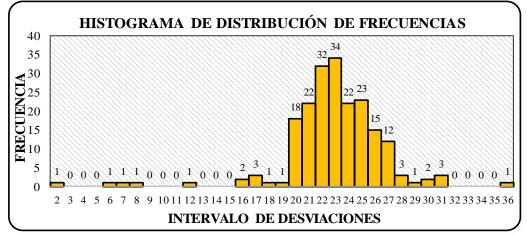
Univ. Gerardo Mauricio Vaca Valdez **SOLICITANTE:** 

**MUESTRA:** Pavimento Flexible TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

#### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO

#### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


Tramo: Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 0+800 a 1+200

Datos de campo con la Rueda de Merlín

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 23 | 23 | 21 | 23 | 21 | 22 | 20 | 21 | 24 | 21 |
| 2  | 25 | 24 | 26 | 26 | 21 | 21 | 23 | 25 | 22 | 23 |
| 3  | 21 | 22 | 23 | 20 | 26 | 22 | 26 | 21 | 23 | 21 |
| 4  | 27 | 22 | 21 | 23 | 25 | 21 | 24 | 25 | 25 | 21 |
| 5  | 22 | 26 | 23 | 19 | 25 | 21 | 20 | 24 | 20 | 21 |
| 6  | 24 | 22 | 23 | 23 | 21 | 24 | 24 | 23 | 20 | 20 |
| 7  | 23 | 25 | 26 | 23 | 24 | 29 | 22 | 20 | 22 | 20 |
| 8  | 27 | 24 | 26 | 23 | 23 | 23 | 20 | 21 | 22 | 28 |
| 9  | 24 | 25 | 25 | 23 | 25 | 25 | 21 | 21 | 21 | 24 |
| 10 | 23 | 23 | 24 | 22 | 21 | 23 | 17 | 23 | 22 | 20 |
| 11 | 23 | 23 | 22 | 21 | 24 | 25 | 22 | 27 | 23 | 31 |
| 12 | 22 | 22 | 20 | 22 | 31 | 24 | 22 | 8  | 6  | 23 |
| 13 | 22 | 26 | 22 | 25 | 24 | 20 | 36 | 16 | 24 | 22 |
| 14 | 23 | 30 | 23 | 24 | 30 | 17 | 25 | 25 | 27 | 23 |
| 15 | 26 | 27 | 22 | 25 | 16 | 27 | 22 | 25 | 25 | 26 |
| 16 | 25 | 31 | 26 | 27 | 20 | 7  | 22 | 23 | 22 | 22 |
| 17 | 27 | 24 | 26 | 25 | 22 | 22 | 28 | 23 | 23 | 17 |
| 18 | 27 | 20 | 27 | 22 | 24 | 24 | 18 | 20 | 25 | 27 |
| 19 | 27 | 25 | 20 | 20 | 20 | 23 | 25 | 26 | 28 | 12 |
| 20 | 24 | 2  | 22 | 22 | 21 | 26 | 26 | 22 | 23 | 24 |





#### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

#### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(1 - 0)}{1} + 8 + \frac{(12 - 0)}{12}\right) * 5 [mm]$$

$$D = 50.00 \text{ mm}$$

#### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

#### Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 60 \text{ mm}$$

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$\boxed{\text{I.R. I.} = 0.593 + 0.0471 * D_c} \rightarrow (2.4 < \text{IRI} < 15.9)}$$

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $3.42$  m/km

Univ. Gerardo Mauricio Vaca Valdez

## THE STATE OF THE S

#### UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA

#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

#### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

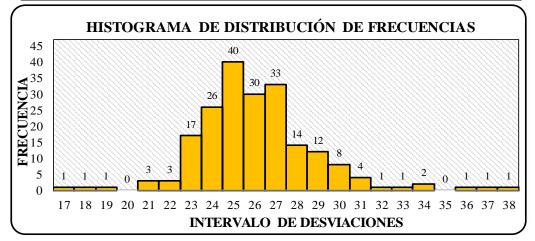
**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

#### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO

#### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 1+600 a 2+000

Datos de campo con la Rueda de Merlín

|    |    | v  | atos uc | campo | con la i | xucua u | e Merii | 11 |    |    |
|----|----|----|---------|-------|----------|---------|---------|----|----|----|
|    | 1  | 2  | 3       | 4     | 5        | 6       | 7       | 8  | 9  | 10 |
| 1  | 25 | 23 | 25      | 24    | 25       | 24      | 26      | 25 | 25 | 25 |
| 2  | 25 | 28 | 27      | 25    | 25       | 25      | 24      | 22 | 25 | 23 |
| 3  | 24 | 24 | 27      | 24    | 24       | 25      | 27      | 27 | 23 | 23 |
| 4  | 24 | 25 | 25      | 25    | 24       | 26      | 29      | 25 | 25 | 26 |
| 5  | 24 | 24 | 25      | 26    | 25       | 28      | 27      | 27 | 26 | 28 |
| 6  | 28 | 27 | 24      | 31    | 28       | 25      | 25      | 26 | 29 | 29 |
| 7  | 26 | 25 | 28      | 23    | 26       | 27      | 27      | 23 | 25 | 26 |
| 8  | 29 | 27 | 30      | 23    | 27       | 32      | 26      | 26 | 27 | 23 |
| 9  | 29 | 27 | 22      | 30    | 29       | 38      | 27      | 30 | 29 | 25 |
| 10 | 25 | 27 | 27      | 30    | 24       | 30      | 27      | 29 | 24 | 28 |
| 11 | 27 | 28 | 27      | 25    | 25       | 27      | 25      | 29 | 27 | 26 |
| 12 | 26 | 29 | 25      | 26    | 23       | 34      | 28      | 31 | 26 | 37 |
| 13 | 17 | 36 | 27      | 34    | 24       | 26      | 26      | 26 | 33 | 29 |
| 14 | 27 | 31 | 29      | 31    | 24       | 28      | 23      | 24 | 28 | 30 |
| 15 | 21 | 27 | 23      | 28    | 26       | 26      | 21      | 26 | 27 | 24 |
| 16 | 25 | 24 | 26      | 27    | 23       | 25      | 27      | 30 | 24 | 25 |
| 17 | 27 | 27 | 19      | 26    | 27       | 26      | 23      | 25 | 27 | 27 |
| 18 | 28 | 26 | 26      | 24    | 28       | 24      | 26      | 30 | 24 | 23 |
| 19 | 25 | 24 | 25      | 24    | 23       | 24      | 23      | 25 | 25 | 25 |
| 20 | 22 | 26 | 27      | 21    | 26       | 18      | 25      | 26 | 25 | 23 |





#### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

#### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(17 - 1)}{17} + 7 + \frac{(4 - 3)}{4}\right) * 5 [mm]$$

$$D = 40,96 \text{ mm}$$

#### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$fc = 1,2 \text{ mm}$$

#### Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 49,15 \text{ mm}$$

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

#### Cálculo del I.R.I.:

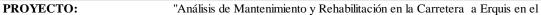
Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.91$  m/km

Univ. Gerardo Mauricio Vaca Valdez




### UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO"

#### FACULTAD DE CIENCIAS Y TECNOLOGÍA

#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

#### "LABORATORIO DE ASFALTOS"



Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

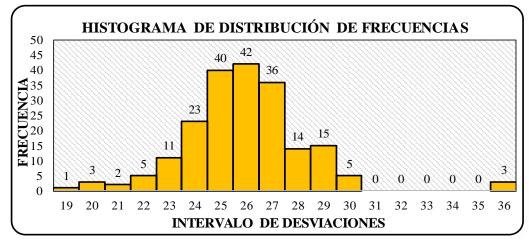
**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

#### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO

#### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 2+400 a 2+800

Datos de campo con la Rueda de Merlín

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 25 | 26 | 30 | 25 | 26 | 26 | 23 | 27 | 20 | 22 |
| 2  | 23 | 25 | 25 | 24 | 26 | 24 | 24 | 27 | 24 | 24 |
| 3  | 25 | 25 | 27 | 25 | 20 | 25 | 27 | 27 | 27 | 26 |
| 4  | 26 | 22 | 28 | 26 | 27 | 26 | 25 | 23 | 29 | 25 |
| 5  | 23 | 24 | 23 | 29 | 24 | 25 | 26 | 25 | 27 | 25 |
| 6  | 29 | 19 | 22 | 29 | 28 | 28 | 26 | 28 | 26 | 21 |
| 7  | 27 | 22 | 29 | 28 | 27 | 26 | 26 | 27 | 25 | 25 |
| 8  | 26 | 27 | 26 | 27 | 26 | 29 | 26 | 24 | 27 | 26 |
| 9  | 25 | 25 | 23 | 27 | 26 | 26 | 26 | 24 | 28 | 24 |
| 10 | 29 | 26 | 29 | 36 | 25 | 23 | 27 | 24 | 27 | 25 |
| 11 | 25 | 25 | 26 | 30 | 30 | 29 | 26 | 25 | 22 | 25 |
| 12 | 27 | 26 | 27 | 26 | 36 | 28 | 24 | 21 | 20 | 23 |
| 13 | 24 | 29 | 30 | 26 | 25 | 29 | 25 | 25 | 25 | 27 |
| 14 | 27 | 25 | 26 | 24 | 27 | 25 | 25 | 26 | 29 | 25 |
| 15 | 27 | 25 | 28 | 27 | 25 | 25 | 24 | 28 | 23 | 27 |
| 16 | 25 | 26 | 26 | 23 | 26 | 26 | 36 | 26 | 26 | 27 |
| 17 | 25 | 29 | 24 | 27 | 23 | 27 | 27 | 25 | 27 | 26 |
| 18 | 24 | 28 | 27 | 24 | 26 | 27 | 25 | 24 | 30 | 26 |
| 19 | 24 | 26 | 28 | 25 | 28 | 25 | 28 | 26 | 27 | 27 |
| 20 | 28 | 29 | 24 | 29 | 24 | 26 | 24 | 26 | 27 | 27 |





#### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

#### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(5 - 4)}{5} + 6 + \frac{(15 - 2)}{15}\right) * 5 [mm]$$

$$D = 35.33 \text{ mm}$$

#### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 42,4 \text{ mm}$$

mm

fc = 1,2

#### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$\boxed{\text{I.R. I.} = 0.593 + 0.0471 * D_c} \rightarrow (2.4 < \text{IRI} < 15.9)}$$

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.59$  m/km

Univ. Gerardo Mauricio Vaca Valdez

Ing. Seila Claudia Ávila Sandoval



#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

#### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

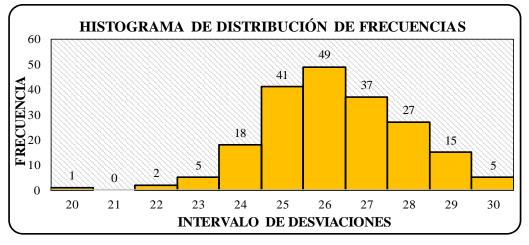
**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

#### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO

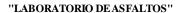
#### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 3+200 a 3+600

Datos de campo con la Rueda de Merlín


|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 24 | 26 | 24 | 24 | 24 | 25 | 25 | 28 | 24 | 26 |
| 2  | 25 | 28 | 29 | 23 | 25 | 28 | 26 | 24 | 24 | 24 |
| 3  | 26 | 26 | 25 | 26 | 28 | 27 | 20 | 26 | 27 | 28 |
| 4  | 26 | 26 | 27 | 28 | 27 | 26 | 27 | 26 | 26 | 28 |
| 5  | 29 | 26 | 28 | 27 | 27 | 29 | 30 | 25 | 26 | 29 |
| 6  | 30 | 25 | 27 | 28 | 28 | 25 | 26 | 26 | 30 | 29 |
| 7  | 28 | 24 | 26 | 26 | 25 | 28 | 28 | 24 | 26 | 26 |
| 8  | 27 | 26 | 25 | 25 | 25 | 28 | 27 | 27 | 25 | 27 |
| 9  | 26 | 25 | 25 | 25 | 28 | 26 | 25 | 27 | 25 | 26 |
| 10 | 25 | 23 | 25 | 24 | 26 | 29 | 25 | 27 | 24 | 28 |
| 11 | 29 | 26 | 26 | 25 | 26 | 28 | 28 | 30 | 28 | 27 |
| 12 | 25 | 27 | 25 | 26 | 26 | 22 | 22 | 25 | 24 | 26 |
| 13 | 26 | 24 | 26 | 26 | 25 | 27 | 25 | 25 | 27 | 26 |
| 14 | 25 | 27 | 25 | 28 | 28 | 29 | 30 | 29 | 24 | 27 |
| 15 | 27 | 25 | 25 | 26 | 25 | 26 | 27 | 25 | 25 | 28 |
| 16 | 28 | 27 | 27 | 29 | 29 | 27 | 23 | 26 | 29 | 26 |
| 17 | 29 | 29 | 27 | 25 | 25 | 26 | 26 | 27 | 25 | 25 |
| 18 | 26 | 25 | 27 | 28 | 24 | 26 | 23 | 26 | 28 | 25 |
| 19 | 29 | 26 | 26 | 27 | 27 | 26 | 28 | 27 | 27 | 28 |
| 20 | 27 | 23 | 24 | 27 | 27 | 26 | 26 | 27 | 27 | 24 |





### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(18 - 2)}{18} + 4 + \frac{(15 - 5)}{15}\right) * 5 [mm]$$

$$D = 27.78 \text{ mm}$$

# Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$
 Li = 25

Cálculo del rango corregido Dc:

15

Lf =

$$D_c = D * fc$$

$$Dc = 33,33 \text{ mm}$$

mm

fc = 1,2

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

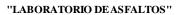
Para pavimentos en servicio:

$$\boxed{\text{I.R. I.} = 0.593 + 0.0471 * D_c} \rightarrow (2.4 < \text{IRI} < 15.9)}$$

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$


I.R.I. =  $2.16 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



# CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



PROYECTO: "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

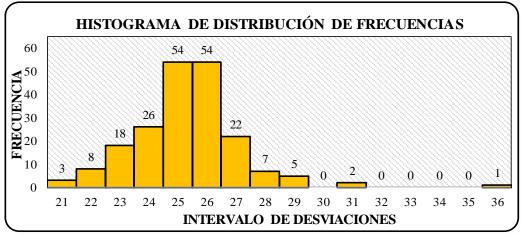
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 4+000 a 4+400

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 26 | 24 | 23 | 25 | 23 | 22 | 31 | 24 | 25 | 27 |
| 2  | 27 | 27 | 25 | 28 | 27 | 23 | 25 | 26 | 27 | 26 |
| 3  | 28 | 29 | 22 | 22 | 26 | 26 | 24 | 28 | 22 | 23 |
| 4  | 27 | 24 | 24 | 26 | 25 | 27 | 25 | 24 | 25 | 23 |
| 5  | 23 | 23 | 27 | 24 | 27 | 26 | 28 | 24 | 25 | 26 |
| 6  | 27 | 24 | 25 | 25 | 28 | 23 | 27 | 28 | 36 | 21 |
| 7  | 26 | 24 | 25 | 27 | 25 | 25 | 24 | 26 | 26 | 25 |
| 8  | 26 | 25 | 25 | 26 | 26 | 27 | 25 | 27 | 24 | 25 |
| 9  | 25 | 26 | 25 | 26 | 26 | 24 | 26 | 26 | 27 | 25 |
| 10 | 26 | 25 | 26 | 26 | 25 | 25 | 26 | 26 | 25 | 26 |
| 11 | 25 | 25 | 27 | 28 | 25 | 25 | 25 | 25 | 26 | 24 |
| 12 | 25 | 25 | 26 | 25 | 25 | 24 | 26 | 26 | 24 | 24 |
| 13 | 26 | 27 | 25 | 25 | 29 | 23 | 25 | 26 | 26 | 23 |
| 14 | 25 | 26 | 29 | 25 | 27 | 24 | 26 | 25 | 26 | 23 |
| 15 | 22 | 26 | 26 | 25 | 26 | 25 | 21 | 23 | 25 | 26 |
| 16 | 25 | 29 | 23 | 23 | 27 | 25 | 24 | 27 | 24 | 24 |
| 17 | 25 | 31 | 26 | 25 | 25 | 23 | 26 | 26 | 25 | 22 |
| 18 | 26 | 26 | 22 | 26 | 25 | 24 | 24 | 25 | 26 | 24 |
| 19 | 27 | 26 | 22 | 26 | 23 | 24 | 23 | 29 | 26 | 26 |
| 20 | 25 | 25 | 26 | 26 | 26 | 24 | 27 | 21 | 23 | 26 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8 - 7)}{8} + 5 + \frac{(7 - 2)}{7}\right) * 5 [mm]$$

$$D = 29,2 \text{ mm}$$

# Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 35,04 \text{ mm}$$

mm

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.24 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

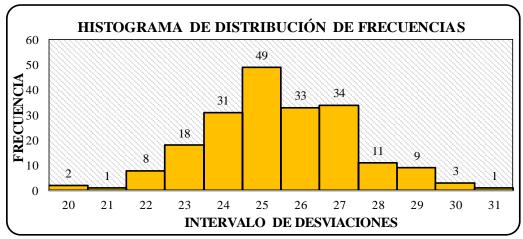
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 4+800 a 5+200

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 24 | 25 | 25 | 25 | 23 | 22 | 20 | 27 | 23 | 25 |
| 2  | 26 | 25 | 29 | 26 | 27 | 24 | 25 | 25 | 24 | 27 |
| 3  | 27 | 28 | 27 | 25 | 28 | 27 | 26 | 26 | 24 | 24 |
| 4  | 27 | 25 | 22 | 26 | 24 | 27 | 24 | 25 | 24 | 25 |
| 5  | 27 | 26 | 23 | 26 | 27 | 23 | 24 | 24 | 26 | 25 |
| 6  | 23 | 24 | 25 | 26 | 23 | 24 | 29 | 29 | 27 | 23 |
| 7  | 25 | 25 | 25 | 25 | 24 | 25 | 25 | 26 | 27 | 27 |
| 8  | 27 | 25 | 22 | 23 | 26 | 22 | 22 | 26 | 29 | 24 |
| 9  | 30 | 26 | 27 | 25 | 30 | 26 | 24 | 26 | 24 | 28 |
| 10 | 27 | 24 | 25 | 26 | 22 | 29 | 28 | 26 | 25 | 25 |
| 11 | 26 | 28 | 30 | 24 | 24 | 28 | 26 | 25 | 27 | 27 |
| 12 | 28 | 25 | 28 | 29 | 29 | 26 | 24 | 27 | 27 | 25 |
| 13 | 27 | 27 | 25 | 26 | 22 | 26 | 27 | 27 | 26 | 27 |
| 14 | 24 | 22 | 23 | 25 | 25 | 24 | 24 | 23 | 21 | 20 |
| 15 | 25 | 23 | 26 | 24 | 24 | 26 | 24 | 29 | 23 | 23 |
| 16 | 31 | 25 | 25 | 23 | 26 | 24 | 27 | 26 | 25 | 24 |
| 17 | 25 | 26 | 25 | 28 | 26 | 23 | 24 | 27 | 26 | 27 |
| 18 | 27 | 25 | 26 | 25 | 23 | 25 | 27 | 27 | 24 | 25 |
| 19 | 26 | 25 | 25 | 24 | 29 | 23 | 25 | 25 | 25 | 25 |
| 20 | 27 | 25 | 27 | 27 | 28 | 25 | 23 | 25 | 28 | 26 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8 - 7)}{8} + 6 + \frac{(9 - 6)}{9}\right) * 5 [mm]$$

$$D = 32,29 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$D_c = D * fc$$

fc =

1,2

mm

$$Dc = 38,75 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4< $IRI$ <15,9)

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.42$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

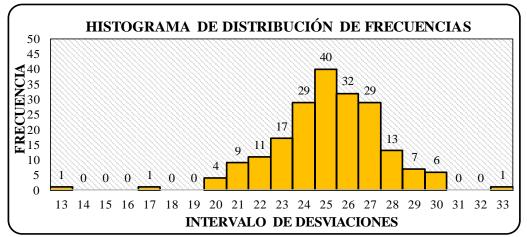
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 5+600 a 6+000

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 25 | 21 | 24 | 24 | 21 | 20 | 22 | 21 | 23 | 21 |
| 2  | 23 | 23 | 24 | 26 | 27 | 27 | 21 | 24 | 24 | 25 |
| 3  | 27 | 27 | 23 | 28 | 22 | 25 | 27 | 25 | 30 | 26 |
| 4  | 25 | 27 | 22 | 30 | 23 | 27 | 26 | 26 | 24 | 26 |
| 5  | 24 | 27 | 26 | 25 | 22 | 26 | 27 | 28 | 26 | 22 |
| 6  | 27 | 26 | 27 | 17 | 22 | 22 | 28 | 24 | 27 | 23 |
| 7  | 23 | 28 | 21 | 13 | 33 | 20 | 29 | 27 | 26 | 30 |
| 8  | 25 | 24 | 26 | 27 | 30 | 25 | 23 | 26 | 23 | 23 |
| 9  | 25 | 25 | 27 | 26 | 27 | 20 | 25 | 28 | 25 | 29 |
| 10 | 25 | 28 | 24 | 25 | 22 | 24 | 23 | 27 | 24 | 25 |
| 11 | 27 | 24 | 21 | 22 | 23 | 29 | 24 | 26 | 26 | 26 |
| 12 | 20 | 24 | 24 | 26 | 25 | 27 | 24 | 26 | 26 | 29 |
| 13 | 24 | 26 | 23 | 26 | 25 | 24 | 26 | 28 | 25 | 25 |
| 14 | 24 | 25 | 25 | 26 | 27 | 22 | 26 | 25 | 25 | 24 |
| 15 | 24 | 27 | 25 | 26 | 25 | 25 | 25 | 25 | 23 | 28 |
| 16 | 27 | 23 | 24 | 26 | 28 | 28 | 25 | 25 | 28 | 24 |
| 17 | 27 | 22 | 23 | 21 | 25 | 21 | 27 | 24 | 26 | 29 |
| 18 | 26 | 24 | 25 | 26 | 23 | 26 | 25 | 25 | 26 | 26 |
| 19 | 25 | 25 | 29 | 27 | 27 | 24 | 25 | 25 | 25 | 30 |
| 20 | 29 | 25 | 30 | 24 | 28 | 24 | 27 | 28 | 27 | 27 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(9 - 4)}{9} + 7 + \frac{(7 - 3)}{7}\right) * 5 [mm]$$

$$D = 40,63 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 48,76 \text{ mm}$$

1,2

mm

fc =

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

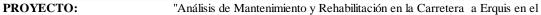
$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

I.R.I.=  $2.89$  m/km


Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"



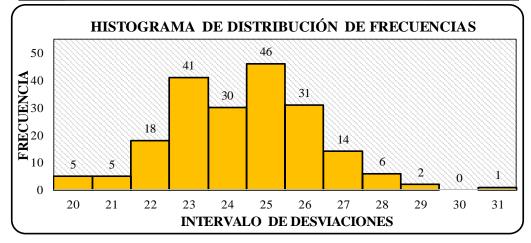
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

**MUESTRA:** Pavimento Flexible TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

Tramo: Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 6+400 a 6+800

|    |    |    | outob ac | cumpo | Conru | rucuu c | ic Mici i |    |    |    |
|----|----|----|----------|-------|-------|---------|-----------|----|----|----|
|    | 1  | 2  | 3        | 4     | 5     | 6       | 7         | 8  | 9  | 10 |
| 1  | 24 | 25 | 26       | 25    | 25    | 26      | 26        | 27 | 20 | 23 |
| 2  | 25 | 26 | 23       | 26    | 24    | 20      | 22        | 25 | 25 | 22 |
| 3  | 23 | 26 | 26       | 26    | 26    | 26      | 27        | 27 | 26 | 23 |
| 4  | 24 | 26 | 28       | 27    | 29    | 22      | 26        | 21 | 28 | 27 |
| 5  | 24 | 24 | 27       | 31    | 23    | 26      | 25        | 26 | 26 | 25 |
| 6  | 24 | 21 | 25       | 22    | 26    | 23      | 25        | 26 | 25 | 25 |
| 7  | 24 | 23 | 23       | 25    | 27    | 23      | 24        | 25 | 22 | 25 |
| 8  | 24 | 25 | 0        | 25    | 21    | 20      | 22        | 25 | 20 | 22 |
| 9  | 25 | 26 | 26       | 23    | 24    | 24      | 25        | 27 | 25 | 23 |
| 10 | 26 | 23 | 25       | 23    | 23    | 26      | 25        | 25 | 23 | 23 |
| 11 | 28 | 23 | 26       | 27    | 24    | 25      | 27        | 28 | 28 | 27 |
| 12 | 25 | 27 | 28       | 26    | 24    | 26      | 23        | 22 | 24 | 24 |
| 13 | 21 | 22 | 22       | 23    | 25    | 21      | 24        | 23 | 25 | 23 |
| 14 | 24 | 24 | 26       | 24    | 23    | 23      | 23        | 24 | 23 | 23 |
| 15 | 26 | 23 | 25       | 26    | 24    | 22      | 22        | 22 | 25 | 23 |
| 16 | 26 | 27 | 20       | 23    | 25    | 25      | 25        | 25 | 23 | 23 |
| 17 | 29 | 22 | 25       | 22    | 24    | 25      | 23        | 27 | 22 | 23 |
| 18 | 24 | 24 | 23       | 25    | 23    | 24      | 23        | 22 | 24 | 25 |
| 19 | 23 | 23 | 23       | 24    | 24    | 25      | 25        | 25 | 24 | 26 |
| 20 | 24 | 25 | 25       | 25    | 22    | 25      | 26        | 23 | 25 | 23 |





### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



"LABORATORIO DE ASFALTOS"

Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(18 - 0)}{18} + 4 + \frac{(14 - 1)}{14}\right) * 5 [mm]$$

$$D = 29,64 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Lf = 15 fc = 1,2 mm$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 35,57 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

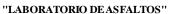
Para pavimentos en servicio:

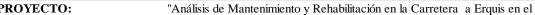
$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$


I.R.I. =  $2.27$  m/km


Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





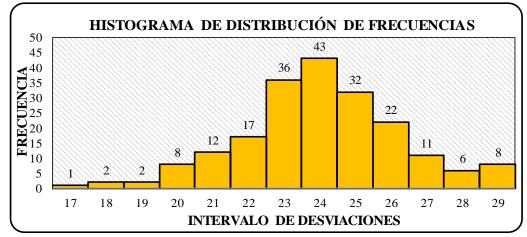
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

**MUESTRA:** Pavimento Flexible TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

Tramo: Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 7+200 a 7+600

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 26 | 23 | 25 | 26 | 26 | 22 | 24 | 23 | 23 | 21 |
| 2  | 26 | 24 | 22 | 21 | 20 | 23 | 21 | 23 | 26 | 21 |
| 3  | 20 | 24 | 24 | 26 | 28 | 22 | 23 | 26 | 27 | 24 |
| 4  | 22 | 24 | 24 | 25 | 25 | 24 | 22 | 24 | 22 | 23 |
| 5  | 23 | 23 | 23 | 23 | 24 | 25 | 24 | 29 | 24 | 24 |
| 6  | 24 | 25 | 24 | 26 | 25 | 27 | 25 | 24 | 25 | 25 |
| 7  | 25 | 29 | 24 | 26 | 26 | 23 | 23 | 28 | 26 | 26 |
| 8  | 29 | 28 | 21 | 29 | 23 | 22 | 29 | 23 | 17 | 27 |
| 9  | 23 | 27 | 20 | 23 | 26 | 26 | 25 | 24 | 25 | 24 |
| 10 | 26 | 27 | 22 | 23 | 24 | 23 | 25 | 22 | 24 | 25 |
| 11 | 25 | 25 | 24 | 24 | 24 | 24 | 21 | 28 | 21 | 22 |
| 12 | 21 | 29 | 29 | 27 | 27 | 28 | 29 | 25 | 26 | 24 |
| 13 | 25 | 21 | 27 | 20 | 18 | 18 | 23 | 23 | 24 | 25 |
| 14 | 26 | 24 | 25 | 24 | 24 | 24 | 20 | 23 | 23 | 23 |
| 15 | 27 | 25 | 25 | 23 | 25 | 25 | 23 | 19 | 21 | 25 |
| 16 | 25 | 22 | 23 | 20 | 22 | 28 | 26 | 24 | 24 | 22 |
| 17 | 22 | 25 | 20 | 23 | 24 | 23 | 24 | 23 | 22 | 22 |
| 18 | 24 | 26 | 21 | 24 | 21 | 27 | 26 | 24 | 25 | 24 |
| 19 | 24 | 23 | 22 | 23 | 23 | 25 | 25 | 26 | 19 | 24 |
| 20 | 24 | 23 | 23 | 27 | 23 | 24 | 25 | 26 | 25 | 20 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8 - 5)}{8} + 7 + \frac{(6 - 2)}{6}\right) * 5 [mm]$$

$$D = 40.21 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$
Li = 25

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 48,25 \text{ mm}$$

1,2

mm

fc =

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4< $IRI$ <15,9)

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.87$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

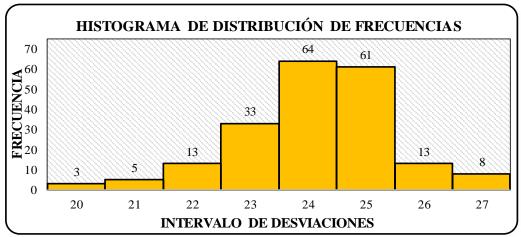
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 8+000 a 8+400

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 24 | 23 | 25 | 25 | 23 | 24 | 25 | 27 | 23 | 25 |
| 2  | 22 | 21 | 25 | 25 | 23 | 24 | 20 | 23 | 23 | 23 |
| 3  | 23 | 23 | 23 | 23 | 27 | 24 | 22 | 26 | 21 | 25 |
| 4  | 21 | 27 | 24 | 26 | 24 | 24 | 23 | 23 | 25 | 25 |
| 5  | 25 | 25 | 25 | 24 | 25 | 25 | 24 | 24 | 25 | 24 |
| 6  | 27 | 24 | 25 | 22 | 22 | 24 | 25 | 26 | 24 | 23 |
| 7  | 25 | 24 | 23 | 22 | 25 | 24 | 24 | 25 | 23 | 26 |
| 8  | 25 | 27 | 24 | 21 | 24 | 25 | 24 | 24 | 24 | 24 |
| 9  | 24 | 23 | 24 | 24 | 24 | 24 | 24 | 25 | 25 | 25 |
| 10 | 24 | 22 | 22 | 26 | 23 | 25 | 23 | 24 | 23 | 25 |
| 11 | 20 | 25 | 25 | 24 | 24 | 24 | 22 | 25 | 25 | 25 |
| 12 | 24 | 26 | 25 | 25 | 24 | 25 | 26 | 24 | 23 | 24 |
| 13 | 24 | 26 | 22 | 23 | 24 | 26 | 24 | 25 | 24 | 24 |
| 14 | 24 | 25 | 25 | 27 | 25 | 25 | 25 | 25 | 26 | 22 |
| 15 | 24 | 25 | 25 | 25 | 24 | 24 | 24 | 25 | 24 | 24 |
| 16 | 25 | 23 | 25 | 24 | 25 | 25 | 23 | 25 | 25 | 26 |
| 17 | 24 | 23 | 26 | 24 | 26 | 23 | 25 | 25 | 25 | 22 |
| 18 | 24 | 23 | 27 | 24 | 20 | 23 | 24 | 24 | 24 | 25 |
| 19 | 25 | 22 | 24 | 24 | 24 | 23 | 23 | 27 | 25 | 23 |
| 20 | 21 | 24 | 24 | 23 | 24 | 25 | 22 | 25 | 23 | 25 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(13 - 2)}{13} + 3 + \frac{(13 - 2)}{19}\right) * 5 [mm]$$

$$D = 23.46 \text{ mm}$$

# Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

15

Lf =

$$D_c = D * fc$$

$$Dc = 28,15 \text{ mm}$$

mm

fc = 1,2

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$\boxed{\text{I.R. I.} = 0.593 + 0.0471 * D_c} \rightarrow (2.4 < \text{IRI} < 15.9)}$$

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $1.92$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

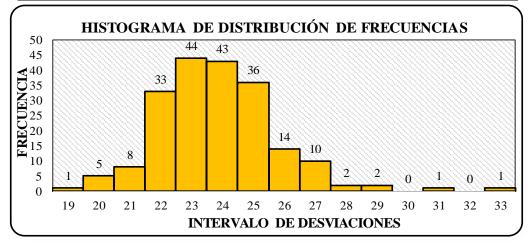
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 8+800 a 9+200

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 27 | 24 | 24 | 22 | 27 | 25 | 25 | 23 | 26 | 21 |
| 2  | 22 | 24 | 25 | 25 | 23 | 23 | 24 | 24 | 24 | 22 |
| 3  | 25 | 24 | 24 | 25 | 22 | 24 | 23 | 23 | 25 | 22 |
| 4  | 25 | 23 | 23 | 24 | 22 | 24 | 25 | 26 | 23 | 26 |
| 5  | 33 | 25 | 23 | 27 | 22 | 22 | 25 | 25 | 22 | 27 |
| 6  | 25 | 25 | 20 | 23 | 20 | 24 | 24 | 23 | 22 | 23 |
| 7  | 27 | 25 | 23 | 24 | 26 | 29 | 25 | 22 | 23 | 21 |
| 8  | 23 | 25 | 22 | 24 | 24 | 24 | 23 | 23 | 24 | 24 |
| 9  | 25 | 24 | 23 | 24 | 25 | 23 | 21 | 23 | 22 | 20 |
| 10 | 25 | 24 | 27 | 25 | 23 | 22 | 23 | 24 | 24 | 24 |
| 11 | 25 | 25 | 23 | 22 | 23 | 22 | 21 | 23 | 25 | 24 |
| 12 | 22 | 23 | 24 | 24 | 24 | 22 | 23 | 25 | 24 | 23 |
| 13 | 25 | 22 | 22 | 21 | 23 | 23 | 22 | 20 | 22 | 24 |
| 14 | 24 | 24 | 23 | 26 | 26 | 22 | 23 | 25 | 26 | 22 |
| 15 | 25 | 23 | 26 | 25 | 24 | 24 | 27 | 24 | 28 | 27 |
| 16 | 24 | 22 | 22 | 19 | 25 | 26 | 23 | 25 | 21 | 24 |
| 17 | 25 | 31 | 22 | 24 | 25 | 27 | 26 | 25 | 25 | 21 |
| 18 | 22 | 23 | 28 | 20 | 27 | 24 | 23 | 26 | 22 | 23 |
| 19 | 24 | 22 | 25 | 22 | 23 | 29 | 23 | 23 | 22 | 23 |
| 20 | 26 | 23 | 22 | 24 | 23 | 26 | 23 | 21 | 26 | 24 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8 - 4)}{8} + 5 + \frac{(10 - 4)}{10}\right) * 5 [mm]$$

$$D = 30,5 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

# Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 36.6 \text{ mm}$$

fc =

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0,0485 * D_c} \rightarrow (IRI < 2,4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

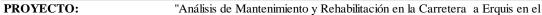
Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.32$  m/km

Univ. Gerardo Mauricio Vaca Valdez




# UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO"

# FACULTAD DE CIENCIAS Y TECNOLOGÍA

### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"



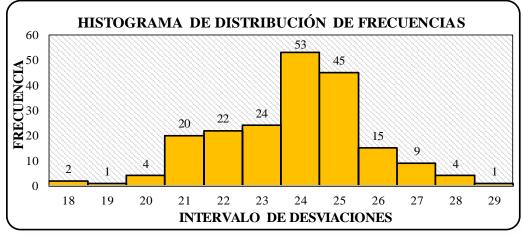
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 06/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


### ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Ida

**Progresiva:** 9+600 a 10+000

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 25 | 23 | 26 | 24 | 24 | 23 | 27 | 21 | 24 | 23 |
| 2  | 23 | 25 | 23 | 23 | 20 | 22 | 23 | 25 | 24 | 24 |
| 3  | 23 | 23 | 26 | 25 | 25 | 26 | 25 | 25 | 27 | 28 |
| 4  | 26 | 23 | 25 | 25 | 25 | 24 | 25 | 26 | 27 | 25 |
| 5  | 27 | 26 | 26 | 22 | 24 | 25 | 26 | 25 | 26 | 25 |
| 6  | 21 | 24 | 24 | 22 | 24 | 24 | 24 | 24 | 22 | 25 |
| 7  | 25 | 24 | 26 | 22 | 24 | 23 | 26 | 22 | 25 | 24 |
| 8  | 25 | 25 | 27 | 24 | 24 | 25 | 24 | 23 | 23 | 26 |
| 9  | 24 | 22 | 24 | 26 | 25 | 23 | 23 | 21 | 22 | 24 |
| 10 | 24 | 23 | 21 | 21 | 22 | 24 | 29 | 24 | 25 | 21 |
| 11 | 25 | 21 | 27 | 20 | 28 | 24 | 27 | 25 | 25 | 25 |
| 12 | 25 | 21 | 22 | 21 | 21 | 22 | 24 | 25 | 27 | 23 |
| 13 | 18 | 25 | 24 | 24 | 24 | 21 | 25 | 22 | 24 | 24 |
| 14 | 25 | 28 | 23 | 26 | 25 | 25 | 24 | 24 | 24 | 24 |
| 15 | 23 | 23 | 24 | 21 | 22 | 21 | 18 | 19 | 27 | 24 |
| 16 | 24 | 22 | 25 | 24 | 25 | 21 | 23 | 25 | 22 | 21 |
| 17 | 25 | 23 | 20 | 24 | 28 | 24 | 22 | 25 | 22 | 25 |
| 18 | 24 | 22 | 24 | 22 | 25 | 25 | 24 | 23 | 22 | 25 |
| 19 | 24 | 24 | 24 | 22 | 25 | 21 | 25 | 22 | 23 | 24 |
| 20 | 21 | 24 | 24 | 20 | 21 | 26 | 24 | 21 | 24 | 21 |









DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(20 - 3)}{20} + 5 + \frac{(9 - 5)}{9}\right) * 5 [mm]$$

$$D = 31,47 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 37,77 \text{ mm}$$

1,2

mm

fc =

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$I.R.I. = 0.0485 * D_c$$
  $\rightarrow$  (IRI<2,4)

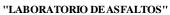
Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$


I.R.I. =  $2.37$  m/km

Univ. Gerardo Mauricio Vaca Valdez



# CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



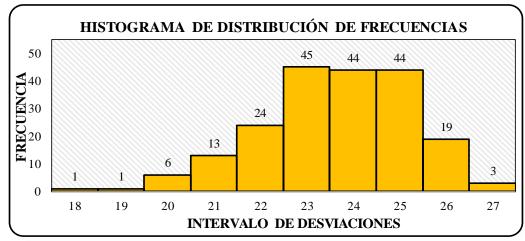
"Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023


# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 10+000 a 9+600

|    |    |    |    | cumpo |    |    | te ivieri |    |    |    |
|----|----|----|----|-------|----|----|-----------|----|----|----|
|    | 1  | 2  | 3  | 4     | 5  | 6  | 7         | 8  | 9  | 10 |
| 1  | 24 | 25 | 21 | 22    | 24 | 25 | 22        | 22 | 23 | 25 |
| 2  | 22 | 24 | 24 | 25    | 24 | 24 | 25        | 26 | 26 | 24 |
| 3  | 23 | 24 | 23 | 26    | 20 | 24 | 26        | 23 | 26 | 24 |
| 4  | 23 | 22 | 26 | 26    | 24 | 24 | 23        | 23 | 22 | 21 |
| 5  | 23 | 23 | 25 | 25    | 25 | 27 | 22        | 18 | 22 | 25 |
| 6  | 24 | 24 | 25 | 26    | 24 | 24 | 23        | 23 | 23 | 23 |
| 7  | 23 | 23 | 23 | 26    | 23 | 24 | 24        | 25 | 24 | 22 |
| 8  | 23 | 24 | 25 | 24    | 25 | 25 | 22        | 26 | 23 | 25 |
| 9  | 24 | 21 | 24 | 22    | 23 | 23 | 23        | 25 | 24 | 24 |
| 10 | 21 | 25 | 24 | 24    | 23 | 24 | 22        | 25 | 20 | 23 |
| 11 | 21 | 20 | 24 | 22    | 25 | 23 | 25        | 25 | 24 | 25 |
| 12 | 25 | 20 | 25 | 22    | 25 | 23 | 26        | 22 | 23 | 23 |
| 13 | 24 | 26 | 25 | 23    | 21 | 23 | 23        | 22 | 26 | 26 |
| 14 | 25 | 21 | 23 | 25    | 26 | 23 | 24        | 24 | 23 | 26 |
| 15 | 24 | 21 | 21 | 24    | 25 | 22 | 22        | 24 | 21 | 23 |
| 16 | 23 | 22 | 24 | 21    | 26 | 25 | 24        | 27 | 25 | 23 |
| 17 | 24 | 24 | 25 | 25    | 21 | 23 | 23        | 25 | 24 | 23 |
| 18 | 25 | 23 | 27 | 25    | 23 | 25 | 22        | 24 | 22 | 21 |
| 19 | 26 | 20 | 23 | 22    | 19 | 23 | 20        | 25 | 25 | 25 |
| 20 | 24 | 25 | 22 | 25    | 24 | 22 | 26        | 23 | 25 | 25 |





### CARRERA DE INGENIERÍA CIVIL





"LABORATORIO DE ASFALTOS"

### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(13 - 2)}{13} + 4 + \frac{(19 - 7)}{19}\right) * 5 [mm]$$

$$D = 27.39 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 32,87 \text{ mm}$$

1,2

mm

fc =

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

I.R.I.=  $2.14 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

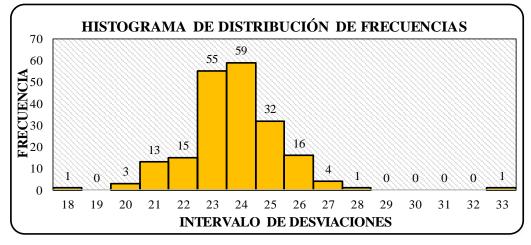
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 9+200 a 8+800

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 25 | 24 | 26 | 25 | 25 | 26 | 26 | 25 | 21 | 23 |
| 2  | 25 | 26 | 23 | 25 | 24 | 21 | 24 | 21 | 24 | 21 |
| 3  | 22 | 21 | 21 | 23 | 23 | 24 | 24 | 24 | 24 | 23 |
| 4  | 23 | 23 | 22 | 25 | 23 | 22 | 27 | 23 | 20 | 22 |
| 5  | 23 | 26 | 21 | 24 | 24 | 24 | 23 | 26 | 24 | 23 |
| 6  | 22 | 23 | 24 | 24 | 24 | 24 | 23 | 25 | 22 | 25 |
| 7  | 26 | 24 | 23 | 24 | 23 | 23 | 23 | 25 | 22 | 21 |
| 8  | 24 | 24 | 22 | 23 | 25 | 25 | 24 | 26 | 24 | 21 |
| 9  | 23 | 22 | 23 | 24 | 23 | 24 | 23 | 23 | 23 | 23 |
| 10 | 24 | 24 | 23 | 25 | 24 | 23 | 23 | 21 | 26 | 24 |
| 11 | 24 | 25 | 25 | 24 | 22 | 25 | 23 | 23 | 24 | 24 |
| 12 | 24 | 23 | 24 | 23 | 22 | 25 | 24 | 24 | 23 | 23 |
| 13 | 25 | 23 | 23 | 23 | 22 | 24 | 23 | 24 | 25 | 23 |
| 14 | 24 | 24 | 23 | 26 | 24 | 23 | 24 | 24 | 24 | 24 |
| 15 | 25 | 24 | 24 | 22 | 21 | 21 | 25 | 24 | 25 | 26 |
| 16 | 25 | 20 | 25 | 27 | 26 | 24 | 25 | 21 | 26 | 27 |
| 17 | 26 | 23 | 20 | 25 | 33 | 28 | 24 | 24 | 27 | 24 |
| 18 | 18 | 25 | 23 | 22 | 26 | 26 | 23 | 23 | 23 | 24 |
| 19 | 23 | 23 | 24 | 25 | 22 | 25 | 23 | 24 | 25 | 24 |
| 20 | 25 | 23 | 23 | 24 | 23 | 23 | 24 | 23 | 24 | 25 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(13 - 6)}{13} + 4 + \frac{(16 - 4)}{16}\right) * 5 [mm]$$

$$D = 26.44 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$
Li = 25

Lf = 15 fc = 1,2 mm

# Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 31,73 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0,0485 * D_c} \rightarrow (IRI < 2,4)$$

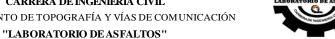
Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4< $IRI$ <15,9)

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$


I.R.I. =  $2.09$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

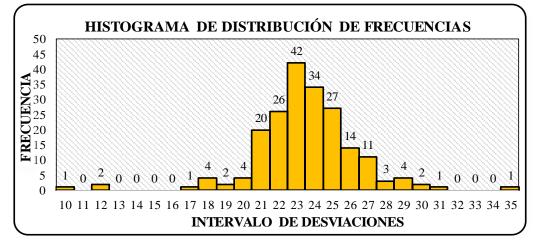
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

**MUESTRA:** Pavimento Flexible TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

Tramo: Tomatitas-Erquis Norte

Sentido: Vuelta

**Progresiva:** 8+400 a 8+000

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 25 | 25 | 24 | 24 | 26 | 26 | 24 | 25 | 21 | 23 |
| 2  | 24 | 26 | 25 | 25 | 25 | 23 | 21 | 24 | 22 | 22 |
| 3  | 24 | 23 | 25 | 23 | 21 | 22 | 23 | 24 | 23 | 21 |
| 4  | 27 | 17 | 20 | 23 | 21 | 23 | 25 | 26 | 26 | 23 |
| 5  | 25 | 23 | 26 | 23 | 25 | 25 | 26 | 24 | 26 | 27 |
| 6  | 25 | 25 | 22 | 23 | 26 | 24 | 21 | 25 | 23 | 22 |
| 7  | 24 | 23 | 23 | 21 | 22 | 22 | 21 | 25 | 26 | 23 |
| 8  | 22 | 23 | 22 | 23 | 21 | 23 | 23 | 22 | 21 | 25 |
| 9  | 22 | 22 | 23 | 22 | 23 | 26 | 23 | 24 | 22 | 22 |
| 10 | 23 | 24 | 24 | 25 | 24 | 24 | 24 | 24 | 25 | 24 |
| 11 | 25 | 24 | 24 | 27 | 24 | 24 | 23 | 25 | 23 | 25 |
| 12 | 22 | 24 | 22 | 23 | 23 | 24 | 23 | 24 | 21 | 24 |
| 13 | 23 | 22 | 21 | 22 | 23 | 27 | 29 | 21 | 23 | 29 |
| 14 | 29 | 27 | 25 | 26 | 20 | 21 | 25 | 30 | 12 | 24 |
| 15 | 10 | 12 | 22 | 30 | 27 | 25 | 27 | 24 | 22 | 18 |
| 16 | 27 | 21 | 26 | 28 | 27 | 27 | 29 | 21 | 23 | 23 |
| 17 | 24 | 31 | 21 | 21 | 26 | 18 | 21 | 21 | 22 | 23 |
| 18 | 28 | 24 | 22 | 23 | 0  | 19 | 25 | 22 | 20 | 25 |
| 19 | 19 | 18 | 22 | 23 | 23 | 22 | 23 | 24 | 23 | 20 |
| 20 | 23 | 28 | 24 | 23 | 24 | 25 | 18 | 24 | 35 | 27 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

### Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(4 - 0)}{4} + 7 + \frac{(3 - 2)}{3}\right) * 5 [mm]$$

$$D = 41,67 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{(E_p * 10)}{(L_i - L_f) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{(E_p * 10)}{(L_i - L_f) * 5}\right)$$

# Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 50 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

I.R.I.=  $2.95$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

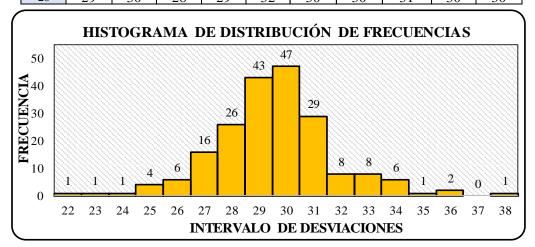
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Vuelta

**Progresiva:** 7+600 a 7+200

|    |    | _  | outob ac | campo | COLLIN | rucuu c |    |    |    |    |
|----|----|----|----------|-------|--------|---------|----|----|----|----|
|    | 1  | 2  | 3        | 4     | 5      | 6       | 7  | 8  | 9  | 10 |
| 1  | 27 | 25 | 27       | 29    | 30     | 27      | 28 | 30 | 28 | 31 |
| 2  | 29 | 27 | 28       | 31    | 30     | 28      | 28 | 28 | 30 | 29 |
| 3  | 32 | 29 | 30       | 28    | 29     | 27      | 34 | 32 | 31 | 30 |
| 4  | 31 | 29 | 30       | 29    | 31     | 28      | 30 | 29 | 27 | 27 |
| 5  | 29 | 28 | 24       | 26    | 27     | 30      | 25 | 34 | 29 | 30 |
| 6  | 32 | 34 | 34       | 28    | 28     | 36      | 33 | 30 | 31 | 31 |
| 7  | 36 | 30 | 26       | 31    | 28     | 34      | 27 | 26 | 30 | 30 |
| 8  | 27 | 29 | 31       | 28    | 29     | 31      | 30 | 29 | 29 | 29 |
| 9  | 33 | 28 | 26       | 33    | 30     | 29      | 26 | 28 | 29 | 29 |
| 10 | 30 | 31 | 33       | 32    | 25     | 31      | 29 | 32 | 30 | 28 |
| 11 | 32 | 34 | 33       | 33    | 26     | 33      | 30 | 29 | 30 | 29 |
| 12 | 27 | 31 | 27       | 30    | 38     | 23      | 27 | 28 | 28 | 31 |
| 13 | 29 | 29 | 31       | 31    | 30     | 30      | 29 | 30 | 28 | 28 |
| 14 | 31 | 30 | 30       | 31    | 27     | 28      | 29 | 28 | 30 | 28 |
| 15 | 29 | 29 | 30       | 29    | 31     | 30      | 30 | 29 | 30 | 30 |
| 16 | 31 | 30 | 29       | 29    | 30     | 31      | 31 | 33 | 28 | 27 |
| 17 | 30 | 28 | 22       | 25    | 29     | 32      | 29 | 29 | 29 | 30 |
| 18 | 29 | 31 | 31       | 30    | 29     | 30      | 31 | 30 | 31 | 29 |
| 19 | 31 | 30 | 29       | 35    | 29     | 30      | 31 | 29 | 27 | 30 |
| 20 | 29 | 30 | 28       | 29    | 32     | 30      | 30 | 31 | 30 | 30 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(6 - 3)}{6} + 6 + \frac{(8 - 0)}{8}\right) * 5 [mm]$$

$$D = 37.5 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde:  

$$Ep = 6$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \frac{(E_p * 10)}{(L_i - L_f) * 5}$$

$$f_c = 1,2 \text{ mm}$$

# Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 45 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4< $IRI$ <15,9)

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.71 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



### "LABORATORIO DE ASFALTOS"

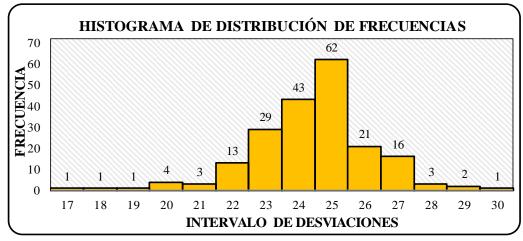
**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023


# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 6+800 a 6+400

| Butos de cumpo con la Rucaa de Mellin |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|----|----|----|----|----|----|----|----|----|----|
|                                       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 1                                     | 22 | 23 | 25 | 26 | 24 | 24 | 24 | 24 | 25 | 27 |
| 2                                     | 20 | 27 | 25 | 25 | 22 | 23 | 25 | 25 | 25 | 25 |
| 3                                     | 25 | 25 | 23 | 23 | 25 | 23 | 25 | 24 | 24 | 24 |
| 4                                     | 22 | 18 | 23 | 25 | 23 | 25 | 25 | 25 | 23 | 24 |
| 5                                     | 24 | 24 | 24 | 24 | 25 | 24 | 22 | 24 | 22 | 23 |
| 6                                     | 25 | 25 | 25 | 26 | 25 | 27 | 25 | 25 | 26 | 25 |
| 7                                     | 25 | 26 | 25 | 23 | 23 | 25 | 24 | 25 | 28 | 26 |
| 8                                     | 23 | 22 | 24 | 24 | 26 | 25 | 23 | 25 | 25 | 23 |
| 9                                     | 22 | 24 | 24 | 22 | 25 | 21 | 17 | 25 | 22 | 24 |
| 10                                    | 25 | 26 | 24 | 25 | 23 | 25 | 23 | 23 | 25 | 27 |
| 11                                    | 27 | 24 | 24 | 25 | 25 | 25 | 27 | 29 | 27 | 24 |
| 12                                    | 30 | 26 | 29 | 25 | 27 | 27 | 25 | 26 | 20 | 25 |
| 13                                    | 26 | 27 | 24 | 22 | 26 | 24 | 25 | 27 | 26 | 25 |
| 14                                    | 25 | 25 | 25 | 24 | 24 | 23 | 19 | 23 | 23 | 23 |
| 15                                    | 25 | 26 | 26 | 27 | 26 | 25 | 25 | 24 | 23 | 24 |
| 16                                    | 24 | 26 | 24 | 21 | 26 | 25 | 21 | 24 | 24 | 25 |
| 17                                    | 25 | 26 | 23 | 23 | 28 | 25 | 20 | 20 | 23 | 23 |
| 18                                    | 25 | 22 | 23 | 25 | 24 | 24 | 28 | 22 | 25 | 25 |
| 19                                    | 25 | 27 | 26 | 27 | 27 | 24 | 24 | 23 | 25 | 26 |
| 20                                    | 24 | 24 | 24 | 25 | 23 | 24 | 26 | 27 | 22 | 24 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(13 - 0)}{13} + 4 + \frac{(16 - 4)}{16}\right) * 5 [mm]$$

$$D = 28,75 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 34.5 \text{ mm}$$

fc =

1,2 mm

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$I.R.I. = 0.0485 * D_c$$
  $\rightarrow$  (IRI<2,4)

Para pavimentos en servicio:

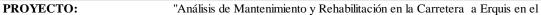
$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.22$  m/km


Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





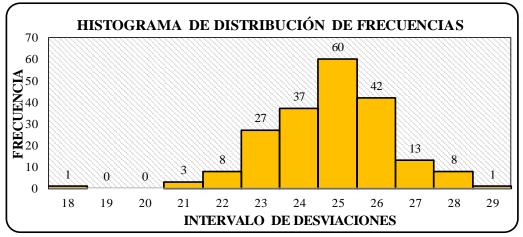
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

**MUESTRA:** Pavimento Flexible TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

Tramo: Tomatitas-Erquis Norte

Sentido: Vuelta

**Progresiva:** 6+000 a 5+600

|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 26 | 26 | 24 | 24 | 25 | 26 | 24 | 26 | 24 | 21 |
| 2  | 25 | 25 | 23 | 26 | 26 | 23 | 22 | 24 | 25 | 26 |
| 3  | 25 | 24 | 26 | 25 | 23 | 25 | 26 | 23 | 23 | 25 |
| 4  | 27 | 23 | 23 | 23 | 26 | 24 | 24 | 25 | 28 | 26 |
| 5  | 24 | 23 | 23 | 23 | 22 | 23 | 25 | 25 | 25 | 27 |
| 6  | 25 | 26 | 27 | 25 | 25 | 26 | 23 | 24 | 25 | 27 |
| 7  | 22 | 26 | 21 | 25 | 27 | 26 | 26 | 24 | 23 | 23 |
| 8  | 23 | 23 | 24 | 27 | 22 | 24 | 24 | 26 | 26 | 23 |
| 9  | 21 | 23 | 25 | 25 | 28 | 25 | 25 | 22 | 27 | 25 |
| 10 | 22 | 27 | 25 | 25 | 23 | 25 | 25 | 25 | 24 | 26 |
| 11 | 25 | 24 | 26 | 25 | 26 | 24 | 23 | 23 | 24 | 18 |
| 12 | 27 | 26 | 23 | 27 | 25 | 25 | 23 | 24 | 25 | 26 |
| 13 | 25 | 25 | 25 | 25 | 25 | 24 | 25 | 28 | 25 | 23 |
| 14 | 25 | 25 | 24 | 22 | 24 | 25 | 24 | 25 | 25 | 25 |
| 15 | 25 | 24 | 26 | 24 | 25 | 25 | 22 | 24 | 28 | 26 |
| 16 | 26 | 28 | 25 | 25 | 23 | 25 | 27 | 26 | 24 | 24 |
| 17 | 26 | 24 | 26 | 26 | 24 | 23 | 26 | 26 | 28 | 25 |
| 18 | 26 | 26 | 25 | 26 | 26 | 26 | 26 | 26 | 26 | 24 |
| 19 | 26 | 25 | 25 | 27 | 27 | 25 | 25 | 25 | 25 | 24 |
| 20 | 24 | 24 | 24 | 29 | 25 | 26 | 24 | 28 | 24 | 28 |





### CARRERA DE INGENIERÍA CIVIL



DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"

Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8 - 6)}{8} + 4 + \frac{(13 - 1)}{13}\right) * 5 [mm]$$

$$D = 25,87 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$
Li = 25

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 31,04 \text{ mm}$$

fc = 1,2 mm

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf = 15

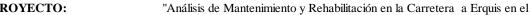
$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:


I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.05$  m/km

# CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

# "LABORATORIO DE ASFALTOS"

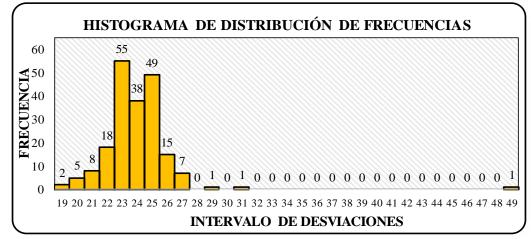


Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023


# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 5+200 a 4+800

| Datos de campo con la Rucua de Merrin |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|----|----|----|----|----|----|----|----|----|----|
|                                       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 1                                     | 25 | 25 | 23 | 24 | 25 | 25 | 23 | 25 | 25 | 25 |
| 2                                     | 24 | 21 | 25 | 23 | 20 | 23 | 25 | 23 | 23 | 24 |
| 3                                     | 22 | 24 | 25 | 22 | 23 | 22 | 22 | 24 | 23 | 24 |
| 4                                     | 24 | 25 | 27 | 24 | 24 | 24 | 23 | 27 | 22 | 25 |
| 5                                     | 22 | 23 | 22 | 23 | 20 | 20 | 23 | 25 | 23 | 25 |
| 6                                     | 23 | 26 | 19 | 25 | 25 | 24 | 23 | 21 | 24 | 31 |
| 7                                     | 23 | 24 | 25 | 26 | 23 | 24 | 25 | 24 | 23 | 22 |
| 8                                     | 23 | 23 | 23 | 22 | 23 | 23 | 24 | 22 | 25 | 25 |
| 9                                     | 22 | 29 | 49 | 27 | 22 | 25 | 20 | 23 | 25 | 23 |
| 10                                    | 20 | 26 | 21 | 23 | 22 | 26 | 25 | 24 | 26 | 26 |
| 11                                    | 22 | 24 | 26 | 27 | 25 | 24 | 27 | 25 | 26 | 23 |
| 12                                    | 23 | 23 | 27 | 23 | 23 | 24 | 25 | 25 | 24 | 24 |
| 13                                    | 25 | 26 | 21 | 23 | 21 | 23 | 24 | 25 | 24 | 23 |
| 14                                    | 24 | 26 | 25 | 25 | 25 | 24 | 24 | 23 | 25 | 23 |
| 15                                    | 22 | 23 | 22 | 24 | 25 | 23 | 25 | 25 | 24 | 24 |
| 16                                    | 23 | 25 | 24 | 21 | 23 | 21 | 23 | 25 | 25 | 25 |
| 17                                    | 22 | 24 | 25 | 23 | 24 | 24 | 25 | 23 | 26 | 23 |
| 18                                    | 23 | 25 | 23 | 23 | 26 | 26 | 23 | 24 | 23 | 23 |
| 19                                    | 25 | 23 | 24 | 24 | 25 | 25 | 23 | 23 | 25 | 27 |
| 20                                    | 24 | 19 | 23 | 21 | 25 | 22 | 26 | 26 | 25 | 23 |





### CARRERA DE INGENIERÍA CIVIL





"LABORATORIO DE ASFALTOS"

Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(8-3)}{8} + 4 + \frac{(15-0)}{15}\right) * 5 [mm]$$

$$D = 28.13 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Lf = 15 fc = 1,2 mm

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 33,75 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0,0485 * D_c} \rightarrow (IRI < 2,4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

I.R.I.=  $2.18 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



### "LABORATORIO DE ASFALTOS"

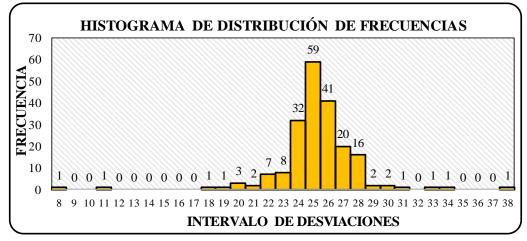
**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023


# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 4+400 a 4+000

| Datos de campo con la Racad de Merrin |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|----|----|----|----|----|----|----|----|----|----|
|                                       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 1                                     | 28 | 25 | 27 | 24 | 26 | 25 | 25 | 24 | 26 | 27 |
| 2                                     | 27 | 25 | 26 | 25 | 27 | 25 | 26 | 27 | 33 | 25 |
| 3                                     | 26 | 25 | 25 | 25 | 25 | 25 | 28 | 24 | 23 | 25 |
| 4                                     | 25 | 25 | 25 | 25 | 24 | 24 | 25 | 25 | 25 | 26 |
| 5                                     | 25 | 24 | 28 | 23 | 27 | 25 | 26 | 26 | 25 | 25 |
| 6                                     | 25 | 26 | 26 | 24 | 25 | 26 | 38 | 25 | 25 | 23 |
| 7                                     | 25 | 28 | 18 | 26 | 23 | 27 | 22 | 25 | 23 | 31 |
| 8                                     | 22 | 25 | 28 | 24 | 24 | 23 | 27 | 28 | 25 | 27 |
| 9                                     | 28 | 24 | 26 | 21 | 28 | 24 | 26 | 24 | 24 | 24 |
| 10                                    | 24 | 25 | 26 | 26 | 24 | 24 | 22 | 24 | 25 | 25 |
| 11                                    | 24 | 25 | 24 | 25 | 27 | 24 | 27 | 28 | 26 | 25 |
| 12                                    | 20 | 8  | 11 | 24 | 26 | 28 | 25 | 30 | 26 | 22 |
| 13                                    | 26 | 22 | 26 | 26 | 34 | 30 | 26 | 26 | 27 | 25 |
| 14                                    | 24 | 26 | 26 | 27 | 23 | 25 | 27 | 26 | 25 | 22 |
| 15                                    | 25 | 28 | 28 | 20 | 24 | 25 | 27 | 26 | 26 | 28 |
| 16                                    | 26 | 24 | 25 | 28 | 22 | 24 | 28 | 26 | 28 | 29 |
| 17                                    | 27 | 19 | 25 | 23 | 26 | 24 | 26 | 26 | 24 | 25 |
| 18                                    | 25 | 25 | 27 | 20 | 24 | 27 | 26 | 25 | 26 | 26 |
| 19                                    | 24 | 25 | 25 | 26 | 27 | 25 | 25 | 26 | 21 | 25 |
| 20                                    | 25 | 27 | 26 | 25 | 24 | 24 | 26 | 25 | 29 | 25 |





### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"LABORATORIO DE ASFALTOS"



# Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(7 - 1)}{7} + 5 + \frac{(16 - 2)}{16}\right) * 5 [mm]$$

$$D = 33.66 \text{ mm}$$

### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 40,39 \text{ mm}$$

fc =

1,2 mm

### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$I.R.I. = 0.0485 * D_c$$
  $\rightarrow$  (IRI<2,4)

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.50$  m/km

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



### "LABORATORIO DE ASFALTOS"

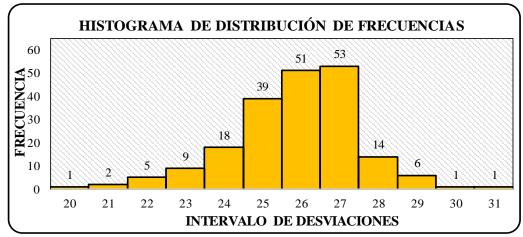
**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

**SOLICITANTE:** Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

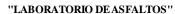
FECHA DE REALIZACIÓN: 15/09/2023


### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO

# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Vuelta Progresiva: 3+600 a 3+200


|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 26 | 24 | 26 | 25 | 26 | 23 | 26 | 22 | 26 | 23 |
| 2  | 27 | 26 | 28 | 29 | 22 | 27 | 27 | 24 | 27 | 27 |
| 3  | 25 | 25 | 26 | 27 | 24 | 25 | 27 | 27 | 27 | 26 |
| 4  | 25 | 27 | 26 | 24 | 26 | 26 | 27 | 26 | 26 | 26 |
| 5  | 27 | 28 | 24 | 26 | 25 | 26 | 26 | 27 | 25 | 22 |
| 6  | 25 | 23 | 27 | 26 | 26 | 25 | 29 | 28 | 24 | 27 |
| 7  | 26 | 25 | 25 | 25 | 25 | 26 | 25 | 25 | 26 | 25 |
| 8  | 26 | 26 | 25 | 25 | 27 | 27 | 23 | 26 | 26 | 26 |
| 9  | 27 | 27 | 27 | 27 | 27 | 26 | 25 | 23 | 28 | 27 |
| 10 | 26 | 25 | 31 | 24 | 27 | 27 | 27 | 27 | 28 | 26 |
| 11 | 26 | 26 | 27 | 27 | 29 | 27 | 27 | 27 | 25 | 28 |
| 12 | 26 | 27 | 26 | 27 | 26 | 22 | 24 | 27 | 26 | 26 |
| 13 | 24 | 29 | 21 | 27 | 28 | 27 | 27 | 27 | 27 | 27 |
| 14 | 25 | 24 | 26 | 24 | 25 | 23 | 25 | 24 | 27 | 26 |
| 15 | 25 | 25 | 27 | 23 | 22 | 25 | 20 | 26 | 25 | 24 |
| 16 | 28 | 27 | 24 | 28 | 27 | 23 | 25 | 24 | 29 | 27 |
| 17 | 24 | 27 | 26 | 28 | 27 | 26 | 26 | 24 | 27 | 25 |
| 18 | 27 | 25 | 25 | 21 | 30 | 26 | 25 | 29 | 26 | 23 |
| 19 | 25 | 25 | 25 | 28 | 26 | 26 | 24 | 26 | 26 | 26 |
| 20 | 27 | 25 | 28 | 25 | 26 | 27 | 27 | 25 | 28 | 28 |





### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(9 - 2)}{9} + 4 + \frac{(14 - 2)}{14}\right) * 5 [mm]$$

$$D = 28.17 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 33.81 \text{ mm}$$

### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.19 \text{ m/km}$ 

Univ. Gerardo Mauricio Vaca Valdez



### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

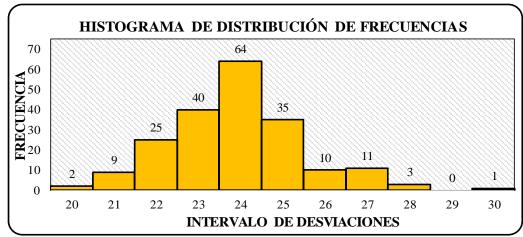
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

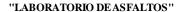
### EVALUACIÓN SUPERFICIAL DEL PAVIMENTO


# ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)

**Tramo:** Tomatitas-Erquis Norte

Sentido: Vuelta

**Progresiva:** 2+800 a 2+400


|    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 23 | 25 | 24 | 25 | 25 | 24 | 26 | 24 | 23 | 27 |
| 2  | 27 | 27 | 26 | 26 | 28 | 24 | 25 | 25 | 24 | 26 |
| 3  | 25 | 24 | 24 | 24 | 25 | 25 | 25 | 25 | 25 | 24 |
| 4  | 25 | 25 | 25 | 22 | 25 | 24 | 22 | 24 | 23 | 25 |
| 5  | 23 | 24 | 23 | 24 | 24 | 23 | 23 | 24 | 21 | 24 |
| 6  | 21 | 23 | 27 | 22 | 23 | 22 | 23 | 27 | 25 | 26 |
| 7  | 23 | 23 | 26 | 24 | 20 | 23 | 30 | 28 | 24 | 22 |
| 8  | 24 | 23 | 23 | 23 | 23 | 24 | 25 | 25 | 25 | 22 |
| 9  | 23 | 24 | 24 | 25 | 23 | 24 | 24 | 24 | 24 | 23 |
| 10 | 25 | 23 | 23 | 27 | 24 | 25 | 22 | 27 | 24 | 22 |
| 11 | 22 | 22 | 25 | 23 | 24 | 21 | 22 | 22 | 28 | 24 |
| 12 | 25 | 24 | 22 | 22 | 24 | 24 | 24 | 24 | 25 | 24 |
| 13 | 21 | 22 | 23 | 24 | 24 | 24 | 22 | 23 | 24 | 23 |
| 14 | 24 | 23 | 22 | 24 | 25 | 26 | 23 | 27 | 25 | 25 |
| 15 | 24 | 24 | 27 | 25 | 21 | 24 | 25 | 24 | 26 | 24 |
| 16 | 23 | 24 | 24 | 24 | 21 | 23 | 23 | 24 | 24 | 24 |
| 17 | 24 | 25 | 22 | 23 | 23 | 24 | 22 | 23 | 26 | 23 |
| 18 | 27 | 24 | 25 | 26 | 22 | 25 | 24 | 22 | 24 | 23 |
| 19 | 24 | 25 | 23 | 21 | 24 | 22 | 21 | 24 | 20 | 27 |
| 20 | 21 | 23 | 24 | 24 | 23 | 22 | 22 | 23 | 24 | 22 |





#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(9 - 8)}{9} + 5 + \frac{(11 - 6)}{11}\right) * 5 [mm]$$

$$D = 27,83 \text{ mm}$$

Cálculo factor de corrección fc:

Cálculo del rango corregido Dc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$\text{Li} = 25$$

$$L1 = 25$$

$$Lf = 15$$

$$fc =$$

$$D_c = D * fc$$

$$Dc = 33,39 \text{ mm}$$

1,2 mm

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$I.R.I. = 0.0485 * D_c$$
  $\rightarrow$  (IRI<2,4)

Para pavimentos en servicio:

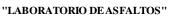
$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I. R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.17$  m/km


Univ. Gerardo Mauricio Vaca Valdez

Ing. Seila Claudia Ávila Sandoval



#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 2+000 a 1+600

Datos de campo con la Rueda de Merlín

|    |    |    | outob uc | cumpo |    |    | te mieri |    |    |    |
|----|----|----|----------|-------|----|----|----------|----|----|----|
|    | 1  | 2  | 3        | 4     | 5  | 6  | 7        | 8  | 9  | 10 |
| 1  | 25 | 26 | 24       | 25    | 25 | 25 | 24       | 26 | 29 | 29 |
| 2  | 28 | 27 | 28       | 28    | 29 | 28 | 29       | 28 | 27 | 28 |
| 3  | 29 | 28 | 29       | 27    | 27 | 27 | 29       | 28 | 27 | 30 |
| 4  | 29 | 27 | 28       | 28    | 28 | 32 | 29       | 29 | 30 | 28 |
| 5  | 28 | 30 | 26       | 29    | 29 | 28 | 28       | 29 | 29 | 28 |
| 6  | 29 | 28 | 29       | 29    | 30 | 29 | 29       | 31 | 29 | 30 |
| 7  | 29 | 28 | 30       | 29    | 28 | 29 | 30       | 29 | 29 | 30 |
| 8  | 26 | 28 | 24       | 26    | 31 | 27 | 24       | 27 | 28 | 27 |
| 9  | 27 | 27 | 28       | 28    | 28 | 27 | 26       | 28 | 26 | 25 |
| 10 | 29 | 32 | 27       | 29    | 30 | 26 | 27       | 29 | 28 | 27 |
| 11 | 27 | 28 | 27       | 27    | 24 | 25 | 29       | 29 | 28 | 28 |
| 12 | 26 | 26 | 31       | 27    | 25 | 27 | 29       | 24 | 28 | 28 |
| 13 | 26 | 32 | 26       | 26    | 25 | 26 | 22       | 27 | 28 | 31 |
| 14 | 31 | 28 | 32       | 26    | 31 | 28 | 32       | 28 | 24 | 25 |
| 15 | 31 | 32 | 32       | 28    | 31 | 29 | 29       | 25 | 27 | 31 |
| 16 | 29 | 27 | 27       | 28    | 25 | 32 | 25       | 26 | 28 | 24 |
| 17 | 0  | 29 | 24       | 26    | 30 | 27 | 24       | 42 | 27 | 29 |
| 18 | 34 | 28 | 32       | 28    | 27 | 36 | 30       | 25 | 32 | 28 |
| 19 | 29 | 29 | 23       | 29    | 25 | 35 | 27       | 26 | 22 | 29 |
| 20 | 30 | 30 | 30       | 26    | 30 | 27 | 31       | 28 | 28 | 31 |





#### CARRERA DE INGENIERÍA CIVIL





"LABORATORIO DE ASFALTOS"

Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(10 - 7)}{10} + 7 + \frac{(10 - 6)}{10}\right) * 5 [mm]$$

$$D = 38,5 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

 $D_c = D * fc$ 

$$Dc = 46,2 \text{ mm}$$

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R. I.} = 0.0485 * D_c} \rightarrow (IRI < 2.4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

I.R.I.=  $2.77$  m/km

Univ. Gerardo Mauricio Vaca Valdez

Ing. Seila Claudia Ávila Sandoval



#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

#### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

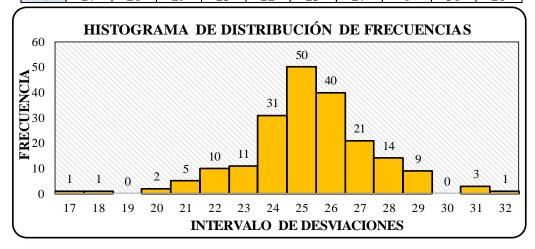
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

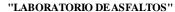
# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

Sentido: Vuelta

**Progresiva:** 1+200 a 0+800

Datos de campo con la Rueda de Merlín


|    |    | I. | vatos de | campo | con ra | Rueda d | ie Mieri | 111 |    |    |
|----|----|----|----------|-------|--------|---------|----------|-----|----|----|
|    | 1  | 2  | 3        | 4     | 5      | 6       | 7        | 8   | 9  | 10 |
| 1  | 23 | 24 | 26       | 25    | 25     | 26      | 26       | 25  | 24 | 26 |
| 2  | 28 | 25 | 24       | 24    | 25     | 25      | 31       | 25  | 24 | 25 |
| 3  | 24 | 24 | 25       | 26    | 24     | 29      | 27       | 24  | 25 | 25 |
| 4  | 27 | 25 | 25       | 26    | 25     | 25      | 27       | 25  | 24 | 24 |
| 5  | 25 | 25 | 25       | 27    | 25     | 24      | 29       | 25  | 26 | 25 |
| 6  | 26 | 23 | 20       | 21    | 21     | 25      | 25       | 28  | 24 | 22 |
| 7  | 27 | 29 | 27       | 23    | 22     | 17      | 28       | 25  | 28 | 24 |
| 8  | 23 | 25 | 24       | 26    | 26     | 25      | 27       | 27  | 29 | 26 |
| 9  | 27 | 24 | 26       | 26    | 22     | 25      | 26       | 25  | 22 | 24 |
| 10 | 26 | 27 | 26       | 20    | 24     | 28      | 22       | 25  | 29 | 24 |
| 11 | 26 | 21 | 28       | 25    | 24     | 26      | 22       | 18  | 24 | 23 |
| 12 | 26 | 27 | 27       | 26    | 25     | 24      | 25       | 26  | 26 | 27 |
| 13 | 26 | 25 | 25       | 26    | 29     | 29      | 25       | 26  | 26 | 27 |
| 14 | 24 | 25 | 25       | 23    | 21     | 26      | 29       | 21  | 28 | 31 |
| 15 | 26 | 25 | 24       | 27    | 24     | 25      | 24       | 28  | 25 | 26 |
| 16 | 22 | 28 | 25       | 25    | 27     | 28      | 23       | 23  | 23 | 23 |
| 17 | 28 | 22 | 27       | 28    | 27     | 23      | 24       | 26  | 24 | 24 |
| 18 | 24 | 26 | 25       | 26    | 26     | 26      | 27       | 25  | 26 | 26 |
| 19 | 26 | 32 | 28       | 26    | 26     | 24      | 22       | 25  | 25 | 25 |
| 20 | 27 | 26 | 29       | 25    | 22     | 25      | 27       | 0   | 31 | 28 |





# CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN





## Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(10 - 1)}{10} + 6 + \frac{(9 - 6)}{9}\right) * 5 [mm]$$

$$D = 36,17 \text{ mm}$$

#### Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$
Li = 25

## Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 43,4 \text{ mm}$$

1,2

mm

fc =

#### Determinación del I.R.I.:

Para pavimentos nuevos:

Lf =

$$I.R.I. = 0.0485 * D_c$$
  $\rightarrow$  (IRI<2,4)

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R. I. = 
$$0.593 + 0.0471 * D_c$$

I.R.I. =  $2.64$  m/km

Univ. Gerardo Mauricio Vaca Valdez

Ing. Seila Claudia Ávila Sandoval



#### CARRERA DE INGENIERÍA CIVIL

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN



#### "LABORATORIO DE ASFALTOS"

**PROYECTO:** "Análisis de Mantenimiento y Rehabilitación en la Carretera a Erquis en el

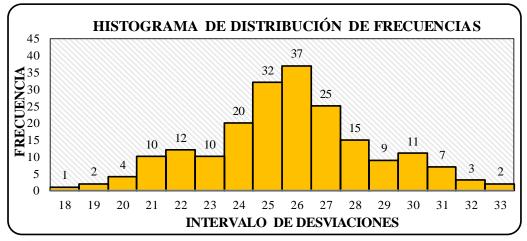
Tramo Tomatitas (Cruce a Erquis)-Erquis Norte"

SOLICITANTE: Univ. Gerardo Mauricio Vaca Valdez

MUESTRA: Pavimento Flexible
TRAMO: Tomatitas-Erquis Norte

FECHA DE REALIZACIÓN: 15/09/2023

# EVALUACIÓN SUPERFICIAL DEL PAVIMENTO ÍNDICE DE REGULARIDAD INTERNACIONAL (I.R.I.)


**Tramo:** Tomatitas-Erquis Norte

**Sentido:** Vuelta

**Progresiva:** 0+400 a 0+000

Datos de campo con la Rueda de Merlín

|    |    |    | outob uc |    |    | Itucuu t |    |    |    |    |
|----|----|----|----------|----|----|----------|----|----|----|----|
|    | 1  | 2  | 3        | 4  | 5  | 6        | 7  | 8  | 9  | 10 |
| 1  | 23 | 24 | 26       | 25 | 25 | 26       | 26 | 22 | 24 | 27 |
| 2  | 28 | 25 | 24       | 26 | 25 | 30       | 31 | 25 | 24 | 25 |
| 3  | 24 | 24 | 23       | 20 | 23 | 29       | 27 | 24 | 22 | 21 |
| 4  | 27 | 25 | 25       | 20 | 25 | 30       | 27 | 22 | 24 | 24 |
| 5  | 22 | 25 | 25       | 27 | 24 | 24       | 29 | 25 | 30 | 25 |
| 6  | 23 | 19 | 20       | 21 | 21 | 21       | 29 | 28 | 24 | 23 |
| 7  | 27 | 29 | 27       | 23 | 21 | 21       | 28 | 25 | 28 | 24 |
| 8  | 20 | 22 | 24       | 26 | 26 | 25       | 27 | 29 | 29 | 26 |
| 9  | 27 | 24 | 26       | 21 | 22 | 22       | 26 | 25 | 27 | 32 |
| 10 | 26 | 27 | 26       | 19 | 21 | 28       | 22 | 22 | 30 | 30 |
| 11 | 26 | 21 | 28       | 22 | 22 | 26       | 22 | 27 | 30 | 31 |
| 12 | 26 | 27 | 27       | 26 | 25 | 28       | 30 | 33 | 26 | 27 |
| 13 | 26 | 25 | 21       | 26 | 29 | 30       | 30 | 26 | 26 | 27 |
| 14 | 32 | 25 | 25       | 31 | 31 | 26       | 30 | 25 | 28 | 31 |
| 15 | 26 | 18 | 24       | 27 | 24 | 25       | 24 | 28 | 25 | 26 |
| 16 | 27 | 28 | 25       | 25 | 27 | 28       | 23 | 23 | 23 | 23 |
| 17 | 28 | 27 | 30       | 31 | 27 | 26       | 25 | 26 | 27 | 24 |
| 18 | 26 | 26 | 25       | 26 | 26 | 26       | 27 | 33 | 26 | 26 |
| 19 | 26 | 32 | 29       | 26 | 26 | 24       | 28 | 25 | 25 | 25 |
| 20 | 27 | 26 | 29       | 25 | 26 | 25       | 27 | 28 | 31 | 28 |





# CARRERA DE INGENIERÍA CIVIL





"LABORATORIO DE ASFALTOS"

Cálculo del rango D:

$$D = \left(\frac{(d_i - f_i)}{d_i} + d_m + \frac{(d_d - f_d)}{d_d}\right) * 5 [mm]$$

$$D = \left(\frac{(10 - 1)}{10} + 6 + \frac{(9 - 6)}{9}\right) * 5 [mm]$$

$$D = 49,93 \text{ mm}$$

Cálculo factor de corrección fc:

Donde: 
$$f_c = \left(\frac{\left(E_p * 10\right)}{\left(L_i - L_f\right) * 5}\right)$$

$$Li = 25$$

$$Lf = 15$$

$$fc = 1,2 \text{ mm}$$

Cálculo del rango corregido Dc:

$$D_c = D * fc$$

$$Dc = 59.91 \text{ mm}$$

#### Determinación del I.R.I.:

Para pavimentos nuevos:

$$\boxed{\text{I.R.I.} = 0,0485 * D_c} \rightarrow (IRI < 2,4)$$

Para pavimentos en servicio:

$$I.R.I. = 0.593 + 0.0471 * D_c$$
  $\rightarrow$  (2,4

#### Cálculo del I.R.I.:

Aplicando la fórmula para pavimentos en servicio:

I.R.I.= 
$$0.593 + 0.0471 * D_c$$

Univ. Gerardo Mauricio Vaca Valdez

Ing. Seila Claudia Ávila Sandoval

# ANEXO 3 PLANILLAS DE CÁLCULO DE LA VIGA BENKELMAN





RCc(m)=

Rcmín (m)=

626,44

100

"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

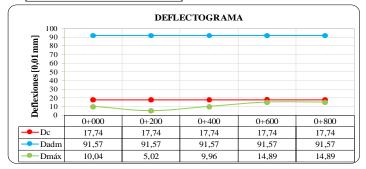
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

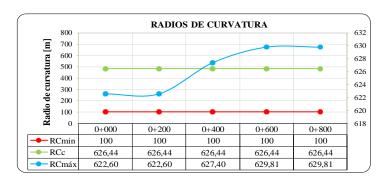
Equipo: Viga Benkelman - Prog.: 0+000 a 0+800

|     |             |          |           |            |             | 1         | npor right b |           | 205 0.000 # |              |           |           |         |      |               |         |
|-----|-------------|----------|-----------|------------|-------------|-----------|--------------|-----------|-------------|--------------|-----------|-----------|---------|------|---------------|---------|
|     | PROGRESIVA  |          | LEC       | TURAS DE   | L DIAL (0,0 | 01 mm)    |              | PARÁME    | TROS DE EV  | ALUACIÓN     | PARÁME    | TROS COR  | REGIDOS | TEMI | PERATURA      | Espesor |
| N°  | (Km)        | I – 0 cm | I - 50 cm | I – 100 cm | I – 150 cm  | L= 200 cm | I – 500 cm   | D0        | D50         | RC           | D0'       | D50'      | RC'     | Amb  | Asfalto       | asfalto |
|     |             | L- 0 cm  | L= 50 cm  | L= 100 Cm  | L= 130 Cm   | L= 200 cm | L= 500 Cm    | (0,01 mm) | (0,01 mm)   | ( <b>m</b> ) | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (° <b>C</b> ) | (cm)    |
| 1   | 0+000       | 0        | 2         | 2          | 2           | 2         | 4            | 8         | 4           | 781          | 10,04     | 5,02      | 622,60  | 12   | 29            | 5       |
| 2   | 0+200       | 0        | 2         | 2          | 2           | 2         | 2            | 4         | 0           | 781          | 5,02      | 0,00      | 622,60  | 12   | 29            | 5       |
| 3   | 0+400       | 0        | 2         | 4          | 4           | 4         | 4            | 8         | 4           | 781          | 9,96      | 4,98      | 627,40  | 12   | 31            | 5       |
| 4   | 0+600       | 0        | 2         | 2          | 4           | 4         | 6            | 12        | 8           | 781          | 14,89     | 9,92      | 629,81  | 12   | 32            | 5       |
| 5   | 0+800       | 0        | 2         | 2          | 2           | 4         | 6            | 12        | 8           | 781          | 14,89     | 9,92      | 629,81  | 13   | 32            | 5       |
| CÁI | CULO DEFLEX | IÓN CAI  | RACTERÍST | TCA (Dc):  | ·           | ·         | ·            | DEFLEXIÓN | RECUPERAB   | LE PROMEDIO  | 10,96     | 5,97      | ·       |      |               |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


#### CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


 $\mathbf{Dc} = \mathbf{D} + \mathbf{t} * \mathbf{Ds}$ 

Donde:

D =Deflexión recuperable promedio = 10,96 Ds = Desviación standard = 4,12 t = constante de probabilidad al 95% = 1.65

| Dc =   | 17,74 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





4,15

12,79

4,12

17,74

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval



"LABORATORIO DE ASFALTOS"



RCc (m) = 569,23

Rcmín (m)=

#### CARRERA DE INGENIERIA CIVIL

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

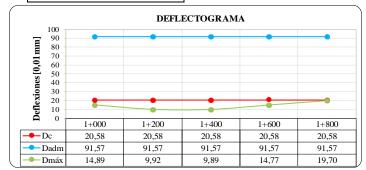
Equipo: Viga Benkelman - Prog.: 1+000 a 1+800

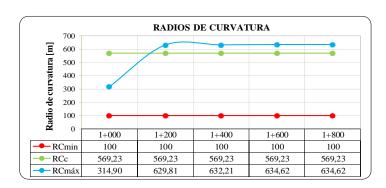
|    |              |          |            |            |             | Eqt         | npo. viga i | elikeliliali - 11 | 7g 1 1000 a 1 1 | 000      |           |           |         |      |         |         |
|----|--------------|----------|------------|------------|-------------|-------------|-------------|-------------------|-----------------|----------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA   |          | LEC        | TURAS DE   | L DIAL (0,0 | 01 mm)      |             | PARÁMET           | ROS DE EVAL     | UACIÓN   | PARÁME'   | TROS CORF | REGIDOS | TEMP | Espesor |         |
| N° | (Km)         | I = 0 am | I = 50 cm  | I = 100 cm | L= 150 cm   | I = 200 cm  | I = 500 cm  | D0                | D50             | RC       | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |              | L- 0 cm  | L= 50 CIII | L= 100 cm  | L= 130 cm   | L= 200 CIII | L= 300 CIII | (0,01 mm)         | (0,01 mm)       | (m)      | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 1+000        | 0        | 4          | 4          | 4           | 4           | 6           | 12                | 4               | 391      | 14,89     | 4,96      | 314,90  | 13   | 32      | 5       |
| 2  | 1+200        | 0        | 2          | 2          | 4           | 4           | 4           | 8                 | 4               | 781      | 9,92      | 4,96      | 629,81  | 13   | 32      | 5       |
| 3  | 1+400        | 0        | 2          | 2          | 2           | 2           | 4           | 8                 | 4               | 781      | 9,89      | 4,94      | 632,21  | 13   | 33      | 5       |
| 4  | 1+600        | 0        | 2          | 2          | 2           | 4           | 6           | 12                | 8               | 781      | 14,77     | 9,85      | 634,62  | 14   | 34      | 5       |
| 5  | 1+800        | 0        | 2          | 4          | 4           | 6           | 8           | 16                | 12              | 781      | 19,70     | 14,77     | 634,62  | 15   | 34      | 5       |
| CÁ | LCULO DEFLEX | IÓN CAF  | RACTERÍST  | TICA (Dc): |             |             |             | DEFLEXIÓN R       | ECUPERABLE      | PROMEDIO | 13,83     | 7,90      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 13,83 Ds = Desviación standard = 4,10

t = constante de probabilidad al 95% = 1,65

| Dc =   | 20,58 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





4,39

15,12

4,10

20,58

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 574,28

Rcmín (m)=

# CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 2+000 a 2+800

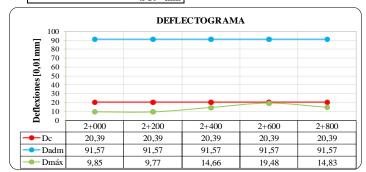
|    |            |          |           |            |             | 24.        | npo. Tigu D | cimicimum 11 | og 21000 a 21 | 000     |           |           |         |      |         |         |
|----|------------|----------|-----------|------------|-------------|------------|-------------|--------------|---------------|---------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA |          | LEC       | TURAS DE   | L DIAL (0,0 | 01 mm)     |             | PARÁMET      | ROS DE EVAL   | LUACIÓN | PARÁME    | TROS CORF | REGIDOS | TEMP | Espesor |         |
| N° | (Km)       | T — 0 am | T - 50 am | T _ 100 am | T _ 150 am  | T - 200 am | L= 500 cm   | D0           | D50           | RC      | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |            | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 130 cm   | L= 200 cm  | L= 300 CIII | (0,01 mm)    | (0,01 mm)     | (m)     | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 2+000      | 0        | 2         | 2          | 2           | 2          | 4           | 8            | 4             | 781     | 9,85      | 4,92      | 634,62  | 15   | 34      | 5       |
| 2  | 2+200      | 0        | 2         | 2          | 4           | 4          | 4           | 8            | 4             | 781     | 9,77      | 4,89      | 639,42  | 15   | 36      | 5       |
| 3  | 2+400      | 0        | 2         | 2          | 4           | 4          | 6           | 12           | 8             | 781     | 14,66     | 9,77      | 639,42  | 16   | 36      | 5       |
| 4  | 2+600      | 0        | 2         | 2          | 4           | 6          | 8           | 16           | 12            | 781     | 19,48     | 14,61     | 641,83  | 16   | 37      | 5       |
| 5  | 2+800      | 0        | 4         | 4          | 4           | 4          | 6           | 12           | 4             | 391     | 14,83     | 4,94      | 316,11  | 17   | 33      | 5       |

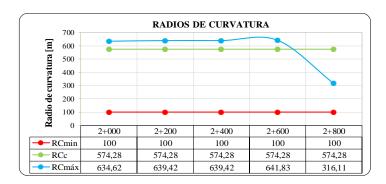
DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D = Deflexion recuperable promedio = 13,72 Ds = Desviacion standard = 4,06

t = constante de probabilidad al 95% = 1,65

| Dc =   | 20,39 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





7,83

4,33

14,96

13,72

4,06

20,39

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval



"LABORATORIO DE ASFALTOS"



RCc (m) = 571,88

Rcmín (m)=

#### CARRERA DE INGENIERIA CIVIL

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

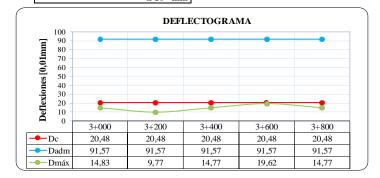
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

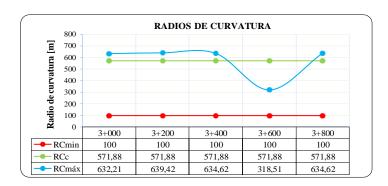
Equipo: Viga Benkelman - Prog.: 3+000 a 3+800

|    |              |          |           |              |             | Eqt         | npo. viga b | enkemian - 11 | ug 5+000 a 5+ | -000     |           |           |         |      |         |         |
|----|--------------|----------|-----------|--------------|-------------|-------------|-------------|---------------|---------------|----------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA   |          | LEC       | TURAS DE     | L DIAL (0,0 | 01 mm)      |             | PARÁMET       | ROS DE EVAL   | LUACIÓN  | PARÁME    | TROS CORE | REGIDOS | TEMP | Espesor |         |
| N° | (Km)         | I = 0 am | I = 50 cm | I = 100 am   | I = 150 am  | L= 200 cm   | I = 500 am  | D0            | D50           | RC       | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |              | L- 0 cm  | L= 50 Cm  | L= 100 cm    | L= 130 cm   | L= 200 CIII | L= 500 CIII | (0,01 mm)     | (0,01 mm)     | (m)      | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 3+000        | 0        | 2         | 2            | 4           | 4           | 6           | 12            | 8             | 781      | 14,83     | 9,89      | 632,21  | 17   | 33      | 5       |
| 2  | 3+200        | 0        | 2         | 2            | 2           | 2           | 4           | 8             | 4             | 781      | 9,77      | 4,89      | 639,42  | 18   | 36      | 5       |
| 3  | 3+400        | 0        | 2         | 2            | 2           | 4           | 6           | 12            | 8             | 781      | 14,77     | 9,85      | 634,62  | 18   | 34      | 5       |
| 4  | 3+600        | 0        | 4         | 4            | 4           | 4           | 8           | 16            | 8             | 391      | 19,62     | 9,81      | 318,51  | 18   | 35      | 5       |
| 5  | 3+800        | 0        | 2         | 2            | 2           | 6           | 6           | 12            | 8             | 781      | 14,77     | 9,85      | 634,62  | 18   | 34      | 5       |
| CÁ | LCULO DEFLEX | IÓN CAI  | RACTERÍST | TICA ( Dc ): |             |             |             | DEFLEXIÓN R   | ECUPERABLE    | PROMEDIO | 14,75     | 8,86      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds

Donde:

D =Deflexiòn recuperable promedio = 14,75 Ds = Desviación standard = 3,48 t = constante de probabilidad al 95% = 1,65

20,48 x 10<sup>-2</sup> mm Dc =Dadm = 92 x 10<sup>-2</sup> mm





2,22

12,51

3,48

20,48

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 638,94

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

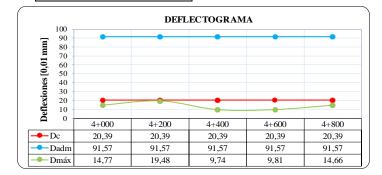
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

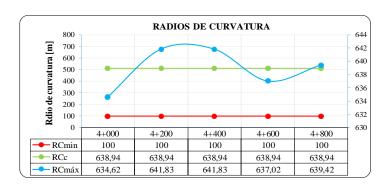
Equipo: Viga Benkelman - Prog.: 4+000 a 4+800

|    |              |          |           |            |             | Eqt        | npo. viga i | elikeliliali - 11 | ug 4+000 a 4+ | -000         |           |           |         |      |         |         |
|----|--------------|----------|-----------|------------|-------------|------------|-------------|-------------------|---------------|--------------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA   |          | LEC       | TURAS DE   | L DIAL (0,0 | 01 mm)     |             | PARÁMET           | ROS DE EVAI   | LUACIÓN      | PARÁME'   | TROS CORI | REGIDOS | TEMP | Espesor |         |
| N° | (Km)         | T — 0 am | I - 50 am | T _ 100 am | L= 150 cm   | T - 200 am | T - 500 am  | D0                | D50           | RC           | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |              | L= 0 cm  | L= 50 cm  | L= 100 cm  | L= 150 cm   | L= 200 cm  | L= 500 CIII | (0,01 mm)         | (0,01 mm)     | ( <b>m</b> ) | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 4+000        | 0        | 2         | 2          | 2           | 4          | 6           | 12                | 8             | 781          | 14,77     | 9,85      | 634,62  | 18   | 34      | 5       |
| 2  | 4+200        | 0        | 2         | 2          | 2           | 6          | 8           | 16                | 12            | 781          | 19,48     | 14,61     | 641,83  | 21   | 37      | 5       |
| 3  | 4+400        | 0        | 2         | 2          | 4           | 4          | 4           | 8                 | 4             | 781          | 9,74      | 4,87      | 641,83  | 21   | 37      | 5       |
| 4  | 4+600        | 0        | 2         | 2          | 2           | 4          | 4           | 8                 | 4             | 781          | 9,81      | 4,91      | 637,02  | 21   | 35      | 5       |
| 5  | 4+800        | 0        | 2         | 2          | 4           | 4          | 6           | 12                | 8             | 781          | 14,66     | 9,77      | 639,42  | 21   | 36      | 5       |
| CÁ | LCULO DEFLEX | IÓN CAF  | RACTERÍST | TICA (Dc): |             |            |             | DEFLEXIÓN R       | ECUPERABLE    | PROMEDIO     | 13,69     | 8,80      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds

Donde:

D =Deflexiòn recuperable promedio = 13,69 Ds = Desviación standard = 4,07 t = constante de probabilidad al 95% = 1,65

| t = constante de | - constante de probabilidad al 9370 - |                       |  |  |  |  |  |  |
|------------------|---------------------------------------|-----------------------|--|--|--|--|--|--|
| Dc =             | 20,39                                 | x 10 <sup>-2</sup> mm |  |  |  |  |  |  |
| Dadm =           | 92                                    | v 10 <sup>-2</sup> mm |  |  |  |  |  |  |





4,07

20,39

4,07

15,50

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 509,62

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

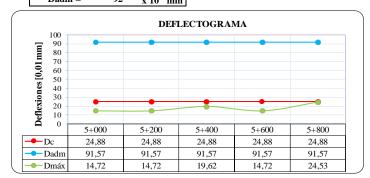
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

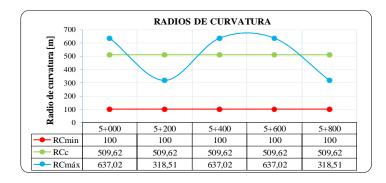
Equipo: Viga Benkelman - Prog.: 5+000 a 5+800

|    |                                        |           |            |            |           |             | npor (rga z |             | og., e . ooo a e . |              | /         |           |        |         |         |         |
|----|----------------------------------------|-----------|------------|------------|-----------|-------------|-------------|-------------|--------------------|--------------|-----------|-----------|--------|---------|---------|---------|
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) |           |            |            |           |             | PARAMET     | ROS DE EVAI | LUACION            | PARAME       | TROS CORF | REGIDOS   | TEMP   | ERATURA | Espesor |         |
| N° | (Km)                                   | I = 0 am  | I = 50 cm  | I = 100 am | L= 150 cm | I = 200 cm  | I = 500 cm  | D0          | D50                | RC           | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|    |                                        | L- 0 CIII | L= 50 CIII | L= 100 cm  | L= 130 cm | L= 200 CIII | L= 500 CIII | (0,01 mm)   | (0,01 mm)          | ( <b>m</b> ) | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1  | 5+000                                  | 0         | 2          | 2          | 2         | 4           | 6           | 12          | 8                  | 781          | 14,72     | 9,81      | 637,02 | 21      | 35      | 5       |
| 2  | 5+200                                  | 0         | 4          | 4          | 6         | 6           | 6           | 12          | 4                  | 391          | 14,72     | 4,91      | 318,51 | 23      | 35      | 5       |
| 3  | 5+400                                  | 0         | 2          | 2          | 4         | 6           | 8           | 16          | 12                 | 781          | 19,62     | 14,72     | 637,02 | 23      | 35      | 5       |
| 4  | 5+600                                  | 0         | 2          | 2          | 4         | 4           | 6           | 12          | 8                  | 781          | 14,72     | 9,81      | 637,02 | 23      | 35      | 5       |
| 5  | 5+800                                  | 0         | 4          | 4          | 4         | 8           | 10          | 20          | 12                 | 391          | 24,53     | 14,72     | 318,51 | 23      | 35      | 5       |
| CÁ | CULO DEFLEX                            | IÓN CAF   | RACTERÍST  | TICA (Dc): |           |             |             | DEFLEXIÓN R | ECUPERABLE         | PROMEDIO     | 17,66     | 10,79     |        |         |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds

Donde:

D =Deflexiòn recuperable promedio = 17,66 Ds = Desviación standard = 4,39 t = constante de probabilidad al 95% = 1,65

24,88 x 10<sup>-2</sup> mm Dc =Dadm = 92 x 10<sup>-2</sup> mm





4,10

17,54

4,39

24,88

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 576,68

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

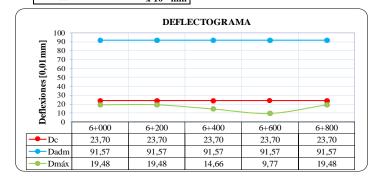
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

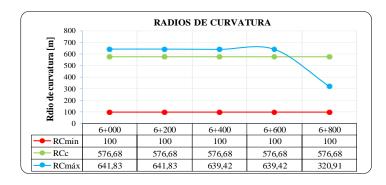
Equipo: Viga Benkelman - Prog.: 6+000 a 6+800

|             | PROGRESIVA LECTURAS DEL DIAL (0.01 mm) PARÁMETROS DE EVALUACIÓN PARÁMETROS CORREGIDOS TEMPERATURA Espesor |          |           |            |            |            |             |             |           |         |           |           |        |         |         |         |
|-------------|-----------------------------------------------------------------------------------------------------------|----------|-----------|------------|------------|------------|-------------|-------------|-----------|---------|-----------|-----------|--------|---------|---------|---------|
|             | PROGRESIVA LECTURAS DEL DIAL (0,01 mm)                                                                    |          |           |            |            |            | PARÁMET     | ROS DE EVAL | LUACIÓN   | PARÁME' | TROS CORF | REGIDOS   | TEMP   | ERATURA | Espesor |         |
| $N^{\circ}$ | (Km)                                                                                                      | T — 0 am | T - 50 am | T _ 100 am | T _ 150 am | T - 200 am | L= 500 cm   | D0          | D50       | RC      | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|             |                                                                                                           | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)   | (0,01 mm) | (m)     | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1           | 6+000                                                                                                     | 0        | 2         | 2          | 4          | 4          | 8           | 16          | 12        | 781     | 19,48     | 14,61     | 641,83 | 23      | 37      | 5       |
| 2           | 6+200                                                                                                     | 0        | 2         | 2          | 2          | 6          | 8           | 16          | 12        | 781     | 19,48     | 14,61     | 641,83 | 24      | 37      | 5       |
| 3           | 6+400                                                                                                     | 0        | 2         | 2          | 2          | 2          | 6           | 12          | 8         | 781     | 14,66     | 9,77      | 639,42 | 24      | 36      | 5       |
| 4           | 6+600                                                                                                     | 0        | 2         | 2          | 4          | 4          | 4           | 8           | 4         | 781     | 9,77      | 4,89      | 639,42 | 24      | 36      | 5       |
| 5           | 6+800                                                                                                     | 0        | 4         | 4          | 4          | 4          | 8           | 16          | 8         | 391     | 19,48     | 9,74      | 320,91 | 24      | 37      | 5       |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


DEFLEXIÓN RECUPERABLE PROMEDIO


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):

Dc = D + t \* Ds

Donde:

D =Deflexion recuperable promedio = 16,57 Ds = Desviacion standard = 4,33 t = constante de probabilidad al 95% = 1,65





10,72

4,06

17,41

16,57

4,33

23,70

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 641,83

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

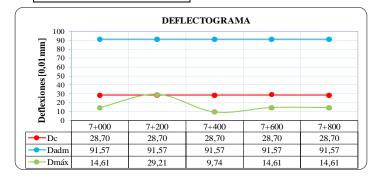
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

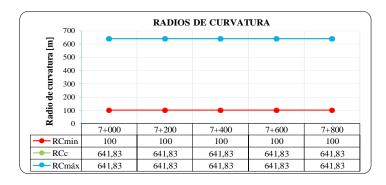
Equipo: Viga Benkelman - Prog.: 7+000 a 7+800

|         |                                        | PROGRESIVA LECTURAS DEL DIAL (0.01 mm) PARÁMETROS DE EVALUACIÓN PARÁMETROS CORREGIDOS   TEMPERATURA   Espesor |           |            |            |            |           |             |           |         |           |           |        |         |         |         |
|---------|----------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|------------|------------|------------|-----------|-------------|-----------|---------|-----------|-----------|--------|---------|---------|---------|
|         | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) |                                                                                                               |           |            |            |            | PARÁMET   | ROS DE EVAI | LUACIÓN   | PARÁME' | TROS CORF | REGIDOS   | TEMP   | ERATURA | Espesor |         |
| $N^{c}$ | (Km)                                   | I = 0 am                                                                                                      | I = 50 am | I = 100 cm | I = 150 am | I = 200 am | L= 500 cm | D0          | D50       | RC      | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|         |                                        | L- 0 cm                                                                                                       | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 cm | (0,01 mm)   | (0,01 mm) | (m)     | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1       | 7+000                                  | 0                                                                                                             | 2         | 2          | 6          | 6          | 6         | 12          | 8         | 781     | 14,61     | 9,74      | 641,83 | 25      | 37      | 5       |
| 2       | 7+200                                  | 0                                                                                                             | 2         | 4          | 6          | 8          | 12        | 24          | 20        | 781     | 29,21     | 24,34     | 641,83 | 26      | 37      | 5       |
| 3       | 7+400                                  | 0                                                                                                             | 2         | 2          | 2          | 2          | 4         | 8           | 4         | 781     | 9,74      | 4,87      | 641,83 | 26      | 37      | 5       |
| 4       | 7+600                                  | 0                                                                                                             | 2         | 2          | 4          | 4          | 6         | 12          | 8         | 781     | 14,61     | 9,74      | 641,83 | 26      | 37      | 5       |
| 5       | 7+800                                  | 0                                                                                                             | 2         | 2          | 2          | 4          | 6         | 12          | 8         | 781     | 14,61     | 9,74      | 641,83 | 26      | 37      | 5       |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


DEFLEXIÓN RECUPERABLE PROMEDIO


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):

Dc = D + t \* Ds

Donde:

D = Deflexiòn recuperable promedio = 16,55 Ds = Desviaciòn standard = 7,38 t = constante de probabilidad al 95% = 1,65





11,69

7,38

23,83

16,55

7,38

28,70

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 580,53

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

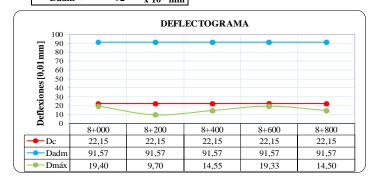
#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

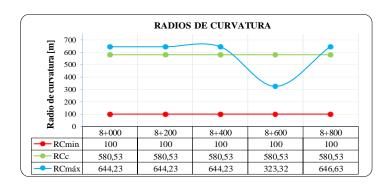
Equipo: Viga Benkelman - Prog.: 8+000 a 8+800

|    |              |          |           |            |             | Eqt        | npo. viga b | enkennan - 11 | og orous a or | 000      |           |           |         |      |         |         |
|----|--------------|----------|-----------|------------|-------------|------------|-------------|---------------|---------------|----------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA   |          | LEC       | TURAS DE   | L DIAL (0,0 | 01 mm)     |             | PARÁMET       | ROS DE EVAL   | UACIÓN   | PARÁME    | TROS CORF | REGIDOS | TEMP | ERATURA | Espesor |
| N° | (Km)         | T — 0 am | I - 50 am | T _ 100 am | L= 150 cm   | T - 200 am | T - 500 am  | D0            | D50           | RC       | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |              | L= 0 cm  | L= 50 cm  | L= 100 cm  | L= 150 cm   | L= 200 cm  | L= 500 CIII | (0,01 mm)     | (0,01 mm)     | (m)      | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 8+000        | 0        | 2         | 4          | 6           | 6          | 8           | 16            | 12            | 781      | 19,40     | 14,55     | 644,23  | 26   | 38      | 5       |
| 2  | 8+200        | 0        | 2         | 2          | 4           | 4          | 4           | 8             | 4             | 781      | 9,70      | 4,85      | 644,23  | 26   | 38      | 5       |
| 3  | 8+400        | 0        | 2         | 2          | 2           | 4          | 6           | 12            | 8             | 781      | 14,55     | 9,70      | 644,23  | 26   | 38      | 5       |
| 4  | 8+600        | 0        | 4         | 4          | 4           | 4          | 8           | 16            | 8             | 391      | 19,33     | 9,67      | 323,32  | 26   | 39      | 5       |
| 5  | 8+800        | 0        | 2         | 4          | 4           | 6          | 6           | 12            | 8             | 781      | 14,50     | 9,67      | 646,63  | 26   | 39      | 5       |
| CÁ | LCULO DEFLEX | IÓN CAF  | RACTERÍST | TICA (Dc): |             |            |             | DEFLEXIÓN R   | ECUPERABLE    | PROMEDIO | 15,50     | 9,69      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds

Donde:

D =Deflexiòn recuperable promedio = 15,50 Ds = Desviación standard = 4,04 t = constante de probabilidad al 95% = 1,65

22,15 x 10<sup>-2</sup> mm Dc =Dadm = 92 x 10<sup>-2</sup> mm





3,43

15,33

4,04

22,15

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 590,38

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 9+000 a 9+800

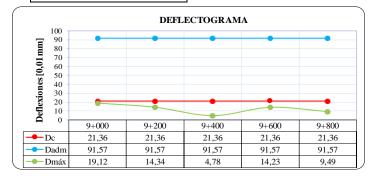
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) PARÁMETROS DE EVALUACIÓN PARÁMETROS CORREGIDOS TEMPERATURA Espesor |          |           |            |            |            |             |             |           |        |           |           |        |         |         |         |
|----|-----------------------------------------------------------------------------------------------------------|----------|-----------|------------|------------|------------|-------------|-------------|-----------|--------|-----------|-----------|--------|---------|---------|---------|
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm)                                                                    |          |           |            |            |            | PARÁMET     | ROS DE EVAL | LUACIÓN   | PARÁME | TROS CORF | REGIDOS   | TEMP   | ERATURA | Espesor |         |
| N° | (Km)                                                                                                      | T — 0 am | T - 50 am | I - 100 am | I _ 150 am | T - 200 am | L= 500 cm   | D0          | D50       | RC     | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|    |                                                                                                           | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)   | (0,01 mm) | (m)    | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1  | 9+000                                                                                                     | 0        | 4         | 4          | 6          | 6          | 8           | 16          | 8         | 391    | 19,12     | 9,56      | 326,92 | 27      | 42      | 5       |
| 2  | 9+200                                                                                                     | 0        | 2         | 2          | 2          | 4          | 6           | 12          | 8         | 781    | 14,34     | 9,56      | 653,85 | 27      | 42      | 5       |
| 3  | 9+400                                                                                                     | 0        | 2         | 2          | 2          | 2          | 2           | 4           | 0         | 781    | 4,78      | 0,00      | 653,85 | 27      | 42      | 5       |
| 4  | 9+600                                                                                                     | 0        | 2         | 2          | 4          | 6          | 6           | 12          | 8         | 781    | 14,23     | 9,49      | 658,65 | 27      | 44      | 5       |
| 5  | 9+800                                                                                                     | 0        | 2         | 2          | 2          | 2          | 4           | 8           | 4         | 781    | 9,49      | 4,74      | 658,65 | 28      | 44      | 5       |

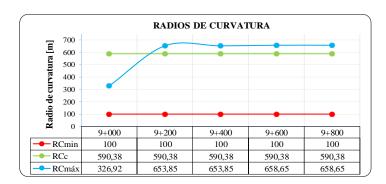
DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 12,39 Ds = Desviaciòn standard = 5,45

t = constante de probabilidad al 95% = 1,65

| Dc =   | 21,36 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





6,67

4,27

13,69

12,39

5,45

21,36

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m) = 654,81

Rcmín (m)=

# CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

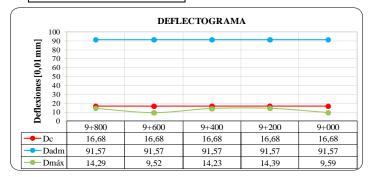
Equipo: Viga Benkelman - Prog.: 9+800 a 9+000

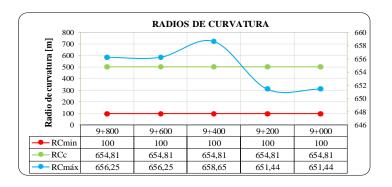
|             |                                        |          |           |            |            | 24.        | npo. Tigu D | cimemian 11 | 0g.: >1000 u >1 | 000       |           |           |         |         |         |         |
|-------------|----------------------------------------|----------|-----------|------------|------------|------------|-------------|-------------|-----------------|-----------|-----------|-----------|---------|---------|---------|---------|
|             | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) |          |           |            |            | PARÁMET    | ROS DE EVAI | LUACIÓN     | PARÁME'         | TROS CORF | REGIDOS   | TEMP      | ERATURA | Espesor |         |         |
| $N^{\circ}$ | (Km)                                   | I = 0 am | I = 50 am | I = 100 cm | I = 150 am | I = 200 am | L= 500 cm   | <b>D</b> 0  | D50             | RC        | D0'       | D50'      | RC'     | Amb     | Asfalto | asfalto |
|             |                                        | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)   | (0,01 mm)       | (m)       | (0,01 mm) | (0,01 mm) | (m)     | (°C)    | (°C)    | (cm)    |
| 1           | 9+800                                  | 0        | 2         | 2          | 2          | 4          | 6           | 12          | 8               | 781       | 14,29     | 9,52      | 656,25  | 28      | 43      | 5       |
| 2           | 9+600                                  | 0        | 2         | 2          | 2          | 4          | 4           | 8           | 4               | 781       | 9,52      | 4,76      | 656,25  | 28      | 43      | 5       |
| 3           | 9+400                                  | 0        | 2         | 2          | 4          | 4          | 6           | 12          | 8               | 781       | 14,23     | 9,49      | 658,65  | 28      | 44      | 5       |
| 4           | 9+200                                  | 0        | 2         | 2          | 4          | 6          | 6           | 12          | 8               | 781       | 14,39     | 9,59      | 651,44  | 28      | 41      | 5       |
| 5           | 9+000                                  | 0        | 2         | 2          | 2          | 4          | 4           | 8           | 4               | 781       | 9,59      | 4,80      | 651,44  | 27      | 41      | 5       |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO


# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds

Donde:

D =Deflexiòn recuperable promedio = 12,41 Ds = Desviaciòn standard = 2,60 t = constante de probabilidad al 95% = 1,65

| Dc =   | 16,68 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





7,63

2,61

11,92

12,41

2,60

16,68

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 583,41

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 8+800 a 8+000

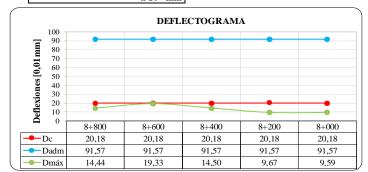
|             |                                        |           |           |            |            | 24.        | npo. Tigu D | cimemian 11 | og orooo a or | 000     |           |           |        |         |         |         |
|-------------|----------------------------------------|-----------|-----------|------------|------------|------------|-------------|-------------|---------------|---------|-----------|-----------|--------|---------|---------|---------|
|             | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) |           |           |            |            |            | PARÁMET     | ROS DE EVAI | LUACIÓN       | PARÁME' | TROS CORF | REGIDOS   | TEMP   | ERATURA | Espesor |         |
| $N^{\circ}$ | (Km)                                   | I = 0 am  | I = 50 am | I = 100 cm | I = 150 am | I = 200 am | L= 500 cm   | <b>D</b> 0  | D50           | RC      | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|             |                                        | L- 0 CIII | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)   | (0,01 mm)     | (m)     | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1           | 8+800                                  | 0         | 2         | 2          | 4          | 6          | 6           | 12          | 8             | 781     | 14,44     | 9,63      | 649,04 | 27      | 40      | 5       |
| 2           | 8+600                                  | 0         | 4         | 4          | 6          | 6          | 8           | 16          | 8             | 391     | 19,33     | 9,67      | 323,32 | 27      | 39      | 5       |
| 3           | 8+400                                  | 0         | 2         | 4          | 4          | 4          | 6           | 12          | 8             | 781     | 14,50     | 9,67      | 646,63 | 27      | 39      | 5       |
| 4           | 8+200                                  | 0         | 2         | 2          | 4          | 4          | 4           | 8           | 4             | 781     | 9,67      | 4,83      | 646,63 | 25      | 39      | 5       |
| 5           | 8+000                                  | 0         | 2         | 4          | 4          | 4          | 4           | 8           | 4             | 781     | 9,59      | 4,80      | 651,44 | 25      | 41      | 5       |

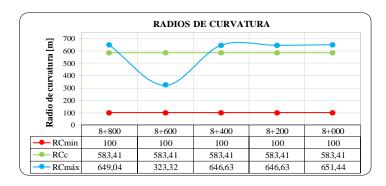
DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 13,51 Ds = Desviaciòn standard = 4,06

t = constante de probabilidad al 95% = 1,65

| Dc =   | 20,18 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





7,72

2,65

12,08

4,06

20,18

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 653,85

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 7+800 a 7+000

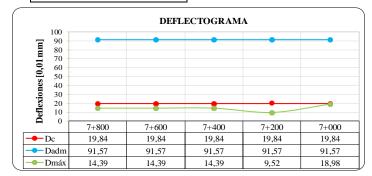
|    | PROGRESIVA LECTURAS DEL DIAL (0.01 mm) PARÁMETROS DE EVALUACIÓN PARÁMETROS CORREGIDOS TEMPERATURA Espesor |          |           |            |            |            |             |           |           |           |           |           |         |         |         |         |
|----|-----------------------------------------------------------------------------------------------------------|----------|-----------|------------|------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm)                                                                    |          |           |            |            | PARÁMET    | ROS DE EVAL | LUACIÓN   | PARÁME    | TROS CORF | REGIDOS   | TEMP      | ERATURA | Espesor |         |         |
| N° | (Km)                                                                                                      | T — 0 am | T - 50 am | I - 100 am | I _ 150 am | I - 200 am | L= 500 cm   | D0        | D50       | RC        | D0'       | D50'      | RC'     | Amb     | Asfalto | asfalto |
|    |                                                                                                           | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm) | (0,01 mm) | (m)       | (0,01 mm) | (0,01 mm) | (m)     | (°C)    | (°C)    | (cm)    |
| 1  | 7+800                                                                                                     | 0        | 2         | 2          | 4          | 4          | 6           | 12        | 8         | 781       | 14,39     | 9,59      | 651,44  | 25      | 41      | 5       |
| 2  | 7+600                                                                                                     | 0        | 2         | 2          | 4          | 4          | 6           | 12        | 8         | 781       | 14,39     | 9,59      | 651,44  | 25      | 41      | 5       |
| 3  | 7+400                                                                                                     | 0        | 2         | 4          | 4          | 6          | 6           | 12        | 8         | 781       | 14,39     | 9,59      | 651,44  | 25      | 41      | 5       |
| 4  | 7+200                                                                                                     | 0        | 2         | 2          | 2          | 4          | 4           | 8         | 4         | 781       | 9,52      | 4,76      | 656,25  | 25      | 43      | 5       |
| 5  | 7+000                                                                                                     | 0        | 2         | 4          | 4          | 6          | 8           | 16        | 12        | 781       | 18,98     | 14,23     | 658,65  | 24      | 44      | 5       |

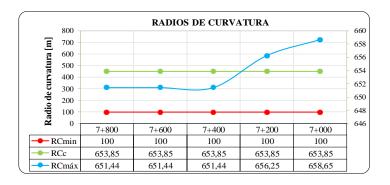
DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 14,34 Ds = Desviaciòn standard = 3,34

t = constante de probabilidad al 95% = 1,65

| Dc =   | 19,84 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





14,34

3,34

19,84

9,56

3,35

15,06

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m) = 588,70

Rcmín (m)=

#### CARRERA DE INGENIERIA CIVIL

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

2,62

11,95

4,02

20,00

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

"LABORATORIO DE ASFALTOS"

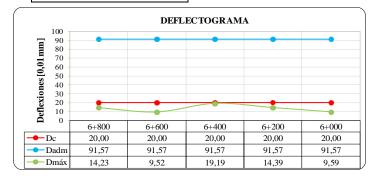
Equipo: Viga Benkelman - Prog.: 6+800 a 6+000

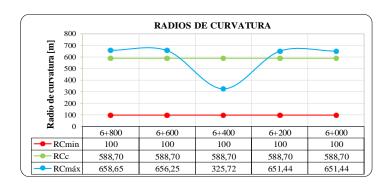
|    |              |          |            |            |             | Eqt       | npo. viga b | enkemian - 11 | ug u-ouu a u- | 000      |           |           |         |      |         |         |
|----|--------------|----------|------------|------------|-------------|-----------|-------------|---------------|---------------|----------|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA   |          | LEC        | TURAS DE   | L DIAL (0,0 | )1 mm)    |             | PARÁMET       | ROS DE EVAL   | LUACIÓN  | PARÁME    | TROS CORE | REGIDOS | TEMP | Espesor |         |
| N° | (Km)         | I = 0 am | I = 50 cm  | I = 100 am | I = 150 am  | L= 200 cm | I = 500 am  | D0            | D50           | RC       | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |              | L- 0 cm  | L= 50 CIII | L= 100 cm  | L= 150 cm   | L= 200 cm | L= 500 CIII | (0,01 mm)     | (0,01 mm)     | (m)      | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 6+800        | 0        | 2          | 2          | 4           | 6         | 6           | 12            | 8             | 781      | 14,23     | 9,49      | 658,65  | 24   | 44      | 5       |
| 2  | 6+600        | 0        | 2          | 2          | 2           | 4         | 4           | 8             | 4             | 781      | 9,52      | 4,76      | 656,25  | 24   | 43      | 5       |
| 3  | 6+400        | 0        | 4          | 4          | 4           | 4         | 8           | 16            | 8             | 391      | 19,19     | 9,59      | 325,72  | 24   | 41      | 5       |
| 4  | 6+200        | 0        | 2          | 2          | 2           | 6         | 6           | 12            | 8             | 781      | 14,39     | 9,59      | 651,44  | 24   | 41      | 5       |
| 5  | 6+000        | 0        | 2          | 2          | 2           | 2         | 4           | 8             | 4             | 781      | 9,59      | 4,80      | 651,44  | 24   | 41      | 5       |
| CÁ | LCULO DEFLEX | IÓN CAF  | RACTERÍST  | TICA (Dc): | •           |           |             | DEFLEXIÓN R   | ECUPERABLE    | PROMEDIO | 13,39     | 7,65      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 13,39 Ds = Desviación standard = 4,02

t = constante de probabilidad al 95% = 1,65

| Dc =   | 20,00 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m) = 584,13

Rcmín (m)=

#### CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

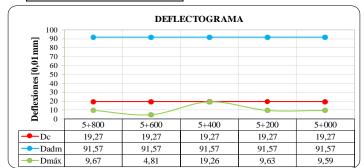
Equipo: Viga Benkelman - Prog.: 5+800 a 5+000

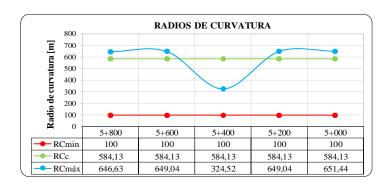
|    |                                         |          |           |            |           |             | npor rigarz |             |            | ,        | ,         |           |        |         |         |         |
|----|-----------------------------------------|----------|-----------|------------|-----------|-------------|-------------|-------------|------------|----------|-----------|-----------|--------|---------|---------|---------|
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm)  |          |           |            |           |             | PARAMET     | ROS DE EVAL | LUACION    | PARAME   | TROS CORF | REGIDOS   | TEMP   | Espesor |         |         |
| N° | (Km)                                    | I = 0 am | I = 50 cm | I = 100 cm | L= 150 cm | I = 200 cm  | I = 500 am  | D0          | D50        | RC       | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|    |                                         | L- 0 cm  | L= 50 cm  | L= 100 cm  | L= 130 cm | L= 200 CIII | L= 500 CIII | (0,01 mm)   | (0,01 mm)  | (m)      | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1  | 5+800                                   | 0        | 2         | 2          | 2         | 4           | 4           | 8           | 4          | 781      | 9,67      | 4,83      | 646,63 | 24      | 39      | 5       |
| 2  | 5+600                                   | 0        | 2         | 2          | 2         | 2           | 2           | 4           | 0          | 781      | 4,81      | 0,00      | 649,04 | 22      | 40      | 5       |
| 3  | 5+400                                   | 0        | 4         | 4          | 4         | 6           | 8           | 16          | 8          | 391      | 19,26     | 9,63      | 324,52 | 22      | 40      | 5       |
| 4  | 5+200                                   | 0        | 2         | 2          | 2         | 4           | 4           | 8           | 4          | 781      | 9,63      | 4,81      | 649,04 | 22      | 40      | 5       |
| 5  | 5+000                                   | 0        | 2         | 2          | 2         | 2           | 4           | 8           | 4          | 781      | 9,59      | 4,80      | 651,44 | 22      | 41      | 5       |
| CÁ | ÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ): |          |           |            |           |             |             | DEFLEXIÓN R | ECUPERABLE | PROMEDIO | 10,59     | 4,81      |        |         |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 10,59 Ds = Desviación standard = 5,27

t = constante de probabilidad al 95% = 1,65

| Dc =   | 19,27 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





3,40

10,42

5.27

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m) = 580,77

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL
"LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE"

TRAMO: TOMATITAS-ERQUIS NORTE

CARRIL: DERECHO (IDA)

FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 4+800 a 4+000

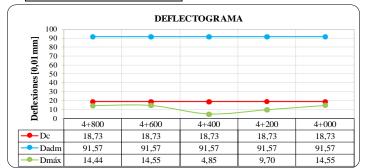
|    |            |                                     |           |            |            | 24.        | npo. Tigu D | cimemian 11              | 0g.: 41000 tt 41 | 000 |           |           |        |         |         |         |
|----|------------|-------------------------------------|-----------|------------|------------|------------|-------------|--------------------------|------------------|-----|-----------|-----------|--------|---------|---------|---------|
|    | PROGRESIVA | GRESIVA LECTURAS DEL DIAL (0,01 mm) |           |            |            |            |             | PARÁMETROS DE EVALUACIÓN |                  |     | PARÁME'   | TROS CORF | TEMP   | Espesor |         |         |
| N° | (Km)       | I = 0 am                            | I = 50 am | I = 100 cm | I = 150 am | I = 200 am | L= 500 cm   | <b>D</b> 0               | D50              | RC  | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|    |            | L- 0 cm                             | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)                | (0,01 mm)        | (m) | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1  | 4+800      | 0                                   | 2         | 2          | 4          | 6          | 6           | 12                       | 8                | 781 | 14,44     | 9,63      | 649,04 | 22      | 40      | 5       |
| 2  | 4+600      | 0                                   | 4         | 4          | 4          | 4          | 6           | 12                       | 4                | 391 | 14,55     | 4,85      | 322,12 | 22      | 38      | 5       |
| 3  | 4+400      | 0                                   | 2         | 2          | 2          | 2          | 2           | 4                        | 0                | 781 | 4,85      | 0,00      | 644,23 | 22      | 38      | 5       |
| 4  | 4+200      | 0                                   | 2         | 2          | 2          | 4          | 4           | 8                        | 4                | 781 | 9,70      | 4,85      | 644,23 | 22      | 38      | 5       |
| 5  | 4+000      | 0                                   | 2         | 2          | 2          | 4          | 6           | 12                       | 8                | 781 | 14,55     | 9,70      | 644,23 | 21      | 38      | 5       |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 11,62 Ds = Desviaciòn standard = 4,32

t = constante de probabilidad al 95% = 1,65

| Dc =   | 18,73 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





5,81

4,04

12,45

11,62

4,32

18,73

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 576,44

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

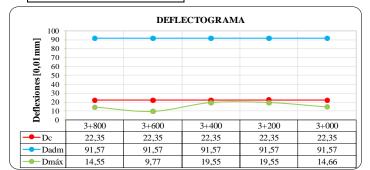
Equipo: Viga Benkelman - Prog.: 3+800 a 3+000

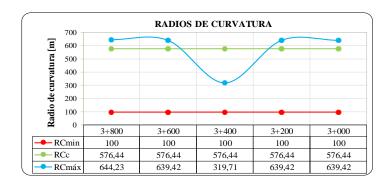
|    |                                          |           |           |            |             |             | npor rigarz |                                | og e . o o o u e . |     | ,         |           |         |      |         |         |
|----|------------------------------------------|-----------|-----------|------------|-------------|-------------|-------------|--------------------------------|--------------------|-----|-----------|-----------|---------|------|---------|---------|
|    | PROGRESIVA                               |           | LEC       | TURAS DE   | L DIAL (0,0 | 01 mm)      |             | PARÁMETROS DE EVALUACIÓN       |                    |     |           | TROS CORF | REGIDOS | TEMP | Espesor |         |
| N° | (Km)                                     | I = 0 am  | I = 50 cm | I = 100 cm | L= 150 cm   | I = 200 cm  | I = 500 am  | D0                             | D50                | RC  | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |                                          | L- 0 CIII | L= 50 Cm  | L= 100 cm  | L= 130 cm   | L= 200 CIII | L= 500 CIII | (0,01 mm)                      | (0,01 mm)          | (m) | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 3+800                                    | 0         | 2         | 2          | 2           | 4           | 6           | 12                             | 8                  | 781 | 14,55     | 9,70      | 644,23  | 21   | 38      | 5       |
| 2  | 3+600                                    | 0         | 2         | 2          | 4           | 4           | 4           | 8                              | 4                  | 781 | 9,77      | 4,89      | 639,42  | 21   | 36      | 5       |
| 3  | 3+400                                    | 0         | 4         | 4          | 6           | 6           | 8           | 16                             | 8                  | 391 | 19,55     | 9,77      | 319,71  | 21   | 36      | 5       |
| 4  | 3+200                                    | 0         | 2         | 4          | 4           | 6           | 8           | 16                             | 12                 | 781 | 19,55     | 14,66     | 639,42  | 21   | 36      | 5       |
| 5  | 3+000                                    | 0         | 2         | 2          | 4           | 4           | 6           | 12                             | 8                  | 781 | 14,66     | 9,77      | 639,42  | 21   | 36      | 5       |
| CÁ | CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ): |           |           |            |             |             |             | DEFLEXIÓN RECUPERABLE PROMEDIO |                    |     | 15,62     | 9,76      |         |      | •       |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 15,62 Ds = Desviación standard = 4,10

t = constante de probabilidad al 95% = 1,65

| Dc =   | 22,35 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





3,46

15,44

4,10

22,35

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 508,89

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE" TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

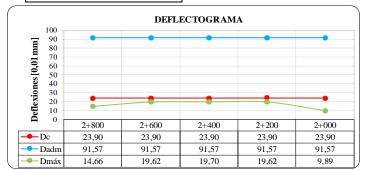
Equipo: Viga Benkelman - Prog.: 2+800 a 2+000

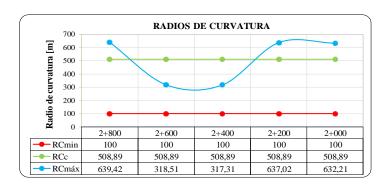
|    | PROGRESIVA                              | PROGRESIVA LECTURAS DEL DIAI |            |           |            | 1 mm)       |             | PARÁMETROS DE EVALUACIÓN |            |          | PARÁME    | TEMP      | Espesor |      |         |         |
|----|-----------------------------------------|------------------------------|------------|-----------|------------|-------------|-------------|--------------------------|------------|----------|-----------|-----------|---------|------|---------|---------|
| N° | (Km)                                    | I – 0 cm                     | I = 50 cm  | L= 100 cm | I = 150 cm | I = 200 cm  | I – 500 cm  | D0                       | D50        | RC       | D0'       | D50'      | RC'     | Amb  | Asfalto | asfalto |
|    |                                         | L- 0 CIII                    | L= 50 CIII | L= 100 cm | L= 130 cm  | L= 200 CIII | L= 500 CIII | (0,01 mm)                | (0,01 mm)  | (m)      | (0,01 mm) | (0,01 mm) | (m)     | (°C) | (°C)    | (cm)    |
| 1  | 2+800                                   | 0                            | 2          | 2         | 2          | 4           | 6           | 12                       | 8          | 781      | 14,66     | 9,77      | 639,42  | 21   | 36      | 5       |
| 2  | 2+600                                   | 0                            | 4          | 4         | 6          | 6           | 8           | 16                       | 8          | 391      | 19,62     | 9,81      | 318,51  | 21   | 35      | 5       |
| 3  | 2+400                                   | 0                            | 4          | 4         | 4          | 4           | 8           | 16                       | 8          | 391      | 19,70     | 9,85      | 317,31  | 20   | 34      | 5       |
| 4  | 2+200                                   | 0                            | 2          | 2         | 2          | 4           | 8           | 16                       | 12         | 781      | 19,62     | 14,72     | 637,02  | 20   | 35      | 5       |
| 5  | 2+000                                   | 0                            | 2          | 2         | 2          | 4           | 4           | 8                        | 4          | 781      | 9,89      | 4,94      | 632,21  | 20   | 33      | 5       |
| CÁ | ÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ): |                              |            |           |            |             |             | DEFLEXIÓN R              | ECUPERABLE | PROMEDIO | 16,70     | 9,82      |         |      |         |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 16,70 Ds = Desviación standard = 4,38

t = constante de probabilidad al 95% = 1,65

| Dc =   | 23,90 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





3,46

15,50

4,38

23,90

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 632,69

Rcmín (m)=

#### CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

Equipo: Viga Benkelman - Prog.: 1+800 a 1+000

|    |                                        |          |           |            |            | 24.        | npo. Tigu D | cimemian 11              | og I lood a I l | 000 |           |           |        |         |         |         |
|----|----------------------------------------|----------|-----------|------------|------------|------------|-------------|--------------------------|-----------------|-----|-----------|-----------|--------|---------|---------|---------|
|    | PROGRESIVA LECTURAS DEL DIAL (0,01 mm) |          |           |            |            |            |             | PARÁMETROS DE EVALUACIÓN |                 |     | PARÁME    | TROS CORF | TEMP   | Espesor |         |         |
| N° | (Km)                                   | T — 0 am | T - 50 am | T _ 100 am | I _ 150 am | I - 200 am | L= 500 cm   | D0                       | D50             | RC  | D0'       | D50'      | RC'    | Amb     | Asfalto | asfalto |
|    |                                        | L- 0 cm  | L= 30 Cm  | L= 100 cm  | L= 150 cm  | L= 200 cm  | L= 300 CIII | (0,01 mm)                | (0,01 mm)       | (m) | (0,01 mm) | (0,01 mm) | (m)    | (°C)    | (°C)    | (cm)    |
| 1  | 1+800                                  | 0        | 2         | 2          | 4          | 4          | 6           | 12                       | 8               | 781 | 14,83     | 9,89      | 632,21 | 20      | 33      | 5       |
| 2  | 1+600                                  | 0        | 2         | 2          | 2          | 4          | 4           | 8                        | 4               | 781 | 9,89      | 4,94      | 632,21 | 20      | 33      | 5       |
| 3  | 1+400                                  | 0        | 2         | 2          | 2          | 2          | 4           | 8                        | 4               | 781 | 9,81      | 4,91      | 637,02 | 20      | 35      | 5       |
| 4  | 1+200                                  | 0        | 2         | 2          | 4          | 4          | 4           | 8                        | 4               | 781 | 9,85      | 4,92      | 634,62 | 20      | 34      | 5       |
| 5  | 1+000                                  | 0        | 2         | 2          | 2          | 2          | 2           | 4                        | 0               | 781 | 4,98      | 0,00      | 627,40 | 18      | 31      | 5       |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

DEFLEXIÓN RECUPERABLE PROMEDIO

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):

Dc = D + t \* Ds

x 10<sup>-2</sup> mm

91,57

9,89

Donde:

Dadm =

--- Dadm

● Dmáx

91,57

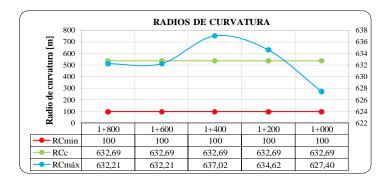
14,83

D =Deflexiòn recuperable promedio = 9,87 Ds = Desviación standard = 3,48 1,65

t = constante de probabilidad al 95% = 15,60 x 10<sup>-2</sup> mm Dc =92

|                       |                                               |       | DEFL  | ECTOGRAM | A     |       |
|-----------------------|-----------------------------------------------|-------|-------|----------|-------|-------|
| Deflexiones [0,01 mm] | 100 -<br>90 -<br>80 -<br>70 -<br>60 -<br>50 - | •     | •     | •        | •     | •     |
| Deflexione            | 40 -<br>30 -<br>20 -<br>10 -                  | •     | 8     |          |       |       |
| _                     | 0                                             | 1+800 | 1+600 | 1+400    | 1+200 | 1+000 |
| <b>-</b> ●-I          | Эс                                            | 15,60 | 15,60 | 15,60    | 15,60 | 15,60 |

91,57


9,81

91,57

9,85

91,57

4,98



4,93

3,50

10,68

9,87

3,48

15,60

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval





RCc (m)= 557,93

Rcmín (m)=

CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO: "ANÁLISIS DE MANTENIMIENTO Y REHABILITACIÓN EN LA CARRETERA A ERQUIS EN EL TRAMO TOMATITAS (CRUCE A ERQUIS)-ERQUIS NORTE TRAMO: TOMATITAS-ERQUIS NORTE CARRIL: DERECHO (IDA) FECHA: 06/09/2023

#### "EVALUACION ESTRUCTURAL DEL PAVIMENTO"

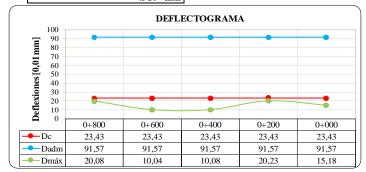
Equipo: Viga Benkelman - Prog.: 0+800 a 0+000

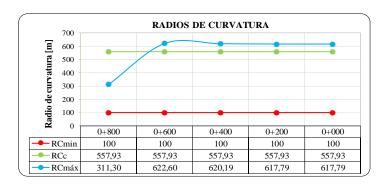
|    | Equipor riga Demoninari                  |                             |           |           |            |             |             |                                |           |     |                       |           |        |             |         |         |
|----|------------------------------------------|-----------------------------|-----------|-----------|------------|-------------|-------------|--------------------------------|-----------|-----|-----------------------|-----------|--------|-------------|---------|---------|
|    | PROGRESIVA                               | LECTURAS DEL DIAL (0,01 mm) |           |           |            |             |             | PARÁMETROS DE EVALUACIÓN       |           |     | PARÁMETROS CORREGIDOS |           |        | TEMPERATURA |         | Espesor |
| N° | (Km)                                     | I = 0 am                    | I = 50 cm | L= 100 cm | I = 150 am | I = 200 cm  | I = 500 cm  | D0                             | D50       | RC  | D0'                   | D50'      | RC'    | Amb         | Asfalto | asfalto |
|    |                                          | L- 0 CIII                   | L= 50 Cm  | L= 100 cm | L= 130 cm  | L= 200 CIII | L= 500 CIII | (0,01 mm)                      | (0,01 mm) | (m) | (0,01 mm)             | (0,01 mm) | (m)    | (°C)        | (°C)    | (cm)    |
| 1  | 0+800                                    | 0                           | 4         | 4         | 6          | 6           | 8           | 16                             | 8         | 391 | 20,08                 | 10,04     | 311,30 | 18          | 29      | 5       |
| 2  | 0+600                                    | 0                           | 2         | 2         | 2          | 2           | 4           | 8                              | 4         | 781 | 10,04                 | 5,02      | 622,60 | 18          | 29      | 5       |
| 3  | 0+400                                    | 0                           | 2         | 2         | 2          | 4           | 4           | 8                              | 4         | 781 | 10,08                 | 5,04      | 620,19 | 18          | 28      | 5       |
| 4  | 0+200                                    | 0                           | 2         | 2         | 4          | 6           | 8           | 16                             | 12        | 781 | 20,23                 | 15,18     | 617,79 | 17          | 27      | 5       |
| 5  | 0+000                                    | 0                           | 2         | 2         | 4          | 4           | 6           | 12                             | 8         | 781 | 15,18                 | 10,12     | 617,79 | 17          | 27      | 5       |
| CÁ | CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ): |                             |           |           |            |             |             | DEFLEXIÓN RECUPERABLE PROMEDIO |           |     | 15,12                 | 9,08      |        |             | •       |         |

DESVIACIÓN ESTÁNDAR

VALORES CARACTERÍSTICOS

# CÁLCULO DEFLEXIÓN CARACTERÍSTICA ( Dc ):


Dc = D + t \* Ds


Donde:

D =Deflexiòn recuperable promedio = 15,12 Ds = Desviación standard = 5,05

t = constante de probabilidad al 95% = 1,65

| Dc =   | 23,43 | x 10 <sup>-2</sup> mm |
|--------|-------|-----------------------|
| Dadm = | 92    | x 10 <sup>-2</sup> mm |





4,24

16,06

5,05

Univ. Gerardo Mauricio Vaca Valdez

ESTUDIANTE CIV-502

Ing. Seila Claudia Ávila Sandoval