ANEXO 1 DOCUMENTOS DE RESPALDO

BOLETA DE PESAJE DE LA VOLQUETA USADA EN LA PRESENTE INVESTIGACIÓN

SOLICITUD DE AUTORIZACIÓN PARA EL ESTUDIO EN EL TRAMO SAN MATEO – SELLA MÉNDEZ

Nº 1 062 - 23

Señor:

Prof. Francisco Villarrubia Perales

Presente. -

REF: SOLICITUD DE PERMISO PARA REALIZAR EVALUACION MEDIANTE ENSAYOS NO DESTRUCTIVOS.

Distinguido profesor.

Mediante la presente me es gusto saludarle muy cordialmente y al mismo tiempo desearle éxito en las funciones que desempeña por el bien del desarrollo del departamento de Tarija.

Mi persona universitaria Cabrera Villca Mery, con R.U.: 67953 estudiante de la carrera de Ingeniería Civil de la Universidad Autónoma Juan Misael Saracho, que cursa la asignatura CIV – 502 Proyecto de Ingeniería Civil II (Mención Vías), aplicable a mi proyecto de grado titulado "APLICACIÓN DEL MODELO HOGG, EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE", me dirijo a su persona con la finalidad de solicitar PERMISO para la realización de los siguientes ensayos: VIGA BENKELMAN en el tramo San Mateo - Sella Méndez.

Asi mismo me comprometo a no dañar el tramo indicado.

Sin otro particular motivo y esperando que la presente solicitud favorablemente por su autoridad, le agradezco de antemano por su tiempo y consideración.

Atentamente:

Univ. Cabrera Villca Mery

R.U.67953

C.I,. 8505771PO

ANEXO 2 PLANILLAS DE ESTUDIO CON LA VIGA BENKELMAN

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE

UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: IDA (LADO DERECHO)

FECHA: 12 de OCTUBRE de 2023

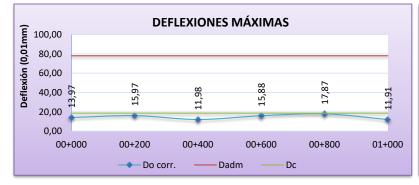
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

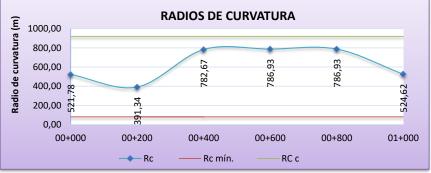
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVAL	UACION		TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
1	00+000	0	6	6	8	12	14	14,00	8,00	521	13,97	7,99	521,78	14,0	37,0	6,00
2	00+200	0	8	6	8	12	16	16,00	8,00	391	15,97	7,99	391,34	14,0	37,0	6,00
3	00+400	0	4	6	6	8	12	12,00	8,00	781	11,98	7,99	782,67	14,0	37,0	6,00
4	00+600	0	4	4	4	10	16	16,00	12,00	781	15,88	11,91	786,93	14,0	38,0	6,00
5	00+800	0	4	4	8	14	18	18,00	14,00	781	17,87	13,90	786,93	15,0	38,0	6,00
6	01+000	0	6	6	6	8	12	12,00	6,00	521	11,91	5,96	524,62	15,0	38,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 14,6 Ds = Desviaciòn standard = 2,4 t = constante de probabilidad al 95% = 1,645

t - constant	c de piet	abiliada di 5070 –
Dc =	18,54	x 10 ⁻² mm
Dadm =	77.99	x 10 ⁻² mm

12	12,00	0,00	321	11,71	3,70	32 1,02
NÚMERO	DE MUESTF	RAS		6	6	6
SUMATOR	RIA		87,59	55,73	3794,27	
PROMEDI	0:		14,60	9,29	632,38	
DEFLEXIÓ	N MINIMA		11,91	5,96	391,34	
DEFLEXIÓ	N MAXIMA			17,87	13,90	786,93
DESVIACION	ON ESTÁND	DAR		2,40	2,98	174,53
VARIANZA	١		5,74	8,87	30461,32	
COEFICIE	NTE DE VAF	₹.	16,41	32,06	27,60	
VALOR CA	ARACTERIS	TICO	18,54	14,19	919,48	

Rcmín =	80 m
RCc (m)=	919,48

Univ. Mery Cabrera Villca ESTUDIANTE CIV-502

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ **CARRIL: IDA (LADO DERECHO)** FECHA: 12 de OCTUBRE de 2023

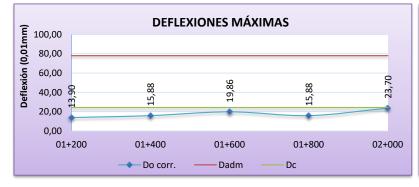
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

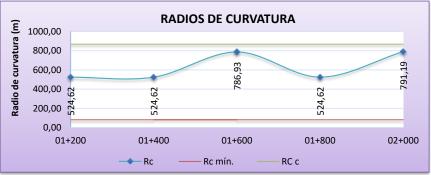
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVAL	UACION		TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
7	01+200	0	6	6	8	10	14	14,00	8,00	521	13,90	7,94	524,62	15,0	38,0	6,00
8	01+400	0	6	6	8	12	16	16,00	10,00	521	15,88	9,93	524,62	15,0	38,0	6,00
9	01+600	0	4	10	10	14	20	20,00	16,00	781	19,86	15,88	786,93	15,0	38,0	6,00
10	01+800	0	6	6	8	12	16	16,00	10,00	521	15,88	9,93	524,62	15,0	38,0	6,00
11	02+000	0	4	8	10	12	24	24,00	20,00	781	23,70	19,75	791,19	15,0	39,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 17,8 Ds = Desviación standard = 3,9 t = constante de probabilidad al 95% = 1,645

Dc =	24,30	x 10 ⁻² mm	
Dadm =	77,99	x 10 ⁻² mm	

24	24,00	20,00	781	23,70	19,75	791,19	
NÚMERO	DE MUESTI	RAS		5	5	5	
SUMATOR	RIA		89,22	63,43	3151,99		
PROMEDI	O:			17,84	12,69	630,40	
DEFLEXIÓ	AMINIMA			13,90	7,94	524,62	
DEFLEXIÓ	N MAXIMA			23,70	19,75	791,19	
DESVIACI	ON ESTÁNI	DAR		3,92	4,95	144,85	
VARIANZ/	4		15,39	24,46	20981,03		
COEFICIE	NTE DE VAI	₹.	21,99	38,98	22,98		
VALOR CA	ARACTERIS	TICO		24,30	20,82	868,67	

Rcmín =	80 m
RCc (m)=	868 67

Univ. Mery Cabrera Villca **ESTUDIANTE CIV-502**

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL

"LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE

UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: IDA (LADO DERECHO)

FECHA: 12 de OCTUBRE de 2023

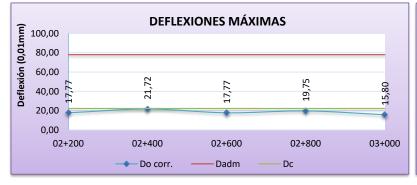
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

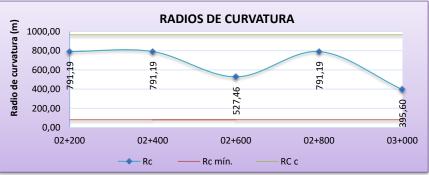
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVALI	UACION		TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
12	02+200	0	4	4	4	6	18	18,00	14,00	781	17,77	13,82	791,19	15,0	39,0	6,00
13	02+400	0	4	8	10	16	22	22,00	18,00	781	21,72	17,77	791,19	16,0	39,0	6,00
14	02+600	0	6	4	8	10	18	18,00	12,00	521	17,77	11,85	527,46	16,0	39,0	6,00
15	02+800	0	4	6	6	10	20	20,00	16,00	781	19,75	15,80	791,19	16,0	39,0	6,00
16	03+000	0	8	4	6	8	16	16,00	8,00	391	15,80	7,90	395,60	16,0	39,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 18,6 Ds = Desviaciòn standard = 2,3 t = constante de probabilidad al 95% = 1,645

Dc =	22,27	x 10 ⁻² mm	
Dadm =	77.99	x 10 ⁻² mm	

16	16,00	8,00	391	15,80	7,90	395,60	
NÚMERO	DE MUESTF	RAS		5	5	5	
SUMATOR	RIA			92,82	67,15	3296,64	
PROMEDI	0:			18,56	13,43	659,33	
DEFLEXIÓ	AMINIM N			15,80	7,90	395,60	
DEFLEXIÓ	N MAXIMA			21,72	17,77	791,19	
DESVIACI	ON ESTÁND	DAR		2,25	3,80	186,49	
VARIANZA	١			5,07	14,43	34777,04	
COEFICIE	NTE DE VAI	₹.		12,13	28,29	28,28	
VALOR CA	ARACTERIS	TICO		22,27	19,68	966,10	

Rcmín =	80 m
RCc (m)=	966.10

Univ. Mery Cabrera Villca ESTUDIANTE CIV-502

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE
UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: IDA (LADO DERECHO)

FECHA: 12 de OCTUBRE de 2023

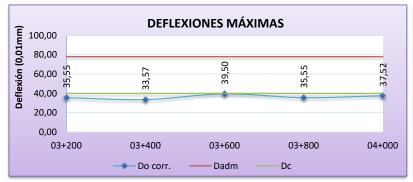
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

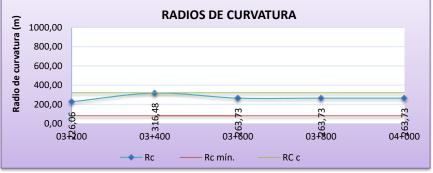
Equipo: Viga Benkelman

	V -			LECTURAS	S DEL DIAL			PARÁMETROS DE EVALUACION			PARAMETROS DE EVALUACION CORREGIDOS			TEMPERATURAS		Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
17	03+200	0	14	16	24	28	36	36,00	22,00	223	35,55	21,72	226,06	16,0	39,0	6,00
18	03+400	0	10	14	16	24	34	34,00	24,00	313	33,57	23,70	316,48	16,0	39,0	6,00
19	03+600	0	12	16	18	24	40	40,00	28,00	260	39,50	27,65	263,73	17,0	39,0	6,00
20	03+800	0	12	14	22	28	36	36,00	24,00	260	35,55	23,70	263,73	17,0	39,0	6,00
21	04+000	0	12	12	16	22	38	38,00	26,00	260	37,52	25,67	263,73	17,0	39,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 36,3 Ds = Desviaciòn standard = 2,3 t = constante de probabilidad al 95% = 1,645

-		p	
	Dc =	40,04	x 10 ⁻² mm
	Dadm =	77.99	x 10 ⁻² mm

38	38,00	26,00	260	37,52	25,67	263,73	
NÚMERO	DE MUESTF	RAS		5	5	5	
SUMATOR	RIA			181,69	122,44	1333,73	
PROMEDI	0:			36,34	24,49	266,75	
DEFLEXIĆ	AMINIM N		33,57	21,72	226,06		
DEFLEXIÓ	N MAXIMA			39,50	27,65	316,48	
DESVIACI	ON ESTÁND	DAR		2,25	2,25	32,23	
VARIANZA	١.		5,07	5,07	1039,05		
COEFICIE	NTE DE VAI	₹.	6,20	9,19	12,08		
VALOR CA	ARACTERIS	TICO	40,04	28,19	319,77		

Rcmín = 80 mRCc (m)= 319,77

Univ. Mery Cabrera Villca
ESTUDIANTE CIV-502

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE
UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: IDA (LADO DERECHO)

FECHA: 12 de OCTUBRE de 2023

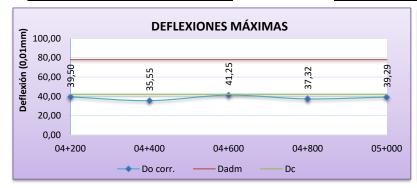
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

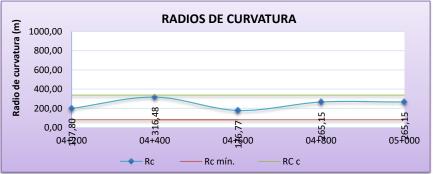
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMETROS DE EVALUACION			PARAMETROS DE EVALUACION CORREGIDOS			TEMPERATURAS		Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
22	04+200	0	16	4	8	12	40	40,00	24,00	195	39,50	23,70	197,80	17,0	39,0	6,00
23	04+400	0	10	4	8	10	36	36,00	26,00	313	35,55	25,67	316,48	17,0	39,0	6,00
24	04+600	0	18	6	8	14	42	42,00	24,00	174	41,25	23,57	176,77	17,0	40,0	6,00
25	04+800	0	12	4	6	6	38	38,00	26,00	260	37,32	25,54	265,15	17,0	40,0	6,00
26	05+000	0	12	8	10	10	40	40,00	28,00	260	39,29	27,50	265,15	17,0	40,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 38,6 Ds = Desviaciòn standard = 2,2 t = constante de probabilidad al 95% = 1,645

-		p	
	Dc =	42,19	x 10 ⁻² mm
	Dadm =	77.99	x 10 ⁻² mm

40	40,00	28,00	260	39,29	27,50	265,15
NÚMERO	DE MUESTF	RAS		5	5	5
SUMATOR	RIA			192,90	125,98	1221,35
PROMEDI	0:		38,58	25,20	244,27	
DEFLEXIÓ	N MINIMA		35,55	23,57	176,77	
DEFLEXIÓ	N MAXIMA			41,25	27,50	316,48
DESVIACI	ON ESTÁND	DAR		2,19	1,62	56,57
VARIANZA	١.		4,81	2,63	3200,54	
COEFICIE	NTE DE VAI	₹.		5,69	6,44	23,16
VALOR C	ARACTERIS	TICO	42,19	27,87	337,33	

Rcmín = 80 mRCc (m)= 337,33

Univ. Mery Cabrera Villca
ESTUDIANTE CIV-502

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL

"LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ CARRIL: VUELTA (LADO IZQUIERDO) FECHA: 13 de OCTUBRE de 2023

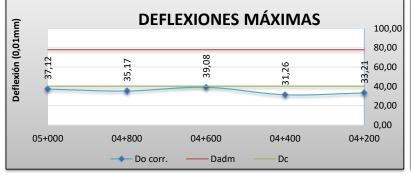
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

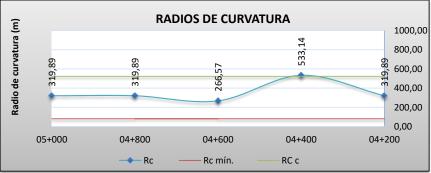
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMETROS DE EVALUACION			PARAMETROS DE EVALUACION CORREGIDOS			TEMPERATURAS		Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
27	05+000	0	10	16	18	24	38	38,00	28,00	313	37,12	27,35	319,89	18,0	41,0	6,00
28	04+800	0	10	14	22	28	36	36,00	26,00	313	35,17	25,40	319,89	18,0	41,0	6,00
29	04+600	0	12	10	20	22	40	40,00	28,00	260	39,08	27,35	266,57	18,0	41,0	6,00
30	04+400	0	6	16	24	26	32	32,00	26,00	521	31,26	25,40	533,14	18,0	41,0	6,00
31	04+200	0	10	18	22	28	34	34,00	24,00	313	33,21	23,45	319,89	18,0	41,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexion recuperable promedio = 35,2 Ds = Desviación standard = 3,1 t = constante de probabilidad al 95% = 1,645

-			
	Dc =	40,25	x 10 ⁻² mm
	Dadm =	77.99	x 10 ⁻² mm

	34	34,00	24,00	313	33,21	23,45	319,89
L		DE MUESTF	RAS	5	5	5	
ſ	SUMATOR	RIA			175,84	128,95	1759,38
I	PROMEDI	0:		35,17	25,79	351,88	
I	DEFLEXIĆ	N MINIMA		31,26	23,45	266,57	
ſ	DEFLEXIĆ	N MAXIMA			39,08	27,35	533,14
Ī	DESVIACI	ON ESTÁND	DAR		3,09	1,63	103,93
I	VARIANZA	١.			9,54	2,67	10801,21
I	COEFICIE	NTE DE VAI	₹.		8,78	6,34	29,54
I	VALOR CA	ARACTERIS	TICO	40,25	28,48	522,84	

Rcmín =	80 m
RCc (m)=	522 84

Univ. Mery Cabrera Villca **ESTUDIANTE CIV-502**

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE
UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: VUELTA (LADO IZQUIERDO)

FECHA: 13 de OCTUBRE de 2023

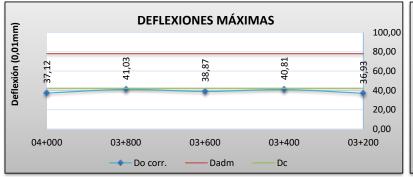
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

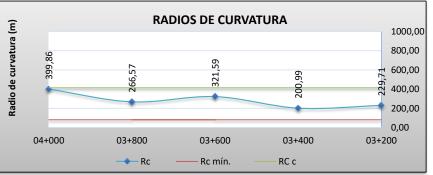
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMETROS DE EVALUACION			PARAMETROS DE EVALUACION CORREGIDOS			TEMPERATURAS		Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
32	04+000	0	8	14	22	26	38	38,00	30,00	391	37,12	29,31	399,86	18,0	41,0	6,00
33	03+800	0	12	18	24	30	42	42,00	30,00	260	41,03	29,31	266,57	18,0	41,0	6,00
34	03+600	0	10	14	26	34	40	40,00	30,00	313	38,87	29,15	321,59	19,0	42,0	6,00
35	03+400	0	16	18	20	26	42	42,00	26,00	195	40,81	25,27	200,99	19,0	42,0	6,00
36	03+200	0	14	16	24	30	38	38,00	24,00	223	36,93	23,32	229,71	19,0	42,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 39,0
Ds = Desviaciòn standard = 2,0
t = constante de probabilidad al 95% = 1,645

•	constants	uo p.o.	odomada di oo70
	Dc =	42,16	x 10 ⁻² mm
	Dadm =	77,99	x 10 ⁻² mm

38	38,00	24,00	223	36,93	23,32	229,71	L
NÚMERO	DE MUESTF	RAS	5	5	5	Ī	
SUMATOR	RIA			194,76	136,35	1418,72	l
PROMEDI	0:			38,95	27,27	283,74	l
DEFLEXIÓ	AMINIM N			36,93	23,32	200,99	l
DEFLEXIÓ	N MAXIMA			41,03	29,31	399,86	l
DESVIACION	ON ESTÁND	DAR		1,95	2,80	79,02	l
VARIANZA	١			3,81	7,86	6244,28	l
COEFICIE	NTE DE VAI	₹.		5,01	10,28	27,85	l
VALOR CA	ARACTERIS	TICO		42,16	31,88	413,73	l

Rcmín = 80 mRCc (m)= 413,73

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE
UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: VUELTA (LADO IZQUIERDO)

FECHA: 13 de OCTUBRE de 2023

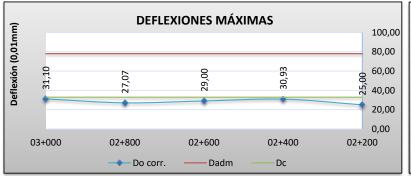
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

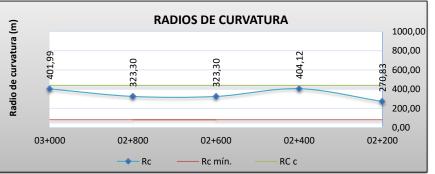
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVALI	JACION	PARAME	TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
37	03+000	0	8	16	24	32	32	32,00	24,00	391	31,10	23,32	401,99	19,0	42,0	6,00
38	02+800	0	10	14	22	26	28	28,00	18,00	313	27,07	17,40	323,30	19,0	43,0	6,00
39	02+600	0	10	16	22	26	30	30,00	20,00	313	29,00	19,33	323,30	20,0	43,0	6,00
40	02+400	0	8	12	22	28	32	32,00	24,00	391	30,93	23,20	404,12	20,0	43,0	6,00
41	02+200	0	12	18	20	24	26	26,00	14,00	260	25,00	13,46	270,83	20,0	44,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 28,6
Ds = Desviaciòn standard = 2,6
t = constante de probabilidad al 95% = 1,645

	Oc =	32,90	x 10 ⁻² mm	
Dad	m =	77,99	x 10 ⁻² mm	

26	26,00	14,00	260	25,00	13,46	270,83
NÚMERO	DE MUESTF	RAS		5	5	5
SUMATOR	RIA			143,09	96,71	1723,53
PROMEDI	0:		28,62	19,34	344,71	
DEFLEXIÓ	AMINIM N		25,00	13,46	270,83	
DEFLEXIÓ	N MAXIMA			31,10	23,32	404,12
DESVIACI	ON ESTÁND	DAR		2,60	4,16	57,41
VARIANZA	١		6,78	17,27	3296,31	
COEFICIE	NTE DE VAI	₹.		9,10	21,48	16,66
VALOR CA	ARACTERIS	TICO		32,90	26,18	439,15

Rcmín = 80 mRCc (m)= 439,15

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL

"LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ CARRIL: VUELTA (LADO IZQUIERDO) FECHA: 13 de OCTUBRE de 2023

"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

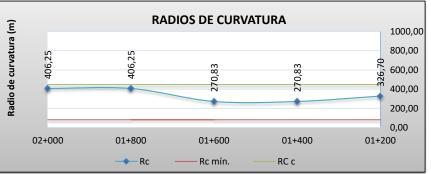
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVAL	UACION	PARAME	TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
42	02+000	0	8	12	18	22	24	24,00	16,00	391	23,08	15,38	406,25	21,0	44,0	6,00
43	01+800	0	8	14	16	20	28	28,00	20,00	391	26,92	19,23	406,25	21,0	44,0	6,00
44	01+600	0	12	12	20	24	30	30,00	18,00	260	28,85	17,31	270,83	21,0	44,0	6,00
45	01+400	0	12	16	20	18	26	26,00	14,00	260	25,00	13,46	270,83	22,0	44,0	6,00
46	01+200	0	10	14	22	26	34	34,00	24,00	313	32,52	22,96	326,70	22,0	45,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds

Donde:


D =Deflexion recuperable promedio = 27,3 Ds = Desviación standard = 3,6 t = constante de probabilidad al 95% = 1,645

-		p	
	Dc =	33,26	x 10 ⁻² mm
	Dadm =	77.99	x 10 ⁻² mm

34	34,00	24,00	313	32,52	22,96	326,70	L
NÚMERO	DE MUESTF	RAS		5	5	5	Ī
SUMATOR	RIA			136,37	88,34	1680,87	l
PROMEDI	0:			27,27	17,67	336,17	l
DEFLEXIÓ	N MINIMA			23,08	13,46	270,83	l
DEFLEXIÓ	N MAXIMA			32,52	22,96	406,25	l
DESVIACI	ON ESTÁND	DAR		3,64	3,66	67,91	l
VARIANZA	١			13,23	13,36	4612,44	l
COEFICIE	NTE DE VAI	₹.		13,34	20,69	20,20	l
VALOR CA	ARACTERIS	TICO		33,26	23,68	447,89	l

Rcmín =	80 m
RCc (m)=	447,89

Univ. Mery Cabrera Villca **ESTUDIANTE CIV-502**

DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL "LABORATORIO DE ASFALTOS"

PROYECTO DE INVESTIGACIÓN: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE
UBICACIÓN: TRAMO SAN MATEO - SELLA MÉNDEZ

CARRIL: VUELTA (LADO IZQUIERDO)

FECHA: 13 de OCTUBRE de 2023

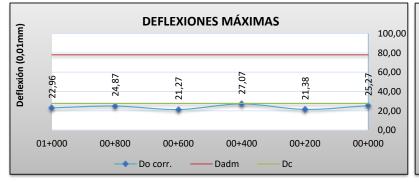
"EVALUACION ESTRUCTURAL DEL PAVIMENTO"

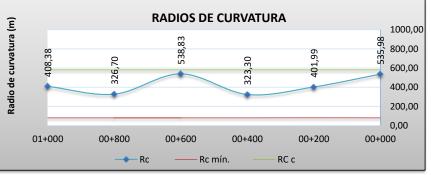
Equipo: Viga Benkelman

	PROGRESI			LECTURAS	S DEL DIAL			PARÁMET	ROS DE EVAL	UACION		TROS DE EVAI CORREGIDOS		TEMPER	ATURAS	Espesor
N°	VA	L-0cm	L-50cm	L-100cm	L-150cm	L-200cm	L-500cm	Do	D50	RC	Do'	D50'	RC'	Amb	Asfalto	asfalto
		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	(0.01 mm)	(0.01 mm)	(m)	(0.01 mm)	(0.01 mm)	(m)	°C	°C	(cm)
47	01+000	0	8	10	12	16	24	24,00	16,00	391	22,96	15,30	408,38	22,0	45,0	6,00
48	00+800	0	10	12	14	18	26	26,00	16,00	313	24,87	15,30	326,70	22,0	45,0	6,00
49	00+600	0	6	10	14	16	22	22,00	16,00	521	21,27	15,47	538,83	21,0	43,0	6,00
50	00+400	0	10	14	18	20	28	28,00	18,00	313	27,07	17,40	323,30	21,0	43,0	6,00
51	00+200	0	8	8	12	14	22	22,00	14,00	391	21,38	13,60	401,99	21,0	42,0	6,00
52	00+000	0	6	10	14	16	26	26,00	20,00	521	25,27	19,43	535,98	20,0	42,0	6,00

CÁLCULO DEFLEXIÓN CARACTERÍSTICA (Dc):

Dc = D + t * Ds


Donde:


D =Deflexiòn recuperable promedio = 23,8 Ds = Desviaciòn standard = 2,3 t = constante de probabilidad al 95% = 1,645

Dc =	27,62	x 10 ⁻² mm	
Dadm =	77,99	x 10 ⁻² mm	

	20	20,00	20,00	341	23,27	17,73	333,70
NI	ÚMERO	DE MUESTF	RAS	6	6	6	
SI	JMATOR	RIA		142,80	96,51	2535,18	
PI	ROMEDI	0:		23,80	16,09	422,53	
DI	EFLEXIÓ	N MINIMA			21,27	13,60	323,30
DI	EFLEXIÓ	N MAXIMA			27,07	19,43	538,83
DI	ESVIACI	ON ESTÁND	DAR		2,32	2,03	95,97
V	ARIANZA	١			5,39	4,14	9209,77
C	OEFICIE	NTE DE VAI	₹.		9,76	12,65	22,71
٧	ALOR CA	ARACTERIS	TICO		27,62	19,43	580,40

Rcmín =	80 m
RCc (m)=	580,40

Univ. Mery Cabrera Villca ESTUDIANTE CIV-502

ANEXO 3 PLANILLAS DE ESTUDIO CON EL MODELO DE HOGG

Carril: IDA (Derecho) Punto: N°1 Progresiva: 00+000 km

DATOS:									
	Do	0,1397	mm						
	D50	0,0799	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lφ	μ	А		В	С
	D50= DR	0,0799	mm						
	Do= Dφ	0,1397	mm		Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,572		10	0.5	2.46	60	0	0.592
	Α	2629		DR/D\$>0.7					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
David and actify	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	0.2004
Para evaluación			1	Н/Lф	μ		x		Y
rutinaria	μ	0,40		10	0.5		0.1	83	0.620
	Х	0,192	=	10	0.4		0.1	92	0.602
	Y	0,602]	000	Cualquier	Valor	0.1	80	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10; μ = 0.5: M=0.52 Para H/Lø = 10; μ = 0.4: M=0.48					
			-	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1.					
			4	Para $\mu = 0.4$; K =	1.633				
Conflicted and order		0.4600]	Para H/Lø = 10; j	$\mu = 0.4$ I =	= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10; j		= 0.1614			
			<u>-</u>	Para H/Lø = ∞; μ	ı = cualquier val	lor: I =	0.1925		
	N	10		N= 10 para ba	ase rocosa a	espes	or finito) (H/Lø=1))
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>									
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-				
	Dφ/DR	1,748		_ , ,					
Distancia del centro geométrico de la llanta	R5	58,605	cm	$R5 = R {[A(}$	$\frac{A^C - B}{D\phi/DR - 1}$	ı)] _c –	В		
			1	4					

Módulo de elasticidad de la Subrasante	Еф	2.266,44	Kg/cm²
	So/S	0,884	
	A/Lφ	0,342	
Longitud elástica	Lφ	31,433	cm
Distancia del centro geométrico de la llanta	R5	58,605	cm
	Dφ/DR	1,748	
contacto	Ar	10,748	cm
Radio de huella de		10.740	
CALCULOS:			

$$R5 = R \frac{A^{2} - B}{\left[A(D\phi/DR - 1)\right]^{c} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	41,327	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	43,004	cm	Z2= HE+0.6A ² /HE
	R2	45,927	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	355,849	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	356,214	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·		

Módulo de elasticidad equivalente del	E*	3.184,00	Kg/cm²	
pavimento	E*	312,24	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,1397	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	20,60	%	
de Subrasante	CBK	20,60	70	

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-13,78	cm
Espesor requerido de diseño	HD	18,06	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	31,84	cm
Relación modular	Ε*/Εφ	1,40	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°2 Progresiva: 00+200 km

DATOS:

DATOS:									
	Do	0,1597	mm						
	D50	0,0799	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	Η/Lφ	μ	A		В	С
	D50= DR	0,0799	mm	ТИСФ					
	Do= Dφ	0,1597	mm	00	Cualquier Valor	3.115	•	0	0.58
	DR/Dφ	0,500		10	0.5	2.460	,	0	0.59
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371.1		2	0.21
	С	0,548		10 DR/Dø>0.426	0.4	2.629	,	0	0.54
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283.4	4	3	0.200
			•	H/Lø	μ	- 	×	T	γ
Para evaluación rutinaria	μ 0,40	0.183	0	0.620					
	Х	0,192		10	0.4		0.192	0	.602
	Υ	0,602		00	Cualquier	Valor	0.180	+ 0	.525
			1						
Coeficiente numérico	М	0,48		Para H/Lø = 10					
			Ī	Para H/Lø = ∞;	$\mu = Cualquier$	valor: M=	0.44		
Coeficiente numérico	К	1,633		Para $\mu = 0.5$; K=1					
•			I	Para μ = 0.4; K =					
Cartain de la contra		0.4600		Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ 1:	= 0.1614			
			•	Para H/Lø = ∞; ı	u = cualquier va	lor: I = 0.	.1925		
[N	10		N= 10 para b	ase rocosa a	a espeso	r finito (H/I	Lø=10)	
Espesor del pavimento	НС	41	cm						
				_					
<u>CÁLCULOS:</u>			T	_	_				
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * 1}}$	_ p				
	Dφ/DR	1,999		_					
Distancia del centro	R5	50,034	cm	$R5 = R_{\overline{140}}$	$A^{C} - B$	1) c = 3	9		

CALCULOS:			
Radio de huella de	Ar	10,748	cm
contacto	5 / /55	1.000	
	Dφ/DR	1,999	ļ
Distancia del centro geométrico de la llanta	R5	50,034	cm
Longitud elástica	Lφ	26,176	cm
	A/Lφ	0,411	
	So/S	0,851	
Módulo de elasticidad de la Subrasante	Еф	2.291,95	Kg/cm²

$$RS = R \left[A(D\phi/DR - 1) \right]^{c} - B$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	39,286	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	41,051	cm	Z2= HE+0.6A ² /HE
	R2	44,103	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	301,279	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	301,710	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.766,00	Kg/cm²	
pavimento	E*	271,25	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,1597	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	20,84	%	
de Subrasante	CBR	20,04	/0	

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°3 Progresiva: 00+400 km

DATOS:									
	Do	0,1198	mm						
	D50	0,0799	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	Η/Lφ	μ	A		В	
	D50= DR	0,0799	mm						
	Do= Dø	0,1198	mm	∞ ∞	Cualquier Valor	3.11	5	0	0
	DR/Dφ	0,667		10 DR/Dø>0.7	0.5	2.46	o	0	0.
	Α	2629		10	0.7				-
	В	0		DR/D¢<0.7	0.5	371.	'	2	0.
	С	0,548	1	10 DR/Dφ>0.426	0.4	2.62	9	0	0
Para evaluación rutinaria	H/Lφ	10		10 DR/Dφ<0.426	0.4	2283	.4	3	0.
1			7	Н/Цф	μ		x		γ
Para evaluación rutinaria	μ	0,40		10	0.5	0.183		0	.620
	Х	0,192		10	0.4		0.192	0	.602
	Υ	0,602]	00	Cualquier	Valor	0.180	0	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
	<u> </u>		4	Para H/Lø = ∞;	•		=0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1					
			1	Para μ = 0.4; K =	: 1.633				
Cartain /		0.4500		Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10;		= 0.1614			
			-	Para H/Lø = ∞; μ	u = cualquier v a	lor: I = 0).1925		
	N	10]	N= 10 para b	ase rocosa a	espeso	or finito (H/L	_ø=10)	
Espesor del pavimento	НС	41	cm						
	<u> </u>		<u>.</u>						
<u>CÁLCULOS:</u>		,		_	_				
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	p				
	Dφ/DR	1,499							
Distancia del centro	R5	73.153	cm	$R5 = R_{14}$	$A^{C}-I$	3 3			

Módulo de elasticidad de la Subrasante	Еф	2.146,00	Kg/cm²
	So/S	0,920	
	A/Lφ	0,267	
Longitud elástica	Lφ	40,292	cm
Distancia del centro geométrico de la llanta	R5	73,153	cm
	Dφ/DR	1,499	
Radio de huella de contacto	Ar	10,748	cm
CALCULOS:			

$$R5 = R \frac{A}{[A(D\phi/DR - 1)]^c - B}$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

	HE	44,505	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,062	cm	Z2= HE+0.6A ² /HE
	R2	48,802	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	447,575	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	447,865	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	E* 3.765,00	
pavimento	E*	369,22	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1196	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	19,51	%
de Subrasante	CBK	15,51	76

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} \left(2(1 - \mu) \right) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-15,64	cm
Espesor requerido de diseño	HD	18,65	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	34,29	cm
Relación modular	Ε*/Εφ	1,75	
MEI GENEG.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°4 Progresiva: 00+600 km

DATOS:										
	Do	0,1588	mm							
	D50	0,1191	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	IO kg	g			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg	3			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	′cm²					
	R	50	cm	H/Lφ	μ	A		В		С
	D50= DR	0,1191	mm			3.1		0		0.584
	Do= Dφ	0,1588	mm		Cualquier Valor	3.1	15			0.584
	DR/Dφ	0,750		10 DR/Dφ>0.7	0.5	2.4	60	0		0.592
	Α	2629		10	0.5	371		2		0.219
	В	0		DR/Dφ<0.7	0.3	371				0.213
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	0		0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dø<0.426	0.4	228	3.4	3		0.2004
			-	Н/Lф	μ			x		Υ
Para evaluación rutinaria	μ	0,40		10	0.5			183		620
	Χ	0,192		10	0.4		0.	192	0.	602
	Υ	0,602			-			100		
	•		. _	00	Cualquier	valor	0.	180	0.	525
Coeficiente numérico	М	0,48		Para H/Lø = 10						
			•	Para H/Lø = ∞;	μ = Cualquier	valor: M	1=0.44			
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1	.5					
			Ą	Para μ = 0.4; K =	1.633					
Coeficiente numérico	ı	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614				
			_	Para H/Lø = ∞; μ	u = cualquier va	lor: I =	0.1925			
	N	10]	N= 10 para b	ase rocosa a	espes	or finit	to (H/Lø	=10)	
Espesor del pavimento	НС	41	cm							
CÁLCULOS:				_						
Radio de huella de	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * \eta}}$	-					
contacto	Dφ/DR	1,333		\" \" \"	-					
Distancia del centro geométrico de la llanta	R5	91,292	cm	$R5 = R {[A($	$\frac{A^C - B}{(D\phi/DR - 1)}$	1)] ^c –	B			
Longitud elástica	Lφ	51,284	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	C.R5			

Radio de huella de	_		
contacto	Ar	10,748	cm
	Dφ/DR	1,333	
Distancia del centro geométrico de la llanta	R5	91,292	cm
Longitud elástica	Lφ	51,284	cm
	A/Lφ	0,210	
	So/S	0,947	
Módulo de elasticidad de la Subrasante	Еф	1.309,88	Kg/cm²

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	47,954	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	49,400	cm	Z2= HE+0.6A ² /HE
	R2	51,964	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	560,921	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	561,153	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
	·	•		=

Módulo de elasticidad equivalente del	E*	2.875,00	Kg/cm²
pavimento	E*	281,94	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1588	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	11,91	%
de Subrasante	CBK	11,91	76

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-11,99	cm
Espesor requerido de diseño	HD	24,95	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	36,94	cm
Relación modular	Ε*/Εφ	2,19	
MEI GENEG.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°5 Progresiva: 00+800 km

DATOS:

DATOS:				_					
	Do	0,1787	mm						
	D50	0,1390	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg			
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	20 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	H/Lφ	μ	A		В	С
	D50= DR	0,139	mm						
	Do= Dφ	0,1787	mm	90	Cualquier Valor	3.115	•	0	0.584
	DR/Dφ	0,778		10	0.5	2.460)	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371.1	'	2	0.219
	С	0,548		10	0.4	2.629	,	0	0.548
Para evaluación rutinaria	H/Lф	10		DR/Dφ>0.426 10 DR/Dφ<0.426	0.4	2283.	4	3	0.2004
			ı				-	_	<u></u>
Para evaluación rutinaria	μ	0,40		10	ο.5		0.183	0	Y 0.620
	Х	0,192	=	10	0.4		0.192	<u> </u>	.602
	Υ	0,602	=		0.4		0.132	+	.002
			4	00	Cualquier	Valor	0.180	0.	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
			_	Para H/Lø = ∞;	μ = Cualquier	valor: M=	0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1					
			•	Para μ = 0.4; K =					
Conflicted and of the		0.4600		Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ 1:	= 0.1614			
			J	Para H/Lø = ∞; j	u = cualquier va	lor: I = 0	.1925		
	N	10]	N= 10 para b	ase rocosa a	a espeso	r finito (H/l	_ø=10)	
Espesor del pavimento	НС	41	cm]					
CÁLCILIOS.				_					
<u>CÁLCULOS:</u> Radio de huella de					-				
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * 1}}$	p				
	Dφ/DR	1,286		7					
Distancia del centro	R5	99,358	cm	$R5 = R_{\overline{140}}$	$A^{C} - B$	1) k = 1	B		

CALCULUS:			
Radio de huella de	Ar	10,748	cm
contacto	/ "	10,7 10	0
	Dφ/DR	1,286	
Distancia del centro geométrico de la llanta	R5	99,358	cm
Longitud elástica	Lφ	56,163	cm
	A/Lφ	0,191	
	So/S	0,956	
Módulo de elasticidad de la Subrasante	Еф	1.072,70	Kg/cm²

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	49,375	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	50,779	cm	Z2= HE+0.6A ² /HE
	R2	53,277	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	611,120	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	611,333	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.570,00	Kg/cm²
pavimento	E*	252,03	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1787	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	9,75	%
de Subrasante	CBK	3,/5	70

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°6 Progresiva: 01+000 km

DATOS:									
	Do	0,1191	mm						
	D50	0,0596	mm	1					
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	;		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	′cm²				
	R	50	cm	H/Lφ	μ	А		В	С
	D50= DR	0,0596	mm						
	Do= Dφ	0,1191	mm	00	Cualquier Valor	3.11	15	0	0.58
	DR/Dφ	0,500		10 DR/Dø>0.7	0.5	2.46	50	0	0.59
	А	2629		10					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.21
Dana avalvasi 4 a	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.54
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.20
Para evaluación]	Н/Lф	μ		х		Υ
rutinaria	μ	0,40		10	0.5		0.183	3	0.620
	Χ	0,192		10	0.4		0.192	2	0.602
	Υ	0,602		00	Cualquier	Valor	0.180	,	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
Coeficiente numérico	К	1,633		Para H/Lø = ∞; Para μ = 0.5; K=1	.5	valor: M	=0.44		
Coeficiente numérico	I	0,1689		Para $\mu = 0.4$; K = Para H/L $\phi = 10$; Para H/L $\phi = 10$; Para H/L $\phi = \infty$; μ	$\mu = 0.4$ I: $\mu = 0.5$ I:	= 0.1689 = 0.1614	0.1925		
	N	10]	N= 10 para b				(H/Lø=10)
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>				_					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	- - p				
	Dφ/DR	1,998		-					
Distancia del centro geométrico de la llanta	R5	50,046	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi/DR - 1)}$	ı)] _c –	\overline{B}		

CALCULOS:			
Radio de huella de	Ar	10,748	cm
contacto	741	10,740	CIII
	Dφ/DR	1,998	
Distancia del centro geométrico de la llanta	R5	50,046	cm
Longitud elástica	Lφ	26,183	cm
	A/Lφ	0,410	
	So/S	0,851	
Módulo de elasticidad de la Subrasante	Еф	3.072,60	Kg/cm²

$$RS = R \frac{A(D\phi/DR - 1) - B}{A(D\phi/DR - 1) - B}$$

$$L\phi = \frac{Y.RS + \sqrt{(Y.RS)^2 - 4.A.X.RS}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	39,282	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	41,047	cm	Z2= HE+0.6A ² /HE
	R2	44,099	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	301,347	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	301,778	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·	·	

Módulo de elasticidad equivalente del	E*	3.707,00	Kg/cm²
pavimento	E*	363,53	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1191	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	27,93	%
de Subrasante	CBK	27,95	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°7 Progresiva: 01+200 km

DATOS:									
	Do	0,1390	mm						
	D50	0,0794	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	g		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S		
Presión de inflado	р	80	psi	ó 5,62456 Kg/d	cm²				
	R	50	cm	H/Lφ	μ	А		В	С
	D50= DR	0,0794	mm						
	Do= Dφ	0,139	mm		Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,571		10	0.5	2.46	60	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dø<0.7	0.5	371	.1	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.63	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	0.2004
Para evaluación			1	Н/Сф	μ		х		Y
rutinaria	μ	0,40		10	0.5		0.18	3	0.620
	Χ	0,192		10	0.4		0.19	2	0.602
	Υ	0,602		00	Cualquier	Valor	0.18	0	0.525
Coeficiente numérico	M	0,48		Para H/Lø = 10;	μ = 0.5: M=0.	52			
]	Para H/Lø = 10;					
Coeficiente numérico	К	1,633		Para H/Lø = ∞ ; Para μ = 0.5; K=1.		valor: M	l=0.44		
coenciente numerico		1,000		Para μ = 0.4; K =	1.633				
]	Para H/Lø = 10; μ	u = 0.4 I =	= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10; μ Para H/Lø = ∞; μ		= 0.1614	0.1005		
1	N	10	1					// // ~ 1	0)
	IN	10	J	N= 10 para ba	ase rocosa a	espes	or finito	(H/LØ=1	0)
Espesor del pavimento	НС	41	cm						
CÁLCULOS:									
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$					
	Dφ/DR	1,751		-					
Distancia del centro geométrico de la llanta	R5	58,511	cm	$R5 = R {[A($	$\frac{A^C - B}{D\phi/DR - 1}$	ı)] _c –	B		

CALCULUS:			
Radio de huella de	Ar	10,748	cm
contacto	Ai	10,740	CIII
	Dφ/DR	1,751	
Distancia del centro geométrico de la llanta	R5	58,511	cm
Longitud elástica	Lφ	31,375	cm
	A/Lφ	0,343	
	So/S	0,884	
Módulo de elasticidad de la Subrasante	Еф	2.281,24	Kg/cm²

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	41,311	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	42,989	cm	Z2= HE+0.6A ² /HE
	R2	45,912	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	355,258	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	355,624	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	3.201,00	Kg/cm²		
pavimento	E* 313,91		Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,1390	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	20,74	%		
de Subrasante	CBK	20,74	70		

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

Relación modular E*/E\(\phi \) 1,40 Espesor de pavimento HEQ 31,83 cm Carga equivalente N18 1.570.500 klb Espesor requerido de diseño HD 17,99 cm	Espesor del refuerzo de material granular	DH	-13,84	cm
Espesor de pavimento HEQ 31,83 cm	· ·	HD	17,99	cm
	Carga equivalente	N18	1.570.500	klb
Relación modular E*/Εφ 1,40	Espesor de pavimento	HEQ	31,83	cm
	Relación modular	Ε*/Εφ	1,40	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°8 Progresiva: 01+400 km

DATOS:									
	Do	0,1588	mm						
	D50	0,0993	mm	1					
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	5		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	0 kg	3		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lø	μ	А		В	С
	D50= DR	0,0993	mm						
	Do= Dφ	0,1588	mm	00	Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,625		10	0.5	2.46	50	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/D¢<0.7	0.5	371	.1	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.2004
Para evaluación			1	Н/Lф	μ		х		Υ
rutinaria	μ	0,40		10	0.5	0.5 0.183 0.620			0.620
	Χ	0,192		10	0.4		0.19	92	0.602
	Y	0,602		00	Cualquier	Cualquier Valor 0.1		во	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10 Para H/Lø = 10					
			•	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	К	1,633		Para $\mu = 0.5$; K=1					
			1	Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	1	0,1689		Para H/Lø = 10;		= 0.1614			
			J	Para H/Lø = ∞; μ	ı = cualquier val	or : I =	0.1925		
	N	10]	N= 10 para b	ase rocosa a	espes	or finito	(H/Lø=1	0)
]					
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>									
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-				
	Dφ/DR	1,599		-					
Distancia del centro geométrico de la llanta	R5	66,201	cm	$R5 = R {[A($	$\frac{A^C - B}{D\phi/DR - 1}$)]c –	В		

CALCULOS:			
Radio de huella de	Ar	10,748	cm
contacto	ļ	·	
	Dφ/DR	1,599	
Distancia del centro geométrico de la llanta	R5	66,201	cm
Longitud elástica	Lφ	36,065	cm
	A/Lφ	0,298	
	So/S	0,905	
Módulo de elasticidad de la Subrasante	Еф	1.779,19	Kg/cm²

$$R5 = R \frac{A(D\phi/DR - 1) - B}{A(D\phi/DR - 1) - B}$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{I.\phi.D\phi} S_o / S$$

	HE	43,018	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,629	cm	Z2= HE+0.6A ² /HE
	R2	47,452	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	403,839	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	404,161	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.819,00	Kg/cm²
pavimento	E*	E* 276,45	
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1588	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	16 17	%
de Subrasante	CBK	16,17	76

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°9 Progresiva: 01+600 km

DATOS:									
	Do	0,1986	mm						
	D50	0,1588	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg			
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	;		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lφ	μ	А		В	
	D50= DR	0,1588	mm						
	Do= Dφ	0,1986	mm	90	Cualquier Valor	3.11	15	0	0.5
	DR/Dφ	0,800		10	0.5	2.46	30	0	0.5
	Α	2629		DR/Dφ>0.7	0-				-
	В	0	1	DR/Dφ<0.7	0.5	371.	.1	2	0.2
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.5
Para evaluación rutinaria	H/Lф	10		10 DR/Dø<0.426	0.4	2283	3.4	3	0.20
			=	Н/Lф	μ		х		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.18	3	0.620
	Χ	0,192		10	0.4		0.19	2	0.602
	Y	0,602]	00	Cualquier	Valor	0.18	0	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10 Para H/Lø = 10	; μ = 0.4: M=0.	48			
Coeficiente numérico	К	1,633		Para H/L $\phi = \infty$; Para $\mu = 0.5$; K=1 Para $\mu = 0.4$; K =	.5	valor: M	=0.44		
Coeficiente numérico	I	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10; Para H/L \emptyset = ∞ ; μ	$\mu = 0.5$ I:	= 0.1689 = 0.1614 lor: I = 0	0.1925		
	N	10]	N= 10 para ba	ase rocosa a	espeso	or finito	(H/Lø=10)
Espesor del pavimento	НС	41	cm]					
<u>CÁLCULOS:</u>				<u> </u>					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-				
_	Dφ/DR	1,251		_					
Distancia del centro geométrico de la llanta	R5	106,733	cm	$R5 = R {[A($	$\frac{A^C - B}{D\phi/DR - B}$	ı)] _c –	В		
Langitud alástica	1.4	60.630	cm	Y.R5+	$-\sqrt{(Y.R5)^2}$	-4.A.X	.R5		

Módulo de elasticidad de la Subrasante	Еф	900,56	Kg/cm²
	So/S	0,963	
	A/Lφ	0,177	
Longitud elástica	Lφ	60,620	cm
Distancia del centro geométrico de la llanta	R5	106,733	cm
	Dφ/DR	1,251	
contacto	Ai	10,746	cm
Radio de huella de	Ar	10,748	cm
CALCULUS:			

$$R5 = R \frac{A^{c} - B}{\left[A(D\phi/DR - 1)\right]^{c} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	50,614	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	51,983	cm	Z2= HE+0.6A ² /HE
	R2	54,425	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	656,921	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	657,118	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_		•

Módulo de elasticidad equivalente del	E*	2.324,00	Kg/cm²	
pavimento	E*	227,91	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,1986	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	8,19	%	
de Subrasante	CBK	8,19	70	

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°10 Progresiva: 01+800 km

DATOS:									
	Do	0,1588	mm						
	D50	0,0993	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg			
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	20 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	H/Lø	μ	А		В	С
	D50= DR	0,0993	mm						
	Do= Dφ	0,1588	mm	00	Cualquier Valor	3.11	5	0	0.584
	DR/Dφ	0,625		10	0.5	2.46	0	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371.	'	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	9	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	.4	3	0.200
ı			7	Н/Lф	щ		x		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183	0	.620
	Χ	0,192		10	0.4		0.192	0	.602
	Υ	0,602]	00	Cualquier	Valor	0.180	0	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
Coeficiente numérico	K	1,633		Para H/LØ = ∞; Para μ = 0.5; K=1	.5	valor: M=	=0.44		
			• -	Para μ = 0.4; K =					
Coeficiente numérico	1	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689			
			1	Para H/Lø = ∞; j	u = cualquier v a	lor: I = 0	.1925		
[N	10]	N= 10 para b	ase rocosa a	a espeso	or finito (H/	′Lø=10)	
Espesor del pavimento	НС	41	cm						
CÁLCULOS:			•	_					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * t}}$	_ _ p				
	Dφ/DR	1,599		_					
Distancia del centro	R5	66,201	cm	$R5 = R \frac{1}{A}$	$A^{C} - B$	3 1) c -	B		

CALCULOS:			
Radio de huella de	Ar	10,748	cm
contacto	ļ	·	
	Dφ/DR	1,599	
Distancia del centro geométrico de la llanta	R5	66,201	cm
Longitud elástica	Lφ	36,065	cm
	A/Lφ	0,298	
	So/S	0,905	
Módulo de elasticidad de la Subrasante	Еф	1.779,19	Kg/cm²

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

	HE	43,018	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,629	cm	Z2= HE+0.6A ² /HE
	R2	47,452	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	403,839	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	404,161	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.819,00	Kg/cm²	
pavimento	E*	276,45	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,1588	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	16 17	%	
de Subrasante	CBK	16,17	/0	

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°11 Progresiva: 02+000 km

DATOS:									
	Do	0,2370	mm]					
	D50	0,1975	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	5		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	Į.		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	Kg/cm²				
	R	50	cm	Η/Lφ	μ	А		В	С
	D50= DR	0,1975	mm						
	Do= Dφ	0,237	mm	00	Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,833		10	0.5	2.46	50	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
,	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación rutinaria	H/Lφ	10		10 DR/Dφ<0.426	0.4	228	3.4	3	0.2004
Para evaluación			1	Н/Lф	μ		х		Υ
rutinaria	μ	0,40		10	0.5		0.183 0.620		0.620
	Χ	0,192		10	0.4		0.19	2	0.602
	Υ	0,602	_	00	Cualquier	Valor	0.18	0	0.525
			7						
Coeficiente numérico	М	0,48		Para H/L ϕ = 10; μ = 0.5: M=0.52 Para H/L ϕ = 10; μ = 0.4: M=0.48					
			1	Para H/Lø = 10;			-0.44		
0 5	1/	4 622	1	Para μ = 0.5; K=1.		valor. ivi	-0.44		
Coeficiente numérico	К	1,633		Para $\mu = 0.3$; $K = 1$					
			7	Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1614			
	•	0,2003]	Para H/Lø = ∞; μ			0.1925		
		10	1						
	N	10		N= 10 para ba	ase rocosa a	espes	or finito	(H/Lø=10)
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>									
Radio de huella de	•	40.740		. P'	-				
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * r}}$,				
	Dφ/DR	1,200		- ·					
Distancia del centro geométrico de la llanta	R5	120,783	cm	$R5 = R {[A(}$	$\frac{A^C - B}{D\phi/DR - 1}$	ı)]c –	\overline{B}		
			1	4					

Módulo de elasticidad de la Subrasante	Еф	669,18	Kg/cm²	
	So/S	0,973		
	A/Lφ	0,156		
Longitud elástica	Lφ	69,105	cm	
Distancia del centro geométrico de la llanta	R5	120,783	cm	
	Dφ/DR	1,200		
contacto	Ar	10,748	cm	
Radio de huella de		10.740		
CALCULOS:				

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

				_
	HE	52,858	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	54,170	cm	Z2= HE+0.6A ² /HE
	R2	56,518	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	743,997	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	744,172	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.967,00	Kg/cm²
pavimento	E*	192,90	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2370	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6.00	%
de Subrasante	CBK	6,08	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°12 Progresiva: 02+200 km

DATOS:											
	Do	0,1777	mm								
	D50	0,1382	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²						
	R	50	cm	Η/Lφ	μ	A		В	3	С	_
	D50= DR	0,1382	mm		Cualquier Valor	3.1		0		0.58	
	Do= Dø	0,1777	mm	900	Cualquier Valor	0.1				0.50	_
	DR/Dφ	0,778		10 DR/Dφ>0.7	0.5	2.4	60	0)	0.59	12
	А	2629		10	0.5	371	.1	2		0.21	9
	В	0		DR/Dø<0.7							
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	0)	0.54	8
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	1	0.20	04
			1	Н/Lф	щ			x		Υ	
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	.620	
	Χ	0,192		10	0.4		0.	192	0.	.602	
	Υ	0,602		00	Cualquier	Valor	0.	180	0	.525	
			1								
Coeficiente numérico	М	0,48		Para H/Lø = 10	$\mu = 0.5$: M=0.	52					
]	Para H/Lø = 10	$\mu = 0.4$: M=0.	48					
			1	Para H/Lø = ∞;	μ = Cualquier	valor: M	1=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
			1	Para H/Lø = 10;		= 0.1689					
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I:	= 0.1614					
	NI NI	10	1	Para H/Lø = ∞; ¡							
	N	10	J	N= 10 para b	ase rocosa a	ı espes	or finit	to (H/La	ಶ=10)		
Espesor del pavimento	НС	41	cm								
CÁLCULOS:				_							
Radio de huella de	۸۰	10 749	cm.	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_						
contacto	Ar	10,748	cm	$\pi_r - \sqrt{\pi * t}$	p						
	Dφ/DR	1,286		=							
Distancia del centro geométrico de la llanta	R5	99,319	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi/DR - 1)}$	ı)]c –	В				
Longitud elástica	Lφ	56,139	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
	A/Lф	0,191		-	-						
	i	i	1								

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,956

1.079,15

Kg/cm²

				_
	HE	49,360	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	50,764	cm	Z2= HE+0.6A ² /HE
	R2	53,263	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	610,867	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	611,080	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_	•	•

Módulo de elasticidad equivalente del	E*	2.583,00	Kg/cm²
pavimento	E*	253,31	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1777	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	9,81	%
de Subrasante	CDK	3,61	/0

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Punto: N°13 Carril: IDA (Derecho) Progresiva: 02+400 km

DATOS:									
	Do	0,2172	mm	1					
	D50	0,1777	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	Ş		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	:0 kg	3		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lø	μ	А		В	С
	D50= DR	0,1777	mm						
	Do= Dø	0,2172	mm	∞	Cualquier Valor	3.11	15	0	0.58
	DR/Dφ	0,818		10	0.5	2.46	50	0	0.59
	A	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.21
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.54
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.20
Para evaluación			1	Н/Lф	μ		х		Υ
rutinaria	μ	0,40		10	0.5		0.18	33	0.620
	Χ	0,192		10	0.4		0.19	92	0.602
	Y	0,602]	00	Cualquier	Valor	0.18	30	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
Coeficiente numérico	К	1,633		Para H/LØ = ∞ ; Para μ = 0.5; K=1 Para μ = 0.4; K =	.5	valor: M	=0.44		
Coeficiente numérico	I	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10; Para H/L \emptyset = ∞ ;	μ = 0.5	= 0.1689	0.4005		
	N	10]	N= 10 para b				(H/Lø=1	0)
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>									
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * \eta}}$	- p				
	Dφ/DR	1,222		_					
Distancia del centro geométrico de la llanta	R5	113,989	cm	$R5 = R {[A($	$\frac{A^C - B}{(D\phi/DR - 1)}$	i)] _c –	В		

CALCULUS:			
Radio de huella de	Ar	10,748	cm
contacto	Λ.	10,740	Citi
	Dφ/DR	1,222	
Distancia del centro geométrico de la llanta	R5	113,989	cm
Longitud elástica	Lφ	65,003	cm
	A/Lφ	0,165	
	So/S	0,969	
Módulo de elasticidad de la Subrasante	Еф	772,50	Kg/cm²

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	51,792	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	53,130	cm	Z2= HE+0.6A ² /HE
	R2	55,522	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	701,918	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	702,103	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.136,00	Kg/cm²
pavimento	E*	209,47	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2172	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	7.02	%
de Subrasante	CBK	7,02	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-5,83	cm
Espesor requerido de diseño	HD	34,07	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	39,90	cm
Relación modular	Ε*/Εφ	2,77	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°14 Progresiva: 02+600 km

DATOS:									
	Do	0,1777	mm	1					
	D50	0,1185	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	Į.		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lφ	μ	А		В	С
	D50= DR	0,1185	mm		Cualquier Valor	3.11	15	0	0.584
	Do= Dφ	0,1777	mm	10	Cualquier Valor	0.11			0.504
	DR/Dφ	0,667		DR/Dφ>0.7	0.5	2.46	50	0	0.592
	А	2629		10	0.5	371	.1	2	0.219
	В	0		DR/Dφ<0.7					
	С	0,548		DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.2004
		T	1	Н/Lф	щ		х		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183	3	0.620
	Χ	0,192		10	0.4		0.192	2	0.602
	Υ	0,602		00	Cualquier	Valor	0.180	,	0.525
		r	1	-	Caarquio	• • • • • • • • • • • • • • • • • • • •	01101		
Coeficiente numérico	M	0,48		Para H/Lø = 10 Para H/Lø = 10					
			1	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1					
			•	Para μ = 0.4; K =					
Coeficiente numérico	1	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10;		= 0.1689			
			4	Para H/Lø = ∞; μ	ı = cualquier v a	lor: I =	0.1925		
	N	10		N= 10 para b	ase rocosa a	espes	or finito	(H/Lø=10)
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>									
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-				
	Dφ/DR	1,500		_					
Distancia del centro geométrico de la llanta	R5	73,137	cm	$R5 = R {[A($	$\frac{A^C - B}{D\phi/DR - B}$	ı)]c –	В		
Longitud elástica	Lφ	40,282	cm	$L\phi = \frac{Y.R5 + 1}{1}$	$-\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5		

Módulo de elasticidad de la Subrasante	Еф	1.447,08	Kg/cm²
	So/S	0,920	
	A/Lф	0,267	
Longitud elástica	Lφ	40,282	cm
Distancia del centro geométrico de la llanta	R5	73,137	cm
	Dφ/DR	1,500	
Radio de huella de contacto	Ar	10,748	cm
- II I I I			I

$$R5 = R \frac{A^{3} - B}{\left[A(D\phi/DR - 1)\right]^{2} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				-
	HE	44,471	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,029	cm	Z2= HE+0.6A ² /HE
	R2	48,771	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	447,442	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	447,732	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	2.533,00	Kg/cm²	
pavimento	E*	248,40	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,1777	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	13,16	%	
de Subrasante	CBK	13,16	70	

$$\begin{split} D_0 &= \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-10,73	cm
Espesor requerido de diseño	HD	23,53	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	34,26	cm
Relación modular	Ε*/Εφ	1,75	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

HD = CBR
$$^{-0.59}$$
 (4.63+6.09 log N₁₈)

No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°15 Progresiva: 02+800 km

DATOS:										
	Do	0,1975	mm	1						
	D50	0,1580	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²					
	R	50	cm	H/Lφ	μ	А		E	3	С
	D50= DR	0,158	mm			3.11		0		0.58
	Do= Dφ	0,1975	mm	900	Cualquier Valor	3.1		`	<u> </u>	0.50
	DR/Dφ	0,800		10 DR/Dø>0.7	0.5	2.46	60	٥)	0.59
	Α	2629		10	0.5	371	.1	2	,	0.21
	В	0		DR/Dφ<0.7	0.0					0.21
	С	0,548		10 DR/Dφ>0.426	0.4	2.63	29	ď)	0.54
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.20
Dana avalvasića			1	Н/Lф	μ			x		Y
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	620
	Χ	0,192		10	0.4		0.	192	0.	602
l	Y	0,602]	00	Cualquier	Valor	0.	180	0.	525
Coeficiente numérico	М	0,48		Para H/Lø = 10						
Coeficiente numérico	К	1,633		Para H/LØ = ∞ ; Para μ = 0.5; K=1 Para μ = 0.4; K =	1.5	valor: M	l=0.44			
Coeficiente numérico	1	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10; Para H/L \emptyset = ∞ ;	$\mu = 0.5$ I:	= 0.1689 = 0.1614	0 1925			
[N	10]	N= 10 para b					ø=10)	
Espesor del pavimento	НС	41	cm							
<u>CÁLCULOS:</u>				1						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$						
	Dφ/DR	1,250		_ ,						
Distancia del centro geométrico de la llanta	R5	106,881	cm	$R5 = R {[A]}$	$\frac{A^{C}-B}{(D\phi/DR-1)}$	ı)] _c –	В			
Longitud elástica	Lφ	60,709	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5			
·	. // !	0.477		_	2					

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

A/Lφ

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,177

0,963

904,37

Kg/cm²

				_
	HE	50,637	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	52,005	cm	Z2= HE+0.6A ² /HE
	R2	54,447	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	657,833	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	658,031	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	E* 2.337,00	
pavimento	E* 229,18		Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1975	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	0 22	%
de Subrasante	CBK	8,22	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°16 Progresiva: 03+000 km

DATOS:

DATOS:				_					
	Do	0,1580	mm						
	D50	0,0790	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	g		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lφ	μ	A		В	С
	D50= DR	0,079	mm			3.11		0	0.584
	Do= Dφ	0,158	mm		Cualquier Valor	3.1	15		0.584
	DR/Dφ	0,500		10 DR/Dø>0.7	0.5	2.46	50	o	0.592
	Α	2629		10	0.5	371		2	0.219
	В	0		DR/Dφ<0.7	0.5	3/1	.'	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dø<0.426	0.4	228	3.4	3	0.200
			1	Н/Lф	μ		х		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183		0.620
	Χ	0,192		10	0.4		0.192	:	0.602
	Υ	0,602		00	Cualquier	Valor	0.180	,	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
			1	Para H/Lø = ∞;		valor: M	l=0.44		
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1					
			1	Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	1	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I :	= 0.1614			
			J	Para H/Lø = ∞; μ	u = cualquier va	lor: I =	0.1925		
	N	10]	N= 10 para b	ase rocosa a	espes	or finito ((H/Lø=10))
Espesor del pavimento	НС	41	cm						
CÁLCULOS:				_					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * 1}}$	_ p				

<u>CALCULOS:</u>			
Radio de huella de contacto	Ar	10,748	cm
	Dφ/DR	2,000	
Distancia del centro geométrico de la llanta	R5	50,000	cm
Longitud elástica	Lφ	26,155	cm
	A/Lφ	0,411	
	So/S	0,851	
Módulo de elasticidad de la Subrasante	Еф	2.318,05	Kg/cm²

$$A_r = \sqrt{\frac{P'}{\pi * p}}$$

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	39,275	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	41,039	cm	Z2= HE+0.6A ² /HE
	R2	44,092	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	301,056	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	301,488	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_		-

Módulo de elasticidad equivalente del	E*	2.795,00	Kg/cm²
pavimento	E*	274,10	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,1580	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	21,07	%
de Subrasante	CBK	21,07	70

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica

Carril: IDA (Derecho) Punto: N°17 Progresiva: 03+200 km

DATOS:

<u>DA103.</u>				_					
	Do	0,3555	mm						
	D50	0,2172	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	Ţ.		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	Ţ		
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²				
	R	50	cm	H/Lφ	μ	A		В	C
	D50= DR	0,2172	mm	7024	μ				
	Do= Dφ	0,3555	mm	∞	Cualquier Valor	3.1	15	0	0.584
	DR/Dφ	0,611		10 DR/Dø>0.7	0.5	2.4	50	0	0.592
	Α	2629		10	0.5	074		2	0.040
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	0	0.548
Para evaluación	ш/тж	10		10	0.4	228		3	0.2004
rutinaria	H/Lф	10		DR/D _{\$} <0.426	0.4	220	3.4		0.200
Para evaluación			1	Н/Lф	μ		х		Υ
rutinaria	μ	0,40		10	0.5		0.183	3	0.620
	Χ	0,192		10	0.4		0.192	.	0.602
	Υ	0,602			Cualquiar	Molar	0.180		0.525
			•	00	Cualquier	valor	0.180		0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
			•	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1	.5				
Coefficiente numenco	٨	1,033		Para μ = 0.4; K =					
		T	1			0.1650			
Coeficiente numérico	ı	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614			
cocdicince manneried	'	0,1003		Para H/Lø = 10; Para H/Lø = ∞; μ			0 1925		
,		I	1	Fara H/LØ = ∞; ;	u = cualquier va	ior: I=	0.1925		
	N	10	J	N= 10 para b	ase rocosa a	espes	or finito ((H/Lø=10))
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>				_					
Radio de huella de				P'	_				

CALCULOS:			
Radio de huella de contacto	Ar	10,748	cm
Contacto	Dφ/DR	1,637	
Distancia del centro geométrico de la llanta	R5	64,032	cm
Longitud elástica	Lφ	34,744	cm
	A/Lф	0,309	
	So/S	0,900	
Módulo de elasticidad de la Subrasante	Еф	820,01	Kg/cm²

$$A_r = \sqrt{\frac{P'}{\pi * p}}$$

$$R5 = R \frac{A^{3} - B}{\left[A(D\phi/DR - 1)\right]^{2} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	42,547	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,176	cm	Z2= HE+0.6A ² /HE
	R2	47,026	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	390,168	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	390,501	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		•	•	•

Módulo de elasticidad equivalente del	E*	1.257,00	Kg/cm²
pavimento	E*	123,27	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3555	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	7.45	%
de Subrasante	CBK	7,45	76

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	0,11	cm
Espesor requerido de diseño	HD	32,89	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	32,78	cm
Relación modular	Ε*/Εφ	1,53	
ILLI OLIZO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

HD = CBR
$$^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEQ$$

Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°18 Progresiva: 03+400 km

DATOS:									
	Do	0,3357	mm						
	D50	0,2370	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg	g		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	20 kg	В		
Presión de inflado	р	80	psi	ó 5,62456 Kg	/cm²				
	R	50	cm	H/Lφ	μ	A		В	
	D50= DR	0,237	mm						
	Do= Dφ	0,3357	mm	90	Cualquier Valor	3.11	15	0	0.5
	DR/Dφ	0,706		10 DR/Dφ>0.7	0.5	2.46	60	o	0.5
	Α	2629		10	0.5	074			-
	В	0		DR/Dø<0.7	0.5	371	.1	2	0.2
,	С	0,548		10 DR/D¢>0.426	0.4	2.62	29	0	0.5
Para evaluación rutinaria	Н/Іф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.20
			7	Н/Lф	μ		х		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.1	83	0.620
	Х	0,192		10	0.4		0.1	92	0.602
	Y	0,602]	000	Cualquier	Valor	0.1	80	0.525
		T	7						
Coeficiente numérico	М	0,48			0; $\mu = 0.5$: M=0.0; $\mu = 0.4$: M=0.				
	T		7	Para H/Lø = ∞	; μ = Cualquier	valor: M	l=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=	1.5				
			l	Para μ = 0.4; K :	= 1.633				
			1	Para H/Lø = 10;	$\mu = 0.4$	= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$	= 0.1614			
]	Para H/Lø = ∞;	μ = cualquier v a	lor: I =	0.1925		
	N	10]	N= 10 para b	ase rocosa a	a espes	or finite) (H/Lø=1	0)
Espesor del pavimento	НС	41	cm						
cálciu oc.									
<u>CÁLCULOS:</u> Radio de huella de				D/	_				
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi *}}$	p				
	Dφ/DR	1,416		_					
				7	AC I				

Módulo de elasticidad de la Subrasante	Еф	696,58	Kg/cm²
	So/S	0,933	
	A/Lφ	0,239	
Longitud elástica	Lφ	44,935	cm
Distancia del centro geométrico de la llanta	R5	80,807	cm
	Dφ/DR	1,416	
contacto	Ar	10,748	cm
Radio de huella de			

$$R5 = R \frac{A^{C} - B}{[A(D\phi/DR - 1)]^{C} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/Lø - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	45,995	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	P"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,502	cm	Z2= HE+0.6A ² /HE
	R2	50,163	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	495,480	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	495,742	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.349,00	Kg/cm²
pavimento	E*	132,29	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3357	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR de Subrasante	CBR	6,33	%

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	0,78	cm
Espesor requerido de diseño	HD	36,22	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	35,43	cm
Relación modular	Ε*/Εφ	1,94	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$\mathsf{DH} = \mathsf{HD} - \mathsf{HEQ}$$

Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°19 Progresiva: 03+600 km

DATOS:										
	Do	0,3950	mm							
	D50	0,2765	mm]						
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg	5			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg	Ţ.			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/L¢	μ	A		В		С
	D50= DR	0,2765	mm			3.11		0		0.584
	Do= Dφ	0,395	mm	00	Cualquier Valor	3.11				0.564
	DR/Dφ	0,700		10 DR/Dø>0.7	0.5	2.46	60	0		0.592
	Α	2629		10	0.5	371	.1	2		0.219
	В	0		DR/Dφ<0.7						
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.548
Para evaluación rutinaria	H/Lφ	10		10 DR/D¢<0.426	0.4	2283	3.4	3		0.200
,		T	Ī	Н/Lф	μ		х			γ
Para evaluación rutinaria	μ	0,40		10	0.5		0.18	ВЗ	0.	620
	Χ	0,192		10	0.4		0.19	92	0.	602
	Υ	0,602			Cualquier	Mala	0.18	-		525
			•	00	Cualquier	valor	0.10	30	0.	323
Coeficiente numérico	М	0,48			μ = 0.5: M=0.0; $μ = 0.4$: M=0.0					
		•	-	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1						
				Para μ = 0.4; K =						
Coeficiente numérico	1	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614				
		I	I	Para H/Lø = ∞; ¡	μ = cualquier v a	lor : I =	0.1925			
[N	10		N= 10 para b	ase rocosa a	a espes	or finito) (H/Le	=10)	
Espesor del pavimento	НС	41	cm							
<u>CÁLCULOS:</u>				ı						
Radio de huella de				p!	_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * r}}$	p					
	Dφ/DR	1,429		7						
Distancia del centro geométrico de la llanta	R5	79,547	cm		$\frac{A^C - B}{(D\phi/DR - B)}$					
Longitud elástica	Lφ	44,171	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5			
			l	-	_					

Módulo de elasticidad de la Subrasante	Еф	600,96	Kg/cm²
	So/S	0,931	
	A/Lφ	0,243	
Longitud elástica	Lφ	44,171	cm
Distancia del centro geométrico de la llanta	R5	79,547	cm
	Dφ/DR	1,429	
contacto	Ai	10,746	cm
Radio de huella de	Ar	10,748	cm
CALCULUS:			

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	45,749	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,264	cm	Z2= HE+0.6A ² /HE
	R2	49,938	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	487,599	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	487,865	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·		

Módulo de elasticidad equivalente del	E* 1.145,30		Kg/cm²
pavimento	E*	112,32	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3950	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	E 46	%
de Subrasante	CBK	5,46	76

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°20 Progresiva: 03+800 km

DATOS:

<u>DA103.</u>				_					
	Do	0,3555	mm						
	D50	0,2370	mm						
	W18	18000	libras	1					
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg	i		
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	H/Lø	μ	A		В	C
	D50= DR	0,237	mm	1024					
	Do= Dφ	0,3555	mm	90	Cualquier Valor	3.11	5	0	0.584
	DR/Dφ	0,667		10 DR/Dø>0.7	0.5	2.46	60	0	0.592
	Α	2629		10	0.5	074			
	В	0		DR/Dφ<0.7	0.5	371	.,	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación	11/14	10		10		2283		3	0.200
rutinaria	H/Lф	10		DR/Dø<0.426	0.4	2283	3.4	3	0.200
Davis at 22'	-		Ī	Н/Lф	μ		х	T	Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183	0	.620
	Х	0,192		10	0.4		0.192	0	.602
	Υ	0,602			-			-	
•		,		00	Cualquier	Valor	0.180	0.	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
•		,		Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1	1.5				
				Para μ = 0.4; K =	= 1.633				
		<u> </u>		Para H/Lø = 10;	$\mu = 0.4$ I :	= 0.1689			
Coeficiente numérico	1	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I	= 0.1614			
			!	Para H/Lø = ∞; ¡	$\mu = \text{cualquier } \mathbf{v}$ a	lor: I = 0	0.1925		
	N	10		N= 10 para b	ase rocosa a	a espes	or finito (H	/Lø=10)	
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>				-					
Radio de buella de				P!	_				

<u>CÁLCULOS:</u>			
Radio de huella de	Ar	10,748	cm
contacto	AI	10,748	CIII
	Dφ/DR	1,500	
Distancia del centro geométrico de la llanta	R5	73,103	cm
Longitud elástica	Lφ	40,261	cm
	A/Lφ	0,267	
	So/S	0,920	
Módulo de elasticidad de la Subrasante	Еф	723,65	Kg/cm²

$$A_r = \sqrt{\frac{P'}{\pi * p}}$$

$$R5 = R \frac{A^{3} - B}{\left[A(D\phi/DR - 1)\right]^{2} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	44,486	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,044	cm	Z2= HE+0.6A ² /HE
	R2	48,785	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	447,251	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	447,542	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.268,00	Kg/cm²	
pavimento	E*	124,35	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,3550	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	6,58	%	
de Subrasante	CBK	0,56	76	

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	1,14	cm
Espesor requerido de diseño	HD	35,41	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	34,27	cm
Relación modular	Ε*/Εφ	1,75	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°21 Progresiva: 04+000 km

DATOS:									
	Do	0,3752	mm						
	D50	0,2567	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lø	μ	А		В	С
	D50= DR	0,2567	mm	1000	μ				
	Do= Dø	0,3752	mm	∞	Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,684		10	0.5	2.46	60	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
	С	0,548		10	0.4	2.62	29	0	0.548
Para evaluación				DR/Dφ>0.426					
rutinaria	H/Lф	10		DR/Dø<0.426	0.4	2283	3.4	3	0.2004
			4		T		x		Y
Para evaluación rutinaria	μ	0,40		H/Lφ μ X 10 0.5 0.183			0.620		
	Х	0,192		10	0.4		0.192		0.602
	Υ	0,602			_			_	
		,	4	00	Cualquier	Valor	0.180		0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
			-	Para H/Lø = ∞;			=0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1					
			4	Para $\mu = 0.4$; K =	: 1.633				
				Para H/Lø = 10;	$\mu = 0.4$ I	= 0.1689			
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I	= 0.1614			
			1	Para H/Lø = ∞; μ	ι = cualquier v a	lor: I = 0	0.1925		
	N	10]	N= 10 para b	ase rocosa a	espes	or finito (H/Lø=10)
Espesor del pavimento	НС	41	cm						
,	1		1	J					
<u>CÁLCULOS:</u>	T		1	, —	_				
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	_ p				
	Dφ/DR	1,462		=					

Módulo de elasticidad de la Subrasante	Еф	657,72	Kg/cm²
	So/S	0,926	
	A/Lφ	0,254	
Longitud elástica	Lφ	42,246	cm
Distancia del centro geométrico de la llanta	R5	76,373	cm
	Dφ/DR	1,462	
Radio de huella de contacto	Ar	10,748	cm
CALCULOS:			

$$R5 = R \frac{A^{2} - B}{[A(D\phi/DR - 1)]^{2} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	45,986	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,493	cm	Z2= HE+0.6A ² /HE
	R2	50,155	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	468,591	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	468,868	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·	·	

Módulo de elasticidad equivalente del	E*	1.273,00	Kg/cm²
pavimento	E*	124,84	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3555	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	5,98	%
de Subrasante	CBK	5,98	76

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	2,04	cm
Espesor requerido de diseño	HD	37,46	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	35,43	cm
Relación modular	Ε*/Εφ	1,94	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°22 Progresiva: 04+200 km

DATOS

DATOS:									
	Do	0,3950	mm						
	D50	0,2370	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	Į.		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	Ţ.		
Presión de inflado	р	80	psi	ó 5,62456 Kg/d	cm²				
	R	50	cm	H/Lφ	μ	A		В	С
	D50= DR	0,237	mm						
	Do= Dφ	0,395	mm		Cualquier Valor	3.11	15	0	0.584
	DR/Dφ	0,600		10	0.5	2.46	50	0	0.592
	Α	2629		DR/Dφ>0.7					
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	0.2004
Para evaluación			1	Н/Сф	μ		х		Υ
rutinaria	μ	0,40		10	0.5		0.1	83	0.620
	Х	0,192		10	0.4		0.1	92	0.602
	Υ	0,602		90	Cualquier	Valor	0.1	80	0.525
Γ			1		Guarquio	• • • • • • • • • • • • • • • • • • • •	0		0.020
Coeficiente numérico	М	0,48		Para H/Lø = 10; Para H/Lø = 10;					
			1	Para H/Lø = ∞; ¡			-0.44		
]			valor. IV	-0.44		
Coeficiente numérico	К	1,633		Para $\mu = 0.5$; K=1.					
			1	Para H/Lø = 10; μ		= 0.1689			
Coeficiente numérico	1	0,1689							
coefficiente mannerico	'	0,1003		Para H/Lø = 10; µ		= 0.1614	0.1005		
			1	Para H/Lø = ∞; μ	= cualquier va	ior: I=	0.1925		
	N	10	J	N= 10 para ba	ase rocosa a	espes	or finito) (H/Lø=1	0)
Espesor del pavimento	НС	41	cm						
CÁLCULOS:				•					
Radio de huella de				D!					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$					
	Dφ/DR	1,667							
Distancia del centro geométrico de la llanta	R5	62,441	cm	$R5 = R {[A(A)]}$	$\frac{A^{C} - B}{D\phi/DR - 1}$	ı)]c –	В		

CALCULOS:			
Radio de huella de contacto	Ar	10,748	cm
Contacto	Dφ/DR	1,667	
Distancia del centro geométrico de la llanta	R5	62,441	cm
Longitud elástica	Lφ	33,774	cm
	A/Lφ	0,318	
	So/S	0,895	
Módulo de elasticidad de la Subrasante	Еф	755,60	Kg/cm²

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

				_
	HE	42,198	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	43,840	cm	Z2= HE+0.6A ² /HE
	R2	46,710	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	380,123	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	380,464	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.130,00	Kg/cm²
pavimento	E*	110,82	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3950	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6 07	%
de Subrasante	CBK	6,87	70

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	2,01	cm
Espesor requerido de diseño	HD	34,52	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	32,51	cm
Relación modular	Ε*/Εφ	1,50	
KLI OLKZO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°23 Progresiva: 04+400 km

DATOS:

DATOS:				_					
	Do	0,3555	mm						
	D50	0,2567	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S		
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	H/Lφ	μ	A		В	С
	D50= DR	0,2567	mm						
	Do= Dφ	0,3555	mm	00	Cualquier Valor	3.1	15	0	0.584
	DR/Dφ	0,722		10 DR/Dφ>0.7	0.5	2.4	60	o	0.592
	Α	2629		10	0.5	074	371.1		0.219
	В	0		DR/D¢<0.7	0.5	3/1	.1	2	0.219
	С	0,548		10	0.4	2.6	29	o	0.548
Para evaluación rutinaria	H/Lф	10		DR/Dφ>0.426 10 DR/Dφ<0.426	0.4	228	3.4	3	0.200
			, 1	Н/Lф	μ		×		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183		0.620
	Χ	0,192		10	0.4		0.192		0.602
	Υ	0,602		00	Cualquier	Valor	0.180		0.525
Coeficiente numérico	М	0,48			0; μ = 0.5: M=0. 0; μ = 0.4: M=0.				
				Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1	1.5				
		,		Para μ = 0.4; K =	= 1.633				
Coeficiente numérico	1	0,1689		Para H/Lø = 10;		= 0.1689 = 0.1614			
Ī			1	Para H/Lø = ∞; ¡	μ = cualquier va	lor: I =	0.1925		
	N	10		N= 10 para b	ase rocosa a	espes	or finito (H/Lø=10)
Espesor del pavimento	НС	41	cm						
CÁLCULOS:				_					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * t}}$	_ p				

Módulo de elasticidad de la Subrasante	Еф	631,13	Kg/cm²
	So/S	0,938	
	A/Lф	0,228	
Longitud elástica	Lφ	47,096	cm
Distancia del centro geométrico de la llanta	R5	84,374	cm
	Dφ/DR	1,385	
Radio de huella de contacto	Ar	10,748	cm
CALCULOS:		ı	ı

$$A_r = \sqrt{\frac{P'}{\pi * p}}$$

$$R5 = R \frac{A^{2} - B}{[A(D\phi/DR - 1)]^{2} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	46,675	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	48,160	cm	Z2= HE+0.6A ² /HE
	R2	50,787	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	517,771	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	518,022	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.277,30	Kg/cm²
pavimento	E*	125,26	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3555	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	5,74	%
de Subrasante	CBK	5,74	70

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Relación modular E*/E\$\phi\$ 2,02 Espesor de pavimento HEQ 35,96 cm Carga equivalente N18 1.570.500 klb Espesor requerido de diseño HD 38,39 cm	Espesor del refuerzo de material granular	DH	2,43	cm
Espesor de pavimento HEQ 35,96 cm	· ·	HD	38,39	cm
	Carga equivalente	N18	1.570.500	klb
Relación modular E*/Εφ 2,02	Espesor de pavimento	HEQ	35,96	cm
	Relación modular	Ε*/Εφ	2,02	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°24 Progresiva: 04+600 km

DATOS:									
	Do	0,4125	mm						
	D50	0,2357	mm	1					
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	;		
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²				
	R	50	cm	H/Lφ	μ	А		В	С
	D50= DR	0,2357	mm					0	
	Do= Dφ	0,4125	mm	00	Cualquier Valor	3.11	15		0.584
	DR/Dφ	0,571		10 DR/Dø>0.7	0.5	2.46	60	0	0.592
	Α	2629		10	0.5	074		•	0.040
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.219
Para evaluación	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.548
rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.2004
Para evaluación			1	Н/Lф	μ		x		Υ
rutinaria	μ	0,40		10	0.5		0.18	3	0.620
	Х	0,192		10	0.4		0.19	2	0.602
	Υ	0,602]	00	Cualquier	Valor	0.18	0	0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10 Para H/Lø = 10					
			•	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1					
			1	Para μ = 0.4; K =					
Coeficiente numérico	ı	0.1690		Para H/Lø = 10;		= 0.1689			
Coefficiente numerico	ı	0,1689		Para H/Lø = 10;		= 0.1614			
1			1	Para H/Lø = ∞; μ	ı = cualquier val	or: I = 0	0.1925		
	N	10	J	N= 10 para b	ase rocosa a	espes	or finito	(H/Lø=10)
Espesor del pavimento	НС	41	cm						
<u>CÁLCULOS:</u>				_					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	- ,				
	Dφ/DR	1,750		•					
Distancia del centro geométrico de la llanta	R5	58,533	cm	$R5 = R {[A($	$\frac{A^C - B}{D\phi/DR - 1}$	ı)] _c –	\overline{B}		

CALCULUS:			
Radio de huella de	Ar	10,748	cm
contacto	AI	10,740	CIII
	Dφ/DR	1,750	
Distancia del centro geométrico de la llanta	R5	58,533	cm
Longitud elástica	Lφ	31,389	cm
	A/Lφ	0,342	
	So/S	0,884	
Módulo de elasticidad de la Subrasante	Еф	768,44	Kg/cm²

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	41,314	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	42,992	cm	Z2= HE+0.6A ² /HE
	R2	45,915	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	355,398	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	355,764	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.078,50	Kg/cm²
pavimento	E*	105,76	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,4125	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6,99	%
de Subrasante	CBK	6,33	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°25 Progresiva: 04+800 km

DATOS:

DATOS:				_					
	Do	0,3732	mm						
	D50	0,2554	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²				
	R	50	cm	Η/Lφ	μ	А		В	C
	D50= DR	0,2554	mm	1024					
	Do= Dφ	0,3732	mm	•	Cualquier Valor	3.11	5	0	0.584
	DR/Dφ	0,684		10 DR/Dø>0.7	0.5	2.46	o	0	0.592
	А	2629		10					
	В	0		DR/Dφ<0.7	0.5	371.	1	2	0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	9	0	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dø<0.426	0.4	2283	.4	3	0.2004
			<u>-</u>	Н/Lф	μ		х		Υ
Para evaluación rutinaria	μ	0,40		10	0.5			0.620	
	Х	0,192		10	0.4		0.192	\top	0.602
	Υ	0,602			0.1.1.1		0.180	-	0.525
•		•	• -	00	Cualquier	Valor	0.180		0.525
Coeficiente numérico	М	0,48		Para H/Lø = 10					
				Para H/Lø = ∞;	μ = Cualquier	valor: M=	=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1					
		!	1	Para μ = 0.4; K =	= 1.633				
Cartaina and day		0.4600		Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	I	0,1689		Para H/L \emptyset = 10;	$\mu = 0.5$ I :	= 0.1614			
			•	Para H/Lø = ∞; μ	μ = cualquier v a	lor: I = 0	0.1925		
	N	10]	N= 10 para b	ase rocosa a	espeso	or finito (F	H/Lø=10))
Espesor del pavimento	НС	41	cm						
CÁLCIU OS.				_1					
<u>CÁLCULOS:</u> Radio de huella de					-				
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	p				
	DY/DB	1 461	i						

CALCULOS:			
Radio de huella de contacto	Ar	10,748	cm
	Dφ/DR	1,461	
Distancia del centro geométrico de la llanta	R5	76,408	cm
Longitud elástica	Lφ	42,267	cm
	A/Lφ	0,254	
	So/S	0,926	
Módulo de elasticidad de la Subrasante	Еф	660,95	Kg/cm²

$$R5 = R \frac{A - B}{[A(D\phi/DR - 1)]^{c} - B}$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{I.\phi.D\phi} S_o / S$$

				_
	HE	45,132	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,667	cm	Z2= HE+0.6A ² /HE
	R2	49,374	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	467,953	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	468,230	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.209,30	Kg/cm²
pavimento	E*	118,59	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3732	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6,01	%
de Subrasante	CBK	6,01	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEQ$$

Requiere refuerzo de carpeta asfáltica.

Carril: IDA (Derecho) Punto: N°26 Progresiva: 05+000 km

DATOS:

	Do	0,3929	mm						
	D50	0,2750	mm						
	W18	18000	libras						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	;		
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	;		
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²				
	R	50	cm	H/Lø	μ	А		В	C
	D50= DR	0,275	mm						
	Do= Dφ	0,3929	mm	00	Cualquier Valor	3.11	15	0	0.5
	DR/Dφ	0,700		10 DR/Dø>0.7	0.5	2.46	50	0	0.5
	Α	2629		10		074			+
	В	0		DR/D¢<0.7	0.5	371	.1	2	0.2
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.54
Para evaluación	H/Lф	10		10	0.4	2283		3	0.20
rutinaria	Π/ Lψ	10		DR/Dø<0.426	0.4	2260	5.4	· ·	0.20
		T	1	Н/Lф	μ		x		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.183	0	.620
	Χ	0,192		10	0.4		0.192	0	0.602
	Υ	0,602		000	Cualquier	Valor	0.180	0	.525
Coeficiente numérico	М	0,48			D; μ = 0.5: M=0. D; μ = 0.4: M=0.				
			-	Para H/Lø = ∞;	; μ = Cualquier	valor: M	=0.44		
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1	1.5				
coefficiente numerico		1,033		Para μ = 0.4; K =	= 1.633				
		r	1	Para H/Lø = 10;		= 0.1689			
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1614			
		0,2003		Para H/Lø = ∞;			0 1025		
i		Г	1	Fala 17/20 = ∞,	μ = cualquier va	ioi . T=	0.1925		
	N	10	J	N= 10 para b	ase rocosa a	espes	or finito (H	I/Lø=10)	t
Espesor del pavimento	НС	41	cm						

Módulo de elasticidad de la Subrasante	Еф	604,29	Kg/cm²
	So/S	0,931	
	A/Lφ	0,243	
Longitud elástica	Lφ	44,161	cm
Distancia del centro geométrico de la llanta	R5	79,531	cm
	Dφ/DR	1,429	
Radio de huella de contacto	Ar	10,748	cm
<u>CALCULOS:</u>			

$$A_r = \sqrt{\frac{P'}{\pi * p}}$$

$$R5 = R \frac{1}{A(D\phi/DR - 1)} = R$$

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				Ī
	HE	45,747	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,262	cm	Z2= HE+0.6A ² /HE
	R2	49,936	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	487,501	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	487,768	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.151,50	Kg/cm²	
pavimento	E*	112,92	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,3929	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	5,49	%	
de Subrasante	CBK	5,45	%	

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°27 Progresiva: 05+000 km

DATOS:										
	Do	0,3712	mm]						
	D50	0,2735	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
•	R	50	cm	H/Lφ	μ	А		В	С	
	D50= DR	0,2735	mm			3.11		0	0.58	
	Do= Dφ	0,3712	mm	00	Cualquier Valor	3.11	15		0.56	
	DR/Dφ	0,737		10 DR/Dφ>0.7	0.5	2.46	60	0	0.59	
	Α	2629		10	0.5	371	.1	2	0.21	
	В	0		DR/Dφ<0.7	0.5	071			0.2.1	
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0	0.54	
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	0.200	
Para evaluación			1	Н/Сф	μ		,	ĸ	Υ	
rutinaria	μ	0,40		10	0.5		0.1	183	0.620	
	X	0,192		10	0.4		0.1	192	0.602	
	Y	0,602]	000	Cualquier Valor 0.180 0.5				0.525	
Coeficiente numérico	М	0,48		Para H/Lø = 10	D; μ = 0.5: M=0.	52				
coefficiente numerico	141	0,40		Para H/Lø = 10	$0; \mu = 0.4; M=0.$	48				
		r	1	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1	1.5					
]	Para μ = 0.4; K =	= 1.633					
]	Para H/Lø = 10;	$\mu=0.4 \hspace{1cm} I:$	= 0.1689				
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I :	= 0.1614				
		L	1	Para H/Lø = ∞; ı	μ = cualquier v a	lor: I = 0	0.1925			
	N	10]	N= 10 para b	ase rocosa a	espes	or finit	o (H/Lø=1	10)	
			<u> </u>	٦						
Espesor del pavimento	HC	41	cm							
cát cur oc				_						
CÁLCULOS: Radio de huella de			<u> </u>		_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * }}$	p					
contacto	Dφ/DR	1,357		_						
Distancia del centro geométrico de la llanta	R5	87,894	cm	$R5 = R {[A]}$	$\frac{A^{C} - B}{(D\phi/DR - 1)}$	ı)] _c –	В			
Longitud elástica	Lφ	49,228	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5			
	A/Lφ	0,218		_	-					
	So/S	0,943		S _o /S = 1 -	M (A/Lø – 0	.10)				
]						

 ${\rm Kg/cm^2} \qquad E\phi = \frac{K.I.P}{L\phi.D\phi} \, S_o \, / \, S$

Módulo de elasticidad

de la Subrasante

Еφ

581,19

				_
	HE	47,331	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	48,795	cm	Z2= HE+0.6A ² /HE
	R2	51,389	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	539,738	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	539,979	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.226,50	Kg/cm²
pavimento	E*	120,28	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3712	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	F 20	%
de Subrasante	CBK	5,28	70

$$\begin{split} &D_0 = \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &\left. + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	3,84	cm
Espesor requerido de diseño	HD	40,30	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	36,46	cm
Relación modular	Ε*/Εφ	2,11	
ILLI OLINZO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°28 Progresiva: 04+800 km

DATOS:										
	Do	0,3517	mm							
	D50	0,2540	mm]						
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	IO kg	S			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg	3			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/Lφ	μ	A		В		С
	D50= DR	0,254	mm			3.11		0		0.584
	Do= Dφ	0,3517	mm	00	Cualquier Valor	3.1				0.564
	DR/Dφ	0,722		10 DR/Dø>0.7	0.5	2.46	60	0		0.592
	Α	2629		10	0.5	371	.1	2		0.219
	В	0		DR/Dφ<0.7	0.0					
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3		0.200
ŗ		T	1	Н/Lф	μ		х			γ
Para evaluación rutinaria	μ	0,40		10	0.5		0.1	83	0.	620
	Χ	0,192		10	0.4		0.1	92	0.	602
	Υ	0,602			Cualquier	Mala	0.1	00		525
			•	00	Cualquier	valor	0.1	80	0.	323
Coeficiente numérico	М	0,48		Para H/Lø = 10						
		•	• -	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1						
			•	Para μ = 0.4; K =						
Coeficiente numérico	1	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10;		= 0.1689 = 0.1614				
		I	1	Para H/Lø = ∞; ı	μ = cualquier v a	lor: I =	0.1925			
[N	10]	N= 10 para b	ase rocosa a	espes	or finito) (H/Le	ē=10)	
Espesor del pavimento	НС	41	cm							
<u>CÁLCULOS:</u>			<u> </u>	1						
Radio de huella de				D/	_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * r}}$	p					
	Dφ/DR	1,385		1						
Distancia del centro geométrico de la llanta	R5	84,403	cm	$R5 = R {[A]}$	$\frac{A^{C}-B}{(D\phi/DR-1)}$	1)] ^c –	В			
Longitud elástica	Lφ	47,114	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5			
-				-						

<u>0/12002001</u>			
Radio de huella de contacto	Ar	10,748	cm
	Dφ/DR	1,385	
Distancia del centro geométrico de la llanta	R5	84,403	cm
Longitud elástica	Lφ	47,114	cm
	A/Lφ	0,228	
	So/S	0,938	
Módulo de elasticidad de la Subrasante	Еф	637,74	Kg/cm²

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	46,679	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	48,164	cm	Z2= HE+0.6A ² /HE
	R2	50,790	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	517,949	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	518,200	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.291,00	Kg/cm²	
pavimento	E*	126,60	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,3517	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	5,80	%	
de Subrasante	CBK	5,80	70	

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°29 Progresiva: 04+600 km

DATOS:										
	Do	0,3908	mm							
	D50	0,2735	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3			
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	20 kg	3			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/Lφ	μ	A		E	3	С
	D50= DR	0,2735	mm			3.1)	0.584
	Do= Dø	0,3908	mm	90	Cualquier Valor	0.1		`		0.30
	DR/Dφ	0,700		10 DR/Dφ>0.7	0.5	2.4	60)	0.592
	А	2629		10	0.5	371	.1	-	2	0.219
	В	0		DR/Dφ<0.7						
	С	0,548		DR/Dø>0.426	0.4	2.6	29	()	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.200
[1	1	Н/Lф	μ			x		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.	0.183 0.620		.620
	Χ	0,192		10	0.4		0.	192	О	.602
ļ	Υ	0,602		00	Cualquier	Valor	0.	180	0	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10 Para H/Lø = 10 Para H/Lø = ∞;	$0; \mu = 0.4; M=0.$	48	I=0.44			
Coeficiente numérico	К	1,633		Para $\mu = 0.5$; K=1	1.5	vaior. iv	-0.44			
Coeficiente numérico	1	0,1689		Para H/L φ = 10; μ = 0.4 I = 0.1689 Para H/L φ = 10; μ = 0.5 I = 0.1614 Para H/L φ = ∞ ; μ = cualquier valor : I = 0.1925						
[N	10]	N= 10 para b	ase rocosa a	espes	or fini	to (H/L	ø=10)	
Espesor del pavimento	НС	41	cm							
CÁLCIU OS:				1						
CÁLCULOS: Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$						
	Dφ/DR	1,429		.						
Distancia del centro geométrico de la llanta	R5	79,515	cm	$R5 = R {[A}$	$\frac{A^C - B}{(D\phi/DR - 1)}$	1)] ^c –	В			
1		44.151		Y.R5-	$+\sqrt{(Y.R5)^2}$	-4 A X	R5			

CALCULOS:			
Radio de huella de contacto	Ar	10,748	cm
Contacto	Dφ/DR	1,429	
Distancia del centro geométrico de la llanta	R5	79,515	cm
Longitud elástica	Lφ	44,151	cm
	A/Lф	0,243	
	So/S	0,931	
Módulo de elasticidad de la Subrasante	Еф	607,65	Kg/cm²

$$R5 = R \frac{A^{2} - B}{\left[A(D\phi/DR - 1)\right]^{c} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

	HE	45,743	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,259	cm	Z2= HE+0.6A ² /HE
	R2	49,933	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	487,400	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	487,666	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.157,60	Kg/cm²
pavimento	E*	113,52	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3908	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	5,52	%
de Subrasante	CBK	5,52	70

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	4,01	cm
Espesor requerido de diseño	HD	39,26	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	35,24	cm
Relación modular	Ε*/Εφ	1,91	
ILLI OLINZO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°30 Progresiva: 04+400 km

DATOS:											
	Do	0,3126	mm								
	D50	0,2540	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	l0 kg					
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg					
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²						
	R	50	cm	H/Lφ	μ	А		В		C	_
	D50= DR	0,254	mm			3.11	-	0			84
	Do= Dφ	0,3126	mm	00	Cualquier Valor	3.11	5			0.5	84
	DR/Dφ	0,813		10 DR/Dφ>0.7	0.5	2.46	0	0		0.5	92
	А	2629		10	0.5	074					
	В	0		DR/Dφ<0.7	0.5	371.	'	2		0.2	19
	С	0,548		10	0.4	2.62	9	0		0.5	48
Para evaluación rutinaria	H/Lφ	10		DR/Dφ>0.426 10 DR/Dφ<0.426	0.4	2283	.4	3		0.20	004
			1	Н/Сф	μ		,	ĸ		Y	7
Para evaluación rutinaria	μ	0,40		10	0.5		0.1	183	0.	620	1
	Χ	0,192		10	0.4		0.1	192	0.	602	1
	Υ	0,602		00	Cualquier	Valor	0.1	180	0	525	+
			•		Cualquier	Valor	0.1	100		323	
Coeficiente numérico	M	0,48		Para H/Lø = 10							
				Para H/Lø = 10							
]	Para H/Lø = ∞;	μ = Cualquier	valor: M=	=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
				Para H/Lø = 10;	μ = 0.4	= 0.1689					
Coeficiente numérico	l	0,1689		Para H/Lø = 10; Para H/Lø = ∞; μ		= 0.1614	1925				
	N	10]	N= 10 para b				o (H/I a	-10\		
	14	10	I	N= TO para b	ase locosa a	espesc	, ,,,,,,	0 (1722	-10)		
Espesor del pavimento	НС	41	cm								
<u>CÁLCULOS:</u>											
Radio de huella de	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * 1}}$	-						
contacto		,	_	$\sqrt{\pi * i}$	p						
	Dφ/DR	1,231		7							
Distancia del centro	25	444.600		R5 = R	$\frac{A^C - B}{(D\phi/DR - 1)}$	3	_				
geométrico de la llanta	R5	111,689	cm	RS = R [A	$(D\phi/DR-1)$	ı)] ^c –	B				
Longitud elástica	Lφ	63,614	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
<u> </u>	A/Lφ	0,169		_	2						
			1								

 $S_o/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,967

547,49

				_
	HE	51,420	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	52,768	cm	Z2= HE+0.6A ² /HE
	R2	55,176	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	687,659	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	687,848	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·	·	

Módulo de elasticidad equivalente del	E*	1.481,50	Kg/cm²
pavimento	E*	145,29	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3126	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	4,98	%
de Subrasante	CBK	4,36	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEQ$$

Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°31 Progresiva: 04+200 km

DATOS:				_							
	Do	0,3321	mm								
	D50	0,2345	mm	_							
_	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²						
	R	50	cm	H/Lφ	μ	A		E	3	С	_
	D50= DR	0,2345	mm	90	Cualquier Valor	3.1	15)	0.58	4
	Do= Dφ	0,3321	mm	10	Cualquier Valor					0.00	_
	DR/Dφ	0,706		DR/Dφ>0.7	0.5	2.4	60	•)	0.59	2
	А	2629		10	0.5	371	.1	-	2	0.21	9
	В	0		DR/Dφ<0.7						- 1	_
	С	0,548		DR/Dø>0.426	0.4	2.6	29	()	0.54	8
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.20	04
Para evaluación				Н/Сф	μ			x		Υ	
rutinaria	μ	0,40		10	0.5		0.	183	0.	.620	
	Х	0,192		10	0.4		0.	192	0.	.602	
	Y	0,602		00	Cualquier	Valor	0.	180	0.	.525	
Coeficiente numérico	М	0,48		Para H/Lø = 10							
				Para H/Lø = 10							
]	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
			•	Para μ = 0.4; K =							
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1689					
Coefficiente numerico	ı	0,1009		Para H/Lø = 10; Para H/Lø = ∞; ¡		= 0.1614 lor : I =					
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/L	ø=10)		
				=							
Espesor del pavimento	НС	41	cm								
<u>CÁLCULOS:</u>											
Radio de huella de	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_ _ n						
contacto	Dφ/DR	1,416		J 1,"*	r						
Distancia del centro geométrico de la llanta	R5	80,833	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi/DR - 1)}$	ı)]c –	В				
Longitud elástica	Lφ	44,951	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
	A/Lφ	0,239		,	_						

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,933

703,91

				_
	HE	45,998	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,505	cm	Z2= HE+0.6A ² /HE
	R2	50,166	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	495,645	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	495,907	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.363,50	Kg/cm²		
pavimento	E*	133,71	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,3321	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	6.40	%		
de Subrasante	CBK	6,40	70		

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	0,56	cm
Espesor requerido de diseño	HD	35,99	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	35,44	cm
Relación modular	Ε*/Εφ	1,94	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°32 Progresiva: 04+000 km

DATOS:				_							
	Do	0,3712	mm								
	D50	0,2931	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	3				
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	Η/Lφ	μ	А		Е	1	С	:
	D50= DR	0,2931	mm			3.11		-		0.5	
	Do= Dφ	0,3712	mm	00	Cualquier Valor	3.11	15)	0.5	84
	DR/Dφ	0,790		10 DR/Dφ>0.7	0.5	2.46	60	C)	0.5	92
	А	2629		10	0.5	271				0.0	10
	В	0		DR/D¢<0.7	0.5	371	.1	2		0.2	19
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	c)	0.5	48
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	3	0.20	004
Para evaluación]	Н/Сф	μ			x		Υ]
rutinaria	μ	0,40		10	0.5		0.	183	0.	620	
	Χ	0,192		10	0.4		0.	192	0.	602	1
	Υ	0,602		000	Cualquier	Valor	0.	180	0.	525	
		<u> </u>]	B == 110 == 10	05.11.0						1
Coeficiente numérico	М	0,48		Para H/Lø = 10							
			l	Para H/Lø = 10							
]	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
			Į.	Para μ = 0.4; K =	= 1.633						
0 6		0.1500		Para H/L \emptyset = 10;	$\mu = 0.4$ I =	= 0.1689					
Coeficiente numérico	l	0,1689		Para H/Lø = 10;		= 0.1614					
,			1	Para H/Lø = ∞; į	μ = cualquier v al	or : I =	0.1925				
	N	10		N= 10 para b	ase rocosa a	espes	or finit	to (H/L	ø=10)		
				7							
Espesor del pavimento	HC	41	cm								
,				_							
<u>CÁLCULOS:</u>		Т		, –	_						
Radio de huella de	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_						
contacto				√π * i	р						
	Dφ/DR	1,266		7							
Distancia del centro	9.5	400.040		R5 = R	$\frac{A^C - B}{(D\phi/DR - 1)}$	3					
geométrico de la llanta	R5	103,210	cm	[A	$(D\phi/DR-1)$	l)] ^c –	B				
					Turn =						
Longitud elástica	Lφ	58,491	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
	A /! !	0.404		1	2						
	A/Lφ	0,184									
	So/S	0,960		S ₀ /S = 1 -	M (A/Lø – 0	.10)					

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

497,75

Еφ

Kg/cm²

Módulo de elasticidad

de la Subrasante

				_
	HE	50,028	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	51,413	cm	Z2= HE+0.6A ² /HE
	R2	53,881	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	635,048	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	635,253	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_		-

Módulo de elasticidad equivalente del	E*	1.240,40	Kg/cm²
pavimento	E*	121,64	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3712	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	4.52	%
de Subrasante	CBK	4,53	76

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	5,62	cm
Espesor requerido de diseño	HD	44,16	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	38,54	cm
Relación modular	Ε*/Εφ	2,49	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°33 Progresiva: 03+800 km

DATOS:											
	Do	0,4103	mm								
	D50	0,2931	mm	_							
_	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	А		E	3	С	_
	D50= DR	0,2931	mm	900	Cualquier Valor	3.11	15)	0.58	4
	Do= Dφ	0,4103	mm	10	Cualquier Valor					0.00	_
	DR/Dφ	0,714		DR/Dφ>0.7	0.5	2.46	60	()	0.59	2
	А	2629		10	0.5	371	.1	-	2	0.21	9
	В	0		DR/Dφ<0.7						-	_
	С	0,548		DR/Dø>0.426	0.4	2.62	29	()	0.54	8
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.200	04
Para evaluación				Н/Сф	μ			x		Y	
rutinaria	μ	0,40		10	0.5		0.	183	0.	620	
	Х	0,192		10	0.4		0.	192	0.	602	
	Y	0,602		00	Cualquier	Valor	0.	180	0.	525	
Coeficiente numérico	М	0,48		Para H/Lø = 10							
				Para H/Lø = 10							
]	Para H/Lø = ∞;		valor: M	l=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
				Para μ = 0.4; K =							
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1689					
Coefficiente numerico	'	0,1089		Para H/Lø = 10; Para H/Lø = ∞; j		= 0.1614 lor : I =					
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/L	ø=10)		
				=							
Espesor del pavimento	НС	41	cm								
CÁLCULOS:											
Radio de huella de		10.710		. P'	_						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	p						
	Dφ/DR	1,400		_							
Distancia del centro geométrico de la llanta	R5	82,627	cm	$R5 = R {[A]}$	$\frac{A^{C} - B}{(D\phi/DR - 1)}$	ı)]c –	В				
Longitud elástica	Lφ	46,038	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5				
	A/Lφ	0,233		•							

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,936

557,91

				_
	HE	46,345	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,840	cm	Z2= HE+0.6A ² /HE
	R2	50,483	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	506,860	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	507,116	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.105,30	Kg/cm²
pavimento	E*	108,39	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,4103	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	5,07	%
de Subrasante	CBK	5,07	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°34 Progresiva: 03+600 km

DATOS:																				
	Do	0,3887	mm																	
	D50	0,2915	mm																	
	W18	18000	libras																	
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g													
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	g													
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²															
	R	50	cm	H/Lφ	μ	A		E	3	С	:									
	D50= DR	0,2915	mm	900	Cualquier Valor	3.1	15		0	0.5	84									
	Do= Dφ	0,3887	mm	10	Cualquier valor			`		0.0										
	DR/Dφ	0,750		DR/Dφ>0.7	0.5	2.4	60	(D	0.5	92									
	Α	2629		10	0.5	371	.1	-	2	0.2	19									
	В	0		DR/Dφ<0.7																
	С	0,548		DR/D¢>0.426	0.4	2.6	29	(0	0.5	48									
Para evaluación rutinaria	H/Lφ	10		10 DR/Dφ<0.426	0.4	228	3.4		3	0.20	004									
5 1			7	Н/Lф	μ		:	x		Υ										
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	.620										
	Х	0,192	=	10	0.4	0.		4 0.		0.4		0.4		0.4 0.192		0.4 0.192		0.602		
	Υ	0,602]	000	Cualquier	Valor	0.	0.180 0		0.525										
			1								1									
Coeficiente numérico	М	0,48		Para H/Lø = 10																
			ı	Para H/Lø = 10																
			1	Para H/Lø = ∞;		valor: iv	1=0.44													
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1																
			4	Para μ = 0.4; K =	1.633															
Coeficiente numérico	I	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10;	$\mu = 0.5$ I:	= 0.1689 = 0.1614														
			7	Para H/Lø = ∞; μ	u = cualquier v al	lor: I =	0.1925													
	N	10		N= 10 para ba	ase rocosa a	espes	or finit	to (H/L	ø=10)											
Espesor del pavimento	НС	41	cm																	
<u>CÁLCULOS:</u>				_																
Radio de huella de	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-															
contacto	Ai	10,748	CIII	$\pi * p$)															
	Dφ/DR	1,333		7																
Distancia del centro geométrico de la llanta	R5	91,275	cm	$R5 = R {[A($																
Longitud elástica	Lφ	51,274	cm	$L\phi = \frac{Y.R5 + 1}{1}$	$-\sqrt{(Y.R5)^2}$	- 4.A.X	.R5													
	A/Lφ	0,210																		

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,947

535,24

Kg/cm²

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

	HE	47,948	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	49,394	cm	Z2= HE+0.6A ² /HE
	R2	51,958	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	560,811	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	561,043	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.174,30	Kg/cm²
pavimento	E*	115,16	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3887	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	4,87	%
de Subrasante	CBK	4,67	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	5,37	cm
Espesor requerido de diseño	HD	42,31	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	36,94	cm
Relación modular	Ε*/Εφ	2,19	
MEI GENEG.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°35 Progresiva: 03+400 km

DATOS:											
	Do	0,4081	mm								
	D50	0,2527	mm	1							
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO ką	g				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	′cm²						
	R	50	cm	H/Lφ	μ	A		В		С	
	D50= DR	0,2527	mm			3.1	15	0		0.5	84
	Do= Dφ	0,4081	mm	00	Cualquier Valor	0.1				0.5	
	DR/Dφ	0,619		10 DR/Dø>0.7	0.5	2.4	60	0		0.5	92
	Α	2629		10	0.5	371	.1	2		0.2	19
	В	0		DR/Dφ<0.7							
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	0		0.5	48
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3		0.20	004
			7	Н/Lф	щ			x		Υ	1
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	620	
	Х	0,192		10	0.4		0.	192	0.	602]
	Υ	0,602		99	Cualquier	Valor	0.	180	0.	525	1
		T	7		- Cuarquioi	• • • • • • • • • • • • • • • • • • • •					_
Coeficiente numérico	М	0,48		Para H/Lø = 10	$\mu = 0.5$: M=0.	52					
		,]	Para H/Lø = 10	$\mu = 0.4$: M=0.	48					
			1	Para H/Lø = ∞;	μ = Cualquier	valor: N	1=0.44				
Coeficiente numérico	K	1,633]	Para $\mu = 0.5$; K=1							
		Т	1	Para H/Lø = 10;		= 0.1689					
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	μ = 0.5 I :	= 0.1614					
	N	10]	Para H/Lø = ∞; µ N= 10 para b					=10)		
			=								
Espesor del pavimento	НС	41	cm								
<u>CÁLCULOS:</u>				_							
Radio de huella de	۸r	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-						
contacto	Ar	10,740	cm	$A_r = \sqrt{\pi * p}$	9						
	Dφ/DR	1,615		-							
Distancia del centro geométrico de la llanta	R5	65,265	cm	$R5 = R {[A($	$\frac{A^C - B}{(D\phi/DR - 1)}$	3 1)] ^c –	В				
Longitud elástica	Lφ	35,495	cm	$L\phi = \frac{Y.R5 + 1}{1}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
,	A/Lφ	0,303		-	_						
	i	1	1								

 $S_o/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,903

701,64

	HE	42,815	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,433	cm	Z2= HE+0.6A ² /HE
	R2	47,268	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	397,943	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	398,270	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.096,00	Kg/cm²
pavimento	E*	107,48	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,4081	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6 20	%
de Subrasante	CBK	6,38	76

$$\begin{split} &D_0 = \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} \left(2(1 - \mu) \right) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &\left. + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	3,08	cm
Espesor requerido de diseño	HD	36,06	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	32,98	cm
Relación modular	Ε*/Εφ	1,56	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°36 Progresiva: 03+200 km

DATOS:										
	Do	0,3693	mm	1						
	D50	0,2332	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	B			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	′cm²					
	R	50	cm	H/Lφ	μ	A		В		
	D50= DR	0,2332	mm							
	Do= Dφ	0,3693	mm	••	Cualquier Valor	3.11	15	0	0.9	
	DR/Dφ	0,631		10	0.5	2.46	60	o	0.	
	А	2629		DR/Dφ>0.7						
	В	0		DR/Dφ<0.7	0.5	371	.1	2	0.:	
Para evaluación	С	0,548		10 DR/Dφ>0.426	0.4	2.63	29	0	0.9	
rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	0.2	
Para evaluación			1	Н/Lф	μ		>	(Υ	
rutinaria	μ	0,40		10	0.5	0.5 0.1 0.4 0.1 Cualquier Valor 0.1		0.183 0.620		
	X	0,192		10	0.4			92	0.602	
	Y	0,602]	00	Cualquier			80	0.525	
Coeficiente numérico	М	0,48		Para H/Lø = 10						
			4	Para H/Lø = ∞;			l=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1						
			4	Para μ = 0.4; K =						
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1689				
coefficiente mannerico	'	0,1003]	Para H/Lø = 10; Para H/Lø = ∞; μ		= 0.1614				
	N	10]	N= 10 para b				o (H/Lø=1	10)	
Espesor del pavimento	НС	41	cm							
cát cur oc			1	J						
CÁLCULOS:				1	-					
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	2					
	Dφ/DR	1,584		7						
Distancia del centro geométrico de la llanta	R5	67,163	cm	$R5 = R {[A($	$\frac{A^C - B}{(D\phi/DR - 1)}$	ı)]c –	В			
 			1	4						

Módulo de elasticidad de la Subrasante	Еф	754,73	Kg/cm²
	So/S	0,907	
	A/Lφ	0,293	
Longitud elástica	Lφ	36,651	cm
Distancia del centro geométrico de la llanta	R5	67,163	cm
	Dφ/DR	1,584	
Radio de huella de contacto	Ar	10,748	cm
CALCULOS:			

$$R5 = R \frac{A^{C} - B}{\left[A(D\phi/DR - 1)\right]^{C} - B}$$
$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^{2} - 4.A.X.R5}}{2}$$

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

				_
	HE	43,223	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,827	cm	Z2= HE+0.6A ² /HE
	R2	47,638	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	409,899	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	410,216	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.213,00	Kg/cm²	
pavimento	E*	118,95	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,3693	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	6 96	%	
de Subrasante	CBK	6,86	76	

$$\begin{split} D_0 &= \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_2} \right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	1,24	cm
Espesor requerido de diseño	HD	34,54	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	33,30	cm
Relación modular	Ε*/Εφ	1,61	
ILLI OLINZO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°37 Progresiva: 03+000 km

DATOS:											
	Do	0,3110	mm	1							
	D50	0,2332	mm]							
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	А		E	3	С	_
	D50= DR	0,2332	mm		Cualquier Valor	3.1	15		0	0.58	84
	Do= Dφ	0,311	mm	10	Cualquier valor						_
	DR/Dφ	0,750		DR/Dφ>0.7	0.5	2.46	60	(0	0.59	12
	A	2629		10	0.5	371	.1	-	2	0.21	19
	В	0		DR/Dφ<0.7							_
	С	0,548		DR/Dø>0.426	0.4	2.62	29	٠	D	0.54	18
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.20	04
Para evaluación]	Н/Lф	μ			x		Υ	1
rutinaria	μ	0,40		10	0.5		0.	183	0.	.620	
	Χ	0,192		10	0.4	0.4		0.192		92 0.602	
	Y	0,602		00	Cualquier	Valor	0.	180	0.	.525	
Coeficiente numérico	М	0,48		Para H/Lø = 10	0; μ = 0.5: M=0.	52					•
		•		Para H/Lø = 10	$\mu = 0.4$: M=0.	48					
_			1	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
			I	Para μ = 0.4; K =	= 1.633						
Coeficiente numérico	ļ	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614					
				Para H/Lø = ∞; ı	μ = cualquier v a	lor: I =	0.1925				
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/L	ø=10)		
·				-							
Espesor del pavimento	НС	41	cm								
,				_							
CÁLCULOS:				1 —	_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * r}}$	p						
	Dφ/DR	1,334		-							
Distancia del centro geométrico de la llanta	R5	91,249	cm	$R5 = R {[A]}$	$\frac{A^C - B}{\left(D\phi/DR - B\right)}$	ı)]c –	В				
Longitud elástica	Lφ	51,258	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5				
	A/Lφ	0,210									

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,947

669,14

Kg/cm²

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

				_
	HE	47,942	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	49,387	cm	Z2= HE+0.6A ² /HE
	R2	51,952	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	560,649	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	560,881	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_	•	•

Módulo de elasticidad equivalente del	E*	1.467,50	Kg/cm²
pavimento	E*	143,91	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3110	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6,08	%
de Subrasante	CBK	6,08	70

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°38 Progresiva: 02+800 km

DATOS:				_							
	Do	0,2707	mm								
	D50	0,1740	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	3				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg					
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	А		В		С	
	D50= DR	0,174	mm			3.11	16	0		0.5	94
	Do= Dφ	0,2707	mm	00	Cualquier Valor	3.11				0.5	04
	DR/Dφ	0,643		10 DR/Dø>0.7	0.5	2.46	30	0		0.5	92
	Α	2629		10	0.5	371	.1	2		0.2	19
	В	0		DR/Dφ<0.7	0.0						
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.5	48
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3		0.20)04
Para evaluación			1	Н/Сф	μ		,	(١	,	1
rutinaria	μ	0,40		10	0.5		0.1	83	0.6	20	
	Х	0,192		10	0.4		0.1	92	0.6	02	
	Y	0,602]	00	Cualquier	Valor	0.1	180	0.5	25	1
			1	Para H/I a = 16	D; μ = 0.5: M=0.	E0					1
Coeficiente numérico	М	0,48									
			1		$0; \mu = 0.4; M=0.$						
			1		; μ = Cualquier	valor: M	=0.44				
Coeficiente numérico	К	1,633		Para $\mu = 0.5$; K=1							
			1	Para H/Lø = 10;	μ = 0.4 I =	= 0.1689					
Coeficiente numérico	1	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I :	= 0.1614					
			-	Para H/Lø = ∞; ¡	μ = cualquier v al	or : I =	0.1925				
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/Lø=	:10)		
Espesor del pavimento	НС	41	cm]							
				1							
<u>CÁLCULOS:</u>				_	_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$							
	Dφ/DR	1,556		,							
Distancia del centro geométrico de la llanta	R5	68,989	cm	$R5 = R {[A]}$	$\frac{A^C - B}{\left(D\phi / DR - 1\right)}$)] ^c –	В				
Longitud elástica	Lφ	37,761	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5				
	A/Lф	0,285									
	So/S	0,911		S ₆ /S = 1 -	M (A/Lø – 0	.10)					

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

Módulo de elasticidad

de la Subrasante

Еφ

1.003,92

				_
	HE	43,613	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	45,202	cm	Z2= HE+0.6A ² /HE
	R2	47,991	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	421,387	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	421,696	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·		

Módulo de elasticidad equivalente del	E*	1.657,50	Kg/cm²	
pavimento	E*	162,55	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,2707	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	0.13	%	
de Subrasante	CBK	9,13	76	

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°39 Progresiva: 02+600 km

DATOS:										
	Do	0,2900	mm	1						
	D50	0,1933	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg	5			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	5			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/Lφ	μ	А		В		С
	D50= DR	0,1933	mm	00	Cualquier Valor	3.11	15	0		0.584
	Do= Dφ	0,29	mm		Cualquier valor					0.551
	DR/Dφ	0,667		10 DR/Dφ>0.7	0.5	2.46	60	0		0.592
	А	2629		10	0.5	371	.1	2		0.219
	В	0		DR/Dφ<0.7						
	С	0,548	-	10 DR/Dφ>0.426	0.4	2.62	29	0		0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3		0.2004
Para evaluación			1	Н/Lф	μ			×		Υ
rutinaria	μ	0,40		10	0.5		0.	183	0.	620
	Х	0,192		10	0.4		0.	192	0.	602
	Υ	0,602			0.1.1.			100		505
		•	-	00	Cualquier	Valor	0.	180	0.	525
Coeficiente numérico	М	0,48		Para H/Lø = 10	$0; \mu = 0.5; M=0.$	52				
		3,10]	Para H/Lø = 10	0; $\mu = 0.4$: M=0.	48				
		T	1	Para H/Lø = ∞;	; μ = Cualquier	valor: M	=0.44			
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1	1.5					
			l	Para μ = 0.4; K =	= 1.633					
			1	Para H/Lø = 10;	μ = 0.4	= 0.1689				
Coeficiente numérico	1	0,1689		Para H/Lø = 10;	μ = 0.5	= 0.1614				
			1	Para H/Lø = ∞; ¡	μ = cualquier v al	lor : I = 0	0.1925			
	N	10		N= 10 para b	ase rocosa a	espes	or finit	to (H/Lø	=10)	
ļ			4	ri- ro para s	,400 100004 0	Сороо		(0,	
Espesor del pavimento	НС	41	cm							
<u>CÁLCULOS:</u>										
Radio de huella de	۸ -	10.740		$A_r = \sqrt{\frac{P'}{\pi *}}$	_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{\pi *}{\pi *}}$	p					
	Dφ/DR	1,500		_						
Distancia del centro geométrico de la llanta	R5	73,082	cm	$R5 = R {[A]}$	$\frac{A^C - B}{\left(D\phi / DR - 1\right)}$	I)] ^c –	В			
Longitud elástica	Lφ	40,248	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5			
	A/Lф	0,267								
	So/S	0,920		S ₀ /S = 1 -	M (A/Lø – 0	.10)				
	i i		•							

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

Módulo de elasticidad

de la Subrasante

Еφ

887,34

				_
	HE	44,461	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,020	cm	Z2= HE+0.6A ² /HE
	R2	48,762	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	447,101	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	447,391	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.552,20	Kg/cm²		
pavimento	E*	152,22	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,2900	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	9.07	%		
de Subrasante	CBK	8,07	70		

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°40 Progresiva: 02+400 km

DATOS:											
	Do	0,3093	mm								
	D50	0,2320	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	g				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²						
	R	50	cm	H/Lφ	μ	A		E	3	С	_
	D50= DR	0,232	mm			3.1	15	0		0.58	34
	Do= Dφ	0,3093	mm	900	Cualquier Valor	0.1				0.50	_
	DR/Dφ	0,750		10 DR/Dφ>0.7	0.5	2.4	60)	0.59	92
	А	2629		10	0.5	371	1.1	2	2	0.21	19
	В	0		DR/Dø<0.7							
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	•)	0.54	18
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.20	04
1		Ī	1	Н/Lф	μ			x		γ	1
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	.620	
	Χ	0,192		10	0.4		0.	192	0.	.602	
	Υ	0,602		00	Cualquier	Valor	0.	180	0.	.525	
Coeficiente numérico	M	0,48		Para H/Lø = 10; μ = 0.5: M=0.52							
]	Para H/Lø = 10							
			1	Para H/Lø = ∞;		valor: M	1=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
		T	1	Para H/Lø = 10;		= 0.1689					
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I:	= 0.1614					
			1	Para H/Lø = ∞; ¡							
	N	10	J	N= 10 para b	ase rocosa a	espes	or fini	to (H/L	ø=10)		
Espesor del pavimento	НС	41	cm								
CÁLCULOS:				_							
Radio de huella de	۸	10.749	622	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{\pi * i}{\pi * i}}$	p						
	Dφ/DR	1,333		_ _							
Distancia del centro geométrico de la llanta	R5	91,314	cm	$R5 = R {[A]}$	$\frac{A^{C} - B}{(D\phi/DR - 1)}$	ı)] ^c –	B				
Longitud elástica	Lφ	51,297	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	C.R5				
	A/Lф	0,210		-	_						
			1								

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,947

672,36

Kg/cm²

 $S_o/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

	HE	47,952	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	49,397	cm	Z2= HE+0.6A ² /HE
	R2	51,961	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	561,049	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	561,281	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.475,50	Kg/cm²
pavimento	E*	144,70	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,3093	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	6 11	%
de Subrasante	CBK	6,11	76

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	0,04	cm
Espesor requerido de diseño	HD	36,98	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	36,94	cm
Relación modular	Ε*/Εφ	2,19	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N_{18})

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°41 Progresiva: 02+200 km

DATOS:											
	Do	0,2500	mm								
	D50	0,1346	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g				
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²						
	R	50	cm	Η/Lφ	μ	А		Е	1	С	
	D50= DR	0,1346	mm			3.11		0		0.58	
	Do= Dφ	0,25	mm	10	Cualquier Valor	0.1				0.50	_
	DR/Dφ	0,538		DR/Dø>0.7	0.5	2.46	60	٥	•	0.59	92
	А	2629		10	0.5	371	.1	2		0.21	19
	В	0		DR/Dφ<0.7							
	С	0,548		DR/Dø>0.426	0.4	2.63	29	o	•	0.54	48
Para evaluación rutinaria	H/Lф	10		10 DR/D¢<0.426	0.4	228	3.4	3	l	0.20	04
Para evaluación				н/Lф	μ			x		Υ	
rutinaria	μ	0,40		10	0.5		0.	183	0.	620	
	Х	0,192		10	0.4		0.	192	0.	602	
	Y	0,602		00	Cualquier	Valor	0.	180	0.	525	
Coeficiente numérico	М	0,48		Para H/Lø = 10							
				Para H/Lø = 10							
				Para H/Lø = ∞;		valor: M	l=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1							
				Para $\mu = 0.4$; K =	= 1.633						
Confidence of the		0.4500		Para H/Lø = 10;	$\mu = 0.4$ I :	= 0.1689					
Coeficiente numérico	ı	0,1689		Para H/Lø = 10; Para H/Lø = ∞; j		= 0.1614 lor: I =	0.1925				
	N	10		N= 10 para b	ase rocosa a	espes	or finit	to (H/La	ø=10)		
				-							
Espesor del pavimento	НС	41	cm								
CÁLCULOS:											
Radio de huella de		10.740		. P'	-						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * t}}$	p						
	Dφ/DR	1,857		_							
Distancia del centro geométrico de la llanta	R5	54,400	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi)DR - 1}$	ı)]c –	В				
Longitud elástica	Lφ	28,859	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
	A/Lφ	0,372		-	_						

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,869

1.356,59

				_
	HE	40,344	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	42,062	cm	Z2= HE+0.6A ² /HE
	R2	45,046	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	329,143	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	329,537	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.773,00	Kg/cm²
pavimento	E*	173,87	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2500	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	12,33	%
de Subrasante	CBK	12,55	70

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°42 Progresiva: 02+000 km

DATOS:										
	Do	0,2308	mm							
	D50	0,1538	mm							
	W18	18000	libras	_						
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	S			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/Lφ	μ	А		E	3	С
	D50= DR	0,1538	mm	00	Cualquier Valor	3.11	15)	0.58
	Do= Dφ	0,2308	mm	10	Cualquier Valor	0.11		`		0.50
	DR/Dφ	0,666		DR/Dφ>0.7	0.5	2.46	60	•)	0.59
	А	2629		10	0.5	371	.1	-	2	0.21
	В	0		DR/Dø<0.7						
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	()	0.54
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	5	3	0.200
Dava avalvasića		<u> </u>	1	Н/Lф	μ			x		Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	.620
	Х	0,192		10	0.4		0.	192	0.	.602
	Y	0,602]	∞	Cualquier	Valor	0.	180	0.	.525
Coeficiente numérico	М	0,48]	Para H/Lø = 10	0; μ = 0.5: M=0.	52				
Coefficiente numerico	IVI	0,48]	Para H/Lø = 10	$\mu = 0.4$: M=0.	48				
			1	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44			
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1						
			1	Para $\mu = 0.4$; K =						
Coeficiente numérico	I	0,1689		Para H/Lø = 10;		= 0.1689				
Coefficiente numerico	'	0,1003]	Para H/Lø = 10; Para H/Lø = ∞; j		= 0.1614 lor: I = 1				
	N	10	1	N= 10 para b					σ=10)	
					430 100034 0	Сороз	01 11111	0 (1 1/2	<i>b</i> =10,	
Espesor del pavimento	НС	41	cm							
<u>CÁLCULOS:</u>										
Radio de huella de				[p]	_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_ p					
CONTRACTO	Dφ/DR	1,501		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	r					
	Бү/ БК	_,,,,,_			4C z					
Distancia del centro geométrico de la llanta	R5	73,051	cm	$R5 = R {[A]}$	$\frac{A^{C}-B}{(D\phi/DR-1)}$	ı)] ^c –	B			
Longitud elástica	Lφ	40,229	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4. <i>A</i> .X	.R5			
	A/I d	0.267								

Distancia del centro geométrico de la llanta R5 73,051 Longitud elástica Lφ 40,229 A/Lφ 0,267 So/S 0,920	cm
geométrico de la llanta R5 73,051 Longitud elástica Lφ 40,229	cm
geométrico de la llanta R5 73,051	cm
R5 73.051	
	cm
Dφ/DR 1,501	
contacto Ar 10,748	cm
Radio de huella de	

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	44,452	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,012	cm	Z2= HE+0.6A ² /HE
	R2	48,754	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	446,902	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	447,193	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.950,00	Kg/cm²	
pavimento	E*	191,23	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,2308	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR de Subrasante	CBR	10,14	%	

$$\begin{split} &D_0 = \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &\left. + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°43 Progresiva: 01+800 km

DATOS:											
	Do	0,2692	mm								
	D50	0,1923	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	g				
Carga sobre una llanta	P'	4500	libras		ó 2041,2	.0 kg	g				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	A		E	3	С	_
	D50= DR	0,1923	mm)	0.58	
	Do= Dφ	0,2692	mm		Cualquier Valor	3.1	15	, ·	,	0.50	14
	DR/Dφ	0,714		10 DR/Dφ>0.7	0.5	2.4	60)	0.59	92
	А	2629		10	0.5	371		<u> </u>	2	0.21	_
	В	0		DR/Dφ<0.7	0.5	371		,		0.21	19
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	()	0.54	18
Para evaluación rutinaria	H/Lφ	10		10 DR/Dφ<0.426	0.4	228	3.4		3	0.20	04
			4	141.4	<u> </u>			x		Υ	ī
Para evaluación rutinaria	μ	0,40		10	ο.5			183		620	
	Х	0,192		10	0.4		0.	192	0.	602	
	Υ	0,602			-						ł
'			•	00	Cualquier	Valor	0.	180	0.	525	
Coeficiente numérico	М	0,48		Para H/Lø = 10	0; μ = 0.5: M=0.	52					
Coenciente numerico	IVI	0,48		Para H/Lø = 10	0; μ = 0.4: M=0.	48					
		•	_	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44				
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1	1.5						
			1	Para μ = 0.4; K =	= 1.633						
Coeficiente numérico	ı	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614					
		,		Para H/Lø = ∞; μ				5			
	N	10]	N= 10 para b					ø=10)		
				_							
Espesor del pavimento	НС	41	cm								
<u>CÁLCULOS:</u>											
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$							
Contacto	Dφ/DR	1,400			•						
Distancia del centro geométrico de la llanta	R5	82,623	cm	$R5 = R {[A]}$	$\frac{A^C - B}{\left(D\phi / DR - 1\right)}$	ı)] _c –	В				
Longitud elástica	Lφ	46,036	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5				
	A/Lф	0,233		-	2						
			I								

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,936

850,37

	HE	46,343	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,838	cm	Z2= HE+0.6A ² /HE
	R2	50,482	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	506,836	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	507,092	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		•	•	-

Módulo de elasticidad equivalente del	E*	1.684,50	Kg/cm²
pavimento	E*	165,19	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2692	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR	CBR	7,73	%
de Subrasante	CBK	1,13	70

$$\begin{split} &D_0 = \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} \left(2(1 - \mu) \right) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &\left. + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°44 Progresiva: 01+600 km

DATOS:											
	Do	0,2885	mm								
	D50	0,1731	mm								
_	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	3				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	5				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	А		E	3	С	_
	D50= DR	0,1731	mm		Cualquier Valor	3.11	15)	0.58	4
	Do= Dφ	0,2885	mm	10	Cualquier Valor					0.00	_
	DR/Dφ	0,600		DR/Dφ>0.7	0.5	2.46	60	()	0.59	2
	А	2629		10	0.5	371	.1	-	2	0.21	9
	В	0		DR/Dφ<0.7							_
	С	0,548		DR/Dφ>0.426	0.4	2.62	29	()	0.54	8
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3	3	0.200)4
Para evaluación				Н/Сф	μ			x		Y	
rutinaria	μ	0,40		10	0.5		0.	183	0.	620	
	Х	0,192		10	0.4		0.	192	0.	602	
	Y	0,602		00	Cualquier	Valor	0.	180	0.	525	
Coeficiente numérico	М	0,48		Para H/Lø = 10							
				Para H/Lø = 10							
]	Para H/Lø = ∞;		valor: M	=0.44				
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1							
				Para μ = 0.4; K =							
Coeficiente numérico	ı	0,1689		Para H/Lø = 10;		= 0.1689					
Coefficiente numerico	'	0,1089		Para H/Lø = 10; Para H/Lø = ∞; j		= 0.1614 lor : I =	0.1925				
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/L	ø=10)		
			1	7							
Espesor del pavimento	НС	41	cm								
CÁLCULOS:											
Radio de huella de		10.710		. P'	-						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	p						
	Dφ/DR	1,667		=							
Distancia del centro geométrico de la llanta	R5	62,441	cm	$R5 = R {[A]}$	$\frac{A^{C} - B}{(D\phi/DR - 1)}$	ı)]c –	В				
Longitud elástica	Lφ	33,774	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5				
	A/Lφ	0,318		7	_						

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,895

1.034,54

				_
	HE	42,196	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	43,839	cm	Z2= HE+0.6A ² /HE
	R2	46,709	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	380,121	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	380,463	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
	·	•		=

Módulo de elasticidad equivalente del	E*	1.547,00	Kg/cm²		
pavimento	E*	151,71	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,2885	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	0.40	%		
de Subrasante	CBK	9,40	70		

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°45 Progresiva: 01+400 km

DATOS:											
	Do	0,2500	mm								
	D50	0,1346	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
	R	50	cm	H/Lφ	μ	А		В	1	С	
	D50= DR	0,1346	mm								
	Do= Dφ	0,25	mm	00	Cualquier Valor	3.11	15	0		0.5	84
	DR/Dφ	0,538		10 DR/Dφ>0.7	0.5	2.46	60	0		0.5	92
	Α	2629		10	0.5	371		2		0.2	
	В	0		DR/D¢<0.7	0.5	3/1	.1			0.2	19
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.5	48
Para evaluación rutinaria	H/Lφ	10		10 DR/Dφ<0.426	0.4	228	3.4	3	1	0.20	004
!]	Н/Lф	μ			x		Y	1
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183	0.	620	1
	Χ	0,192		10	0.4		0.	192	0.	602	1
	Y	0,602]	00	Cualquier	Valor	0.	180	0.	525	1
Coeficiente numérico	М	0,48		Para H/Lø = 10							
Coeficiente numérico	К	1,633		Para H/LØ = ∞ ; Para μ = 0.5; K=1 Para μ = 0.4; K =	.5	valor: M	l=0.44				
Coeficiente numérico	I	0,1689		Para H/L \emptyset = 10; Para H/L \emptyset = 10; Para H/L \emptyset = ∞ ;	$\mu = 0.4$ I: $\mu = 0.5$ I:	= 0.1689 = 0.1614 lor: I =	0.1925				
	N	10	1					o /U/I a	~_10\		
	IN	10		N= 10 para b	ase rocosa a	espes	or finit	0 (H/L£	a=10)		
Espesor del pavimento	НС	41	cm								
cá cu oc.				_							
CÁLCULOS:			1		_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * r}}$	p						
	Dφ/DR	1,857		_							
Distancia del centro geométrico de la llanta	R5	54,400	cm		$\frac{A^C - B}{(D\phi/DR - 1)}$						
Longitud elástica	Lφ	28,859	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5				
	A/Lφ	0,372									

Módulo de elasticidad de la Subrasante	Еф	1.356,59	Kg/cm²
	So/S	0,869	
	A/Lφ	0,372	
Longitud elástica	Lφ	28,859	cm
Distancia del centro geométrico de la llanta	R5	54,400	cm
	Dφ/DR	1,857	
contacto	Ar	10,748	cm
Radio de huella de			

$$S_o/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L.\phi.D.\phi} S_o / S$$

				_
	HE	40,344	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	42,062	cm	Z2= HE+0.6A ² /HE
	R2	45,046	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	329,143	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	329,537	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.773,00	Kg/cm²	
pavimento	E*	173,87	Мра	
Valor constante	2*(1-μ)	1,20		
Deflexión máxima				
recalculada para	Dφ'	0,2500	mm	
determinar E*				
Factor de CBR	f	110		
Determinación de CBR	CBR	12,33	%	
de Subrasante	CBK	12,55	70	

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

No requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°46 Progresiva: 01+200 km

DATOS:											
	Do	0,3252	mm								
	D50	0,2296	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg	g				
Carga sobre una llanta	Ρ'	4500	libras	\rightarrow	ó 2041,2	20 kg	g				
Presión de inflado	р	80	psi	ó 5,62456 Kg/	′cm²						
	R	50	cm	H/Lφ	μ	A	١	В			_
	D50= DR	0,2296	mm			3.1		0		0.5	9.4
	Do= Dφ	0,3252	mm	00	Cualquier Valor	3.1	15			0.5	04
	DR/Dφ	0,706		10 DR/Dφ>0.7	0.5	2.4	60	0		0.5	92
	Α	2629		10	0.5	371		2		0.2	10
	В	0		DR/Dφ<0.7	0.5	371				0.2	13
	С	0,548		10 DR/Dø>0.426	0.4	2.6	29	o		0.5	48
Para evaluación rutinaria	Н/Іф	10		10 DR/Dø<0.426	0.4	228	3.4	3		0.20) 04
			-	Н/Lф	μ			x		Υ	ī
Para evaluación rutinaria	μ	0,40		10	0.5			0.183 0		0.620	
	Χ	0,192		10	0.4		0.	192	0.	.602	1
	Υ	0,602]	000	Cualquier	Valor	0	180		.525	1
			-		Cualquiei	Valor	0.	100	0.	.525	
Coeficiente numérico	М	0,48		Para H/Lø = 10 Para H/Lø = 10							
			1	Para H/Lø = ∞;			1-0 44				
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1		vaior. iv	1-0.44				
			1	Para $\mu = 0.4$; K =	1.633						
Coeficiente numérico	1	0,1689]	Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614					
		-,]	Para H/Lø = ∞; μ							
[N	10]	N= 10 para b					∌=10)		
Espesor del pavimento	НС	41	cm								
				J							
CÁLCULOS:					_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * p}}$	-						
	Dφ/DR	1,416		= =							
Distancia del centro geométrico de la llanta	R5	80,815	cm	$R5 = R {[A($	$\frac{A^C - B}{(D\phi)DR - B}$	1)]° –	$\cdot B$				
Longitud elástica	Lφ	44,940	cm	$L\phi = \frac{Y.R5 + 1}{1}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	C.R5				

CALCULUS:			
Radio de huella de	Ar	10,748	cm
contacto	Ai	10,740	CIII
	Dφ/DR	1,416	
Distancia del centro geométrico de la llanta	R5	80,815	cm
Longitud elástica	Lφ	44,940	cm
	A/Lφ	0,239	
	So/S	0,933	
Módulo de elasticidad de la Subrasante	Еф	719,00	Kg/cm²

$$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$$

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

				_
	HE	45,996	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	47,502	cm	Z2= HE+0.6A ² /HE
	R2	50,164	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	495,532	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	495,794	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.392,50	Kg/cm²		
pavimento	E*	136,56	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,3252	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	6 54	%		
de Subrasante	CBK	6,54	70		

$$D_0 = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD – HEQ Requiere refuerzo de carpeta asfáltica.

Carril: VUELTA (Izquierdo) Punto: N°47 Progresiva: 01+000 km

DATOS:											
	Do	0,2296	mm								
	D50	0,1530	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	S				
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	cm²						
	R	50	cm	Η/Lφ	μ	А		В			2
	D50= DR	0,153	mm			3.11		0		0.5	
	Do= Dφ	0,2296	mm	00	Cualquier Valor	3.1	15			0.5	184
	DR/Dφ	0,666		10 DR/Dφ>0.7	0.5	2.40	60	0		0.5	92
	А	2629		10	0.5	371		2			
	В	0		DR/Dφ<0.7	0.5	3/1	.1			0.2	:19
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.5	548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	228	3.4	3		0.20	004
Doro ovolvoción			<u>.</u> 1	н/Lф	μ			x		Υ	7
Para evaluación rutinaria	μ	0,40		10	0.5		0.	183 0.620		620	
	X	0,192		10	0.4		0.	0.192 0.		602	1
	Υ	0,602			Cualquiar	Cualquier Valor 0.180		190	0.525		+
			-	00	Cualquier	Valor	0.	100	<u> </u>	323	
Coeficiente numérico	М	0,48		Para H/Lø = 10	$\mu = 0.5$: M=0.	52					
coefficiente numerico	141	0,40		Para H/L \emptyset = 10; μ = 0.4: M=0.48							
			-	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44				
Coeficiente numérico		Para $\mu = 0.5$; K=1.5									
			1	Para μ = 0.4; K =	1.633						
Coeficiente numérico	1	0,1689		Para H/Lø = 10; μ = 0.4 I = 0.1689 Para H/Lø = 10; μ = 0.5 I = 0.1614							
			_	Para H/Lø = ∞; ¡	u = cualquier val	or: I=	0.1925				
	N	10]	N= 10 para b	ase rocosa a	espes	or finit	o (H/Lø:	=10)		
Espesor del pavimento	НС	41	cm								
CÁLCULOS:				_							
Radio de huella de		10		P'	_						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	p						
	Dφ/DR	1,501		- '							
Distancia del centro geométrico de la llanta	R5	73,051	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi/DR - 1)}$	ı)]c –	В				
Longitud elástica	Lφ	40,229	cm	$L\phi = \frac{Y.R5 + \sqrt{(Y.R5)^2 - 4.A.X.R5}}{2}$							
	A/Lф	0,267		_	_						
	So/S	0,920		S ₀ /S = 1 -	M (A/Lø – 0	.10)					

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

1.121,22

Еφ

Kg/cm²

Módulo de elasticidad

de la Subrasante

	HE	44,455	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	46,014	cm	Z2= HE+0.6A ² /HE
	R2	48,756	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	446,903	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	447,193	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.960,50	Kg/cm²		
pavimento	E*	192,26	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,2296	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	10,19	%		
de Subrasante	CBK	10,19	76		

Se iteran valores E* hasta igualar Dφ' =Do

$$\begin{split} D_0 &= \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} \left(2(1-\mu) \right) + \left(\frac{Z_1}{R_2} \right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-6,90	cm
Espesor requerido de diseño	HD	27,35	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	34,25	cm
Relación modular	Ε*/Εφ	1,75	
ILLI OLIVEO.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

CÁLCULO APLICANDO EL MODELO DE HOGG

Carril: VUELTA (Izquierdo) Punto: N°48 Progresiva: 00+800 km

DATOS:										
	Do	0,2487	mm	1						
	D50	0,1530	mm	1						
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg	S			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	3			
Presión de inflado	р	80	psi	ó 5,62456 Kg/	cm²					
·	R	50	cm	Η/Lφ	μ	A			3	С
	D50= DR	0,153	mm			3.1				0.584
	Do= Dφ	0,2487	mm	00	Cualquier Valor	3.1				0.564
	DR/Dφ	0,615		10 DR/Dø>0.7	0.5	2.4	60	(D	0.592
	А	2629		10	0.5	371	.1	-	2	0.219
	В	0		DR/Dφ<0.7						
	С	0,548		10 DR/Dφ>0.426	0.4	2.6	29	•	0	0.548
Para evaluación rutinaria	H/Lφ	10		10 DR/D¢<0.426	0.4	228	3.4	;	3	0.2004
Para evaluación]	Н/Сф	щ		:	x		Υ
rutinaria	μ	0,40		10	0.5		0.	183	0.	.620
	Х	0,192		10	0.4		0.	192	0.	.602
	Y	0,602		00	Cualquier	Valor	0.	180	0.	.525
Coeficiente numérico	М	0,48		Para H/Lø = 10						
			Į	Para H/Lø = ∞;			I=0 44			
Coeficiente numérico	К	1,633		Para μ = 0.5; K=1						
			l	Para μ = 0.4; K =	1.633					
Coeficiente numérico	I	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614				
			•	Para H/Lø = ∞; į	u = cualquier v a	lor: I =	0.1925			
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/L	ø=10)	
Espesor del pavimento	НС	41	cm							
CÁLCULOS:				_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_ _ p					
	Dφ/DR	1,625								
Distancia del centro geométrico de la llanta	R5	64,661	cm	$R5 = R {[A]}$	$\frac{A^C - B}{(D\phi)DR - B}$	1)] ^c –	В			
Longitud elástica	Lφ	35,127	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5			
	A/Lф	0,306		-	-					

 $S_0/S = 1 - M (A/LØ - 0.10)$

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

So/S

Еφ

Módulo de elasticidad

de la Subrasante

0,901

1.161,45

Kg/cm²

				_
	HE	42,686	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,310	cm	Z2= HE+0.6A ² /HE
	R2	47,152	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	394,135	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	394,464	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$

Módulo de elasticidad equivalente del	E*	1.798,00	Kg/cm²		
pavimento	E*	176,32	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,2487	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	10,56	%		
de Subrasante	CBK	10,56	76		

Se iteran valores E* hasta igualar Dφ' =Do

$$D_{0} = \frac{(1+\mu)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_{1}} (2(1-\mu)) + \left(\frac{Z_{1}}{R_{1}} \right)^{2} \right] + \frac{1}{E_{0}} \left[\frac{1}{R_{2}} \left(2(1-\mu) + \left(\frac{Z_{2}}{R_{2}} \right)^{2} \right) - \frac{1}{R_{3}} \left(2(1-\mu) + \left(\frac{Z_{3}}{R_{3}} \right)^{2} \right) \right] \right\}$$

$$E \phi = f*CBF$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

CÁLCULO APLICANDO EL MODELO DE HOGG

Carril: VUELTA (Izquierdo) Punto: N°49 Progresiva: 00+600 km

DATOS:				_						
	Do	0,2127	mm							
	D50	0,1547	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	g			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg	g			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	Η/Lφ	μ	А		В		С
	D50= DR	0,1547	mm			3.11	16	0		0.584
	Do= Dφ	0,2127	mm	00	Cualquier Valor	3.11				0.504
	DR/Dφ	0,727		10 DR/Dφ>0.7	0.5	2.46	60	0		0.592
	Α	2629		10	0.5	371		2		0.219
	В	0		DR/Dφ<0.7	0.5	371				0.219
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3		0.2004
Para evaluación				Н/Lф	щ		:	×		Y
rutinaria	μ	0,40		10	0.5		0.	183	0.	.620
	Χ	0,192		10	0.4		0.	192	0.	.602
	Y	0,602		000	Cualquier	Valor	0.	180	0.	.525
		2.12		Para H/Lø = 10	D; μ = 0.5: M=0.	52				
Coeficiente numérico	M	0,48		Para H/Lø = 10	D; μ = 0.4: M=0.	48				
			•	Para H/Lø = ∞;	μ = Cualquier	valor: M	l=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1	1.5					
				Para $\mu = 0.4$; K =	= 1.633					
				Para H/Lø = 10;	$\mu=0.4 \hspace{1cm} I:$	= 0.1689				
Coeficiente numérico	ļ	0,1689		Para H/Lø = 10;		= 0.1614	0.4005			
		1	1	Para H/Lø = ∞; ¡						
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/Le	v=10)	
Espesor del pavimento	НС	41	cm							
CÁLCULOS:										
Radio de huella de				P'	_					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi *}}$	p					
contacto	Dφ/DR	1,375								
Distancia del centro				D.5. D	$A^{C}-E$	3				
geométrico de la llanta	R5	85,596	cm	$RS = R \frac{1}{A}$	$\frac{A^C - B}{(D\phi/DR - B)}$	()] ^c –	B			
Beeninetines de la manita										
Longitud elástica	Lφ	47,836	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5			
	A/Lφ	0,225								
	So/S	0,940		S ₀ /S = 1 -	M (A/Lø – 0	.10)				

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

1.040,41

Еφ

Kg/cm²

Módulo de elasticidad

de la Subrasante

				_
	HE	46,906	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Р"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	48,383	cm	Z2= HE+0.6A ² /HE
	R2	50,999	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	525,399	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	525,647	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		_		-

Módulo de elasticidad equivalente del	E*	2.137,00	Kg/cm²		
pavimento	E*	209,57	Мра		
Valor constante	2*(1-μ)	1,20			
Deflexión máxima					
recalculada para	Dφ'	0,2127	mm		
determinar E*					
Factor de CBR	f	110			
Determinación de CBR	CBR	0.46	%		
de Subrasante	CBK	9,46	76		

Se iteran valores E* hasta igualar Dφ' =Do

$$\begin{split} &D_0 = \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} \left(2(1 - \mu) \right) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &\left. + \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-7,55	cm
Espesor requerido de diseño	HD	28,58	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	36,14	cm
Relación modular	Ε*/Εφ	2,05	
MEI GENEG.			

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

CÁLCULO APLICANDO EL MODELO DE HOGG

Carril: VUELTA (Izquierdo) Punto: N°50 Progresiva: 00+400 km

DATOS:				_							
	Do	0,2707	mm	_							
	D50	0,1740	mm								
	W18	18000	libras								
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	lO kg					
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	.0 kg					
Presión de inflado	р	80	psi	ó 5,62456 Kg/	/cm²						
•	R	50	cm	Η/Lφ	μ	А		Е	1	С	_
	D50= DR	0,174	mm			3.11	-	0		0.58	
	Do= Dφ	0,2707	mm	00	Cualquier Valor	3.11	5			0.50	-
	DR/Dφ	0,643		10 DR/Dφ>0.7	0.5	2.46	0	0		0.59	92
	Α	2629		10	0.5	371.	,	2	,	0.21	10
	В	0		DR/Dφ<0.7	0.5	371	'			0.21	
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	9	o)	0.54	18
Para evaluación rutinaria	H/Lф	10		10 DR/D¢<0.426	0.4	2283	1.4	3	1	0.20	04
			1	Н/Lф	щ		,	x		Υ	1
Para evaluación rutinaria	μ	0,40		10	0.5		0.1	183	0.	620	
	Χ	0,192		10	0.4		0.	192	0.	602	
	Υ	0,602		00	Cualquier	Valor	0.	180	0	525	
			1			-					
Coeficiente numérico	М	0,48		Para H/Lø = 10	$\mu = 0.5$: M=0.	52					
				Para H/Lø = 10	$\mu = 0.4$: M=0.	48					
			1	Para H/Lø = ∞;	μ = Cualquier	valor: M	=0.44				
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1	1.5						
			l	Para μ = 0.4; K =	= 1.633						
]	Para H/Lø = 10;	$\mu = 0.4$ I =	= 0.1689					
Coeficiente numérico	Į	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I =	= 0.1614					
			1	Para H/Lø = ∞; j	$\mu = \text{cualquier } \mathbf{val}$	lor: l=0	0.1925				
	N	10		N= 10 para b	ase rocosa a	espeso	or finit	o (H/L	ø=10)		
				_							
Espesor del pavimento	НС	41	cm								
<u>CÁLCULOS:</u>											
Radio de huella de	۸۰	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_						
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{\pi * i}{\pi * i}}$	p						
	Dφ/DR	1,556		7							
Distancia del centro				ne n	$A^{C}-E$	3					
geométrico de la llanta	R5	68,989	cm	$R5 = R {A}$	$\frac{A^C - B}{(D\phi/DR - B)}$	ı)] ^c –	B				
Scometine de la lialita											
Longitud elástica	Lφ	37,761	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$ - 2	-4.A.X	.R5				
	A/Lφ	0,285									
	So/S	0,911		S ₀ /S = 1 -	M (A/Lø – 0	.10)					
			ļ	-							

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

1.003,92

Еφ

Kg/cm²

Módulo de elasticidad

de la Subrasante

				_
	HE	43,612	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	45,201	cm	Z2= HE+0.6A ² /HE
	R2	47,990	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	421,386	cm	Z3=(HE+NLØ)+0.6A²/(HE+NLØ)
	R3	421,695	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		•	•	•

Módulo de elasticidad equivalente del	E*	1.657,40	Kg/cm²
pavimento	E*	162,54	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2707	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR de Subrasante	CBR	9,13	%

Se iteran valores E* hasta igualar Dφ' =Do

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

$$HD = CBR^{-0.59}$$
 (4.63+6.09 log N₁₈)

No requiere refuerzo de carpeta asfáltica.

CÁLCULO APLICANDO EL MODELO DE HOGG

Carril: VUELTA (Izquierdo) Punto: N°51 Progresiva: 00+200 km

DATOS:				_						
	Do	0,2138	mm							
	D50	0,1360	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	10 kg	3			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	20 kg				
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	Η/Lφ	μ	A		В	3	С
	D50= DR	0,136	mm		Cualquier Valor	3.11		0		0.584
	Do= Dφ	0,2138	mm	10	Cualquier Valor	0.11				0.50
	DR/Dφ	0,636		DR/Dφ>0.7	0.5	2.46	60	0)	0.592
	А	2629		10	0.5	371	.1	2		0.219
	В	0		DR/Dφ<0.7						
	С	0,548		DR/Dø>0.426	0.4	2.62	29	0)	0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dφ<0.426	0.4	2283	3.4	3	1	0.200
r			1	Н/Lф	μ)	(Υ
Para evaluación rutinaria	μ	0,40		10	0.5		0.1	83	0.	.620
	Χ	0,192		10	0.4		0.1	92	0.	.602
	Υ	0,602		00	Cualquier	Valor	0.1	80	0	.525
_			1		Cualquiei	Valor	0.1	00		.525
Coeficiente numérico	M	0,48		Para H/Lø = 10						
			-	Para H/Lø = ∞;	; μ = Cualquier	valor: M	=0.44			
Coeficiente numérico	K	1,633		Para μ = 0.5; K=1						
			•	Para μ = 0.4; K =						
Coeficiente numérico	1	0,1689		Para H/Lø = 10; Para H/Lø = 10;		= 0.1689 = 0.1614				
			•	Para H/Lø = ∞; ı	$\mu = \text{cualquier } \mathbf{va}$	lor : I = 0	0.1925			
	N	10		N= 10 para b	ase rocosa a	espes	or finite	o (H/L¢	ø=10)	
Espesor del pavimento	НС	41	cm							
CÁLCULOS:				_						
Radio de huella de contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi * i}}$	_ p					
	Dφ/DR	1,572		_ '						
Distancia del centro geométrico de la llanta	R5	67,904	cm	$R5 = R {[A]}$	$\frac{A^{C}-B}{\left(D\phi/DR-1\right)}$	1)] ^c –	В			
Longitud elástica	Lφ	37,101	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	-4.A.X	.R5			
1			ļ	4	2					

CALCULOS:			
Radio de huella de	Ar	10,748	cm
contacto	ļ		ļ
	Dφ/DR	1,572	
Distancia del centro geométrico de la llanta	R5	67,904	cm
Longitud elástica	Lφ	37,101	cm
	A/Lφ	0,290	
	So/S	0,909	
Módulo de elasticidad de la Subrasante	Еф	1.290,26	Kg/cm²

$$S_0/S = 1 - M (A/LØ - 0.10)$$

$$E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$$

	HE	43,384	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	44,982	cm	Z2= HE+0.6A ² /HE
	R2	47,784	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	414,563	cm	Z3=(HE+NLØ)+0.6A ² /(HE+NLØ)
	R3	414,876	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
	•	·		

Módulo de elasticidad equivalente del	E*	2.097,00	Kg/cm²
pavimento	E*	205,65	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2138	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR de Subrasante	CBR	11,73	%

Se iteran valores E* hasta igualar Dφ' =Do

$$\begin{split} D_0 &= \frac{(1+\mu)\,P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1-\mu)}{r} - \frac{1}{R_1} (2(1-\mu)) + \left(\frac{Z_1}{R_1} \right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1-\mu) + \left(\frac{Z_2}{R_2} \right)^2 \right) - \frac{1}{R_3} \left(2(1-\mu) + \left(\frac{Z_3}{R_3} \right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

HD = CBR
$$^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$\mathsf{DH} = \mathsf{HD} - \mathsf{HEQ}$$

No requiere refuerzo de carpeta asfáltica.

CÁLCULO APLICANDO EL MODELO DE HOGG

Carril: VUELTA (Izquierdo) Punto: N°52 Progresiva: 00+000 km

DATOS:				_						
	Do	0,2527	mm							
	D50	0,1943	mm							
	W18	18000	libras							
Carga sobre llanta doble	Р	9000	libras	\rightarrow	ó 4082,4	0 kg	Ţ			
Carga sobre una llanta	P'	4500	libras	\rightarrow	ó 2041,2	:0 kg	Į.			
Presión de inflado	р	80	psi	ó 5,62456 Kg,	/cm²					
	R	50	cm	H/Lφ	μ	А		В		С
	D50= DR	0,1943	mm		Cualquier Valor	3.11	15	0		0.584
	Do= Dφ	0,2527	mm	•	Cualquier Valor	0.11				0.504
	DR/Dφ	0,769		10 DR/Dφ>0.7	0.5	2.46	60	0		0.592
	Α	2629		10	0.5	371	.1	2		0.219
	В	0		DR/Dφ<0.7	0.0	071				0.2.15
	С	0,548		10 DR/Dφ>0.426	0.4	2.62	29	0		0.548
Para evaluación rutinaria	H/Lф	10		10 DR/Dø<0.426	0.4	2283	3.4	3		0.2004
Para evaluación				Н/Lф	μ		:	x		Υ
rutinaria	μ	0,40		10	0.5		0.	183	0	.620
	Х	0,192		10	0.4		0.	192	0.	.602
	Υ	0,602			∞ Cualquier Valor 0.180 0				.525	
			1		Cualquiei	Valor	0.		-	.020
Coeficiente numérico	М	0,48		Para H/Lø = 10	$\mu = 0.5$: M=0.	52				
		-, -		Para H/Lø = 10	$0; \mu = 0.4: M=0.$	48				
		ı	1	Para H/Lø = ∞;	; μ = Cualquier	valor: M	=0.44			
Coeficiente numérico	K	1,633		Para $\mu = 0.5$; K=1	1.5					
				Para μ = 0.4; K =	= 1.633					
]	Para H/Lø = 10;	$\mu=0.4 \hspace{1cm} I:$	= 0.1689				
Coeficiente numérico	I	0,1689		Para H/Lø = 10;	$\mu = 0.5$ I	= 0.1614				
		l]	Para H/Lø = ∞;	$\mu = \text{cualquier } \mathbf{v}$ a	or: I = 0	0.1925			
	N	10		N= 10 para b	ase rocosa a	espes	or finit	o (H/Le	z=10)	
l		I .	J					(,	
Espesor del pavimento	НС	41	cm							
CÁLCULOS:				-						
Radio de huella de				p!	-					
contacto	Ar	10,748	cm	$A_r = \sqrt{\frac{P'}{\pi *}}$	p					
contacto	Dφ/DR	1,301								
	- 4/ - * *	,		1	4C r					
Distancia del centro	R5	96,618	cm	$R5 = R_{\overline{14}}$	$\frac{A^C - B}{(D\phi/DR - B)}$)]c =	R			
geométrico de la llanta		,		[A	$(D\varphi)DR = 0$.)] -	Ь			
Longitud elástica	Lφ	54,506	cm	$L\phi = \frac{Y.R5}{}$	$+\sqrt{(Y.R5)^2}$	- 4. <i>A</i> .X	.R5			
	A/Lφ	0,197		-	2					
	So/S	0,953		S ₀ /S = 1 -	M (A/Lø – 0	.10)				
			ļ	7						

 $E\phi = \frac{K.I.P}{L\phi.D\phi} S_o / S$

779,35

Еφ

Kg/cm²

Módulo de elasticidad

de la Subrasante

				_
	HE	48,893	cm	HE=0.9xHC (E*/Eø) ^{1/3}
	r	16,122	cm	r = 1,5*A
Carga de ensayo	Ρ"	2041,17	Kkg	$P'' = \pi * (Ar)^2 * p$
	Z1	42,690	cm	$Z1 = HC + 0.6A^2/HC$
	R1	45,633	cm	$R1 = \sqrt{Z1^2 + (1.5A)^2}$
	Z2	50,311	cm	Z2= HE+0.6A ² /HE
	R2	52,831	cm	$R2 = \sqrt{Z2^2 + (1.5A)^2}$
	Z3	594,072	cm	Z3=(HE+NLø)+0.6A²/(HE+NLø)
	R3	594,291	cm	$R3 = \sqrt{Z3^2 + (1.5A)^2}$
		·		

Módulo de elasticidad equivalente del	E*	1.813,00	Kg/cm²
pavimento	E*	177,79	Мра
Valor constante	2*(1-μ)	1,20	
Deflexión máxima			
recalculada para	Dφ'	0,2527	mm
determinar E*			
Factor de CBR	f	110	
Determinación de CBR de Subrasante	CBR	7,09	%

Se iteran valores E* hasta igualar Dφ' =Do

$$\begin{split} D_0 &= \frac{\left(1 + \mu\right)P}{2\pi} \left\{ \frac{1}{E*} \left[\frac{2(1 - \mu)}{r} - \frac{1}{R_1} (2(1 - \mu)) + \left(\frac{Z_1}{R_1}\right)^2 \right] \right. \\ &+ \frac{1}{E_0} \left[\frac{1}{R_2} \left(2(1 - \mu) + \left(\frac{Z_2}{R_2}\right)^2 \right) - \frac{1}{R_3} \left(2(1 - \mu) + \left(\frac{Z_3}{R_3}\right)^2 \right) \right] \right\} \end{split}$$

$$E \phi = f*CBR$$

DETERMINACIÓN DEL

REFUERZO:

Espesor del refuerzo de material granular	DH	-3,77	cm
Espesor requerido de diseño	HD	33,89	cm
Carga equivalente	N18	1.570.500	klb
Espesor de pavimento	HEQ	37,67	cm
Relación modular	Ε*/Εφ	2,33	

$$\frac{HEQ}{HC} = \left(\frac{1}{3} \cdot \frac{E^*}{E\phi}\right)^{1/3}$$

HD = CBR
$$^{-0.59}$$
 (4.63+6.09 log N₁₈)

$$DH = HD - HEC$$

DH = HD - HEQ No requiere refuerzo de carpeta asfáltica.

ANEXO 4 PLANILLAS DE ESTUDIO CBR

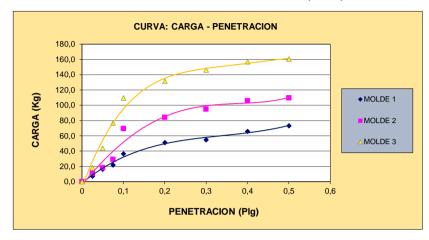
PUNTO 1 - CAPA SUBRASANTE

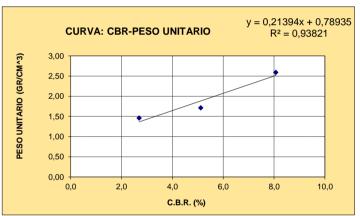
FUNIO 1 -												SUDKA	MINIE
	CALIFORNIA BEARING RATIO (CBR)												
Proyecto:	APLICACION DEL												
1 Toyecto.	REFUERZO ESTRU	JCTUR.	AL DE U	N PAVIME	ENTO FI	LEXIBLE.		Muestra	LL	IP	Clasific.	H. Opt.	D. Máx
Ubicación:	TRAMO SAN MAT	EO - SE	ELLA MÉ	NDEZ.				1	23	13	A-2-6	6,77	2,35
	C	ONTEN	IDO DE	HUMEDA	D Y PE	SO UNIT	ΓARIO						
Nº capas	N° capas 5 5								5				
Nº golpes por	capa	12				25			56				
CONDICION DE	E MUESTRA	Antes d	e mojarse	D. de M	Antes d	e mojarse	D. de M	Antes de	e mojarse	D. de M			
Peso muestra	húm.+ molde	112	40,00	11895,00	118	65,00	12705,00	1192	20,00	12495,00			
Peso Molde		790	50,00	7960,00	8040,00		8040,00	723	0,00	7230,00			
Peso muestra	húmeda	32	30,00	3935,00	3825,00		4665,00	4690,00		5265,00			
Volumen de la	a muestra	208	38,57	2088,57	2092,28		2092,28	162	2,04	1622,04			
Peso Unit. Mu	uestra Húm.	1	,57	1,88	1,83		2,23	2,89		3,25			
MUESTRA D	DE HUMEDAD	Fondo	Superf.	Medio	Fondo	Superf.	Medio	Fondo	Superf.	Medio		Hum.	Peso
Tara Nº		1,00	2,00	3,00	1,00	2,00	3,00	1,00	2,00	3,00		Opt.	Unit.
Peso muestra	húm + tara	56,11	56,83	56,03	57,93	57,38	57,13	55,31	55,59	55,30		%	gr/cm3
Peso muestra	seca + tara	47,60	46,80	47,71	48,41	47,61	47,89	47,51	46,56	47,57		6,77	2,35
Peso del agua		8,51	10,03	8,32	9,52	9,77	9,24	7,80	9,03	7,73			
Peso de tara		20,83	18,55	19,28	15,00	18,40	17,36	18,57	16,76	16,94			
Peso de la muestra seca		26,77	28,25	28,43	33,41	29,21	30,53	28,94	29,80	30,63			
Contenido humedad %		31,79	35,50	29,26	28,49	33,45	30,27	26,95	30,30	25,24	Į .		
Promedio cont. Humedad		3.	3,65	29,26	30,97		30,27	28,63		25,24	[
Peso Unit.mu	1,	175	1,458	3 1,396 1,712			2,248 2,592						

EXPANSION

		TIEMPO		MOLDE N	° 1		MOLDE N	2	MOLDE Nº 3			
FECHA	HORA	EN	LECT.	EXPANSION		LECT.	EXPANSION		LECT.	EXI	PANSION	
		DIAS	EXTENS.	CM.	%	EXTENS.	CM.	%	EXTENS.	CM.	%	
24-oct-22	10:50	1	14,67	1,47	0,00	14,88	1,49	0,00	14,35	1,43	0,00	
25-oct-22	10:50	2	17,51	1,75	2,45	20,31	2,03	4,69	20,24	2,02	6,55	
26-oct-22	10:50	3	17,60	1,76	2,53	20,42	2,04	4,79	20,85	2,09	7,23	
27-oct-22	10:50	4	16,66	1,67	1,72	20,48	2,05	4,84	20,20	2,02	6,50	
28-oct-22	11:50	4	17,66	1,77	0,13	20,74	2,07	0,38	20,12	2,01	-0,14	

C.B.R.	Peso
%	Unit.
	gr/cm3
2,7	1,46
5,1	1,71
8,1	2,59


C.B.R.


PENETRAC	CION	CARGA		MOLDE Nº 1				MOLDE	Nº 2		MOLDE N° 3				
		NORMAL	CARGA ENSAYO		C.B.R. CORREG		CARGA	ENSAYO	C.B.R. CORREG		CARGA ENSAYO		C.B.R. CORREG		
Pulg.	mm	Kg/cm2	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%	
0	0		0,0	0			0,0	0			0,0	0			
0,025	0,63		7,2	0,4			10,9	0,6			18,2	0,9			
0,05	1,27		16,4	0,8			18,2	0,9			43,8	2,3			
0,075	1,9		21,9	1,1			29,2	1,5			76,8	4,0			
0,1	2,54	1360	36,5	1,9		2,7	69,5	3,6		5,1	109,7	5,7		8,1	
0,2	5,08	2040	51,2	2,6		2,5	84,1	4,3		4,1	131,6	6,8		6,5	
0,3	7,62		54,8	2,8			95,1	4,9			146,2	7,6			
0,4	10,16		65,8	3,4			106,0	5,5			157,2	8,1			
0,5	12,7		73,1	3,8			109,7	5,7			160,8	8,3			

PUNTO 1 - CAPA SUBRASANTE

CALIFORNIA BEARING RATIO (CBR)

CBR 100% D.máx										
7,29	%									
CBR 95% I	D.Máx.									
6,75 %										

Univ. Mery Cabrera Villca LABORATORISTA

Ing. José Ricardo Arce Avendaño RESP. LABORATORIO DE SUELOS

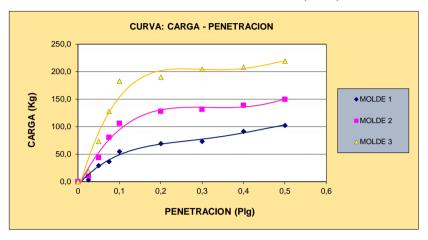
PUNTO 2 - CAPA SUBRASANTE

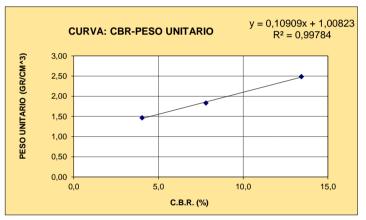
1 UNIO 2 - CAI												BUDKA	JANTE
	CALIFORNIA BEARING RATIO (CBR)												
Duorootos	APLICACION DEL	MODE	LO DE H	OGG EN E	EL DISE	NO DEL							
Proyecto:	REFUERZO ESTRU	JCTUR.	AL DE U	N PAVIMI	ENTO FI	LEXIBLE.		Muestra	LL	IP	Clasific.	H. Opt.	D. Máx
Ubicación:	TRAMO SAN MAT	EO - SI	ELLA MÉ	NDEZ.				2	26	14	A-6	6,83	1,86
	CONTENIDO DE HUMEDAD Y PESO UNITARIO												
Nº capas 5									5				
Nº golpes por	capa		12			25			56				
CONDICION DE	MUESTRA	Antes d	le mojarse	D. de M	Antes d	e mojarse	D. de M	Antes de	e mojarse	D. de M			
Peso muestra	húm.+ molde	112	205,00	11875,00	118	65,00	12655,00	116	15,00	12015,00			
Peso Molde		79	65,00	7965,00	8035,00		8035,00	722	0,00	7220,00			
Peso muestra	húmeda	32	40,00	3910,00	383	30,00	4620,00	4395,00		4795,00			
Volumen de la	a muestra	20	88,57	2088,57	209	92,28	2092,28	162	2,04	1622,04			
Peso Unit. Mu	uestra Húm.	1	,55	1,87	1	,83	2,21	2,71		2,96			
MUESTRA D	E HUMEDAD	Fondo	Superf.	Medio	Fondo	Superf.	Medio	Fondo	Superf.	Medio		Hum.	Peso
Tara Nº		1,00	2,00	3,00	1,00	2,00	3,00	1,00	2,00	3,00		Opt.	Unit.
Peso muestra	húm + tara	65,11	54,92	56,90	57,89	55,40	54,13	55,32	55,60	66,30		%	gr/cm3
Peso muestra	seca + tara	56,61	46,70	46,71	48,89	47,90	47,70	46,56	45,56	58,57		6,83	1,86
Peso del agua		8,50	8,22	10,19	9,00	7,50	6,43	8,76	10,04	7,73			
Peso de tara		28,84	21,58	10,09	18,20	23,40	16,45	15,23	11,29	17,82			
Peso de la muestra seca		27,77	25,12	36,62	30,69	24,50	31,25	31,33	34,27	40,75			
Contenido humedad %		30,61	32,72	27,83	29,33 30,61		20,58	27,96	29,30	18,97			
Promedio cont. Humedad		31,67 27,83		29,97		20,58	28,63		18,97	Ţ.			
Peso Unit.mu	1.	,178	1,465	65 1,408 1,831				2,106 2,485					

EXPANSION

	TIEMPO		MOLDE N	° 1		MOLDE N	2	MOLDE N° 3			
FECHA	HORA	EN	LECT.	EXPANSION		LECT.	EXPA	ANSION	LECT.	EXI	PANSION
		DIAS	EXTENS.	CM.	. % EXTENS. CM.		%	EXTENS.	CM.	%	
24-oct-22	10:50	1	15,90	1,59	0,00	17,05	1,71	0,00	10,53	1,05	0,00
25-oct-22	10:50	2	17,80	1,78	1,64	18,80	1,88	1,51	11,09	1,11	0,62
26-oct-22	10:50	3	18,02	1,80	1,83	19,05	1,91	1,73	11,50	1,15	1,08
27-oct-22	10:50	4	18,46	1,85	2,21	19,20	1,92	1,86	12,30	1,23	1,97
28-oct-22	11:50	4	18,02	1,80	0,19	19,08	1,91	0,24	12,56	1,26	1,63

C.B.R.	Peso
%	Unit.
	gr/cm3
4,0	1,46
7,8	1,83
13,4	2,48


C.B.R.


PENETRAC	CION	CARGA		MOLDE Nº 1				MOLDE	Nº 2		MOLDE N° 3			
	NORMAL		CARGA ENSAYO		C.B.R. CORREG		CARGA ENSAYO		C.B.R. CORREG		CARGA ENSAYO		C.B.R. CORREG	
Pulg.	mm	Kg/cm2	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%
0	0		0,0	0			0,0	0			0,0	0		
0,025	0,63		3,5	0,2			10,9	0,6			18,2	0,9		
0,05	1,27		29,2	1,5			43,8	2,3			73,1	3,8		
0,075	1,9		36,5	1,9			80,4	4,2			128,0	6,6		
0,1	2,54	1360	54,8	2,8		4,0	106,0	5,5		7,8	182,7	9,4		13,4
0,2	5,08	2040	69,5	3,6		3,4	128,0	6,6		6,3	190,0	9,8		9,3
0,3	7,62		73,1	3,8			131,6	6,8			204,6	10,6		
0,4	10,16		91,4	4,7			138,9	7,2			208,2	10,8		
0,5	12,7		102,4	5,3			149,9	7,7			219,1	11,3		

PUNTO 2 - CAPA SUBRASANTE

CALIFORNIA BEARING RATIO (CBR)

CBR 100% D.máx										
7,81	%									
CBR 95% D).Máx.									
6,96	%									

Univ. Mery Cabrera Villca LABORATORISTA Ing. José Ricardo Arce Avendaño RESP. LABORATORIO DE SUELOS

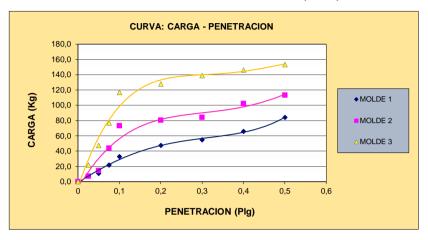
PUNTO 3 - CAPA SUBRASANTE

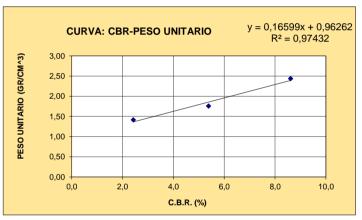
Tuno 3												OUDIA	MITE
	CALIFORNIA BEARING RATIO (CBR)												
Proyecto:	APLICACION DEL												
1 Toyccto.	REFUERZO ESTRU	JCTUR.	AL DE U	N PAVIME	ENTO FI	LEXIBLE.		Muestra	LL	IP	Clasific.	H. Opt.	D. Máx
Ubicación:	TRAMO SAN MAT	EO - SI	ELLA MÉ	NDEZ.				3	37	22	A-6	6,69	1,97
	CONTENIDO DE HUMEDAD Y PESO UNITARIO												
Nº capas 5									5				
Nº golpes por	capa		12			25			56				
CONDICION DE	Antes d	e mojarse	D. de M	Antes d	le mojarse	D. de M	Antes de	e mojarse	D. de M				
Peso muestra	húm.+ molde	112	45,00	11885,00	118	75,00	12705,00	1182	25,00	12170,00			
Peso Molde		790	55,00	7965,00	8035,00		8035,00	7220,00		7220,00			
Peso muestra	húmeda	328	30,00	3920,00	384	40,00	4670,00	460	5,00	4950,00			
Volumen de la	a muestra	208	38,57	2088,57	2092,28		2092,28	162	2,04	1622,04			
Peso Unit. Mu	iestra Húm.	1	,57	1,88	1,84		2,23	2,84		3,05			
MUESTRA D	E HUMEDAD	Fondo	Superf.	Medio	Fondo	Superf.	Medio	Fondo	Superf.	Medio		Hum.	Peso
Tara Nº		1,00	2,00	3,00	1,00	2,00	3,00	1,00	2,00	3,00		Opt.	Unit.
Peso muestra	húm + tara	55,11	55,82	57,03	57,80	55,38	56,13	55,34	55,59	56,30		%	gr/cm3
Peso muestra	seca + tara	46,61	45,70	47,71	48,42	47,68	47,70	47,56	46,56	48,57		6,69	1,97
Peso del agua		8,50	10,12	9,32	9,38	7,70	8,43	7,78	9,03	7,73			
Peso de tara		21,84	19,58	19,26	15,00	22,40	16,36	19,90	16,40	17,94			
Peso de la muestra seca		24,77	26,12	28,45	33,42	25,28	31,34	27,66	30,16	30,63			
Contenido humedad %		34,32	38,74	32,76	28,07	30,46	26,90	28,13	29,94	25,24			
Promedio cont. Humedad		30	,53 32,76		29,26		26,90	29,03		25,24			
Peso Unit.mue	1,	150	1,414	1,420 1,759			2,200 2,437						

EXPANSION

TIEM				MOLDE N	° 1		MOLDE N	2	MOLDE N° 3			
FECHA	HORA	EN	LECT.	EXPANSION		LECT.	EXPANSION		LECT.	EXI	PANSION	
		DIAS	EXTENS.	CM.	CM. % EXTENS.		CM.	%	EXTENS.	CM.	%	
24-oct-22	10:50	1	13,67	1,37	0,00	14,92	1,49	0,00	14,80	1,48	0,00	
25-oct-22	10:50	2	15,51	1,55	1,59	19,08	1,91	3,59	19,89	1,99	5,66	
26-oct-22	10:50	3	16,62	1,66	2,55	20,05	2,01	4,43	20,40	2,04	6,22	
27-oct-22	10:50	4	17,90	1,79	3,65	20,48	2,05	4,80	20,60	2,06	6,45	
28-oct-22	11:50	4	18,02	1,80	2,17	20,89	2,09	1,56	20,49	2,05	0,67	

C.B.R.	Peso		
%	Unit.		
	gr/cm3		
2,4	1,41		
5,4	1,76		
8,6	2,44		

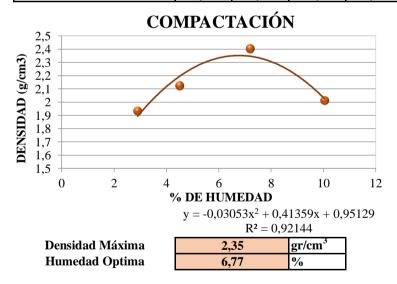

C.B.R.


PENETRAC	CION	CARGA		MOL	DE Nº 1		MOLDE N° 2		MOLDE N° 3					
		NORMAL	CARGA	ENSAYO	C.B.R. CORREG		CARGA ENSAYO		C.B.R. CORREG		CARGA ENSAYO		C.B.R. CORREG	
Pulg.	mm	Kg/cm2	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%	Kg	Kg/cm2	Kg	%
0	0		0,0	0			0,0	0			0,0	0		
0,025	0,63		7,2	0,4			7,2	0,4			21,9	1,1		
0,05	1,27		10,9	0,6			14,5	0,8			47,5	2,5		
0,075	1,9		21,9	1,1			43,8	2,3			76,8	4,0		
0,1	2,54	1360	32,9	1,7		2,4	73,1	3,8		5,4	117,0	6,0		8,6
0,2	5,08	2040	47,5	2,5		2,3	80,4	4,2		3,9	128,0	6,6		6,3
0,3	7,62		54,8	2,8			84,1	4,3			138,9	7,2		
0,4	10,16		65,8	3,4			102,4	5,3			146,2	7,6		
0,5	12,7		84,1	4,3			113,4	5,9			153,5	7,9		

PUNTO 3 - CAPA SUBRASANTE

CALIFORNIA BEARING RATIO (CBR)

CBR 100% D.máx					
6,07 %					
CBR 95% D.Máx.					
5,48 %					


Univ. Mery Cabrera Villca LABORATORISTA Ing. José Ricardo Arce Avendaño RESP. LABORATORIO DE SUELOS

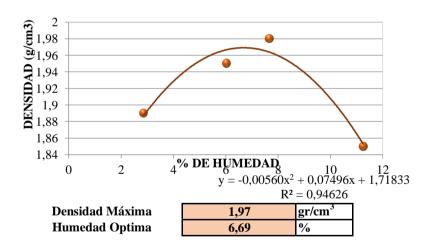
COMPACTACIÓN T-180

Provecto:	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ.
Capa:	PUNTO 1 - SUBRASANTE

N° de capas	5	5	5	5
N° de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10735	11225	11345	11215
Peso del molde	6525	6525	6525	6525
Peso suelo húmedo	4210	4700	4820	4690
Volumén de la muestra	2118,3	2118,3	2118,3	2118,3
Densidad suelo húmedo (gr/cm	1,987	2,219	2,275	2,214
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	52,16	47,93	62,34	63,28
Peso suelo seco + cápsula	50,87	45,11	58,21	56,95
Peso del agua	1,29	2,82	4,13	6,33
Peso de la cápsula	13,14	8,35	12,02	13,78
Peso suelo seco	37,73	36,76	46,19	43,17
Contenido de humedad (%h)	2,9	4,5	7,2	10,04
Densidad suelo seco (gr/cm3)	1,93	2,12	2,4	2,01

Univ. Mery Cabrera Villca **LABORATORISTA** Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS



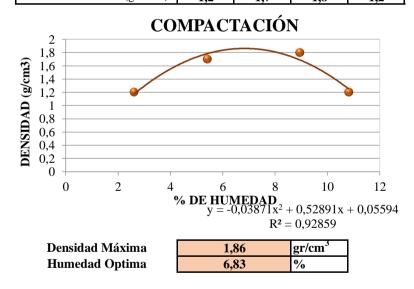
COMPACTACIÓN T-180

Provecto:	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ.
Capa:	PUNTO 2 - SUBRASANTE

NO de comos			_	_
Nº de capas	5	5	5	5
Nº de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10735	11225	11345	11215
Peso del molde	6525	6525	6525	6525
Peso suelo húmedo	4210	4700	4820	4690
Volumén de la muestra	2118,3	2118,3	2118,3	2118,3
Densidad suelo húmedo (gr/cm	1,987	2,219	2,275	2,214
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	52,16	47,93	62,34	63,28
Peso suelo seco + cápsula	50,87	45,11	58,21	56,95
Peso del agua	1,29	2,82	4,13	6,33
Peso de la cápsula	13,14	8,35	12,02	13,78
Peso suelo seco	37,73	36,76	46,19	43,17
Contenido de humedad (%h)	2,85	6,02	7,65	11,25
Densidad suelo seco (gr/cm3)	1,89	1,95	1,98	1,85

COMPACTACIÓN

Univ. Mery Cabrera Villca **LABORATORISTA** Ing. José Ricardo Arce Avendaño


RESP. LABORATORIO DE SUELOS

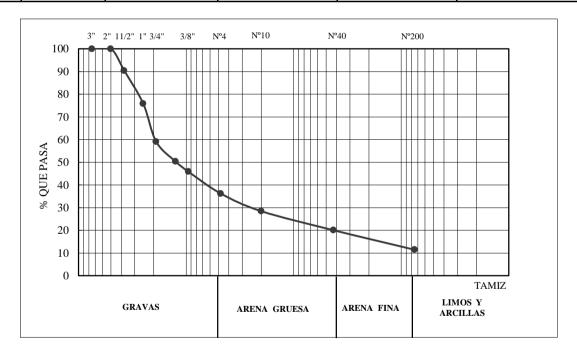
COMPACTACIÓN T-180

Provecto:	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ.
Capa:	PUNTO 3 - SUBRASANTE

N° de capas	5	5	5	5
Nº de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10735	11225	11345	11215
Peso del molde	6525	6525	6525	6525
Peso suelo húmedo	4210	4700	4820	4690
Volumén de la muestra	2118,3	2118,3	2118,3	2118,3
Densidad suelo húmedo (gr/cm	1,987	2,219	2,275	2,214
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	52,16	47,93	62,34	63,28
Peso suelo seco + cápsula	50,87	45,11	58,21	56,95
Peso del agua	1,29	2,82	4,13	6,33
Peso de la cápsula	13,14	8,35	12,02	13,78
Peso suelo seco	37,73	36,76	46,19	43,17
Contenido de humedad (%h)	2,6	5,4	8,92	10,8
Densidad suelo seco (gr/cm3)	1,2	1,7	1,8	1,2

Univ. Mery Cabrera Villca **LABORATORISTA** Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS



GRANULOMETRIA

Proyecto: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

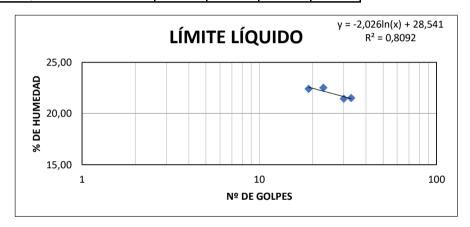
Ubicación: TRAMO SAN MATEO - SELLA MENDEZ. - PUNTO 1 - BASE

Peso Total (g	r.)		1000	A.S.T.M.	
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	96,80	96,80	9,68	90,32
1"	25,00	145,40	242,20	24,22	75,78
3/4"	19,00	166,80	409,00	40,90	59,10
1/2"	12,50	88,00	497,00	49,70	50,30
3/8"	9,50	44,80	541,80	54,18	45,82
N°4	4,75	96,40	638,20	63,82	36,18
N°10	2,00	77,60	715,80	71,58	28,42
N°40	0,425	84	799,80	79,98	20,02
N°200	0,075	86	885,80	88,58	11,42

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño

LABORATORISTA


RESP. LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

Proyecto:	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 1 - BASE

Capsula Nº	1	2	3	4
N° de golpes	19	23	30	33
Suelo Húmedo + Cápsula	29,87	30,10	23,93	34,05
Suelo Seco + Cápsula	26,87	27,26	21,9	30,37
Peso del agua	3,00	2,84	2,03	3,68
Peso de la Cápsula	12,44	12,98	12,43	12,43
Peso Suelo seco	14,43	14,28	9,47	17,94
Porcentaje de Humedad	22,40	22,51	21,44	21,52

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	12,89	14,82	13,30
Peso de suelo seco + Cápsula	12,86	14,78	13,27
Peso de cápsula	12,65	14,53	13,08
Peso de suelo seco	0,21	0,25	0,19
Peso del agua	0,03	0,04	0,03
Contenido de humedad	14,29	16,00	15,79

Límite Líquido (LL)
22
Límite Plástico (LP)
15
Indice de plasticidad (IP)
7
Indice de Grupo (IG)
0

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

Provecto:	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 1 - BASE

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL				
Cápsula	1	2	3	
Peso de suelo húmedo + Cápsula	167,25	175,85	195,41	
Peso de suelo seco + Cápsula	162	170,19	189,33	
Peso de cápsula	19,28	19,46	18,27	
Peso de suelo seco	142,72	150,73	171,06	
Peso del agua	5,25	5,66	6,08	
Contenido de humedad	3,68	3,76	3,55	
PROMEDIO		3,66		

CLASIFICACIÓN

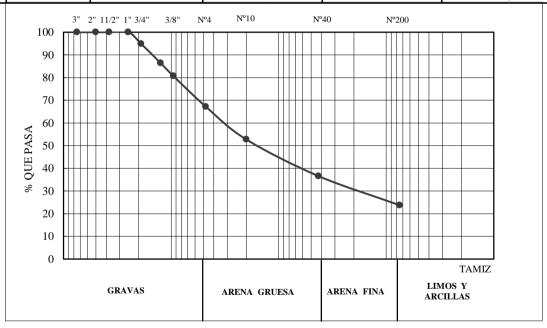
Tipo de suelo	Descripción
A-1-b (0)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS



GRANULOMETRIA

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 1 - SUB BASE

Peso Total (gr.)		Total (gr.) 1000		A.S.T.M.		
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa	
3"	75	0,00	0,00	0,00	100,00	
2"	50	0,00	0,00	0,00	100,00	
1 1 /2"	37,50	0,00	0,00	0,00	100,00	
1"	25,00	0,00	0,00	0,00	100,00	
3/4"	19,00	51,00	51,00	5,10	94,90	
1/2"	12,50	85,00	136,00	13,60	86,40	
3/8"	9,50	57,60	193,60	19,36	80,64	
N°4	4,75	134,80	328,40	32,84	67,16	
Nº10	2,00	144,40	472,80	47,28	52,72	
N°40	0,425	161,6	634,40	63,44	36,56	
N°200	0,075	128,2	762,60	76,26	23,74	

Univ. Mery Cabrera Villca LABORATORISTA Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN Proyecto:

PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. PUNTO 1 - SUB BASE

Capsula N°	1	2	3	4
N° de golpes	20	24	30	32
Suelo Húmedo + Cápsula	19,45	22,76	22,21	20,17
Suelo Seco + Cápsula	18,15	20,88	20,39	18,75
Peso del agua	1,30	1,88	1,82	1,42
Peso de la Cápsula	12,74	12,75	12,75	12,49
Peso Suelo seco	5,41	8,13	7,64	6,26
Porcentaje de Humedad	24,10	23,29	23,25	22,66

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,51	12,90	12,89
Peso de suelo seco + Cápsula	13,44	12,86	12,87
Peso de cápsula	12,92	12,55	12,60
Peso de suelo seco	0,52	0,31	0,27
Peso del agua	0,07	0,04	0,02
Contenido de humedad	13,46	12,90	7,41

Límite Líquido (LL)
23
Límite Plástico (LP)
11
Indice de plasticidad (IP)
12
Indice de Grupo (IG)
0

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN **Proyecto:**

PAVIMENTO FLEXIBLE.

TRAMO SAN MATEO - SELLA MÉNDEZ. PUNTO 1 - SUB BASE Ubicación:

CONTENIDO DE HUMEDAD

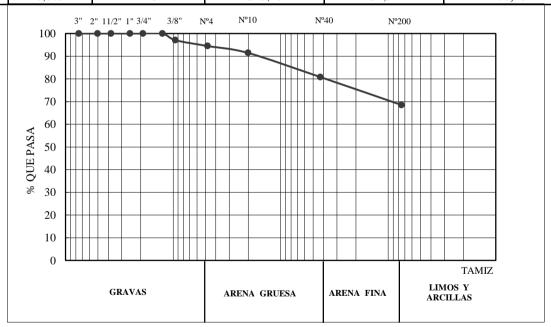
HUMEDAD NATURAL				
Cápsula	1	2	3	
Peso de suelo húmedo + Cápsula	143,06	167,18	174,74	
Peso de suelo seco + Cápsula	137,1	158,78	166,38	
Peso de cápsula	19,19	19,81	19,74	
Peso de suelo seco	117,91	138,97	146,64	
Peso del agua	5,96	8,4	8,36	
Contenido de humedad	5,05	6,04	5,70	
PROMEDIO		5,60		

CLASIFICACIÓN

Tipo de suelo	Descripción
A-2-6 (0)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño


LABORATORISTA

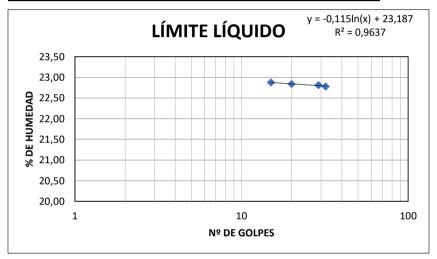
RESP. LABORATORIO DE SUELOS

	GRANULOMETRIA						
	Provecto: 1	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN					
		PAVIMENTO FLEXIBLE.					
ſ	Uhicación:	TRAMO SAN MATEO - SELLA MÉNDEZ - PUNTO 1 - SUB RASANTE					

Peso Total (gr.)			Total (gr.) 1000		
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	0,00	0,00	0,00	100,00
3/4"	19,00	0,00	0,00	0,00	100,00
1/2"	12,50	0,00	0,00	0,00	100,00
3/8"	9,50	29,40	29,40	2,94	97,06
N°4	4,75	25,80	55,20	5,52	94,48
Nº10	2,00	30,60	85,80	8,58	91,42
N°40	0,425	106,4	192,20	19,22	80,78
N°200	0,075	123	315,20	31,52	68,48

Univ. Mery Cabrera Villca **LABORATORISTA** Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS



LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

Proyecto: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE PAVIMENTO FLEXIBLE.	
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 1 - SUB RASANTE

Capsula Nº	1	2	3	4
N° de golpes	15	20	29	32
Suelo Húmedo + Cápsula	36,38	32,64	32,01	32,71
Suelo Seco + Cápsula	32,1	29	28,44	28,81
Peso del agua	4,28	3,64	3,57	3,90
Peso de la Cápsula	13,39	12,72	12,69	11,74
Peso Suelo seco	18,71	16,28	15,75	17,07
Porcentaje de Humedad	22,88	22,84	22,81	22,78

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,04	13,04	12,95
Peso de suelo seco + Cápsula	13,01	13,02	12,93
Peso de cápsula	12,71	12,76	12,75
Peso de suelo seco	0,30	0,26	0,18
Peso del agua	0,03	0,02	0,02
Contenido de humedad	10,00	7,69	11,11

Límite Líquido (LL)
23
Límite Plástico (LP)
10
Indice de plasticidad (IP)
13
Indice de Grupo (IG)
8

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

Duorvaatas	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ. PUNTO 1 - SUB RASANTE

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL						
Cápsula	1	2	3			
Peso de suelo húmedo + Cápsula	113,99	141,89	135,85			
Peso de suelo seco + Cápsula	109,27	135,58	129,71			
Peso de cápsula	14,54	13,11	12,89			
Peso de suelo seco	94,73	122,47	116,82			
Peso del agua	4,72	6,31	6,14			
Contenido de humedad	4,98	5,15	5,26			
PROMEDIO		5,13				

CLASIFICACIÓN

Tipo de suelo	Descripción
A-4 (8)	Suelo fino, mezcla de limos y arcillas

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño

LABORATORISTA

RESP. LABORATORIO DE SUELOS

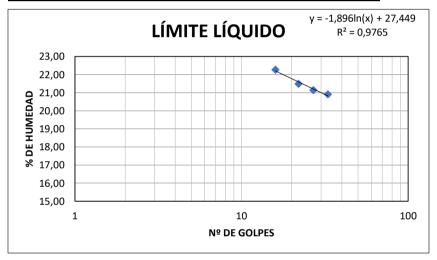


GRANULOMETRIA

Proyecto: APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MENDEZ. - PUNTO 2 - BASE

Peso Total (gr.)			1000	A.S.T.M.	
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	306,60	306,60	30,66	69,34
1 1 /2"	37,50	0,00	306,60	30,66	69,34
1"	25,00	69,60	376,20	37,62	62,38
3/4"	19,00	41,60	417,80	41,78	58,22
1/2"	12,50	49,00	466,80	46,68	53,32
3/8"	9,50	38,20	505,00	50,50	49,50
N°4	4,75	77,60	582,60	58,26	41,74
N°10	2,00	103,00	685,60	68,56	31,44
N°40	0,425	151,8	837,40	83,74	16,26
N°200	0,075	62,2	899,60	89,96	10,04



LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN			
Proyecto:	PAVIMENTO FLEXIBLE.			
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 2 - BASE			
	•			

Capsula Nº	1	2	3	4
N° de golpes	16	22	27	33
Suelo Húmedo + Cápsula	29,66	30,31	28,93	32,77
Suelo Seco + Cápsula	26,67	27,23	26,23	29,4
Peso del agua	2,99	3,08	2,70	3,37
Peso de la Cápsula	13,24	12,9	13,46	13,28
Peso Suelo seco	13,43	14,33	12,77	16,12
Porcentaje de Humedad	22,26	21,49	21,14	20,91

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	10,35	12,88	12,81
Peso de suelo seco + Cápsula	10,33	12,86	12,79
Peso de cápsula	10,18	12,64	11,99
Peso de suelo seco	0,15	0,22	0,80
Peso del agua	0,02	0,02	0,02
Contenido de humedad	13,33	9,09	2,50

Límite Líquido (LL)
21
Límite Plástico (LP)
8
Indice de plasticidad (IP)
13
Indice de Grupo (IG)
0

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 2 - BASE

CONTENIDO DE HUMEDAD

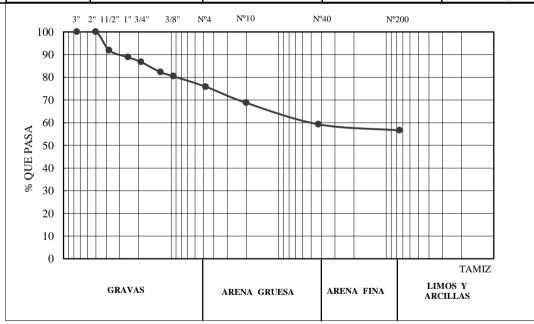
HUMEDAD NATURAL					
Cápsula	1	2	3		
Peso de suelo húmedo + Cápsula	170,75	123,1	140,2		
Peso de suelo seco + Cápsula	166,76	120,43	137		
Peso de cápsula	17,9	19,16	18,46		
Peso de suelo seco	148,86	101,27	118,54		
Peso del agua	3,99	2,67	3,2		
Contenido de humedad	2,68	2,64	2,70		
PROMEDIO		2,67			

Tipo de suelo	Descripción
A-1-b (0)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca **LABORATORISTA**

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

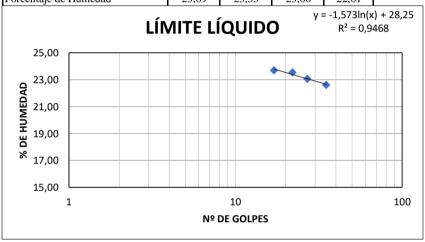


GRANULOMETRIA

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 2 - SUB BASE

Peso Total (g	gr.)		2000	A.S.T.M.	
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	163,20	163,20	8,16	91,84
1"	25,00	60,40	223,60	11,18	88,82
3/4"	19,00	42,60	266,20	13,31	86,69
1/2"	12,50	89,00	355,20	17,76	82,24
3/8"	9,50	36,00	391,20	19,56	80,44
N°4	4,75	92,20	483,40	24,17	75,83
N°10	2,00	142,00	625,40	31,27	68,73
N°40	0,425	189,4	814,80	40,74	59,26
N°200	0,075	53,4	868,20	43,41	56,59



LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 2 - SUB BASE

Capsula N°	1	2	3	4
N° de golpes	17	22	27	35
Suelo Húmedo + Cápsula	27,78	27,47	27,61	27,42
Suelo Seco + Cápsula	24,88	24,6	24,88	24,8
Peso del agua	2,90	2,87	2,73	2,62
Peso de la Cápsula	12,64	12,78	13,04	13,21
Peso Suelo seco	12,24	11,82	11,84	11,59
Porcentaje de Humedad	23,69	23,55	23,06	22,61

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,27	12,81	13,82
Peso de suelo seco + Cápsula	13,26	12,79	13,80
Peso de cápsula	13,06	12,65	13,64
Peso de suelo seco	0,20	0,14	0,16
Peso del agua	0,01	0,02	0,02
Contenido de humedad	5,00	14,29	12,50

Límite Líquido (LL)
23
Límite Plástico (LP)
11
Indice de plasticidad (IP)
13
Indice de Grupo (IG)
6

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ - PUNTO 2 - SUB BASE

CONTENIDO DE HUMEDAD

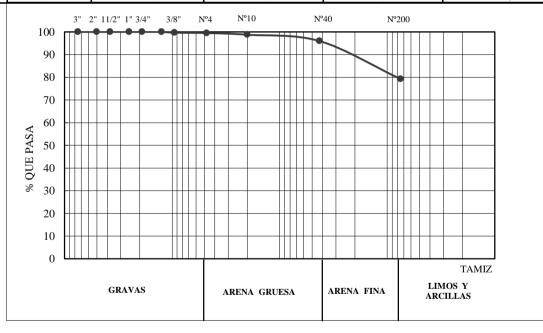
HUMEDAD NATURAL					
Cápsula	1	2	3		
Peso de suelo húmedo + Cápsula	212,82	191,19	167,83		
Peso de suelo seco + Cápsula	207,54	186,69	163,55		
Peso de cápsula	17,79	18,83	20,27		
Peso de suelo seco	189,75	167,86	143,28		
Peso del agua	5,28	4,5	4,28		
Contenido de humedad	2,78	2,68	2,99		
PROMEDIO		2,82			

CLASIFICACIÓN

Tipo de suelo	Descripción
A-2-6 (6)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca **LABORATORISTA** Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS


UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

GRANULOMETRIA

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

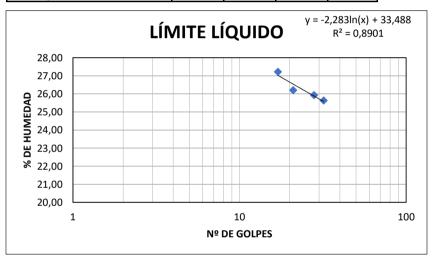
Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 2 - SUB RASANTE

Peso Total (gr.)			1000	A.S.T.M.		
Tamices	Tamaño Peso Rei		Ret. Acum (gr)	% Ret	% Que Pasa	
3"	75	0,00	0,00	0,00	100,00	
2"	50	0,00	0,00	0,00	100,00	
1 1 /2"	37,50	0,00	0,00	0,00	100,00	
1"	25,00	0,00	0,00	0,00	100,00	
3/4"	19,00	0,00	0,00	0,00	100,00	
1/2"	12,50	0,00	0,00	0,00	100,00	
3/8"	9,50	3,40	3,40	0,34	99,66	
Nº4	4,75	1,60	5,00	0,50	99,50	
Nº10	2,00	7,40	12,40	1,24	98,76	
N°40	0,425	28	40,40	4,04	95,96	
N°200	0,075	167,4	207,80	20,78	79,22	

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño

LABORATORISTA RESP. LABORATORIO DE SUELOS



UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 2 - SUB RASANTE

Capsula N°	1	2	3	4
N° de golpes	17	21	28	32
Suelo Húmedo + Cápsula	24,82	23,46	28,15	25,55
Suelo Seco + Cápsula	22,25	21,39	24,97	22,94
Peso del agua	2,57	2,07	3,18	2,61
Peso de la Cápsula	12,81	13,38	12,71	12,76
Peso Suelo seco	9,44	8,01	12,26	10,18
Porcentaje de Humedad	27,22	26,21	25,94	25,64

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,20	12,94	13,02
Peso de suelo seco + Cápsula	13,18	12,92	12,99
Peso de cápsula	12,99	12,72	12,80
Peso de suelo seco	0,19	0,20	0,19
Peso del agua	0,02	0,02	0,03
Contenido de humedad	10,53	10,00	15,79

Límite Líquido (LL)				
26				
Límite Plástico (LP)				
12				
Indice de plasticidad (IP)				
14				
Indice de Grupo (IG)				
10				

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

NIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN				
Proyecto:	PAVIMENTO FLEXIBLE.				
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ.				

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL						
Cápsula	1	2	3			
Peso de suelo húmedo + Cápsula	124,42	92,99	98,49			
Peso de suelo seco + Cápsula	119,29	89,44	94,16			
Peso de cápsula	12,85	12,99	12,65			
Peso de suelo seco	106,44	76,45	81,51			
Peso del agua	5,13	3,55	4,33			
Contenido de humedad	4,82	4,64	5,31			
PROMEDIO		4,93				

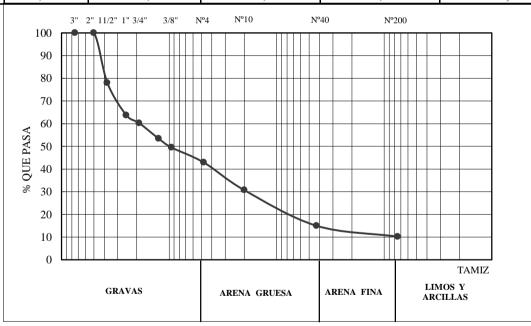
CLASIFICACIÓN

Tipo de suelo	Descripción
A-6 (10)	Suelo fino, mezcla de limo y arcilla

Univ. Mery Cabrera Villca **LABORATORISTA**

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS


UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

GRANULOMETRIA

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 3 - BASE

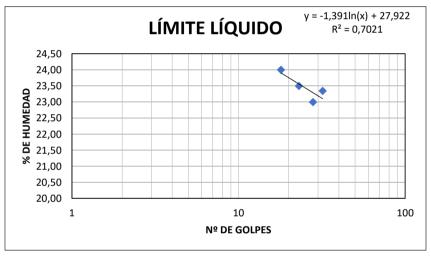
Peso Total (gr.)			1000	A.S.T.M.	
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	220,00	220,00	22,00	78,00
1"	25,00	142,40	362,40	36,24	63,76
3/4"	19,00	34,60	397,00	39,70	60,30
1/2"	12,50	68,80	465,80	46,58	53,42
3/8"	9,50	39,20	505,00	50,50	49,50
N°4	4,75	66,16	571,16	57,12	42,88
N°10	2,00	121,80	692,96	69,30	30,70
N°40	0,425	157,2	850,16	85,02	14,98
N°200	0,075	47,6	897,76	89,78	10,22

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño

LABORATORISTA

RESP. LABORATORIO DE SUELOS



UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - BASE

Capsula Nº	1	2	3	4
N° de golpes	18	23	28	32
Suelo Húmedo + Cápsula	28,89	26,30	28,69	26,70
Suelo Seco + Cápsula	25,95	23,84	25,8	24,41
Peso del agua	2,94	2,46	2,89	2,29
Peso de la Cápsula	13,31	12,94	12,73	14,6
Peso Suelo seco	12,64	10,9	13,07	9,81
Porcentaje de Humedad	24,00	23,50	23,00	23,34

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	12,96	13,85	14,84
Peso de suelo seco + Cápsula	12,94	13,82	14,81
Peso de cápsula	12,69	13,64	14,63
Peso de suelo seco	0,25	0,18	0,18
Peso del agua	0,02	0,03	0,03
Contenido de humedad	8,00	16,67	16,67

Límite Líquido (LL)
23
Límite Plástico (LP)
14
Indice de plasticidad (IP)
9
Indice de Grupo (IG)
0

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

NIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - BASE

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL			
Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	194,4	220,52	217,3
Peso de suelo seco + Cápsula	187,55	212,26	209,72
Peso de cápsula	18,93	16,94	18,78
Peso de suelo seco	168,62	195,32	190,94
Peso del agua	6,85	8,26	7,58
Contenido de humedad	4,06	4,23	3,97
PROMEDIO		4,09	

CLASIFICACIÓN

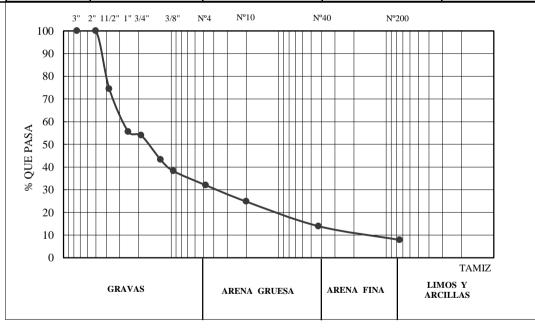
Tipo de suelo	Descripción
A-1-b (0)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS


UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

GRANULOMETRIA

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 3 - SUB BASE

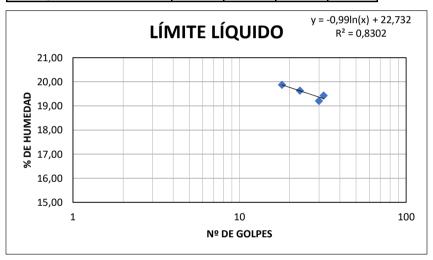
Peso Total (gr.)		1000	A.S.T.M.		
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	256,00	256,00	25,60	74,40
1"	25,00	188,20	444,20	44,42	55,58
3/4"	19,00	15,60	459,80	45,98	54,02
1/2"	12,50	107,80	567,60	56,76	43,24
3/8"	9,50	50,00	617,60	61,76	38,24
N°4	4,75	62,60	680,20	68,02	31,98
N°10	2,00	72,00	752,20	75,22	24,78
N°40	0,425	108,6	860,80	86,08	13,92
N°200	0,075	60,4	921,20	92,12	7,88

Univ. Mery Cabrera Villca

Ing. José Ricardo Arce Avendaño

LABORATORISTA

RESP. LABORATORIO DE SUELOS



UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - SUB BASE

Capsula Nº	1	2	3	4
N° de golpes	18	23	30	32
Suelo Húmedo + Cápsula	27,11	26,31	26,58	25,07
Suelo Seco + Cápsula	24,75	24,14	24,38	23,01
Peso del agua	2,36	2,17	2,20	2,06
Peso de la Cápsula	12,88	13,09	12,83	12,41
Peso Suelo seco	11,87	11,05	11,55	10,6
Porcentaje de Humedad	19,88	19,64	19,21	19,43

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,15	13,81	12,74
Peso de suelo seco + Cápsula	13,12	13,77	12,70
Peso de cápsula	12,92	13,55	12,49
Peso de suelo seco	0,20	0,22	0,21
Peso del agua	0,03	0,04	0,04
Contenido de humedad	15,00	18,18	19,05

Límite Líquido (LL)
20
Límite Plástico (LP)
17
Indice de plasticidad (IP)
2
Indice de Grupo (IG)
0

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

NIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - SUB BASE

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL			
Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	173,75	190,15	233,27
Peso de suelo seco + Cápsula	168,02	183,54	224,88
Peso de cápsula	18,79	18,45	18,2
Peso de suelo seco	149,23	165,09	206,68
Peso del agua	5,73	6,61	8,39
Contenido de humedad	3,84	4,00	4,06
PROMEDIO		3,97	

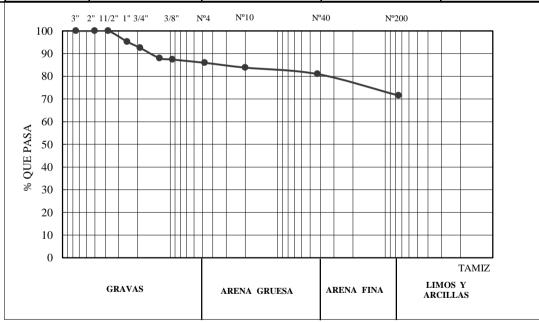
CLASIFICACIÓN

Tipo de suelo	Descripción
A-2-4 (0)	Suelo granular, mezcla de gravas arenas y limos.

Univ. Mery Cabrera Villca **LABORATORISTA**

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

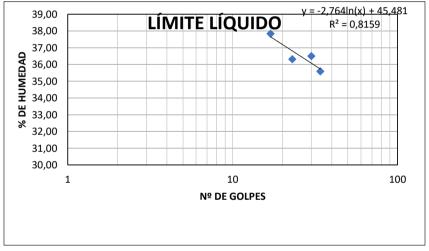

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

GRANULOMETRIA

APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN PAVIMENTO FLEXIBLE.

Ubicación: TRAMO SAN MATEO - SELLA MÉNDEZ. - PUNTO 3 - SUB RASANTE

Peso Total (g	gr.)		1000	A.S.T.M.	
Tamices	Tamaño	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa
3"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	47,60	47,60	4,76	95,24
3/4"	19,00	27,00	74,60	7,46	92,54
1/2"	12,50	45,60	120,20	12,02	87,98
3/8"	9,50	6,00	126,20	12,62	87,38
N°4	4,75	14,40	140,60	14,06	85,94
N°10	2,00	21,20	161,80	16,18	83,82
N°40	0,425	28,4	190,20	19,02	80,98
N°200	0,075	94,6	284,80	28,48	71,52



UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS

LÍMITES DE ATTERBERG

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - SUB RASANTE

Capsula Nº	1	2	3	4
N° de golpes	17	23	30	34
Suelo Húmedo + Cápsula	24,58	22,05	21,45	22,68
Suelo Seco + Cápsula	21,26	19,34	18,48	20,11
Peso del agua	3,32	2,71	2,97	2,57
Peso de la Cápsula	12,6	11,81	10,42	12,89
Peso Suelo seco	8,66	7,53	8,06	7,22
Porcentaje de Humedad	37,85	36,32	36,51	35,60

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	13,18	12,78	13,81
Peso de suelo seco + Cápsula	13,15	12,75	13,80
Peso de cápsula	12,98	12,58	13,66
Peso de suelo seco	0,17	0,17	0,14
Peso del agua	0,03	0,03	0,01
Contenido de humedad	17,65	17,65	7,14

Límite Líquido (LL)
37
Límite Plástico (LP)
14
Indice de plasticidad (IP)
22
Indice de Grupo (IG)
12

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

NIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CONTENIDO DE HUMEDAD Y CLASIFICACIÓN

	APLICACIÓN DEL MODELO DE HOGG EN EL DISEÑO DEL REFUERZO ESTRUCTURAL DE UN
Proyecto:	PAVIMENTO FLEXIBLE.
Ubicación:	TRAMO SAN MATEO - SELLA MÉNDEZ PUNTO 3 - SUB RASANTE

CONTENIDO DE HUMEDAD

HUMEDAD NATURAL										
Cápsula	1	2	3							
Peso de suelo húmedo + Cápsula	84,2	127,34	107,65							
Peso de suelo seco + Cápsula	79,3	118	100,68							
Peso de cápsula	10,42	11,81	12,84							
Peso de suelo seco	68,88	106,19	87,84							
Peso del agua	4,9	9,34	6,97							
Contenido de humedad	7,11	8,80	7,93							
PROMEDIO		7,95								

CLASIFICACIÓN

Tipo de suelo	Descripción
A-6 (12)	Suelo fino mezcla de limo y arcilla.

Univ. Mery Cabrera Villca

LABORATORISTA

Ing. José Ricardo Arce Avendaño

RESP. LABORATORIO DE SUELOS

ANEXO 5 PLANILLAS DE AFORO

					AFO	RO VEHIC	ULAR					
Proyecto:	APLICACI	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑO	DEL REFU	ERZO EST	RUCTURAI	L DE UN PA	AVIMENTO	FLEXIBLE	
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS			AUTOS			C	2P		C3 - C4			
2	6	3	0	4	1	4	0	0	1	0	0	
0	3	1	0	1	4	2	0	0	1	0	0	
9	4	4	4	6	2	4	0	0	2	0	1	
7	3	3	7	4	13	5	1	0	9	0	0	
3	5	1	6	1	1	7	0	0	7	0	0	
9	7	5	5	2	7	6	0	1	5	0	0	
2	4	4	4	3	9	6	0	0	5	0	0	
7	7	2	6	5	8	5	1	0	2	0	1	
7	6	2	2	7	7	6	2	0	1	0	0	D
3	4	6	3	3	7	4	1	0	2	0	1	I
6	9	4	1	5	7	11	0	13	13	12	0	A
4	4	2	2	1	6	9	1	14	14	14	0	
5	4	5	5	4	7	7	0	10	10	10	0	1
1	5	3	5	5	5	6	0	10	10	10	0	
7	4	1	4	2	6	2	1	7	7	7	0	
9	4	0	5	5	3	5	0	6	6	6	0	
5	8	5	2	2	8	6	1	2	2	2	0	
7	9	3	2	9	7	4	0	1	1	1	0	
6	6	3	4	11	7	0	4	1	1	1	1	
7	3	3	2	7	4	1	1	2	2	2	0	
106	105	60	69	87	119	100	13	67	101	65	4	
106			440			1	13		2	37		

101	438 106 240											
101	101	61	71	84	121	95	11	64	103	68	5	
6	3	1	1	5	6	1	1	3	2	2	0	
6	6	3	4	10	9	0	4	0	2	1	1	
8	9	2	2	7	8	3	0	2	1	1	1	
5	7	4	3	6	8	4	0	1	4	3	0	
9	4	0	5	3	4	6	1	6	5	7	0	
7	5	1	6	5	6	7	0	5	6	5	0	
1	6	3	4	4	6	6	0	11	10	10	0	
3	4	3	6	1	9	8	1	10	9	10	0	4
4	3	3	2	2	4	10	0	14	10	12	0	
6	7	8	1	6	7	9	0	11	11	14	0	A
3	5	6	5	2	8	5	1	0	1	0	1	I
6	3	2	2	8	5	6	2	0	1	1	0	D
7	5	2	7	6	6	5	1	0	4	0	1	
2	7	4	4	3	7	3	0	0	5	0	0	
8	6	7	4	2	6	2	0	0	6	0	0	
4	4	2	6	2	0	6	0	0	9	0	0	
7	3	3	5	6	12	4	0	1	8	1	0	
7	5	4	1	3	6	2	0	0	7	0	1	
1	4	2	2	1	3	3	0	0	2	1	0	
1	5	1	1	2	1	5	0	0	0	0	0	
MOTOS	TRAMO SAN MATEO - SELLA MÉNDEZ AUTOS C2P C3 - C4											
				,	EL DISEITO	DEL REI C	EKZO EST	KOCTORI	ZDL OIVII	I V II VILITIO	I EE/XIDEE	
Provecto:	APLICACIO	ÓN DEL MO	ODELO DE	HOGG EN				RIICTURAI	DE IIN PA	VIMENTO	EI EXIRI E	
					AFOI	RO VEHICI	ULAR					

					AFORO	VEHICUI	AR					
Proyecto:	APLICACI	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑO	DEL REFU	JERZO EST	RUCTURAI	L DE UN PA	VIMENTO	FLEXIBLE	,
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS	AUTOS C2P C3 - C4											
2	4	0	1	2	3	4	0	0	1	0	0	
2	5	2	1	1	2	3	0	0	2	1	0	
5	6	3	1	2	7	3	0	0	6	0	1	
4	5	4	3	5	11	5	0	1	9	1	0	
5	3	1	2	2	3	4	1	0	9	0	0	
7	6	5	4	1	7	3	0	0	7	0	0	
6	6	4	5	2	8	4	0	0	4	0	0	
9	4	3	4	4	5	3	1	0	4	0	1	
5	4	3	3	6	6	5	1	0	2	1	0	D
4	5	6	4	1	8	5	0	0	1	0	1	I
5	6	7	3	5	7	6	1	10	10	13	0	A
4	4	2	2	1	5	5	0	12	10	11	1	
2	5	4	5	1	8	7	1	13	8	9	0	2
1	7	3	4	3	8	6	0	14	9	9	1	
6	6	4	5	4	7	8	0	4	7	6	0	
9	3	1	5	5	6	7	2	5	7	8	0	
6	5	3	3	5	9	5	0	1	5	4	0	
9	7	5	3	6	8	3	1	3	2	1	1	
7	6	4	3	9	10	1	3	0	2	1	1	
8	2	0	1	4	7	2	1	2	2	1	0	
106	99	64	62	69	135	89	12	65	107	66	7	
106			429			1	01		2	45		

					AFORO	VEHICUI	AR					
Proyecto:	APLICACI	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑO	DEL REFU	JERZO EST	RUCTURAI	L DE UN PA	VIMENTO	FLEXIBLE	,
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS			AUTOS			C2P			C3	- C4		
1	5	2	1	2	2	4	0	0	1	1	0	
1	4	1	2	2	5	2	0	0	1	0	0	
8	5	3	3	4	3	3	1	0	1	0	1	
8	4	3	5	5	11	5	0	0	7	0	0	
4	6	2	3	2	2	7	0	0	7	0	0	
8	7	4	4	3	6	5	2	1	4	0	0	
3	5	3	4	4	8	7	0	0	3	0	0	
6	6	4	5	5	9	5	1	0	2	0	1	
5	5	5	3	6	8	5	1	0	1	0	0	D
4	5	4	2	4	6	3	2	0	2	0	0	I
7	8	5	0	6	7	8	0	11	12	9	1	A
5	5	3	1	2	8	7	1	12	14	13	0	
6	5	4	5	3	7	10	0	9	10	11	0	5
2	6	5	4	4	6	9	0	9	11	12	0	
5	7	2	3	2	7	7	0	8	6	7	1	
8	3	1	2	1	4	6	1	7	5	7	0	
6	6	5	4	3	8	5	0	3	2	2	0	
6	8	3	3	4	8	3	1	1	1	1	0	
7	7	2	5	9	6	0	3	1	1	1	0	
8	3	1	1	8	5	1	2	0	1	2	0	
108	110	62	60	79	126	102	15	62	92	66	4	
108			437			1	17		2:	24		

					AFOR	O VEHICU	LAR					
Proyecto:	APLICACIO	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑC	DEL REFU	JERZO EST	RUCTURAI	L DE UN PA	AVIMENTO	FLEXIBLE	
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS			AUTOS			C	2P		C3	- C4		
3	7	4	1	3	0	4	0	0	0	0	0	
1	4	2	2	2	5	2	0	0	2	0	0	
8	7	3	3	3	3	3	0	0	3	0	1	
6	4	2	5	2	11	5	0	0	7	0	0	
5	3	1	6	2	2	7	0	0	6	0	1	
8	6	4	7	1	8	6	0	0	8	0	0	
3	5	5	5	4	7	5	2	0	6	0	0	
8	6	3	7	6	7	5	1	0	2	0	0	
6	4	1	4	5	6	4	1	0	1	0	0	D
4	2	5	3	4	5	3	2	0	2	0	1	I
6	6	7	2	6	8	7	0	10	14	12	0	A
5	2	4	3	2	9	8	0	11	12	15	0	
4	2	7	4	3	8	9	0	9	11	11	0	3
0	3	5	3	4	6	6	0	11	10	9	0	
6	5	2	3	3	7	5	1	5	6	8	0	
10	7	3	2	5	4	6	0	7	7	7	0	
6	5	4	3	2	8	5	0	1	1	3	0	
6	8	2	6	7	7	5	0	1	2	0	0	
7	6	1	4	9	8	1	2	2	1	1	0	
8	4	3	3	8	4	0	1	1	1	1	1	
110	96	68	76	81	123	96	10	58	102	67	4	
110		· · · · · · · · · · · · · · · · · · ·	444	· · · · · · · · · · · · · · · · · · ·		1	13		2:	31	· · · · · · · · · · · · · · · · · · ·	

					AFOR	O VEHICU	LAR					
Proyecto:	APLICACI	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑO	DEL REFU	JERZO EST	RUCTURAI	L DE UN PA	VIMENTO	FLEXIBLE	
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS			AUTOS			C	2P		C3	- C4		
4	6	3	1	6	5	3	0	0	2	0	0	
4	3	5	3	3	6	4	0	1	1	0	0	
3	8	5	1	5	7	8	0	0	1	1	0	
7	17	2	4	4	3	11	0	0	1	0	0	
5	3	6	5	6	4	4	0	0	0	0	0	
4	5	6	2	7	12	9	0	0	0	0	0	
6	8	7	0	6	4	7	0	0	1	0	0	
3	5	2	2	9	7	2	0	0	1	0	0	
5	7	1	3	2	11	1	1	0	0	0	0	D
6	6	5	0	4	2	4	0	0	0	0	0	I
2	4	3	4	2	5	6	0	0	0	0	0	A
1	5	3	5	6	3	2	1	0	0	0	0	
8	6	2	1	5	4	2	0	0	0	0	0	7
4	12	2	4	4	4	1	0	0	2	0	0	
6	8	3	5	1	4	1	0	0	0	0	0	
7	6	4	4	5	3	4	0	0	0	0	0	
4	1	3	2	3	6	8	0	0	1	0	0	
1	5	2	1	11	7	6	0	0	1	0	0	
5	7	2	3	2	13	3	0	0	1	1	0	
7	6	1	1	1	3	3	0	0	1	0	0	
92	128	67	51	92	113	89	2	1	13	2	0	
92			451		· · ·	9	1		1	6		

					AFORO	VEHICUL	AR					
Proyecto:	APLICACI	ÓN DEL MO	ODELO DE	HOGG EN	EL DISEÑO	DEL REFU	ERZO EST	RUCTURAI	L DE UN PA	VIMENTO	FLEXIBLE	
Ubicación:	TRAMO SA	AN MATEO	- SELLA M	IÉNDEZ								
MOTOS			AUTOS			C	2P		C3	- C4		
5	5	2	2	5	4	2	1	0	1	0	0	
3	2	6	5	2	6	3	0	0	2	0	0	
5	9	4	1	6	8	7	0	0	2	0	0	
8	18	1	5	6	2	10	0	0	2	0	0	
4	5	5	4	6	3	3	0	0	0	0	0	
4	4	8	1	8	10	10	0	0	0	1	0	
7	6	5	0	5	3	6	2	0	1	0	0	
2	7	3	1	10	6	1	0	0	1	0	0	
6	6	2	4	1	13	2	1	0	0	0	0	D
5	5	4	1	3	3	3	0	0	0	0	0	I
0	5	6	5	2	6	5	0	0	0	0	0	A
0	4	2	4	7	4	2	2	1	0	0	0	
9	7	0	2	4	5	3	0	0	0	0	0	6
3	14	2	3	3	5	2	0	0	0	0	0	
5	6	0	4	2	3	1	1	0	0	0	0	
6	5	0	4	3	3	3	0	0	0	0	0	
5	0	2	1	3	5	9	0	0	1	0	0	
2	7	3	1	10	6	5	0	0	2	0	0	
6	6	2	4	1	14	4	0	0	1	0	0	
5	5	4	1	3	3	3	2	0	2	1	0	
90	126	61	53	90	112	84	9	1	15	2	0	
90			442			9)3		1	8		

CÁLCULO DE EJES EQUIVALENTES (W18) PARA PERIODO DE RETORNO DE 6 AÑOS

	ESTU	DIO DE TRAI	FICO IDA Y	VUELTA		
DIA	MOTOS	AUTOS	BUSES	CAMIONES C2G	C3-C4	C5
1	106	440	13	100	237	0
2	101	438	11	95	240	0
3	106	429	12	89	245	0
4	108	437	15	102	224	0
5	110	444	13	96	231	0
6	92	451	2	89	16	0
7	90	442	3	90	18	0
PROM. TPD X TIPO	101,86	440,14	9,86	94,43	173,00	0,00
TPD TOTAL				717,43		
COMPOSICION DE	TD A NCITO	%A	%B	%C2G	%C3-C4	%C5
COMPOSICION DE	TRANSITO	61,35%	1,37%	13,16%	24,11%	0
				35,31%	64,69%	0,00%
		62,72%		37%		

C	CALCULO DEL FA	CTOR	BUS		
VEHICULO	%VK		FD(FACTOR	FB	
		1,37	1		1

FACTOR CAMI	ION FC	%VK	FACTOR F	%VK*FD
C2G		35,31%	3,44	1,21
C3-C4		64,69%	3,9	2,52
C5		0,00%	4,4	0
		100,00%		3,74

ECG	3 64
FCG	3,04

FACTORES DE CA	LCULO PARA EJE EQUIVALENTE
TIPO	717,43
DIAS ANO	365
R	3%
ANCHO CALSADA	X≥6
FDI	0,5
N CARRILES X SENTIDO	1
FCA	1
NUMERO DE AÑOS	6

N. EE DE8.2T	1209357
--------------	---------

	FÓRMULAS BASE
-	$FCG = \frac{FB*\%B+FC*\%C}{\%B+\%C}$
	%B+%C
FP-	$\sum (\% (CAT.BUS) * FD(CAT.BUS))$
PD-	$\sum (\%BUS)$
$FC = \frac{\sum (FD)}{\sum (FD)}$	(CAT.CAMIÓN)*%(CAT.CAMIÓN) $\Sigma(%(CAT.CAMIÔN)$
	Σ (%(CAT.CAMION)

	TERMINOLOGÍA
FCG	FACTOR CAMIÓN GLOBAL
FC	FACTOR CAMION
%C	PORCENTAJE DE CAMIONES, ESTÁ DIVIDIDO POR LAS DIFERENTES CATEGORÍAS QUE NOS PRESENTA LA NORMA COMO PODEMOS OBSERVAR EN LA TABLA DE COMPOSICIÓN DE LOS CAMIONES
FB	FACTOR BUS
%B	PORCENTAJE DE BUSES, DIVIDIDO COMO LOS CAMIONES AUNQUE EN ESTE CASO SOLO CONTAMOS CON UNA CATEGORÍA
FD	FACTOR DE DETERIORO EXPUESTO EN LA NORMA DEL INVIAS, PODEMOS VERIFICAR ESTOS VALORES EN LA TABLA 3.5

%VK	PORCENTAJE DE CAMIONES
FD	FACTOR DAÑO POR TIPO DE VEHÍCULO CARGADO
FC	FACTOR EQUIVALENCIA CAMIÓN
FCG	FACTOR CAMIÓN GLOBAL

Tabla 3.5. Factores de equivalencia de carga por tipo de vehículo obtenidos a nivel nacional en el año de 1996.

TI	po de Vehículo	Factor de Equivalencia
BUSES	Bus	0.40
DOGES	Bus Metropolitano	1.00
C2P	C2P	1.14
C2G	C2G	3.44
	C3	3.76
C3 Y C4	C2 S1	3.37
	C4	6.73
	C3 S1	2.22
	C2 S2	3.42
C5	C3 S2	4.40
> C5	>C5	4.72

$$N = 365 * TPD * \%VC * FCG * Fdi * FCA * \frac{(1+R)^n - 1}{LN(1+R)}$$

CÁLCULO DE EJES EQUIVALENTES DE 8.2 T EN EL CARRIL DE DISEÑO DURANTE EL PERIODO DE DISEÑO (n)

PARA EL CÁLCULO DE LOS EJES EQUIVALENTES DURANTE EL PERIDDO DE DISEÑO SE DEBENEVALUAR DIVERSOS FACTORES QUE SE ESPECIFICAN EN EL MANJAL DE DISEÑO DE PAYMENTOS ASFÁLTICOS PARA MEDIOS Y ALTOS VOLÚMENES DE TRÁNSITO, SE RECOMENDA SU LECTURA PARA APLICAR COPRECTAMENTE LOS DIVERSOS FACTORES SEGÚN COPRESPONDA EL CASO DEBIDO A QUE LA LITERATURA TIENE UNA AMPLIA INTERPRETACIÓN QUE DEJA MUCHO AL CRITERIO Y NECESIDAD DE CADA PROYECTO.

N° CARRILES	Fca
1	1.00
2	0.90
3	0.70
4	0.63

TPD	TRÁNSITO PROMEDIO DIARIO (SIN MOTOS)
DÍAS/AÑO	DÍAS EN UN AÑO
R	TASA DE CRECIMIENTO PROMEDIO DEL TRÂNSITO (2%3%) SEGÚNIMANUAL DE PAVIMENTOS ASFÁLTICOS PARA MEDIOS Y ALTOS VOLÚMENES DE TRÂNSITO
FDI	FACTOR DIRECCIONAL SEGÚN ANCHO DE CALZADA Y TRÁNSITO DE DISEÑO
FCA	FACTOR CARRIL SEGÚNEL NÚMERO DE CARRILES POR SENTIDO
n	PERIODO DE DISEÑO ESTRUCTURAL, AÑOS
N	EJES EQUIVALENTES DE 8.2 T DURANTE EL PERIODO DE DISEÑO
CD/PD	CARRIL DE DISEÑO DURANTE EL PERIODO DE DISEÑO

ANCHO DE CALZADA (M)	TRÁNSITO DE DISEÑO	FDI
X<5	TOTAL ENLOS DOS SENTIDOS	1
5 <x<6< td=""><td>0.75 DEL TOTAL EN LOS 2 SENTIDOS</td><td>0.75</td></x<6<>	0.75 DEL TOTAL EN LOS 2 SENTIDOS	0.75
X≥ 6	0.5 DEL TOTAL EN LOS 2 SENTIDOS	0.5

#	NOMBRE DE LA BIBLIOGRAFÍA Y AUTOR	LINK DE DESCARGA
1	MANUAL DE DISEÑO DE PAVIMENTOS ASFÁLTICOS PARA VÍAS CON BAJOS VOLÚMENES DE TRÁNSITO, DEL INSTITUTO NACIONAL DE VÍAS DE COLOMBIA (INVIAS)	https://www.invias.gov.co/index.php/archivo-y-documentos/documentos- tecnicos/especificaciones-tecnicas/987-manual-de-diseno-de-pavimentos-asfalticos-par vias-con-bajos-volumenes-de-transito
2	MANUAL DE DISEÑO DE PAVIMENTOS DE CONCRETO PARA VÍAS CON BAJOS, MEDIOS Y ALTOS VOLÚMENES DE TRÂNSITO, DEL INSTITUTO NACIONAL DE VÍAS DE COLOMBIA (INVIAS)	https://www.invlas.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/380 manual-de-diseno-de-pavimentos-de-concreto-para-vias-con-bajos-medios-y-altos- volumenes-de-transito/file
3	INGENIERÍA DE PAVIMENTOS PARA CARRETERAS, DEL ING ALFONSO MONTEJO FONSECA	https://samustuto.files.wordpress.com/2014/09/ingenieric3ada-de-pavimentos-para- carreteras-tomo-i-ed-3ra-alfonso-montejo-fonseca.pdf
4	NOCIONES SOBRE MÉTODOS DE DISEÑO DE ESTRUCTURAS DE PAVIMENTOS PARA CARRETERAS-VOLUMEN 1, DEL ING CARLOS HERNANDO HIGUERA SANDOVAL MSC.	https://www.google.com/search?q=NOCIONES+SOBRE+M%C3%89TODOS+DE+DISE%C3%: 10+DE+ESTRUCTURAS+DE+PAVIMENTOS+PARA+CARRETERAS- VOILIMEN+1%-2C+PEI+ING+CARLOS+HERNANDO+HIGUERA+SANDOVAI+MSC-R-d7=1C1CH-

CÁLCULO DE EJES EQUIVALENTES (W18) PARA PERIODO DE RETORNO DE 10 AÑOS

	ESTU	DIO DE TRAI	FICO IDA Y	VUELTA		
DIA	MOTOS	AUTOS	BUSES	CAMIONES C2G	C3-C4	C5
1	106	440	13	100	237	0
2	101	438	11	95	240	0
3	106	429	12	89	245	0
4	108	437	15	102	224	0
5	110	444	13	96	231	0
6	92	451	2	89	16	0
7	90	442	3	90	18	0
PROM. TPD X TIPO	101,86	440,14	9,86	94,43	173,00	0,00
TPD TOTAL				717,43		
COMPOSICION DE	TD A NICITO	%A	%B	%C2G	%C3-C4	%C5
COMPOSICION DE	TRANSITO	61,35%	1,37%	13,16%	24,11%	0
				35,31%	64,69%	0,00%
		62,72%		37%		

CALCU	LO DEL FACTOR	BUS	
VEHICULO	%VK	FD(FACTOR	FB
	1,37	1	1

FACTOR CAMI	ON FC	%VK	FACTOR F	%VK*FD
C2G		35,31%	3,44	1,21
C3-C4		64,69%	3,9	2,52
C5		0,00%	4,4	0
		100,00%		3,74

FCG	3 64
rcu	3,04

EACTORES DE CA	
FACTORES DE CA	LCULO PARA EJE EQUIVALENTE
TIPO	717,43
DIAS ANO	365
R	3%
ANCHO CALSADA	X≥6
FDI	0,5
N CARRILES X SENTIDO	1
FCA	1
NUMERO DE AÑOS	10

	FÓRMULAS BASE
	$FCG = \frac{FB*\%B+FC*\%C}{\%B+\%C}$
FB=	$\frac{\sum(\% (CAT.BUS) \cdot FD(CAT.BUS))}{\sum(\% BUS)}$
$FC = \frac{\sum (FI)}{}$	D (CAT.CAMIÓN)+%(CAT.CAMIÓN) Σ(%(CAT.CAMIÔN)

	TERMINOLOGÍA				
FCG	FACTOR CAMIÓN GLOBAL				
FC	FACTOR CAMIÓN				
%C	PORCENTAJE DE CAMIONES, ESTÁ DIVIDIDO POR LAS DIFERENTES CATEGORÍAS QUE NOS PRESENTA LA NORMA COMO PODEMOS OBSERVAR EN LA TABLA DE COMPOSICIÓN DE LOS CAMIONES				
FB	FACTOR BUS				
%В	PORCENTAJE DE BUSES, DIVIDIDO COMO LOS CAMIONES AUNQUE EN ESTE CASO SOLO CONTAMOS CON UNA CATEGORÍA				
FD	FACTOR DE DETERIORO EXPUESTO EN LA NORMA DEL INVIAS, PODEMOS VERIFICAR ESTOS VALORES EN LA TABLA 3.5				

%VK	PORCENTAJE DE CAMIONES
FD	FACTOR DAÑO POR TIPO DE VEHÍCULO CARGADO
FC	FACTOR EQUIVALENCIA CAMIÓN
FCG	FACTOR CAMIÓN GLOBAL

Tabla 3.5. Factores de equivalencia de carga por tipo de vehículo obtenidos a nivel nacional en el año de 1996.

Tipo de Vehiculo		Factor de Equivalenci	
BUSES	Bus	0.40	
DUGES	Bus Metropolitano	1.00	
C2P	C2P	1.14	
C2G	C2G	3.44	
	C3	3.76	
	C2 S1	3.37	
C3 Y C4	C4	6.73	
	C3 S1	2.22	
	C2 S2	3.42	
C5	C3 S2	4.40	
> C5	>C5	4.72	

$$N = 365 * TPD * \%VC * FCG * Fdi * FCA * \frac{(1+R)^n - 1}{LN(1+R)}$$

CÁLCULO DE EJES EQUIVALENTES DE 8.2 T EN EL CARRIL DE DISEÑO DURANTE EL PERIODO DE DISEÑO (n)

PARA EL CÁLCULO DE LOS EJESEQUIVALENTES DURANTE EL PERIDDO DE DISEÑO SE DEBENEVALUAR DIVERSOS PACTORES QUE SE ESPECIFICAN EN EL MANUAL DE DISEÑO DE PAYMENTOS ASFÁLTICOS PARA MEDIOS Y ALTOS VOLÚMENES DE TRÁNSITO, SE RECOMENDA SU LECTURA PARA APLICAR COPRECTAMENTE LOS DIVERSOS FACTORES SEGÚN COPRESPONDA EL CASO DEBIDO A QUE LA LITERATURA TIENE UNA AMPLIA INTERPRETACIÓN QUE DEJA MUCHO AL CRITERIO Y NECESIDAD DE CADA PROYECTO.

N° CARRILES	Fca
1	1.00
2	0.90
3	0.70
4	0.63

TPD	TRÁNSITO PROMEDIO DIARIO (SIN MOTOS)		
DÍAS/AÑO	DÍAS EN UN AÑO		
R	TASA DE CRECIMIENTO PROMEDIO DEL TRÂNSITO (2%3%) SEGÚNIMANUAL DE PAVIMENTOS ASFÁLTICOS PARA MEDIOS Y ALTOS VOLÚMENES DE TRÂNSITO		
FDI	FACTOR DIRECCIONAL SEGÚN ANCHO DE CALZADA Y TRÁNSITO DE DISEÑO		
FCA	FACTOR CARRIL SEGÚNEL NÚMERO DE CARRILES POR SENTIDO		
n PÉRIODO DE DISEÑO ESTRUCTURAL, AÑOS			
N	EJES EQUIVALENTES DE 8.2 T DURANTE EL PERIODO DE DISEÑO		
CD/PD	CARRIL DE DISEÑO DURANTE EL PERIODO DE DISEÑO		

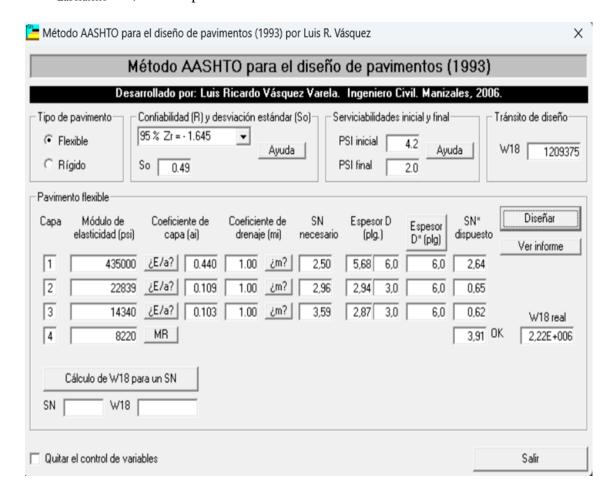
ANCHO DE CALZADA (M)	TRÁNSITO DE DISEÑO	FDI
X<5	TOTAL EN LOS DOS SENTIDOS	1
5 <x<6< td=""><td>0.75 DEL TOTAL EN LOS 2 SENTIDOS</td><td>0.75</td></x<6<>	0.75 DEL TOTAL EN LOS 2 SENTIDOS	0.75
X≥ 6	0.5 DEL TOTAL EN LOS 2 SENTIDOS	0.5

#	NOMBRE DE LA BIBLIOGRAFÍA Y AUTOR	LINK DE DESCARGA
1	MANUAL DE DISEÑO DE PAVIMENTOS ASFÁLTICOS PARA VÍAS CON BAJOS VOLÚMENES DE TRÁNSITO, DEL INSTITUTO NACIONAL DE VÍAS DE COLOMBIA (INVIAS)	https://www.invias.gov.co/index.php/archivo-y-documentos/documentos- tecnicos/especificaciones-tecnicas/987-manual-de-diseno-de-pavimentos-asfalticos-par vias-con-bajos-volumenes-de-transito
2	MANUAL DE DISEÑO DE PAVIMENTOS DE CONCRETO PARA VÍAS CON BAJOS, MEDIOS Y ALTOS VOLÚMENES DE TRÂNSITO, DEL INSTITUTO NACIONAL DE VÍAS DE COLOMBIA (INVIAS)	https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/380 manual-de-diseno-de-pavimentos-de-concreto-para-vias-con-bajos-medios-y-altos- yolumenes-de-transito/file
3	INGENIERÍA DE PAVIMENTOS PARA CARRETERAS, DEL ING ALFONSO MONTEJO FONSECA	https://samustuto.files.wordpress.com/2014/09/ingenieric3ada-de-pavimentos-para- carreteras-tomo-i-ed-3ra-alfonso-montejo-fonseca.pdf
4	NOCIONES SOBRE MÉTODOS DE DISEÑO DE ESTRUCTURAS DE PAVIMENTOS PARA CARRETERAS-VOLUMEN 1, DEL ING CARLOS HERNANDO HIGUERA SANDOVAL MSC.	https://www.google.com/search?q=NOCIONES+SOBRE+M%C3%89TODOS+DE+DISE%C3%9 10+DE+ESTRUCTURAS+DE+PAVIMENTOS+PARA+CARRETERAS- VOLUMEN+3%2C+DEL+ING+CARLOS+BERNANDO+HIGUERA+SANDOVAL+MSC.8/dz=1C1CHZ

ANEXO 6 PLANILLAS DE DISEÑO DE PAVIMENTOS (AASTHO – 93) Y DIPAV 2

METODO AASHTO PARA EL DISEÑO DE PAVIMENTOS FLEXIBLES

Datos de entrada al progrma AASTHO:


T = 6 años(peridodo actual)

W18 = 1209375

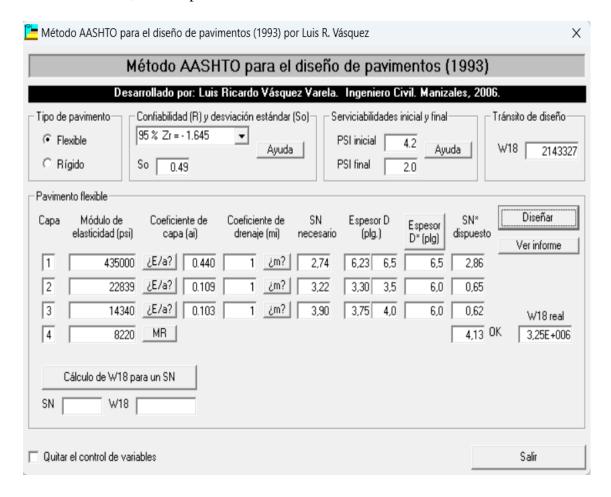
CBR_{Laboratorio} = 67,96 % Capa base

CBR_{Laboratorio} = 28,68 % Capa sub base

CBR_{Laboratorio} = 5,48 % Capa sub rasante

METODO AASHTO PARA EL DISEÑO DE PAVIMENTOS FLEXIBLES

Datos de entrada al programa AASTHO:


T = 10 años(periodo de retorno a futuro

W18 = 2143327

CBR_{Laboratorio} = 67,96 % Capa base

CBR_{Laboratorio} = 28,68 % Capa sub base

CBR_{Laboratorio} = 5,48 % Capa sub rasante

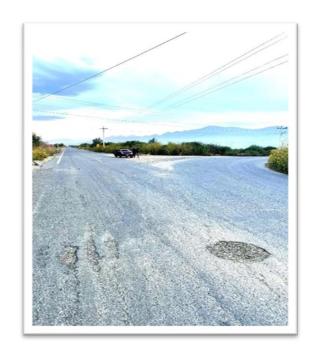
ANEXO 7 PLANILLAS DE COSTO

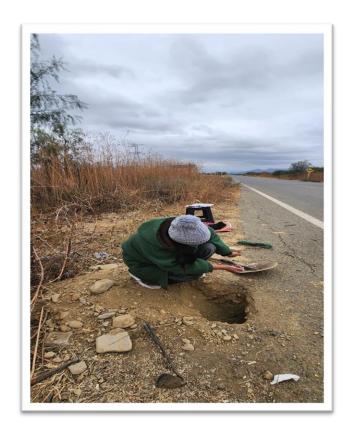
	ANALISIS DE PRECIOS UNIT.	ARIOS				
F	Proyecto "APLICACIÓN DEL MODELO DE HOGG, EN EL DISI PAVIMETO FLEXIBLE"		IERZO ESTRUCT	URAL DE UN	I	
	ctividad : Pavimento de mezcla bituminosa continua en calie	nte.	1			
l	Jnidad : m3		Moneda B		s	
	Descripcion	Unidad	Cantidad o Rendimiento	Costo Total		
1	MATEIALES					
1	Mezcla bituminosa continua en caliente AC16 surf D, para capa de rodadura, de composición densa, con agregado granítico de 16 mm de tamaño máximo y betún asfáltico de penetración.	t	0,115	449,34	51,67	
		TOTAL MATERIA	L		51,67	
2	MANO DE OBRA				•	
1	Especialista de construcción de obra civil.	Hr	0,003	28,62	0,086	
2	Ayudante 1ª de construcción de obra civil.	Hr	0,013	21,07	0,27	
		SUBTOTAL MANO DE OBRA			0,36	
	CARGAS SOCIALES (60% DEL SUBTOTAL MANO DE OBRA)	CARGAS SOCIALES (60% DEL SUBTOTAL MANO DE OBRA)				
IMPUETOS IVA (14,94% de SUBTOTAL MANO DE OBRA + CARGAS SOCIALES				0,09		
		TOTAL MANO DE	OBRA		0,66	
3	EQUIPO, MAQUINARIA Y HERRAMIENTAS					
	Extendedora asfáltica de cadenas, de 81 kW.	Hr	0,001	450,75	0,0045	
	Rodillo vibrante tándem autopropulsado, de 24,8 kW, de 2450 kg.	Hr	0,002	93,02	0,18604	
	Compactador de neumáticos autopropulsado, de 12/22 t.	Hr	0,001	326,53	0,32653	
	HERRAMIENTAS (5% de TOTAL MANO DE OBRA)	TOTAL EQUIPO, MAQUINARIA Y HERRAMIE		DAMIENTAS	0,03 0.55	
4	GASTOS GENERALES Y ADMINISTRATIVOS	TOTAL EQUIPO,	MAQUINARIA 1 HER	RAMIENTAS	0,55	
4	GASTOS GENERALES I ADMINISTRATIVOS					
	GASTOS GENERALES (15% de 1+2+3)				7,93	
5	UTILIDAD					
	UTILIDAD (10% de 1+2+3+4)				6.08	
6	IMPUETOS					
	IMPUESTOS IT (3,09 de 1+2+3+4+5)				2,07	
	Total Item Precio Unitario				68,97	
	. C.a. III Foolo Cintario				00,01	

ANEXO 8 FOTOGRAFÍAS EN EL TRAMO DE ESTUDIO EN EL TRAMO SAN MATEO – SELLA MENDEZ

FOTOGRAFÍA 1. PESAJE DE LA VOLQUETA USADA EN LA PRESENTE INVESTIGACION.

FOTOGRAFÍA 2. EVALUACIÓN ESTRUCTURAL DE LA CAPACIDAD DE SOPORTE DE LAS CAPAS DEL PAVIMENTO Y LA FUNDACIÓN.




FOTOGRAFÍA 3. EVALUACIÓN FUNCIONAL (CONFORT) DE LOS USUARIOS.

FOTOGRAFÍA 4. EVALUACIÓN DEL DETERIORO DE LA SUPERFICIE E INVENTARIO DE FALLAS DEL PAVIMENTO.

FOTOGRAFÍA 5. EXTRACCIÓN DE SUELO; CAPA BASE, CAPA SUB BASE, Y CAPA SUB RASANTE (CALICATAS).

FOTOGRAFÍA 6. PAQUETE ESTRUCTURAL DEL PAVIMENTO FLEXIBLE.

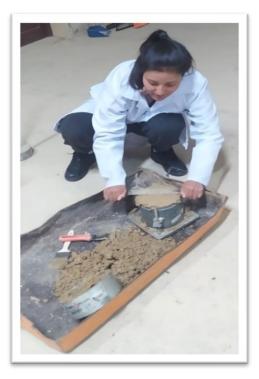
FOTOGRAFÍA 7. DEPÓSITO DE LOS SUELOS; CAPA BASE, CAPA SUB BASE, Y CAPA SUB RASANTE (CALICATAS).

FOTOGRAFÍA 8. CONTENIDO DE HUMEDAD.

FOTOGRAFÍA 9. GRANULOMETRÍA MECÁNICA DE SUELOS.

FOTOGRAFÍA 10. LÍMITES DE ATTERBERG.

FOTOGRAFÍA 11. HUMEDAD HIGROSCÓPICA.



FOTOGRAFÍA 12. COMPACTACIÓN ESTÁNDAR Y MODIFICADO.

FOTOGRAFÍA 13. ENSAYO DE CBR (CALIFORNIA BEARING RATIO).

