ANEXO A CARTA DE SOLICITUD PARA LA EXTRACCIÓN DE MATERIAL

Señor:

Tcnl. DEM. Willmar Rojas Ayllón

COMANDANTE DEL BAT. ING -I "CNL. MENDEZ"

Presente:

Ref. SOLICITUD DE AUTORIZACIÓN PARA REALIZAR LA EXTRACCION DE SUELO PARA LA REALIZACIÓN DE ENSAYOS DE MI PROYECTO DE GRADO.

A tiempo de saludarle cordial y respetuosamente, le deseo el mejor de los éxitos como COMANDANTE DEL BAT. ING.-I "CNL. MÉNDEZ"

La presente carta es para solicitarle a su persona la autorización para realizar la extracción de suelos para realizar los ensayos del siguiente tema de proyecto de grado II CIV-502.

TITULO: "ANÁLISIS DEL DIMENSIONAMIENTO DE PAVIMENTOS FLEXIBLES EN INSTALACIONES MILITARES". La misma que será presentada a la FACULTAD DE CIENCIAS Y TECNOLOGÍA de la UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO, para optar el título académico de Ingeniero Civil.

Con todo lo expuesto, le reitero mi solicitud de autorización, agradeciendo de antemano su cooperación, sin más que decirle me despido con las consideraciones mas distinguidas esperando una respuesta favorable a mi solicitud.

Atentamente:

UNIV. GUDINO SANDOVAL SERGIO JAVIER

CI. 10653745 TJA.

MSc. ING. HOONNY M. ORGAZ F.

TUTOR

RECIBIDO 14.5 OCT 2020

DEL EJERCITO

Tarija, 03 de Enero de 2021

Señor:

Sergio Javier Gudiño Sandoval

UNIVERSITARIO DE LA UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO

Referencia:

AUTORIZACIÓN PARA LA EXTRACCIÓN DE SUELOS DENTRO DEL BAT.ING.-I "CNL MÉNDEZ",
PARA LA REALIZACIÓN DE ENSAYOS DE SU PROYECTO DE GRADO.

Presente:

Por medio de la presente, autorizo la extracción de suelos para que pueda realizar su proyecto de grado del universitario, Sergio Javier Gudiño Sandoval, TITULO: "ANÁLISIS DEL DIMENSIONAMIENTO DE PAVIMENTOS FLEXIBLES EN INSTALACIONES MILITARES"

Cabe mencionar que se le permitirá la extracción rápida, de tres zonasestratégicas como máximo dentro del BAT. ING.-I "CNL. MÉNDEZ", por motivos internos y de sanidad que atraviesa nuestra sociedad (pandemia).

Sin más que decirle y deseándole los mejores de los éxitos, me despido con las consideraciones más distinguidas y que la colaboración sea de gran valor para la culminación de su estudio.

Atentamente:

Tent DEM Willmar Rojas Ayllón

NTE DEL BAT ING- I "CNL MÉNDEZ"

ANEXO B DEFINICIÓN DE VARIABLES PARA EL CÁLCULO DE VEHÍCULOS MILITARES

Nivel Confiabilidad (R)

Nivel de confiabilidad elegida

Tipo de camino	Zonas urbanas	Zonas rurales	
Autopistas	85 - 99,9	80 - 99,9	
Arterias principales	80 - 99	75 - 95	
Colectoras	80 - 95	75 - 95	
Locales	50 - 80	50 - 80	

Fuente: AASHTO, 1993

En este presente diseño asumimos un nivel de confiabilidad

Desviación estándar Normal (ZR)

Valor de desviación estándar normal elegida

Confiabilidad (R)	Valor de Z _R	Confiabilidad (R)	Valor de Z _R
50	-0.000	92	-1,405
60	-0,253	94	-1,555
70	-0,524	95	-1,645
75	-0,674	96	-1,751
80	-0,841	97	-1,881
85	-1,037	98	-2,054
90	-1,282	99	-2,327

Fuente: AASHTO, 1993

$$Zr = -0.841$$

Error estándar combinado (So)

Valores de desviación estándar combinado elegido

Drovosto do navimento	Flexible	
Proyecto de pavimento	0,40 - 0,50	
Construcción nueva	0,45	
Sobrecapas	0,50	

Fuente: AASHTO, 1993

So = 0.45

Índice de serviciabilidad APSI

Serviciabilidad inicial (Po)

Po = 4.2 en pavimentos flexible

Po= 4,2

Serviciabilidad final (Pt)

Para carreteras principales 2,5 o mayor

Para carreteras con menores volúmenes de tráfico 2,0

úmenes de tráfico 2,0 Pt= 2,0
$$\triangle PSI = Po - Pt$$

$$\Delta PSI = 4.2 - 2,0 = 2,2$$

$$\Delta PSI = 2,2$$

Determinación de los coeficientes de drenaje (m)

Se adoptó con criterio tomar el valor de 1 semana en tiempo de remoción del agua.

Tiempo de agua en drenar

Calidad de drenaje	Tiempo de remoción del agua
Excelente	2 horas
Bueno	1 día
Regular	1 semana
Pobre	1 mes
Muy pobre	No drena

Fuente: Elaboración propia

En base al estudio climatológico y pluviométrico de la zona conformada por la estación El aeropuerto y El tejar, se determinó que la zona de estudio y toda la región de cercado se considera que llueve 5 meses al año, donde pertenece a una región templada (precipitación promedio de 611.8 mm/año), estará expuesto a condiciones de saturación en:

$$\frac{5 \text{ meses}}{12 \text{ meses}} = 0.42 = 42\%$$

Porcentaje de exposición a saturación =

$$\frac{42}{365} * 100 = 11.42\%$$

Coeficiente de drenaje escogido

Capacidad de drenaje	% de tiempo en el que el pavimento está expuesto a niveles de humedad a la saturación						
urchaje	Menos del 1%	1 a 5 %	5 a 25 %	Mas del 25 %			
Excelente	1,40 -1,35	1,35 - 1,30	1,30 - 1,20	1,2			
Bueno	1,35-1,25	1,25 - 1,15	1.15 - 1.0	1,0			
Regular	1,25 - 1,15	1,15, - 1,05	1,0 - 0,8	0,8			
Pobre	1,15 - 1,05	1,05 - 0,8	0,8 - 0, 6	0,6			
Muy pobre	1,05 - 0,95	0,95 - 0,75	0,75 - 0,4	0,4			

Fuente: AASHTO, 1993

$$m2 = m3 = 1$$

Determinación del módulo resiliente de la subrasante

De acuerdo a la caracterización de los materiales, se obtuvieron los siguientes resultados:

Valor de CBR

CBR 100% D. Máx.	CBR 100% D. Máx.
5,00%	7,00%
CBR 95% D. Máx.	CBR 95% D. Máx.
3,00%	6,00%

Fuente: Elaboración propia

El cual calculamos nuestro modulo resiliente, que nos plante el instituto de asfalto el cual es la siguiente ecuación:

$$M_R = 1500 * CBR (Psi)$$

Reemplazando el valor del CBR en la ecuación se obtiene un módulo resiliente para la subrasante de:

$$M_R = 1500 * 3 = 4.500 \text{ psi}$$

$$M_R = 4.500 \text{ psi}$$

$$M_{R} = 9.000 \text{ psi}$$

Determinación de los módulos resilientes de la base y la subbase

Según el Manual de diseño de espesores del Asphalt Institute (MS-1), recomienda los siguientes módulos resilientes de la base y la subbase:

$$M_R = 28000 \text{ psi}$$

$$M_R = 13000 \text{ psi}$$

Temperatura de diseño

En base al estudio climatológico y pluviométrico de la zona conformada por la estación El aeropuerto y El tejar, se determinó que la zona de estudio y toda la región de cercado se considera una temperatura promedio de 59 °F el cual será nuestro dato para nuestros respectivos cálculos para diferente vehículo militar.

Características de los neumáticos y presión del vehículo militar tipo FAW Jiefang CA1122J.

Vehículo Militar Tipo FAW Jiefang CA1122J

Fuente: Elaboración propia

Es un vehículo militar tipo con un peso máximo de combate de 11,50 Toneladas, con seis ruedas, cuatro traseras y dos delanteras con una carga estándar de 30.000 lb.

Características de las llantas FAW Jiefang CA1122J

#	X (in)	Y (in)	% Carga	Presión (psi)	Área de contacto (sq in)	Forma
1,00	37,40	161,02	17,50	80,00	65,63	1,65
2,00	44,15	0,00	16,25	80,00	60,94	1,65
3,00	30,65	0,00	16,25	80,00	60,94	1,65
4,00	-37,40	161,02	17,50	80,00	65,63	1,65
5,00	-30,65	0,00	16,25	80,00	60,94	1,65
6,00	-44,15	0,00	16,25	80,00	60,94	1,65

Fuente: Cuerpo de Ingenieros del Ejército de EE. UU. Centro de sistemas de transporte y centro de investigación y desarrollo de ingeniería

Características de los neumáticos y presión del Vehículo militar EE-11 URUTU

Fuente: Elaboración propia

Es un vehículo blindado con un peso máximo de combate de 14 Toneladas, con seis ruedas, tres a cada lado sencillas con carga estándar de 31.360 lb.

Características de las llantas del EE-11 URUTU

#	X (in)	Y (in)	% Carga	Presión (psi)	Área de contacto (sq in)	Forma
1,00	41,35	139,88	20,00	80,00	78,40	1,65
2,00	41,35	39,56	15,00	80,00	58,80	1,65
3,00	41,35	0,00	15,00	80,00	58,80	1,65
4,00	-41,35	139,88	20,00	80,00	78,40	1,65
5,00	-41,35	39,56	15,00	80,00	58,80	1,65
6,00	-41,35	0,00	15,00	80,00	58,80	1,65

Fuente: Cuerpo de Ingenieros del Ejército de EE. UU.

Centro de sistemas de transporte y centro de investigación y desarrollo de ingeniería

Características de los engranajes y presión del Vehículo militar SK-105 KURASSIER

Vehículo militar SK-105 KURASSIER

Fuente: Elaboración propia

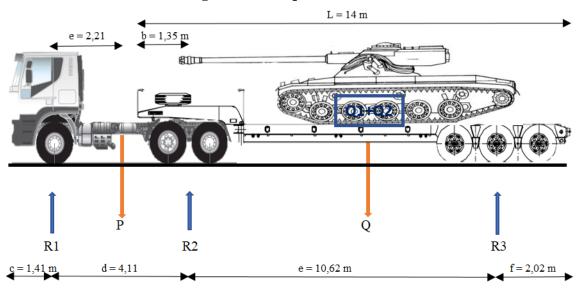
Es un vehículo blindado con un peso máximo de combate de 17,7 Toneladas, con cadenas con 5 ruedas de rodaje dobles a cada lado con carga estándar de 39022 lb.

Características de las llantas del SK-105 KURASSIER

#	X (in)	Y (in)	% Carga	Presión (psi)	Área de contacto (sq in)	Forma
1,00	41,50	119,56	11,10	78,34	55,29	0,51
2,00	41,50	89,67	11,10	78,34	55,29	0,51
3,00	41,50	59,78	11,10	78,34	55,29	0,51
4,00	41,50	29,89	11,10	78,34	55,29	0,51
5,00	41,50	0,00	11,10	78,34	55,29	0,51
6,00	-41,50	0,00	11,10	78,34	55,29	0,51
7,00	-41,50	29,89	11,10	78,34	55,29	0,51
8,00	-41,50	59,78	11,10	78,34	55,29	0,51
9,00	-41,50	89,67	11,10	78,34	55,29	0,51
10,00	-41,50	119,56	11,10	78,34	55,29	0,51

Fuente: Cuerpo de Ingenieros del Ejército de EE. UU.

Centro de sistemas de transporte y centro de investigación y desarrollo de ingeniería


Estimación de los factores equivalentes de cargas

Para poder determinar los factores equivalentes de carga por tipo de vehículo, es necesario conocer el tipo de pavimentos del que está compuesto la superficie de rodamiento, los pesos por ejes de cada uno de los vehículos sujetos a estudio, el número estructural (SN) que componen las diferentes capas de la carretera y la perdida de serviciabilidad presente en la carretera.

• Pesos por ejes:

Debido a sus respectivas características del vehículo a estudio como es el FAW Jiefang CA1122J, EE-11 URUTU ya se encuentra normalizados sus pesos por ejes definitivamente, mientras que el LOWBOY cargado con el tanque SK-105 KURASSIER, no lo hay es por tal motivo que se realizó la simulación, para poder encontrar los pesos por eje respectivamente del LOWBOY cargado con el tanque SK-105 KURASSIER el cual fue calculado de la siguiente manera:

LOWBOY cargado con tanque SK-105 KURASSIER

Fuente: Elaboración propia

Datos

Peso Tanque Q1 = 17.70 t

Peso Camión P = 8.11 t

Q = Q1 + Q2

Peso Lowboy Q2 = 10.30 t

Resolviendo:

$$\sum MR_3 = R_1 * (14,74) + R_2 * (10,63) - Q * \left(\frac{L}{2} - 2,025\right) - P * (12,53) = 0$$

$$\sum MR_2 = R_1 * (4,12) + R_3 * (10,63) + Q * \left(\frac{L}{2} - 1,35\right) + P * (1,90) = 0$$

$$\sum MR_1 = R_2 * (4,12) + R_3 * (14,74) - Q * \left(\frac{L}{2} - 2.77\right) - P * (2,21) = 0$$

$$R_1 = 5,24 t$$

$$R_2 = 9,74 t$$

$$R_3 = 21,35 t$$

• Número estructural

Sobre el número estructural SN se pueden considerar valores de 1,2,3,4,5 o 6. Se sugiere un valor de SN= 2 para el diseño de carreteras de bajo volumen y un valor de SN = 5 o 6 para carreteras de alto tráfico. Se utilizará SN=2,0.

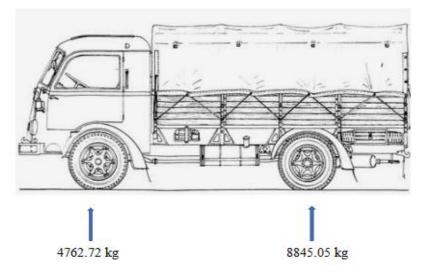
• Perdida de serviciabilidad:

Ya descrita anteriormente cabe mencionar que para el cálculo de los factores equivalentes de cargas se utiliza solamente la serviciabilidad final pt = 2,0

Metodología para el cálculo de los FEC

Para determinar los factores equivalentes de cargas que circulan en la carretera durante su vida útil es necesario conocer los pesos por ejes de los diferentes tipos de vehículos que por sus características son causa de daño sobre la estructura de pavimento.

A continuación, se procederá a calcular para un vehículo tipo LOWBOY el factor equivalente de carga para cada eje y posteriormente el factor camión del mismo utilizando las tablas de diseño de la AASHTO 93.


Para poder utilizar las tablas de la AASHTO 93, se necesita contar con los siguientes datos de diseño:

- El peso en Kips de cada eje en estudio
- La serviciabilidad final (Pt)
- El número estructural (SN)
- Tipo de eje

Con estos datos procedemos al cálculo del FEC por cada eje:

Vehículo Militar Tipo FAW Jiefang CA1122J

Utilizando la tabla D-1 del manual de diseño de pavimentos (AASHTO 93), para pavimentos flexibles, numero estructural de 2.0, ejes simples y una serviciabilidad final de 2,0, procedemos al cálculo del FEC por cada eje:

Para poder efectuar el cálculo es necesario expresar las cargas en Kips

1kg=0,002204623 Kips

• Para el eje simple 1:

$$P_1 = 4.762,72 \text{ kg} * \left(\frac{0,002204623}{1 \text{ kg}}\right) = 10,50 \text{ kips}$$

• Para el eje simple 2:

$$P_1 = 8.845,05 \text{ kg} * \left(\frac{0,002204623}{1 \text{ kg}}\right) = 19,50 \text{ kips}$$

Por interpolación, procedemos a determinar:

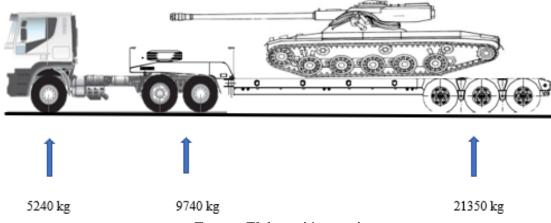
Para el eje simple 1:

$$FEC_1 = 0.11$$

Para el eje simple 2:

$$FEC_2 = 1,44$$

El factor de camión corresponde a este vehículo es la sumatoria de los FEC de cada eje, es decir:


$$FC = FEC_1 + FEC_2$$

Por tanto:

$$FC = 0.11 + 1.44 = 1.55$$

Vehículo de transporte LOWBOY

Utilizando la tabla D-1, D2 y D3 del manual de diseño de pavimentos (AASHTO 93), para pavimentos flexibles, numero estructural de 2.0, ejes simples, tándem y tridem con una serviciabilidad final de 2,0, procedemos al cálculo del FEC por cada eje:

Fuente: Elaboración propia

Para poder efectuar el cálculo es necesario expresar las cargas en Kips

1kg=0,002204623 Kips

• Para el eje simple 1:

$$P_1 = 5.240 \text{kg} * \left(\frac{0,002204623}{1 \text{ kg}}\right) = 11,55 \text{ kips}$$

• Para el eje tándem 2:

$$P_1 = 9.740 \text{kg} * \left(\frac{0,002204623}{1 \text{ kg}}\right) = 21,47 \text{ kips}$$

• Para el eje tridem 3:

$$P_1 = 21.350 \text{kg} * \left(\frac{0,002204623}{1 \text{ kg}}\right) = 47,07 \text{ kips}$$

Por interpolación, procedemos a determinar:

Para el eje simple 1:

$$FEC_1 = 0.16$$

Para el eje tándem 2:

$$FEC_2 = 0.16$$

Para el eje tridem 3:

$$FEC_3 = 0.91$$

El factor de camión corresponde a este vehículo es la sumatoria de los FEC de cada eje, es decir:

$$FC = FEC_1 + FEC_2 + FEC_3$$

Por tanto:

$$FC = 0.16 + 0.16 + 0.91 = 1.23$$

Definición de las variables de tránsito para vehículos militares

Según U.S. Army Engineer Research and Development Center (USACE, ERDC, siglas en inglés). El ESAL en cada metodología deriva de modelos, supuestos y procedimientos de diseño específicos. La conversión de cada vehículo a ESAL se basa en una investigación realizada por el U.S. Army Engineer Research and Development Center (USACE, ERDC, siglas en inglés).

Para la estimación del tránsito equivalente, se implementó la metodología exigida por el manual de diseño UFC 3-250-01, PAVEMENT DESIGN FOR ROADS AND PARKING ÁREAS (2016), el diseño de los pavimentos se basa en las cargas y el número total de repeticiones durante la vida útil del pavimento para los vehículos esperados. Típicamente, el tráfico se cuenta en términos de Tránsito Promedio Diario (TPD). Este valor debe considerar el tipo, el número de repeticiones y la carga para cada uno de los vehículos de la mezcla. El Tránsito Promedio Diario se convierte en el número total de repeticiones para la vida de diseño deseada del pavimento.

A si mismo pudimos recaudar muy poca información, pero de gran utilidad para nuestro proyecto, el cual la información adquirida fue de las FF.AA. de Bolivia y a si mismo por la entrevista Cnl. DAEN Miguel Montenegro Calvimontes especialista en vehículos militares blindados del servicio pasivo, y al Capitán Cardozo oficial de logística del servicio activo del "BAT. ING.-I "CNL. MÉNDEZ", los cuales son estimaciones

promedio que logra un vehículo militar al día el cual lo plasmamos en la siguiente tabla. Los datos son promedios de acuerdo a los acontecimientos que sucede con el ejército de Bolivia como ser: defensa del pueblo, aniversarios patrios, aniversarios de las FF.AA., demostraciones bélicas, entrenamientos y ensayos respectivamente para cada acontecimiento.

Repeticiones de carga promedio

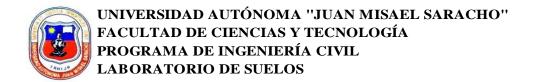
TIPO DE VEHÍCULO	# REPETICIONES AL DIA
FAW Jiefang CA1122J	8
SK-105 KURASSIER	4
EE-11 URUTU	6
LOWBOY	6

Fuente: Elaboración propia

De acuerdo a nuestro diseño de pavimento según los vehículos y las cargas optaremos una vida útil de 25 años. Durante los 365 días del año.

Por siguientes calculamos los números de repeticiones de cada vehículo de acuerdo a su carga y consideraciones adoptadas.

Repeticiones =
$$6 \frac{\text{repeticiones}}{\text{dias}} * 365 \frac{\text{dias}}{\text{año}} * 25 \text{ años} = 54.750$$


El valor 54.750 se convierte en repeticiones de carga, pero por motivos constructivos y por el tipo de carga que se tiene que es más de 10 Tn, se adopta 55.000 repeticiones de carga.

En la siguiente tabla se observa las repeticiones de carga obtenidas para los vehículos militares:

Número total de repeticiones para la vida de diseño deseada del pavimento.

TIPO DE VEHÍCULO	# REPETICIONES AL DIA	# REPETICIONES CALCULADAS
FAW Jiefang CA1122J	8	73.000
SK-105 KURASSIER	4	36.500
EE-11 URUTU	6	54.750
LOWBOY	6	54.750

Fuente: Elaboración propia

HUMEDAD NATURAL Y CLASIFICACIÓN

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"

Elaborado por: Sergio Javier Gudiño Sandoval

Fecha: Diciembre 2020

1

HUMEDAD NATURAL							
Cápsula	1	2	3	4			
Peso de suelo húmedo + Cápsula	99,00	132,10	125,00	114,60			
Peso de suelo seco + Cápsula	97,65	129,85	122,55	113,25			
Peso de cápsula	17,94	18,72	17,46	17,66			
Peso de suelo seco	79,71	111,13	105,09	95,59			
Peso del agua	1,35	2,25	2,45	1,35			
Contenido de humedad	1,69	2,02	2,33	1,41			
PROMEDIO)	1,	87				

CLASIFICACIÓN
DEL SUELO

SUCS: ML
AASHTO: A-4 (0)

Limo inorganico baja compresibilidad

Sergio Javier Gudiño Sandoval Ing. J.Ricardo Arce Avendaño
UNIVERSITARIO ENCARGADO DE LAB. SUELOS

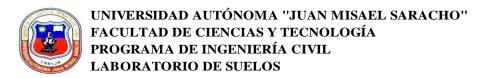
UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

GRANULOMETRÍA

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Identificación: Muestra 1 **Procedencia**: BAT. ING -I "CNL. MENDEZ" Elaborado por: Sergio Javier Gudiño Sandoval Fecha: Diciembre 2020

Humedad higroscopica, %Hh

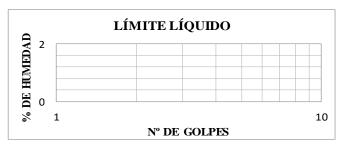

Peso de suelo húmedo + Cápsula P1	114,60	grs
Peso de suelo seco + Cápsula, P2	113,48	grs
Peso de cápsula, Pc	17,72	grs
Peso del agua, Pa=(P1-P2)	1,12	grs
Peso de suelo seco, Ps=(P2-Pc)	95,76	grs
Porcentaje de humedad %Hh	1,17	%

Pasa No 4 humedad,Sh grs	1000	Pasa No 4 Seco, Ss grs.	988,44
		, ŠÛsrr	
		•L srrE "Š	

Peso Total	(gr.)		988,44	A.S.T.M.	
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa
Taimes	(mm)	(gr)	(gr)	/o Ket	del Total
2 1/2"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	0,00	0,00	0,00	100,00
3/4"	19,00	0,00	0,00	0,00	100,00
1/2"	12,50	0,00	0,00	0,00	100,00
3/8"	9,50	0,00	0,00	0,00	100,00
N°4	4,75	0,00	0,00	0,00	100,00
N°10	2,00	20,42	20,42	2,07	97,93
N°40	0,425	15,98	36,40	3,68	96,32
N°200	0,075	441,06	477,46	48,30	51,70
Base	_	1,53	478,99	48,46	51,54

Sergio Javier Gudiño Sandoval Ing. J.Ricardo Arce Avendaño ENCARGADO DE LAB. SUELOS

UNIVERSITARIO



LÍMITES DE ATTERBERG

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia:BAT. ING -I "CNL. MENDEZ"Identificación:Muestra 1Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

1	2	3	4
	1	1 2	1 2 3

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula			40
Peso de suelo seco + Cápsula			40
Peso de cápsula		\$	
Peso de suelo seco		OUR	
Peso del agua	-1C	,	
Contenido de humedad	E		

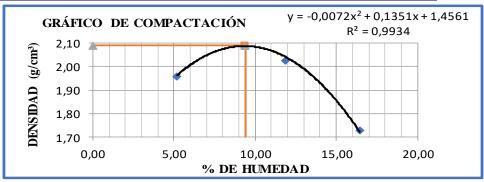
Límite Líquido (LL)
0,00
Límite Plástico (LP)
0,00
Índice de plasticidad (IP)
0,00
Índice de Grupo (IG)
3,00

Sergio Javier Gudiño Sandoval
UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño ENCARGADO DE LAB. SUELOS

'INIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL 'LABORATORIO DE SUELOS

COMPACTACIÓN PROCTOR MODIFICADO T-180


Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"

Elaborado por: Sergio Javier Gudiño Sandoval

Fecha: Diciembre 2020

1				
Nº de capas	5	5	5	5
Nº de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10565	11018	10979	10468
Peso del molde	6435	6435	6435	6435
Peso suelo húmedo	4130	4584	4545	4033
Volumén de la muestra	2005,21	2005,21	2005,21	2005,21
Densidad suelo húmedo (gr/cm³	2,06	2,29	2,27	2,01
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	76,80	100,20	89,90	87,20
Peso suelo seco + cápsula	73,70	93,12	82,30	76,70
Peso del agua	3,10	7,08	7,60	10,50
Peso de la cápsula	14,10	12,60	18,40	12,80
Peso suelo seco	59,60	80,52	63,90	63,90
Contenido de humedad (%h)	5,20	8,79	11,89	16,43
Densidad suelo seco (gr/cm³)	1,96	2,10	2,03	1,73

Densidad Máxima 2,09 gr/cm³
Humedad Óptima 9,38 %

Sergio Javier Gudiño Sandoval

UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño

ENCARGADO DE LAB. SUELOS

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CALIFORNIA BEARING RATIO (CBR)

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia:BAT. ING -I "CNL.Identificación:Muestra 1Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

1 CONTENIDO DE HUMEDAD Y PESO UNITARIO

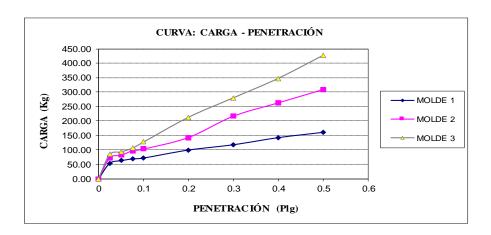
1 CONTENIDO DE HUMEDAD Y PESO UNITARIO											
Nº capas		5			5		5				
Nº golpes por capa		12			25		56				
CONDICIÓN DE MUESTRA	Antes de	mojarse	D. de M	Antes d	e mojarse	D. de M	Antes de	mojarse	D. de M		
Peso muestra húm.+molde	113	99	11625	12	195	12390	124	140	12570		
Peso Molde	723	72	7272	79	909	7909	80	06	8006		
Peso muestra húmeda	412	27	4353	4:	286	4481	44	35	4565		
Volumen de la muestra	203	32	2032	20	2032		2032		2032		
Peso Unit. Muestra Húm.	2.0	13	2.14	2	.11	2.21	2.18		2.25		
MUESTRA DE HUMEDAD	Fondo	Superf.	2" sup.	Fondo	Fondo Superf.		Fondo	Superf.	2" sup.		
Tara Nº	1	2	3	1	2	3	1	2	3		
Peso muestra húm + tara	54.67	54.65	62.40	63.58	83.18	74.17	85.90	79.40	68.25		
Peso muestra seca + tara	49.16	49.53	56.01	57.64	75.35	66.43	77.79	72.62	61.77		
Peso del agua	5.51	5.12	6.39	5.94	7.83	7.74	8.11	6.78	6.48		
Peso de tara	10.16	12.35	12.47	12.67	12.53	12.28	12.99	12.58	12.60		
Peso de la muestra seca	eso de la muestra seca 39.00 37		43.54	44.97	62.82	54.15	64.80	60.04	49.17		
Contenido humedad %	14.13	13.77	14.68	13.21	12.46	14.29	12.52	11.29	13.18		
Promedio cont. Humedad	13.95 14.		14.68	12.84		14.29 11.90		.90	13.18		
Peso Unit.muestra seca	1.7	'8	1.87	1.87		1.93	1.95		1.98		

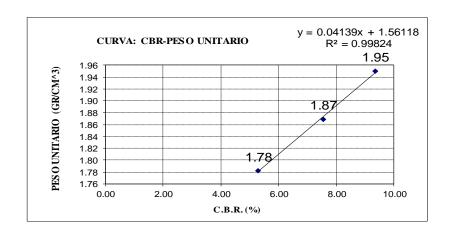
Hum.	Peso
Opt.	Unit.
%	gr/cm³
9.38	2.09

EXPANSIÓ N

		TIEMPO	MOLDE Nº 1			N	OLDE N	° 2	MOLDE N° 3			
FECHA	HORA	EN	LECT.	EXPANSIÓN		LECT.	EXPANSIÓN		LECT. EXPA		ANSIÓN	
		DIAS	EXTENS.	CM.	%	EXTENS	CM.	%	EXTENS	CM.	%	
23-dic	10:00	0	12.64	1.26	0.00	14.42	1.44	0.00	17.77	1.78	0.00	
24-dic	10:00	1	12.94	1.29	0.17	14.62	1.46	0.11	18.22	1.82	0.25	
25-dic	10:00	2	13.06	1.31	0.24	14.64	1.46	0.12	17.99	1.80	0.12	
26-dic	10:00	3	13.25	1.33	0.34	14.61	1.46	0.11	18.02	1.80	0.14	
27-dic	10:00	4	13.46	1.35	0.46	14.65	1.47	0.13	17.97	1.80	0.11	

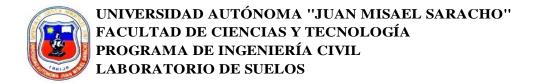
C.B.R. %	Peso Unit. gr/cm³
5.30	1.78
7.54	1.87
9.34	1.95


C.B.R.


PENETRACIÓN CARGA		CARGA	MOLDE Nº 1				MOLDE N° 2				MOLDE N° 3				
LENET	KACION	NORMAL	CARGA E	ENSAYO	C.B.R. C	ORREG	CARGA	ENSAYO	C.B.R. C	ORREG	CARGA E	CARGA ENSAYO C.B.R. CORREG			
Pulg.	mm	Kg	Kg	Kg/cm²	Kg	%	Kg	Kg/cm²	Kg	%	Kg	Kg/cm²	Kg	%	
0	0		0.00	0.00			0.00	0.00			0.00	0.00			
0.025	0.63		53.68	2.77			72.02	3.72			84.24	4.35			
0.05	1.27		62.85	3.25			81.18	4.19			93.41	4.83			
0.075	1.9		68.96	3.56			96.46	4.98			105.63	5.46			
0.1	2.54	1360	72.02	3.72		5.30	102.58	5.30		7.54	127.02	6.56		9.34	
0.2	5.08	2040	99.52	5.14		4.88	142.30	7.35		6.98	212.59	10.98		10.42	
0.3	7.62		117.85	6.09			215.64	11.14			279.82	14.46			
0.4	10.16		142.30	7.35			261.48	13.51			347.05	17.93			
0.5	12.7		160.64	8.30			307.32	15.88			426.50	22.04			

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CALIFORNIA BEARING RATIO (CBR)


CBR 100% D.máx
13 %
CBR 95% D.Máx.
10 %

Sergio Javier Gudiño Sandoval

UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño

ENCARGADO DE LAB. SUELOS

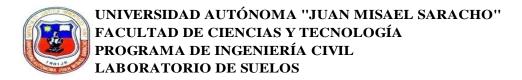
HUMEDAD NATURAL Y CLASIFICACIÓN

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"

Elaborado por: Sergio Javier Gudiño Sandoval

Fecha: Diciembre 2020


2

HUMEDAD NATURAL								
Cápsula	1	2	3	4				
Peso de suelo húmedo + Cápsula	99,15	69,26	87,60	86,50				
Peso de suelo seco + Cápsula	94,95	64,75	83,85	82,88				
Peso de cápsula	12,86	11,87	12,93	12,96				
Peso de suelo seco	82,09	52,88	70,92	69,92				
Peso del agua	4,20	4,51	3,75	3,62				
Contenido de humedad	5,12	8,53	5,29	5,18				
PROMEDIO 6,03								

CLASIFICACIÓN DEL SUELO		DESCRIPCIÓN
SUCS:	CL	Ancillo licena anoncea
AASHTO:	A-4 (6)	Arcilla ligera arenosa

Sergio Javier Gudiño Sandoval Ing. J.Ricardo Arce Avendaño

UNIVERSITARIO ENCARGADO DE LAB. SUELOS

GRANULOMETRÍA

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"

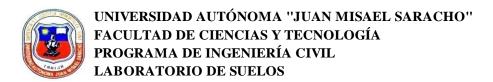
Elaborado por: Sergio Javier Gudiño Sandoval

Fecha: Diciembre 2020

Humedad higroscopica,%Hh

8 1 /		
Peso de suelo húmedo + Cápsula P1	99,15	grs
Peso de suelo seco + Cápsula, P2	97,95	grs
Peso de cápsula, Pc	17,92	grs
Peso del agua, Pa=(P1-P2)	1,20	grs
Peso de suelo seco, Ps=(P2-Pc)	80,03	grs
Porcentaje de humedad % Hh	1,50	%

Pasa No 4 humedad,Sh grs.	1000	Pasa No 4 Seco, Ss grs.	985,23
		Sh * 100	
		$SS = \frac{100 + \%Hh}{100 + \%Hh}$	

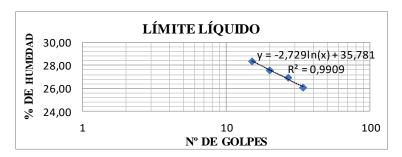

2

Peso Total	(gr.)		985,23	A.S.T.M.	
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa
Taimes	(mm)	(gr)	(gr)	% Ket	del Total
2 1/2"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	0,00	0,00	0,00	100,00
3/4"	19,00	0,00	0,00	0,00	100,00
1/2"	12,50	0,00	0,00	0,00	100,00
3/8"	9,50	0,00	0,00	0,00	100,00
N°4	4,75	0,00	0,00	0,00	100,00
N°10	2,00	4,29	4,29	0,44	99,56
N°40	0,425	4,16	8,45	0,86	99,14
N°200	0,075	69,54	77,99	7,92	92,08
Base	-	0,81	78,80	8,00	92,00

Sergio Javier Gudiño Sandoval Ing. J.Ricardo Arce Avendaño

UNIVERSITARIO

ENCARGADO DE LAB. SUELOS


LÍMITES DE ATTERBERG

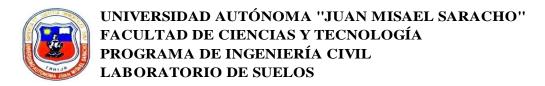
Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia:BAT. ING -I "CNL. MENDEZ"Identificación:Muestra 2Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

2

Cápsula Nº	1	2	3	4
N° de golpes	15	20	27	34
Suelo Húmedo + Cápsula	44,30	42,75	40,35	40,28
Suelo Seco + Cápsula	37,34	36,24	34,49	34,55
Peso del agua	6,96	6,51	5,86	5,73
Peso de la Cápsula	12,8	12,65	12,72	12,57
Peso Suelo seco	24,54	23,59	21,77	21,98
Porcentaje de Humedad	28,36	27,60	26,92	26,07

Determinación de Límite Plástico

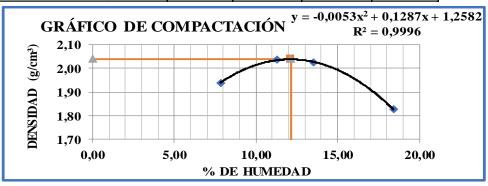

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula	12,85	14,77	14,07
Peso de suelo seco + Cápsula	12,71	14,47	13,73
Peso de cápsula	12,01	12,93	11,86
Peso de suelo seco	0,70	1,54	1,87
Peso del agua	0,14	0,30	0,34
Contenido de humedad	20,00	19,48	18,18

Límite Líquido (LL)
27,24
Límite Plástico (LP)
19,22
Índice de plasticidad (IP)
8,02
Índice de Grupo (IG)
8,00

Sergio Javier Gudiño Sandoval
UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño

ENCARGADO DE LAB. SUELOS



COMPACTACIÓN PROCTOR MODIFICADO T-180

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones						
militares"						
Procedencia: BAT. ING -I "CNL. MENDEZ"	Identificación: Muestra 2					
Elaborado por: Sergio Javier Gudiño Sandoval	Fecha: Diciembre 2020					

2

4				
N° de capas	5	5	5	5
N° de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10626	10979	11043	10772
Peso del molde	6433	6433	6433	6433
Peso suelo húmedo	4192	4545	4609	4338
Volumén de la muestra	2005,21	2005,21	2005,21	2005,21
Densidad suelo húmedo (gr/cm³	2,09	2,27	2,30	2,16
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	83,90	92,80	71,20	104,20
Peso suelo seco + cápsula	79,10	85,10	64,90	90,80
Peso del agua	4,80	7,70	6,30	13,40
Peso de la cápsula	17,70	17,00	18,40	18,00
Peso suelo seco	61,40	68,10	46,50	72,80
Contenido de humedad (%h)	7,82	11,31	13,55	18,41
Densidad suelo seco (gr/cm³)	1,94	2,04	2,02	1,83

Densidad Máxima 2,04 gr/cm³
Humedad Óptima 12,14 %

Sergio Javier Gudiño Sandoval UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño
ENCARGADO DE LAB. SUELOS

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CALIFORNIA BEARING RATIO (CBR)

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia:BAT. ING -I "CNL.Identificación:Muestra 2Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

2 CONTENIDO DE HUMEDAD Y PESO UNITARIO

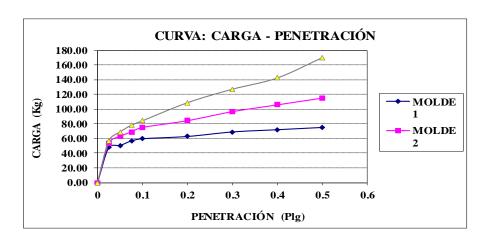
CONTENIDO DE HUMEDAD Y PESO UNITARIO									
Nº cap as	5			5			5		
Nº golpes por capa	12		25			56			
CONDICIÓN DE MUESTRA	Antes de	mo jars e	D. de M	Antes d	e mojars e	D. de M	Antes de	Antes de mojarse	
Peso muestra húm.+molde	100	80	10475	12	440	12710	106	10690	
Peso Molde	609	95	6095	7980		7980	6130		6130
Peso muestra húmeda	398	35	4380	4	460	4730	45	4560	
Volumen de la muestra	2032	2,22	2032,22	203	32,22	2032,22	203	2032,22	
Peso Unit. Muestra Húm.	1,9	06	2,16	2,19		2,33	2,24		2,34
MUESTRA DE HUMEDAD	Fondo	Superf.	2" s up.	Fondo	Superf.	2" sup.	Fondo	Superf.	2" s up.
Tara Nº	1	2	3	1	2	3	1	2	3
Peso muestra húm + tara	64,81	79,24	67,19	65,75	74,52	62,93	54,58	92,07	84,65
Peso muestra seca + tara	56,74	67,33	57,02	56,98	63,98	53,75	48,97	81,89	72,37
Peso del agua	8,07	11,91	10,17	8,77	10,54	9,18	5,61	10,18	12,28
Peso de tara	13,03	12,46	12,02	13,10	12,67	12,19	12,64	12,35	12,74
Peso de la muestra seca	43,71	54,87	45,00	43,88	51,31	41,56	36,33	69,54	59,63
Contenido humedad %	18,46	21,71	22,60	19,99	20,54	22,09	15,44	14,64	20,59
Promedio cont. Humedad	20,	08	22,60	20),26	22,09	15.	15,04	
Peso Unit.muestra seca	1,6	i3	1,76	1	,82	1,91 1,95		1,94	

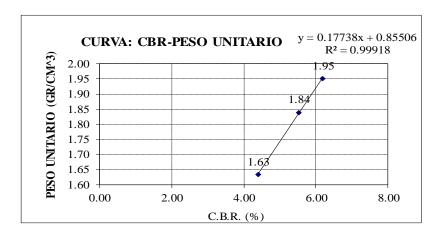
Hum.	Peso
Opt.	Unit.
%	gr/cm³
14,21	1,99

EXPANSIÓN

		TIEMPO	М	MOLDE N° 1 LECT. EXPANSIÓN			MOLDE N° 2			MOLDE N° 3		
FECHA	HORA	EN	LECT.			LECT.	EXP A	NSIÓN	LECT.	EXP A	NSIÓN	
		DIAS	EXTENS.	CM.	%	EXTENS.	CM.	%	EXTENS.	CM.	%	
23-dic	16:00	0	5,97	0,60	0,00	14,61	1,46	0,00	19,23	1,92	0,00	
24-dic	16:00	1	8,30	0,83	1,31	17,67	1,77	1,72	20,93	2,09	0,96	
25-dic	16:00	2	8,58	0,86	1,47	18,54	1,85	2,21	21,86	2,19	1,48	
26-dic	16:00	3	8,67	0,87	1,52	18,67	1,87	2,28	22,42	2,24	1,79	
27-dic	16:00	4	8,69	0,87	1,53	18,77	1,88	2,34	23,00	2,30	2,12	

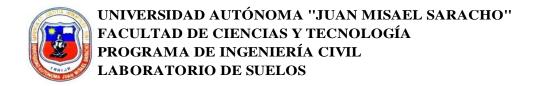
C.B.R.	Peso Unit. gr/cm³
4,40	1,63
5,18	1,82
5,74	1,95
•	


C.B.R.


PENETRACIÓN CARGA			MOLDE Nº 1		MOLDE N° 2			MOLDE N° 3						
TENET	RACION	NORMAL	CARGA ENSAYO C.B.R. CORREG		CARGA	ENSAYO	C.B.R.C	ORREG	CARGA ENSAYO C.B.R. CORREG					
Pulg.	mm	Kg	Kg	Kg/cm ²	Kg	%	Kg	Kg/cm²	Kg	%	Kg	Kg/cm²	Kg	%
0	0		0,00	0,00			0,00	0,00			0,00	0,00		
0,025	0,63		47,57	2,46			55,21	2,85			58,26	3,01		
0,05	1,27		52,15	2,69			64,38	3,33			70,49	3,64		
0,075	1,9		56,74	2,93			65,90	3,41			72,02	3,72		
0,1	2,54	1360	59,79	3,09		4,40	70,49	3,64		5,18	78,13	4,04		5,74
0,2	5,08	2040	64,38	3,33		3,16	85,77	4,43		4,20	108,69	5,62		5,33
0,3	7,62		70,49	3,64			97,99	5,06			127,02	6,56		
0,4	10,16		72,02	3,72			105,63	5,46			142,30	7,35		
0,5	12,7		75,07	3,88			114,80	5,93			169,80	8,77		

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

CALIFORNIA BEARING RATIO (CBR)


CBR 100% D.máx
7 %
CBR 95% D.Máx.
6 %

Sergio Javier Gudiño Sandoval

Ing. J.Ricardo Arce Avendaño

UNIVERSITARIO

ENCARGADO DE LAB. SUELOS

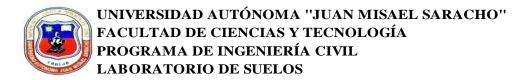
HUMEDAD NATURAL Y CLASIFICACIÓN

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"

Elaborado por: Sergio Javier Gudiño Sandoval

Fecha: Diciembre 2020


3

<u> </u>								
HUMEDAD NATURAL								
Cápsula	1	2	3	4				
Peso de suelo húmedo + Cápsula	76,80	100,20	89,90	87,20				
Peso de suelo seco + Cápsula	75,70	98,35	88,55	86,35				
Peso de cápsula	14,11	12,59	18,38	12,81				
Peso de suelo seco	61,59	85,76	70,17	73,54				
Peso del agua	1,10	1,85	1,35	0,85				
Contenido de humedad	1,79	2,16	1,92	1,16				
PROMEDIO 1,76								

CLASIFICACIÓN DEL SUELO		DESCRIPCIÓN
SUCS:	ML	Lime incuranice hair communicibilidad
AASHTO:	A-4 (0)	Limo inorganico baja compresibilidad

Sergio Javier Gudiño Sandoval **UNIVERSITARIO**

Ing. J.Ricardo Arce Avendaño **ENCARGADO DE LAB. SUELOS**

GRANULOMETRÍA

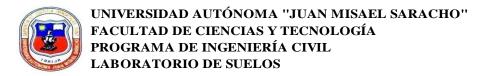
Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ" Identificación: Muestra 3
Elaborado por: Sergio Javier Gudiño Sandoval
Fecha: Diciembre 2020

Humedad higroscopica,%Hh

Peso de suelo húmedo + Cápsula P1	100,20	grs
Peso de suelo seco + Cápsula, P2	99,31	grs
Peso de cápsula, Pc	18,38	grs
Peso del agua, Pa=(P1-P2)	0,89	grs
Peso de suelo seco, Ps=(P2-Pc)	80,93	grs
Porcentaje de humedad % Hh	1,10	%

Pasa No 4 humedad,Sh grs	1000	Pasa No 4 Seco, Ss grs.	989,12
		Sh * 100	
		$38 - \frac{100 + \%Hh}{1}$	

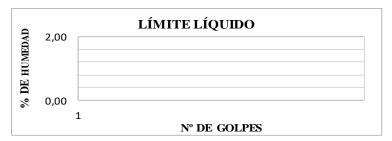

3

Peso Total	Peso Total (gr.)			A.S.T.M.	
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa
Taillices	(mm)	(gr)	(gr)	% Ket	del Total
2 1/2"	75	0,00	0,00	0,00	100,00
2"	50	0,00	0,00	0,00	100,00
1 1 /2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	0,00	0,00	0,00	100,00
3/4"	19,00	0,00	0,00	0,00	100,00
1/2"	12,50	0,00	0,00	0,00	100,00
3/8"	9,50	0,00	0,00	0,00	100,00
N°4	4,75	0,00	0,00	0,00	100,00
N°10	2,00	4,96	4,96	0,50	99,50
N°40	0,425	7,38	12,34	1,25	98,75
N°200	0,075	473,71	486,05	49,14	50,86
Base	-	1,30	487,35	49,27	50,73

Sergio Javier Gudiño Sandoval Ing. J.Ricardo Arce Avendaño

UNIVERSITARIO

ENCARGADO DE LAB. SUELOS


LÍMITES DE ATTERBERG

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia:BAT. ING -I "CNL. MENDEZ"Identificación:Muestra 3Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

3

Cápsula Nº	1	2	3	4
Nº de golpes				
Suelo Húmedo + Cápsula				
Suelo Seco + Cápsula				
Peso del agua				
Peso de la Cápsula				
Peso Suelo seco				
Porcentaje de Humedad				

Determinación de Límite Plástico

Cápsula	1	2	3
Peso de suelo húmedo + Cápsula			~ O
Peso de suelo seco + Cápsula			
Peso de cápsula		15	
Peso de suelo seco		OLIF	
Peso del agua	40		
Contenido de humedad	L		

Límite Líquido (LL)
0,00
Límite Plástico (LP)
0,00
Índice de plasticidad (IP)
0,00
Índice de Grupo (IG)
3,00

Sergio Javier Gudiño Sandoval
UNIVERSITARIO

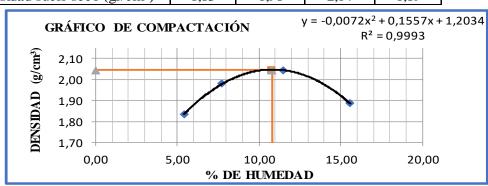
Ing. J.Ricardo Arce Avendaño
ENCARGADO DE LAB. SUELOS

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

COMPACTACIÓN PROCTOR MODIFICADO T-180

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

Procedencia: BAT. ING -I "CNL. MENDEZ"


Elaborado por: Sergio Javier Gudiño Sandoval

Identificación: Muestra 3

Fecha: Diciembre 2020

3

Nº de capas	5	5	5	5
Nº de golpes por capa	56	56	56	56
Peso suelo húmedo + molde	10312	10719	11003	10810
Peso del molde	6438	6438	6438	6438
Peso suelo húmedo	3874	4280	4565	4372
Volumén de la muestra	2005,21	2005,21	2005,21	2005,21
Densidad suelo húmedo (gr/cm³	1,93	2,13	2,28	2,18
Cápsula Nº	1	2	3	4
Peso suelo húmedo + capsula	80,20	117,40	109,60	119,60
Peso suelo seco + cápsula	77,00	110,20	100,20	105,90
Peso del agua	3,20	7,20	9,40	13,70
Peso de la cápsula	17,70	17,10	18,40	18,00
Peso suelo seco	59,30	93,10	81,80	87,90
Contenido de humedad (%h)	5,40	7,73	11,49	15,59
Densidad suelo seco (gr/cm³)	1,83	1,98	2,04	1,89

Densidad Máxima 2,05 gr/cm³
Humedad Óptima 10,81 %

Sergio Javier Gudiño Sandoval

UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño

ENCARGADO DE LAB. SUELOS

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE SUELOS

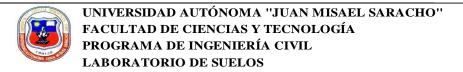
CALIFORNIA BEARING RATIO (CBR)

Proyecto: "Análisis del dimensionamiento de pavimentos flexibles en instalaciones militares"

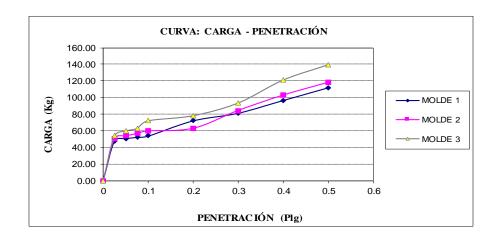
Procedencia:BAT. ING -I "CNL.Identificación:Muestra 3Elaborado por:Sergio Javier Gudiño SandovalFecha:Diciembre 2020

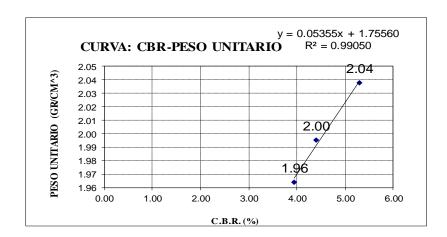
Nº cap as 5 12 25 56 Nº golpes por capa CONDICIÓN DE MUESTRA Antes de mojarse D. de M Antes de mojars e Antes de mojarse D. de M D. de M Peso muestra húm.+molde 11635 11956 12435 12612 12605 12689 Peso Molde 7235 7235 7870 7870 7965 7965 Peso muestra húmeda 4400 4721 4565 4742 4640 4724 Volumen de la muestra 2032.22 2032.22 2032.22 2032.22 2032.22 2032.22 2.17 2.32 Peso Unit. Muestra Húm. 2.25 2.33 2.28 2.32 MUESTRA DE HUMEDAD Fondo Superf. 2" s up. Fondo Fondo Superf. 2" s up. Superf. 2" sup. Tara Nº 2 3 1 2 3 1 2 3 66.95 65.34 Peso muestra húm + tara 81.83 54.49 69.61 79.28 72.87 68.53 73.46 Peso muestra seca + tara 73.98 62.98 50.12 63.23 71.98 60.45 65.85 63.01 67.89 Peso del agua 7.85 3.97 4.37 6.38 7.30 4.89 7.02 5.52 5.57 Peso de tara 10.98 13.31 13.31 13.82 12.48 13.57 12.55 12.44 12.85 Peso de la muestra seca 63.00 49.67 36.81 49.41 59.50 46.88 53.30 50.57 55.04 Contenido humedad % 12.46 7.99 11.87 12.91 12.27 10.43 13.17 10.92 10.12 12.59 Promedio cont. Humedad 10.23 11.87 10.43 12.04 10.12 Peso Unit.muestra seca 1.96 2.08 2.00 2.11 2.04 2.11

Hum.	Peso
Opt.	Unit.
%	gr/cm ³
10.81	2.05


EXPANSIÓN

		TIEMPO	MOLDE N° 1				MOLDE N°	'2	MOLDE N° 3			
FECHA	HORA	EN	LECT.	EXP ANS IÓN		LECT.	EXP ANS IÓN		LECT.	EXP ANS IÓN		
		DIAS	EXTENS.	CM.	%	EXTENS.	CM.	%	EXTENS.	CM.	%	
16-nov	10:30	0	13.92	1.39	0.00	14.22	1.42	0.00	17.43	1.74	0.00	
17-nov	10:30	1	13.97	1.40	0.03	14.25	1.43	0.02	17.46	1.75	0.02	
18-nov	10:30	2	13.98	1.40	0.03	14.26	1.43	0.02	17.50	1.75	0.04	
19-nov	10:30	3	13.94	1.39	0.01	14.24	1.42	0.01	17.49	1.75	0.03	
20-nov	10:30	4	13.93	1.39	0.01	14.24	1.42	0.01	17.52	1.75	0.05	


C.B.R. %	Peso Unit. gr/cm³
3.95	1.96
4.40	2.00
5.30	2.04


C.B.R.

PENETRACIÓN CARGA MOLDE Nº 1				MOLDE N° 2				MOLDE N° 3						
TENET	KACION	NORMAL	CARGA I	CARGA ENSAYO C.B.R. CORREG			CARGA ENSAYO C.B.R. CORREG				CARGA ENSAYO C.B.R. CORREG			
Pulg.	mm	Kg	Kg	Kg/cm ²	Kg	%	Kg	Kg/cm²	Kg	%	Kg	Kg/cm ²	Kg	%
0	0		0.00	0.00			0.00	0.00			0.00	0.00		
0.025	0.63		47.57	2.46			50.62	2.62			53.68	2.77		
0.05	1.27		50.62	2.62			53.68	2.77			59.79	3.09		
0.075	1.9		52.15	2.69			56.74	2.93			62.85	3.25		
0.1	2.54	1360	53.68	2.77		3.95	59.79	3.09		4.40	72.02	3.72		5.30
0.2	5.08	2040	72.02	3.72		3.53	62.85	3.25		3.08	78.13	4.04		3.83
0.3	7.62		81.18	4.19			84.24	4.35			93.41	4.83		
0.4	10.16		96.46	4.98			102.58	5.30			120.91	6.25		
0.5	12.7		111.74	5.77			117.85	6.09			139.25	7.19		

CALIFORNIA BEARING RATIO (CBR)

CBR 100% D.máx
5 %
CBR 95% D.Máx.
3 %

Sergio Javier Gudiño Sandoval

UNIVERSITARIO

Ing. J.Ricardo Arce Avendaño

ENCARGADO DE LAB. SUELOS