
ANEXOS.

Lugar de ejecución.

El lugar de ejecución de todo el diseño de tesis se realizará en las instalaciones de los

laboratorios de tecnología del hormigón de la Universidad Autónoma Juan Misael Saracho.

Descripción de las canteras.

La cantera Villa Montes se encuentra a 90 kilómetros de la ciudad de Yacuiba con un acceso

pavimentando compuesto por la ruta número 9, que es la vía Yacuiba – Santa Cruz ver figura

52, la explotación de agregados de las orillas del rio es con apoyo de maquinarias además

que presentan en sus alrededores vegetación y también el pasto aprovechado por la ganadería.

La cantera Caiza se encuentra a 25 kilómetros aproximadamente de la ciudad de Yacuiba con

un acceso pavimentado compuesto por la ruta número 9, que es la vía Yacuiba – Santa Cruz

ver figura 53, la explotación para extracción de agregados es de terrenos que pueden ser de

2 maneras que son manualmente y con apoyo de maquinarias además que también presentan

en los terrenos mencionados vegetación y pasto que es aprovechado por la ganadería de la

zona.

Ubicación geográfica cantera Caiza y cantera Villa Montes.

Los agregados Naturales a utilizarse, proviene de la cantera "Villa Montes" ubicada en la

Ciudad de Villa Montes, Provincia de Gran Chaco, dicha cantera se encuentra ubicado al

Norte de la Ciudad de Yacuiba.

La ubicación geográfica de la Cantera Villa Montes es:

21°16'27.34" S

63°28'11.37" O

Figura 1. Ubicación geográfica cantera Villa Montes respecto a la ciudad de Yacuiba. Fuente: Elaboración propia.

En esta imagen podemos ver la proximidad de la cantera respecto a la ciudad Yacuiba.

Los agregados Naturales a utilizarse, proviene de la cantera "Caiza" ubicada en la Comunidad de Caiza Estación, Ciudad de Yacuiba, Provincia de Gran Chaco, dicha cantera se encuentra ubicado al Norte de la Ciudad de Yacuiba.

La ubicación geográfica de la Cantera Caiza es:

21°48'56.00" S

63°35'13.57" O

Figura 2. Ubicación geográfica cantera Caiza respecto a la ciudad de Yacuiba. Fuente: Elaboración propia.

En esta imagen podemos ver la proximidad de la cantera respecto a la ciudad Yacuiba.

ANEXO II. MÉTODO PARA EXTRAER Y PREPARAR MUESTRAS.

Equipos y materiales

Las herramientas utilizadas para muestreo incluyeron:

- Pala
- Bolsa de capacidad de 50 Kg.

Extracción y preparación de la muestra

a. Aspectos generales

Dado que el muestro es tan importante como los ensayos mismos, se tomó todas las precauciones necesarias para obtener las muestras más representativas del material que se va a analizar.

b. Tamaño de la muestra

i. Muestra de terreno.

La cantidad de muestra tomada en terreno fueron tal que representan la naturaleza y condiciones de los áridos.

ii. Muestra de laboratorio.

La cantidad de muestra necesaria para ser llevado a laboratorio fueron tomadas de acuerdo a la tabla 4.

Cantera Villa Montes, árido fino 10 Kg y árido grueso 25 Kg.

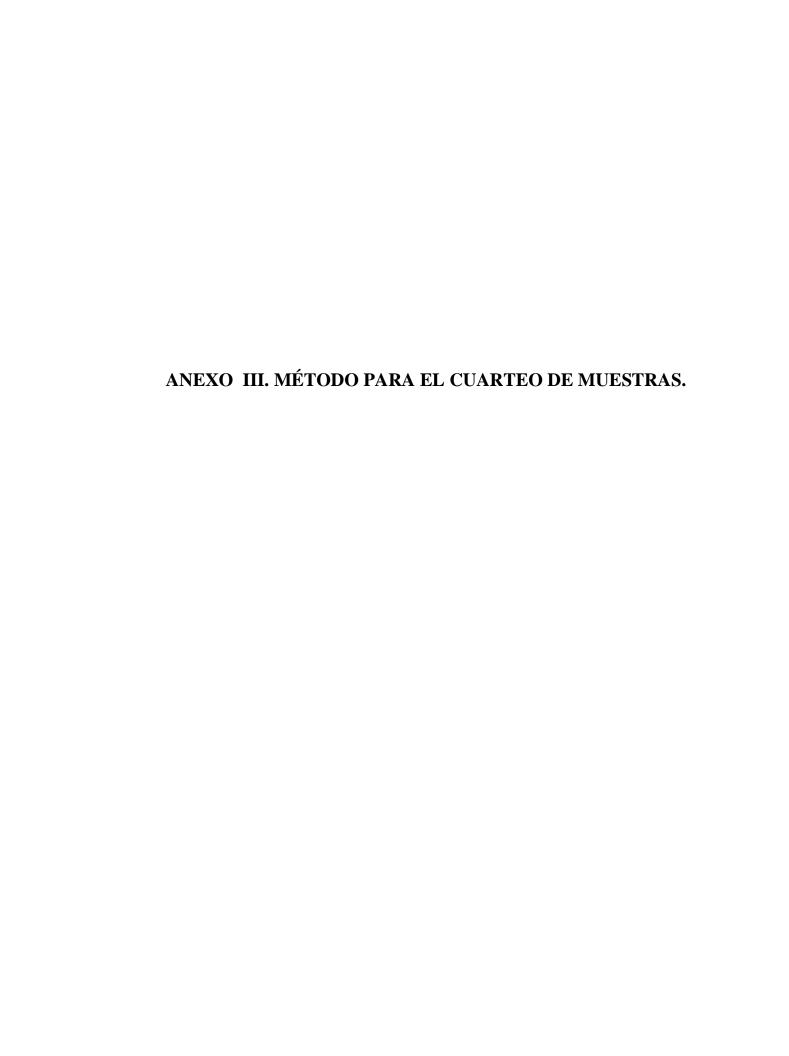
Cantera Caiza, árido fino 10 Kg y árido grueso 25 Kg.

Tabla 1. Tamaño de las muestras.

Tamaño máximo nominal de los áridos	Peso mínimo aproximado de las muestras (Kg)
Áridos	finos
2,36 mm	10
4,75 mm	10
Árido g	grueso
9,5 mm	10
12,5 mm	15
19 mm	25
25 mm	50
37,5 mm	75
50 mm	100

Fuente: Norma ASTM D-75.

Preparación de muestras


- c. Procedimiento de extracción.
- iii. Acopios de la cantera de Villa Montes, mediante un cargador frontal que se disponía se extrajo proporciones de distintos nivel y ubicación rodeando el acopio, evitando sacar material de zonas superior e inferior, con las proporciones extraídas se formó un pequeño acopio.
- iv. Acopio de la cantera de Caiza, en dicha cantera no se contaba con un cargador frontal, se extrajo las proporciones manualmente.

d. Mesclado.

Una vez acopiado el material, sobre una superficie horizontal y limpia, se mesclo con una pala las proporciones de áridos obtenidos del muestreo hasta obtener una muestra homogénea, asegurando la incorporación de todas las partículas más finas que los componen.

e. Transporte a laboratorio.

Las muestras fueron transportadas en bolsas, para evitar la pérdida de material, debidamente identificadas.

Objeto

Los diferentes tipos y tamaño de áridos requieren que la muestra sea representativa para los varios ensayos a los que será sometida. El material obtenido en terreno debe ser siempre mayor que la cantidad de la muestra requerida para el ensayo. (ABC Manual de Ensayos de Suelos y Materiales *Hormigón Volumen 4, p.1 H0102).

Procedimiento.

- Procedimiento reducción de muestra del agregado grueso.
 - a) Se vacío la muestra en un recipiente para ser introducido al cuarteador.
 - b) Vaciamos la muestra en el cuarteador.
 - c) Se separó el material correspondiente a uno de los recipientes del cuarteador.
 - d) Se repetido el procedimiento hasta obtener el tamaño de muestra requerida.

ANEXO IV. MÉTODO PARA TAMIZAR Y DETERMINAR LA GRANULOMETRÍA.

Equipo.

- Balanza
- Tamices
- Tamizador mecánico.
- Horno
- Accesorios
 Recipiente, brocha, cepillo metálico, cucharon.

Procedimiento

- Preparación de la muestra.
 - a) Para este ensayo se pesó 7 Kg en estado húmedo de árido fino y 35 Kg de agregado grueso, para ambas canteras.
 - b) La muestra a ser ensayada fue secada en horno durante un periodo de 24 hr, a una temperatura de 110±5 °C.
 - c) Se retiraron la muestra del horno y se dejaron enfriar por un periodo de 4 hr.
- Tamizado.
 - d) Se seleccionó el juego de tamices, armando en orden decreciente, para el árido fino la serie de tamices es 3/8, N°4, N8, N°16, N°30, N°50, N°100, bandeja y para el árido grueso la serie de tamices fue 1 ½", 1", ¾", ½",3/8", N°4.
 - e) La muestra para árido fino se pesó 3 Kg, y para árido grueso 7 Kg.
 - f) Se introdujo la muestra a ensayar en el tamiz de mayor abertura.
 - g) Seguidamente se empezó a agitar los tamices con ayuda del tamizador eléctrico durante un periodo de 15 min.
 - h) Se repitió los pasos b), c) y d) para las restantes muestras.
- Determinación de la masa.
 - Se determinó la masa final del material retenido en cada tamiz y del material que pasa el tamiz de menor abertura, recogido en el depósito. Se registró el peso con una precisión de 0,1 gr.

a) Análisis granulométrico árido fino.

i. Datos del ensayo.

Peso de la m	uestra (W_M) :	1.000 gr
T	Tamaño	Peso Retenido
Tamices	(mm)	(W_{Ret}) (gr)
3/8"	9,50	0,00
N°4	4,75	34,80
N°8	2,50	72,60
N°16	1,18	94,50
N°30	0,60	190,10
N°50	0,30	324,30
N°100	0,15	220,10
Base	0,00	63,10

Peso total del ensayo (W_{TM}) :

999,50

ii. Determinación del porcentaje de pérdida.

Este porcentaje de perdida no debe ser mayor qué 3%.

$$\%Perdida = \frac{Perdida}{W_M}$$

$$\%Perdida = \frac{0.5 \ gr}{999,50 \ gr}$$

$$%Perdida = 0.05\%$$

iii. Determinación del porcentaje retenido en un tamiz.

Tamiz Nº8

$$\%Ret = \frac{W_{acum}}{W_{M}}$$

$$\%Ret = \frac{34,80}{1000}$$

$$%Ret = 3,48$$

Sucesivamente se aplicará para los restantes tamices.

iv. Determinación del porcentaje que pasa del total en un tamiz.

Tamiz Nº8

$$\%Que\ pasa = 100 - \%Ret$$

 $\%Que\ pasa = 100 - 3,48$
 $\%Que\ pasa = 96,52\%$

Sucesivamente se aplicará para los restantes tamices.

v. Determinación del módulo de finura.

$$M.F. = \frac{\sum \% Retenido \ de \ los \ tamices}{100}$$

$$M.F. = \frac{3,48 + 10,74 + 20,19 + 39,20 + 71,63 + 93,64}{100}$$

$$M.F. = 2.38\%$$

vi. Resultado del análisis granulométrico

Peso (gr.):	1.000				
T	Tamaño	Peso Retenido	Ret. Acum.	0/ D-4	% Que Pasa
Tamices	(mm)	(gr)	(gr)	% Retenido	del Total
3/8"	9,50	0,00	0,00	0,00	100,00
N°4	4,75	34,80	34,80	3,48	96,52
N°8	2,50	72,60	107,40	10,74	89,26
Nº16	1,18	94,50	201,90	20,19	79,81
N°30	0,60	190,10	392,00	39,20	60,80
N°50	0,30	324,30	716,30	71,63	28,37
N°100	0,15	220,10	936,40	93,64	6,36
Base	0,00	63,10	999,50		_

Suma (gr)= 999,50
Perdida (gr)= 0,50

Porcentaje de perdida= 0,05%
Módulo de finura: 2,39

Tamaño máximo nominal: 4,75 mm

b) Análisis granulométrico de árido grueso.

vii. Datos del ensayo.

Peso de la n	nuestra (gr.):	7.000
Т	Tamaño	Peso Retenido
Tamices	(mm)	(gr)
2"	50,00	0,00
1 1/2"	37,50	0,00
1"	25,00	0,00
3/4"	19,00	630,10
1/2"	12,50	4478,80
3/8"	9,50	1311,10
N°4	4,75	558,20
Base	0,00	12,00

viii. Determinación del porcentaje de pérdida.

Este porcentaje de perdida no debe ser mayor qué 0,5%.

$$\%Perdida = rac{Perdida}{W_M}$$
 $\%Perdida = rac{9.8 \ gr}{7000 \ gr}$
 $\%Perdida = 0.14 \ \%$

ix. Determinación del porcentaje retenido en un tamiz.

Tamiz 3/4"

$$\%Ret = \frac{W_{acum}}{W_{M}}$$
 $\%Ret = \frac{630,10 \ gr}{7000 \ gr}$
 $\%Ret = 9 \ \%$

Sucesivamente se aplicará para los restantes tamices.

x. Determinación del porcentaje que pasa del total en un tamiz.

Tamiz 3/4"

$$\%$$
Que pasa = $100 - \%$ Ret
 $\%$ Que pasa = $100 \% - 9 \%$

Sucesivamente se aplicará para los restantes tamices.

xi. Determinación del tamaño máximo del agregado grueso.

El tamaño máximo es el tamiz de mayor abertura que todas las partículas pasan.

$$T.M. = 1$$
"

xii. Determinación del tamaño máximo nominal del agregado grueso.

El tamaño máximo nominal es el tamiz inmediatamente menor que el tamiz de tamaño máximo o aquel tamiz donde se retiene el 15 % de material.

$$T.M. = 3/4$$
"

xiii. Resultado del análisis granulométrico.

Peso (gr.):	7.000				
T	Tamaño	Peso Retenido.	Ret. Acum	0/ D-4	% Que Pasa
Tamices	(mm)	(gr)	(gr)	% Retenido	del Total
2"	50,00	0,00	0,00	0,00	100,00
1 1/2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	0,00	0,00	0,00	100,00
3/4"	19,00	630,10	630,10	9,00	91,00
1/2"	12,50	4478,80	5108,90	72,98	27,02
3/8"	9,50	1311,10	6420,00	91,71	8,29
N°4	4,75	558,20	6978,20	99,69	0,31
Base	0,00	12,00	6990,20		_

Suma (gr)= 6990,20 Perdida (gr)= 9,80

Porcentaje de perdida=

Tamaño máximo:

1"

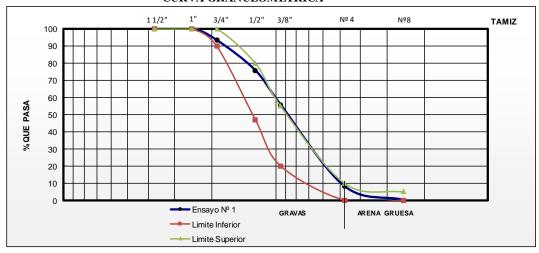
Tamaño máximo nominal: 3/4"

GRANULOMETRÍA AGREGADO GRUESO CANTERA CAIZA.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEI	L MODULO DE ELASTICIDAD I	ESTATICO DEL		
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A L	A COMPRESION DE 21 MPa, P	RODUCIDOS CON		
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	1		


Peso (gr.) :	5,000						
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa	Especifi	caciones
Tannees	(mm)	(gr)	(gr)	70 Ket	del Total	ASTM	C-136
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	337.30	337.30	6.75	93.25	90	100
1/2"	12.50	881.10	1218.40	24.37	75.63	47.00	80.00
3/8"	9.50	999.60	2218.00	44.36	55.64	20	55
N°4	4.75	2374.40	4592.40	91.85	8.15	0	10
N°8	2.50	400.20	4992.60	99.85	0.15	0	5
Base	0.00	5.80	4998.40				

 Suma=
 4998.40

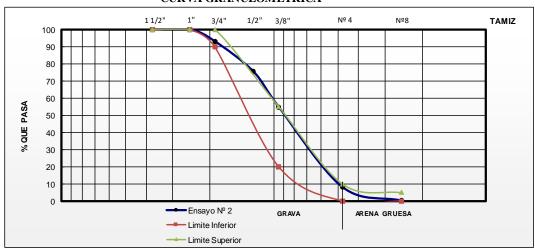
 Perdidad=
 1.60

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEI	L MODULO DE ELASTICIDAD ESTATICO DEL			
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo: Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo: Agosto de 2018			
	ASTM C-136, H0104; ASTM C-702, H0102.	Ensavo N°: 2			


Peso (gr.) :	5,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	caciones [C-136
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	347.80	347.80	6.96	93.04	90	100
1/2"	12.50	880.20	1228.00	24.56	75.44	-	-
3/8"	9.50	1029.10	2257.10	45.14	54.86	20	55
N°4	4.75	2335.60	4592.70	91.85	8.15	0	10
N°8	2.50	396.20	4988.90	99.78	0.22	0	5
Base	0.00	5.10	4994.00				

 Suma=
 4994.00

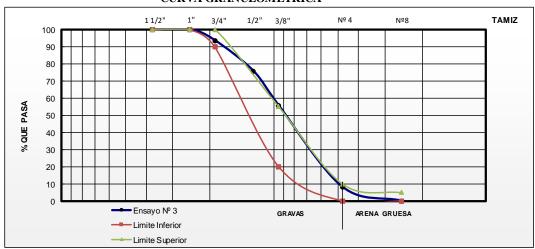
 Perdidad=
 6.00

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEI	MODULO DE ELASTICIDAD	ESTATICO DEL		
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	3		


Peso (gr.):	5,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	caciones C-136
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	320.20	320.20	6.40	93.60	90	100
1/2"	12.50	891.20	1211.40	24.23	75.77	-	-
3/8"	9.50	1002.20	2213.60	44.27	55.73	20	55
N°4	4.75	2374.40	4588.00	91.76	8.24	0	10
N°8	2.50	404.40	4992.40	99.85	0.15	0	5
Base	0.00	6.80	4999.20				

 Suma=
 4999.20

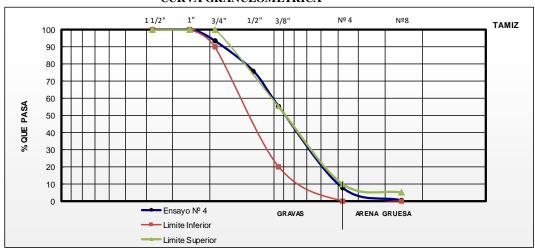
 Perdidad=
 0.80

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEI	L MODULO DE ELASTICIDAD I	ESTATICO DEL		
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A L	A COMPRESION DE 21 MPa, P	RODUCIDOS CON		
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	4		


Peso (gr.) :	5,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	caciones C-136
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	337.30	337.30	6.75	93.25	90	100
1/2"	12.50	881.10	1218.40	24.37	75.63	-	-
3/8"	9.50	1029.40	2247.80	44.96	55.04	20	55
N°4	4.75	2374.40	4622.20	92.44	7.56	0	10
N°8	2.50	365.30	4987.50	99.75	0.25	0	5
Base	0.00	9.20	4996.70				

 Suma=
 4996.70

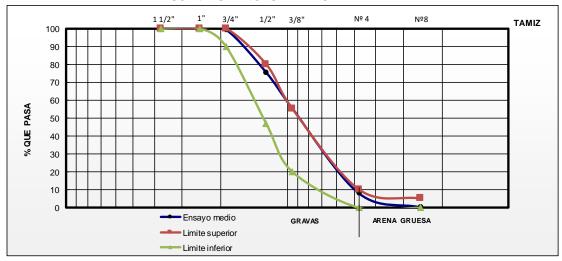
 Perdidad=
 3.30

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

		"DETERMINACION DE LA ECUACION DEL M	MODULO DE ELASTICIDAD ESTATICO DEL
	Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A I	A COMPRESION DE 21 MPa, PRODUCIDOS
		CON AGREGADOS DE LA	CIUDAD DE YACUIBA"
Ī	Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo: Agosto de 2018
	Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo: Agosto de 2018
	Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°: 5


Peso (gr.) :	5,000						
Tamices	Tamaño	Peso Ret.	Ret. Acum	9/ Dot	% Que Pasa	Especifica	ciones
Tanuces	(mm)	(gr)	(gr) % Ret		del Total	ASTM (C-136
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	330.40	330.40	6.61	99.31	90	100
1/2"	12.50	919.40	1249.80	25.00	75.49	-	-
3/8"	9.50	991.20	2241.00	44.82	55.29	20	55
N°4	4.75	2365.40	4606.40	92.13	8.00	0	10
N°8	2.50	383.40	4989.80	99.80	0.19	0	5
Base	0.00	7.10	4996.90				

 Suma=
 4996.90

 Perdidad=
 3.10

 Tamaño maximo:
 1"

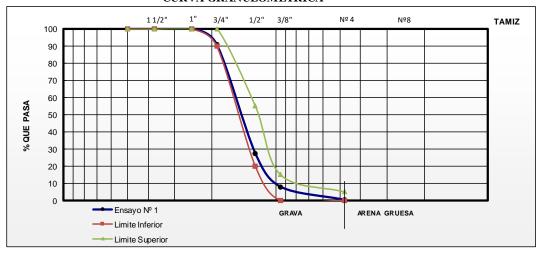
 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA AGREGADO GRUESO CANTERA VILLA MONTES.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MO	DULO DE ELASTICIDAD ESTA	TICO DEL			
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA	A COMPRESION DE 21 MPa, PF	RODUCIDOS CON			
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	1			


Peso (gr.) :	7,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	Especifi ASTM	caciones C-136
2"	50.00	0.00	0.00	0.00	100.00	100.00	100
1 1/2"	37.50	0.00	0.00	0.00	100.00	100.00	100
1"	25.00	0.00	0.00	0.00	100.00	100.00	100
3/4"	19.00	645.30	645.30	9.22	90.78	90	100
1/2"	12.50	4447.40	5092.70	72.75	27.25	20	55
3/8"	9.50	1363.40	6456.10	92.23	7.77	0.00	15
N°4	4.75	531.00	6987.10	99.82	0.18	0.00	5
Base	0.00	11.00	6998.10				

 Suma=
 6998.10

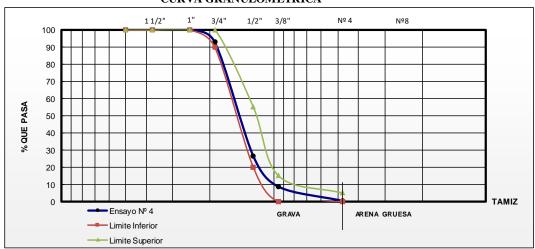
 Perdidad=
 1.90

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	cto: HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS C					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	2			


Peso (gr.):	7,000						
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa del Total	•	caciones C-136
2"	(mm) 50.00	(gr) 0.00	(gr) 0.00	0.00	100.00	100	100
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	505.70	505.70	7.22	92.78	90	100
1/2"	12.50	4657.40	5163.10	73.76	26.24	20	55
3/8"	9.50	1247.20	6410.30	91.58	8.42	0	15
N°4	4.75	574.90	6985.20	99.79	0.21	0	5
Base	0.00	7.80	6993.00				

 Suma=
 6993.00

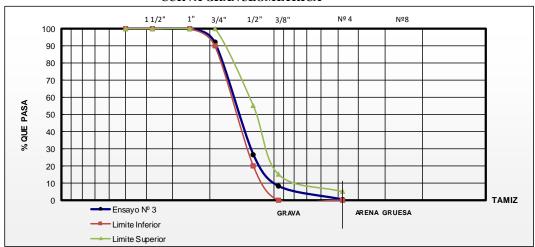
 Perdidad=
 7.00

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CO					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	3			


Peso (gr.):	7,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	caciones C-136
2"	50.00	0.00	0.00	0.00	100.00	100	100
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	561.50	561.50	8.02	91.98	90	100
1/2"	12.50	4579.60	5141.10	73.44	26.56	20	55
3/8"	9.50	1291.50	6432.60	91.89	8.11	0	15
N°4	4.75	547.50	6980.10	99.72	0.28	0	5
Base	0.00	9.50	6989.60				

 Suma=
 6989.60

 Perdidad=
 10.40

 Tamaño maximo:
 1"

 Tamaño maximo nominal:
 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

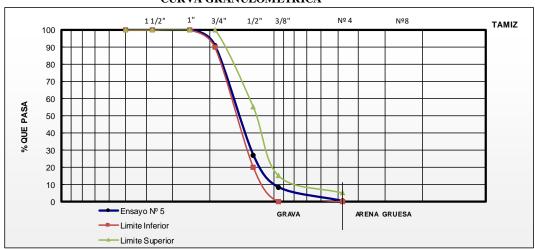
	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	oyecto: HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	4			

Peso (gr.):	7,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	•	caciones I C-136
2"	50.00	0.00	0.00	0.00	100.00	100	100
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	580.10	580.10	8.29	91.71	90	100
1/2"	12.50	4579.20	5159.30	73.70	26.30	20	55
3/8"	9.50	1262.10	6421.40	91.73	8.27	0	15
N°4	4.75	561.30	6982.70	99.75	0.25	0	5
Base	0.00	10.00	6992.70				

Suma= 6992.70
Perdidad= 7.30
Tamaño maximo: 1"
Tamaño maximo nominal: 3/4"

GRANULOMETRÍA - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL						
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA	A COMPRESION DE 21 MPa, PF	RODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"						
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018				
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018				
Referencia:	ASTM C-136, H0104; ASTM C-702, H0102.	Ensayo N°:	5				


Peso (gr.):	7,000						
Tamices	Tamaño	Peso Ret.	Ret. Acum	% Ret	% Que Pasa	•	caciones
	(mm)	(gr)	(gr)		del Total	ASTM	C-136
2"	50.00	0.00	0.00	0.00	100.00	100	100
1 1/2"	37.50	0.00	0.00	0.00	100.00	100	100
1"	25.00	0.00	0.00	0.00	100.00	100	100
3/4"	19.00	580.10	580.10	8.29	91.00	90	100
1/2"	12.50	4579.20	5159.30	73.70	27.02	20	55
3/8"	9.50	1262.10	6421.40	91.73	8.29	0	15
N°4	4.75	561.30	6982.70	99.75	0.31	0	5
Base	0.00	10.00	6992.70				

 Suma=
 6992.70

 Perdidad=
 7.30

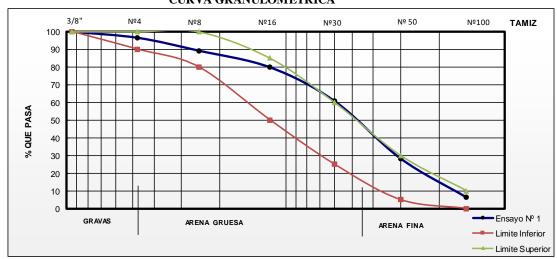
 Tamaño maximo:
 1"

Tamaño maximo nominal: 3/4"

GRANULOMETRIA AGREDADO FINO CANTERA CAIZA.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON

GRANULOMETRÍA - AGREGADO FINO

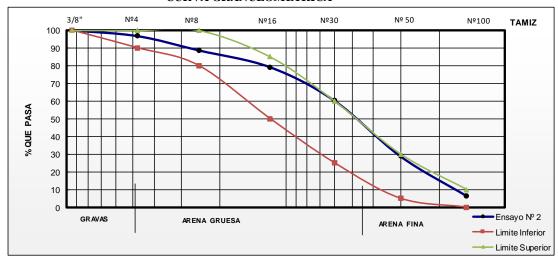

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	1			

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	icaciones 4 C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	34.80	34.80	3.48	96.52	90	100
N°8	2.50	72.60	107.40	10.74	89.26	80	100
N°16	1.18	94.50	201.90	20.19	79.81	50	85
N°30	0.60	190.10	392.00	39.20	60.80	25	60
N°50	0.30	324.30	716.30	71.63	28.37	5	30
N°100	0.15	220.10	936.40	93.64	6.36	0	10
Base	0.00	63.10	999.50				

Suma= 999.50
Perdidad= 0.50

Modulo de finura: 2.39

Tamaño maximo nominal: 4,75 mm

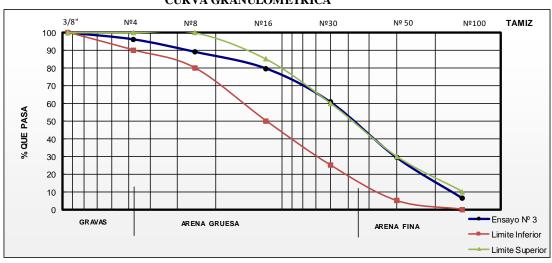

GRANULOMETRÍA - AGREGADO FINO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	2		

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	icaciones A C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	33.20	33.20	3.32	96.68	90	100
N°8	2.50	80.30	113.50	11.35	88.65	80	100
N°16	1.18	95.10	208.60	20.86	79.14	50	85
N°30	0.60	189.20	397.80	39.78	60.22	25	60
N°50	0.30	313.20	711.00	71.10	28.90	5	30
N°100	0.15	223.10	934.10	93.41	6.59	0	10
Base	0.00	65.70	999.80				

Suma= 999.80 Perdidad= 0.20

Modulo de finura: 2.40
Tamaño maximo nominal: 4,75 mm

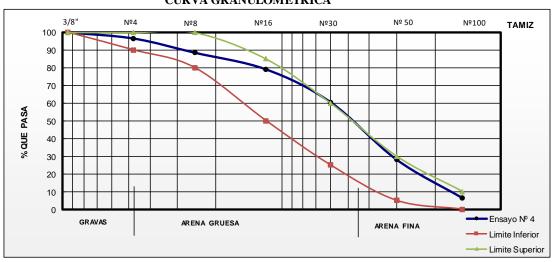

GRANULOMETRÍA - AGREGADO FINO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
-	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	3		

Peso (gr.) :	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	icaciones A C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	38.70	38.70	3.87	96.13	90	100
N°8	2.50	70.20	108.90	10.89	89.11	80	100
N°16	1.18	94.50	203.40	20.34	79.66	50	85
N°30	0.60	190.10	393.50	39.35	60.65	25	60
N°50	0.30	312.20	705.70	70.57	29.43	5	30
N°100	0.15	231.10	936.80	93.68	6.32	0	10
Base	0.00	63.10	999.90				

Suma= 999.90 Perdidad= 0.10

Modulo de finura: 2.39
Tamaño maximo nominal: 4,75 mm

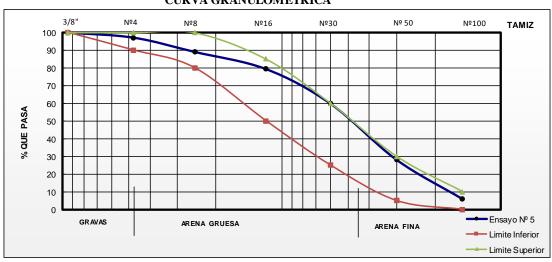

GRANULOMETRÍA - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018			
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	4			

Peso (gr.) :	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	icaciones 4 C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	34.80	34.80	3.48	96.52	90	100
N°8	2.50	80.30	115.10	11.51	88.49	80	100
N°16	1.18	94.50	209.60	20.96	79.04	50	85
N°30	0.60	185.20	394.80	39.48	60.52	25	60
N°50	0.30	324.30	719.10	71.91	28.09	5	30
N°100	0.15	218.20	937.30	93.73	6.27	0	10
Base	0.00	61.20	998.50				

Suma= 998.50 Perdidad= 1.50

Modulo de finura: 2.41
Tamaño maximo nominal: 4,75 mm


GRANULOMETRÍA - AGREGADO FINO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	5		

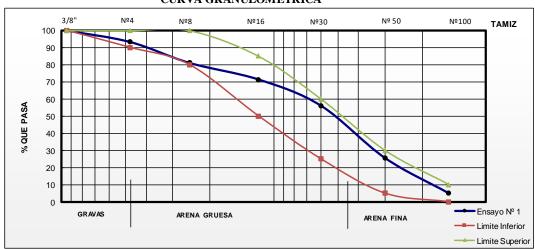
Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	_	icaciones 4 C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	29.10	29.10	2.91	97.09	90	100
N°8	2.50	80.30	109.40	10.94	89.06	80	100
N°16	1.18	96.90	206.30	20.63	79.37	50	85
N°30	0.60	194.70	401.00	40.10	59.90	25	60
N°50	0.30	315.80	716.80	71.68	28.32	5	30
N°100	0.15	221.40	938.20	93.82	6.18	0	10
Base	0.00	61.20	999.40				

Suma= 999.40 Perdidad= 0.60

Modulo de finura: 2.40
Tamaño maximo nominal: 4,75 mm

GRANULOMETRIA AGREDADO FINO CANTERA VILLA MONTES.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON


GRANULOMETRÍA - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia	: Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia	: ASTM C-136, H0104; ASTM C-33	Ensayo N°:	1			

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	•	caciones 1 C-33
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	67.60	67.60	6.76	93.24	90	100
N°8	2.50	121.50	189.10	18.91	81.09	80	100
N°16	1.18	96.80	285.90	28.59	71.41	50	85
N°30	0.60	152.40	438.30	43.83	56.17	25	60
N°50	0.30	304.10	742.40	74.24	25.76	5	30
N°100	0.15	206.10	948.50	94.85	5.15	0	10
Base	0.00	50.20	998.70				

Suma= 998.70
Perdidad= 1.30

Modulo de finura: 2.67
Tamaño maximo nominal: 4,75 mm

GRANULOMETRÍA - AGREGADO FINO

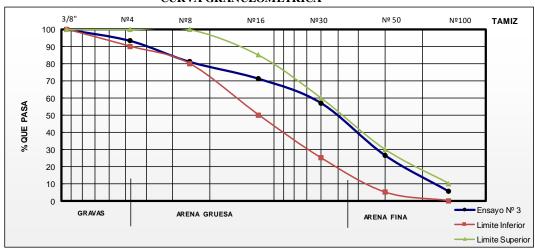
	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	2			

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	Especificaciones ASTM C-33	
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	60.32	60.32	6.03	93.97	90	100
N°8	2.50	123.20	183.52	18.35	81.65	80	100
N°16	1.18	95.30	278.82	27.88	72.12	50	85
N°30	0.60	148.30	427.12	42.71	57.29	25	60
N°50	0.30	314.30	741.42	74.14	25.86	5	30
N°100	0.15	210.00	951.42	95.14	4.86	0	10
Base	0.00	48.50	999.92				

Suma= 999.92 Perdidad= 0.08

Modulo de finura: 2.64

Tamaño maximo nominal: 4,75 mm


GRANULOMETRÍA - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MO	DULO DE ELASTICIDAD ESTA	ATICO DEL		
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON				
	AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia:	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia:	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	3		

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	Especificaciones ASTM C-33	
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	67.60	67.60	6.76	93.24	90	100
N°8	2.50	121.50	189.10	18.91	81.09	80	100
N°16	1.18	99.10	288.20	28.82	71.18	50	85
N°30	0.60	141.20	429.40	42.94	57.06	25	60
N°50	0.30	304.10	733.50	73.35	26.65	5	30
N°100	0.15	211.10	944.60	94.46	5.54	0	10
Base	0.00	47.80	992.40				

Suma= 992.40 Perdidad= 7.60

Modulo de finura: 2.65
Tamaño maximo nominal: 4,75 mm

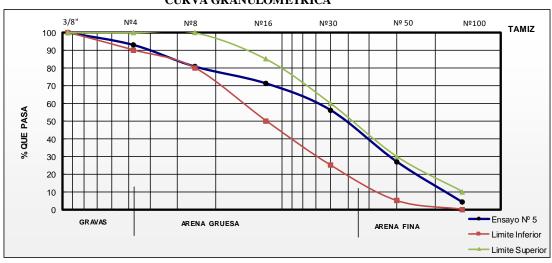

GRANULOMETRÍA - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	4			

Peso (gr.) :	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	Especificaciones ASTM C-33	
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	54.20	54.20	5.42	94.58	90	100
N°8	2.50	130.40	184.60	18.46	81.54	80	100
N°16	1.18	96.80	281.40	28.14	71.86	50	85
N°30	0.60	155.60	437.00	43.70	56.30	25	60
N°50	0.30	301.00	738.00	73.80	26.20	5	30
N°100	0.15	220.10	958.10	95.81	4.19	0	10
Base	0.00	43.20	1001.30				

Suma= 1001.30 Perdidad= -1.30

Modulo de finura: 2.65
Tamaño maximo nominal: 4,75 mm


GRANULOMETRÍA - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL					
Proyecto:	HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON					
	AGREGADOS DE LA CIUDAD DE YACUIBA"					
Procedencia	Rio Pilcomayo: Villa Montes	Fecha de muestreo:	Agosto de 2018			
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018			
Referencia	ASTM C-136, H0104; ASTM C-33	Ensayo N°:	5			

Peso (gr.):	1,000						
Tamices	Tamaño (mm)	Peso Ret. (gr)	Ret. Acum (gr)	% Ret	% Que Pasa del Total	Especificaciones ASTM C-33	
3/8"	9.50	0.00	0.00	0.00	100.00	100	100
N°4	4.75	70.70	70.70	7.07	92.93	90	100
N°8	2.50	121.50	192.20	19.22	80.78	80	100
N°16	1.18	95.80	288.00	28.80	71.20	50	85
N°30	0.60	150.30	438.30	43.83	56.17	25	60
N°50	0.30	290.60	728.90	72.89	27.11	5	30
N°100	0.15	230.20	959.10	95.91	4.09	0	10
Base	0.00	40.00	999.10				

Suma= 999.10 Perdidad= 0.90

Modulo de finura: 2.68
Tamaño maximo nominal: 4,75 mm

ANEXO V. MÉTODO PARA DETERMINAR EL MATERIAL FINO MENOR QUE 0,075MM.

Equipo

- Balanza.
- Tamices N°16 y N°200
- Recipiente para lavar.
- Horno.
- Accesorios. Cepillo metálico, recipiente para pesaje y secado.

Procedimiento.

- a) La muestra de ensayo se secó en un horno a una temperatura constante de 100±5 °C.
- b) Después de secar y pesar la muestra de ensayo se colocó en el recipiente y se agregó la cantidad de agua necesaria para cubrir el material. El contenido del recipiente se agito vigorosamente y el agua de lavado se vacío inmediatamente sobre la serie de tamices (Nº16 y Nº200) arreglados de modo que el tamiz Nº16 se encuentre en la parte superior.
- c) La agitación fue lo suficiente vigorosa para obtener un completa separación de las partículas gruesas de aquellas que son más finas que el tamiz N°200, el material fino en suspensión fue removido por decantación de las partículas gruesas de la muestra. La operación se repitió hasta que el agua de lavado se vea clara.
- d) Todo el material retenido en los dos tamices se devuelve a la muestra lavada. El agregado lavado se secó en horno a una temperatura de 110±5 °C.

Determinación del porcentaje del material que pasa el tamiz Nº200.

i. Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	490,7	gr

ii. Cálculo del porcentaje del material que pasa el tamiz $N^{\circ}200$ (A(%)).

$$A(\%) = \frac{B - C}{B}$$

$$A(\%) = \frac{500 \ gr - 490.7 \ gr}{490.7 \ gr}$$

$$A(\%) = 1,86 \ \%$$

DETERMINACIÓN DEL MATERIAL FINO MENOR QUE 0.075 MM. CANTERA CAIZA.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

2.1 DETERMINACION DEL MATERIAL FINO MENOR QUE 0.075 mm

	"DETERMINACION DE LA ECUACION DEL MO	DULO DE ELASTICIDAD ESTATICO	
Proyecto: DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 2			
	PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:	
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia:	ASTM C-117, H0106.	Ensayo Nº: 1 - 5	

Ensayo Nº: 1

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	113.2	gr
Е	Masa del recipiente + masa inicial de la muestra de ensayo seca	613.2	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	603.9	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	490.7	gr
A	Contenido de material fino inferior que 0,075 mm	1.86	%

Ensayo Nº: 2

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	113.8	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	613.8	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	604.3	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
C	Masa de la muestra de ensayo lavada y seca	490.5	gr
A	Contenido de material fino inferior que 0,075 mm	1.9	%

Ensayo Nº: 3

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	111.4	gr
Е	Masa del recipiente + masa inicial de la muestra de ensayo seca	611.4	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	601.4	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	490	gr
A	Contenido de material fino inferior que 0,075 mm	2	%

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	112.3	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	612.3	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	603.2	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
C	Masa de la muestra de ensayo lavada y seca	490.9	gr
A	Contenido de material fino inferior que 0,075 mm	1.82	%

DETERMINACION DEL MATERIAL FINO MENOR QUE 0.075 mm

Proyecto:	"DETERMINACION DE LA ECUACION DEL MO DEL HORMIGON EN BASE A SU RESISTENCIA PRODUCIDOS CON AGREGADOS DE LA CIUD	A LA COMPRESION DE 21 MPa,
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:
Referencia:	ASTM C-117, H0106.	Ensayo N°: 5

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	110.8	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	610.8	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	601.8	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	491	gr
A	Contenido de material fino inferior que 0,075 mm	1.8	%

2.1.2 RESULTADOS DE LOS ENSAYOS

		Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
		%	%
Árido grueso ^B			
	Precisión para un solo operador	0.1	0.28
	Precisión multilaboratorio	0.22	0.62
Árido fino ^C			
	Precisión para un solo operador	0.15	0.43
	Precisión multilaboratorio	0.29	0.82

 $^{^{\}rm A}$ Estos números representan los limites (1s) y (d2s), como se describen en la norma ASTM C 670

C Las estimaciones de precisión se basan en áridos finos que tienen entre 1.0% a 3.0% de material que el tamiz de 75 μm (No. 200)

Ensayo	Porcentaje (%)
1	1.86
2	1.9
3	2
4	1.82
5	1.8

2.1.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

2.1.3.1 PRECISIÓN

Descripcion	Cantidad (%)
Promedio	1.88
Mayor	2.00
Menor	1.80
Rango	0.20
Desviacion estándar	0.08

2.1.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

^B La estimación de precisión se basa en áridos que tienen un tamaño máximo nominal de 19.0 mm de 1,5% de material más fino que el tamiz de 75 μm (No. 200)

DETERMINACIÓN DEL MATERIAL FINO MENOR QUE 0.075 MM. CANTERA VILLA MONTES.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

2.2 DETERMINACION DEL MATERIAL FINO MENOR QUE 0.075 mm

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ES		DULO DE ELASTICIDAD ESTATICO	
Proyecto:	Proyecto: DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa,		
	PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia:	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia:	ASTM C-117, H0106.	Ensayo Nº: 1 - 4	

Ensayo Nº: 1

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	113.2	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	613.2	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	577.7	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	464.5	gr
A	Contenido de material fino inferior que 0,075 mm	7.1	%

Ensayo Nº: 2

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	113.8	gr
Е	Masa del recipiente + masa inicial de la muestra de ensayo seca	613.8	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	577.8	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	464	gr
A	Contenido de material fino inferior que 0,075 mm	7.2	%

Ensayo Nº: 3

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	111.4	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	611.4	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	576.3	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	464.9	gr
A	Contenido de material fino inferior que 0,075 mm	7.02	%

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	112.3	gr
E	Masa del recipiente + masa inicial de la muestra de ensayo seca	612.3	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	576.1	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	463.8	gr
A	Contenido de material fino inferior que 0,075 mm	7.24	%

DETERMINACION DEL MATERIAL FINO MENOR QUE 0.075 mm

Proyecto:	"DETERMINACION DE LA ECUACION DEL MO DEL HORMIGON EN BASE A SU RESISTENCIA PRODUCIDOS CON AGREGADOS DE LA CIUD	A LA COMPRESION DE 21 MPa,
Procedencia:	Rio Caiza: Yacuiba	Fecha de muestreo:
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:
Referencia:	ASTM C-117, H0106.	Ensayo N°: 5

Accinacion	Descripcion	Cantidad	Unidad
D	Masa del recipiente:	110.8	gr
Е	Masa del recipiente + masa inicial de la muestra de ensayo seca	610.8	gr
F	Masa del recipiente + masa de la muestra de ensayo lavada y seca	574.9	gr
В	Masa inicial de la muestra de ensayo seca	500	gr
С	Masa de la muestra de ensayo lavada y seca	464.1	gr
A	Contenido de material fino inferior que 0,075 mm	7.18	%

2.2 RESULTADOS DE ENSAYOS

		Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
		%	%
Árido grueso ^B			
	Precisión para un solo operador	0.1	0.28
	Precisión multilaboratorio	0.22	0.62
Árido fino ^C			
	Precisión para un solo operador	0.15	0.43
	Precisión multilaboratorio	0.29	0.82

^A Estos números representan los limites (1s) y (d2s), como se describen en la norma ASTM C 570

^C Las estimaciones de precisión se basan en áridos finos que tienen entre 1.0% a 3.0% de material que el tamiz de 75 µm (No. 200)

Ensayo	Porcentaje (%)
1	7.1
2	7.2
3	7.02
4	7.24
5	7.18

2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

2.3.1 PRECISIÓN

Descripcion	Cantidad (%)
Promedio	7.15
Mayor	7.24
Menor	7.02
Rango	0.22
Desviacion estándar	0.09

2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

^B La estimación de precisión se basa en áridos que tienen un tamaño máximo nominal de 19.0 mm de 1,5% de material más fino que el tamiz de 75 μm (No. 200)

ANEXO VI. CONTENIDO TOTAL DE AGUA DE LOS ÁRIDOS POR SECADO.

Equipos.

- Áridos finos, gruesos.
- Balanza.
- Horno.
- Recipientes metálicos.

Procedimientos.

- a. Determinamos la masa de la muestra con una aproximación de 0.1%.
- b. Pesamos y registramos la masa del recipiente en que se va a colocar el árido.
- c. Registramos el peso de la muestra en estado natural, e identificar la muestra.
- d. Ingresar el árido contenido en el recipiente al horno y dejamos secar durante un lapso de 24 horas.
- e. Retiramos la muestra del horno una vez transcurrida las 24 horas y registramos la masa del recipiente más el árido seco.
- f. Calculamos y registramos el contenido total de humedad.

Cálculo del contenido de humedad.

i. Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
m_h	Masa del árido húmedo	500,00	gr
ms	Masa del árido seco	490,40	gr

ii. Cálculo de la cantidad de agua en el agregado.

$$m_a = m_h - m_s$$

 $m_a = 500 - 490,4$
 $m_a = 9,60 gr.$

iii. Contenido de humedad total en los áridos w (%).

$$w(\%) = \frac{m_a}{m_s} x 100\%$$

$$w(\%) = \frac{9,60}{490,4} x 100\%$$

$$w(\%) = 1,96\%$$

CONTENIDO DE HUMEDAD AGREGADO GRUESO CANTERA CAIZA.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

CONTENIDO DE HUMEDAD - AGREGADO FINO.

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAS BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRO CIUDAD DE YACUIBA"		
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia	: ASTM C-127, H019	Ensavo Nº:	1 - 5.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	492.60	gr
m _a	Masa del agua	7.40	
w(%)	Porcentaje de desgaste	1.50	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	491.90	gr
m _a	Masa del agua	8.10	
w(%)	Contenido de humedad	1.65	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	492.12	gr
m _a	Masa del agua	7.88	
w(%)	Contenido de humedad	1.60	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	492.20	gr
m _a	Masa del agua	7.80	
w(%)	Contenido de humedad	1.58	%

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	493.20	gr
m _a	Masa del agua	6.80	
w(%)	Contenido de humedad	1.38	%

CONTENIDO DE HUMEDAD - AGREGADO FINO.

P	Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAS BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRO CIUDAD DE YACUIBA"		
P	Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	
	Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
	Referencia:	ASTM C-127, H019.	Ensayo N°:	-

3.2.2 RESULTADOS DE ENSAYOS

	Desviación	Rango ace ptable
	estándar	para dos
	(1s) ^A	resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % ^B	0.11	0.31

Engano	Contenido de
Ensayo	humedad
1	1.50
2	1.65
3	1.60
4	1.58
5	1.38

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Contenido de
	humedad
Promedio	1.54
Mayor	1.65
Menor	1.38
Rango	0.268
Desviacion estándar	0.105

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

CONTENIDO DE HUMEDAD AGREGADO FINO CANTERA CAIZA.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

CONTENIDO DE HUMEDAD - AGREGADO GRUESO

,	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAS BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRO CIUDAD DE YACUIBA"				
Procedencia	Rio Caiza. Yacuiba	Fecha de muestreo:			
Solicitante: Claudio Albaro Medrano Aguilera Fecha de ensayo:					
Referencia	: ASTM C-127, H019.	Ensavo N°:	1 - 5.		

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	482.90	gr
m _a	Masa del agua	17.10	
w(%)	Contenido de humedad	3.54	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	483.20	gr
m _a	Masa del agua	16.80	
w(%)	Contenido de humedad	3.48	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	483.60	gr
m _a	Masa del agua	16.40	
w(%)	Contenido de humedad	3.39	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	482.80	gr
m _a	Masa del agua	17.20	
w(%)	Contenido de humedad	3.56	%

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	481.80	gr
m _a	Masa del agua	18.20	
w(%)	Contenido de humedad	3.78	%

CONTENIDO DE HUMEDAD - AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAS	TICIDAD ESTATICO DE	EL HORMIGON EN
Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGAI			
	CIUDAD DE YACUIBA"		
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia	: ASTM C-127, H019.	Ensavo N°:	-

3.2.2 RESULTADOS DE ENSAYOS

Precision para un solo operador:	Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % ^B	0.11	0.31

Engana	Contenido de
Ensayo	humedad
1	3.54
2	3.48
3	3.39
4	3.56
5	3.78

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Contenido de humedad
Promedio	3.55
Mayor	3.78
Menor	3.39
Rango	0.386
Desviacion estándar	0.144

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

CONTENIDO DE HUMEDAD AGREGADO FINO CANTERA VILLA MONTES.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

CONTENIDO DE HUMEDAD - AGREGADO FINO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAST BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PROI CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo	Fecha de muestreo:	
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia	ASTM C-127, H019.	Ensavo N°:	1 - 3.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	490.40	gr
m _a	Masa del agua	9.60	
w(%)	Contenido de humedad	1.96	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	491.90	gr
m _a	Masa del agua	8.10	
w(%)	Contenido de humedad	1.65	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	491.00	gr
m _a	Masa del agua	9.00	
w(%)	Contenido de humedad	1.83	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
$m_{\rm s}$	Masa del arido seco	490.40	gr
m _a	Masa del agua	9.60	
w(%)	Contenido de humedad	1.96	%

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	491.90	gr
m _a	Masa del agua	8.10	
w(%)	Contenido de humedad	1.65	%

CONTENIDO DE HUMEDAD - AGREGADO FINO

1	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo	Fecha de muestreo:	
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia	ASTM C-127, H019.	Ensayo N°:	-

3.2.2 RESULTADOS DE ENSAYOS

	Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % B	0.11	0.31

Engaria	Contenido de
Ensayo	humedad
1	1.96
2	1.65
3	1.83
4	1.96
5	1.65

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Contenido de
	humedad
Promedio	1.81
Mayor	1.96
Menor	1.65
Rango	0.311
Desviacion estándar	0.156

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

CONTENIDO DE HUMEDAD AGREGADO GRUESO CANTERA VILLA MONTES.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

CONTENIDO DE HUMEDAD - AGREGADO FINO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAST BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PROI CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo	Fecha de muestreo:	
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	
Referencia	ASTM C-127, H019.	Ensayo N°:	1 - 5.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m_s	Masa del arido seco	494.50	gr
m _a	Masa del agua	5.50	
w(%)	Contenido de humedad	1.11	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	494.00	gr
m _a	Masa del agua	6.00	
w(%)	Contenido de humedad	1.21	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m _h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	494.90	gr
m _a	Masa del agua	5.10	
w(%)	Contenido de humedad	1.03	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	494.10	gr
m _a	Masa del agua	5.90	
w(%)	Contenido de humedad	1.19	%

	Descripcion	Cantidad	Unidad
m_h	Masa del arido humedo	500.00	gr
m _s	Masa del arido seco	495.10	gr
m _a	Masa del agua	4.90	
w(%)	Contenido de humedad	0.99	%

CONTENIDO DE HUMEDAD - AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELAST	TICIDAD ESTATICO DEI	HORMIGON EN	
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PROI	U RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
	CIUDAD DE YACUIBA"			
Procedencia	: Rio Pilcomayo	Fecha de muestreo:		
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:		
Referencia	: ASTM C-127, H019.	Ensayo N°:	-	

3.2.2 RESULTADOS DE ENSAYOS

	Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % B	0.11	0.31

Ensayo	Contenido de humedad
1	1.11
2	1.21
3	1.03
4	1.19
5	0.99

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Contenido de
Descripcion	humedad
Promedio	1.11
Mayor	1.21
Menor	0.99
Rango	0.225
Desviacion estándar	0.098

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

ANEXO VII. MÉTODOS PARA DETERMINAR LA DENSIDAD APARENTE.

Equipos.

- Balanza.
- Recipiente cilíndrico de capacidad 3 lt para árido fino y 10 litro para árido grueso.
- Una varilla de 5/8" de diámetro y 60 cm de largo.
- Cucharon.
- Bandejas.

Procedimientos.

- Determinación de la densidad aparente compactada para árido grueso y fino.

- a) Se secó la muestra de ensayo hasta una masa constante en horno a una temperatura de 110±5 °C y se homogenizo cuidadosamente, asegurando la incorporación de todas las partículas más finas.
- b) Se llenó el molde cilíndrico en tres capas de espesores aproximadamente iguales, teniendo la última capa un exceso de árido por sobre el borde de la medida.
- c) Emparejamos cada capa y lo compactamos mediante 25 golpes de varillado uniformemente repartidos
- d) Apisonamos la capa inferior en todo su espesor evitando golpear el fondo del recipiente.
- e) Apisonamos las capas superiores haciendo penetrar la varilla en cada capa inmediatamente inferior.
- f) Eliminamos el exceso de árido empleando la varilla como regla de enrase, sin presionar.
- g) Se registró la masa de árido compactada que llena el recipiente cilíndrico.

- Determinación de la densidad aparente suelta para árido grueso y fino.

- h) Se llenó el recipiente cilíndrico con un cucharon, descargando desde una altura aproximadamente de 5 cm sobre el borde superior del recipiente.
- Desplazamos con el cucharon alrededor del borde, distribuyendo uniformemente el vaciado.
- j) Eliminamos el exceso de árido empleando una varilla como regla de enrase, sin presionar.
- k) Se registró la masa del árido suelto que llena el molde cilíndrico.

Cálculo de la densidad aparente suelta y compactada.

Densidad aparente compactada (ρ_{ac}).

i. Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
V	Capacidad volumétrica del recipiente	0,01	m^3
m_c	Masa del árido compactado	16,18	Kg

ii. Cálculo de la densidad aparente compactada (ρ_{ac}).

El cálculo se realizará para cada ensayo de acuerdo a la siguiente formula:

$$\rho_{ac}(kg/m^3) = \frac{m_c}{V}$$

$$\rho_{ac} = \frac{16,18 \, kg}{0.01 \, m^3}$$

$$\rho_{ac} = 1.618,\!20 kg/m^3$$

Densidad aparente suelta (ρ_{as}).

iii. Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
V	Capacidad volumétrica del recipiente	0,01	m^3
$m_{\scriptscriptstyle S}$	Masa del árido suelto	14,90	Kg

iv. Cálculo de la densidad aparente suelta (ρ_{as}).

El cálculo se realizará para cada ensayo de acuerdo a la siguiente formula:

$$\rho_{ac}(kg/m^3) = \frac{m_s}{V}$$

$$\rho_{ac} = \frac{14.9 \ kg}{0.01 \ m^3}$$

$$\rho_{ac}=1.490~kg/m^3$$

DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO. CANTERA CAIZA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

5.1 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN			
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		OS DE LA
	CIUDAD DE YACUIBA"		
Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia:	ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.1.1 DENSIDAD APARENTES SUELTA

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.805	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	20.71	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
ms	Masa del arido suelto	14.9	Kg
ρ_{as}	Densidad aparente suelta	1490.00	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	20.70	Kg
V	Capacidad volumetrica del recipiente	0.01	m^3
ms	Masa del arido suelto	14.89	Kg
ρ _{as}	Densidad aparente suelta	1489.00	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	20.685	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
ms	Masa del arido suelto	14.88	Kg
ρ_{as}	Densidad aparente suelta	1488.00	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	20.95	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
ms	Masa del arido suelto	15.15	Kg
ρ _{as}	Densidad aparente suelta	1514.50	Kg/m ³

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	20.87	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
ms	Masa del arido suelto	15.07	Kg
ρ_{as}	Densidad aparente suelta	1506.50	Kg/m ³

5.1 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICI BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUC CIUDAD DE YACUIBA"		
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	: ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.1.2 DENSIDAD APARENTES COMPACTADA.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	22.10	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
mc	Masa del arido compactado	16.30	Kg
ρ_{ac}	Densidad aparente compactada	1629.50	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado	21.985	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
mc	Masa del arido compactado	16.18	Kg
ρ_{ac}	Densidad aparente compactada	1618.00	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	21.98	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
mc	Masa del arido compactado	16.18	Kg
ρ_{ac}	Densidad aparente compactada	1617.50	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
M _{srec+mc}	Masa del recipiente + masa del arido compactado	21.987	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
mc	Masa del arido compactado	16.18	Kg
ρ_{ac}	Densidad aparente compactada	1618.20	Kg/m ³

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	5.81	Kg
M _{srec+mc}	Masa del recipiente + masa del arido compactado	21.89	Kg
V	Capacidad volumetrica del recipiente	0.01	m ³
mc	Masa del arido compactado	16.09	Kg
$ ho_{ac}$	Densidad aparente compactada	1608.50	Kg/m ³

5.1 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON			
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
CIUDAD DE YACUIBA"			
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	: ASTM C-29, H0108.	Ensayo N°:	-

5.1.3 RESULTADOS DE ENSAYOS

Ensayo	Densidad aparente suelta Kg/m ³	Densidad aparente compactada Kg/m³
1	1490.00	1629.50
2	1489.00	1618.00
3	1488.00	1617.50
4	1514.50	1618.20
5	1506.50	1608.50

5.1.4 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

5.1.4.1 PRECISIÓN

Las siguientes estimaciones en precisión para este método de prueba son basadas en resultados del Laboratorio de Materiales de Referencia de AASHTO (AMRL) Programa de Muestras Competentes, con pruebas conducidas usando este método de prueba y el método AASHTO T19/T19M. No ay diferencias significantes entre los dos métodos de prueba. Los datos son basados en el análisis de más de 100 parejas de resultados de pruebas desde 40 a 100 laboratorios.

Precisión de un solo Operador.- La desviación estándar de un solo operador a sido encontrada será [14kg/m3] (1s). Por tanto, los resultados de dos pruebas adecuadamente conducidas por el mismo operador en materiales similares no debería diferir por mas de [40kg/m3] (d2s). Norma ASTM C-29

Descripcion	Densidad aparente suelta Kg/m³	Densidad aparente compactada Kg/m ³
Promedio	1497.60	1618.34
Mayor	1514.50	1629.50
Menor	1488.00	1608.50
Rango	26.500	21.00
Desviacion estándar	12.132	7.45

5.1.4.2 DESVIACION.

El procedimiento en este método de prueba para medición de la densidad de masa no tiene desviacion porque los valores para densidad de masa puede ser definida solo en términos de un método de prueba. Norma ASTM C.29

DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO. CANTERA CAIZA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

5.2 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORN			ORMIGON EN
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia:	ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.2.1 DENSIDAD APARENTES SUELTA

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	6.800	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.19	Kg
ρ_{as}	Densidad aparente suelta	1396.67	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	6.78	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.17	Kg
ρ_{as}	Densidad aparente suelta	1390.00	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	6.90	Kg
V	Capacidad volumetrica del recipiente	0.003	m^3
ms	Masa del arido suelto	4.29	Kg
ρ_{as}	Densidad aparente suelta	1430.00	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	6.84	Kg
V	Capacidad volumetrica del recipiente	0.003	m^3
ms	Masa del arido suelto	4.23	Kg
ρ_{as}	Densidad aparente suelta	1410.00	Kg/m ³

	Descripcion	Cantidad	Unidad
M _{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	6.81	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.20	Kg
ρ_{as}	Densidad aparente suelta	1398.33	Kg/m ³

5.2 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia:	ASTM C-29, H0108.	Ensayo Nº:	1 - 5.

5.2.2 DENSIDAD APARENTES COMPACTADA.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado	7.61	Kg
	Capacidad volumetrica del recipiente	0.003	m ³
mc	mc Masa del arido compactado	5.00	Kg
ρ_{ac}	Densidad aparente compactada	1666.67	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado	7.605	Kg
	Capacidad volumetrica del recipiente	0.003	m ³
mc	mc Masa del arido compactado		Kg
ρ_{ac}	Densidad aparente compactada	1665.00	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.63	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.02	Kg
ρ_{ac}	Densidad aparente compactada	1673.33	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado		Kg
V	V Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	4.98	Kg
ρ_{ac}	Densidad aparente compactada	1660.00	Kg/m ³

	Descripcion	Cantidad	Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
M _{srec+mc}	Masa del recipiente + masa del arido compactado	7.65	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.04	Kg
ρ_{ac}	Densidad aparente compactada	1680.00	Kg/m ³

5.2 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN		
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
CIUDAD DE YACUIBA"			
Procedencia: Rio Caiza. Yacuiba		Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	: ASTM C-29, H0108.	Ensayo N°:	-

5.2.3 RESULTADOS DE ENSAYOS

Ensayo	Densidad aparente suelta Kg/m ³	Densidad aparente compactada Kg/m³
1	1396.67	1666.67
2	1390.00	1665.00
3	1430.00	1673.33
4	1410.00	1660.00
5	1398.33	1680.00

5.2.4 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

5.2.4.1 PRECISIÓN

Las siguientes estimaciones en precisión para este método de prueba son basadas en resultados del Laboratorio de Materiales de Referencia de AASHTO (AMRL) Programa de Muestras Competentes, con pruebas conducidas usando este método de prueba y el método AASHTO T19/T19M. No ay diferencias significantes entre los dos métodos de prueba. Los datos son basados en el análisis de más de 100 parejas de resultados de pruebas desde 40 a 100 laboratorios.

Precisión de un solo Operador.- La desviación estándar de un solo operador a sido encontrada será [14kg/m3] (1s). Por tanto, los resultados de dos pruebas adecuadamente conducidas por el mismo operador en materiales similares no debería diferir por mas de [40kg/m3] (d2s). Norma ASTM C-29

Descripcion	Densidad aparente suelta Kg/m³	Densidad aparente compactada Kg/m ³
Promedio	1405.00	1669.00
Mayor	1430.00	1680.00
Menor	1390.00	1660.00
Rango	40.000	20.00
Desviacion estándar	15.723	7.78

5.1.4.2 DESVIACION.

El procedimiento en este método de prueba para medición de la densidad de masa no tiene desviacion porque los valores para densidad de masa puede ser definida solo en términos de un método de prueba. Norma ASTM C.29

DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO. CANTERA VILLA MONTES

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

		"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN		
	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA			OS DE LA
		CIUDAD DE YACUIBA"		
	Procedencia: Rio Pilcomayo. Villa Montes Fecha de muestreo: Ag		Agosto de 2018	
Solicitante: Claudio Albaro Medrano Aguilera Fecha de ensayo: Agosto		Agosto de 2018		
	Referencia:	ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.3.1 DENSIDAD APARENTES SUELTA

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
M _{srec+ms}	Masa del recipiente + masa del arido suelto	7.41	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.8	Kg
ρ_{as}	Densidad aparente suelta	1600.00	Kg/m ³

Ensayo Nº: 2

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.74	Kg
ρ_{as}	Densidad aparente suelta	1578.33	Kg/m ³

Ensayo Nº: 3

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
M _{srec+ms}	Masa del recipiente + masa del arido suelto	7.315	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.71	Kg
ρ_{as}	Densidad aparente suelta	1568.33	Kg/m ³

Ensayo Nº: 4

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.73	Kg
ρ_{as}	Densidad aparente suelta	1575.00	Kg/m ³

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.76	Kg
ρ_{as}	Densidad aparente suelta	1585.00	Kg/m ³

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"			
Procedencia	Rio Pilcomayo. Villa Montes Fecha de muestreo: Agosto de 2018			
Solicitante	Claudio Albaro Medrano Aguilera Fecha de ensayo: Agosto de 2018			
Referencia	: ASTM C-29, H0108.	Ensayo N°:	1 - 5.	

5.3.2 DENSIDAD APARENTES COMPACTADA.

Ensayo Nº: 1

	Descripcion		Unidad
M _{rec}	M _{rec} Masa del recipiente		Kg
$M_{srec+mc}$	M _{srec+mc} Masa del recipiente + masa del arido compactado		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.23	Kg
ρ _{ac}	Densidad aparente compactada	1741.67	Kg/m ³

Ensayo Nº: 2

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.19	Kg
ρ_{ac}	Densidad aparente compactada	1730.00	Kg/m ³

Ensayo Nº: 3

	Descripcion		Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.90	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.29	Kg
ρ_{ac}	Densidad aparente compactada	1761.67	Kg/m ³

Ensayo Nº: 4

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	mc Masa del arido compactado		Kg
ρ_{ac}	Densidad aparente compactada	1753.33	Kg/m ³

	Descripcion		Unidad
M_{rec}	M _{rec} Masa del recipiente		Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado		Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.25	Kg
ρ_{ac}	Densidad aparente compactada	1748.33	Kg/m ³

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO GRUESO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN		
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
	CIUDAD DE YACUIBA"		
Procedencia	Procedencia: Rio Pilcomayo. Villa Montes		Agosto de 2018
Solicitante: Claudio Albaro Medrano Aguilera Fecha de ensayo: Agosto de		Agosto de 2018	
Referencia	ferencia: ASTM C-29, H0108. Ensayo N°:		

5.3.3 RESULTADOS DE ENSAYOS

Ensayo	Densidad aparente suelta Kg/m ³	Densidad aparente compactada Kg/m³
1	1600.00	1741.67
2	1578.33	1730.00
3	1568.33	1761.67
4	1575.00	1753.33
5	1585.00	1748.33

5.1.4 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

5.3.4.1 PRECISIÓN

Las siguientes estimaciones en precisión para este método de prueba son basadas en resultados del Laboratorio de Materiales de Referencia de AASHTO (AMRL) Programa de Muestras Competentes, con pruebas conducidas usando este método de prueba y el método AASHTO T19/T19M. No ay diferencias significantes entre los dos métodos de prueba. Los datos son basados en el análisis de más de 100 parejas de resultados de pruebas desde 40 a 100 laboratorios.

Precisión de un solo Operador.- La desviación estándar de un solo operador a sido encontrada será [14kg/m3] (1s). Por tanto, los resultados de dos pruebas adecuadamente conducidas por el mismo operador en materiales similares no debería diferir por mas de [40kg/m3] (d2s). Norma ASTM C-29

Descripcion	Densidad aparente suelta Kg/m³	Densidad aparente compactada Kg/m ³
Promedio	1581.33	1747.00
Mayor	1600.00	1761.67
Menor	1568.33	1730.00
Rango	31.667	31.67
Desviacion estándar	12.042	11.98

5.3.4.2 DESVIACION.

El procedimiento en este método de prueba para medición de la densidad de masa no tiene desviacion porque los valores para densidad de masa puede ser definida solo en términos de un método de prueba. Norma ASTM C.29

DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO. CANTERA VILLA MONTES

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN		
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
	CIUDAD DE YACUIBA"		
Procedencia	a: Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	e: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	a: ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.3.1 DENSIDAD APARENTES SUELTA

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
M _{srec+ms}	Masa del recipiente + masa del arido suelto	7.40	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.79	Kg
ρ_{as}	Densidad aparente suelta	1596.67	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
M _{srec+ms}	Masa del recipiente + masa del arido suelto	7.35	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.74	Kg
ρ_{as}	Densidad aparente suelta	1578.33	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
M _{srec+ms}	Masa del recipiente + masa del arido suelto	7.460	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.85	Kg
ρ_{as}	Densidad aparente suelta	1616.67	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{\text{srec+ms}}$	Masa del recipiente + masa del arido suelto	7.45	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.84	Kg
ρ_{as}	Densidad aparente suelta	1613.33	Kg/m ³

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+ms}$	Masa del recipiente + masa del arido suelto	7.43	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
ms	Masa del arido suelto	4.82	Kg
ρ_{as}	Densidad aparente suelta	1605.00	Kg/m ³

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

Proyecto:	Proyecto: "DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-29, H0108.	Ensayo N°:	1 - 5.

5.3.2 DENSIDAD APARENTES COMPACTADA.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M _{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.80	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.19	Kg
ρ_{ac}	Densidad aparente compactada	1730.00	Kg/m ³

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.81	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.20	Kg
ρ_{ac}	Densidad aparente compactada	1733.33	Kg/m ³

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.85	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.24	Kg
ρ_{ac}	Densidad aparente compactada	1745.00	Kg/m ³

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{\text{srec+mc}}$	Masa del recipiente + masa del arido compactado	7.84	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.23	Kg
ρ_{ac}	Densidad aparente compactada	1741.67	Kg/m ³

	Descripcion	Cantidad	Unidad
M_{rec}	Masa del recipiente	2.61	Kg
$M_{srec+mc}$	Masa del recipiente + masa del arido compactado	7.86	Kg
V	Capacidad volumetrica del recipiente	0.003	m ³
mc	Masa del arido compactado	5.25	Kg
$ ho_{ac}$	Densidad aparente compactada	1748.33	Kg/m ³

5.3 DETERMINACION DE LA DENSIDAD APARENTE AGREGADO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICI	DAD ESTATICO DEL HO	ORMIGON EN
Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADO			
	CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-29, H0108.	Ensayo N°:	-

5.3.3 RESULTADOS DE ENSAYOS

Ensayo	Densidad aparente suelta Kg/m ³	Densidad aparente compactada Kg/m³
1	1596.67	1730.00
2	1578.33	1733.33
3	1616.67	1745.00
4	1613.33	1741.67
5	1605.00	1748.33

5.1.4 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

5.3.4.1 PRECISIÓN

Las siguientes estimaciones en precisión para este método de prueba son basadas en resultados del Laboratorio de Materiales de Referencia de AASHTO (AMRL) Programa de Muestras Competentes, con pruebas conducidas usando este método de prueba y el método AASHTO T19/T19M. No ay diferencias significantes entre los dos métodos de prueba. Los datos son basados en el análisis de más de 100 parejas de resultados de pruebas desde 40 a 100 laboratorios.

Precisión de un solo Operador.- La desviación estándar de un solo operador a sido encontrada será [14kg/m3] (1s). Por tanto, los resultados de dos pruebas adecuadamente conducidas por el mismo operador en materiales similares no debería diferir por mas de [40kg/m3] (d2s). Norma ASTM C-29

Descripcion	Densidad aparente suelta Kg/m³	Densidad aparente compactada Kg/m ³
Promedio	1602.00	1739.67
Mayor	1616.67	1748.33
Menor	1578.33	1730.00
Rango	38.333	18.33
Desviacion estándar	15.339	7.76

5.3.4.2 DESVIACION.

El procedimiento en este método de prueba para medición de la densidad de masa no tiene desviacion porque los valores para densidad de masa puede ser definida solo en términos de un método de prueba. Norma ASTM C.29

ANEXO VIII. MÉTODOS PARA DETERMINAR LA DENSIDAD REAL, DENSIDAD NETA Y LA ABSORCIÓN DE AGUA EN LOS ÁRIDOS GRUESOS.

Equipos.

- Balanza.
- Horno.
- Cesto cilíndrico
- Estanque.
- Recipiente que se puede sumergir la cesta de alambre.

Procedimiento.

- a) Se procedió al lavado del material al fin de remover el polvo o cualquier impureza que cubra la superficie de la muestra, luego se sumergió la muestra con agua por un periodo de 24 horas.
- b) Se sacó la muestra del agua y se secaron las partículas con una toalla hasta que la película de agua a desaparecido de la superficie.
- c) Se obtuvo después el peso de la muestra con sus partículas saturadas.
- d) La muestra se vuelve a sumergir después de ser pesada y se determinó así el peso de la muestra sumergida.

Se secó la muestra en el horno a una temperatura de 110±5°C y luego se dejó enfriar para su respectivo pesado.

Caculo para determinar la densidad real, densidad neta y la absorción de agua en los áridos gruesos.

a) Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
M_{SSS}	Masa del árido saturado superficialmente seco	3.000	gr
M_{SUM}	Masa del árido sumergida	1.820,6	gr
$M_{\rm S}$	Masa del árido seco	2.899,1	gr

b) Densidad real (ρ_R) .

i) Densidad real del árido superficialmente seco (ρ_{RT}).

$$\rho_{RT}(kg/m^3) = \frac{M_{SSS}}{M_{SSS} - M_{SUM}} x 1000 (kg/m^3)$$

$$\rho_{RT}(kg/m^3) = \frac{3.000}{3.000 - 1.820,60} x 1.000 (kg/m^3)$$

$$\rho_{RT} = 2.540 kg/m^3$$

ii) Densidad real del árido seco (ρ_{RS}).

$$\rho_{RS}(kg/m^3) = \frac{M_S}{M_{SSS} - M_{SUM}} x1000 (kg/m^3)$$

$$\rho_{RS}(kg/m^3) = \frac{2.899,10}{3.000 - 1.820,60} x1.000 (kg/m^3)$$

$$\rho_{RS} = 2.460 kg/m^3$$

iii)Densidad neta (ρ_N).

$$\rho_N(kg/m^3) = \frac{M_S}{M_S - M_{SUM}} x1.000 (kg/m^3)$$

$$\rho_N(kg/m^3) = \frac{2.899,10}{2.899,10 - 1.820,60} x1.000 (kg/m^3)$$

$$\rho_N = 2.690 kg/m^3$$

c) Absorción del agua (α)

$$\alpha(\%) = \frac{M_{SSS} - M_S}{M_S} x 100$$

$$\alpha(\%) = \frac{3.000 - 2.899,10}{2.899,10} x 100$$

$$\alpha = 3,48 \%$$

DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS. CANTERA CAIZA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	agosto-18
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	agosto-18
Referencia	: ASTM C-127, H019.	Ensavo N°:	1 - 3.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1823	gr
$M_{\rm S}$	Masa del arido seco	2901	gr
ρ_R	Densidad real del arido saturado superficialmente seco	2.55	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.46	gr/cm ³
ρ_{N}	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	3.41	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M _{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1820	gr
$M_{\rm S}$	Masa del arido seco	2898.8	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.54	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.46	gr/cm ³
ρ_{N}	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	3.49	%

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1819.5	gr
M_S	Masa del arido seco	2899	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.54	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.46	gr/cm ³
$\rho_{ m N}$	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	3.48	%

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"				
Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018		
Solicitante	te: Claudio Albaro Medrano Aguilera Fecha de ensayo: Agosto de 2018				
Referencia	: ASTM C-127, H019.	Ensayo N°:	4 - 5.		

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1822.1	gr
M_S	Masa del arido seco	2897.7	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.55	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.46	gr/cm ³
$\rho_{ m N}$	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	3.53	%

	Descripcion	Cantidad	Unidad
M _{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1820.6	gr
M_S	Masa del arido seco	2899.1	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.54	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.46	gr/cm ³
ρ_{N}	Densidad neta	2.69	gr/cm ³
α	Absorcion de agua	3.48	%

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"			
Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia:	ASTM C-127, H019.	Ensavo N°:	_

3.2.2 RESULTADOS DE ENSAYOS

	Des viación es tándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % B	0.11	0.31

Ensayo	Densidad real del arido saturado superficialmen te seco		Densidad neta	Absorcion de agua
	gr/cm ³	gr/cm ³	gr/cm ³	%
1	2.55	2.46	2.69	3.41
2	2.54	2.46	2.69	3.49
3	2.54	2.46	2.69	3.48
4	2.55	2.46	2.69	3.53
5	2.54	2.46	2.69	3.48

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Densidad real del arido saturado superficialmente seco	Densidad real del arido seco	Densidad neta	Absorcion de agua (%)
	gr/cm ³	gr/cm ³	gr/cm ³	
Promedio	2.54	2.46	2.69	3.48
Mayor	2.55	2.46	2.69	3.53
Menor	2.54	2.46	2.69	3.41
Rango	0.008	0.009	0.009	0.12
Desviacion estándar	0.003	0.004	0.003	0.04

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS. CANTERA VILLA MONTES

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN			
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA			
	CIUDAD DE YACUIBA"			
Procedencia	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018	
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018	
Referencia		Ensavo N°:	1 - 3.	

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1864	gr
M_{S}	Masa del arido seco	2967.3	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.64	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.61	gr/cm ³
ρ_{N}	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	1.10	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1865	gr
M _S	Masa del arido seco	2965.2	gr
ρ_R	Densidad real del arido saturado superficialmente seco	2.64	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.61	gr/cm ³
ρ_{N}	Densidad neta	2.70	gr/cm ³
α	Absorcion del agua	1.17	%

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1862	gr
M_S	Masa del arido seco	2965.4	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.64	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.61	gr/cm ³
ρ_{N}	Densidad neta	2.69	gr/cm ³
α	Absorcion del agua	1.17	%

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

Proyecto: "DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGE BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE I DE YACUIBA"				
Procedencia	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018	
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018	
Referencia	ASTM C-127, H019.	Ensayo Nº:	4 - 5.	

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	3000	gr
M_{SUM}	Masa del arido sumergida	1863	gr
M _S	Masa del arido seco	2966.8	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.64	gı/cm ³
ρ_{RT}	Densidad real del arido seco	2.61	gı/cm ³
$\rho_{\rm N}$	Densidad neta	2.69	gı/cm ³
α	Absorcion del agua	1.12	%

	Descripcion	Cantidad	Unidad
M_{SSS}	Masa del arido saturado superficialmente seco	2685	gr
M_{SUM}	Masa del arido sumergida	1674	gr
M_S	Masa del arido seco	2656.7	gr
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.66	gı/cm ³
PRT	Densidad real del arido seco	2.63	gı/cm ³
ρ_{N}	Densidad neta	2.70	gı/cm ³
α	Absorcion de agua	1.07	%

3.2 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO GRUESOS

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC	IDAD ESTATICO DEL H	ORMIGON EN
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODU	CIDOS CON AGREGAD	OS DE LA CIUDAD
	DE YACUIBA"		
Procedencia	Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-127 H019	Ensavo No-	_

3.2.2 RESULTADOS DE ENSAYOS

	Desviación	Rango aceptable
	estándar	para dos
	(1s) ^A	resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica	0.0095	0.027
aparente)	0.0005	0.027
Absorcion, % ^B	0.11	0.31

Ensayo	Densidad real del arido saturado superficia lmente seco	Densidad real del arido seco	Densidad neta	Absorcion de agua
	gr/cm3	gr/cm3	gı/cm ³	%
1	2.64	2.61	2.69	1.10
2	2.64	2.61	2.70	1.17
3	2.64	2.61	2.69	1.17
4	2.64	2.61	2.69	1.12
5	2.66	2.63	2.70	1.07

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Densidad real del arido saturado superficialmente seco	Densidad real delarido seco	Densidad neta	Absorcion de agua
	gr/cm ³	gı/cm ³	gı/cm ³	%
Promedio	2.64	2.61	2.69	1.13
Mayor	2.66	2.63	2.70	1.17
Menor	2.64	2.61	2.69	1.07
Rango	0.020	0.022	0.016	0.11
Desviacion estándar	0.008	0.008	0.007	0.05

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

ANEXO IX. MÉTODOS PARA DETERMINAR LA DENSIDAD REAL, DENSIDAD NETA Y LA ABSORCIÓN DE AGUA EN LOS ÁRIDOS FINOS.

Equipos.

- Balanza.
- Matraz.
- Horno.
- Molde cónico + pisón.
- Secador.

Procedimiento.

- a) Se saca la muestra del recipiente y se seca con un secador de manera uniforme.
- b) Colocamos el molde cónico sobre una superficie lisa, plana y no absorbente, llenamos con el árido en condición suelta en una capa y enrasamos.
- c) Compactamos suavemente con 25 golpes de pisón uniformemente distribuido sobre la superficie. En cada golpe se dejó caer el pisón libremente a una altura de 5 mm por encima del molde.
- d) Retiramos cuidadosamente todo el material sobrante sobre la superficie. Levantamos el molde verticalmente. Primeramente, la muestra todavía contenía humedad y este conservo su forma del cono. Volvimos a secar la muestra y repetimos el paso b), c) y d). Cuando retiramos el molde el árido rodo libremente según su talud natural, esto nos indicó que de alcanzo su condición saturada superficialmente seco.
- e) Se pesaron 500 gramos de la muestra y se introdujo dentro del matraz cubriéndolo con agua hasta alcanzar aproximadamente los 2/3 del volumen del matraz.
- f) Agitamos el matraz a fin de eliminar las burbujas de aire golpeando ligeramente contra la calma de la mano.
- g) Dejamos reposar por 1 hora manteniéndolo a una temperatura de 20±3°C.
- h) Llevamos con agua hasta el enrase de calibración del matraz.
- i) Registramos la masa del matraz con la muestra de ensayo.
- j) Sacamos la muestra del matraz, evitando perdidas lo vaciamos un recipiente que posteriormente fue introducido al horno a una temperatura de 110±5°C.
- k) Retiramos la muestra del horno y lo dejamos enfriar a temperatura ambiente determinando su masa en estado seco.

Caculo para determinar la densidad real, densidad neta y la absorción de agua en los áridos finos.

a) Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
M _{Matras}	Masa del matraz	190,10	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	986,20	gr
V _{Matras}	Volumen del matraz	500	ml
$M_{\rm S}$	Masa de la muestra secada en horno	490,70	gr
W	Volumen desalojado por la muestra	296,10	ml

b) Densidad real (ρ_R) .

i. Densidad real del árido superficialmente seco (ρ_{RT}).

$$\rho_{RT}(kg/m^3) = \frac{M_{SSS}}{V - W} x1000 (kg/m^3)$$

$$\rho_{RT}(kg/m^3) = \frac{500}{500 - 296,10} x1.000 (kg/m^3)$$

$$\rho_{RT} = 2.450 kg/m^3$$

ii. Densidad real del árido seco (ρ_{RS}).

$$\rho_{RS}(kg/m^3) = \frac{M_S}{V - W} x 1000 (kg/m^3)$$

$$\rho_{RS}(kg/m^3) = \frac{490,70}{500 - 296,10} x 1.000 (kg/m^3)$$

$$\rho_{RS} = 2.410 kg/m^3$$

iii. Densidad neta (ρ_N).

$$\rho_N(kg/m^3) = \frac{M_S}{M_S - W} x1.000 (kg/m^3)$$

$$\rho_N(kg/m^3) = \frac{490,70}{490,70 - 296,10} x1.000 (kg/m^3)$$

$$\rho_N = 2.520 kg/m^3$$

c) Absorción del agua (α)

$$\alpha(\%) = \frac{V - M_S}{M_S} x 100$$

$$\alpha(\%) = \frac{500 - 490,70}{490,70} x 100$$

$$\alpha = 1,90 \%$$

DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO. CANTERA CAIZA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN			
Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS I				
	CIUDAD DE YACUIBA"			
Procedencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018	
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018	
Referencia:	ASTM C-128, H0110.	Ensayo N°:	1 - 3.	

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{Matras}	Masa del matraz	187.5	gr
M _{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
M _{M+SSS+A}	Masa del matraz + masa de muestra saturada superf. seca + agua	984.3	gr
V _{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	492.6	gr
W	Volumen desalojado por la muestra	296.8	ml
ρ_R	Densidad real del arido saturado superficialmente seco	2.46	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.42	gr/cm ³
$\rho_{\rm N}$	Densidad neta	2.52	gr/cm ³
α	Absorcion del agua	1.50	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M _{Matras}	Masa del matraz	190.3	gr
M _{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
M _{M+SSS+A}	Masa del matraz + masa de muestra saturada superf. seca + agua	985.7	gr
V _{Matras}	Volumen del matraz	500	ml
M _S	Masa de la muestra secada en horno	492.9	gr
W	Volumen desalojado por la muestra	295.4	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.44	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.41	gr/cm ³
ρ_{N}	Densidad neta	2.50	gr/cm ³
α	Absorcion del agua	1.44	%

	Descripcion	Cantidad	Unidad
M_{Matras}	Masa del matraz	177.2	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
M _{M+SSS+A}	Masa del matraz + masa de muestra saturada superf. seca + agua	974.2	gr
V _{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	492.3	gr
W	Volumen desalojado por la muestra	297	ml
ρ_R	Densidad real del arido saturado superficialmente seco	2.46	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.43	gr/cm ³
$\rho_{\rm N}$	Densidad neta	2.52	gr/cm ³
α	Absorcion del agua	1.56	%

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODI CIUDAD DE YACUIBA"		
Procedencia	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-127, H019.	Ensayo N°:	4 - 5.

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M _{Matras}	Masa del matraz	190.1	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	986.2	gr
V_{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	490.7	gr
W	Volumen desalojado por la muestra	296.1	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.45	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.41	gr/cm ³
$\rho_{ m N}$	Densidad neta	2.52	gr/cm ³
α	Absorcion del agua	1.90	%

	Descripcion	Cantidad	Unidad
M _{Matras}	Masa del matraz	178.2	gr
M _{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	975.5	gr
V _{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	493.1	gr
W	Volumen desalojado por la muestra	297.3	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.47	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.43	gr/cm ³
ρ_{N}	Densidad neta	2.52	gr/cm ³
α	Absorcion del agua	1.40	%

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

		"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC	CIDAD ESTATICO DEL I	HORMIGON EN
Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA				DOS DE LA
	CIUDAD DE YACUIBA"			
Proce	edencia:	Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Soli	licitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Refe	erencia:	ASTM C-127, H019.	Ensayo N°:	-

4.2.2 RESULTADOS DE ENSAYOS

	Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % B	0.11	0.31

Ensayo	Densidad real del arido saturado superficialmen te seco	Densidad real del arido seco	Densidad neta	Absorcion del agua
	gr/cm ³	gr/cm ³	gr/cm ³	%
1	2.46	2.42	2.52	1.50
2	2.44	2.41	2.50	1.44
3	2.46	2.43	2.52	1.56
4	2.45	2.41	2.52	1.90
5	2.47	2.43	2.52	1.40

342.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

4.2.3.1 PRECISIÓN

Descripcion	Densidad real del arido saturado superficialmente seco	Densidad real del arido seco		Absorcion de agua
	gr/cm3	gr/cm3	gr/cm ³	(%)
Promedio	2.46	2.42	2.51	1.56
Mayor	2.47	2.43	2.52	1.90
Menor	2.44	2.41	2.50	1.40
Rango	0.023	0.026	0.026	0.50
Desviacion estándar	0.009	0.011	0.011	0.20

4.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO. CANTERA VILLA MONTES

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC	CIDAD ESTATICO DEL F	IORMIGON EN
Proyecto:	Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia:	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia:	ASTM C-128, H0110.	Ensayo N°:	1 - 3.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
M_{Matras}	Masa del matraz	172.4	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	977.9	gr
V _{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	491.5	gr
W	Volumen desalojado por la muestra	305.5	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.57	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.53	gr/cm ³
$\rho_{ m N}$	Densidad neta	2.64	gr/cm ³
α	Absorcion del agua	1.73	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
M_{Matras}	Masa del matraz	182.9	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	988.9	gr
V _{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	491.3	gr
W	Volumen desalojado por la muestra	306	ml
$\rho_{ m R}$	Densidad real del arido saturado superficialmente seco	2.58	gr/cm ³
$ ho_{ m RT}$	Densidad real del arido seco	2.53	gr/cm ³
$\rho_{ m N}$	Densidad neta	2.65	gr/cm ³
α	Absorcion del agua	1.77	%

	Descripcion	Cantidad	Unidad
M _{Matras}	Masa del matraz	175	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	981.9	gr
V _{Matras}	Volumen del matraz	500	ml
M _S	Masa de la muestra secada en horno	491.5	gr
W	Volumen desalojado por la muestra	306.9	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.59	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.55	gr/cm ³
ρ_{N}	Densidad neta	2.66	gr/cm ³
α	Absorcion del agua	1.73	%

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODI CIUDAD DE YACUIBA"		
Procedencia	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-128, H0110.	Ensayo N°:	4 - 5.

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
M _{Matras}	Masa del matraz	171.9	gr
M_{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	976.9	gr
V_{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	491.1	gr
W	Volumen desalojado por la muestra	305	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.56	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.52	gr/cm ³
$\rho_{\rm N}$	Densidad neta	2.64	gr/cm ³
α	Absorcion del agua	1.81	%

	Descripcion	Cantidad	Unidad
M_{Matras}	Masa del matraz	176.8	gr
M _{SSS}	Masa de la muestra saturada superficialmente seca	500	gr
$M_{M+SSS+A}$	Masa del matraz + masa de muestra saturada superf. seca + agua	982.1	gr
V_{Matras}	Volumen del matraz	500	ml
M_S	Masa de la muestra secada en horno	490.5	gr
W	Volumen desalojado por la muestra	305.3	ml
ρ_{R}	Densidad real del arido saturado superficialmente seco	2.57	gr/cm ³
ρ_{RT}	Densidad real del arido seco	2.52	gr/cm ³
$\rho_{\rm N}$	Densidad neta	2.65	gr/cm ³
α	Absorcion del agua	1.94	%

4.1 DETERMINACION DE LA DENSIDAD REAL, DENSIDAD NETA, Y ABSORCION DE AGUA EN ARIDO FINO

	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTIC	CIDAD ESTATICO DEL I	HORMIGON EN
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA		
	CIUDAD DE YACUIBA"		
Procedencia	: Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018
Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	: ASTM C-128, H0110.	Ensayo Nº:	-

4.2.2 RESULTADOS DE ENSAYOS

	Desviación	Rango aceptable
	estándar	para dos
	(1s) ^A	resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica	0.0095	0.027
aparente)	0.0093	0.027
Absorcion, % B	0.11	0.31

Ensayo	Densidad real del arido saturado superficialmen te seco	Densidad real del arido seco	Densidad neta	Absorcion del agua
	gr/cm ³	gr/cm ³	gr/cm ³	%
1	2.57	2.53	2.64	1.73
2	2.58	2.53	2.65	1.77
3	2.59	2.55	2.66	1.73
4	2.56	2.52	2.64	1.81
5	2.57	2.52	2.65	1.94

342.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

4.2.3.1 PRECISIÓN

Descripcion	Densidad real del arido saturado superficialmente seco Densidad real del arido Densid		Densidad neta	Absorcion de agua
	gr/cm3	gr/cm3	gr/cm ³	(%)
Promedio	2.57	2.53	2.65	1.80
Mayor	2.59	2.55	2.66	1.94
Menor	2.56	2.52	2.64	1.73
Rango	0.025	0.027	0.024	0.21
Desviacion estándar	0.010	0.011	0.009	0.09

4.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

ANEXO X. MÉTODO PARA DETERMINAR EL DESGASTE MEDIANTE LA MÁQUINA DE LOS ÁNGELES.

Equipo.

- Máquina de desgaste de los ángeles.
- Balanza.
- Juego de tamices 3/4", ½", 3/8" y Nº12.
- Horno.
- Esferas de carga.

Procedimiento.

- a) Se lavó la muestra de ensayo y se secó en horno a una temperatura constante de 110±5°C.
- b) La muestra se tamizo y se obtuvieron los pesos de acuerdo a lo requerido por la gradación B.
- c) La muestra de ensayo y la carga se colocaron en la máquina de desgaste de los ángeles a una velocidad de 30 revoluciones por minuto, hasta las 500 revoluciones.
- d) El material fue descargado de la máquina y se lo tamizo por el tamiz N°12.
- e) El material retenido en el tamiz Nº12 se lavó y se secó en el horno durante un 24 hora. Finalmente se retiró y enfrió a temperatura ambiente, registrando su peso.

Cálculo para determinar el desgaste mediante la máquina de los ángeles.

a) Datos del ensayo.

Asignación	Descripción	Cantidad	Unidad
m_{i}	Peso inicial de la muestra.	5.000	gr
m_{f}	Peso final de la muestra.	2.871,80	gr

b) Porcentaje de desgaste (P).

$$P(\%) = \frac{m_i - m_f}{m_i} x 100$$

$$P(\%) = \frac{5.000 - 2.871,80}{5.000} x 100$$

$$P = 42,56 \%$$

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES. CANTERA DE CAIZA

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES.

"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON Proyecto: BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA				HORMIGON EN
				DOS DE LA
		CIUDAD DE YACUIBA"		
ſ	Procedencia	: Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
	Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
	Referencia	: ASTM C-127, H019.	Ensayo N°:	1 - 4.

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	2871.80	gr
P(%)	Porcentaje de desgaste	42.56	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	2851.80	gr
P(%)	Porcentaje de desgaste	42.96	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	2897.80	gr
P(%)	Porcentaje de desgaste	42.04	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
m _f	Masa del arido final	2827.80	gr
P(%)	Porcentaje de desgaste	43.44	%

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	2900.80	gr
P(%)	Porcentaje de desgaste	41.98	%

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES.

Proyecto:	"DETERMINACION DE LA ECUACION DEL MODULO DE ELASTICIDAD ESTATICO DEL HORMIGON EN BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODUCIDOS CON AGREGADOS DE LA CIUDAD DE YACUIBA"		
Procedencia	ı: Rio Caiza. Yacuiba	Fecha de muestreo:	Agosto de 2018
Solicitante	e: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018
Referencia	ASTM C-127, H019	Ensavo Nº	_

3.2.2 RESULTADOS DE ENSAYOS

	Desviación estándar (1s) ^A	Rango aceptable para dos resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica aparente)	0.0095	0.027
Absorcion, % ^B	0.11	0.31

Engava	Porcentaje de
Ensayo	desgaste
1	42.56
2	42.96
3	42.04
4	43.44
5	41.98

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Porcentaje de desgaste
Promedio	42.60
Mayor	43.44
Menor	41.98
Rango	1.460
Desviacion estándar	0.619

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES. CANTERA DE VILLA MONTES

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE HORMIGON

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES.

l	CIDAD ESTATICO DEL I				
Proyecto:	BASE A SU RESISTENCIA A LA COMPRESION DE 21 MPa, PRODU	JCIDOS CON AGREGAI	OOS DE LA		
	CIUDAD DE YACUIBA"				
Procedencia:	Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018		
Solicitante:	Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018		
Referencia: ASTM C-127, H019. Ensavo N°:					

Ensayo Nº: 1

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	4253.80	gr
P(%)	Porcentaje de desgaste	14.92	%

Ensayo Nº: 2

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5,000.00	gr
$m_{\rm f}$	Masa del arido final	4,251.30	gr
P(%)	Porcentaje de desgaste	14.97	%

Ensayo Nº: 3

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	4250.70	gr
P(%)	Porcentaje de desgaste	14.99	%

Ensayo Nº: 4

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	4253.20	gr
P(%)	Porcentaje de desgaste	14.94	%

	Descripcion	Cantidad	Unidad
m _i	Masa del arido inicial	5000.00	gr
$m_{\rm f}$	Masa del arido final	4250.10	gr
P(%)	Porcentaje de desgaste	15.00	%

DETERMINACION DEL DESGASTE MEDIANTE LA MAQUINA DE LOS ANGELES.

	Proyecto:	· · · · · · · · · · · · · · · · · · ·			
F	Procedencia	CIUDAD DE YACUIBA" : Rio Pilcomayo. Villa Montes	Fecha de muestreo:	Agosto de 2018	
	Solicitante	: Claudio Albaro Medrano Aguilera	Fecha de ensayo:	Agosto de 2018	
	Referencia	: ASTM C-127, H019.	Ensavo N°:	-	

3.2.2 RESULTADOS DE ENSAYOS

	Desviación	Rango aceptable
	estándar	para dos
	$(1s)^{A}$	resultados (d2s) ^A
Precision para un solo operador:		
Densidad relativa aparente (gravedad especifica	0.0095	0.027
aparente)	0.0073	0.027
Absorcion, % B	0.11	0.31

Ensayo	Porcentaje de desgaste
1	14.92
2	14.97
3	14.99
4	14.94
5	15.00

3.2.3 PRECISIÓN Y DESVIACION DE LOS RESULTADOS.

3.2.3.1 PRECISIÓN

Descripcion	Porcentaje de desgaste
Promedio	14.96
Mayor	15.00
Menor	14.92
Rango	0.074
Desviacion estándar	0.032

3.2.3.2 DESVIACION.

Puesto que no hay un material de referencia aceptado, que sea adecuado para determinar la desviación de este método de ensayo, no se ha hecho ninguna declaración de desviación

ANEXO XI. DETERMINACIÓN EXPERIMENTAL DEL MÓDULO DE ELASTICIDAD ESTÁTICO DEL HORMIGÓN SEGÚN NORMA ASTM C – 469.

Método experimental según Norma ASTM C-469.

Para la determinación experimental del Módulo de Elasticidad se aplicó el proceso establecido en la norma ASTM C-469-94, "Método Estándar de ensayo para determinar el Módulo de Elasticidad y Relación de Poisson del Hormigón en Compresión".

La norma ASTM C-469-94 establece que para el cálculo del Módulo de Elasticidad se debe tomar dos puntos de referencia en la curva (σ vs ε) del ensayo a compresión de probetas cilíndricas de hormigón.

- El primer punto corresponde a una deformación especifica de 0.000050 mm/mm (Punto A).
- El segundo punto correspondiente al 40% del esfuerzo máximo de rotura de la muestra ensayada (Punto B).

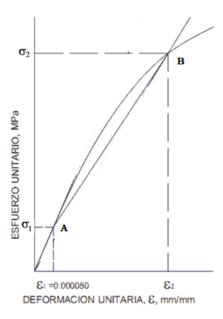


Figura 3. Curva Típica Esfuerzo-Deformación para el hormigón bajo compresión y puntos para definir el módulo de elasticidad según ASTM C-469.

Fuente: Elaboración propia.

Por medio de la figura anterior podemos encontrar el valor del módulo de elasticidad del hormigón mediante la tangente trigonométrica de la secante mediante la siguiente fórmula:

$$E_c = \frac{\sigma_2 - \sigma_1}{\varepsilon_2 - 0.00005}$$

Donde:

 σ_2 = Esfuerzo aplicado al 40% de la carga máxima.

 σ_1 = Esfuerzo aplicado a una deformación unitaria del 0.00005 mm/mm.

 ε_2 = Deformación unitaria al 40% de la carga máxima.

Cálculo para la determinación experimental del módulo de elasticidad.

• Datos.

 $L_o = 200 \text{ mm}.$

 $\emptyset = 151.01 \text{ mm}.$

L = 300,40 mm.

Esfuerzo de rotura = 23,32 MPa.

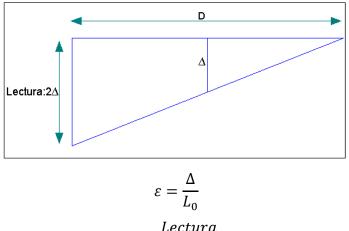
> Determinación del 40% de la resistencia máxima.

40% Resistencia Max. = 0,40 x Esfuerzo máximo.

40% Resistencia Max. = 0,40 x 23,32 MPa.

40% Resistencia Max. = 9,33 MPa.

> Determinación del esfuerzo a una carga aplicada.


$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{1000 N}{17910,24 mm^2}$$

$$\sigma = \mathbf{0.56 MPa}$$

> Determinación de la deformación especifica.

De acuerdo a la Norma ASTM C-469. Por efectos de montaje del aparato del dial de deformaciones nos da lecturas igual al doble de la deformación verdadera de la probeta, lo cual es ventajoso para mayor sensibilidad de las lecturas, ya que la deformación que necesitaremos será en el eje de la probeta, además este ensayo se debe tener la precaución de retirar el equipo (anillos) antes de la carga de rotura para precautelar daños en el equipo.

$$\Delta = \frac{Lectura}{2}$$

$$\varepsilon = \frac{Deformacion~(Lectura~Dial)}{2xL_0}$$

Donde:

 ε = Deformación especifica.

 Δ = Deformación al eje axial de la muestra (Lectura del dial)

 L_0 = Longitud inicial de medida (200 mm)

$$\varepsilon = \frac{0,02}{2x200}$$

 $\varepsilon=0{,}00005\,mm/mm$

$$\varepsilon = 50x10^{-6} mm/mm$$

> Determinación del primer punto (esfuerzo) a una deformación especifica de $25x10^{-6}$ mm/mm.

N.º Lectura	Carga aplicada	Deformación Longitudinal	Esfuerzo	Deformación especifica.
Lectura	KN	1x10 ⁻³ mm	MPa	1x10 ⁻⁶ mm/mm
1	0	0	0	0
2	10	9	0,56	22,50
3	20	19	1,13	47,50
4	30	26	1,69	65,00

El esfuerzo requerido para la gráfica del primer punto se encuentra entre el valor de $50x10^{-6}$ mm/mm de deformación específica para la cual se realiza una interpolación y se obtiene el esfuerzo es de 1,21 MPa.

Por lo tanto, el primer punto es (1,21 MPa; 50x10⁻⁶ mm/mm).

> Determinación del segundo punto (deformación) al 40% del esfuerzo máximo.

N.º Lectura	Carga aplicada	Deformación Longitudinal	Esfuerzo	Deformación especifica.
Lectura	KN	1x10 ⁻³ mm	MPa	1x10 ⁻⁶ mm/mm
16	150	206	8.45	515.00
17	160	216	9.01	540.00
18	170	235	9.57	587.50
19	180	248	10.14	620.00

La deformación específica para la gráfica del segundo punto se encuentra entre los valores de 9.01 MPa y 9.57 MPa de esfuerzo ya que el 40% el esfuerzo máximo es 9,33 MPa para la cual se deberá realizar una interpolación.

Por lo tanto, el segundo punto es (9,33 MPa; 566.77x10-6 mm/mm).

> Determinación del módulo de elasticidad.

Datos.

 $\sigma_2 = 0,40$ esfuerzo máximo = 9,33 MPa.

$$\sigma_1 = \sigma_{0.00005} = 1.21 \text{ MPa.}$$

$$\varepsilon_2 = \sigma_{0,4 \ \sigma_{max}} = 576.77 \text{x} 10^{-6} \text{ mm/mm}.$$

$$\varepsilon_1 = 50 \times 10^{-6} \text{ mm/mm}.$$

$$E = \frac{9,33 - 1.21}{(566.77 - 50)x10^{-6}mm/mm}$$

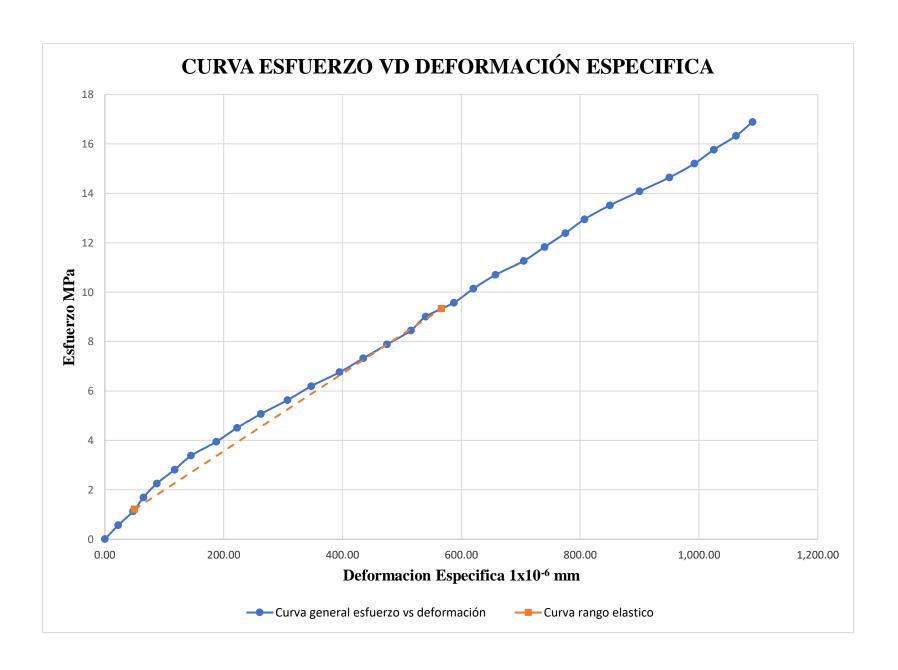
$$E = 15.715.37 MPa$$

Ensayo de rotura y deformación de probetas cantera Caiza.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS

Procedencia:	Cantera C	Cantera Caiza.				Fecha de mu	estreo:	10/09/2018
Solicitante:	Claudio A	Claudio Albaro Medrano Aguilera				Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM C-	464	-			Ensay	yo N.º:	1
'	Edad =	28	Días	A	Area =	17756.8		
	$L_0 =$	200	mm	Carga de r	otura.	414.09	KN	1


Edad =	28	Dias	Area =	1//56.8	
$L_o =$	200	mm	Carga de rotura.	414.09	KN
ø =	150.4	mm	Esfuerzo máximo =	23.32	MPa
L=	300.5	mm	40% Resistencia máx =	9.33	MPa

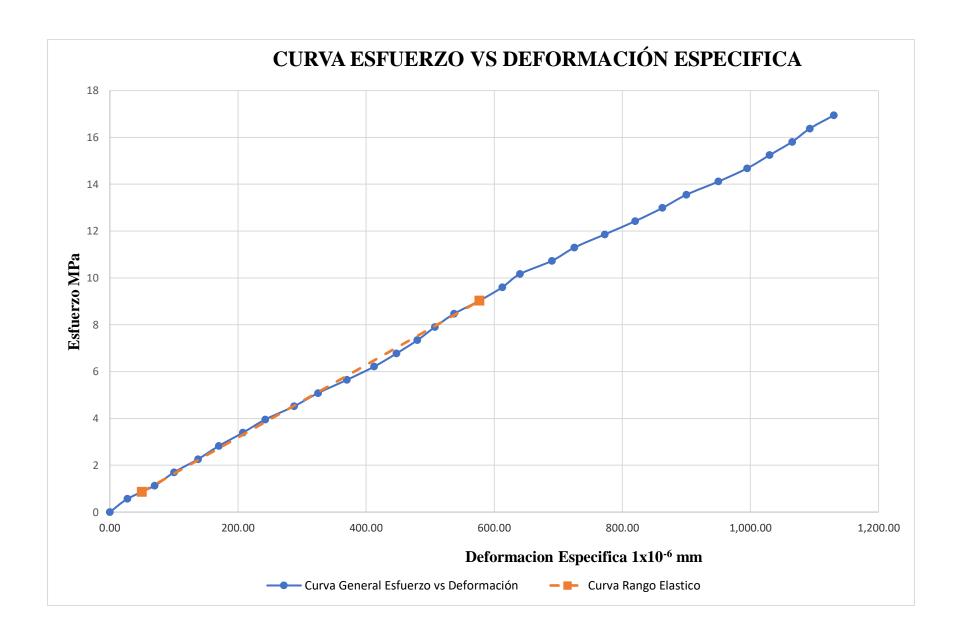
37.0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.56	9	22.50
3	20	1.13	19	47.50
4	30	1.69	26	65.00
5	40	2.25	35	87.50
6	50	2.82	47	117.50
7	60	3.38	58	145.00
8	70	3.94	75	187.50
9	80	4.51	89	222.50
10	90	5.07	105	262.50
11	100	5.63	123	307.50
12	110	6.19	139	347.50
13	120	6.76	158	395.00
14	130	7.32	174	435.00
15	140	7.88	190	475.00
16	150	8.45	206	515.00
17	160	9.01	216	540.00
18	170	9.57	235	587.50
19	180	10.14	248	620.00
20	190	10.70	263	657.50
21	200	11.26	282	705.00
22	210	11.83	296	740.00
23	220	12.39	310	775.00
24	230	12.95	323	807.50
25	240	13.52	340	850.00
26	250	14.08	360	900.00
27	260	14.64	380	950.00
28	270	15.21	397	992.50
29	280	15.77	410	1,025.00
30	290	16.33	425	1,062.50
31	300	16.89	436	1,090.00

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.33 MPa $σ_{(0,00005)}$ 1.21 MPa $ε_{(0,4 max)}$ 566.77 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Caiza.						estreo:	10/09/2018
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM	C-464				Ensa	yo N.°:	2
I	Edad =	28	Días	A	rea =	17709.6		
	$L_o =$	200	mm	Carga de ro	otura.	399.71	K	N
	$\emptyset =$	150.2	mm	Esfuerzo máxi	imo =	22.57	M	Pa
	L=	300.5	mm	40% Resistencia n	náx =	9.03	M	Pa

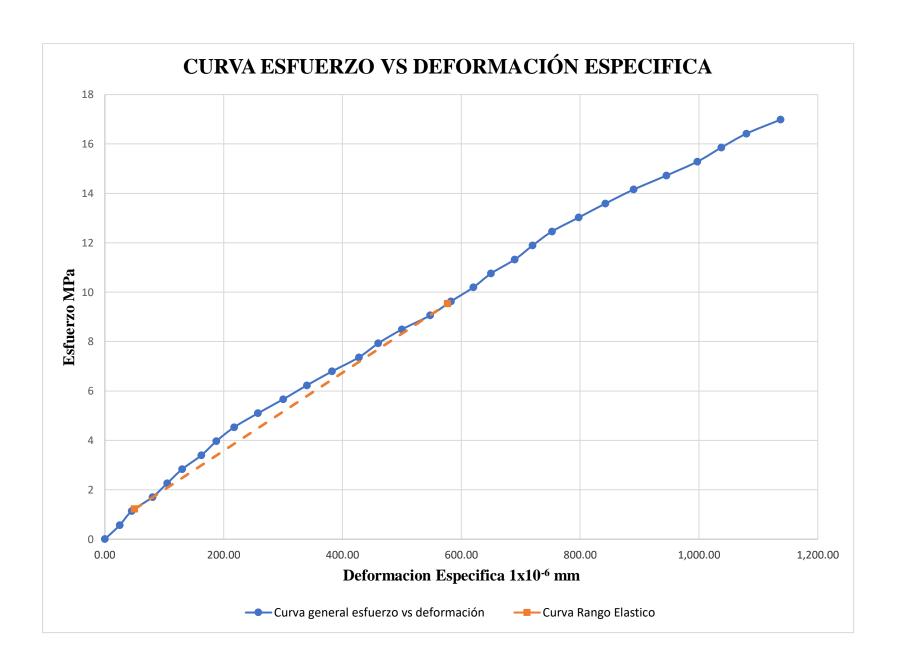
NI 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.56	11	27.50
3	20	1.13	28	70.00
4	30	1.69	40	100.00
5	40	2.26	55	137.50
6	50	2.82	68	170.00
7	60	3.39	83	207.50
8	70	3.95	97	242.50
9	80	4.52	115	287.50
10	90	5.08	130	325.00
11	100	5.65	148	370.00
12	110	6.21	165	412.50
13	120	6.78	179	447.50
14	130	7.34	192	480.00
15	140	7.91	203	507.50
16	150	8.47	215	537.50
17	160	9.03	231	577.50
18	170	9.60	245	612.50
19	180	10.16	256	640.00
20	190	10.73	276	690.00
21	200	11.29	290	725.00
22	210	11.86	309	772.50
23	220	12.42	328	820.00
24	230	12.99	345	862.50
25	240	13.55	360	900.00
26	250	14.12	380	950.00
27	260	14.68	398	995.00
28	270	15.25	412	1,030.00
29	280	15.81	426	1,065.00
30	290	16.38	437	1,092.50
31	300	16.94	452	1,130.00

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.03 MPa $σ_{(0,00005)}$ 0.86 MPa $ε_{(0,4 max)}$ 577.09 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Caiza.						estreo:	10/09/2018
Solicitante:	Solicitante: Claudio Albaro Medrano Aguilera					Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM (C-464				Ensay	yo N.°:	3
I	Edad =	28	Días	A	Area =	17662.5		
	$L_o =$	200	mm	Carga de r	otura.	420.90	K	N
	$\phi =$	150	mm	Esfuerzo máx	imo =	23.83	M	Pa
	L=	300.5	mm	40% Resistencia r	máx =	9.53	M	Pa

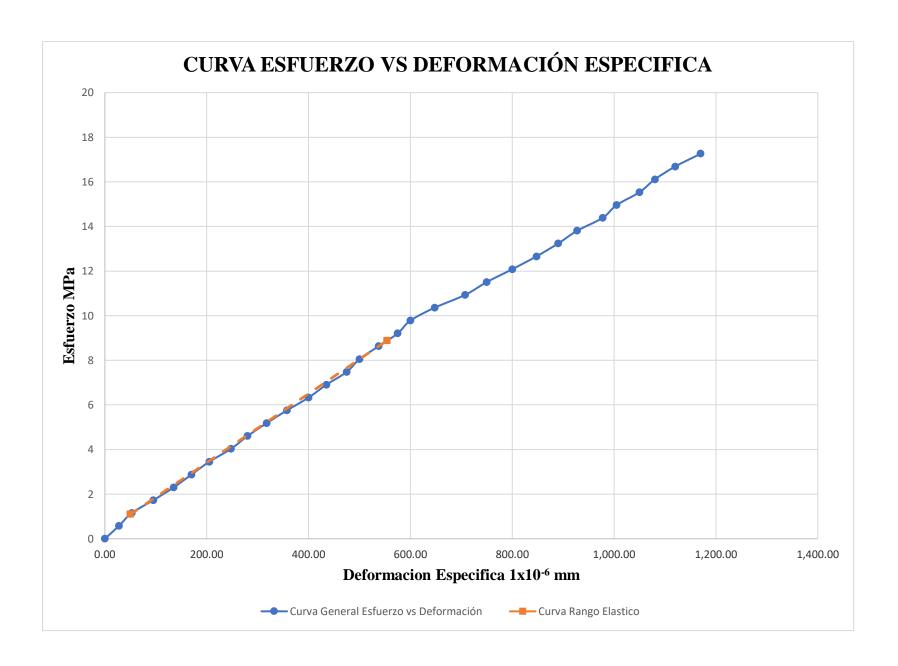
	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.57	10	25.00
3	20	1.13	18	45.00
4	30	1.70	32	80.00
5	40	2.26	42	105.00
6	50	2.83	52	130.00
7	60	3.40	65	162.50
8	70	3.96	75	187.50
9	80	4.53	87	217.50
10	90	5.10	103	257.50
11	100	5.66	120	300.00
12	110	6.23	136	340.00
13	120	6.79	153	382.50
14	130	7.36	171	427.50
15	140	7.93	184	460.00
16	150	8.49	200	500.00
17	160	9.06	219	547.50
18	170	9.62	233	582.50
19	180	10.19	248	620.00
20	190	10.76	260	650.00
21	200	11.32	276	690.00
22	210	11.89	288	720.00
23	220	12.46	301	752.50
24	230	13.02	319	797.50
25	240	13.59	337	842.50
26	250	14.15	356	890.00
27	260	14.72	378	945.00
28	270	15.29	399	997.50
29	280	15.85	415	1,037.50
30	290	16.42	432	1,080.00
31	300	16.99	455	1,137.50

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.53 MPa $σ_{(0,0000\$)}$ 1.21 MPa $ε_{(0,4 max)}$ 576.76 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.		Fecha de mue	estreo:	10/09/2018		
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de ei	nsayo:	08/10/2018
Referencia:	ASTM (C-464				Ensay	o N.°:	4
H	Edad =	28	Días	A	Area =	17381.0		
	$L_o =$	200	mm	Carga de 1	rotura.	386.03	k	(N
	$\phi =$	148.8	mm	Esfuerzo máx	ximo =	22.21	N	I Pa
	L=	300.5	mm	40% Resistencia	máx =	8.88	N	I Pa

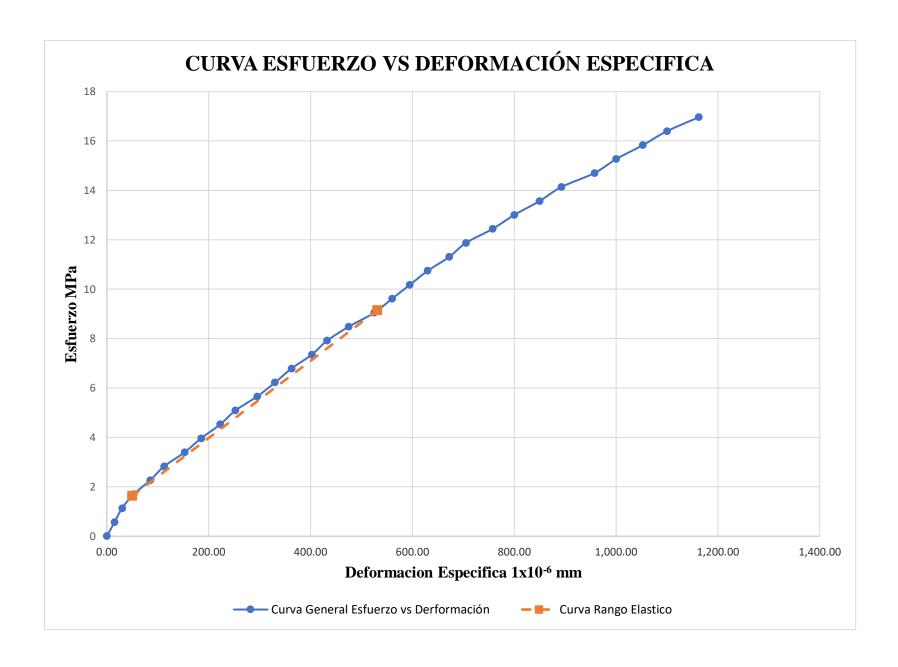
Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
0	0	0	0.00
10	0.58	11	27.50
20	1.15	21	52.50
30	1.73	38	95.00
40	2.30	54	135.00
50	2.88	68	170.00
60	3.45	82	205.00
70	4.03	99	247.50
80	4.60	112	280.00
90	5.18	127	317.50
100	5.75	143	357.50
110	6.33	160	400.00
120	6.90	174	435.00
130	7.48	190	475.00
140	8.05	200	500.00
150	8.63	215	537.50
160	9.21	230	575.00
170	9.78	240	600.00
180	10.36	259	647.50
190	10.93	283	707.50
200	11.51	300	750.00
210	12.08	320	800.00
220	12.66	339	847.50
230		356	890.00
	+	371	927.50
		391	977.50
1		402	1,005.00
1	+	420	1,050.00
			1,080.00
1		448	1,120.00
1			1,170.00
	KN 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 210	KN MPa 0 0 10 0.58 20 1.15 30 1.73 40 2.30 50 2.88 60 3.45 70 4.03 80 4.60 90 5.18 100 5.75 110 6.33 120 6.90 130 7.48 140 8.05 150 8.63 160 9.21 170 9.78 180 10.36 190 10.93 200 11.51 210 12.08 220 12.66 230 13.23 240 13.81 250 14.38 260 14.96 270 15.53 280 16.11 290 16.68	KN MPa 1x10 ⁻³ mm 0 0 0 10 0.58 11 20 1.15 21 30 1.73 38 40 2.30 54 50 2.88 68 60 3.45 82 70 4.03 99 80 4.60 112 90 5.18 127 100 5.75 143 110 6.33 160 120 6.90 174 130 7.48 190 140 8.05 200 150 8.63 215 160 9.21 230 170 9.78 240 180 10.36 259 190 10.93 283 200 11.51 300 210 12.08 320 220 12.66 339 230 13.23 <td< td=""></td<>

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $\begin{array}{cccc} \sigma_{max} \colon & 8.88 & \text{MPa} \\ \sigma_{(0,0000\S)} & 1.09 & \text{MPa} \\ \varepsilon_{(0,4\,max)} & 554.05 & \text{mm/mm} \end{array}$

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.			H	echa de mu	estreo:	10/09/2018
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM (C-464				Ensay	o N.º:	5
I	Edad =	28	Días	A	Area =	17686.1		
	$L_o =$	200	mm	Carga de 1	rotura.	404.48	K	N
	$\phi =$	150.1	mm	Esfuerzo máx	ximo =	22.87	M	IPa
	L=	300.5	mm	40% Resistencia	máx =	9.15	M	IPa

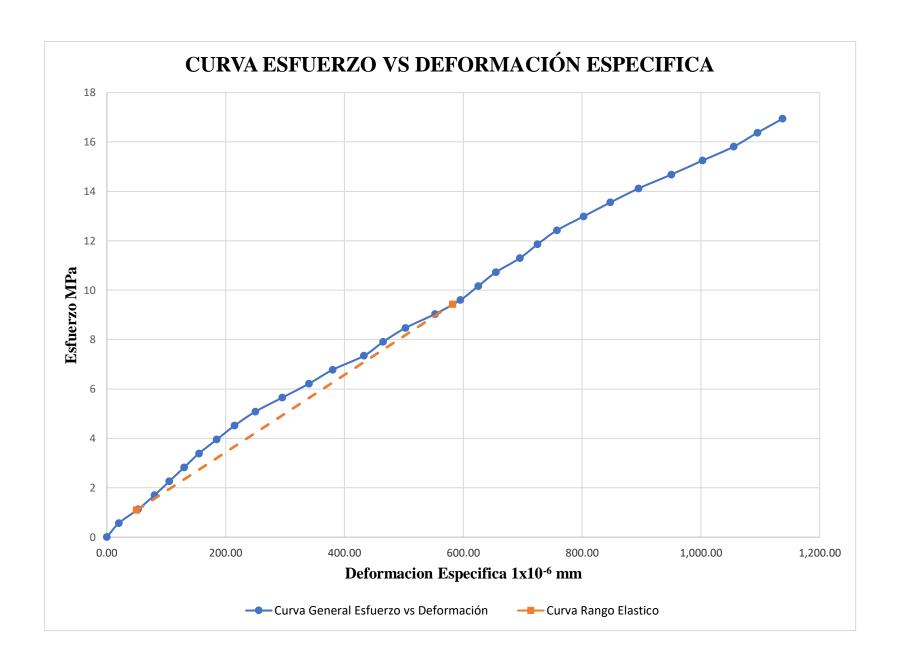
	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.57	6	15.00
3	20	1.13	12	30.00
4	30	1.70	21	52.50
5	40	2.26	34	85.00
6	50	2.83	45	112.50
7	60	3.39	61	152.50
8	70	3.96	74	185.00
9	80	4.52	89	222.50
10	90	5.09	101	252.50
11	100	5.65	118	295.00
12	110	6.22	132	330.00
13	120	6.79	145	362.50
14	130	7.35	161	402.50
15	140	7.92	173	432.50
16	150	8.48	190	475.00
17	160	9.05	210	525.00
18	170	9.61	224	560.00
19	180	10.18	238	595.00
20	190	10.74	252	630.00
21	200	11.31	269	672.50
22	210	11.87	282	705.00
23	220	12.44	303	757.50
24	230	13.00	320	800.00
25	240	13.57	340	850.00
26	250	14.14	357	892.50
27	260	14.70	383	957.50
28	270	15.27	400	1,000.00
29	280	15.83	421	1,052.50
30	290	16.40	440	1,100.00
31	300	16.96	465	1.162.50

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.15 MPa $σ_{(0,00005)}$ 1.63 MPa $ε_{(0,4 max)}$ 531.27 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.]	Fecha de mu	estreo:	10/09/2018
Solicitante:	tante: Claudio Albaro Medrano Aguilera					Fecha de ensayo: 08/10/2018		08/10/2018
Referencia:	Referencia: ASTM C-464					Ensayo N.º: 6		
I	Edad =	28	Días	A	Area =	17662.5		
	$L_o =$	200	mm	Carga de r	otura.	389.28	K	(N
	$\phi =$	150	mm	Esfuerzo máx	imo =	22.04	N.	I Pa
	L=	300.5	mm	40% Resistencia	máx =	8.82	N.	I Pa

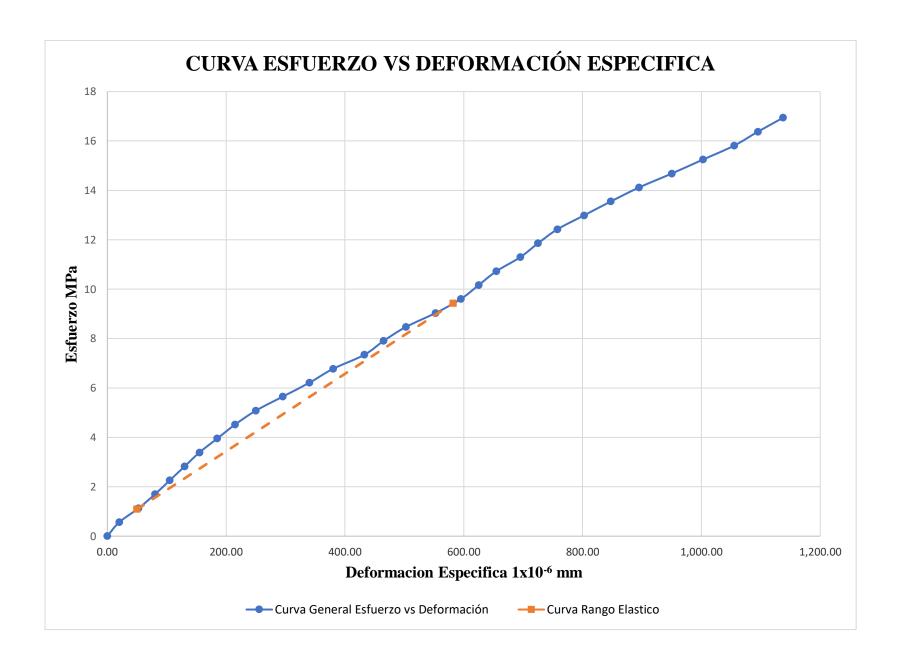
NT O	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica		
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm		
1	0	0	0	0.00		
2	10	0.57	9	22.50		
3	20	1.13	16	40.00		
4	30	1.70	26	65.00		
5	40	2.26	35	87.50		
6	50	2.83	47	117.50		
7	60	3.40	58	145.00		
8	70	3.96	75	187.50		
9	80	4.53	89	222.50		
10	90	5.10	105	262.50		
11	100	5.66	123	307.50		
12	110	6.23	139	347.50		
13	120	6.79	158	395.00		
14	130	7.36	174	435.00		
15	140	7.93	190	475.00		
16	150	8.49	206	515.00		
17	160	9.06	220	550.00		
18	170	9.62	231	577.50		
19	180	10.19	245	612.50		
20	190	10.76	256	640.00		
21	200	11.32	276	690.00		
22	210	11.89	290	725.00		
23	220	12.46	309	772.50		
24	230	13.02	328	820.00		
25	240	13.59	345	862.50		
26	250	14.15	360	900.00		
27	260	14.72	380	950.00		
28	270	15.29	395	987.50		
29	280	15.85	408	1,020.00		
30	290	16.42	421	1,052.50		
31	300	16.99	440	1,100.00		

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 8.82 MPa $σ_{(0,0000\$)}$ 1.36 MPa $ε_{(0,4 max)}$ 534.99 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.			J	Fecha de mu	estreo: 1	0/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de e	nsayo: C	08/10/2018
Referencia:	ASTM (C-464				Ensay	o N.º: 7	1
I	Edad =	28	Días	A	Area =	17709.6		
	$L_o =$	200	mm	Carga de r	rotura.	417.42	KN	1
	$\phi =$	150.2	mm	Esfuerzo máx	imo =	23.57	MF	P a
	L=	300.5	mm	40% Resistencia i	máx =	9.43	MF	P a

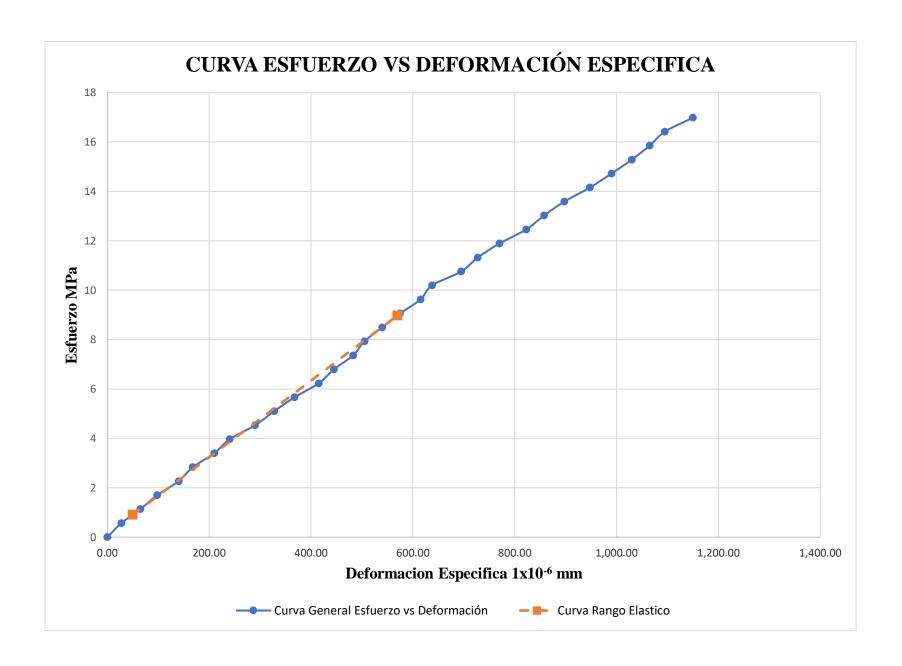
N. KN MPa 1x10 ⁻³ mm 1x10 ⁻⁶ mm/mm 1 0 0 0 0 0.00 0.00 2 10 0.56 8 20.00 3 20 1.13 21 52.50 4 30 1.69 32 80.00 5 40 2.26 42 105.00 6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 22 210 11.86 290 725.00 22 210 11.86 290 725.00 22 210 11.86 290 725.00 22 240 13.55 339 847.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 26 250 26 250 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 20 20 190 15.25 401 1,002.50 29 280 15.81 422 1,055.00 20 20 20 15.25 401 1,002.50 20 20 20 15.25 401 1,002.50 20 20 20 15.25 401 1,002.50 20 20 20 15.25 401 1,002.50 20 20 20 15.25 401 1,002.50 20 20 20 20 20 20 20				10/010000000000000000000000000000000000				
KN MPa 1x10° mm 1x10° mm/mm 1	NT O	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica			
2 10 0.56 8 20.00 3 20 1.13 21 52.50 4 30 1.69 32 80.00 5 40 2.26 42 105.00 6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18	N."	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm			
3 20 1.13 21 52.50 4 30 1.69 32 80.00 5 40 2.26 42 105.00 6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 20	1	0	0	0	0.00			
4 30 1.69 32 80.00 5 40 2.26 42 105.00 6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 20 190 10.73 262 655.00 21	2	10	0.56	8	20.00			
5 40 2.26 42 105.00 6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 23 <td>3</td> <td>20</td> <td>1.13</td> <td>21</td> <td>52.50</td>	3	20	1.13	21	52.50			
6 50 2.82 52 130.00 7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 2	4	30	1.69	32	80.00			
7 60 3.39 62 155.00 8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 <	5	40	2.26	42	105.00			
8 70 3.95 74 185.00 9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50	6	50	2.82	52	130.00			
9 80 4.52 86 215.00 10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50		60	3.39	62	155.00			
10 90 5.08 100 250.00 11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 <t< td=""><td>8</td><td>70</td><td>3.95</td><td>74</td><td>185.00</td></t<>	8	70	3.95	74	185.00			
11 100 5.65 118 295.00 12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00	9	80	4.52	86	215.00			
12 110 6.21 136 340.00 13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00	10	90	5.08	100	250.00			
13 120 6.78 152 380.00 14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50		100	5.65	118	295.00			
14 130 7.34 173 432.50 15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 <td></td> <td>110</td> <td>6.21</td> <td>136</td> <td>340.00</td>		110	6.21	136	340.00			
15 140 7.91 186 465.00 16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	13	120	6.78	152	380.00			
16 150 8.47 201 502.50 17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	14	130	7.34	173	432.50			
17 160 9.03 221 552.50 18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	15	140	7.91	186	465.00			
18 170 9.60 238 595.00 19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	16	150	8.47	201	502.50			
19 180 10.16 250 625.00 20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	17	160	9.03	221	552.50			
20 190 10.73 262 655.00 21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	18	170	9.60	238	595.00			
21 200 11.29 278 695.00 22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	19	180	10.16	250	625.00			
22 210 11.86 290 725.00 23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	20	190	10.73	262	655.00			
23 220 12.42 303 757.50 24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	21	200	11.29	278	695.00			
24 230 12.99 321 802.50 25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	22	210	11.86	290	725.00			
25 240 13.55 339 847.50 26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	23	220	12.42	303	757.50			
26 250 14.12 358 895.00 27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	24	230	12.99	321	802.50			
27 260 14.68 380 950.00 28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	25	240	13.55	339	847.50			
28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	26	250	14.12	358	895.00			
28 270 15.25 401 1,002.50 29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	27	260	14.68	380	950.00			
29 280 15.81 422 1,055.00 30 290 16.38 438 1,095.00	28	270	15.25	401	1,002.50			
30 290 16.38 438 1,095.00			1	422				
· · · · · · · · · · · · · · · · · · ·				438				
	31	300	16.94	455	1,137.50			

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.43 MPa $σ_{(0,0000\$)}$ 1.09 MPa $ε_{(0,4 max)}$ 582.11 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.			J	Fecha de mu	estreo:	10/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM 0	C-464				Ensay	yo N.º:	8
I	Edad =	28	Días	A	rea =	17662.5		
	$L_o =$	200	mm	Carga de re	otura.	396.35	K	N
	$\phi =$	150	mm	Esfuerzo máxi	imo =	22.44	M	IPa
	L=	300.5	mm	40% Resistencia r	náx =	8.98	M	Pa .

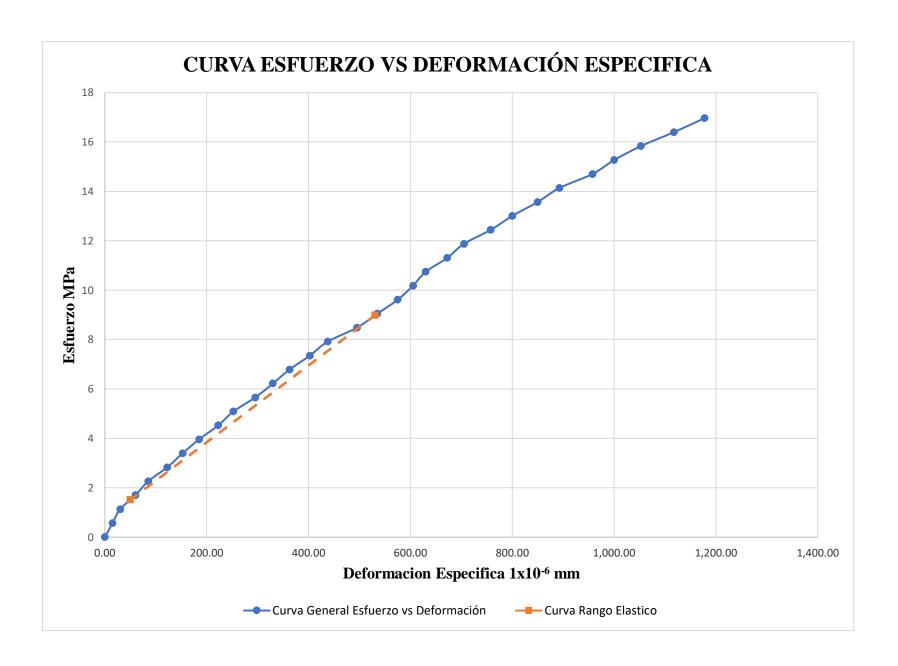
N. O	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica		
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm		
1	0	0	0	0.00		
2	10	0.57	11	27.50		
3	20	1.13	26	65.00		
4	30	1.70	39	97.50		
5	40	2.26	56	140.00		
6	50	2.83	67	167.50		
7	60	3.40	84	210.00		
8	70	3.96	96	240.00		
9	80	4.53	116	290.00		
10	90	5.10	131	327.50		
11	100	5.66	147	367.50		
12	110	6.23	166	415.00		
13	120	6.79	178	445.00		
14	130	7.36	193	482.50		
15	140	7.93	202	505.00		
16	150	8.49	216	540.00		
17	160	9.06	230	575.00		
18	170	9.62	246	615.00		
19	180	10.19	255	637.50		
20	190	10.76	278	695.00		
21	200	11.32	291	727.50		
22	210	11.89	308	770.00		
23	220	12.46	329	822.50		
24	230	13.02	343	857.50		
25	240	13.59	359	897.50		
26	250	14.15	379	947.50		
27	260	14.72	396	990.00		
28	270	15.29	412	1,030.00		
29	280	15.85	426	1,065.00		
30	290	16.42	438	1,095.00		
31	300	16.99	460	1,150.00		

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 8.98 MPa $σ_{(0,0000\$)}$ 0.91 MPa $ε_{(0,4 max)}$ 569.89 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.			I	Fecha de mu	estreo:	10/09/2018
Solicitante:	Claudio	Albaro M	Iedrano Aguilera			Fecha de e	nsayo:	08/10/2018
Referencia:	ASTM (C-464				Ensay	yo N.°:	9
I	Edad =	28	Días	A	Area =	17686.1		
	$L_o =$	200	mm	Carga de 1	rotura.	397.23	K	N
	$\phi =$	150.1	mm	Esfuerzo máx	ximo =	22.46	M	Pa
	L=	300.5	mm	40% Resistencia	máx =	8.98	M	Pa

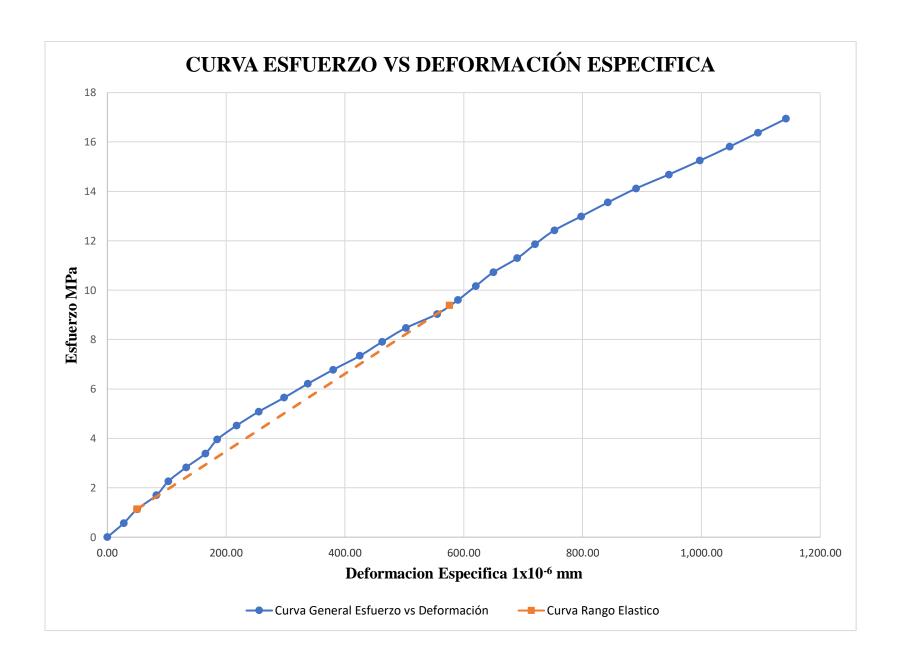
N.° Carga Esfuerzo Deformacion longitudinal tx10°6 mm/mm Deformacion especifica KN MPa 1x10°3 mm 1x10°6 mm/mm 1 0 0 0.00 2 10 0.57 6 15.00 3 20 1.13 12 30.00 4 30 1.70 24 60.00 5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 188.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15<				10/010000000000000000000000000000000000				
KN MPa 1x10° mm 1x10° mm/mm 1 0 0 0.00 2 10 0.57 6 15.00 3 20 1.13 12 30.00 4 30 1.70 24 60.00 5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 <td< th=""><th>NT O</th><th>Carga</th><th>Esfuerzo</th><th>Deformacion longitudinal</th><th>Deformacion especifica</th></td<>	NT O	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica			
2 10 0.57 6 15.00 3 20 1.13 12 30.00 4 30 1.70 24 60.00 5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 1	N.°	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm			
3 20 1.13 12 30.00 4 30 1.70 24 60.00 5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19	1	0	0	0	0.00			
4 30 1.70 24 60.00 5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20	2	10	0.57	6	15.00			
5 40 2.26 34 85.00 6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 <td>3</td> <td>20</td> <td>1.13</td> <td>12</td> <td>30.00</td>	3	20	1.13	12	30.00			
6 50 2.83 49 122.50 7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 2		30	1.70	24	60.00			
7 60 3.39 61 152.50 8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 <	5	40	2.26	34	85.00			
8 70 3.96 74 185.00 9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50	6	50	2.83	49	122.50			
9 80 4.52 89 222.50 10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00		60	3.39	61	152.50			
10 90 5.09 101 252.50 11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 <t< td=""><td>8</td><td>70</td><td>3.96</td><td>74</td><td>185.00</td></t<>	8	70	3.96	74	185.00			
11 100 5.65 118 295.00 12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50	9	80	4.52	89	222.50			
12 110 6.22 132 330.00 13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50	10	90	5.09	101	252.50			
13 120 6.79 145 362.50 14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00	11	100	5.65	118	295.00			
14 130 7.35 161 402.50 15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,117.50 <td>12</td> <td>110</td> <td>6.22</td> <td>132</td> <td>330.00</td>	12	110	6.22	132	330.00			
15 140 7.92 175 437.50 16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	13	120	6.79	145	362.50			
16 150 8.48 198 495.00 17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	14	130	7.35	161	402.50			
17 160 9.05 214 535.00 18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	15	140	7.92	175	437.50			
18 170 9.61 230 575.00 19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	16	150	8.48	198	495.00			
19 180 10.18 242 605.00 20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	17	160	9.05	214	535.00			
20 190 10.74 252 630.00 21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	18	170	9.61	230	575.00			
21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	19	180	10.18	242	605.00			
21 200 11.31 269 672.50 22 210 11.87 282 705.00 23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	20	190	10.74	252	630.00			
23 220 12.44 303 757.50 24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	21	200		269				
24 230 13.00 320 800.00 25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	22	210	11.87	282	705.00			
25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	23	220	12.44	303	757.50			
25 240 13.57 340 850.00 26 250 14.14 357 892.50 27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	24	230	13.00	320	800.00			
27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	25			340				
27 260 14.70 383 957.50 28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50	26	250		357				
28 270 15.27 400 1,000.00 29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50				383	957.50			
29 280 15.83 421 1,052.50 30 290 16.40 447 1,117.50				400				
30 290 16.40 447 1,117.50				421	· · · · · · · · · · · · · · · · · · ·			
					·			

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 8.98 MPa $σ_{(0,0000\$)}$ 1.51 MPa $ε_{(0,4 max)}$ 530.57 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Caiza.				Fecha de mue	estreo:	10/09/2018
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de er	ısayo:	08/10/2018
Referencia:	ASTM (C-464				Ensay	o N.º:	10
H	Edad =	28	Días	A	Area =	17709.6		
	$L_o =$	200	mm	Carga de r	otura.	415.11	k	(N
	$\phi =$	150.2	mm	Esfuerzo máx	imo =	23.44	N	I Pa
	L=	300.5	mm	40% Resistencia	máx =	9.38	N	I Pa

			1070 110000101111111				
NT 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica			
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm			
1	0	0	0	0.00			
2	10	0.56	11	27.50			
3	20	1.13	20	50.00			
4	30	1.69	33	82.50			
5	40	2.26	41	102.50			
6	50	2.82	53	132.50			
7	60	3.39	66	165.00			
8	70	3.95	74	185.00			
9	80	4.52	87	217.50			
10	90	5.08	102	255.00			
11	100	5.65	119	297.50			
12	110	6.21	135	337.50			
13	120	6.78	152	380.00			
14	130	7.34	170	425.00			
15	140	7.91	185	462.50			
16	150	8.47	201	502.50			
17	160	9.03	222	555.00			
18	170	9.60	236	590.00			
19	180	10.16	248	620.00			
20	190	10.73	260	650.00			
21	200	11.29	276	690.00			
22	210	11.86	288	720.00			
23	220	12.42	301	752.50			
24	230	12.99	319	797.50			
25	240	13.55	337	842.50			
26	250	14.12	356	890.00			
27	260	14.68	378	945.00			
28	270	15.25	399	997.50			
29	280	15.81	419	1,047.50			
30	290	16.38	438	1,095.00			
31	300	16.94	457	1,142,50			

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 9.38 MPa $σ_{(0,0000\$)}$ 1.13 MPa $ε_{(0,4 max)}$ 576.16 mm/mm

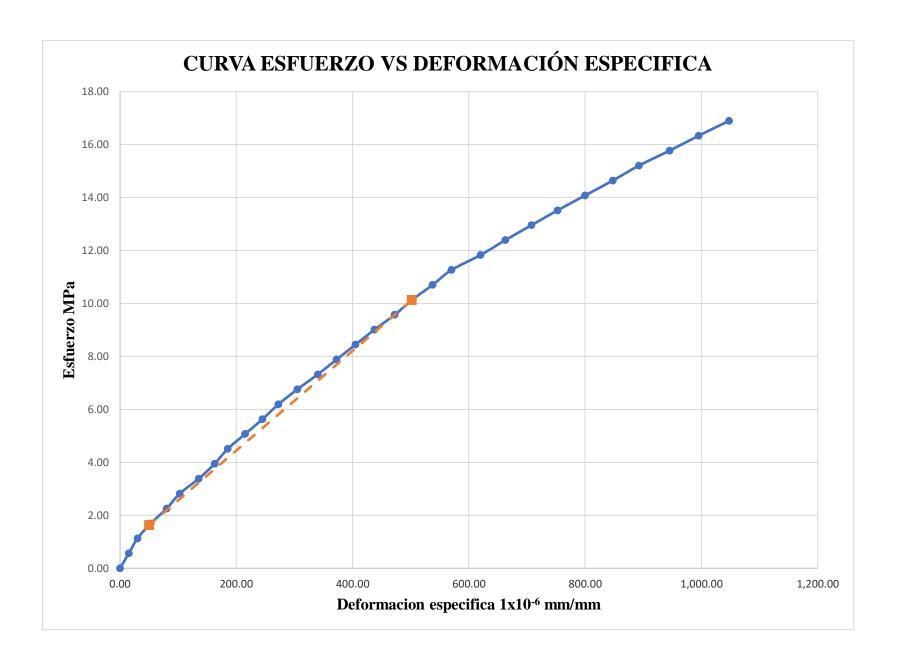
Ensayo de rotura y deformación de probetas cantera Villa Montes.

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERIA CIVIL LABORATORIO DE SUELOS Y HORMIGON

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS

Procedencia:	Cantera V	illa Mont	es.					11/09/2018
Solicitante:	Claudio A	Claudio Albaro Medrano Aguilera					ensayo:	09/10/2018
Referencia:	ASTM C-	464				Ensa	iyo N.º:	1
	Edad =	28	Días	Aı	rea =	17756.8		
	$L_o =$	200	mm	Carga de ro	otura.	449.43	KN	I
	$\phi =$	150.4	mm	Esfuerzo máxi	mo =	25.31	MP	a
	L=	300.5	mm	40% Resistencia m	náx =	10.12	MP	a

MPa


MPa

mm/mm

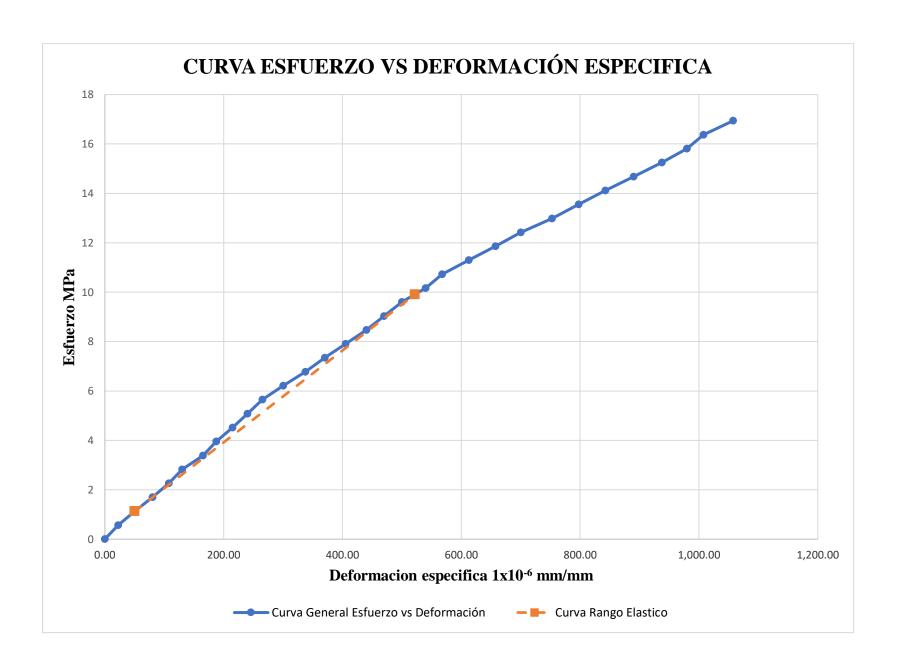
2 200.2				o resistencia man = 10.12 mil a		
77.0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica		
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm		
1	0	0.00	0	0.00		
2	10	0.56	6	15.00		
3	20	1.13	12	30.00		
4	30	1.69	21	52.50		
5	40	2.25	32	80.00		
6	50	2.82	41	102.50		
7	60	3.38	54	135.00		
8	70	3.94	65	162.50		
9	80	4.51	74	185.00		
10	90	5.07	86	215.00		
11	100	5.63	98	245.00		
12	110	6.19	109	272.50		
13	120	6.76	122	305.00		
14	130	7.32	136	340.00		
15	140	7.88	149	372.50		
16	150	8.45	162	405.00		
17	160	9.01	175	437.50		
18	170	9.57	189	472.50		
19	180	10.14	201	502.50		
20	190	10.70	215	537.50		
21	200	11.26	228	570.00		
22	210	11.83	248	620.00		
23	220	12.39	265	662.50		
24	230	12.95	283	707.50		
25	240	13.52	301	752.50		
26	250	14.08	320	800.00		
27	260	14.64	339	847.50		
28	270	15.21	357	892.50		
29	280	15.77	378	945.00		
30	290	16.33	398	995.00		
31	300	16.89	419	1.047.50		

Módulo de elasticidad experimental

 σ_{max} : 10.12 $E = \frac{0.4\sigma_{max} - \sigma_{0,00005}}{2}$ $\sigma_{(0,00005)}$: 1.63 $\overline{\varepsilon_{(0,4\,max)}-0,00005}$ $\varepsilon_{(0,4 \, max)}$: 501.81

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS

Procedencia:	Cantera	Villa Mor	ites.			Fecha de mue	streo:	11/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de en	isayo:	09/10/2018
Referencia:	ASTM (C-464				Ensay	o N.º:	2
]	Edad =	28	Días	A	rea =	17709.6		
	$L_o =$	200	mm	Carga de r	otura.	438.67	K	.N
	$\phi =$	150.2	mm	Esfuerzo máx	imo =	24.77	M	IPa
	L=	300.5	mm	40% Resistencia r	máx =	9.91	M	IPa


NT 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.56	9	22.50
3	20	1.13	20	50.00
4	30	1.69	32	80.00
5	40	2.26	43	107.50
6	50	2.82	52	130.00
7	60	3.39	66	165.00
8	70	3.95	75	187.50
9	80	4.52	86	215.00
10	90	5.08	96	240.00
11	100	5.65	106	265.00
12	110	6.21	120	300.00
13	120	6.78	135	337.50
14	130	7.34	148	370.00
15	140	7.91	162	405.00
16	150	8.47	176	440.00
17	160	9.03	188	470.00
18	170	9.60	200	500.00
19	180	10.16	216	540.00
20	190	10.73	227	567.50
21	200	11.29	245	612.50
22	210	11.86	263	657.50
23	220	12.42	280	700.00
24	230	12.99	301	752.50
25	240	13.55	319	797.50
26	250	14.12	337	842.50
27	260	14.68	356	890.00
28	270	15.25	375	937.50
29	280	15.81	392	980.00
30	290	16.38	403	1,007.50
31	300	16.94	423	1,057.50

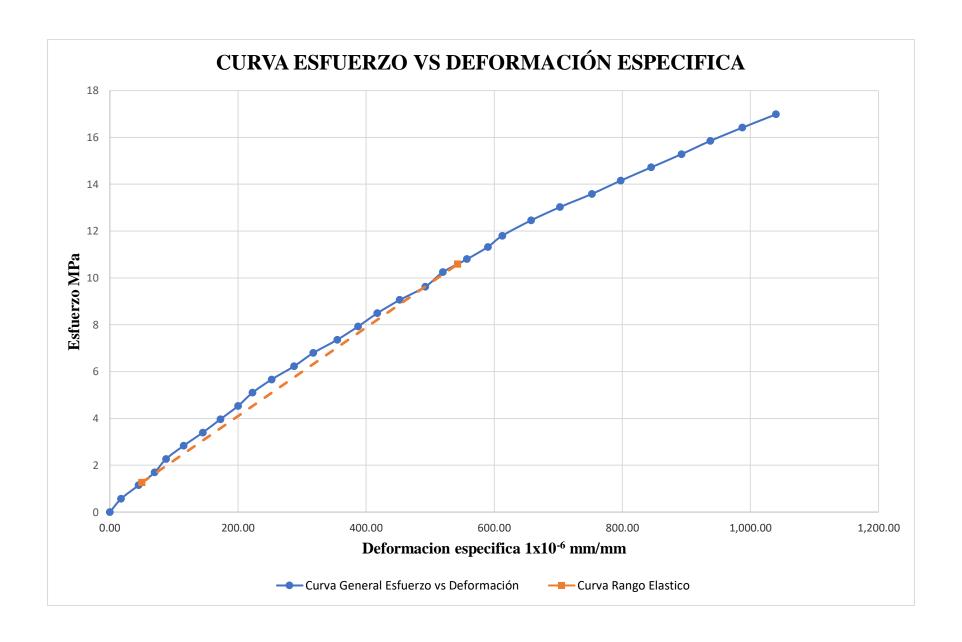
Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0,00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $\begin{array}{cccc} \sigma_{max} : & 9.91 & \text{MPa} \\ \sigma_{(0,00005)} : & 1.13 & \text{MPa} \\ \varepsilon_{(0,4\,max)} : & 521.87 & \text{mm/mm} \end{array}$

E = 18,604.08 MPa

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Cantera	Villa Mon	ites.			Fecha de mues	treo:	11/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de ens	sayo:	09/10/2018
Referencia:	ASTM (C-464				Ensayo	N.°:	3
]	Edad =	28	Días	A	rea =	17662.5		
	$L_{o} =$	200	mm	Carga de re	otura.	467.35	K	.N
	$\phi =$	150	mm	Esfuerzo máxi	imo =	26.46	M	IPa
	L=	300.5	mm	40% Resistencia r	náx =	10.58	M	IPa

3.1.0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0	0	0.00
2	10	0.57	7	17.50
3	20	1.15	18	45.00
4	30	1.70	28	70.00
5	40	2.26	35	87.50
6	50	2.83	46	115.00
7	60	3.40	58	145.00
8	70	3.96	69	172.50
9	80	4.53	80	200.00
10	90	5.10	89	222.50
11	100	5.66	101	252.50
12	110	6.23	115	287.50
13	120	6.79	127	317.50
14	130	7.36	142	355.00
15	140	7.93	155	387.50
16	150	8.49	167	417.50
17	160	9.06	181	452.50
18	170	9.62	197	492.50
19	180	10.25	208	520.00
20	190	10.80	223	557.50
21	200	11.32	236	590.00
22	210	11.80	245	612.50
23	220	12.46	263	657.50
24	230	13.02	281	702.50
25	240	13.59	301	752.50
26	250	14.15	319	797.50
27	260	14.72	338	845.00
28	270	15.29	357	892.50
29	280	15.85	375	937.50
30	290	16.42	395	987.50
31	300	16.99	416	1,040.00

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005} \hspace{1cm} \begin{array}{cccc} \sigma_{max} \colon & 10.58 & \text{MPa} \\ \sigma_{(0.0000\$)} & 1.26 & \text{MPa} \\ \varepsilon_{(0.4\,max)} & 542.77 & \text{mm/mm} \end{array}$

E = 18,922.10 MPa

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS

Procedencia:	rocedencia: Cantera Villa Montes.					Fecha de mu	estreo:	11/09/2018
Solicitante:	Solicitante: Claudio Albaro Medrano Aguilera					Fecha de e	nsayo: (09/10/2018
Referencia:	ASTM (C-464				Ensay	yo N.º:	4
H	Edad =	28	Días	A	Area =	17686.1		
	$L_o =$	200	mm	Carga de r	otura.	431.72	K	N
	$\phi =$	150.1	mm	Esfuerzo máxi	imo =	24.41	MI	Pa
	L=	300.5	mm	40% Resistencia r	máx =	9.76	MI	Pa

NI 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0.00	0	0.00
2	10	0.57	8	20.00
3	20	1.13	15	37.50
4	30	1.70	24	60.00
5	40	2.26	31	77.50
6	50	2.83	40	100.00
7	60	3.39	52	130.00
8	70	3.96	65	162.50
9	80	4.52	75	187.50
10	90	5.09	90	225.00
11	100	5.65	102	255.00
12	110	6.22	115	287.50
13	120	6.79	130	325.00
14	130	7.35	142	355.00
15	140	7.92	156	390.00
16	150	8.48	170	425.00
17	160	9.05	183	457.50
18	170	9.61	195	487.50
19	180	10.18	211	527.50
20	190	10.74	227	567.50
21	200	11.31	239	597.50
22	210	11.87	253	632.50
23	220	12.44	264	660.00
24	230	13.00	280	700.00
25	240	13.57	300	750.00
26	250	14.14	318	795.00
27	260	14.70	337	842.50
28	270	15.27	356	890.00
29	280	15.83	379	947.50
30	290	16.40	400	1,000.00
31	300	16.96	420	1,050.00

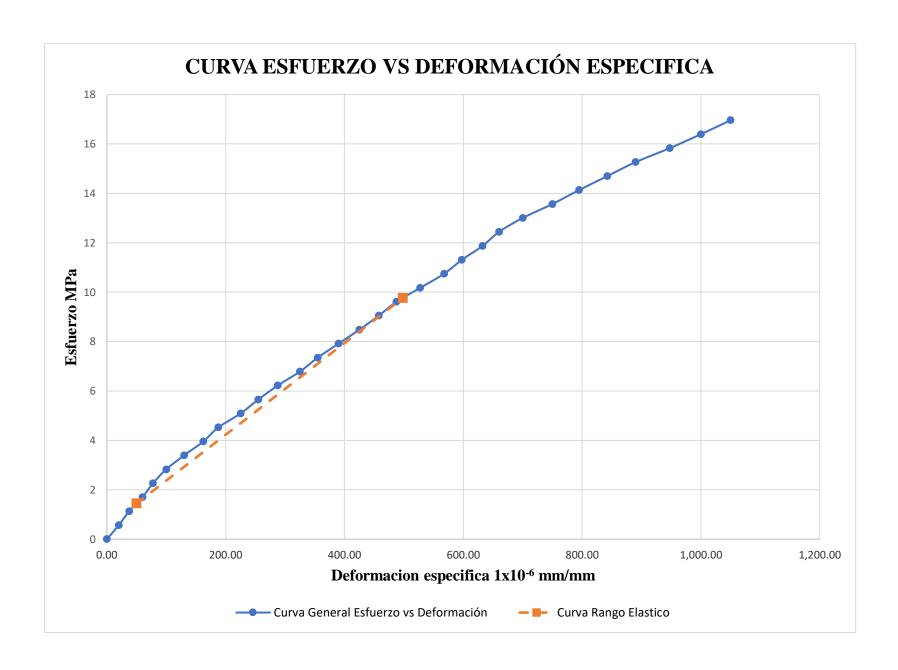
Módulo de elasticidad experimental

 $\sigma_{(0,00005)}$ $\varepsilon_{(0,4\,max)}$

 σ_{max} :

9.76

1.44


498.25

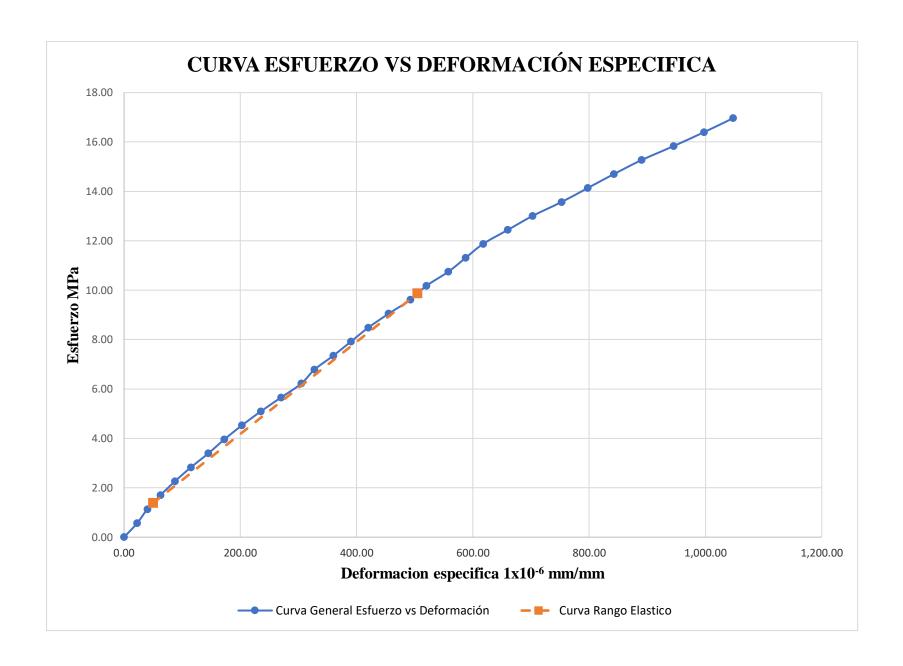
MPa

MPa

mm/mm

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Villa Montes.					Fecha de mue	estreo:	11/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de ei	nsayo:	09/10/2018
Referencia:	ASTM 0	C-464				Ensay	o N.º:	5
I	Edad =	28	Días	A	Area =	17686.1		
	$L_o =$	200	mm	Carga de r	rotura.	436.14	K	N
	$\phi =$	150.1	mm	Esfuerzo máx	kimo =	24.66	M	IPa
	L=	300.5	mm	40% Resistencia i	máx =	9.86	M	IPa

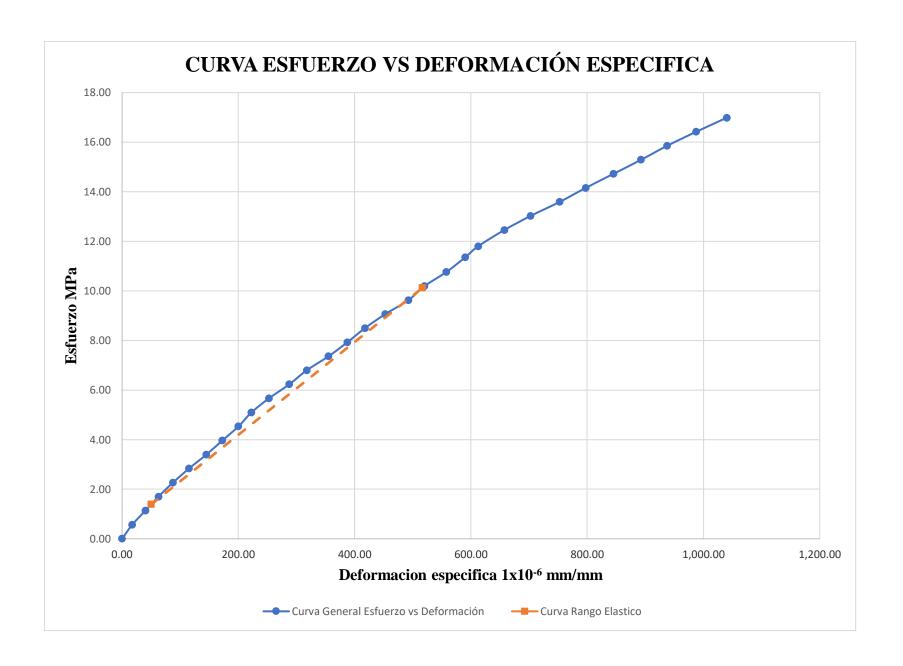
3. 7.0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0.00	0	0.00
2	10	0.57	9	22.50
3	20	1.13	16	40.00
4	30	1.70	25	62.50
5	40	2.26	35	87.50
6	50	2.83	46	115.00
7	60	3.39	58	145.00
8	70	3.96	69	172.50
9	80	4.52	81	202.50
10	90	5.09	94	235.00
11	100	5.65	108	270.00
12	110	6.22	122	305.00
13	120	6.79	131	327.50
14	130	7.35	144	360.00
15	140	7.92	156	390.00
16	150	8.48	168	420.00
17	160	9.05	182	455.00
18	170	9.61	197	492.50
19	180	10.18	208	520.00
20	190	10.74	223	557.50
21	200	11.31	235	587.50
22	210	11.87	247	617.50
23	220	12.44	264	660.00
24	230	13.00	281	702.50
25	240	13.57	301	752.50
26	250	14.14	319	797.50
27	260	14.70	337	842.50
28	270	15.27	356	890.00
29	280	15.83	378	945.00
30	290	16.40	399	997.50
31	300	16.96	419	1,047.50

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4 \, max)} - 0.00005}$

 σ_{max} : 9.86 MPa $\sigma_{(0,0000\$)}$ 1.38 MPa $\varepsilon_{(0,4 \, max)}$ 504.75 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Villa Montes.					Fecha de mue	estreo:	11/09/2018
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de ei	nsayo:	09/10/2018
Referencia:	ASTM (C-464				Ensay	o N.º:	6
J	Edad =	28	Días	A	Area =	17662.5		
	$L_o =$	200	mm	Carga de 1	rotura.	447.04	K	N
	$\phi =$	150	mm	Esfuerzo máx	kimo =	25.31	M	Pa
	L=	300.5	mm	40% Resistencia	máx =	10.12	M	Pa

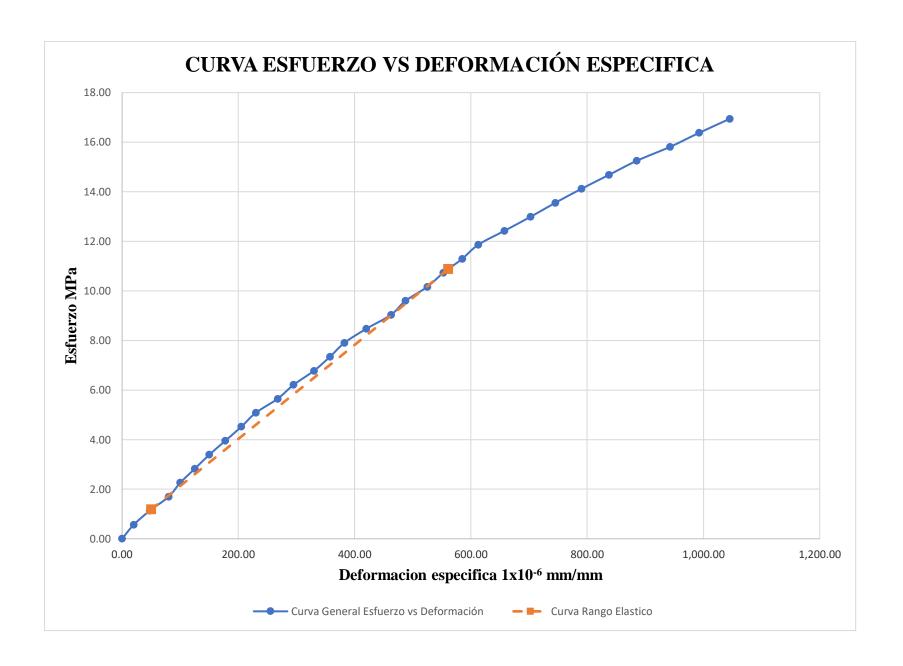
N. O	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0.00	0	0.00
2	10	0.57	7	17.50
3	20	1.13	16	40.00
4	30	1.70	25	62.50
5	40	2.26	35	87.50
6	50	2.83	46	115.00
7	60	3.40	58	145.00
8	70	3.96	69	172.50
9	80	4.53	80	200.00
10	90	5.10	89	222.50
11	100	5.66	101	252.50
12	110	6.23	115	287.50
13	120	6.79	127	317.50
14	130	7.36	142	355.00
15	140	7.93	155	387.50
16	150	8.49	167	417.50
17	160	9.06	181	452.50
18	170	9.62	197	492.50
19	180	10.19	208	520.00
20	190	10.76	223	557.50
21	200	11.35	236	590.00
22	210	11.80	245	612.50
23	220	12.46	263	657.50
24	230	13.02	281	702.50
25	240	13.59	301	752.50
26	250	14.15	319	797.50
27	260	14.72	338	845.00
28	270	15.29	357	892.50
29	280	15.85	375	937.50
30	290	16.42	395	987.50
31	300	16.99	416	1,040.00

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 10.12 MPa $σ_{(0,00005)}$ 1.38 MPa $ε_{(0,4 max)}$ 516.74 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Villa Montes.					Fecha de mu	estreo:	11/09/2018
Solicitante:	Claudio	Albaro M	edrano Aguilera			Fecha de es	nsayo:	09/10/2018
Referencia:	ASTM (C-464				Ensay	yo N.º:	7
J	Edad =	28	Días	Α	Area =	17709.6		
	$L_o =$	200	mm	Carga de r	otura.	481.52	K	N
	$\phi =$	150.2	mm	Esfuerzo máx	imo =	27.19	M	Pa
	L=	300.5	mm	40% Resistencia i	máx =	10.88	M	Pa

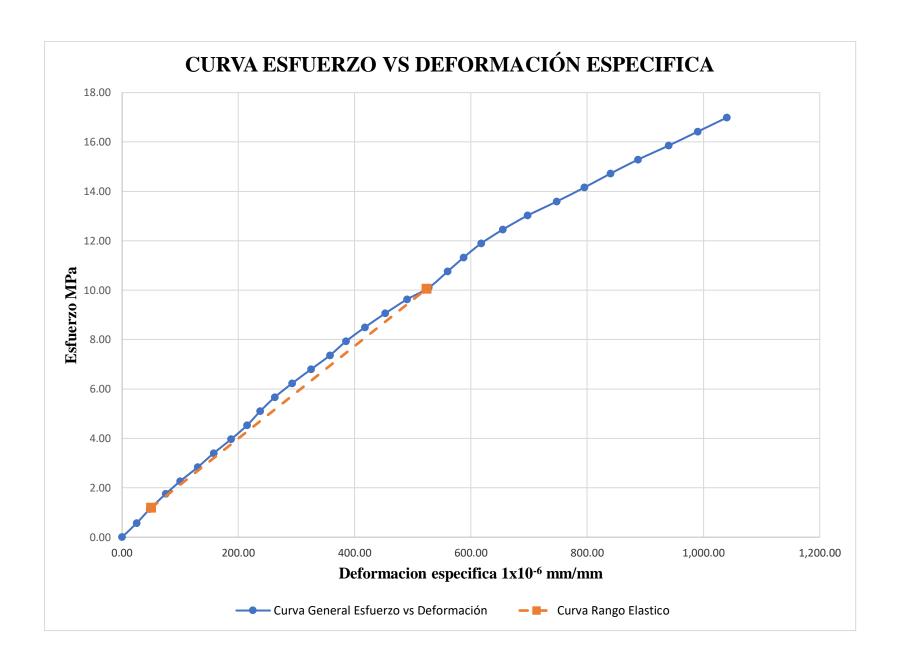
N. 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm
1	0	0.00	0	0.00
2	10	0.56	8	20.00
3	20	1.13	19	47.50
4	30	1.69	32	80.00
5	40	2.26	40	100.00
6	50	2.82	50	125.00
7	60	3.39	60	150.00
8	70	3.95	71	177.50
9	80	4.52	82	205.00
10	90	5.08	92	230.00
11	100	5.65	107	267.50
12	110	6.21	118	295.00
13	120	6.78	132	330.00
14	130	7.34	143	357.50
15	140	7.91	153	382.50
16	150	8.47	168	420.00
17	160	9.03	185	462.50
18	170	9.60	195	487.50
19	180	10.16	210	525.00
20	190	10.73	221	552.50
21	200	11.29	234	585.00
22	210	11.86	245	612.50
23	220	12.42	263	657.50
24	230	12.99	281	702.50
25	240	13.55	298	745.00
26	250	14.12	316	790.00
27	260	14.68	335	837.50
28	270	15.25	354	885.00
29	280	15.81	377	942.50
30	290	16.38	397	992.50
31	300	16.94	418	1,045.00

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 10.88 MPa $σ_{(0,00005)}$ 1.18 MPa $ε_{(0,4 max)}$ 560.98 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Villa Montes.					Fecha de mu	estreo:	11/09/2018
Solicitante:	Claudio	Albaro M	ledrano Aguilera			Fecha de e	nsayo:	09/10/2018
Referencia:	ASTM (C-464				Ensa	yo N.º:	8
J	Edad =	28	Días	A	Area =	17662.5		
	$L_o =$	200	mm	Carga de r	otura.	443.86	K	N
	$\phi =$	150	mm	Esfuerzo máx	imo =	25.13	M	Pa
	L=	300.5	mm	40% Resistencia r	máx =	10.05	M	Pa

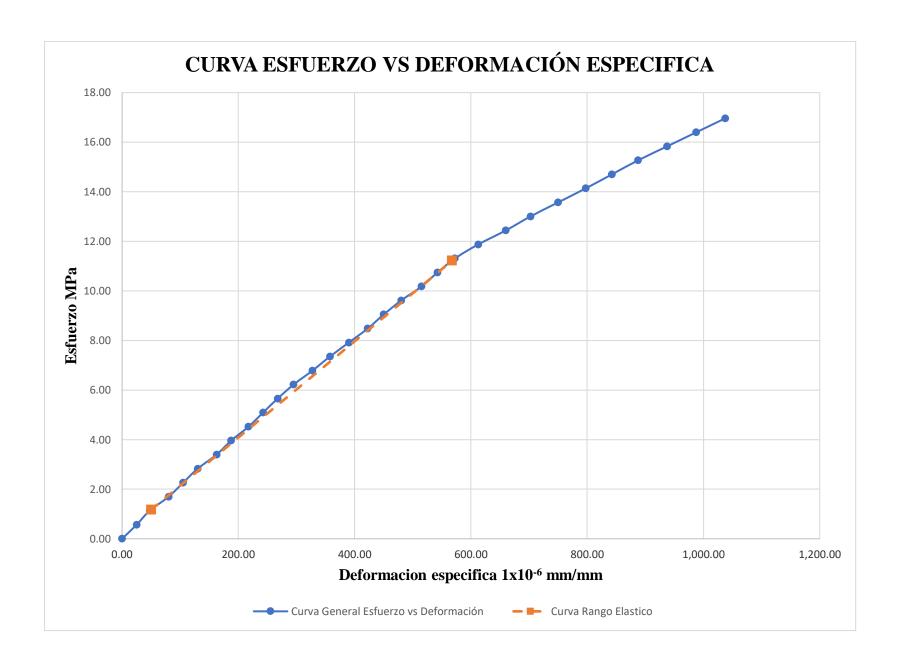
10.05 IIIII							
N T 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica			
N.º	KN	MPa	1x10 ⁻³ mm	1x10 ⁻⁶ mm/mm			
1	0	0.00	0	0.00			
2	10	0.57	10	25.00			
3	20	1.13	19	47.50			
4	30	1.75	30	75.00			
5	40	2.26	40	100.00			
6	50	2.83	52	130.00			
7	60	3.40	63	157.50			
8	70	3.96	75	187.50			
9	80	4.53	86	215.00			
10	90	5.10	95	237.50			
11	100	5.66	105	262.50			
12	110	6.23	117	292.50			
13	120	6.79	130	325.00			
14	130	7.36	143	357.50			
15	140	7.93	154	385.00			
16	150	8.49	167	417.50			
17	160	9.06	181	452.50			
18	170	9.62	196	490.00			
19	180	10.10	211	527.50			
20	190	10.76	224	560.00			
21	200	11.32	235	587.50			
22	210	11.89	247	617.50			
23	220	12.46	262	655.00			
24	230	13.02	279	697.50			
25	240	13.59	299	747.50			
26	250	14.15	318	795.00			
27	260	14.72	336	840.00			
28	270	15.29	355	887.50			
29	280	15.85	376	940.00			
30	290	16.42	396	990.00			
31	300	16.99	416	1,040.00			
			1	-,			

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4 \, max)} - 0.00005}$

 $σ_{max}$: 10.05 MPa $σ_{(0,00005)}$ 1.19 MPa $ε_{(0,4 max)}$ 523.71 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	Procedencia: Cantera Villa Montes.				1	Fecha de mue	estreo:	11/09/2018
Solicitante:	Solicitante: Claudio Albaro Medrano Aguilera				Fecha de er	nsayo:	09/10/2018	
Referencia:	ASTM (C-464				Ensay	o N.º:	9
I	Edad =	28	Días	A	Area =	17686.1		
	$L_o =$	200	mm	Carga de r	rotura.	495.92	K	N
	$\phi =$	150.1	mm	Esfuerzo máx	kimo =	28.04	MI	Pa
	L=	300.5	mm	40% Resistencia	máx =	11.22	MI	Pa

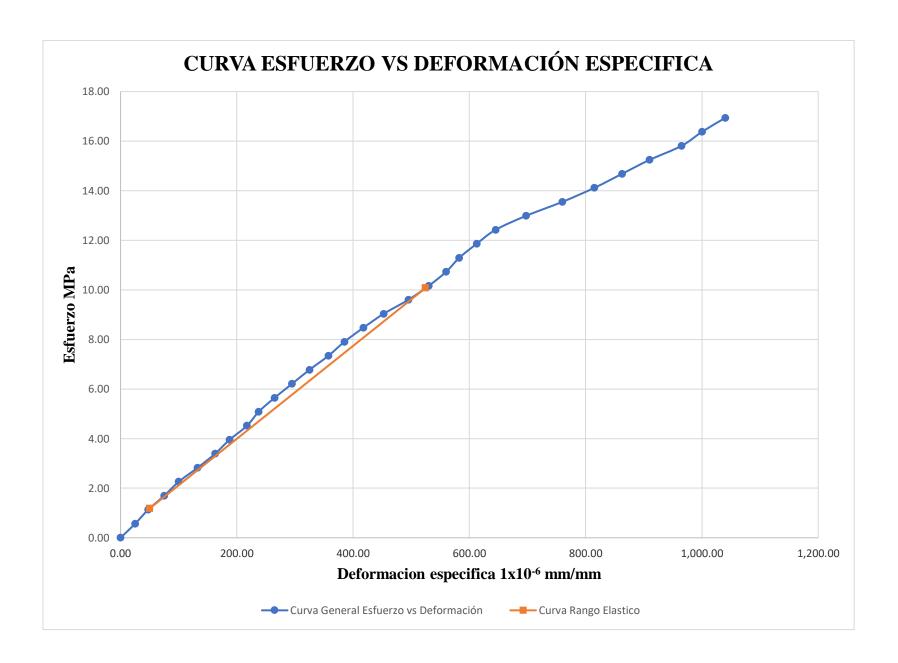
N. 0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica 1x10 ⁻⁶ mm/mm		
N.º	KN	MPa	1x10 ⁻³ mm			
1	0	0.00	0	0.00		
2	10	0.57	10	25.00		
3	20	1.13	19	47.50		
4	30	1.70	32	80.00		
5	40	2.26	42	105.00		
6	50	2.83	52	130.00		
7	60	3.39	65	162.50		
8	70	3.96	75	187.50		
9	80	4.52	87	217.50		
10	90	5.09	97	242.50		
11	100	5.65	107	267.50		
12	110	6.22	118	295.00		
13	120	6.79	131	327.50		
14	130	7.35	143	357.50		
15	140	7.92	156	390.00		
16	150	8.48	169	422.50		
17	160	9.05	180	450.00		
18	170	9.61	192	480.00		
19	180	10.18	206	515.00		
20	190	10.74	217	542.50		
21	200	11.31	229	572.50		
22	210	11.87	245	612.50		
23	220	12.44	264	660.00		
24	230	13.00	281	702.50		
25	240	13.57	300	750.00		
26	250	14.14	319	797.50		
27	260	14.70	337	842.50		
28	270	15.27	355	887.50		
29	280	15.83	375	937.50		
30	290	16.40	395	987.50		
31	300	16.96	415	1,037.50		

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4 \, max)} - 0.00005}$

 $σ_{max}$: 11.22 MPa $σ_{(0,0000\$)}$ 1.17 MPa $ε_{(0,4 max)}$ 567.60 mm/mm

ENSAYO DE ROTURA Y DEFORMACION DE PROBETAS


Procedencia:	ncia: Cantera Villa Montes.					Fecha de muestreo: 11/09/2018		
Solicitante:	e: Claudio Albaro Medrano Aguilera					Fecha de ensayo: 09/10/2018		
Referencia:	ASTM	C-464				Ensayo	N.°:	10
I	Edad =	28	Días	A	Area =	17709.6		
	$L_o =$	200	mm	Carga de 1	rotura.	446.11	K	N
	ø =	150.2	mm	Esfuerzo máx	ximo =	25.19	MI	Pa
	L=	300.5	mm	40% Resistencia	máx =	10.08	MI	Pa

3. 7.0	Carga	Esfuerzo	Deformacion longitudinal	Deformacion especifica 1x10 ⁻⁶ mm/mm		
N.º	KN	MPa	1x10 ⁻³ mm			
1	0	0.00	0	0.00		
2	10	0.56	10	25.00		
3	20	1.13	19	47.50		
4	30	1.69	30	75.00		
5	40	2.26	40	100.00		
6	50	2.82	53	132.50		
7	60	3.39	65	162.50		
8	70	3.95	75	187.50		
9	80	4.52	87	217.50		
10	90	5.08	95	237.50		
11	100	5.65	106	265.00		
12	110	6.21	118	295.00		
13	120	6.78	130	325.00		
14	130	7.34	143	357.50		
15	140	7.91	154	385.00		
16	150	8.47	167	417.50		
17	160	9.03	181	452.50		
18	170	9.60	198	495.00		
19	180	10.16	212	530.00		
20	190	10.73	224	560.00		
21	200	11.29	233	582.50		
22	210	11.86	245	612.50		
23	220	12.42	258	645.00		
24	230	12.99	279	697.50		
25	240	13.55	304	760.00		
26	250	14.12	326	815.00		
27	260	14.68	345	862.50		
28	270	15.25	364	910.00		
29	280	15.81	386	965.00		
30	290	16.38	400	1,000.00		
31	300	16.94	416	1,040.00		

Módulo de elasticidad experimental

 $E = \frac{0.4\sigma_{max} - \sigma_{0.00005}}{\varepsilon_{(0.4\,max)} - 0.00005}$

 $σ_{max}$: 10.08 MPa $σ_{(0,0000\$)}$ 1.18 MPa $ε_{(0,4 max)}$ 524.55 mm/mm

CANTERA CAIZA.

a) Toma de muestra del árido grueso.

b) Procesamiento de los áridos.

c) Toma de muestra árido fino

d) Transporte de los agregados.

CANTERA VILLA MONTES.

a) Acopio de agregado grueso

b) Toma de muestra agregado fino

c) Acopio de los agregados mediante maquinaria.

ENSAYO DE LOS AGREGADOS.

a) Cuarteo del agregado fino.

b) Cuarteo del agregado grueso.

c) Secado del agregado fino.

d) prueba de humedad del agregado fino.

e) Balanza mecánica.

f) Muestra del agregado fino en matraz.

DOSIFICACIÓN Y CURADO DE LAS PROBETAS CILÍNDRICAS.

a) Colocado de aceite a las probetas

b) Probetas con aceite

c) Mesclado de los componentes del Hº.

d)Compactado del Hº en el cono de abram.

e) Varillado en el cono de Abram.

f) Medición del asentamiento.

g) Compactado de las probetas.

h) Probetas terminadas.

i) Curado de las probetas.

j) Curado de las 50 probetas.

ENSAYO A COMPRESIÓN Y DEFORMACIÓN DE PROBETAS CILÍNDRICAS.

CS SERIN

a) Grupo de 10 probetas a ser ensayadas.

c) Centrado de las probetas.

b) Pesaje de las probetas.

d) Ensayo a compresion.

e) Centrado del equipo para la medición.

f) Lecturas del equipo.

g) Roturas de probetas a compresión simple.