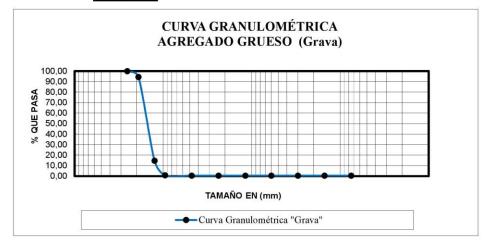
ANEXOS I CARACTERIZACIÓN, ANÁLISIS DE LOS AGREGADOS PÉTREOS

GRANULOMETRÍA - AGREGADO GRUESO (Grava)


PROYECTO: EVALUACION DEL APORTE ESTRUTURAL DE MEZCLAS ASFALTICAS POROSAS EN

PAVIMENTOS

ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

Peso Total (g	r.)		5000		
Tamices	tamaño (mm)	Peso Ret.	Ret. Acum	% Ret	% que pasa del total
1"	25,4	0,00	0,00	0,00	100,00
3/4"	19,0	280,00	280,00	5,60	94,40
1/2"	12,5	3985,00	4265,00	85,30	14,70
3/8"	9,50	695,00	4960,00	99,20	0,80
N°4	4,75	15,00	4975,00	99,50	0,50
N°8	2,36	0,00	4975,00	99,50	0,50
N°16	1,18	0,00	4975,00	99,50	0,50
N°30	0,60	0,00	4975,00	99,50	0,50
N°50	0,30	0,00	4975,00	99,50	0,50
N°100	0,15	0,00	4975,00	99,50	0,50
N°200	0,075	0,00	4975,00	99,50	0,50
BASE	-	0,00	4975,00	99,50	0,50

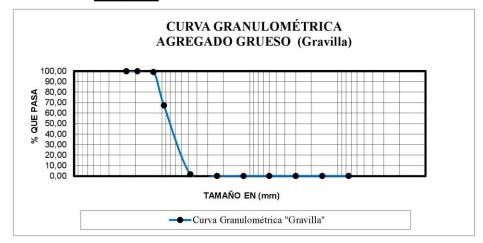
SUMA 4975,0 PÉRDIDAS 25,0 MF = 7,96

HUMEDAI)
DATO	gr
Peso Muestra Húmeda	4134,00
Peso Muestra seca	4100,80
Peso Agua	33,20
% de Humedad	0,81

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

GRANULOMETRÍA - AGREGADO GRUESO (Gravilla)

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES


ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

eso Total (gr	r.)		5000		
Tamices	tamaño (mm)	Peso Ret.	Ret. Acum	% Ret	% que pasa del total
1"	25,4	0,00	0,00	0,00	100,00
3/4"	19,0	0,00	0,00	0,00	100,00
1/2"	12,5	35,00	35,00	0,70	99,30
3/8"	9,50	1595,00	1630,00	32,60	67,40
N°4	4,75	3280,00	4910,00	98,20	1,80
N°8	2,36	80,00	4990,00	99,80	0,20
N°16	1,18	0,00	4990,00	99,80	0,20
N°30	0,60	0,00	4990,00	99,80	0,20
N°50	0,30	0,00	4990,00	99,80	0,20
N°100	0,15	0,00	4990,00	99,80	0,20
N°200	0,075	0,00	4990,00	99,80	0,20
BASE	-	0,00	4990,00	99,80	0,20

 SUMA
 4990,0

 PÉRDIDAS
 10,0

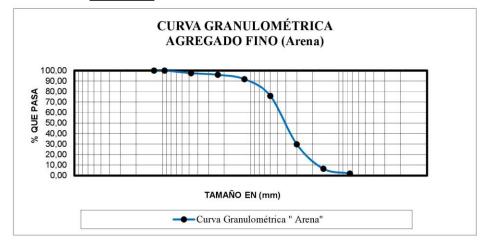
 MF =
 7,30

HUMEDAI)
DATO	gr
Peso Muestra Húmeda	5336,90
Peso Muestra seca	5268,00
Peso Agua	68,90
% de Humedad	1.31

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

GRANULOMETRÍA - AGREGADO FINO (Arena)

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES


ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

eso Total (g	r.)		2000		
Tamices	tamaño (mm)	Peso Ret.	Ret. Acum	% Ret	% que pasa del total
1/2	12,5	0,00	0,00	0,00	100,00
3/8	9,50	0,00	0,00	0,00	100,00
N°4	4,75	49,60	49,60	2,48	97,52
N°8	2,36	31,30	80,90	4,05	95,96
Nº16	1,18	83,30	164,20	8,21	91,79
N°30	0,60	318,70	482,90	24,15	75,86
N°50	0,30	921,40	1404,30	70,22	29,79
N°100	0,15	465,00	1869,30	93,47	6,54
N°200	0,075	91,60	1960,90	98,05	1,96
BASE		23,60	1984,50	99,23	0,78

 SUMA
 1984,5

 PÉRDIDAS
 15,5

 MF =
 3,01

HUMEDAI)
DATO	gr
Peso Muestra Húmeda	2321,00
Peso Muestra seca	2224,20
Peso Agua	96,80
% de Humedad	4,35

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA

PROGRAMA DE INGENIERIA CIVIL

LABORATORIO DE HORMIGON

"DETERMINACIÓN DEL PORCENTAJE DEL AGREGADO GRUESO MEDIANTE LA MAQUINA DE LOS ÁNGELES"

PROYECTO:

EVALUACIÓN DEL APORTE ESTRUCTURAL DE MEZCLAS ASFÁLTICAS POROSAS EN PAVIMENTOS FLEXIBLES

ELABORADO POR:

MANUEL ALEJANDRO BARRIOS QUIROGA

Tabla de resultados de determinación del porcentaje del agregado grueso mediante la máquina de los ángeles

Gradac	ión	A	В	С	D
Diámet	tro	Cantida	d de mate	rial a emp	lear (gr)
PASA	RETENIDO				
1 1/2"	1"	1250±25			
1"	3/4"	1250±25			
3/4"	1/2"	1250±10	2500±10		
1/2"	3/8"	1250±10	2500±10		
3/8"	1/4"			2500±10	
1/4"	N°4			2500±10	
N°4	N°8				5000±10
Peso to	tal	5000±10	5000±10	5000±10	5000±10
Numero de esferas	3	12	11	8	6
N° de revolucione	es	500	500	500	500
Tiempo de rotació	n	30	15	15	15

Gr	adación B
Tamiz	Peso retenido
1/2"	2500,9
3/8"	2500.5

$$\% \ DESGASTE = \frac{P_{INICIAL} - P_{FINAL}}{P_{INICIAL}} * 100$$

Material	Peso inicial	Peso final obtenido al tamizar el material por el tamiz # 12	% de desgaste	Especificación ASTM
A				35% MAX
В	5001.4	3832.6	23.37	35% MAX
С	-	-	-	35% MAX
D	12	-	-	35% MAX

Ing. Moises Diaz Ayarde

JEFE DE LAB. DE HORMIGON

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO

FACULTAD DE CIENCIAS Y TECNOLOGIA

DEPARTAMENTO DE TOPOGRAFIA Y VIAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL(TARIJA-BOLIVIA)

ENSAYO DE EQUIVALENTE DE ARENA ASTM D-2419

PROYECTO: EVALUACION DEL APORTE ESTRUTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES

FECHA: JUNIO 2019

MUESTRA: N°1,2,3

N° de	H1	H ₂	Equivalente de Arena
Muestra	(cm)	(cm)	(%)
1	8,8	9,40	93,62
2	9,5	10	95,00
3	9,5	9,80	96,94
		Promedio	95,19

AGREGADO: ARENA

$$E. A. = \frac{H_1}{H_2} * 100$$

Equivalente de Arena (%)	NORMA
95,19	> 50%

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

PESO ESPECÍFICO - AGREGADO GRUESO (Grava)

EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES PROYECTO:

MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019 ELABORADO POR:

0,88	2,59	2,56	2,53	PROMEDIO			
0,92	2,59	2,55	2,53	3070,00	5046,00	5000,00	3
0,84	2,59	2,55	2,53	3068,00	5042,00	5000,00	2
0,88	2,60	2,56	2,54	3075,00	5044,00	5000,00	-
		(gr/cm3)		(gr)	(gr)		
	(gr/cm3)	SUP. SECA	(gr/cm3)	DEL AGUA "C"	SUP. SECA "B"	(gr)	
DE ABSORCIÓN	APARENTE	SATURADO CON	A GRANEL	SATURADA DENTRO	SATURADA CON	SECADA "A"	N
%	PESO ESPECÍFICO	PESO ESPECÍFICO	PESO ESPECÍFICO	PESO MUESTRA	PESO MUESTRA	PESO MUESTRA	MUESTRA

(B-C) = Este término es la pérdida de peso de la muestra sumergida y significa por lo tanto el volúmen de agua desplazado o sea el volúmen de la muestra.

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

PESO ESPECÍFICO - AGREGADO GRUESO (Gravilla)

EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES PROYECTO:

FECHA: JUNIO DEL 2019 MANUEL ALEJANDRO BARRIOS QUIROGA ELABORADO POR:

	APARENTE DE ABSORCIÓN	(gr/cm3)		2,65 2,72	2,60 1,83	2,61 2,39	2,62 2,31
PES	APAF	(gr/		2,	2,	2,	2,
Н	SATURADO CON	SUP. SECA	(gr/cm3)	2,54	2,53	2,52	2,53
PESO ESPECÍFICO	A GRANEL	(gr/cm3)		2,47	2,48	2,46	2,47
RA	NTRO	E)			0	0	EDIO
PESO MUESTRA	SATURADA DENTRO	DEL AGUA "C"	(gr)	3065,00	3063,00	3040,00	PROMEDIO
	-	SUP. SECA "B" DEL AGUA "	(gr) (gr)	5053,30 3065,00	5067,20 3063,0	5046,10 3040,00	PROM
A PESO MUESTRA							PROM

(B-C) = Este término es la pérdida de peso de la muestra sumergida y significa por lo tanto el volúmen de agua desplazado o sea el volúmen de la muestra.

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

PESO ESPECÍFICO - AGREGADO FINO (Arena)

EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES PROYECTO:

FECHA: JUNIO DEL 2019 MANUEL ALEJANDRO BARRIOS QUIROGA ELABORADO POR:

	0.03	253	2.40	2.77	PROMEDIO						
	0,38	2,51	2,49	2,48	500,000	498,10	299,30	9,926	177,3	500	8
	1,18	2,54	2,50	2,47	500,000	494,10	299,80	971,4	171,6	200	2
	1,22	2,54	2,49	2,46	500,000	493,90	299,50	1000,2	200,7	200	-
			(gr/cm3)				(ml) ó (gr)	(gr)			
		(gr/cm3)	SUP. SECA	(gr/cm3)	(III)	(gr)	MATRÁZ "W"	AGUA	(gr)	(gr)	
	DE ABSORCIÓN	APARENTE	SATURADO CON	A GRANEL	MATRÁZ "V"	SECADA "A"	AGREGADO AL	MATRAZ +	DE MATRÁZ	MUESTRA	Å
_	%	P.E.	P. E.	P.E.	VOLUMEN DEL	PESO MUESTRA	PESO DEL AGUA	MUESTRA +	PESO	PESO	MUESTRA

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

TABLA GRANULOMÉTRICA FORMADA - DISEÑO MARSHALL

PROYECTO: EVAL

EVALUACION DEL APORTE ESTRUTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS

ELABORADO POR:

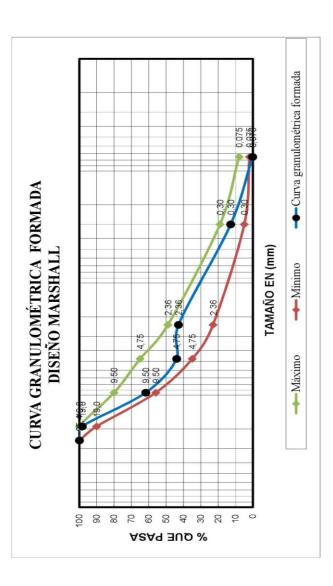
MANUEL ALEJANDRO BARRIOS QUIROGA

FECHA: JUNIO DEL 2019

			١١١٠٠٠٠	A	Grava	Gravilla	Arona		TOTAL	14.			
		Grava	Gravilla	Arena	Diava	Clavilla	DICIIO		2	AL			
Tamices	tamaño	Peso Ret.	Peso Ret.	Peso Ret.	al	al	al	Peso Ret.		7 0 /0	% due basa	Especificaciones	aciones
	(mm)	a 3000 gr	a 3000 gr	a 3000 gr	0,30	0,25	0,45	1,00	Ket. Acum	% Ket	del total	Mínimo Máximo	Máximo
1"	25,4	0,00	0,00	00,00	00'0	00'0	00'0	00'0	00'0	0000	100,00	100	100
3/4"	19,0	168,00	0,00	0,00	50,40	00'0	00'0	50,40	50,40	1,69	98,31	90	100
1/5"	12,5	2391,00	21,00	00,00	717,30	5,25	00'0	722,55	772,95	25,99	74,01	-	,
3/8"	9,50	417,00	957,00	0,00	125,10	239,25	00'0	364,35	1137,30	38,24	61,76	99	80
N°4	4,75	00,6	1968,00	74,40	2,70	492,00	33,48	528,18	1665,48	56,01	43,99	35	65
8 ₀ N	2,36	0,00	48,00	46,95	00'0	12,00	21,13	33,13	19,8691	57,12	42,88	23	49
N°16	1,18	0,00	0,00	124,95	00'0	00'0	56,23	56,23	1754,84	59,01	40,99	-	
N°30	0,60	0,00	0,00	478,05	00'0	00'0	215,12	215,12	1969,96	66,25	33,75		
N°50	0,30	0,00	0,00	1382,10	00'0	00'0	621,95	621,95	2591,90	87,16	12,84	5	19
N°100	0,15	0,00	0,00	697,50	00'0	00'0	313,88	313,88	2905,78	97,71	2,29		
N°200	0,075	0,00	0,00	137,40	00'0	00'0	61,83	61,83	2967,61	62,66	0,21	2	8
BASE	•	0,00	0,00	13,60	00'0	00'0	6,12	6,12	2973,73	100,00	0,00		,
-	SUMA	2985,0	2994,0	2955,0	895,50	748,50	1329,73	2973,7					
	PÉRDIDAS	15,0	0,9	45,1					-16				

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

Ing. Seila Claudia Ávila Sandoval JEFE DE LAB. ASFALTOS - UAJMS



CURVA GRANULOMÉTRICA FORMADA - DISEÑO MARSHALL

PROYECTO: EVALUACION DEL APORTE ESTRUTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS

ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA

FECHA: JUNIO DE 2019

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

Ing. Seila Claudia Ávila Sandoval JEFE DE LAB. ASFALTOS - UAJMS

ANEXOS II CARACTERIZACIÓN DEL CEMENTO ASFALTICO

UNIVERSIDAD AUTONÓMA "JUAN MISAEL SARACHO"

FACULTAD DE CIENCIAS Y TECNOLOGIA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE ASFALTOS

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS

FLEXIBLES

ELABORADO POR: UNIV. MANUEL ALEJANDRO BARRIOS QUIROGA

RESULTADOS

Tabla de resultados de ensayos realizados del cemento asfaltico 85-100

Ensayo		Unidad	Ensayo 1	Ensayo 2	Ensayo 3	Promedio	Especific	caciones
Ensayo		Unidad	Ensayo 1	Ensayo 2	Ensayo 3	Fromedio	Mínimo	Máximo
	Lectura N°1		90	93	96			
Penetración a 25°C, 100s. 5seg.(0.1mm) AASHTO T-49	Lectura N°2	mm.	94	95	92	93	85	100
Joseph (V. Hillit) / M. ISTITO 1-42	Lectura N°3		88	99	89			
	Promedio		91	96	92			
Ensayo		Unidad	Ensayo 1	Ensayo 2	Ensayo 3	Promedio	Especific	caciones
Elisayo		Cilidad	Elisayo i	Elisayo 2	Elisayo	Tiomedio	Mínimo	Máximo
Punto de ablandamiento	14	°C	44,0	46,0	47,0	46	42	53
Ensayo		Unidad	Ensayo 1	Ensayo 2	Ensayo 3	Promedio	Especific	caciones
Ensayo		Unidad				rromedio	Mínimo	Máximo
Punto de Inflamación AASHTO	T-48	°C	>282	>296	>315	>298	>230	-
Ensayo		Unidad	Ensayo 1	Ensayo 2	Ensayo 3	Promedio	Especific	caciones
Ensayo		Unidad	Ensayor	Ensayo 2	Elisayo 3	Fromedio	Mínimo	Máximo
Ductilidad	*	Cm	127	129	131	129	100	
Ensayo		Unidad	Ensavo 1	Ensayo 2	Ensayo 3	Promedio	Especific	caciones
Elisayo		Unidad	Elisayo i	Elisayo 2	Elisayo	Tromedio	Mínimo	Máximo
Peso Picnómetro		grs.	38,1	38,1	38,2			
Peso Picnómetro + Agua (25°C))	grs.	62,8	62,8	62,7			
Peso Picnómetro + Muestra		grs.	57,3	57,4	57,8	1,01	1	1,05
Peso Picnómetro + Agua + Mue	estra	grs.	62,8	62,9	63,2			
Peso Específico		grs./cm3	0.96	1.01	1,02			

Univ. Manuel Alejandro Barrios Quiroga

LABORATORISTA

Ing. Seila Claudia Ávila Sandoval

JEFE. LAB DE ASFALTOS

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACHTAD DE CIENCIAS Y TECNOLOGIA

PROCEEDINGS PROCESS			ı	ı									ncia	Fluencia promedio	0,01 pt		15,00	ı		14,0	l	14,00			15,00		700000000000000000000000000000000000000	15,6	ı	
Proceedings Proceedings Procedure			l			iroga		%	30	25	45	0	Flue	lectura dial del fluj	Γ	16	14	15	13	14	12	15	15	16	14	15	16	15	16	
Proceedings Proceedings Procedure			l			Barrios Qu	Ī	P.E.	2,59	2,62	2,53	0		2.00	libras		1752,6	1	10000	10,000	Ī	2466,31			2372,44		•	2058,91	1	
Proceedings Proceedings Procedure						anuel Alejandro		Agregado	Grava	Gravilla	Arena	Filler	[arshall	Company of the Compan	libras	1660,18091	1740,64608	1856,98181	2107,10321	2422,91000	2434,91997	2517,58095	2446,41515	2505,55346	2340,66367	2271,09832	2045,818	2042,95892	2087,9583	
Proceedings Proceedings Procedure					DE 2019	USTA: M							lidad M	эр поізээттоэ	c	0,934	0,934	0,900	0,923	0.947	0,915	0,941	0,958	0,960	0,988	0,918	0,970	0,963	0,978	0000
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	1	CACION IA)	05/100	001/68	FECHA: Junio	LABORATOF				1,0100			Estabil		libras	1777,8763	1864,0459	2063,3131	2284,1227	2647 6507	2661,1147	2674,5787	2553,4027	2609,9515	2370,2923	2475,3115	2109,0907	2122,5547	2136,0187	TO COURT
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	LOGIA	BOLIV					١							lectura del dial	mm	299	669	773	855	990	995	1000	955	926	887	926	790	795	800	011
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	TECNO	(TARIJA-		ASFAL					00	-228			S		%		58,37		0	66,50		72,86	•		78,42		•	83,33		
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	CNCIAS	RIA CIVII	TINE.		ŭ	UA				: AASHTO T			% de Vacio		%		17,04		t	10,07		16,89			17,16			17,51		
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	D DE CIF	INGENIE	A CAL	1	DO 160 ° 0	NICIPAL TAR		PES 75	TICO BETU	EL LIGANTE			Ĭ		%		7,09		į	5,74		4,58			3,70			2,92		
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	CULTA	MENTOD RERADE		KA CO	EZCLA	LCALDÍA MU		ODE GOL		ECIFICO DI			queta		grs/cm3		2,40		0	7,39		2,37			2,35			2,34		
Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,57 100 Pasa Tamiz N° 4 2,53 45 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4 Pasa Tamiz N° 4 2,53 Pasa Tamiz N° 4	FA	CAR CAR		_	1.4	ŒGADO: A		NUMER	CEMEN	PESO ESF			isidad Bri		grs/cm3		2,23			67,7	l	2,26			2,26			2,27		
Preceding Prec				- 12		IA DEL AGE								densidad real	grs/cm3	2,24	2,24	2,22	2,25	2,24	2,26	2,25	2,27	2,27	2,27	2,25	2,28	2,26	2,27	
Pess Tamiz N° 4 2.60 Pass Tamiz N° 4 2.53 Pass Tamiz N° 5 2.53 Pass Tamiz N° 6 Pass Tamiz N° 6 2.53 Pass Tamiz N° 6 Pass Tam			l		TEMPE				55	45	00			brobeta	cc			530,7	519,5	519.0				no.	507,1	527,7	00	509,5	508,4	
S. E. S.P.E.C. If I.C.O.S. S. E. S.P.E.C. I.C.O.S.			l	I				% de 8			1		_	suga nə abigrəmuz	grs.	689	648	649	649	050	699	661	649	699	649	662	649	644	647	
S. E. S.P.E.C. If I.C.O.S. S. E. S.P.E.C. I.C.O.S.									2,60	2,53	2,57		Peso Briquet:	sat. Sup. Seca	grs.	1163,9	1172,6	1179,7	1168,5	11740	1200,9	1188,6	1159,8	1181,4	1156,1	1189,7	1157,8	1153,5	1155,4	
S ESPECIFIC							l							oses	grs.	1177,4	1172,9	1177,4	1166,6	1109,1	1201.1	1186,8	1161,0	1176,9	1153,6	1187,1	1158,2	1151,1	1152,2	
S ESPECIFIC	100	SUNT OF	7878			1	l		1				Asfalto	горедэлдү эгед	%		4,71		i i	97'6		5,82			6,38			6,95		
Nat. Retenido Tamiz Peso Especifico Tamiz Peso E	1			1	CONTRACTOR OF THE PARTY OF THE		1	cos		N° 4	Fotal		% de	base Mezcla	%	L	4,50	╽		3,00	L	5,50		L	00'9		L	6,50		
PESON F Mat. Red			制		TUTONOM		,	SPECIFI	tenido Ta	sa Tamiz	coifico 7			altura de probeta		6,65	6,65	6,79	6,70	6.58	6.73	6,61	6,52	6,51	6,40	6,72	6,47	6,50	6,44	
		SIGVS UN	VERS	Ulak				PESOS E	Mat. Rei	Mat. Pas	Peso Est			No de prodeta		1	2	3	4	0	L	∞	6	10	11	12	13	14	15	

pulg 00 00

00

00

18,33

20

1570,5

0,956

530 1408,9627

611

86,30

18,16

2,49

2,32

2,26

640 649

1160,2

7,53

7,00

6,42 6,30 ESPECIFICACIONES

1158,1

% de C.A.

Valor de Diseño 2469,95

Ensayo

DETERMINACIÓN DEL PORCENTAJE ÓPTIMO DE CEMENTO ASFÁLTICO

5,65 6,29 5,81

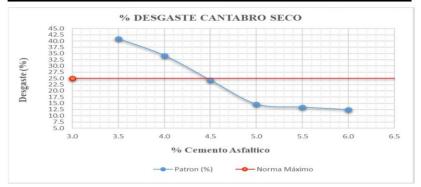
% Porcentaje óptimo de C.A. Densidad máxima (gr/cm3) Sstabilidad Marshall (Lb)

660 1759,0267 0,983

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

Ing. Seila Claudia Ávila Sandoval RESP. LAB. ASFALTOS - UAJMS

ANEXOS IV ENSAYOS DE CÁNTABRO



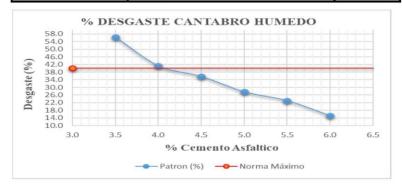
ENSAYO DE CANTABRO SECO

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES

ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

	Planilla (le diseño mez	clas porosas ((cántabro seco	0)
ión	% cemento	Peso	Peso	% d	lesgaste
Identificación	asfáltico mezcla	briqueta en seco inicial	briqueta final	Cántabro seco	Promedio cántabro seco
	%	grs.	grs.	%	%
B1		995.43	652.30	34.47	
B2	3.50	1003.45	580.60	42.14	40.97
В3		1004.87	539.60	46.30	
B7		1006.43	613.20	39.07	
B8	4.00	1009.34	689.90	31.65	34.19
B9	1	1008.98	687.50	31.86	1
B13		1019.56	777.90	23.70	
B14	4.50	1015.87	798.20	21.43	24.31
B15	1	1012.56	731.20	27.79	1
B19		1029.30	850.10	17.41	
B20	5.00	1027.40	906.00	11.82	14.64
B21	1	1020.00	870.10	14.70	1
B25		1025.10	890.80	13.10	
B26	5.50	1032.10	900.10	12.79	13.41
B27		1028.10	880.60	14.35	
B31		1014.30	885.10	12.74	
B32	6.00	981.90	879.60	10.42	12.42
B33		1010.00	867.50	14.11	
Especifica	ciones				- E
Lapecincae	ciones	E			25%

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA



ENSAYO DE CANTABRO HUMEDO

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS FLEXIBLES

ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

	Planilla de	diseño mezcla:	s porosas (cán	tabro húmed	0)
ión	% cemento	Peso	Peso	% de	sgaste
Identificación	asfáltico mezcla	briqueta en seco inicial	briqueta final	Cántabro húmedo	Promedio cántabro húmedo
1	%	grs.	grs.	%	%
B4		995.30	444.30	55.36	
B5	3.50	1000.34	410.30	58.98	56.22
B6		1000.10	456.90	54.31	
B10		1005.40	592.30	41.09	
B11	4.00	1003.50	587.40	41.46	41.21
B12		1007.30	593.60	41.07	
B16		1019.76	684.30	32.90	
B17	4.50	1014.35	649.80	35.94	35.67
B18		1018.12	629.50	38.17	
B22		1020.60	749.60	26.55	
B23	5.00	1030,40	713.50	30.76	27.66
B24		1029.50	765.20	25.67	
B28		1009.50	769.90	23.73	
B29	5.50	1018.00	778.40	23.54	23.00
B30		1020.00	798.30	21.74	
B34		985.50	851.60	13.59	
B35	6.00	1018.20	830.50	18.43	15.13
B36		1020.90	884.30	13.38	
Fencei	ficaciones	Mínimo			
Especi	icaciones	Máximo			40%

Univ. Manuel Alejandro Barrios Quiroga LABORATORISTA

ANEXOS V ENSAYOS DE ESTABILIDAD

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE TOPOGRAFIA Y VIAS DE COMUNICACIÓN CARRERA DE INGENIERIA CIVIL (TARIJA-BOLIVIA) DISEÑO DE MEZCLAS AFALTICAS METODO MARSHALL

85/100	FECHA: JUNIO 2019	LABORATORISTA: MANUEL A. BARRIOS QUIROGA
MUESTRA CON CEMENTO ASFÁLTICO 85/100	TEMPERATURA DE MEZCLADO 160 ° C	PROCEDENCIA DEL AGREGADO: ALCALDÍA MUNICIPAL TARIJA

Valores de estabilidad y fluencia para las briquetas con contenido óptimo de pavimento flexible

Fluencia	Finencia final	0.01 pulg	15	12	15	10	16	15
Flu	lectura dial del flujo		15	12	15	10	16	15
	Estabilidad final	libras	1901.41	2287.04	2335.44	2231.80	2117.23	2237.21
shall	Estabilidad real corregida	libras	1901.41	2287.04	2335.44	2231.80	2117.23	2237.21
Estabilidad Marshall	esctor de corrección de sistema de probeta		28.0	0.864	0.87	88.0	98.0	0.85
Est	катк)	libras	2168.3	2647.7	2674.6	2513.0	2445.7	2612.6
	Lectura del dial	mm	812	066	1000	940	915	716
so	R.B.V. (relación betumen vacios)	%	87.24	86.73	86.18	86.61	87.00	87.21
% de Vacíos	обвазтав soiэву).М.А.У (Івтэпіт	%	17.63	17.07	16.50	16.94	17.36	17.59
	% de vacios mezcla total	%	4.46	3.82	3.15	3.67	4.16	4.42
ueta	eəfiðət smixkm bebiznəb	grs/cm3	2.36	2.36	2.36	2.36	2.36	2.36
Densidad Briqueta	lanît babizasA	grs/cm3	2.25	2.27	2.28	2.27	2.26	2.25
Der	Isər babiznəU	grs/cm3	2.25	2.27	2.28	2.27	2.26	2.25
Volumen	взэфотЧ	22	549.8	547.3	546.0	543.0	549.1	549.7
ta	Sumergida en agua	grs.	069	969	200	169	693	069
Peso Briqueta	Sat. Sup. Seca	grs.	1239.8	1242.3	1246.0	1234.0	1242.1	1239.7
	039S	grs.	1237.0	1239.7	1245.3	1231.9	1239.4	1237.3
% de Asfalto	Base Agregados	%	6.28	6.28	6.28	6.28	6.28	6.28
% de	Ваяе Мехсія	%	5.91	5.91	5.91	5.91	5.91	5.91
	Altura de probeta		6.9	6.97	6.92	6.84	96.9	7.01
	No de probeta		1	2	3	4	5	9

Tec. Carlos Subia C. TEC. LAB. SUELOS

Ing. Seila Claudia Avila Sandoval RESP. DE LAB.SUELOS

DEPARTAMENTO DE TOPOGRAFIA Y VIAS DE COMUNICACIÓN DISEÑO DE MEZCLAS AFALTICAS METODO MARSHALL CARRERA DE INGENIERIA CIVIL (TARIJA-BOLIVIA) UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA

85/100	FECHA: JUNIO 2019	LABORATORISTA: MANUEL A. BARRIOS QUIROGA
MUESTRA CON CEMENTO ASFÁLTICO 85/100	TEMPERATURA DE MEZCLADO 160 ° C	PROCEDENCIA DEL AGREGADO: ALCALDÍA MUNICIPAL TARIJA

Valores de estabilidad y fluencia para las briquetas con contenido óptimo de pavimento poroso

Fluencia	fanit sionsufī	0.01 pulg	15	14	15	14	16	15
Flu	ojufi ləb laib grutəəl		15	14	15	14	16	15
	Estabilidad final	libras	1181.78	1178.62	1154.50	1180.07	1225.85	1146.71
shall	Estabilidad real corregida	libras	1181.78	1178.62	1154.50	1180.07	1225.85	1146.71
Estabilidad Marshall	Factor de corrección de altura de probeta	-	1.013	0.988	1.013	1.000	1.000	886.0
Est	кдткЭ	libras	1166.61	1193.54	1139.68	1180.07	1225.85	1161.23
	Lectura del dial	mm	440	450	430	445	462	438
so	R.B.V. (relación betumen vacios)	%	62.98	86.00	86.17	88.71	86.43	87.35
% de Vacios	обвазтав soiэву).И.А.У (Івтэпіт	%	16.93	16.12	18.54	19.25	16.55	17.55
	fatot aloxam soiday ab %	%	6.97	6.07	8.77	9.56	6.54	7.66
neta	esitidət emixima tebizrəb	grs/cm3	2.40	2.40	2.40	2.40	2.40	2.40
Densidad Briqueta	lenît bebizasA	grs/cm3	2.24	2.26	2.19	2.17	2.25	2.22
Der	Isər babiznəU	grs/cm3	2.24	2.26	2.19	2.17	2.25	2.22
Volumen	вэфогЧ	сс	455.5	455.7	465.5	472.5	455.2	9.654
ta	Sumergida en agua	grs.	570	582	563	562	575	899
Peso Briqueta	Sat. Sup. Seca	grs.	1025.5	1037.7	1028.5	1034.5	1030.2	1027.6
	Seco	grs.	1018.3	1028.6	1020.5	1026.8	1022.3	1019.8
% de Asfalto	Ваѕе Аgregados	%	4.71	4.71	4.71	4.71	4.71	4.71
% de	Base Mezcla	%	4.50	4.50	4.50	4.50	4.50	4.50
	Ајѓига de ргобеѓа		08.9	6.40	08.9	6.35	6.35	6.40
	No de prodeta		1	2	3	4	5	9

Univ. Manuel A. Barrios Quiroga LABORATORISTA

Ing. Seila Claudia Avila Sandoval RESP. DE LAB.SUELOS

DEPARTAMENTO DE TOPOGRAFIA Y VIAS DE COMUNICACIÓN DISEÑO DE MEZCLAS AFALTICAS METODO MARSHALL UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO CARRERA DE INGENIERIA CIVIL (TARIJA-BOLIVIA) FACULTAD DE CIENCIAS Y TECNOLOGIA

5/100	FECHA: JUNIO 2019	LABORATORISTA: MANUEL A. BARRIOS QUIROGA
MUESTRA CON CEMENTO ASFÁLTICO 85/100	TEMPERATURA DE MEZCLADO 160°C	PROCEDENCIA DEL AGREGADO: ALCALDÍA MUNICIPAL TARIJA

Valores de estabilidad y fluencia para las briquetas combinadas con contenido óptimo de pavimento flexible y poroso

-								
Fluencia	Fluencia final	0.01 pulg	15	91	51	91	91	15
	ojufi ləb laib arutəəl	1	15	16	15	16	16	15
Estabilidad Marshall	Estabilidad final	libras	1498.16	1473.62	1560.90	1696.00	1654.31	1717.03
	Estabilidad real corregida	libras	1.498.158	1.473.615	1.560.897	1.695.998	1.654.313	1.717.029
	Factor de corrección de altura de probeta	1	0.930	0.932	0.938	0.930	0.938	0.932
	бател	libras	1610.92	1581.30	1664.78	1823.65	1764.41	1842.50
	Lectura del dial	mm	909	594	625	684	662	169
St	R.B.V. (relación betumen vacios)	%	92.10	91.81	88.16	96.16	91.96	91.96
% de Vacíos	обвдэтдв гоїэвч).И.А.У (Івтэпіт	%	26.40	25.69	25.87	26.04	26.04	26.04
%	% de vacios mezcla total	%	14.20	13.37	13.58	13.79	13.79	13.79
Densidad Briqueta	səfrðət smixkm bsbiznəb	grs/cm3	2.43	2.43	2.43	2.43	2.43	2.43
	Isnft bsbiznəU	grs/cm3	2.09	2.11	2.10	2.10	2.10	2.10
Dens	Is91 babizn9(I	grs/cm3	2.09	2.11	2.10	2.10	2.10	2.10
Volumen	Probeta	သ	549.8	547.3	546.0	543.0	549.1	549.7
Peso Briqueta	039S	grs.	1110.7	1094.2	1117.3	1115.3	1107.4	1104.2
% de Asfalto	osonoA	%	4.50	4.50	4.50	4.50	4.50	4.50
% de	Flexible	%	16.5	16.5	16.3	16.3	16.5	16.5
	Altura de probeta			99.9	6.63	6.67	6.63	6.63
N° de probeta			1	2	3	4	5	9

Tec. Carlos Subia C.

Univ. Manuel A. Barrios Quiroga LABORATORISTA

Ing. Seila Claudia Avila Sandoval RESP. DE LAB.SUELOS

ANEXOS VI ENSAYO DE COMPRESIÓN INCONFINADA

ENSAYO DE COMPRESION INCONFINADA

PROYECTO: EVALUACION DEL APORTE ESTRUCTURAL DE MEZCLAS ASFALTICAS POROSAS EN PAVIMENTOS

FLEXIBLES

ELABORADO POR: MANUEL ALEJANDRO BARRIOS QUIROGA FECHA: JUNIO DEL 2019

FORMULAS DE CALIBRACION PARA EL ANILLO PLATEADO

CARGA PUNTUAL

 $CARGA\ PUNTUAL = 13,569 * Lec.\ dial\ (mm) + 0,9293$

RESISTENCIA

 $RESISTENCIA = \frac{CARGA\ PUNTUAL}{AREA\ DE\ CONTACTO}$

Contenido de C.A. (%)	N° de briqueta	Lectura extensómetr o (mm)	Carga puntual (Kg)	Carga puntual promedio(Kg)	Resistencia (Kg/cm2)	Resistencia promedio (Kg/cm2)	
CONTROL	A	110	1493.52		17.22	10.70	
	В	118	1602.07	1612.25	18.47		
	С	127	1724.19	1612.25	19.87	18.58	
	D	120	1629.21	1 1	18.78		
3	1	42	570.83		6.58		
	2	39	530.12	1 1	6.11		
	3	43	584.40	557.26	6.74	6.42	
	4	40	543.69	1 1	6.27		
3.5	5	65	882.91		10.18		
	6	58	787.93	1	9.08		
	7	61	828.64	808.28	9.55	9.32	
	8	54	733.66	1 1	8.46		
	9	91	1235.71		14.24		
4	10	87	1181.43	1	13.62	1 and 20 BA 30	
	11	84	1140.73	1181.43	13.15	13.62	
	12	86	1167.86	1 1	13.46		
4.5	13	95	1289.98	\vdash	14.87		
	14	115	1561.36	1	18.00		
	15	108	1466.38	1429.07	16.90	16.47	
	16	103	1398.54	1 1	16.12		
5	17	110	1493.52		17.22		
	18	92	1249.28	1	14.40	102 00	
	19	88	1195.00	1340.87	13.77	15.46	
	20	105	1425.67	1 1	16.43		
5.5	21	89	1208.57		13.93		
	22	99	1344.26	1198.39	15.49	13.81	
	23	86	1167.86	1198.39	13.46	13.81	
	24	79	1072.88		12.37		
	25	64	869.35		10.02		
6	26	82	1113.59	1052.53	12.84	12.13	
	27	86	1167.86		13.46	12.10	
	28	78	1059.31	$oxed{\Box}$	12.21		
6.5	29	77	1045.74		12.05		
	30	75	1018.60	1011.82	11.74	11.66	
	31	72	977.90	1011.02	11.27	11.00	
	32	74	1005.04	<u> </u>	11.58		

Univ. Manuel A. Barrios Quiroga	Tec. Carlos Subia C.	Ing. Ricardo Arce A.
LABORATORISTA	TEC, LAB, SUELOS	RESPONSABLE LAB.SUELOS