Tabla A1.1 Matriz PCES

Problema	Causas	Efectos	Solución
Equipo	Falta de	Resultados con	Calibración del
"esclerómetro" no	conocimiento	mayor	equipo.
calibrado	acerca de la	probabilidad de	
adecuadamente a	importancia de la	error.	
nuestro medio.	calibración de los	Bajo nivel de	
	equipos de ensayos	control de calidad	
	no destructivos.	de las obras con	
	Falta de	este equipo.	
	conocimiento		
	acerca del equipo y		
	normas.		

Fuente: Propia

Tabla A2.1 Asentamientos recomendados para diversos tipos de construcción y sistemas de colocación y compactación

Consistencia	Asentamiento (mm)	Ejemplo de tipo de construcción	Sistema de colocación	Sistema de compactación
Muy seca	0-20	Prefabricados de alta resistencia, revestimiento de pantallas de cimentación	Con vibradores de formaleta; hormigones de proyección neumática (lanzado)	Secciones sujetas a vibración extrema, puede requerirse presión
Seca	20-35	Pavimentos	Pavimentadoras con terminadora vibratoria	Secciones sujetas a vibración intensa
Semi - seca	35-50	Pavimentos, fundaciones en hormigón simple	Colocación con máquinas operadas manualmente	Secciones simplemente reforzadas, con vibración
Media	50-100	Elementos compactados a mano, losas muros, vigas	Colocación manual	Secciones medianamente reforzadas, sin vibración
Húmeda	100-150	Elementos estructurales esbeltos	Bombeo	Secciones bastante reforzadas, sin vibración
Muy húmeda	150 o más	Elementos muy esbeltos, pilotes fundidos "in situ"	Tubo-embudo Tremie	Secciones altamente reforzadas, sin vibración (Normalmente no adecuados para vibrarse)

Tabla A2.2 Tamaños máximos de agregados según el tipo de construcción

	Tamaño máximo en plg. (mm.)						
Dimensión mínima de la sección (cm)	Muros reforzados, vigas y columnas	Muros sin refuerzo	Losas muy reforzadas	Losas sin refuerzo o poco reforzadas			
6 - 15	1/2"(12) - 3/4"(19)	3/4"(19)	3/4"(19) - 1"(25)	3/4"(19) - 1 3/4"(38)			
19 - 29	3/4"(19) - 1 1/2"(38)	1 1/2"(38)	1 1/2"(38)	1 1/2"(38) - 3"(76)			
30 - 74	1 1/2"(38) - 3"(76)	3"(76)	1 1/2"(38) - 3"(76)	3"(76)			
75 o más	1 1/2"(38) - 3"(76)	6"(152)	1 1/2"(38) - 3"(76)	3"(76) - 6"(152)			

Tabla A2.3 Valores recomendados para el contenido de aire en el hormigón

Tamaño máximo del agregado grueso		Porcentaje promedio aproximado de aire	Porcentaje promedio total de aire recomendado para los siguientes grados de exposición			
Pulgadas	milímetro	atrapado	Baja	Media	Alta	
3/8	9.51	3	4.5	6	7.5	
1/2	12.5	2.5	4	5.5	7	
3/4	19.1	2	3.5	5	6	
1	25.4	1.5	3	4.5	6	
1 1/2	38.1	1	2.5	4.5	5.5	
2	50.8	0.5	2	4	5	
3	76.1	0.3	1.5	3.5	4.5	
6	152.4	0.2	1	3	4	

Tabla A2.4 Requerimiento aproximado de agua de mezclado

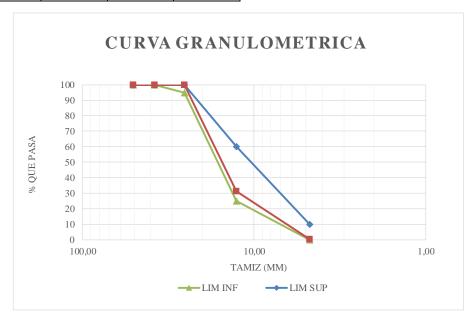
Para diferentes asentamientos y tamaños máximos de agregado, con partículas de									
	forma angular y textura rugosa, en hormigón sin aire incluido								
		Tamaño máximo del agregado, en mm (plg)							
Asentan	niento	9.51	12.70	19.00	25.40	38.10	50.80	64.00	76.10
		3/8"	1/2"	3/4"	1"	1 1/2"	2"	2 1/2"	3"
mm	plg		Agu		zclado, e	n kg/m ³ d	le hormi	gón	
0	0	223	201	186	171	158	147	141	132
25	1	231	208	194	178	164	154	147	138
50	2	236	214	199	183	170	159	151	144
75	3	241	218	203	188	175	164	156	148
100	4	244	221	207	192	179	168	159	151
125	5	247	225	210	196	183	172	162	153
150	6	251	230	214	200	187	176	15	157
175	7	256	235	218	205	192	181	170	163
200	8	260	240	224	210	197	186	176	168
Para di	ferentes	asentam	ientos y	tamaños	máximo	os de agre	gado, co	n partícu	las de
	forma	redond	eada y te	xtura lisa	a, en hor	migón sir	aire inc	luido	
			Tam	año máx	imo del	agregado	, en mm	(plg)	
Asenta	miento	9.51	12.70	19.00	25.40	38.10	50.80	64.00	76.10
		3/8"	1/2"	3/4"	1"	1 1/2"	2"	2 1/2"	3"
mm	plg		Ag	ua de me	zclado,	en kg/m ³	de horm	igón	
0	0	213	185	171	154	144	136	129	123
25	1	218	192	177	161	150	142	134	128
50	2	222	197	183	167	155	146	138	132
75	3	226	202	187	172	160	150	141	136
100	4	229	205	191	176	164	154	144	139
125	5	231	208	194	179	168	156	146	141
150	6	233	212	195	182	172	159	150	146
175	7	237	216	200	187	176	165	156	148
200	8	244	222	206	195	182	171	162	154

Tabla A2.5 Relación agua/cemento

Valores orientativos máximos de la relación agua/cemento en función de la resistencia a compresión del hormigón a los 28 días para los cementos colombianos, portland tipo I, en hormigones sin aire incluido						
Resistencia a la	Relación ag	gua-cemento en	peso			
compresión Mpa.	Límite superior Línea media Límite inf					
14	-	0.72	0.65			
17,5	-	0.65	0.58			
21	0.7	0.58	0.53			
24,5	0.64	0.53	0.49			
28	0.59	0.48	0.45			
31,5	0.54 0.44 0.42					
35	0.49	0.40	0.38			

Tabla A2.6 Volumen de agregado grueso según tamaño máximo nominal y módulo de finura de la arena

Volumen de agregado grueso, seco y compactado con varilla (a), por volumen de hormigón para diferentes módulos de finura de la arena (b)						
Tamaño máximo nominal del agregado		I	Módulo de finura de la arena			
mm.	pulg.	2,40	2,60	2,80	3,00	
9,5	3/8"	0,50	0,48	0,46	0,44	
12,7	1/2"	0,59	0,57	0,55	0,53	
19,0	3/4"	0,66	0,64	0,62	0,60	
25,4	1"	0,71	0,69	0,67	0,65	
38,1	1 1/2"	0,75	0,73	0,71	0,69	
50,8	2"	0,78	0,76	0,74	0,72	
76,1	3"	0,82	0,80	0,78	0,76	
152,0	6"	0,87	0,85	0,83	0,81	



GRANULOMETRIA AGREGADO GRUESO

PROCEDENCIA: RIO CAMACHO-CHARAJA

Peso Total	(gr.)		5000				
Tamices	tamaño	Peso Ret.	Ret. Acum	% Ret	% que pasa	Especi	ficacion
	(mm)				del total	ASTN	M C-33
2"	50,80	0,00	0,00	0,00	100,0	100	100
1 1/2 "	38,10	0,00	0,00	0,00	100,0	100	100
1"	25,40	0,00	0,00	0,00	100,0	95	100
3/4"	19,05	25,00	25,00	0,50	99,5		
1/2"	12,70	3410,00	3435,00	68,70	31,3	25	60
3/8"	9,52	1255,00	4690,00	93,80	6,2		
Nº 4	4,75	305,00	4995,00	99,90	0,1	0	10
base		0,00	4995,00	99,90	0,0		
	TOTAL	4995,00		•			•

MF	6,94	T.M.	1"
Perdidas %	0,1	T.M.N.	3/4''

HUMEDAD				
DATO	gr			
Peso Muestra Húmeda	500,00			
Peso Muestra seca	497,70			
Peso Agua	2,30			
% de Humedad	0,46			

GRANULOMETRIA AGREGADO FINO

PROCEDENCIA: RIO CAMACHO-CHARAJA

Peso Total (g	r.)		500				
Tamices	tamaño (mm)	Peso Ret.	Ret. Acum	% Ret	% que pasa del total	•	ficacion I C-33
N °4	4,75	0,00	0,00	0,00	100,0	95	100
N°8	2,36	57,80	57,80	11,56	88,4	-	-
N°16	1,18	101,40	159,20	31,84	68,2	45	80
N°30	0,60	115,30	274,50	54,90	45,1	-	-
N°50	0,30	127,20	401,70	80,34	19,7	10	30
N°100	0,15	73,50	475,20	95,04	5,0	2	10
N°200	0,08	20,10	495,30	99,06	0,9		
Base		4,70	500,00	100,00	0,0		
	TOTAL	500,00					
MF	2,74		_				

HUMEDAD				
DATO	gr			
Peso Muestra Húmeda	185,00			
Peso Muestra seca	183,87			
Peso Agua	1,13			
% de Humedad	0,61			

PESO ESPECIFICO Y ABSORCION AGREGADO GRUESO

PROCEDENCIA: RIO CAMACHO-CHARAJA

% DE ABSORCION	%	1,42	1,52	1,50	1.48
PESO ESPECIFICO APARENTE	(gr/cm3)	2,69	2,72	2,70	2.70
PESO ESPECIFICO SATURADO CON SUP. SECA	(gr/cm3)	2,63	2,65	2,64	2,64
PESO ESPECIFICO A GRANEL	(gr/cm3)	2,59	2,61	2,60	2,60
PESO MUESTRA SUMERGIDA	(Kg)	2,479	2,49	2,482	PROMEDIO
PESO MUESTRA SATURADA SUP. SECA "B"	(Kg)	7	4	4	
PESO MUESTRA SECADA "A"	(Kg)	3,944	3,94	3,941	
MUESTRA N°		1	2	3	

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL

LABORATORIO DE HORMIGÓN Y RESISTENCIA DE LOS MATERIALES

PESO ESPECIFICO Y ABSORCION AGREGADO FINO

PROCEDENCIA: RIO CAMACHO-CHARAJA

% DE ABSORCI ON	%	1,96	1,94
PESO ESPECIFIC O APARENT E	(gr/cm3)	2,53	2,94
PESO ESPECIFIC O A SATURAD O A SATURAD O CON SUP. SECA	(gr/cm3)	2,45	2,83
PESO ESPECIFIC O A GRANEL	(gr/cm3)	2,41	2,78
VOLUMEN PESO DEL ESPECIFIC MATRAZ O A "V" GRANEL	(m])	500,00	500,00
PESO AUESTRA SECADA "A"	(gr)	490,4	490,50
AGR. AL MATRAZ "W"	(ml) 6 (gr)	296,20	323,40
MUESTRA + MATRAZ + AGUA	(gr)	1032,7	1000,6
PESO MATRAZ	(gr)	236,5	177,2
PESO PESO MUESTRA	(gr)	200	200
MUESTRA PESO N° MUESTRA		1	2

1,95

2,64

2,59

PROMEDIO

PSEO UNITARIO AGREGADO GRUESO

PROCEDENCIA: RIO CAMACHO-CHARAJA

PESO UNITARIO SUELTO

MUESTRA N°	PESO MOLDE (gr)	VOLUMEN MOLDE (cm3)	PESO MOLDE + MUESTRA SUELTA	PESO MUESTRA SUELTA	PESO UNITARIO SUELTO
			(gr)	(gr)	(gr/cm3)
1	5895,00	9732,97	19830,00	13935,00	1,432
2	5895,00	9692,88	20010,00	14115,00	1,456
3	5895,00	9667,82	19635,00	13740,00	1,421
<u> </u>		•		PROMEDIO	1,436

PESO UNITARIO COMPACTADO

MUESTRA	PESO	VOLUMEN	PESO MOLDE	PESO	PESO
N°	MOLDE	MOLDE	+ MUESTRA	MUESTRA	UNITARIO
	(gr)	(cm3)	COMPACT.	SUELTA	SUELTO
			(gr)	(gr)	(gr/cm3)
1	5895,00	9732,97	20840,00	14945,00	1,536
2	5895,00	9692,88	21005,00	15110,00	1,559
3	5895,00	9667,82	20985,00	15090,00	1,561
•				PROMEDIO	1 552

PSEO UNITARIO AGREGADO FINO

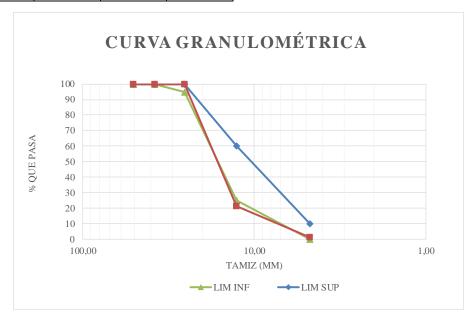
PROCEDENCIA: RIO CAMACHO-CHARAJA

PESO UNITARIO SUELTO

MUESTRA Nº	PESO MOLDE	VOLUMEN MOLDE	PESO MOLDE + MUESTRA	PESO MUESTRA	PESO UNITARIO
	(gr)	(cm3)	SUELTA	SUELTA	SUELTO
			(gr)	(gr)	(gr/cm3)
1	2610,00	3012,53	7015,00	4405,00	1,462
2	2610,00	3012,53	7040,00	4430,00	1,471
3	2610,00	3012,53	7015,00	4405,00	1,462
				PROMEDIO	1,465

PESO UNITARIO COMPACTADO

MUESTRA	PESO	VOLUMEN	PESO MOLDE	PESO	PESO
N°	MOLDE	MOLDE	+ MUESTRA	MUESTRA	UNITARIO
	(gr)	(cm3)	COMPACT.	SUELTA (gr)	SUELTO (gr/cm3)
1	2610,00	3012,53	7590,00	4980,00	1,653
2	2610,00	3012,53	7690,00	5080,00	1,686
3	2610,00	3012,53	7675,00	5065,00	1,681
				PROMEDIO	1 674



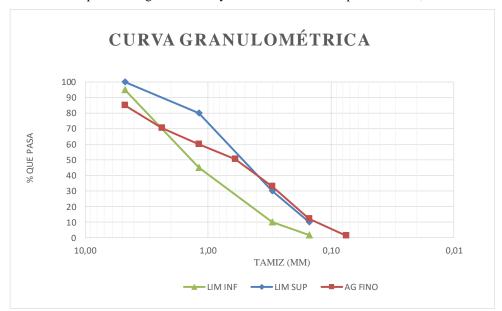
GRANULOMETRÍA AGREGADO GRUESO

PROCEDENCIA: RÍO GUADALQUIVIR-EL TEMPORAL

Peso Total	(gr.)		5050				
Tamices	s Tamaño Peso Ret.		Ret. Acum	% Ret	% Que pasa	Especi	ficación
	(mm)				del total	ASTN	I C-33
2"	50,80	0,00	0,00	0,00	100,0	100	100
1 1/2 "	38,10	0,00	0,00	0,00	100,0	100	100
1"	25,40	0,00	0,00	0,00	100,0	95	100
3/4"	19,05	820,00	820,00	16,25	83,7		
1/2"	12,70	3160,00	3980,00	78,89	21,1	25	60
3/8"	9,52	890,00	4870,00	96,53	3,5		
Nº 4	4,75	125,00	4995,00	99,01	1,0	0	10
base		50,00	5045,00	100,00	0,0		
	TOTAL	5045.00					

MF	7,12	T.M.	1"
Perdidas %	0,0990099	T.M.N.	3/4''

HUMEDAD				
DATO	gr			
Peso Muestra Húmeda	542,00			
Peso Muestra seca	540,80			
Peso Agua	1,20			
% de Humedad	0,22			



GRANULOMETRÍA AGREGADO FINO

PROCEDENCIA: RÍO CAMACHO-CHARAJA

Peso Total (g	r.)		510,6				
Tamices	Tamaño (mm)	Peso Ret.	Ret. Acum	% Ret	% Que pasa del total	Especificación ASTM C-33	
N °4	4,75	76,30	76,30	14,94	85,1	95	100
N°8	2,36	75,20	151,50	29,67	70,3	-	-
N°16	1,18	51,60	203,10	39,78	60,2	45	80
N°30	0,60	49,70	252,80	49,51	50,5	-	-
N°50	0,30	88,20	341,00	66,78	33,2	10	30
N°100	0,15	107,50	448,50	87,84	12,2	2	10
N°200	0,08	55,60	504,10	98,73	1,3		
Base		6,50	510,60	100,00	0,0		
	TOTAL	510,60					•
MF	2,89		_				

Se realizaron dos pruebas de granulometría y el módulo de finura en promedio es 3,01

HUMEDAD					
DATO	gr				
Peso Muestra Húmeda	500,00				
Peso Muestra seca	497,70				
Peso Agua	2,30				
% de Humedad	0,46				

PESO ESPECÍFICO Y ABSORCIÓN AGREGADO GRUESO

PROCEDENCIA: RÍO GUADALQUIVIR-EL TEMPORAL

% DE ABSORCIÓN	%	1,63	1,63	1,63	1,63
PESO ESPECÍFICO APARENTE	(gr/cm3)	2,70	5,69	5,69	69'7
PESO ESPECÍFICO SATURADO CON SUP. SECA	(gr/cm3)	2,63	2,62	2,62	2,62
PESO ESPECÍFICO A GRANEL	(gr/cm3)	2,58	2,58	2,58	2,58
PESO MUESTRA SUMERGIDA	(Kg)	3,096	3,094	3,09	PROMEDIO
PESO MUESTRA SATURADA SUP. SECA "B"	(Kg)	2	5	5	
PESO MUESTRA SECADA "A"	(Kg)	4,92	4,92	4,92	
MUESTRA N°		1	2	3	

FACULTAD DE CIENCIAS Y TECNOLOGÍA UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" PROGRAMA DE INGENIERÍA CIVIL

LABORATORIO DE HORMIGÓN Y RESISTENCIA DE LOS MATERIALES

PESO ESPECÍFICO Y ABSORCIÓN AGREGADO FINO

RÍO CAMACHO-CHARAJA PROCEDENCIA:

% DE ABSORCI ÓN	%	1,63	1,36	1,49
PESO ESPECÍFIC O APARENT E	(gr/cm3)	2,71	2,79	2,75
PESO ESPECÍFIC O SATURAD O CON SUP. SECA	(gr/cm3)	2,64	2,72	2,68
	(gr/cm3)	2,60	5,69	2,64
VOLUMEN PESO DEL ESPECÍFIC MATRAZ O A "V" GRANEL	(ml)	483,37	495,29	PROMEDIO
PESO MUESTRA SECADA "A"	(gr)	492	493,30	
AGUA AGR. AL MATRAZ "W"	(ml) 6 (gr)	294,10	311,60	
MUESTRA + MATRAZ + AGUA	(\mathbf{gr})	990,2	984,8	
PESO MATRAZ	(\mathbf{gr})	196,1	173,2	
AUESTRA PESO PESO N° MUESTRA MATRAZ	(\mathbf{gr})	500	500	
MUESTRA N°		1	2	

PSEO UNITARIO AGREGADO GRUESO

PROCEDENCIA: RÍO GUADALQUIVIR-EL TEMPORAL

PESO UNITARIO SUELTO

MUESTRA	PESO	VOLUMEN	PESO MOLDE	PESO	PESO
N^o	MOLDE	MOLDE	+ MUESTRA	MUESTRA	UNITARIO
	(gr)	(cm3)	SUELTA	SUELTA	SUELTO
			(gr)	(gr)	(gr/cm3)
1	5725,00	9895,00	21315,00	15590,00	1,576
2	5725,00	9895,00	21370,00	15645,00	1,581
3	5725,00	9895,00	21355,00	15630,00	1,580
				PROMEDIO	1,579

PESO UNITARIO COMPACTADO

MUESTRA N°	PESO MOLDE (gr)	VOLUMEN MOLDE (cm3)	PESO MOLDE + MUESTRA COMPACT.	PESO MUESTRA SUELTA	PESO UNITARIO SUELTO
	(61)	(cms)	(gr)	(gr)	(gr/cm3)
1	5895,00	9895,00	21930,00	16035,00	1,621
2	5895,00	9895,00	21960,00	16065,00	1,624
3	5895,00	9895,00	21915,00	16020,00	1,619
				PROMEDIO	1.621

PSEO UNITARIO AGREGADO FINO

PROCEDENCIA: RÍO CAMACHO-CHARAJA

PESO UNITARIO SUELTO

MUESTRA Nº	PESO MOLDE (gr)	VOLUMEN MOLDE (cm3)	PESO MOLDE + MUESTRA SUELTA (gr)	PESO MUESTRA SUELTA (gr)	PESO UNITARIO SUELTO (gr/cm3)
1	2610,00	3012,53	7015,00	4405,00	1,462
2	2610,00	3012,53	7040,00	4430,00	1,471
3	2610,00	3012,53	7015,00	4405,00	1,462
<u> </u>	•	•	•	PROMEDIO	1.465

PESO UNITARIO COMPACTADO

MUESTRA	PESO	VOLUMEN	PESO MOLDE	PESO	PESO
N^o	MOLDE	MOLDE	+ MUESTRA	MUESTRA	UNITARIO
	(gr)	(cm3)	COMPACT.	SUELTA	SUELTO
			(gr)	(gr)	(gr/cm3)
1	2610,00	3012,53	7590,00	4980,00	1,653
2	2610,00	3012,53	7690,00	5080,00	1,686
3	2610,00	3012,53	7675,00	5065,00	1,681
				PROMEDIO	1.674

	CARACTERÍSTICAS DE LOS MATERIALES				
	Ensayo	Cantidad	Unidad		
1	Peso específico del cemento	3,15	gr/cm3		
2	Modulo de finura de la arena	3,01	s/u		
3	Tamaño máximo Nominal (TMN)	0,75	pulg		
4	Tamaño máximo (TM)	1	pulg		
5	Humedad de la arena (H_a)	0,07%	s/u		
6	Humedad de la grava (H_g)	0,22%	s/u		
7	Peso unitario compactado de la grava	1620,50	kg/m3		
8	Peso específico de la grava (yg)	2,690	gr/cm3		
9	Absorción de la grava (Ag)	1,63%	s/u		
10	Peso específico de la arena (ya)	2,751	gr/cm3		
11	Absorción de la arena (Aa)	1,49%	s/u		

DATOS INICIALES				
Resistencia de diseño (fc)	210	kg/cm2		
Resistencia característica (fck)	295	kg/cm2		
Asentamiento	3	pulg		
Relación a/c	0,49	s/u		
Vol. Agregado grueso/ vol. Unitario concreto	0,65	s/u		

DOSIFICACIÓN INICIAL PARA 1 M3 DE HORMIGÓN				
Requerimiento de agua (A)	187	kg		
Masa del agregado grueso	1053,33	Kg		
Masa del cemento	381,63	Kg		
Volumen de agregado grueso	391,57	m3		
Volumen del cemento	121,15	m3		
Volumen de aire	1,5%	s/u		
Volumen de arena	285,28	m3		
Masa del agregado fino	784,70	Kg		

CORRECCIÓN POR HUMEDAD Y ABSORCIÓN					
Proporci	Proporción base		Arena	Cemento	Agua
Masa Se	eca (kg)	1053,33	784,70	381,63	187
Volumen ab	soluto (m3)	0,392	0,285	0,121	0,187
Densidad no	eta (kg/m3)	2690	2751	3150	1000
Humedad	%	0,22%	0,07%		
Humedad	kg	2,31	0,56		2,86
Absorción	%	1,63%	1,49%		
Ausorcion	kg	17,17	11,71		28,88
Proporción real pa	Proporción real para 1 m³ de H (kg)		785,26	381,63	213,01
Proporción	de mezcla	2,77	2,06	1,00	0,56
Volumen de 4 probetas		0,02	0,02	0,02	0,02
0 % de perdidas		22,39	16,65	8,09	4,52
5 % de perdidas		23,50	17,48	8,50	4,74
10 % de	perdidas	24,62	18,32	8,90	4,97

	CARACTERÍSTICAS DE LOS MATERIALES				
	Ensayo	Cantidad	Unidad		
1	Peso específico del cemento	3,15	gr/cm3		
2	Modulo de finura de la arena	3,01	s/u		
3	Tamaño máximo Nominal (TMN)	0,75	pulg		
4	Tamaño máximo (TM)	1	pulg		
5	Humedad de la arena (H_a)	0,07%	s/u		
6	Humedad de la grava (H_g)	0,22%	s/u		
7	Peso unitario compactado de la grava	1620,50	kg/m3		
8	Peso específico de la grava (yg)	2,690	gr/cm3		
9	Absorción de la grava (Ag)	1,63%	s/u		
10	Peso específico de la arena (ya)	2,751	gr/cm3		
11	Absorción de la arena (Aa)	1,49%	s/u		

DATOS INICIALES		
Resistencia de diseño (fc)	250	kg/cm2
Resistencia característica (fck)	335	kg/cm2
Asentamiento	3	pulg
Relación a/c	0,417	s/u
Vol. Agregado grueso/ vol. Unitario concreto	0,65	s/u

DOSIFICACIÓN INICIAL PARA 1 M3 DE HORMIGÓN				
Requerimiento de agua (A)	187	kg		
Masa del agregado grueso	1053,33	Kg		
Masa del cemento	448,44	Kg		
Volumen de agregado grueso	391,57	m3		
Volumen del cemento	142,36	m3		
Volumen de aire	1,5%	s/u		
Volumen de arena	264,07	m3		
Masa del agregado fino	726,36	Kg		

CORRECCIÓN POR HUMEDAD Y ABSORCIÓN						
Proporc	ión base	Grava	Arena	Cemento	Agua	
Masa Se	eca (kg)	1053,33	726,36	448,44	187	
Volumen ab	soluto (m3)	0,392	0,264	0,142	0,187	
Densidad n	eta (kg/m3)	2690	2751	3150	1000	
Humedad	%	0,22%	0,07%			
Humedad	kg	2,31	0,52		2,82	
Absorción	%	1,63%	1,49%			
Absorcion	kg	17,17	10,84		28,01	
Proporción real pa	Proporción real para 1 m³ de H (kg)		726,88	448,44	212,19	
Proporción	Proporción de mezcla		1,62	1,00	0,47	
Volumen de 4 probetas		0,02	0,02	0,02	0,02	
0 % de p	0 % de perdidas		15,41	9,51	4,50	
5 % de perdidas		23,50	16,18	9,99	4,72	
10 % de	perdidas	24,62	16,96	10,46		

	CARACTERÍSTICAS DE LOS MATERIALES				
	Ensayo	Cantidad	Unidad		
1	Peso específico del cemento	3,15	gr/cm3		
2	Modulo de finura de la arena	3,01	s/u		
3	Tamaño máximo Nominal (TMN)	0,75	pulg		
4	Tamaño máximo (TM)	1	pulg		
5	Humedad de la arena (H_a)	0,07%	s/u		
6	Humedad de la grava (H_g)	0,22%	s/u		
7	Peso unitario compactado de la grava	1620,50	kg/m3		
8	Peso específico de la grava (γg)	2,690	gr/cm3		
9	Absorción de la grava (Ag)	1,63%	s/u		
10	Peso específico de la arena (ya)	2,751	gr/cm3		
11	Absorción de la arena (Aa)	1,49%	s/u		

DATOS INICIALES		
Resistencia de diseño (fc)	300	kg/cm2
Resistencia característica (fck)	385	kg/cm2
Asentamiento	0	pulg
Relación a/c	0,4	s/u
Vol. Agregado grueso/ vol. Unitario concreto	0,65	s/u

DOSIFICACIÓN INICIAL PARA 1 M3 DE HORMIGÓN					
Requerimiento de agua (A)	171	kg			
Masa del agregado grueso	1053,33	Kg			
Masa del cemento	427,50	Kg			
Volumen de agregado grueso	391,57	m3			
Volumen del cemento	135,71	m3			
Volumen de aire	1,5%	s/u			
Volumen de arena	286,72	m3			
Masa del agregado fino	788,66	Kg			
Aditivo Viscocrete	4,28	Kg			

CORRECCIÓN POR HUMEDAD Y ABSORCIÓN						
Proporción ba	se	Grava	Arena	Cemento	Agua	Aditivo
Masa Seca (k	g)	1053,33	788,66	427,50	171	4,275
Volumen absoluto	(m3)	0,392	0,287	0,136	0,171	
Densidad neta (kg	g/m3)	2690	2751	3150	1000	
Humedad	%	0,22%	0,07%			
	kg	2,31	0,56		2,87	
Absorción	%	1,63%	1,49%			
	kg	17,17	11,77		28,94	
Proporción real para 1 m³ de H (kg)		1055,63	789,22	427,50	197,07	4,275
Proporción de mezcla		2,47	1,85	1,00	0,46	
Volumen de 4 probetas		0,02	0,02	0,02	0,02	
0 % de perdidas		22,39	16,74	9,07	4,18	0,091
5 % de perdidas		23,50	17,57	9,52	4,39	0,095
10 % de perdio	das	24,62	18,41	9,97	4,60	0,100

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: VIGA-15

LOCALIZACION: CARA SUR

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Nivel desde base estructura: 0,2 m
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:	5 años
Ángulo de ensayo:	0 °
Resistencia de diseño:	21 [Mpa]
Tipo de agregado:	Triturado
Tamaño de agregado:	3/4"

SECTOR 1

LECTURAS DE CAMPO

49	42	40	50
38	35	37	40
32	38	42	40
38	40	38	36

Promedio	lecturas.	cara	superior:	40
TIOHEGIO	icciui as	cara	superior.	70

LECTURAS PROCESADAS

	42	40	
38	35	37	40
	38	42	40
38	40	38	36

Valor promedio de rebote (R): 38,769

Desviación estándar: 2,1274

Resistencia de la Esclerometria sin calibrar:	391,95		[Kg/cm2]	39,20 [MPa]
Resistencia de la Esclerometria calibrado:	26,26	X	F. Carbonatación	26,00 [MPa]

SECTOR 2 LECTURAS DE CAMPO

40	40	37	38
40	41	42	36
36	38	36	42
40	42	37	40

Promedio	lecturas	cara	superior:	39
FIOIDEGIO	100 tui as	cara	superior.	37

LECTURAS PROCESADAS

40	40	37	38
40	41	42	36
36	38	36	42
40	42	37	40

Valor promedio de rebote (R): 39,063

Desviación estándar: 2,2051

Resistencia de la Esclerometria sin calibrar:	397,20		[Kg/cm2]	39,72 [MPa]
Resistencia de la Esclerometria calibrado:	26,56	X	F. Carbonatación	26,30 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: VIGA-32

LOCALIZACION: CARA ESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Nivel desde base estructura: 0,2 m
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:	5 años
Ángulo de ensayo:	0 °
Resistencia de diseño:	21 [Mpa]
Tipo de agregado:	Triturado
Tamaño de agregado:	3/4"

SECTOR 1

LECTURAS DE CAMPO

41	37	35	41
43	35	35	36
39	37	41	39
46	36	41	35

Promedio	lecturas cara	cuparior	30
Promedio	recturas cara	superior:	.39

LECTURAS PROCESADAS

41	37	35	41
43	35	35	36
39	37	41	39
	36	41	35

Valor promedio de rebote (R): 38,067

Desviación estándar: 2,7894

Resistencia de la Esclerometria sin calibrar:	379,45		[Kg/cm2]	37,945 [MPa]
Resistencia de la Esclerometria calibrado:	25,54	X	F. Carbonatación	25,28 [MPa]

SECTOR 2 LECTURAS DE CAMPO

36	40	37	43
39	42	40	40
35	37	46	37
37	37	36	42

Promedio lecturas cara superior:	30
Promedio lecturas cara superior:	

LECTURAS PROCESADAS

36	40	37	43
39	42	40	40
35	37		37
37	37	36	42

Valor promedio de rebote (R): 38,533

Desviación estándar: 2,5033

Resistencia de la Esclerometria sin calibrar:	387,74		[Kg/cm2]	38,774 [MPa]
Resistencia de la Esclerometria calibrado:	26,02	X	F. Carbonatación	25,76 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: VIGA-Gr

LOCALIZACION: CARA ESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Nivel desde base estructura: 0,2 m
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:	
Ángulo de ensayo:	0 °
Resistencia de diseño:	21 [Mpa]
Tipo de agregado:	Triturado
Tamaño de agregado:	3/4"

SECTOR 1

LECTURAS DE CAMPO

40	40	37	38
40	41	42	36
49	42	40	50
38	35	37	40

Promedio	lecturas	cara	superior:	40
FIOIDCUIO	100 tui as	cara	Superior.	40

LECTURAS PROCESADAS

40	40	37	38
40	41	42	36
	42	40	
38		37	40

Valor promedio de rebote (R): 39,308

Desviación estándar: 1,9315

Resistencia de la Esclerometria sin calibrar:401,60[Kg/cm2]40,16 [MPa]Resistencia de la Esclerometria calibrado:26,81xF. Carbonatación26,55 [MPa]

SECTOR 2

LECTURAS DE CAMPO

44	52	42	41
45	50	43	40
38	36	40	50
41	40	43	44

Promedio lecturas cara superior: 43

LECTURAS PROCESADAS

44		42	41
45		43	40
		40	
41	40	43	44

Valor promedio de rebote (R): 42,091

Desviación estándar: 1.8141

Resistencia de la Esclerometria sin calibrar:	452,54		[Kg/cm2]	45,254 [MPa]
Resistencia de la Esclerometria calibrado:	29,67	X	F. Carbonatación	29,38 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: VIGA-14

LOCALIZACION: ENTRE C24 Y VIGA 32 CARA SUR **PROYECTO:** LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ **NORMA:** ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Nivel desde base estructura: 0,2 m
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:	5 años
Ángulo de ensayo:	0 °
Resistencia de diseño:	21 [Mpa]
Tipo de agregado:	Triturado
Tamaño de agregado:	3/4"

SECTOR 1

LECTURAS DE CAMPO

36	36	30	36
36	36	36	36
36	42	34	38
40	40	40	40

Promedio	lecturas	cara	superior.	37
1 TOHICUIO	icciui as	cara	superior.	31

LECTURAS PROCESADAS

36	36		36
36	36	36	36
36	42	34	38
40	40	40	40

Valor promedio de rebote (R): 37,467

Desviación estándar: 2,3258

Resistencia de la Esclerometria sin calibrar:	368,87		[Kg/cm2]	36,887 [MPa]
Resistencia de la Esclerometria calibrado:	24,92	X	F. Carbonatación	24,67 [MPa]

SECTOR 2 LECTURAS DE CAMPO

31	42	34	46
40	38	38	37
49	42	40	50
34	38	37	38

Promedio lecturas cara superior: 40

LECTURAS PROCESADAS

	42		
40	38	38	37
	42	40	
	38	37	38

Valor promedio de rebote (R): 39,000

Desviación estándar: 1.8856

Resistencia de la Esclerometria sin calibrar:	396,08		[Kg/cm2]	39,608 [MPa]
Resistencia de la Esclerometria calibrado:	26,50	X	F. Carbonatación	26,23 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: VIGA-34

LOCALIZACION: CARA ESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Nivel desde base estructura: 0,2 m
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:	
Ángulo de ensayo:	0 °
Resistencia de diseño:	21 [Mpa]
Tipo de agregado:	Triturado
Tamaño de agregado:	3/4"

SECTOR 1

LECTURAS DE CAMPO

32	36	28	36
44	42	40	42
41	42	37	35
43	45	40	43

Promedio	lecturas	cara	superior:	39
FIOIDEGIO	100 tui as	cara	superior.	37

LECTURAS PROCESADAS

	36		36
44	42	40	42
41	42	37	35
43		40	43

Valor promedio de rebote (R): 40,077

Desviación estándar: 3,0676

Resistencia de la Esclerometria sin calibrar:	415,51		[Kg/cm2]	41,551 [MPa]
Resistencia de la Esclerometria calibrado:	27,60	X	F. Carbonatación	27,33 [MPa]

SECTOR 2 LECTURAS DE CAMPO

42	39	45	44
42	40	38	37
38	36	40	39
43	39	42	40

Promedio lecturas cara superior: 40

LECTURAS PROCESADAS

42	39	45	44
42	40	38	37
38	36	40	39
43	39	42	40

Valor promedio de rebote (R): 40,250

Desviación estándar: 2,543

Resistencia de la Esclerometria sin calibrar:	418,65		[Kg/cm2]	41,865 [MPa]
Resistencia de la Esclerometria calibrado:	27,78	X	F. Carbonatación	27,50 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-30

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ **NORMA:** ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019 Tipo y serie de martillo: 58-C0181/N1 (358) Factor de carbonatacion: Caracteristicas superficie: Pulida piedra ab

Edad del hormigón: 5 añós 0 ° Ángulo de ensayo: Resistencia de diseño: 21 [Mpa] Tipo de agregado: Triturado 3/4" Tamaño de agregado:

SECTOR 1 NIVEL DESDE BASE ESTRUCTURA: 0,6 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

44	40	39	43
44	42	34	42
41	40	41	48
46	38	46	44

	10	3)	13
44	42		42
41	40	41	
46	38	46	44

44 40 39 43

Promedio lecturas cara superior:

Valor promedio de rebote (R): 42,143 Desviación estándar: 2,4763

Resistencia de la Esclerometria sin calibrar:	453,51		[Kg/cm2]	45,35 [MPa]
Resistencia de la Esclerometria calibrado:	29,73	X	F. Carbonatación	29,43 [MPa]

SECTOR 2 NIVEL DESDE BASE ESTRUCTURA: 1,6 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

36	40	40	40
41	42	44	44
42	41	44	40
39	40	32	32

36	40	40	40
41	42	44	44
42	41	44	40
39	40		

Promedio lecturas cara superior:

Valor promedio de rebote (R): 40,929 Desviación estándar: 2,2001

Resistencia de la Esclerometria sin calibrar:	431,05		[Kg/cm2]	43,11 [MPa]
Resistencia de la Esclerometria calibrado:	28,48	X	F. Carbonatación	28,19 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-30

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón: 5 añós
Ángulo de ensayo: 0 °
Resistencia de diseño: 21 [Mpa]
Tipo de agregado: Triturado

SECTOR 3 NIVEL DESDE BASE ESTRUCTURA: 3 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

42	40	50	36
35	37	40	42
32	42	34	40
40	38	36	42

42	40		36
35	37	40	42
	42		40
40	38	36	42

Promedio lecturas cara superior: 39

Valor promedio de rebote (R): 39,231

Desviación estándar: 2,5545

Resistencia de la Esclerometria sin calibrar:	400,22		[Kg/cm2]	40,02 [MPa]
Resistencia de la Esclerometria calibrado:	26,73	X	F. Carbonatación	26,47 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-23

LOCALIZACION: CARA SURESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón: 5 añós
Ángulo de ensayo: 0 °
Resistencia de diseño: 21 [Mpa]
Tipo de agregado: Triturado
Tamaño de agregado: 3/4"

SECTOR 1 NIVEL DESDE BASE ESTRUCTURA: 0,6 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

44

44	36	44	50
44	42	40	42
42	42	42	41
42	41	40	40

44	42	40	42
42	42	42	41
42	41	40	40

Promedio lecturas cara superior: 42

Valor promedio de rebote (R): 41,857

Desviación estándar: 1,4064

44

Resistencia de la Esclerometria sin calibrar:	448,19		[Kg/cm2]	44,82 [MPa]
Resistencia de la Esclerometria calibrado:	29,43	X	F. Carbonatación	29,14 [MPa]

SECTOR 2 NIVEL DESDE BASE ESTRUCTURA: 1,6 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

39	43	37	42
43	46	42	43
44	40	40	41
38	42	38	36

39)	43	37	42
43	3		42	43
44	1	40	40	41
38	3	42	38	36

Promedio lecturas cara superior: 41

Valor promedio de rebote (R): 40,533

Desviación estándar: 2,4746

Resistencia de la Esclerometria sin calibrar:	423,82		[Kg/cm2]	42,38 [MPa]
Resistencia de la Esclerometria calibrado:	28,07	X	F. Carbonatación	27,79 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-23

LOCALIZACION: CARA SURESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón: 5 añós

Ángulo de ensayo: 0 °

Resistencia de diseño: 21 [Mpa]

Tipo de agregado: Triturado

SECTOR 3 NIVEL DESDE BASE ESTRUCTURA: 3 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

39	42	39	36
45	38	40	42
34	42	46	42
42	46	38	44

39	42	39	36
45	38	40	42
	42		42
42		38	44

Promedio lecturas cara superior: 41 Valor promedio de rebote (R): 40,692

Desviación estándar: 2,5944

Resistencia de la Esclerometria sin calibrar:	426,72		[Kg/cm2]	42,67 [MPa]
Resistencia de la Esclerometria calibrado:	28,24	X	F. Carbonatación	27,95 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-24

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ **NORMA:** ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:

Ángulo de ensayo:

Resistencia de diseño:

Tipo de agregado:

Tamaño de agregado:

3/4"

SECTOR 1 NIVEL DESDE BASE ESTRUCTURA: 0,6 m

LECTURAS DE CAMPO

42	45	42	39
43	40	44	36
38	32	38	40
40	37	43	40

43	40	44	
38		38	
40	37	43	

LECTURAS PROCESADAS

Promedio lecturas cara superior: 40

Valor promedio de rebote (R): 40,143

Desviación estándar: 2,4133

39 36 40

Resistencia de la Esclerometria sin calibrar:	416,70		[Kg/cm2]	41,67 [MPa]
Resistencia de la Esclerometria calibrado:	27,67	X	F. Carbonatación	27,40 [MPa]

SECTOR 2 NIVEL DESDE BASE ESTRUCTURA: 1,6 m

LECTURAS DE CAMPO

38	42	40	42
39	43	34	36
40	45	42	38
40	36	37	40

38	42	40	42
39	43		36
40		42	38
40	36	37	40

LECTURAS PROCESADAS

Promedio lecturas cara superior: 40

Valor promedio de rebote (R): 39,500

Desviación estándar: 2,2787

Resistencia de la Esclerometria sin calibrar:	405,07		[Kg/cm2]	40,51 [MPa]
Resistencia de la Esclerometria calibrado:	27,01	X	F. Carbonatación	26,74 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-24

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón: 5 añós

Ángulo de ensayo: 0 °

Resistencia de diseño: 21 [Mpa]

Tipo de agregado: Triturado

SECTOR 3 NIVEL DESDE BASE ESTRUCTURA: 3 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

43	39	37	36
35	49	40	42
45	42	34	40
40	39	36	43

43	39	37	36
35		40	42
45	42		40
40	39	36	43

Promedio lecturas cara superior: 40

Valor promedio de rebote (R): 39,786

Desviación estándar: 3,0173

Resistencia de la Esclerometria sin calibrar:	410,23		[Kg/cm2]	41,02 [MPa]
Resistencia de la Esclerometria calibrado:	27,30	X	F. Carbonatación	27,03 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-17

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ **NORMA:** ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:

Ángulo de ensayo:

Resistencia de diseño:

Tipo de agregado:

Tamaño de agregado:

3/4"

SECTOR 1 NIVEL DESDE BASE ESTRUCTURA: 0,6 m

LECTURAS DE CAMPO

44	40	40	42
44	37	39	34
43	41	44	42
45	38	40	44

Promedio lecturas cara superior:	41
Promedio lecturas cara superior:	41

LECTURAS PROCESADAS

44	40	40	42
44	37	39	
43	41	44	42
45	38	40	44

Valor promedio de rebote (R): 41,533

Desviación estándar: 2,4746

Resistencia de la Esclerometria sin calibrar:	442,19		[Kg/cm2]	44,22 [MPa]
Resistencia de la Esclerometria calibrado:	29,10	X	F. Carbonatación	28,81 [MPa]

SECTOR 2 NIVEL DESDE BASE ESTRUCTURA: 1,6 m

LECTURAS DE CAMPO

32	32	42	34
38	40	38	36
36	38	36	42
40	42	36	42

Promedio	Lacturac	cara	cuparior:	38
Promedio	recturas	cara	suberior.	

LECTURAS PROCESADAS

		42	34
38	40	38	36
36	38	36	42
40	42	36	42

Valor promedio de rebote (R): 38,571

Desviación estándar: 2,7656

Resistencia de la Esclerometria sin calibrar:	388,42		[Kg/cm2]	38,84 [MPa]
Resistencia de la Esclerometria calibrado:	26,06	X	F. Carbonatación	25,80 [MPa]

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-17

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab.

Edad del hormigón: 5 añós

Ángulo de ensayo: 0 °

Resistencia de diseño: 21 [Mpa]

Tipo de agregado: Triturado

SECTOR 3 NIVEL DESDE BASE ESTRUCTURA: 3 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

40	43	37	33
33	40	38	40
36	40	43	38
38	35	41	38

40	43	37	
	40	38	40
36	40	43	38
38	35	41	38

Promedio lecturas cara superior: 38

Valor promedio de rebote (R): 39,071

Desviación estándar: 2,3685

Resistencia de la Esclerometria sin calibrar:397,36[Kg/cm2]39,74 [MPa]Resistencia de la Esclerometria calibrado:26,57xF. Carbonatación26,31 [MPa]

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE RESISTENCIA DE LOS MATERIALES Y HORMIGÓN

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-12

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón:

Ángulo de ensayo:

Resistencia de diseño:

Tipo de agregado:

Tamaño de agregado:

3/4"

SECTOR 1 NIVEL DESDE BASE ESTRUCTURA: 0,6 m

LECTURAS DE CAMPO

44	44	42	42
40	45	41	46
40	46	40	37

Promedio lecturas cara superior: 41	

LECTURAS PROCESADAS

44	44	42	42
40	45	41	46
40	46	40	37
38	39	37	40

Valor promedio de rebote (R): 41,313

Desviación estándar: 2,9826

Resistencia de la Esclerometria sin calibrar:	438,12		[Kg/cm2]	43,81 [MPa]
Resistencia de la Esclerometria calibrado:	28,87	X	F. Carbonatación	28,58 [MPa]

SECTOR 2 NIVEL DESDE BASE ESTRUCTURA: 1,6 m

LECTURAS DE CAMPO

42	40	36	39
38	42	40	38
36	38	39	36
40	38	40	38

Promedio	lecturas	cara	superior:	30
Promedio	recturas	cara	suberior.	39

LECTURAS PROCESADAS

42	40	36	39
38	42	40	38
36	38	39	36
40	38	40	38

Valor promedio de rebote (R): 38,750

Desviación estándar: 1,8797

Resistencia de la Esclerometria sin calibrar:	391,61		[Kg/cm2]	39,16 [MPa]
Resistencia de la Esclerometria calibrado:	26,24	X	F. Carbonatación	25,98 [MPa]

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA PROGRAMA DE INGENIERÍA CIVIL LABORATORIO DE RESISTENCIA DE LOS MATERIALES Y HORMIGÓN

ENSAYO NO DESTRUCTIVO DE RESISTENCIA DEL H° - ESCLERÓMETRO - ASTM C 805

IDENTIFICACION: COLUMNA-12

LOCALIZACION: CARA NORESTE

PROYECTO: LABORATORIO DE FARMACOLOGIA UAJMS

OPERADOR: AGUSTIN ROMERO GUTIERREZ NORMA: ASTM C 805

DATOS TÉCNICOS:

Fecha ensayo: 23/9/2019
Tipo y serie de martillo: 58-C0181/N1 (358)
Factor de carbonatacion: 0,99
Caracteristicas superficie: Pulida piedra ab,

Edad del hormigón: 5 añós

Ángulo de ensayo: 0 °

Resistencia de diseño: 21 [Mpa]

Tipo de agregado: Triturado

SECTOR 3 NIVEL DESDE BASE ESTRUCTURA: 3 m

LECTURAS DE CAMPO

LECTURAS PROCESADAS

44	37	39	36
36	42	37	39
45	33	41	35
41	35	37	42

	37	39	36
36	42	37	39
		41	35
41	35	37	42

Promedio lecturas cara superior: 39 Valor promedio de rebote (R): 38,231

Desviación estándar: 2,5869

Resistencia de la Esclerometria sin calibrar:	382,36		[Kg/cm2]	38,24 [MPa]
Resistencia de la Esclerometria calibrado:	25,71	X	F. Carbonatación	25,45 [MPa]

Sociedad Boliviana de Cemento S.A.

ø	200	ø	
6	Ξø		
M.		7	а
	ю	s	a
	97	œ	я

Sociedad Boliviana de Cemento S.A.

INFORME DE ENSAYOS DE MUESTRAS DE HORMIGÓN DE SOBOCE S.A. HRT-HYA.CC.006

Gerencia Corporativa de Operaciones y Comercialización
Departamento de Asesoría Técnica
Laboratorio de Hormigones
Teléfonos de Contacto:
Laboratorio de Hormigones: 6665206 Fax: 6638668
Asesoria Técnica: 6643680 - 6645041 (Int. 4006-4007-4018) - Fax: 6634233
Linea de Atencio al Cliente: 800 10 3606
Tarija-Bolivia

Cliente : ROCAMINOS	Nº de Informe:	178/14
Obra: Bloque de Farmacología U.A.J.M.S.	Nro. de Probetas:	4
Dirección: Barrio 14 Viviendas S/I	Ensayo a: Compresión	
Fecha de Ingreso: 28-may-14	Guía Nº: 1511 Norma: ASTM C39-C3	9M-03

Fecha de Rotura.	Fecha de Elabor.	Nro. de Probeta	Código de Obra	Edad (días)	Densidad (g/cm3)	Resistencia (MPa)
17/06/14	20/05/14	1	Columnas Planta Baja - C (22, 23, 24, 30)	28	2,36	27,86
17/06/14	20/05/14	2	Columnas Planta Baja - C (22, 23, 24, 30)	28	2,36	26,29
17/06/14	20/05/14	3	Columnas Planta Baja - C (22, 23, 24, 30)	28	2,35	29,17
17/06/14	20/05/14	4	Columnas Planta Baja - C (22, 23, 24, 30)	28	2,37	30,40

OBSERVACIONES:

- La resistencia exigida a compresión es: 21 Mpa.

Este informe fue emitido el: 20/06/2014

J. Yamil Gutjerrez Mendoza SUPERVISOR DE CALIDAD SOBOCE S.A.

cc. File A.T. File L.H.

Víctor N. Avila Lópe: ASESOR TECNICO SOBOCE S.A.

Nº de Revisión del formato 02

800-103-606

ACCUACIÓN ACCIDENTES

PROYECTO: Bloque Farmacología - UAJMS

EMPRESA: Empresa Rocaminos

ENCARGADO OBRA: Ing. Roye Campero

HORMIGÓN TIPO:

H21

LABORATORISTA: Tec. Mario Reinoso

FECHA DE ENTREGA: 25/06/2014

PROBETA Nº	DESCRIPCIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	CARGA APLICADA (Kgs)	ÁREA (cm2)	RESISTENCIA (Kgs/cm2)	Coef. de corrección por edad	RES. EQUIVALENTE 28 DÍAS (Kgs/cm2)
1	C8	22-may-14	22-jun-14	31	46280	176,63	262,02	0,981	257,05
2	C15 - 1576	22-may-14	22-jun-14	31	38510	176,63	218,03	0,981	213,89
3	C25 - 1572	21-may-14	22-jun-14	32	47980	176,63	271,65	0,975	264,86
4	C17 - 1570	21-may-14	22-jun-14	32	46460	176,63	263,04	0,975	256,47
5	C11	23-may-14	22-jun-14	30	43740	176,63	247,64	0,987	244,42
6	C3	24-may-14	22-jun-14	29	38800	176,63	219,67	0,993	218,14
7	C4	24-may-14	22-jun-14	29	47410	176,63	268,42	0,993	266,54
8	C12	23-may-14	22-jun-14	30	42690	176,63	241,70	0,987	238,56
9	C10	23-may-14	22-jun-14	30	43290	176,63	245,10	0,987	241,91

OBSERVACIONES: Probetas elaboradas por la empresa Rocaminos.

Laboratorista

Tec. Mario Reinoso E. EMPRESA S.A.H.

Ing. Oscar Valverde A.

EMPRESA S.A.H.

PROYECTO: Bloque Farmacologia - UAJMS

EMPRESA: Empresa Rocaminos

ENCARGADO OBRA: Ing. Roye Campero LABORATORISTA: Tec. Mario Reinoso

HORMIGÓN TIPO: FECHA:

H21 09-jun-14

PROBETA Nº	ELEMENTO	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	CARGA APUCADA (Kgs)	ÁREA (cm2)	RESISTENCIA (Kgs/cm2)	Coef. de corrección por	RESI. EQUIVALENTE A 28 DÍAS (Kgs/cm2)
1	COLUMNA C1	24/05/2014	31/05/2014	7	27920	176,63	158,08		219 55
2	COLUMNA C2	24/05/2014	31/05/2014	7	30150	1	170,70		237.08
3	COLUMNA CS	23/05/2014	31/05/2014	8	29010		164,25		22,,02
4	COLUMNA C9	23/05/2014	31/05/2014	80	29920	176,63	169.40		99 766

OBSERVACIONES: Probetas elaboradas por la empresa Rocaminos.

Laboratorista Luull Tec. Mario Reinoso E.

VeBe (Say of the Union Organical A.)

SVEICS ASSUMENTS

ASOCIACIÓN ACCIDENTAL

B/Paraiso Calle Orquideas s.n.

Telf: 6643771 - 6675590

sahtarija@bolivia.com

PROYECTO: Bloque Farmacología - UAJMS

EMPRESA: Empresa Rocaminos

ENCARGADO OBRA: Ing. Roye Campero LABORATORISTA: Tec. Mario Reinoso

HORMIGÓN TIPO: FECHA DE ENTREGA:

H21 01/12/2014

PROBETA Nº	DESCRIPCIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	CARGA APLICADA (Kgs)	ÁREA (cm2)	RESISTENCIA (Kgs/cm2)	Coef. de corrección por edad	RES. EQUIVALENTE 28 DÍAS (Kgs/cm2)
1	VIGA	13-nov14	30-nov14	17	36200	176,00	205,68	068'0	231,10
2	VIGA	14-nov14	30-nov14	16	34360	176,00	195,23	0,878	222,35
8	VIGA	14-nov14	30-nov14	16	34600	176,00	196,59	0,878	223,91
4	VIGA	12-nov14	30-nov14	18	37520	176,00	213,18	0,903	236,08
5	VIGA	23-nov14	30-nov14	7	27090	176,00	153,92	0,720	213,78
9 .	VIGA	13-nov14	30-nov14	17	36600	176,00	207,95	0,890	233,66
7	VIGA	12-nov14	30-nov14	18	36890	176,00	209,60	0,903	232,12
83	VIGA	21-nov14	30-nov14	6	28800	176,00	163,64	0,764	214,18
6	VIGA	14-nov14	30-nov14	16	34680	176,00	197,05	0,878	224,43
10	VIGA	21-nov14	30-nov14	6	28630	176,00	162,67	0,764	212,92
11	VIGA	14-nov14	30-nov14	16	34950	176,00	198,58	0,878	226,17
12	VIGA	12-nov14	30-nov14	18	36850	176,00	209,38	0,903	231,87

OBSERVACIONES: Probetas elaboradas por la empresa Rocaminos.

CONSTITUTA Laboratokista Tec-Mario Reinoso EMPRESA S.A.H.

SUELOS ASFALTOS HORMIGONES

lng. Oscar Valverde A. EMPRESA S.A.H.

HACCIDENTAL

ASOCIACI

Rolling a

JAG. CAKUT DAIDERA JAG. CERENTE GENERAL SUELOS AFANTOS HORNAGONES SUELOS AFANTOS HORNAGONES

Telf: 6643771 - 6675590

"S.A.H."

Tarija - Bolivia

sahtarija@bolivia.com

B/Paraiso C/Las Orquideas

PROYECTO: CONSTRUCCIÓN Y EQUIPAMIENTO DE LABORATORIO DE FARMACOLOGÍA Y FARMACOTECNIA DE LA FACULTAD DE CENCIAS DE LA SALUD: OBRA

HORMIGÓN TIPO: FECHA DE ENTREGA:

2-feb.-15

EMPRESA: Asociación Accidental Rocamino's y Asociados. ENCARGADO OBRA: Ing. Pablo G. Castellanos Vasquez LABORATORISTA: Tec. Mario Reinoso

PROBETA Nº	DESCRIPCIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (dias)	CARGA APLICADA (Kgs)	ÁREA (cm2)	RESISTENCIA (Kgs/cm2)	Coef. corrección por edad	RES. EQUIVALENTE 28 DÍAS (Kgs/cm2)
1	Zapata Ascensor	17/12/14	31/01/15	45	43250	176,00	245,74	0,922	226,57
2	Viga Ascensor de H®A® Pórticos 5. 7 & 77 de Ascensor (C=+0,30m)	17/12/14	31/01/15	45	42980	176,00	244,70	0,922	225,16
3	Hormigon Ciclópeo de Fosa de ascensor.	19/12/14	31/01/15	43	37650	176,00	213,92	0,929	198,73
4	Columna Ascensor C31	24/12/14	31/01/15	38	44820	176.00	254,66	0.947	111.45
5	Columna Ascensor C34	24/12/14	31/01/15	38	43030	176.00	244.49		241,16
6	Columna Ascensor C35	27/12/14	31/01/15	35	45660	176.00	259,43	0,947	231,53
7	Columna Ascensor C36	27/12/14	31/01/15	35	45020	-		0,960	249,05
	Viga grada Pónicos 1,2 3,4,5 & 6 (C=+2,06m).	93/01/15	31/01/15	28	43260	176,00	255,80	0,960	245,56
	Viga grada Pórticos 1,2 3,4,5 & 6 (C=+2,06m).	03/01/15	31/01/15	28	42650	176,00	242,33	1.000	242.33
	Viga Ascensor Pórticos 5, 7 & 28 (C+4,62m)	05/01/15	31/01/15	26	43620	176,00	247,84	0.980	252.90
	//ga Ascensor Pórticos 5, 7 & 28 C=+4,62m)	05/01/15	31/01/15	26	42010	176,00	238,69	0.980	243.56

OBSERVACIONES: Probetas elaboradas por la empresa Rocaminos y asociados CONSULTORA EJECUTOR ING. OSCAR VALVERDE SUELOS ASFALTOS HORMIGONES TEC MARIO RETNOSO 'S.A.H." Tarija - Bolivia

Figura 1. Extracción del material

Figura 2. Ensayo de caracterización del material "Análisis de granulometría"

Figura 3. Ensayo de caracterización del material "Peso específico"

Figura 4. Ensayo de caracterización del material "Peso unitario"

Figura 5. Preparación del aditivo

Figura 6. Preparación de la mezcla en la hormigonera

Figura 7. Prueba de revenimiento

Figura 8. Elaboración de las probetas

Figura 9. Control del nivel de probetas

Figura 10. Curado de probetas por sumersión

Figura 11. Cuadrantes de disparo del esclerómetro en probeta

Figura 12. Ensayo de esclerometría en probetas

Figura 13. Rotura de probeta 21Mpa

Figura 14. Rotura de probeta 25Mpa

Figura 15. Rotura de probeta 30 Mpa

Figura 16. Ensayo de esclerometría en columnas del lab. de farmacología UAJMS

Figura 17. Ensayo de esclerometría en vigas del lab. de farmacología UAJMS

58-C0181/N Esclerómetro de hormigones

MANUAL DE INSTRUCCIONES

Esclerómetro para hormigones

Mod. 58-C0181/N

Rev. 0

pag. 2

ESCLEROMETRO C0181-C0181/N

MANUAL DE INSTRUCCIONES

1. PRINCIPIO DE FUNCIONAMIENTO

En tiempos los maestros de obra y los adeptos a trabajos de edificación en general, solían controlar el estado del hormigón golpeando con un martillo la superficie. En base al sonido más o menos metálico y al rebote, alcanzaban a establecer aproximadamente (muy aproximadamente la verdad) la resistencia del hormigón. El esclerómetro es el perfeccionamiento de este antiguo sistema de valoración. Presionando la punta del esclerómetro contra la superficie a examinar se carga un muelle. Cuando la punta ha entrado totalmente en el esclerómetro, se desengancha automáticamente una masa que golpea la misma punta en la extremidad interna y a través de ésta la superficie del hormigón. Por reacción la punta retransmite a la masa el contragolpe o rebote que es tanto mayor cuanto más duro y compacto es el hormigón.

En el curso del rebote la masa arrastra un índice que queda bloqueado en el punto máximo de retorno indicando contemporáneamente un valor de referencia sobre la escala.

Este número transferido al diagrama proporciona un valor de la resistencia a compresión en función del ángulo de golpeo.

En este manual se proporcionan todas las indicaciones necesarias para un correcto uso, calibración y mantenimiento del esclerómetro.

II. UTILIZACION DEL ESCLEROMETRO

- 1.- Cuando el esclerómetro está en el estuche, la cabeza percutora (11) se encuentra casi completamente dentro del cuerpo. Para extraería, presionar la cabeza percutora (11) contra cualquier superficie hasta desengancharía y sacaría totalmente.
- 2.- Preparar la superficie a examinar quitando (Si es necesario) con la piedra abrasiva (22) el revoque o el enlucido que recubren el hormigón. Apoyar después el percusor (11) sobre el hormigón en modo que de modo que sea lo más ortogonal posible a la superficie y presionar el esclerómetro en modo continuo y uniforme contra la superficie hasta la percusión del martillo interno (7). Durante el empuje no presionar absolutamente el pulsador (19) que sin embargo de ser presionado después de la percusión y cuando la punta del percutor (11) se encuentra todavía apoyada completamente contra la superficie.
- 3.- Después de la percusión, el martillo (7) rebota hacia atrás arrastrando consigo un índice de referencia (6) tanto más cuanto mayor es la resistencia del hormigón.

Presionando el pulsador (19) se bloquea este índice en el punto máximo alcanzado de manera de poder efectuar cómodamente la lectura sobre la escala graduada (26). El numero leído sobre la escala graduada (26) es llevado al diagrama de la etiqueta adhesiva y se llega a la resistencia del hormigón como indican los ejemplos del capítulo III.

4.- Para efectuar otra prueba repetir la operación desde el punto 1.

III. CRITERIOS DE ELECCION DE LOS PUNTO DE GOLPEO Y PREPARACION DE LA SUPERFICIE

1.- Elección de puntos de golpeo. Efectuar preferiblemente el control sobre paredes verticales.

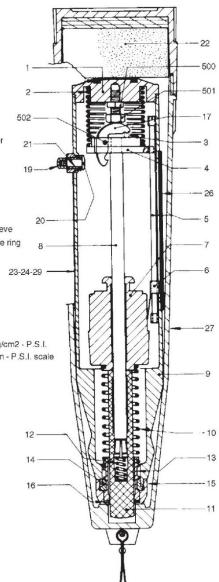
Las juntas, los huecos y zonas porosas deben ser evitadas. Se deberá además prestar particular atención a paredes con espesor mínimo de 10 cm. y pilastras con lado menor de 12 cm. que, a causa de su elasticidad podrían falsear la indicación del esclerómetro.

En el caso de mortero elaborado con hormigón decadente se revelarán valores decrecientes examinando del bajo al alto. Por esta razón será necesario repetir varias veces la prueba en varios puntos en modo de tener un valor medio representativo.

Esclerómetro	para	horm	igones
--------------	------	------	--------

pag. 3

Mod. 58-C0181/N


Rev. 0

Sclerometro C 181 N C 181 N Concrete hammer

Sezione longitudinale Longitudinal section

Lista ricambi / Spares list

- 1 Tappo Cap
- 2 Molla di pressione Pressure spring
- 3 Molla per arpione Pawl spring
- 4 Flangia di guida Guide flange
- 5 Alberino di guida indice Pointer guide rod
- 6 Indice di lettura rimbalzo Rebound reading pointer
- 7 Martello Hammer
- 8 Albero di guida Guide rod
- 9 Corpo sclerometro Concrete hammer housing
- 10 Molla di percussione Percussion spring
- 11 Percussore Plunger head
- 12 Molla ammortizzatore Shock-absorber spring
- 13 Manicotto ancoraggio molla Spring fastening sleeve
- 14 Anello di pressione (in 2 pezzi) Two-part pressure ring
- 15 Ghiera filettata Threaded ring nut
- 16 Anello antipolvere Dust sealing ring
- 17 Arpione Hook
- 19 Pulsante Push-button
- 20 Perno per pulsante Push-button pin
- 21 Molla per pulsante Push-button spring
- 22 Abrasivo Carborundum stone
- 23 24 29 Targa autoadesiva con scala in MPa kg/cm2 P.S.I.
- 23 24 29 Self adhesive sticker with MPa kg/sq.cm P.S.I. scale
- 26 Piastrina graduata Graduated plate
- 27 Custodia completa Complete case
- 500 Controdado Lock nut
- 501 Vite di regolazione Regulation screw
- 502 Spina per arpione Pin for hook

Preparación de la superficie a examinar.

Quitar antes de la prueba el enlucido que recubre el hormigón. La pequeñas irregularidades superficiales debidas a encofrados de madera y pueden ser eliminadas por medio de la piedra abrasiva (22) suministrada con el instrumento.

Se debe tener presente que la superficie a examinar no esta preparada hasta no haber eliminado con una maquina de desbastar el cemento y llegar al hormigón.

Incluso en el caso de hormigones muy viejos y por tanto muy endurecidos, superficialmente se deberá 1implar la superficie en una profundidad de aprox. 10 mm. correspondiente a una zona suficiente para efectuar de 5 a 10 golpes de esclerómetro. Se aconseja para la limpieza una maquina de aprox. 750 W con muela de 120 mm. de diam. aprox. y velocidad de 6000 vueltas por minuto.

- 3.- Un vez preparada la superficie a examinar (al menos 10 cm2) se procede al golpeo sobre al menos 5 puntos de la superficie. Es establece la media 'R' de las 5 o más lectoras eliminando aquellas que se alejan particularmente de las otras lecturas y reemplazándolas por nuevas lecturas. Se aconseja repetir los golpeos que se separan más de 5 unidades de las otras.
- 4.- Sobre las tablas 1 y II se podrán leer los valores Wm' de la resistencia media probable y los valores mínimos de resistencia a la compresión "W mm en las varias unidades de medida.

Se recomienda aproximar la media "R" a la media unidad de la escala del esclerómetro redondeando después a las decenas los valores de resistencia ·W~. Los valores de resistencia a la compresión sobre cubos vienen igualmente recabados si bien más aproximadamente, sobre los diagramas Fig.3a-3c situados en' el esclerómetro.

IV. LECTURA DEL DIAGRAMA.

Para llegar a la resistencia del hormigón se debe llevar sobre a la base del diagrama (abcisas) el numero leído sobre la escala graduada (26), subir después en vertical hasta encontrarse una de las curvas (ver explicación seguidamente) que atraviesan diagonalmente el diagrama. Del punto de encuentro (intersección) con una de las curvas se parte en horizontal hacia la izquierda hasta encontrar la escala vertical (ordenadas) donde están las resistencias correspondientes en kgf/cm2 o MPa o bien psi según la escala utilizada.

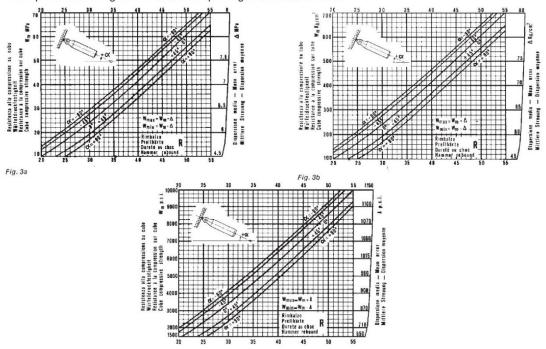
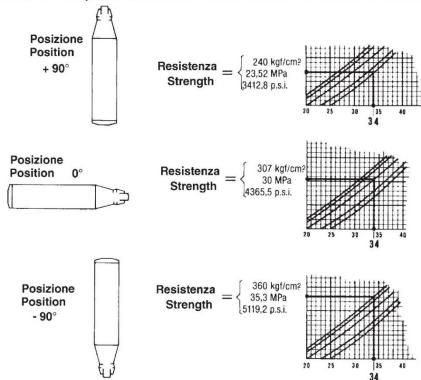


Fig. 3c

¿QUE CURVA ESCOJER?


Visto que el instrumento puede ser utilizado tanto en superficies verticales que sobre pavimentos, techos y superficies inclinadas, resulta bastante obvio que el rebote del martillo sea afectado por la gravedad por lo que el rebote relativo a una prueba realizada en un techo es con la punta del percusor hacia arriba, a paridad de resistencia del hormigón, será superior a la de la prueba efectuada por ejemplo sobre un pavimento.

Para obviar estas diferencias se ha llegado a distintas curvas cada una de las cuales corresponde a las diversas posiciones o ángulos de golpeo como ilustran los ejemplos posteriores:

Resulta inútil y además fácilmente intuible reportar los ejemplos relativos a las posiciones inclinadas +45 y -450

NOTA: las curvas se refieren a hormigones confeccionados con cementos Portland, aridos y arenas de buena calidad. Edad del hormigón de 14 a 56 dias. Superficies lisas y secas.

Los limites de la dispersión Wmax y Wmin. son definidas de modo de comprender el 80% de todos los resultados de las pruebas. Ver el capitulo V referente a los 'Limites de validez de las curvas de calibración'.

V. LIMITES DE VALIDEZ DE LAS CURVAS DE CALIBRACION

Las curvas de calibración del esclerómetro (fig. 3a,b,c) han sido trazadas en base a mediciones efectuadas sobre un gran numero de probetas cubicas antes controladas con el esclerómetro y despues probadas a compresión sobre una máquina de prueba. Todas las probetas cubicas empleadas han sido confeccionadas con un hormigón preparado con aridos y cemento Portland de buena calidad. Antes de la prueba a compresión cada probeta ha sido bloqueado entre los dos platos de la máquina de prueba y por tanto controlado con 10 golpeos de esclerómetro sobre una cara lateral.

De las experiencias realizadas resulta que la curva de calibración no esta en ningun modo condicionada de la dosificación del cemento, de la composición granulométrica, del diametro de los aridos y de la relación agua/cemento.

Se han hotado sin embargo diferencias en los siguientes casos:

- Productos en piedra artificial de pequeñas dimensiones o construidos con hormigones de composiciónes inusuales
 - Es aconsejable en estos casos efectuar una serie preliminar de pruebas para determinar la relación entre los valores de rebote y la calidad del material.
- 2.- Hormigones compuestos de agregados poco resistentes, ligeros o fisurables.
 - En este caso la resistencia efectiva del hormigón es más baja de la correspondiente a la curva de calibración.
 - En caso de dudas se deberá determinar experimentalmente la correlación entre los valores de rebote y la resistencia real.
- 3.- Hormigones confeccionados con piedras de superficie demasiado lisa inutilizables para hormigones a alta resistencia. Dado que en este caso el valor de rebote se refiere únicamente a la malta es difícil establecer la resistencia del hormigón.
- 4.- Se verifica el mismo fenómeno del punto 3 utilizando áridos sucios o arcillosos.
- 5.- Hormigones pobres de arena con baja relación agua/cemento, insuficientemente trabajados con la consiguiente formación de huecos invisibles exteriormente pero ciertamente con influencia negativa sobre los valores de rebote.
- 6.- Hormigones desencofrados recientemente o bien estacionados en agua. Antes de efectuar pruebas esclerométricas es deseable secar la superficie a controlar.
- 7.- Hormigones muy viejos y secos. Su superficie está siempre exageradamente dura y por tanto el esclerómetro da un valor superior a la realidad. En este caso, seria necesario eliminar con la muela la parte superficial en una profundidad de aprox. 10 mm. y efectuar las pruebas esclerométricas prestando atención a no golpear los áridos más gruesos.

Tabla 1

Resistencia a compresión de probetas cúbicas en función del rebote R (R = número leído sobre la escala 26 del esclerómetro).

Notas:

- Todos los valores de la tabla han sido obtenidos de medidas efectuadas sobre un gran número de probetas rotas después a compresión en una máquina de ensayo.
- 2) Los valores indicados en la parte de la tabla referente a los 7 días se refieren a la probable resistencia a 28 días en base a un valor de rebote "R" obtenido con pruebas sobre hormigones a 7 dias.

R = Valor de rebote leído sobre el esclerómetro.

Wm = Resistencia media. Wmin= Resistencia mínima.

3) La resistencia de las probetas cilíndricas es a paridad de valor "R" igual a 0,85 de la relativa de las probetas cúbicas.

Standard Test Method for Rebound Number of Hardened Concrete¹

This standard is issued under the fixed designation C 805; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope *

- 1.1 This test method covers the determination of a rebound number of hardened concrete using a spring-driven steel hammer.
- 1.2 The values stated in SI units are to be regarded as the standard
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- C 125 Terminology Relating to Concrete and Concrete Aggregates²
- C 670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials2
- E 18 Test Methods for Rockwell and Rockwell Superficial Hardness of Metallic Materials3

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of terms used in this test method, refer to Terminology C 125.

4. Summary of Test Method

4.1 A steel hammer impacts, with a predetermined amount of energy, a steel plunger in contact with a surface of concrete, and the distance that the hammer rebounds is measured.

5. Significance and Use

5.1 This test method is applicable to assess the in-place uniformity of concrete, to delineate regions in a structure of poor quality or deteriorated concrete, and to estimate in-place strength development.

- 5.2 To use this test method to estimate strength requires establishing a relationship between strength and rebound number. The relationship shall be established for a given concrete mixture and given apparatus. The relationship shall be established over the range of concrete strength that is of interest. To estimate strength during construction, establish the relationship by performing rebound number tests on molded specimens and measuring the strength of the same or companion molded specimens. To estimate strength in an existing structure, establish the relationship by correlating rebound numbers measured on the structure with the strengths of cores taken from corresponding locations. See ACI 228.1R4 for additional information on developing the relationship and on using the relationship to estimate in-place strength.
- 5.3 For a given concrete mixture, the rebound number is affected by factors such as moisture content of the test surface, the method used to obtain the test surface (type of form material or type of finishing), and the depth of carbonation. These factors need to be considered in preparing the strength relationship and interpreting test results.
- 5.4 Different hammers of the same nominal design may give rebound numbers differing from 1 to 3 units. Therefore, tests should be made with the same hammer in order to compare results. If more than one hammer is to be used, perform tests on a range of typical concrete surfaces so as to determine the magnitude of the differences to be expected.
- 5.5 This test method is not intended as the basis for acceptance or rejection of concrete because of the inherent uncertainty in the estimated strength.

6. Apparatus

6.1 Rebound Hammer, consisting of a spring-loaded steel hammer that when released strikes a steel plunger in contact with the concrete surface. The spring-loaded hammer must travel with a consistent and reproducible velocity. The rebound

¹ This test method is under the jurisdiction of ASTM Committee C09 on ¹ ans test metnod is under the jurisdiction of ASTM Committee CO9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee CO9.64 on Nondestructive and In-Place Testing.

Current edition approved July 10, 2002. Published August 2002. Originally published as C 305 – 75 T. Last previous edition C 805 – 97.

² Annual Book of ASTM Standards, Vol 04.02.

³ Annual Book of ASTM Standards, Vol 03.01.

ACI 228.1R-95, "In-Place Methods to Estimate Concrete Strength," ACI Manual of Concrete Practice-Part 2, 2000, American Concrete Institute, 38800 Country Club Drive, Farmington Hills, MI 48331.

distance of the steel hammer from the steel plunger is measured on a linear scale attached to the frame of the instrument.

Note 1—Several types and sizes of rebound hammers are commercially available to accommodate testing of various sizes and types of concrete construction.

- 6.2 Abrasive Stone, consisting of medium-grain texture silicon carbide or equivalent material.
- 6.3 Test Anvil, approximately 150-mm (6-in.) diameter by 150-mm (6-in.) high cylinder made of tool steel with an impact area hardened to 66 ± 2 HRC as measured by Test Methods E 18. An instrument guide is provided to center the rebound hammer over the impact area and keep the instrument perpendicular to the surface.
- 6.4 Verification—Rebound hammers shall be serviced and verified annually and whenever there is reason to question their proper operation. Verify the functional operation of a rebound hammer using the test anvil described in 6.3. During verification, support the test anvil on a bare concrete floor or slab. The manufacturer shall report the rebound number to be obtained by a properly operating instrument when tested on an anvil of specified hardness.

Note 2—Typically, a rebound hammer will result in a rebound number of 80 ± 2 when tested on the anvil described in 6.3. The test anvil needs to be supported on a rigid base to obtain reliable rebound numbers. Verification on the test anvil does not guarantee that the hammer will yield repeatable data at other points on the scale. The hammer can be verified at lower rebound numbers by using blocks of polished stone having uniform hardness. Some users compare several hammers on concrete or stone surfaces encompassing the usual range of rebound numbers encountered in the field

7. Test Area and Interferences

- 7.1 Selection of Test Surface—Concrete members to be tested shall be at least 100 mm (4 in.) thick and fixed within a structure. Smaller specimens must be rigidly supported. Avoid areas exhibiting honeycombing, scaling, or high porosity. Do not compare test results if the form material against which the concrete was placed is not similar (see Note 3). Troweled surfaces generally exhibit higher rebound numbers than screeded or formed finishes. If possible, test structural slabs from the underside to avoid finished surfaces.
- 7.2 Preparation of Test Surface—A test area shall be at least 150 mm (6 in.) in diameter. Heavily textured, soft, or surfaces with loose mortar shall be ground flat with the abrasive stone described in 6.2. Smooth-formed or troweled surfaces do not have to be ground prior to testing (see Note 3). Do not compare results from ground and unground surfaces.

Note 3—Where formed surfaces were ground, increases in rebound number of 2.1 for plywood formed surfaces and 0.4 for high-density plywood formed surfaces have been noted. Dry concrete surfaces give higher rebound numbers than wet surfaces. The presence of surface carbonation can also result in higher rebound numbers. The effects of drying and surface carbonation can be reduced by thoroughly wetting the

surface for 24 h prior to testing. In cases of a thick layer of carbonated concrete, it may be necessary to remove the carbonated layer in the test area, using a power grinder, to obtain rebound numbers that are representative of the interior concrete. Data are not available on the relationship between rebound number and thickness of carbonated concrete. The user must exercise professional judgment when testing carbonated concrete.

7.3 Do not test frozen concrete.

Note 4—Moist concrete at 0 °C (32 °F) or less may exhibit high rebound values. Concrete should be tested only after it has thawed. The temperatures of the rebound hammer itself may affect the rebound number. Rebound hammers at -18 °C (0 °F) may exhibit rebound numbers reduced by as much as 2 or 3 7 .

- 7.4 For readings to be compared, the direction of impact, horizontal, downward, upward, or at another angle, must be the same or established correction factors shall be applied to the readings.
- 7.5 Do not conduct tests directly over reinforcing bars with cover less than 20 mm [0.75 in.].

Note 5—The location of reinforcement may be established using reinforcement locators or metal detectors. Follow the manufacturer's instructions for proper operation of such devices.

8. Procedure

8.1 Hold the instrument firmly so that the plunger is perpendicular to the test surface. Gradually push the instrument toward the test surface until the hammer impacts. After impact, maintain pressure on the instrument and, if necessary, depress the button on the side of the instrument to lock the plunger in its retracted position. Read the rebound number on the scale to the nearest whole number and record the rebound number. Take ten readings from each test area. No two impact tests shall be closer together than 25 mm (1 in.). Examine the impression made on the surface after impact, and if the impact crushes or breaks through a near-surface air void disregard the reading and take another reading.

9. Calculation

9.1 Discard readings differing from the average of 10 readings by more than 6 units and determine the average of the remaining readings. If more than 2 readings differ from the average by 6 units, discard the entire set of readings and determine rebound numbers at 10 new locations within the test area.

10. Report

- 10.1 Report the following information for each test area:
- 10.1.1 Date and time of testing.
- 10.1.2 Identification of location tested in the concrete construction and the type and size of member tested,
- 10.1.2.1 Description of the concrete mixture proportions including type of coarse aggregates if known, and
- 10.1.2.2 Design strength of concrete tested.
- 10.1.3 Description of the test area including:
- 10.1.3.1 Surface characteristics (trowelled, screeded) of area.
- 10.1.3.2 If surface was ground and depth of grinding,

⁵ Gaynor, R. D., "In-Place Strength of Concrete—A Comparison of Two Test Systems," and "Appendix to Series 193," National Ready Mixed Concrete Assn., TIL No. 272, November 1969.

⁶ Zoldners, N. G., "Calibration and Use of Impact Test Hammer," *Proceedings*, American Concrete Institute, Vol 54, August 1957, pp. 161–165.

National Ready Mixed Concrete Assn., TIL No. 260, April 1968.

- 10.1.3.3 Type of form material used for test area,
- 10.1.3.4 Curing conditions of test area,
- 10.1.3.5 Type of exposure to the environment,
- 10.1.4 Hammer identification and serial number,
- 10.1.4.1 Air temperature at the time of testing,
- 10.1.4.2 Orientation of hammer during test, 10.1.5 Average rebound number for test area, and
- 10.1.5.1 Remarks regarding discarded readings of test data or any unusual conditions.

11. Precision and Bias

11.1 Precision-The single-specimen, single-operator, ma-

chine, day standard deviation is 2.5 units (1s) as defined in Practice C 670. Therefore, the range of ten readings should not exceed 12.

11.2 Bias—The bias of this test method cannot be evaluated since the rebound number can only be determined in terms of this test method.

12. Keywords

12.1 concrete; in-place strength; nondestructive testing; rebound hammer; rebound number

SUMMARY OF CHANGES

The following changes to this test method have been incorporated since the last issue, C 805-97.

- Section 3 on Terminology has been added.
- (2) Nonmandatory language in various sections has been replaced with mandatory language. Some nonmandatory language has been moved into a note or into the Significance and Use section.
- (3) The hardness of the test anvil has been revised to correct an error in the previous issue.
- (4) The verification procedure has been moved to the Apparatus section and more guidance has been provided.
- (5) Section 7.5 has been added to prevent testing directly over reinforcement with shallow cover.
- (6) Spelling and grammatical errors have been corrected.

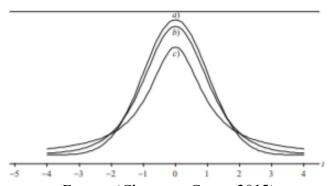
ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM international Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM international, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9585 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

DISTRIBUCIÓN t DE STUDENT

Sea el estadístico


$$t = \frac{\bar{X} - \mu}{s} \sqrt{N - 1} = \frac{\bar{X} - \mu}{\hat{s} / \sqrt{N}} \tag{I}$$

que es análogo al estadístico z dado por

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{N}}.$$

Si se consideran muestras de tamaño N extraídas de una población normal (o aproximadamente normal) cuya media es μ y si para cada muestra se calcula t, usando la media muestral \bar{X} y la desviación estándar muestral s o \hat{s} , se obtiene la distribución muestral de t. Esta distribución (ver figura 11-1) está dada por

$$Y = \frac{Y_0}{\left(1 + \frac{t^2}{N - 1}\right)^{N/2}} = \frac{Y_0}{\left(1 + \frac{t^2}{\nu}\right)^{(\nu + 1)/2}} \tag{2}$$

Fuente: (Chungara Castro, 2015)

INTERVALOS DE CONFIANZA

Como se hizo en el capítulo 9 con las distribuciones normales, se pueden definir intervalos de confianza de 95%, 99% u otros intervalos usando la tabla de la distribución r que aparece en el apéndice III. De esta manera puede estimarse la media poblacional µ dentro de determinados limites de confianza.

Por ejemplo, si $-t_{.975}$ y $t_{.975}$ son los valores de t para los cuales 2.5% del área se encuentra repartida en cada una de las colas de la distribución t, entonces el intervalo de confianza para t de 95% es

$$-t_{.975} < \frac{\hat{X} - \mu}{\epsilon} \sqrt{N - 1} < t_{.975}$$
 (3)

a partir de lo cual se puede estimar que μ se encuentra en el intervalo

$$\bar{X} - t_{.975} \frac{s}{\sqrt{N-1}} < \mu < \bar{X} + t_{.975} \frac{s}{\sqrt{N-1}}$$
(4)

con una confianza de 95% (es decir, con una probabilidad de 0.95). Obsérvese que $t_{.975}$ representa el valor del percentil 97.5, y que $t_{.025} = -t_{.975}$ representa el valor del percentil 2.5.

En general, los limites de confianza para la media poblacional se representan mediante

$$\bar{X} \pm t_c \frac{s}{\sqrt{N-1}}$$
(5)

donde los valores $\pm t_c$, llamados valores críticos o coeficientes de confianza, dependen del nivel de confianza deseado y del tamaño de la muestra. Estos valores se leen en el apéndice III.

Se supone que la muestra se toma de una población normal. Esta suposición se puede verificar empleando la prueba para normalidad de Kolmogorov-Smirnov.

Fuente: (Chungara Castro, 2015)

_				м.		
Ta	h	2	•	• 1	11/	A111
1 0				э.	u	

Crados do	I					
Grados de libertad	0.25	0.1	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8408
4	0.7407	1.5332	2.1318	2.7765	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9979	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	1.3178	1.7109	2.0639	2.4922	2.7970
25	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	1.3114	1.6991 1.6973	2.0452	2.4620	2.7564
30 31	0.6828 0.6825	1.3104 1.3095	1.6955	2.0423 2.0395	2.4573 2.4528	2.7500
32	0.6822	1.3095	1.6939	2.0399	2.4328	2.7440 2.7385
33	0.6820	1.3077	1.6924	2.0309	2.4448	2.7333
34	0.6818	1.3077	1.6909	2.0343	2.4411	2.7284
35	0.6816	1.3062	1.6896	2.0322	2.4377	2.7238
36	0.6814	1.3055	1.6883	2.0301	2.4345	2.7195
37	0.6812	1.3049	1.6871	2.0262	2.4314	2.7154
38	0.6810	1.3042	1.6860	2.0244	2.4286	2.7116
39	0.6808	1.3036	1.6849	2.0227	2.4258	2.7079
40	0.6807	1.3031	1.6839	2.0211	2.4233	2.7045
41	0.6805	1.3025	1.6829	2.0195	2.4208	2.7012
42	0.6804	1.3020	1.6820	2.0181	2.4185	2.6981
43	0.6802	1.3016	1.6811	2.0167	2.4163	2.6951
44	0.6801	1.3011	1.6802	2.0154	2.4141	2.6923
45	0.6800	1.3007	1.6794	2.0141	2.4121	2.6896
46	0.6799	1.3002	1.6787	2.0129	2.4102	2.6870
47	0.6797	1.2998	1.6779	2.0117	2.4083	2.6846
48	0.6796	1.2994	1.6772	2.0106	2.4066	2.6822
49	0.6795	1.2991	1.6766	2.0096	2.4049	2.6800

Informe de calibración

Instrumento

Modelo: C138N Número serie: 001

Fecha de ensayo: 18/03/2020 Referencia: C140-07-A1-0003 Fondo de escale: 2000,000 kN

Transductor

Fondo de escala: 1000,000 kN

Norma: EN ISO 7500-1

Máquina

Modelo: 1253337002 Número serie: 13001079 Fecha de ensayo: 19/03/2020

Temperatura: 18,0 °C Resolución: 0,100 kN Oscilación: 0,100 kN

Incremento: 0,100 kN

n°	Fi	F1	F2	F3	Fa	q%	ь%	U%
0	0,000	0,000	0,000	0,000	0,000	0,00	0,00	0,00
1	100,000	99,326	100,899	100,427	100,217	-0,22	1,57	0,96
2	200,000	200,700	202,021	201,565	201,429	-0,71	0,66	0,45
3	300,000	301,617	302,497	302,466	302,193	-0,73	0,29	0,31
4	400,000	401,226	402,688	402,169	402,028	-0,50	0,36	0,32
5	500,000	501,792	503,239	503,050	502,694	-0,54	0,29	0,30
6	600,000	601,995	603,473	603,268	602,912	-0,48	0,25	0,28
7	700,000	701,787	703,831	703,344	702,987	-0,42	0,29	0,30
8	800,000	801,876	803,291	803,354	802,840	-0,35	0,18	0,27
9	900,000	902,136	903,724	903,409	903,090	-0,34	0,18	0,26
10	1000,000	1001,969	1003,605	1003,369	1002,981	-0,30	0,16	100,000
		88	169			0,50	0,10	0,26
	FOr	0,000	0,000	0,000				

Clase: 2

Error exactitud max(q): -0,73 % Error repetitibilidad max(b): 1,57 % Error relativo de cero(f0): 0,00 % Resolución max. relativa(a): 0,10 %

Operador Little

CONTROLS

Total force trabano : 888388
Here trabano : 888388
Here

Responsable

19. Meists Diez Hyperis

ENCARGADO DE LADORATIO DE