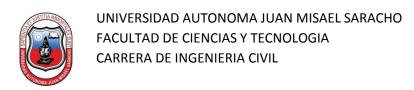
ANEXOS I ENSAYOS DE LABORATORIO

ENSAYOS DE LABORATORIO

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL

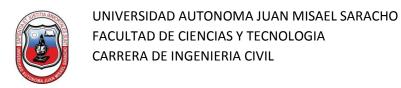

LABORATORIO DE TECNOLOGIA DEL HORMIGON

ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

Proyecto: Proyecto de Ingeniería Civil Laboratorista: Tec. Fernando Colque M.

Procedencia: Santa Ana-Piedra larga **Identificación:** 30 muestras

TESTIGO Nº	FECHA DE ROTURA	PESO (kg)	a (mm)	b (mm)	c (mm)
1	04/07/2019	4.20	90.00	90.00	190.00
2	24/06/2019	4.21	80.00	80.00	190.00
3	16/07/2019	1.78	80.00	60.50	130.50
4	24/06/2019	3.79	85.00	90.00	180.00
5	11/07/2019	3.73	90.50	80.00	180.00
6	24/06/2019	5.98	95.00	95.00	200.00
7	11/07/2019	5.80	110.00	130.00	170.00
8	11/07/2019	3.32	80.50	90.00	180.00
9	04/07/2019	5.28	100.00	100.00	220.00
10	04/07/2019	2.87	95.00	95.00	200.00

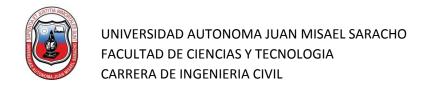


ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

Proyecto: Proyecto de Ingeniería Civil Laboratorista: Tec. Fernando Colque M.

Procedencia: Santa Ana-Piedra larga **Identificación:** 30 muestras

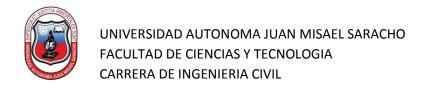
TESTIGO Nº	FECHA DE ROTURA	PESO (kg)	a (mm)	b (mm)	c (mm)
11	11/07/2019	1.59	70.00	70.00	140.00
12	04/07/2019	1.58	100.00	100.00	200.00
13	24/06/2019	4.76	100.00	100.00	220.00
14	04/07/2019	3.62	70.00	60.00	130.00
15	16/07/2019	1.95	60.00	80.00	160.00
16	04/07/2019	6.03	100.00	100.00	210.00
17	09/07/2019	4.82	90.50	90.50	190.00
18	09/07/2019	4.56	100.00	100.00	190.00
19	11/07/2019	5.26	80.00	80.00	180.00
20	11/07/2019	3.25	90.00	90.00	200.00



ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

Proyecto: Proyecto de Ingeniería Civil Laboratorista: Tec. Fernando Colque M.

Procedencia: Santa Ana-Piedra larga **Identificación:** 30 muestras


TESTIGO Nº	FECHA DE ROTURA	PESO (kg)	a (mm)	b (mm)	c (mm)
21	04/07/2019	4.08	90.00	90.00	190.00
22	09/07/2019	6.04	100.00	100.00	220.00
23	16/07/2019	2.09	80.00	80.00	130.50
24	11/07/2019	4.03	90.50	90.00	180.00
25	24/06/2019	5.95	95.00	95.00	200.00
26	16/07/2019	5.68	90.00	80.00	180.00
27	16/07/2019	3.68	65.00	70.00	150.00
28	16/07/2019	2.46	100.00	100.00	210.00
29	24/06/2019	1.75	90.00	90.00	180.00
30	24/06/2019	4.10	85.00	85.00	170.00

ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

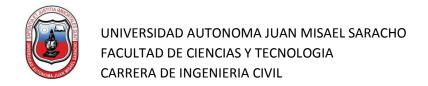
Proyecto: Proyecto de Ingeniería CivilLaboratorista: Tec. Fernando Colque M.Procedencia: Santa Ana-Piedra largaIdentificación: 30 muestras

TESTIGO Nº	AREA (mm2)	LECTURA (KN)	RESISTENCIA (Mpa)
1	8100.00	173.80	21.42
2	6400.00	467.00	72.96
3	4840.00	96.50	19.92
4	7650.00	294.50	38.50
5	7240.00	161.90	22.35
6	9025.00	259.70	28.76
7	14300.00	223.80	15.45
8	7245.00	103.70	14.31
9	10000.00	264.60	26.45
10	9025.00	204.60	22.67

ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

Proyecto: Proyecto de Ingeniería Civil

Procedencia: Santa Ana-Piedra larga


Solicitante: Vargas García Evelin Rosalba

Laboratorista: Tec. Fernando Colque M.

Identificación: 30 muestras

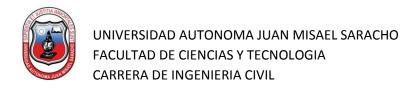
Fecha: 04 /12/2019

TESTIGO Nº	AREA (mm2)	LECTURA (KN)	RESISTENCIA (Mpa)
11	4900.00	51.00	10.40
12	10000.00	468.80	46.88
13	10000.00	249.20	24.92
14	4200.00	147.50	35.12
15	4800.00	144.80	30.17
16	10000.00	770.60	77.06
17	8190.25	260.70	31.82
18	10000.00	402.40	40.01
19	6400.00	414.80	64.81
20	8100.00	181.40	22.40

ENSAYO DE RESISTENCIA A COMPRESION SIMPLE DE PROBETAS DE ROCA

Proyecto: Proyecto de Ingeniería Civil

Procedencia: Santa Ana-Piedra larga

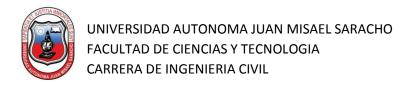

Solicitante: Vargas García Evelin Rosalba

Laboratorista: Tec. Fernando Colque M.

Identificación: 30 muestras

Fecha: 04 /12/2019

TESTIGO №	AREA (mm2)	LECTURA (KN)	RESISTENCIA (Mpa)
21	8100.00	265.30	32.75
22	10000.00	515.10	51.49
23	6400.00	182.20	28.48
24	8145.00	194.90	23.92
25	9025.00	227.90	25.25
26	7200.00	284.60	39.53
27	4550.00	196.80	43.25
28	10000.00	341.20	34.12
29	8100.00	217.90	26.90
30	7225.00	123.50	17.09



ENSAYO DE PESO ESPECIFICO

Proyecto: Proyecto de Ingeniería Civil Laboratorista: Tec. Fernando Colque M.

Procedencia: Santa Ana-Piedra larga **Identificación:** 30 muestras

TESTIGO Nº	PESO SUPERFICIALMENTE SECO (gr)	PESO SUMERGIDO (gr)	PESO SECO (gr)
1	4005	2487	3960
2	2800	1740	2765
3	1360	829	1325
4	4005	2474	3854
5	2510	1568	2490
6	5600	3485	5535
7	4455	2737	4365
8	3190	1865	3060
9	2500	1537	2455
10	2960	1639	2910
11	1355	795	1285
12	4250	2764	4128
13	4470	2724	4350
14	3574	2286	3454
15	875	548	870

ENSAYO DE PESO ESPECIFICO

Proyecto: Proyecto de Ingeniería Civil Laboratorista: Tec. Fernando Colque M.

Procedencia: Santa Ana-Piedra larga **Identificación:** 30 muestras

TESTIGO Nº	PESO SUPERFICIALMENTE SECO (gr)	PESO SUMERGIDO (gr)	PESO SECO (gr)
16	5645	3544	5605
17	4015	2449	3940
18	4300	2641	4240
19	3200	2040	3150
20	2340	1437	2310
21	3890	2422	3850
22	5860	3648	5805
23	1815	1112	1775
24	3800	2370	3755
25	5590	3481	5530
26	3980	2015	3935
27	4100	2570	4050
28	3640	2210	3600
29	1975	1050	1950
30	4245	2578	4195

ANEXOS II DATOS DE CAMPO

DATOS DE CAMPO

Talud	Prog	gresiva	Altura	Longitud
	Inicial	Final	(m)	(m)
N°1	15+500	15+625	9.80	125.00
N°2	15+980	16+062	11.70	82.00
N°3	16+650	16+770	12.00	120.00
N°4	16+700	16+820	17.30	120.00
N°5	17+100	17+190	10.50	90.00
N°6	17+420	17+532	10.30	112.00
N°7	17+630	17+720	10.30	70.00
N°8	17+640	17+740	11.40	100.00
N°9	17+940	18+095	14.00	155.00
N°10	18+320	18+422	9.80	102.00
N°11	18+750	18+875	18.00	125.00
N°12	18+860	18+912	15.00	52.00
N°13	19+550	19+590	10.50	40.00
N°14	19+960	20+070	17.30	110.00
N°15	20+100	20+240	16.00	140.00
N°16	24+310	24+392	10.30	82.00
N°17	26+530	26+601	11.00	71.00
N°18	26+880	27+060	11.50	180.00
N°19	27+760	27+860	13.50	100.00
N°20	28+470	28+647	18.00	177.00
N°21	28+920	29+000.5	9.50	80.50
N°22	30+000	30+163	10.10	163.00
N°23	31+240	31+368	9.80	128.00
N°24	31+250	31+364	10.40	114.00
N°25	31+990	32+082	13.00	92.00
N°26	34+230	34+350	33.00	120.00
N°27	34+360	34+500	9.50	140.00
N°28	35+200	35+372	10.15	172.00
N°29	38+000	38+100	12.10	100.00
N°30	38+800	38+915	15.00	115.00

	Orientacio	ón del talud	Orientació	n de la junta
Talud	Rumbo	Buzamiento	Rumbo	Buzamiento
	(°)	(°)	(°)	(°)
N°1	42	88	37	88
N°2	76	80	71	76
N°3	45	84	47	84
N°4	50	70	39	73
N°5	30	85	35	87
N°6	89	88	84	87
N°7	87	85	89	86
N°8	36	83	39	84
N°9	42	76	50	76
N°10	41	86	47	86
N°11	80	80	87	85
N°12	60	75	55	79
N°13	30	80	32	84
N°14	45	80	48	85
N°15	66	75	60	76
N°16	75	83	63	83
N°17	80	86	84	86
N°18	68	84	52	85
N°19	80	85	73	90
N°20	22	75	27	74
N°21	36	85	31	82
N°22	89	85	82	81
N°23	39	86	37	86
N°24	84	86	89	85
N°25	58	83	65	80
N°26	83	73	76	77
N°27	43	87	38	85
N°28	74	83	71	77
N°29	81	85	76	78
N°30	81	85	77	84

ANEXOS III CÁLCULOS COMPLEMENTARIOS

CALCULOS COMPLEMENTARIOS

Tramo de estudio 1 PROG.INICIAL: 15+500 PROG. FINAL: 15+625

$$H = 9.80 (m)$$

$$\beta = 88.00 \, (^{0})$$

$$L = 125.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.59 (KN/m^3)$$

$$Y_{sat} = 25.88 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$k_2 = \frac{C*H}{\Psi*k} * sen \beta$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)}$$

$$k = 1.00$$

$$\Psi = 1228.89 \text{ (KN/m)}$$

$$\Psi_1 = 0.00$$

$$k_2 = 0.40$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2 * sen(\beta - 2\alpha - \varepsilon)}{sen^2(\beta - \alpha)} + tan\varphi - k_1 * tan\varphi * sec^2\alpha * cos(2\alpha + \varepsilon) = 0$$
Iterado $\alpha = 56.89 \ (^0) = 56^0 53' 24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.34$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 758.43 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 56.48 \, (^{\circ}) = 56^{\circ}28'48''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.16$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.25$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.12$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 79.18 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \frac{Kgf}{mm^2} * 10 \frac{N}{Kaf} = 1050 \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=5.79 \text{ (m) asumimos } 5.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.50 (m) por 5.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 9.80 (m)$$

$$S = 5.50 (m)$$

$$L = 125.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.78 = 1 filas

Se requiere 1 filas y 22 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 21.42 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 2.14 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 88.00$$
 (°)

$$\alpha = 56.89$$
 (°) = $56^{0}53'24''$

$$\Delta = -5 \, (^{\circ})$$

$$H = 9.80 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.69 = 5.00 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.67 = 8.00 (m)$$

Primera hilera

Tramo de estudio 2 PROG.INICIAL: 15+980 PROG. FINAL: 16+060

$$H = 11.70 (m)$$

$$\beta = 80.00 \, (^{0})$$

$$L=82.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.97 (KN/m^3)$$

$$Y_{sat} = 26.29 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 (KN/m^2)$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1777.36 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_{\text{w}} * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.29$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha = 53.87 \ (^0) = 53^052'12''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.33$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 983.93 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 53.44$$
 (°) = $53^{\circ}26'24''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.17$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.18$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.14$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 114.03 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=5.31 (m) asumimos 5.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.00 (m) por 5.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 11.70 (m)$$

$$S = 5.00 (m)$$

$$L = 82.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.34 = 2 filas

Se requiere 2 filas y 16 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 43.25 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 4.33 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\it \Gamma}_q=1.40$ a $2.00={
m Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 80.00$$
 (°)

$$\alpha = 53.87$$
 (°) = $53^{\circ}52'12''$

$$\Delta = -5$$
 (°)

$$H = 11.70 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.37 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.34 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 5.00 (m)$$

$$2S = 10.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 10.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 9.85$ (m) asumimos 10.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 80.00$$
 (°)

$$\alpha = 53.87$$
 (°) = $53^{\circ}52'12''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 11.70 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 6.98 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 9.95 (m) Segunda hilera

Tramo de estudio 3 PROG.INICIAL: 16+650 PROG. FINAL: 16+770

H = 12.00 (m)

$$\beta = 84.00 \, (^{0})$$

$$L=120.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.48 \text{ (KN/m}^3)$$

$$Y_{sat} = 25.13 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 37 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$
 $k = 1.00$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1762.47 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \operatorname{sen} \beta \qquad \qquad k_2 = 0.34$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon) = 0$$

Iterado
$$\alpha = 56.34 \, (^{\circ}) = 56^{\circ}20'24"$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.38$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 988.50 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 55.87 \, (^{\circ}) = 55^{\circ}52'12''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.12$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_0) = (FS)_0 \cos(\alpha - \Delta) + \sin(\alpha - \Delta) * \tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.21$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.10$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 83.06 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.27 \text{ (m) asumimos } 6.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.00 (m) por 6.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 12.00 (m)$$

$$S = 6.00 (m)$$

$$L = 120.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.00 = 1 filas

Se requiere 1 filas y 19 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 26.46 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.65 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q=1.40$ a 2.00= Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen \beta$$
 $h = 6.24$ (m) asumimos 6.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 84.00$$
 (°)

$$\alpha = 56.34$$
 (°) = $56^{0}20'24''$

$$\Delta = -5 \, (^{\circ})$$

$$H = 12.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.99 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.96 (m)$$

Primera hilera

Tramo de estudio 4 PROG.INICIAL: 16+700 PROG. FINAL: 16+820

$$H = 17.30 (m)$$

$$\beta = 70.00 \, (^{0})$$

$$L=120.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.69 (KN/m^3)$$

$$Y_{sat} = 25.66 \text{ (KN/m}^3)$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 3695.45 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.22$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha = 47.64 \ (^0) = 47^038^{\circ}24^{\circ}$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.37$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 2024.35 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 47.23$$
 (°) = 47⁰13'48''

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.13$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.07$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.12$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

 $F_a = 176.14$ (KN/m) Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=5.32 (m) asumimos 5.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.00 (m) por 5.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje = $\frac{H}{S} - 1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 17.30 (m)$$

$$S = 5.00 (m)$$

$$L = 120.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 2.46 = 3 filas

$$N^{\circ}$$
 columnas de anclaje = 23.00 = 23 Columnas

Se requiere 3 filas y 23 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 38.50 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 3.85 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{\Gamma}_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo$

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen \beta$$
 $h = 5.00 (m)$

Considerando los siguientes valores calculados anteriormente

$$\beta = 70.00$$
 (°)

$$\alpha = 47.64$$
 (°) = $47^{\circ}38'24''$

$$\Delta = -5$$
 (°)

$$H = 17.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 5.14 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.11 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 5.00 (m)$$

$$2S = 10.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 10.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 10.00 (m)$

Considerando los siguientes valores calculados anteriormente

$$\beta = 70.00$$
 (°)

$$\alpha = 47.64$$
 (°) = $47^{0}38'24''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 17.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.69 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.66 (m) Segunda hilera

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea a enteros por constructividad.

Tramo de estudio 5 PROG.INICIAL: 17+100 PROG. FINAL: 17+190

H = 10.50 (m)

$$\beta = 85.00 \, (^{0})$$

L=90.00 (m)

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.92 (KN/m^3)$$

$$Y_{sat} = 25.44 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 33 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1373.97 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_{\text{w}} * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.38$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2 * sen(\beta - 2\alpha - \varepsilon)}{sen^2(\beta - \alpha)} + tan\varphi - k_1 * tan\varphi * sec^2\alpha * cos(2\alpha + \varepsilon) = 0$$
Iterado $\alpha = 54.71 \ (^0) = 54^042'36''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.38$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 852.27 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 54.30 \, (^{\circ}) = 54^{\circ}18'00''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.12$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.21$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.10$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 66.66 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \frac{Kgf}{mm^2} * 10 \frac{N}{Kaf} = 1050 \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.55 \text{ (m) asumimos } 6.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.50 (m) por 6.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.50 (m)$$

$$S = 6.50 (m)$$

$$L = 90.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.62 = 1 filas

Se requiere 1 filas y 13 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 15.45 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 1.55 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 54.71$$
 (°) = $54^{0}42'36''$

$$\Delta = -5$$
 (°)

$$H = 10.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 5.39 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.36 (m)$$

Primera hilera

Tramo de estudio 6 PROG.INICIAL: 17+420 PROG. FINAL: 17+532

$$H = 10.30 (m)$$

$$\beta = 88.00 \, (^{0})$$

$$L=112.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.68 \text{ (KN/m}^3)$$

$$Y_{sat} = 25.15 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1309.24 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.35$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha = 58.42 \ (^0) = 58^025'12''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.27$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 759.15 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 57.98 \, (^{\circ}) = 57^{\circ}58'48''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.23$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.27$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.18$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_a = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$
$$F_a = 116.72 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g$$
= 531.00 mm² * 850 $\frac{N}{mm^2}$ = 451.35 (KN)

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=4.89 (m) asumimos 4.50 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.50 (m) por 4.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje = $\frac{H}{S} - 1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.30 (m)$$

$$S = 4.50 (m)$$

$$L = 112.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.29 = 2 filas

$$N^{\circ}$$
 columnas de anclaje = 23.89 = 24 Columnas

Se requiere 2 filas y 24 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 31.82 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10} \sigma_c$$
 $\tau_w = 3.18 \text{ (Mpa)}$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\pmb \Gamma}_q=1.40$ a $2.00={
m Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 88.00$$
 (°)

$$\alpha = 58.42$$
 (°) = $58^{\circ}25'12''$

$$\Delta = -5$$
 (°)

$$H = 10.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 4.03 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.00 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.50 (m)$$

$$2S = 9.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 9.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 8.99 (m) asumimos 9.00 (m)$

Considerando los siguientes valores calculados anteriormente

$$\beta = 88.00 \, (^{\circ})$$

$$\alpha = 58.42$$
 (°) = $58^{\circ}25'12''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 10.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 6.52 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 9.49 (m) Segunda hilera

Tramo de estudio 7 PROG.INICIAL: 17+630 PROG. FINAL: 17+720

$$H = 10.30 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L=70.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.93 (KN/m^3)$$

$$Y_{sat} = 26.14 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \phi = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1375.50 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.37$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha=55.21~(^0)=55^012'36''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 835.15 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 54.81$$
 (°) = $54^0 48'36''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.13$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.11$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 75.83 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g$$
= 531.00 mm² * 850 $\frac{N}{mm^2}$ = 451.35 (KN)

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=6.08 (m) asumimos 6.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.00 (m) por 4.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

H = 10.30 (m)

S = 6.00 (m)

L = 70.00 (m)

 N° filas de anclaje = 0.72 = 1 filas

N° columnas de anclaje = 10.67= 11 Columnas

Se requiere 1 filas y 11 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 22.35 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 2.24 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_{q*F}}{\pi * \emptyset_p * \tau_w / \Gamma_p} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen\beta$$
 $h = 6.06$ (m) asumimos 6.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00 \, (^{\circ})$$

$$\alpha = 55.21$$
 (°) = $55^{0}12'36''$

$$\Delta = -5$$
 (°)

$$H = 10.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 4.99 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 7.96 (m)

Primera hilera

Tramo de estudio 8 PROG.INICIAL: 17+640 PROG. FINAL: 17+740

$$H = 11.40 (m)$$

$$\beta = 83.00 \, (^{0})$$

$$L=100.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.07 (KN/m^3)$$

$$Y_{sat} = 25.43 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (\mathrm{KN/m^3})$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q=0.00~(KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \ (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

k = 1.00

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1629.18 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_{\text{w}} * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.31$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_h)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha = 55.63 \ (^0) = 55^037'48''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.30$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 914.11 (KN/m)$$

 $(FS)_0$, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$

$$\Delta = \Delta_0 = 55.20$$
 (°) = $55^{\circ}12'00''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.20$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.21$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.16$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 123.03 \text{ (KN/m)}$$

3.8.2 Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g$$
= 531.00 mm² * 850 $\frac{N}{mm^2}$ = 451.35 (KN)

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=5.03 (m) asumimos 5.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.00 (m) por 5.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje = $\frac{H}{S} - 1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 11.40 (m)$$

$$S = 5.00 (m)$$

$$L = 100.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.28 = 2 filas

Se requiere 2 filas y 19 columnas de anclaje para estabilizar el sector

- 3.8.3 Determinación de la longitud de anclaje de la barra
- a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 40.01 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 4.00 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00$$
 (°)

$$\alpha = 55.63$$
 (°) = $55^{\circ}37'48''$

$$\Delta = -5$$
 (°)

$$H = 11.40 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 4.37 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.34$$
 (m) Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 5.00 (m)$$

$$2S = 10.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 10.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 9.98$ (m) asumimos 10.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00 \, (^{\circ})$$

$$\alpha = 55.63$$
 (°) = $55^{\circ}37'48''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 11.40 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.02 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.00 (m) Segunda hilera

Tramo de estudio 9 PROG.INICIAL: 17+940 PROG. FINAL: 18+095

$$H = 14.00 (m)$$

$$\beta = 76.00 \, (^{0})$$

$$L=155.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 26.64 (KN/m^3)$$

$$Y_{sat} = 27.06 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (KN/m^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 30 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$\begin{aligned} & \text{k} = (k_h^2 + (1+k_v)^2)^{1/2} & \text{k} = 1.00 \\ & \Psi = \frac{\gamma_{\text{sat}}}{2} * \text{H}_1^2 + \frac{1}{2} \left(\text{H}^2 - \text{H}_1^2 \right) \gamma + \text{q} * \text{H} & \Psi = 2610.64 \text{ (KN/m)} \\ & \Psi_1 = \frac{\gamma_{\text{w}} * \text{H}_1^2}{2} & \Psi_1 = 0.00 \\ & \text{k}_2 = \frac{\text{C} * \text{H}}{\Psi * \text{k}} * \text{sen } \beta & \text{k}_2 = 0.26 \\ & \tan \varepsilon = \frac{k_h}{(1+k_v)} & \varepsilon = 0.00 \end{aligned}$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha=50.32~(^0)=50^019'12''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 1515.07 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 49.95$$
 (°) = $49^0 57'00''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.24$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.15$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.21$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 244.20 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=4.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.00 (m) por 4.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 14.00 (m)$$

$$S = 4.00 (m)$$

$$L = 155.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 2.50 = 3 filas

Se requiere 3 filas y 38 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 64.81 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 6.48 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_{q*F}}{\pi * \emptyset_p * \tau_w / \Gamma_p} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 76.00$$
 (°)

$$\alpha = 50.32$$
 (°) = $50^{0}19'12''$

$$\Delta = -5$$
 (°)

$$H = 14.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 4.27 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 7.24 (m)

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.00 (m)$$

$$2S = 8.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 8.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 7.77$ (m) asumimos 8.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 76.00$$
 (°)

$$\alpha = 50.32$$
 (°) = $50^{0}19'12''$

$$Ls = 3 (m)$$

$$\Delta = -5 \, (^{\circ})$$

$$H = 14.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$
$$L_{L} = 6.45 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 9.42 (m) Segunda hilera

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea a enteros por constructividad.

Tramo de estudio 10 PROG.INICIAL: 18+320 PROG. FINAL: 18+422

H = 9.80 (m)

 $\beta = 86.00 \, (^{0})$

L=102.00 (m)

H1 = 0.00 (m)

Datos complementarios

$$Y = 22.66 (KN/m^3)$$

$$Y_{sat} = 23.62 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 33 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1087.92 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.40$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 55.34 \ (^0) = 55^020'24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.41$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

que se generan a través del tirante anclado dentro del macizo rocoso.

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

R = 676.11 (KN/m)

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 54.93$$
 (°) = $54^055'48''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.09$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_0) = (FS)_0 \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.07$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 39.66 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=8.19 (m) asumimos 8.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 8.00 (m) por 8.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 9.80 (m)$$

$$S = 8.00 (m)$$

$$L = 102.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.23 = 1 filas

Se requiere 1 filas y 12 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 14.31 (Mpa)

 $f_{c}^{'}$ = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10} \sigma_c$$
 $\tau_w = 1.43 \text{ (Mpa)}$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{r}_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 8.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00$$
 (°)

$$\alpha = 55.34$$
 (°) = $55^{\circ}20'24''$

$$\Delta = -5$$
 (°)

$$H = 9.80 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 H\right)$$

$$L_L = 6.18 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 9.15 (m)$$
 Primera hilera

$$H = 15.00 (m)$$

$$\beta = 75.00 \, (^{0})$$

$$L=52.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.67 (KN/m^3)$$

$$Y_{sat} = 25.97 \text{ (KN/m}^3)$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 35 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$k_2 = \frac{C*H}{\Psi*k} * sen \beta$$

$$\tan \varepsilon = \frac{k_h}{(1+k_n)}$$

$$k = 1.00$$

$$\Psi = 2888.21 \text{ (KN/m)}$$

$$\Psi_1 = 0.00$$

$$k_2 = 0.25$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 51.12 \ (^0) = 51^07'12''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.36$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 1554.98 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

- 3.8 Dimensionamiento de los pernos de anclaje para cada talud
- 3.8.1 Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 50.68 \, (^{\circ}) = 50^{\circ}40'48''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\rm o})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.14$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.12$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.12$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 311.73 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=5.28 \text{ (m) asumimos } 5.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.00 (m) por 5.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 15.00 (m)$$

$$S = 5.00 (m)$$

$$L = 52.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 2.00 = 2 filas

Se requiere 2 filas y 10 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 28.76 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.88 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_{s} = \left[\frac{\Gamma_{q} * F}{\pi * \emptyset_{n} * \tau_{w} / \Gamma_{v}} \right] \qquad L_{s} = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen\beta$$
 $h = 5.10$ (m) asumimos 5.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 51.12$$
 (°) = $51^{0}7'12''$

$$\Delta = -5$$
 (°)

$$H = 15.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_{L} = 4.77 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.75 (m)$$

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 5.00 (m)$$

$$2S = 10.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 10.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 9.66$ (m) asumimos 10.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 51.12$$
 (°) = $51^{0}7'12''$

$$Ls = 3 (m)$$

$$\Delta = -5 \, (^{\circ})$$

$$H = 15.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.30 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.27 (m) Segunda hilera

Tramo de estudio 13 PROG.INICIAL: 19+550 PROG. FINAL: 19+590

$$H = 10.50 (m)$$

$$\beta = 80.00 \, (^{0})$$

$$L=40.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 27.25 (KN/m^3)$$

$$Y_{sat} = 28.06 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C=45\;(KN/m^2)$$

$$\phi = \emptyset = 35 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1502.24 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.31$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado $\alpha = 53.44 \ (^0) = 53^026'24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.38$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 849.17 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 53.00 \, (^{\circ}) = 53^{\circ}00'00''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.12$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.17$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.10$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 69.17 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.46 \text{ (m) asumimos } 6.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.00 (m) por 6.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.50 (m)$$

$$S = .00 (m)$$

$$L = 40.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.75 = 1 filas

Se requiere 1 filas y 6 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 46.88 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 4.69 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{r}_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 80.00$$
 (°)

$$\alpha = 53.44$$
 (°) = $53^{\circ}26'24''$

$$\Delta = -5$$
 (°)

$$H = 10.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.77 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.74 (m)$$
 Primera hilera

H = 17.30 (m)

$$\beta = 80.00 \, (^{0})$$

$$L=110.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 22.51 (KN/m^3)$$

$$Y_{sat}=23.74~(KN/m^3)$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 37 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$k_2 = \frac{C*H}{\Psi*k} * sen \beta$$

$$\tan \varepsilon = \frac{k_h}{(1+k_n)}$$

$$k = 1.00$$

$$\Psi = 3368.51 \text{ (KN/m)}$$

$$\Psi_1 = 0.00$$

$$k_2 = 0.25$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 55.46 \ (^0) = 55^027'36''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.26$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 1724.23 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 55.00 \, (^{\circ}) = 55^{\circ}0''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.24$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.19$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.20$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 288.61 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=4.06 (m) asumimos 4.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.00 (m) por 4.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 17.30 (m)$$

$$S = 4.00 (m)$$

$$L = 110.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 3.33 = 4 filas

$$N^{\circ}$$
 columnas de anclaje = 26.50 = 27 Columnas

Se requiere 4 filas y 27 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 10.41 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 1.04 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_{s} = \left[\frac{\Gamma_{q} * F}{\pi * \emptyset_{n} * \tau_{w} / \Gamma_{v}} \right] \qquad L_{s} = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen\beta$$
 $h = 4.00 (m)$

Considerando los siguientes valores calculados anteriormente

$$\beta = 80.00 \, (^{\circ})$$

$$\alpha = 55.46$$
 (°) = $55^{\circ}27'36''$

$$\Delta = -5$$
 (°)

$$H = 17.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.53 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.51 (m)$$

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.00 (m)$$

$$2S = 8.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 8.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 7.88$ (m) asumimos 8.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 80.00$$
 (°)

$$\alpha = 55.46$$
 (°) = $55^{\circ}27'36''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 17.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 6.47 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea enteros por constructividad.

Tramo de estudio 15 PROG.INICIAL: 20+100 PROG. FINAL: 20+240

$$H = 16.00 (m)$$

$$\beta = 75.00 \, (^{0})$$

$$L=140.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 21.61 (KN/m^3)$$

$$Y_{sat} = 21.98 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (\mathrm{KN/m^3})$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 2766.11 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.28$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 49.88 \ (^0) = 49^052'48''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.41$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 1589.39 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 49.48$$
 (°) = $49^{\circ}28'48''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.09$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.11$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.08$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 100.82 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.67 \text{ (m) asumimos } 6.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.50 (m) por 6.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 16.00 (m)$$

$$S = 6.50 (m)$$

$$L = 140.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.46 = 2 filas

Se requiere 2 filas y 21 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 22.67 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.27 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 49.88$$
 (°) = $49^{\circ}52'48''$

$$\Delta = -5$$
 (°)

$$H = 16.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 5.86 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.83 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 6.50 (m)$$

$$2S = 13.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 13.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 12.89$ (m) asumimos 13.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 49.88$$
 (°) = $49^{0}52'48''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 16.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 9.32 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 12.30 (m) Segunda hilera

Tramo de estudio 16 PROG.INICIAL: 24+310 PROG. FINAL: 24+392

H = 10.30 (m)

$$\beta = 83.00 \, (^{0})$$

$$L = 82.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 26.31 \text{ (KN/m}^3)$$

$$Y_{sat} = 27.22 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 (KN/m^2)$$

$$\phi = \emptyset = 35 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$
 $k = 1.00$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1395.47 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \operatorname{sen} \beta \qquad \qquad k_2 = 0.33$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$

Iterado
$$\alpha = 54.47 \, (^{0}) = 54^{0}28'12"$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 825.03 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

- 3.8 Dimensionamiento de los pernos de anclaje para cada talud
- 3.8.1 Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 54.04 \text{ (°)} = 54^02'24''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.15$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_0) = (FS)_0 \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.19$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.13$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 85.84 \text{ (KN/m)}$$

3.8.2 Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=5.72 \text{ (m) asumimos } 5.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.50 (m) por 5.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.30 (m)$$

$$S = 5.50 (m)$$

$$L = 82.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.87 = 1 filas

Se requiere 1 filas y 14 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 35.12 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 3.51 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_n} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00$$
 (°)

$$\alpha = 54.47$$
 (°) = $54^{\circ}28'12''$

$$\Delta = -5 \, (^{\circ})$$

$$H = 10.30 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.62 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.59 (m)$$

Primera hilera

Tramo de estudio 17 PROG.INICIAL: 26+530 PROG. FINAL: 26+601

$$H = 11.00 (m)$$

$$\beta = 86.00 \, (^{0})$$

$$L=71.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 26.10 (KN/m^3)$$

$$Y_{sat} = 26.25 \text{ (KN/m}^3)$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1579.05 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.31$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2 * sen(\beta - 2\alpha - \varepsilon)}{sen^2(\beta - \alpha)} + tan\varphi - k_1 * tan\varphi * sec^2\alpha * cos(2\alpha + \varepsilon) = 0$$
Iterado $\alpha = 57.90 \ (^0) = 57^0 54' 00''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.22$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 880.30 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 57.46$$
 (°) = $57^{\circ}27'36''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.28$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.26$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.22$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 164.59 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad \text{S=4.26 (m) asumimos 4.00 (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.00 (m) por 4.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 11.00 (m)$$

$$S = 4.00 (m)$$

$$L = 71.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.75 = 2 filas

Se requiere 2 filas y 17 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 30.17 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10} \sigma_c$$
 $\tau_w = 3.02 \text{ (Mpa)}$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{\Gamma}_q=1.40$ a 2.00= Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00$$
 (°)

$$\alpha = 57.90$$
 (°) = $57^{0}54'00''$

$$\Delta = -5$$
 (°)

$$H = 11.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 3.77 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 6.74 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.00 (m)$$

$$2S = 8.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 8.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 7.98$ (m) asumimos 8.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00 \, (^{\circ})$$

$$\alpha = 57.90$$
 (°) = $57^{0}54'00''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 11.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 5.89 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 8.87 (m) Segunda hilera

Tramo de estudio 18 PROG.INICIAL: 26+880 PROG. FINAL: 27+060

H = 11.50 (m)

$$\beta = 84.00 \, (^{0})$$

$$L=180.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 26.17 (KN/m^3)$$

$$Y_{sat} = 26.36 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q=0.00\;(KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 34 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$
 $k = 1.00$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1730.55 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \operatorname{sen} \beta \qquad \qquad k_2 = 0.33$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$

Iterado
$$\alpha = 55.68 \, (^{0}) = 55^{0}40'48''$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.30$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 999.55 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 55.26 \, (^{\circ}) = 55^{\circ}15'36''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.20$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_0) = (FS)_0 \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_0) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.16$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 132.73 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=4.86 (m) asumimos 5.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.00 (m) por 5.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 11.50 (m)$$

$$S = 5.00 (m)$$

$$L = 180.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.30 = 2 filas

Se requiere 2 filas y 35 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 77.06 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 7.71 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 84.00$$
 (°)

$$\alpha = 55.68$$
 (°) = $55^{\circ}40'48''$

$$\Delta = -5$$
 (°)

$$H = 11.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.46 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.43 (m)$$

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 5.00 (m)$$

$$2S = 10.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 10.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 9.95$ (m) asumimos 10.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 84.00 \, (^{\circ})$$

$$\alpha = 55.68$$
 (°) = $55^{\circ}40'48''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 11.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.20 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.17 (m) Segunda hilera

Tramo de estudio 19 PROG.INICIAL: 27+760 PROG. FINAL: 27+860

$$H = 13.50 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L=100.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.44 \text{ (KN/m}^3)$$

$$Y_{sat} = 25.11 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 33 \ (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 2227.16 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.30$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 56.83 \ (^0) = 56^049'48''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.19$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\text{sen}(\beta - \alpha)}{\text{sen}\beta * \text{sen}\alpha} * \Psi * k$$

$$R = 1260.73 \text{ (KN/m)}$$

 $(FS)_0$, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

- 3.8 Dimensionamiento de los pernos de anclaje para cada talud
- 3.8.1 Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 56.42 \text{ (°)} = 56^0 25^\circ 12^\circ \text{'}$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.31$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.25$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.25$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_a = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$
$$F_a = 263.06 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=3.74 \text{ (m) asumimos } 3.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 3.50 (m) por 3.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 13.50 (m)$$

$$S = 3.50 (m)$$

$$L = 100.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 2.86 = 3 filas

$$N^{\circ}$$
 columnas de anclaje = 27.57 = 28 Columnas

Se requiere 3 filas y 28 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 24.92 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10} \sigma_c$$
 $\tau_w = 2.49 \text{ (Mpa)}$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{r}_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 3.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 56.83$$
 (°) = $56^{0}49'48''$

$$\Delta = -5$$
 (°)

$$H = 13.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 3.91 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 6.88 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 3.50 (m)$$

$$2S = 7.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 7.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 6.97$ (m) asumimos 7.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00 \, (^{\circ})$$

$$\alpha = 56.83$$
 (°) = $55^{\circ}11'24''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 13.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 5.79 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.76$$
 (m) Segunda hilera

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea a enteros por constructividad.

H = 18.00 (m)

$$\beta = 75.00 \, (^{0})$$

$$L=177.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.10 (KN/m^3)$$

$$Y_{sat} = 25.42 \text{ (KN/m}^3)$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$k_2 = \frac{C*H}{\Psi*k} * sen \beta$$

$$\tan \varepsilon = \frac{k_h}{(1+k_n)}$$

$$k = 1.00$$

$$\Psi = 4065.45 \text{ (KN/m)}$$

$$\Psi_1 = 0.00$$

$$k_2 = 0.21$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 51.70 \ (^0) = 51^042'00''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.20$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 2121.89 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

- 3.8 Dimensionamiento de los pernos de anclaje para cada talud
- 3.8.1 Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 51.29 \, (^{\circ}) = 51^{\circ}17'24''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\rm o})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.30$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.15$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.26$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 431.70 \text{ (KN/m)}$$

3.8.2 Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=3.42 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 3.00 (m) por 3.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 18.00 (m)$$

$$S = 3.00 (m)$$

$$L = 177.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = $5.00 = 5$ filas

$$N^{\circ}$$
 columnas de anclaje = $58.00 = 58$ Columnas

Se requiere 5 filas y 58 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 22.40 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 2.24 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \phi_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 3.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 51.70$$
 (°) = $51^{0}42'00''$

$$\Delta = -5$$
 (°)

$$H = 18.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

 $L_{L} = 4.17 \text{ (m)}$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.14 (m)$$

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 3.00 (m)$$

$$2S = 6.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 7.97 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 5.80$ (m) asumimos 6.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 75.00$$
 (°)

$$\alpha = 51.70$$
 (°) = $51^{0}42'00''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 18.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 5.64 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.61$$
 (m) Segunda hilera

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea enteros por constructividad.

Tramo de estudio 21 PROG.INICIAL: 28+920 PROG. FINAL: 29+000.5

$$H = 9.50 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L = 80.50 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.73 (KN/m^3)$$

$$Y_{sat} = 26.00 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1160.97 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.37$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 55.91 \ (^0) = 55^054'36''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.38$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\text{sen}(\beta - \alpha)}{\text{sen}\beta * \text{sen}\alpha} * \Psi * k$$

$$R = 684.09 \text{ (KN/m)}$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 55.48$$
 (°) = $55^{\circ}28'48''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.12$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.09$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 53.62 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.94 \text{ (m) asumimos } 6.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.50 (m) por 6.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 9.50 (m)$$

$$S = 6.50 (m)$$

$$L = 80.50 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.46 = 1 filas

Se requiere 1 filas y 12 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 32.75 (Mpa)

 $f_{c}^{'}$ = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10} \sigma_c$$
 $\tau_w = 3.28 \text{ (Mpa)}$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\mathbf{r}_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 55.91$$
 (°) = $55^{0}54'36''$

$$\Delta = -5$$
 (°)

$$H = 9.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 5.05 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.03 \text{ (m)}$$
 Primera hilera

$$H = 10.10 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L=163.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.77 (KN/m^3)$$

$$Y_{sat} = 25.33 \text{ (KN/m}^3\text{)}$$

$$\Upsilon_w=10.00~(\mathrm{KN/m^3})$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2)$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$k_2 = \frac{C*H}{\Psi*k} * sen \beta$$

$$\tan \varepsilon = \frac{k_h}{(1+k_n)}$$

$$k = 1.00$$

$$\Psi = 1263.35 \text{ (KN/m)}$$

$$\Psi_1 = 0.00$$

$$k_2 = 0.36$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 56.09 \ (^0) = 56^05'24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.36$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 738.73 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 55.65 \text{ (°)} = 55^0 39' 00''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\rm o})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.14$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.11$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 68.39 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=6.34 \text{ (m) asumimos } 6.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.00 (m) por 6.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.10 (m)$$

$$S = 6.00 (m)$$

$$L = 163.00 (m)$$

$$N^{0}$$
 filas de anclaje = 0.68 = 1 filas

$$N^{\circ}$$
 columnas de anclaje = 26.17 = 27 Columnas

Se requiere 1 filas y 27 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 28.48 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.85 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_{s} = \left[\frac{\Gamma_{q} * F}{\pi * \emptyset_{n} * \tau_{w} / \Gamma_{v}} \right] \qquad L_{s} = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 56.09 \, (^{\circ}) = 56^{0}5'24''$$

$$\Delta = -5 \, (^{\circ})$$

$$H = 10.10 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.84 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.81 (m)$$

Primera hilera

Tramo de estudio 23 PROG.INICIAL: 31+240

PROG. FINAL: 31+368

$$H = 9.80 (m)$$

$$\beta = 86.00 \, (^{0})$$

$$L=128.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.74 (KN/m^3)$$

$$Y_{sat} = 25.99 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (KN/m^3)$$

$$K_h=0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 25 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1236.26 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.40$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 53.14 \ (^0) = 53^08'24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS=1.26$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\text{sen}(\beta - \alpha)}{\text{sen}\beta * \text{sen}\alpha} * \Psi * k$$

$$R = 840.32 \text{ (KN/m)}$$

 $(FS)_0$, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_0}$

$$\Delta = \Delta_0 = 52.84$$
 (°) = $52^0 50' 24''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.24$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$

$$f(\Delta) = f(\Delta_o) = 1.24$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.19$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 129.65 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad \text{S=4.53 (m) asumimos 4.50 (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.50 (m) por 4.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 9.80 (m)$$

$$S = 4.50 (m)$$

$$L = 128.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.18 = 2 filas

Se requiere 2 filas y 28 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 51.49 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 5.15 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\pmb \Gamma}_q=1.40$ a $2.00={\rm Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00 \, (^{\circ})$$

$$\alpha = 53.14$$
 (°) = $53^{\circ}8'24''$

$$\Delta = -5$$
 (°)

$$H = 9.80 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.35 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 7.32 \text{ (m)}$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.50 (m)$$

$$2S = 9.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 9.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 8.98$ (m) asumimos 9.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00$$
 (°)

$$\alpha = 53.14$$
 (°) = $53^{\circ}8'24''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 9.80 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.23 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.21 (m) Segunda hilera

Tramo de estudio 24 PROG.INICIAL: 31+250 PROG. FINAL: 31+364

H = 10.80 (m)

$$\beta = 86.00 \, (^{0})$$

$$L=114.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 19.81 (KN/m^3)$$

$$Y_{sat} = 19.87 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (\mathrm{KN/m^3})$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 33 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1155.32 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \operatorname{sen} \beta \qquad \qquad k_2 = 0.42$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)} \qquad \qquad \varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\epsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*cos(2\alpha+\epsilon)=0$$
 Iterado $\alpha = 55.07 \ (^0) = 55^04'12''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 726.19 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 54.66 \, (^{\circ}) = 54^{\circ}39^{\circ}36^{\circ}$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.05$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.04$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 24.88 \text{ (KN/m)}$$

3.8.2 Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g$$
= 531.00 mm² * 850 $\frac{N}{mm^2}$ = 451.35 (KN)

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=10.86 \text{ (m) asumimos } 10.00 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 10.00 (m) por 10.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.80 (m)$$

$$S = 10.00 (m)$$

$$L = 114.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.08 = 1 filas

$$N^{\circ}$$
 columnas de anclaje = 10.40 = 11 Columnas

Se requiere 1 filas y 11 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 39.53 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 3.95 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 10.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 86.00$$
 (°)

$$\alpha = 55.07$$
 (°) = $55^{0}4'12''$

$$\Delta = -5 \, (^{\circ})$$

$$H = 10.80 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 7.57 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 10.54 (m)

Primera hilera

Tramo de estudio 25 PROG.INICIAL: 31+990 PROG. FINAL: 32+082

H = 13.00 (m)

 $\beta = 83.00 \, (^{0})$

L=92.00 (m)

H1 = 0.00 (m)

Datos complementarios

$$Y = 24.70 (KN/m^3)$$

$$Y_{sat} = 24.97 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 2086.85 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.28$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 56.51 \ (^0) = 56^030'36''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.21$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones

R = 1124.55 (KN/m)

que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 56.07 \text{ (°)} = 56^0 4'12''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.29$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.23$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.23$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_a = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$
$$F_a = 220.40 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad \text{S=4.01 (m) asumimos 4.00 (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 4.00 (m) por 4.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 13.00 (m)$$

$$S = 4.00 (m)$$

$$L = 92.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 2.25 = 3 filas

Se requiere 3 filas y 22 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 34.12 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 3.41 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\pmb \Gamma}_q=1.40$ a $2.00={\rm Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 4.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00 \, (^{\circ})$$

$$\alpha = 56.51$$
 (°) = $56^{0}30'36''$

$$\Delta = -5$$
 (°)

$$H = 13.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.00 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 6.97 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 4.00 (m)$$

$$2S = 8.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 8.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 7.94$ (m) asumimos 8.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00$$
 (°)

$$\alpha = 56.51 \, (^{\circ}) = 56^{0}30'36''$$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 13.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$
$$L_{L} = 6.04 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea enteros por constructividad.

Tramo de estudio 27 PROG.INICIAL: 34+360 PROG. FINAL: 34+500

$$H = 9.50 (m)$$

$$\beta = 87.00 \, (^{0})$$

$$L=140.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.72 (KN/m^3)$$

$$Y_{sat} = 26.00 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^0)$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$
 $k = 1.00$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1160.74 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \operatorname{sen} \beta \qquad \qquad k_2 = 0.37$$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)} \qquad \qquad \varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$

Iterado
$$\alpha = 57.36 \, (^{\circ}) = 57^{\circ}21'36"$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 682.53 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

- 3.8 Dimensionamiento de los pernos de anclaje para cada talud
- 3.8.1 Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 56.93 \text{ (°)} = 56^0 55' 48''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.17$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.25$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.14$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_a = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$
$$F_a = 77.76 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_a$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)} \qquad S=5.76 \text{ (m) asumimos } 5.50 \text{ (m)}$$

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 5.50 (m) por 5.50 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 9.50 (m)$$

$$S = 5.50 (m)$$

$$L = 140.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = $0.73 = 1$ filas

Se requiere 1 filas y 25 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 25.25 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \qquad \tau_w = 2.53 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a 2.00 = Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_n * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 5.50 (m) con respecto al pie del talud, siendo la ordenada analizada de:

$$h = S * sen\beta$$
 $h = 5.75$ (m) asumimos 5.50 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 87.00$$
 (°)

$$\alpha = 57.36$$
 (°) = $57^{0}21'36''$

$$\Delta = -5 \, (^{\circ})$$

$$H = 9.50 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 4.50 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$\mathbf{L} = (\mathbf{L}_{\mathbf{L}} + \mathbf{L}_{\mathbf{S}})$$

$$L = 7.47 (m)$$

Primera hilera

Tramo de estudio 28 PROG.INICIAL: 35+200

PROG. FINAL: 35+372

$$H = 10.15 (m)$$

$$\beta = 83.00 \, (^{0})$$

$$L=172.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 25.76 (KN/m^3)$$

$$Y_{sat} = 26.07 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \, (KN/m^3)$$

$$K_h = 0.00$$

$$K_{v} = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 50 (KN/m^2)$$

$$\phi = \emptyset = 33 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$

$$k = 1.00$$

$$\Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1326.92 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2}$$

$$\Psi_1 = 0.00$$

$$k_2 = \frac{C * H}{\Psi * k} * \text{sen } \beta$$

$$k_2 = 0.38$$

$$\tan \varepsilon = \frac{k_h}{(1 + k_v)}$$

$$\varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)} + tan\varphi - k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
Iterado $\alpha = 53.64 \ (^0) = 53^038'24''$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

$$FS = 1.44$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\text{sen}(\beta - \alpha)}{\text{sen}\beta * \text{sen}\alpha} * \Psi * k$$

$$R = 813.84 \text{ (KN/m)}$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$

$$\Delta = \Delta_0 = 53.23$$
 (°) = 53⁰13'48''

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.06$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.19$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$
$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = 0.05$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_a = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$
$$F_a = 33.43 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=9.10 (m) asumimos 9.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 9.00 (m) por 9.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 10.15 (m)$$

$$S = 9.00 (m)$$

$$L = 172.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 0.13 = 1 filas

Se requiere 1 filas y 19 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 23.92 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.39 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\pmb \Gamma}_q=1.40$ a $2.00={\rm Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 9.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 83.00$$
 (°)

$$\alpha = 53.64$$
 (°) = $53^{\circ}38'24''$

$$\Delta = -5$$
 (°)

$$H = 10.15 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 6.73 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 9.70 (m)$$
 Primera hilera

Tramo de estudio 29 PROG.INICIAL: 38+000 PROG. FINAL: 38+100

$$H = 12.10 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L=100.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 20.68 (KN/m^3)$$

$$Y_{sat} = 20.95 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h = 0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C = 45 \text{ (KN/m}^2\text{)}$$

$$\phi = \emptyset = 35 \, (^{0})$$

Utilizando la tabla 2.23 resulta:

$$k = (k_h^2 + (1 + k_v)^2)^{1/2}$$
 $k = 1.00$

$$\Psi = \frac{\gamma_{sat}}{2} * H_1^2 + \frac{1}{2} (H^2 - H_1^2) \gamma + q * H$$

$$\Psi = 1513.92 \text{ (KN/m)}$$

$$\Psi_1 = \frac{\gamma_w * H_1^2}{2} \qquad \qquad \Psi_1 = 0.00$$

$$k_2 = \frac{C*H}{\Psi*k} * \text{sen } \beta$$
 $k_2 = 0.36$

$$\tan \varepsilon = \frac{k_h}{(1+k_v)} \qquad \qquad \varepsilon = 0.00$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$

Iterado
$$\alpha = 56.09 \, (^{0}) = 56^{0}5'24''$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 885.17 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o} \qquad \tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
$$\Delta = \Delta_0 = 55.66 \, (^{\circ}) = 55^{\circ}39'36''$$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$
$$\delta(FS) = 0.14$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.22$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.11$$

Es decir se requiere una mínima fuerza del tirante para alcanzar (FS)₀=1.5 de las fuerzas tangenciales

$$F_{a} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 82.09 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

$$T_a = 271$$
 (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=6.33 (m) asumimos 6.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 6.00 (m) por 6.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 12.10 (m)$$

$$S = 6.00 (m)$$

$$L = 100.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 1.02 = 2 filas

Se requiere 2 filas y 16 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 26.90 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 2.69 \text{ (Mpa)}$$

$$\tau_w = f'_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 $\Gamma_q = 1.40$ a $2.00 = \text{Factor de mayoración de la carga aplicada (varía dependiendo del tipo de riesgo y si es temporal) = <math>1.6$

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_{s} = \left[\frac{\Gamma_{q} * F}{\pi * \emptyset_{n} * \tau_{w} / \Gamma_{v}} \right] \qquad L_{s} = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 6.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 56.09$$
 (°) = $56^{\circ}5'24''$

$$\Delta = -5$$
 (°)

$$H = 12.10 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$
$$L_{L} = 5.31 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.28 (m)$$

Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 6.00 (m)$$

$$2S = 12.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 12.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 12.62$ (m) asumimos 12.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 56.09$$
 (°) = $56^{\circ}5'24''$

$$Ls = 3 (m)$$

$$\Delta = -5 \, (^{\circ})$$

$$H = 12.10 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 8.81 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

L = 11.78 (m) Segunda hilera

Tramo de estudio 30 PROG.INICIAL: 38+800 PROG. FINAL: 38+915

$$H = 15.00 (m)$$

$$\beta = 85.00 \, (^{0})$$

$$L=115.00 (m)$$

$$H1 = 0.00 (m)$$

Datos complementarios

$$Y = 24.69 (KN/m^3)$$

$$Y_{sat} = 24.98 \text{ (KN/m}^3)$$

$$Y_w = 10.00 \text{ (KN/m}^3)$$

$$K_h=0.00$$

$$K_v = 0.00$$

$$q = 0.00 (KN/m^2)$$

$$C=50\;(KN/m^2)$$

$$\phi = \emptyset = 33 \ (^0)$$

Utilizando la tabla 2.23 resulta:

$$\begin{aligned} & k = (k_h^{\ 2} + (1 + k_v)^2)^{1/2} & k = 1.00 \\ & \Psi = \frac{\gamma_{\text{sat}}}{2} * H_1^{\ 2} + \frac{1}{2} (H^2 - H_1^{\ 2}) \gamma + q * H & \Psi = 2777.27 \text{ (KN/m)} \\ & \Psi_1 = \frac{\gamma_{\text{w}} * H_1^{\ 2}}{2} & \Psi_1 = 0.00 \\ & k_2 = \frac{C * H}{\Psi * k} * \sec \beta & k_2 = 0.27 \\ & \tan \varepsilon = \frac{k_h}{(1 + k_v)} & \varepsilon = 0.00 \end{aligned}$$

Fórmula para determinar el ángulo crítico

$$\frac{k_2*sen(\beta-2\alpha-\varepsilon)}{sen^2(\beta-\alpha)}+tan\varphi-k_1*tan\varphi*sec^2\alpha*\cos(2\alpha+\varepsilon)=0$$
 Iterado
$$\alpha=57.73 \ (^0)=57^043^{\circ}48^{\circ}$$

Obtenemos el factor de seguridad utilizando la fórmula

$$FS = \frac{\frac{k_2}{sen(\beta - \alpha)} + (\cos(\alpha + \varepsilon) - k_1 * \sec \alpha) * tan\varphi}{sen(\alpha - \varepsilon)}$$

FS=1.10

Aplicando la ecuación se obtiene la resultante de las fuerzas actuantes

$$R = \frac{\operatorname{sen}(\beta - \alpha)}{\operatorname{sen}\beta * \operatorname{sen}\alpha} * \Psi * k$$

$$R = 1510.79 (KN/m)$$

(FS)₀, coeficiente de seguridad activo el cual se incrementa debido al reparto de tensiones que se generan a través del tirante anclado dentro del macizo rocoso.

$$(FS)_0 = 1.5$$
 Ver tabla 2.19

Dimensionamiento de los pernos de anclaje para cada talud

Determinación de la fuerza de anclaje

Utilizando la ecuación y despejando Δ se obtiene su valor óptimo

$$\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$$
 $\tan(\alpha - \Delta) = \frac{\tan\varphi}{(FS)_o}$

$$\Delta = \Delta_0 = 57.32$$
 (°) = $57^0 19' 12''$

Para evitar el obstáculo de colocar el anclaje buzando hacia abajo se adoptara el siguiente valor

$$\Delta = \Delta_0 = -5(^{\circ})$$

De la siguiente ecuación se obtiene

$$\delta(FS) = ((FS)_o - FS)$$

$$\delta(FS) = 0.40$$

Empleando la ecuación se determina

$$f(\Delta) = f(\Delta_o) = (FS)_o \cos(\alpha - \Delta) + sen(\alpha - \Delta) * tan\varphi$$
$$f(\Delta) = f(\Delta_o) = 1.27$$

Utilizando la ecuación la relación es la siguiente

$$\frac{F_a}{R * sen(\alpha + \varepsilon)} = \frac{\delta(FS)}{f(\Delta)}$$

$$\frac{F_a}{R*sen(\alpha+\varepsilon)} = 0.31$$

Es decir se requiere una mínima fuerza del tirante para alcanzar $(FS)_0=1.5$ de las fuerzas tangenciales

$$F_{\alpha} = \frac{\delta(FS)}{f(\Delta)} * R * sen(\alpha + \varepsilon)$$

$$F_a = 399.08 \text{ (KN/m)}$$

Cálculo de la separación entre anclajes de barras

En la tabla 2.21 se muestra varios anclajes y sus características dentro las cuales se eligió el siguiente:

Determinación de la carga de rotura, límite elástico y tracción admisible del anclaje a utilizarse.

a) Determinación del área de anclaje

$$A = \frac{\pi * (D)^2}{4}$$

$$A = 531.00 \text{ (mm}^2\text{)}$$

b) Determinación de la carga de rotura (Fro)

Fro= (Área de la barra *Resistencia unitaria)

Resistencia unitaria = (85/105 Kgf/mm2)

$$85 \frac{Kgf}{mm^2} * 10 \frac{N}{Kgf} = 850 \frac{N}{mm^2}$$

$$105 \, \frac{Kgf}{mm^2} * 10 \, \frac{N}{Kgf} = 1050 \, \frac{N}{mm^2}$$

Fro = 531.00 mm2 * 1050
$$\frac{N}{mm^2}$$
 = 557.55 (KN)

c) Determinación del límite elástico

 T_g = (Área de la barra * Esfuerzo de tracción al 0.1 % de deformación)

$$T_g = 531.00 \text{ mm}^2 * 850 \frac{N}{mm^2} = 451.35 \text{ (KN)}$$

d) Determinación de la tracción admisible

$$T_a = 0.60 * T_g$$

$$T_a = 270.81$$
 (KN)

 $T_a = 271$ (KN) Para fines prácticos

Cálculo de la separación de anclajes utilizando la siguiente ecuación

$$S = \sqrt{\left(\frac{H}{sen\beta} * \frac{T_a}{F_a}\right)}$$
 S=3.20 (m) asumimos 3.00 (m)

Con el resultado anterior se aprecia que los anclajes deben ser colocados sobre una cuadrícula de 3.00 (m) por 3.00 (m), con una carga admisible de trabajo = 271 (KN) el número de filas de anclaje se determina con la siguiente relación:

$$N^{\circ}$$
 filas de anclaje $=\frac{H}{S}-1$

$$N^{\circ}$$
 columnas de anclaje $=\frac{L}{S}-1$

Donde:

$$H = 15.00 (m)$$

$$S = 3.00 (m)$$

$$L = 115.00 (m)$$

$$N^{\circ}$$
 filas de anclaje = 4.00 = 4 filas

Se requiere 4 filas y 38 columnas de anclaje para estabilizar el sector

Determinación de la longitud de anclaje de la barra

a) Longitud de anclaje, primera hilera

 σ_c = Resistencia a la compresión de la roca = 17.09 (Mpa)

 f'_{c} = Resistencia a la compresión de la lechada de cemento = 1 (Mpa)

$$\tau_w = \frac{1}{10}\sigma_c \qquad \tau_w = 1.71 \text{ (Mpa)}$$

$$\tau_w = f_c$$
 $\tau_w = 1$ (Mpa)

Se adopta el menor 1 (Mpa)

 ${\pmb \Gamma}_q=1.40$ a $2.00={\rm Factor}$ de mayoración de la carga aplicada (varía dependiendo del tipo

de riesgo y si es temporal) = 1.6

Fa = Fuerza de tracción (tracción admisible) = 271 (KN)

 \emptyset_p = Diámetro de perforación (barreno) = 0.065 (m)

 τ_w = Resistencia a compresión = 1 (Mpa)

 Γ_v = Factor de minoración para anclajes permanentes = 1.4

Dada la ecuación se obtiene

$$L_s = \left[\frac{\Gamma_q * F}{\pi * \emptyset_p * \tau_w / \Gamma_v} \right] \qquad L_s = 2.97 \text{ (m) asumimos } 3.00 \text{ (m)}$$

Utilizando la primera hilera de anclaje se observa que la separación de OP-S = 3.00 (m) con respecto al pie del talud, siendo la ordenada analizada de:

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 57.73$$
 (°) = $57^{0}43'48''$

$$\Delta = -5$$
 (°)

$$H = 15.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{sen\beta} * \frac{sen(\beta - \alpha)}{sen(\alpha - \Delta)} + 0.15 \text{ H}\right)$$

$$L_L = 3.90 (m)$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 6.87 (m)$$
 Primera hilera

b) Longitud de anclaje, segunda hilera

Para determinar la longitud del anclaje para la primera hilera se empleó S (separación entre anclajes) por ello para la segunda hilera se empleara 2S y si según el número de fila.

$$S = 3.00 (m)$$

$$2S = 6.00 (m)$$

Para la segunda hilera, se debe tomar en cuenta que la separación OP=2S= 6.00 (m) con respecto al pie del talud, siendo igual a:

$$h = S * sen \beta$$
 $h = 6.37$ (m) asumimos 6.00 (m)

Considerando los siguientes valores calculados anteriormente

$$\beta = 85.00$$
 (°)

$$\alpha = 57.73$$
 (°) = $57^{0}43'48''$

$$Ls = 3 (m)$$

$$\Delta = -5$$
 (°)

$$H = 15.00 (m)$$

Separando L_L de la ecuación se obtiene

$$L_{L} = \left(\frac{h}{\text{sen}\beta} * \frac{\text{sen}(\beta - \alpha)}{\text{sen}(\alpha - \Delta)} + 0.15 \text{ H}\right)$$
$$L_{L} = 5.55 \text{ (m)}$$

Por lo tanto, la longitud de anclaje se calcula con la siguiente ecuación

$$L = (L_L + L_S)$$

$$L = 8.52$$
 (m) Segunda hilera

Para simplificar el cálculo de las demás hileras se empleara una tabla y se redondea enteros por constructividad.