UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

TOMO I

"ANÁLISIS DE IMÁGENES APLICADO A MEZCLAS ASFÁLTICAS PARA LA CARACTERIZACIÓN DEL TAMAÑO Y DISTRIBUCIÓN DE PARTÍCULAS"

POR:

NATALY NATALIA SEGOVIA LEÓN

Proyecto de grado presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico Licenciatura en Ingeniería Civil

SEMESTRE II -2025

TARIJA-BOLIVIA

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

TOMO I

"ANÁLISIS DE IMÁGENES APLICADO A MEZCLAS ASFÁLTICAS PARA LA CARACTERIZACIÓN DEL TAMAÑO Y DISTRIBUCIÓN DE PARTÍCULAS"

POR:

NATALY NATALIA SEGOVIA LEÓN

PROYECTO ELABORADO EN LA ASIGNATURA CIV - 502

SEMESTRE II -2025

TARIJA-BOLIVIA

DEDICATORIA

El presente trabajo se lo dedico a mis padres Jaime Segovia Navarro y María León Cazón y mis hermanos quienes con su amor, comprensión y apoyo incondicional han estado siempre a lo largo de mi vida y en cada reto que he tomado; a ellos que siempre tienen una palabra de aliento en los momentos difíciles y que han sido incentivos en mi vida, no hay palabras en este mundo para agradecerles, por tanto.

ÍNDICE GENERAL CAPÍTULO I INTRODUCCIÓN

	Página
1.1	Introducción1
1.2	Justificación2
1.3	Situación problemática y problema3
1.3.1	Situación problemática
1.3.2	Problema4
1.4	Hipótesis4
1.5	Objetivos4
1.5.1	Objetivo general4
1.5.2	Objetivos específicos4
1.6	Variables5
1.6.1	Variable independiente5
1.6.2	Variable dependiente5
1.7	Alcance5
	CAPÍTULO II
	ASPECTOS GENERALES DE LAS MEZCLAS ASFÁLTICAS Y SU
	EVALUACIÓN A TRAVÉS DE TOMOGRAFÍAS
	Página
2.1	Pavimentos flexibles
2.1.1	Estructural8
2.1.2	Funcional9
2.1.3	Impermeabilización9
2.1.4	Carpeta Asfáltica9
2.2	Asfalto11

2.2.1	Tipos de asfaltos y usos
2.3	Mezcla asfáltica16
2.3.1	Definición de Mezcla Asfáltica
2.3.2	Clasificación de las Mezclas Asfálticas según sus características17
2.3.3	Propiedades de las mezclas asfálticas para capas de rodadura19
2.4	Mezclas asfálticas densas
2.4.1	Agregados
2.4.2	Material bituminoso
2.5	Mezclas asfálticas abiertas24
2.5.1	Agregados24
2.6	Mezclas asfálticas finas
2.7	Mezclas asfálticas porosas o drenantes
2.7.1	Proposición de especificación para diseñar mezclas drenantes28
2.8	Caracterización del agregado en mezclas asfálticas
2.8.1	Tamaño y estructura Granulométrica
2.8.2	Resistencia30
2.8.3	Textura superficial
2.8.4	Porosidad30
2.8.5	Adherencia
2.8.6	Gravedad Específica
2.8.7	Ensayo de abrasión por medio de la máquina de los ángeles31
2.8.8	Porcentaje de caras fracturadas en los agregados31
2.8.9	Equivalentes de arenas y agregados finos
2.8.10	Índice de aplanamiento y alargamiento de agregados32
2.8.11	Gravedad específica y absorción del agregado33
2.9	Introducción al procesamiento mediante tomografía axial33
2.9.1	Tomografía computarizada
2.9.2	Metodología para la caracterización de M.A. tomografías38
2.9.3	Aplicación del análisis de imagen a las mezclas asfálticas38

	CAPÍTULO III	
	CAITICEOIII	
	LICACIÓN PRÁCTICA SOBRE LA EVALUACIÓN DE MEZCLAS	
A	SFÁLTICAS MEDIANTE TOMOGRAFÍA COMPUTARIZADA	
	Págin	a
3.1	Ubicación4	2
3.2	Caracterización de agregados	3
3.2.1	Ensayo de granulometría4	3
3.2.2	Ensayo de abrasión por medio de la máquina de los ángeles5	0
3.2.3	Equivalente de arenas5	5
3.2.4	Índice de aplanamiento y alargamiento de agregados5	7
3.2.5	Gravedad específica de agregados gruesos ASTM C-1276	0
3.2.6	Gravedad específica de agregados finos ASTM -1286	6
3.3	Caracterización de las mezclas asfálticas	1
3.3.1	Ensayo de penetración	1
3.3.2	Ensayo de Viscosidad	4
3.3.3	Peso específico del asfalto	7
3.3.4	Ensayo de ductilidad	8
3.3.5	Ensayo para determinar la inflamación de copa abierta de Cleveland8	1
3.4	Dosificación	4
3.5	Elaboración de probetas9	8
3.6	Tomografía de probetas	0
3.7	Evaluación de imágenes	3
3.8	Caracterización de tamaño	8
3.9	Distribución de partículas	6

Análisis integral de la información obtenida en todas las imágenes39

Elaboración o valoración de imágenes de briquetas de M.A.......40

Criterios de medición para la caracterización microscópica.40

2.9.4

2.9.5

2.9.6

3.11	Resultados
3.12	Análisis de resultados
3.12.1	Porcentaje de vacíos
3.12.2	Contacto agregado - agregado
3.12.3	Caracterización de partículas
3.12.4	Distribución de partículas
	CAPÍTULO IV
	CONCLUSIONES Y RECOMENDACIONES
	Página
4.1	Conclusiones
4.2	Recomendaciones
BIBLIOGR	AFÍA
ANEXOS	
ANEXO I	ENSAYO DE GRANULOMETRÍA
ANEXO II	ENSAYO DE DESGASTE DE LOS ÁNGELES
ANEXO II	ENSAYO DE EQUIVALENTE DE ARENAS
ANEXO IV	ÍNDICE DE APLANAMIENTO Y ALARGAMIENTO EN LOS
	AGREGADOS
ANEXO V	PESO ESPECÍFICO DE LOS AGREGADOS GRUESOS Y FINOS
ANEXO VI	CARACTERIZACIÓN DEL ASFALTO
ANEXO VII	DISEÑO GRANULOMÉTRICO PARA LAS MEZCLAS ASFÁLTICAS
	ESTUDIADAS
ANEXO VII	I CÁLCULO DEL CONTENIDO MÍNIMO DEL CEMENTO
	ASFÁLTICO PARA LAS MEZCLAS ASFÁLTICAS
	ESTUDIADAS
ANEXO IX	CÁLCULO PARA EL DISEÑO DE MEZCLAS ASFÁLTICAS

Comparación entre cortes de observación a 4cm y 3cm......163

3.10

ANEXO X ENSAYO DE MARSHALL PARA LAS MEZCLAS ASFÁLTICAS ESTUDIADAS

ANEXO XI TOMOGRAFÍAS EN ESTUDIO

ANEXO XII EVALUACIÓN DE IMÁGENES MEDIANTE TOMOGRAFÍA

ANEXO XIII CARACTERIZACIÓN DE TAMAÑO EN MEZCLAS ASFÁLTICAS

ANEXO XIV DISTRIBUCIÓN DE PARTÍCULAS EN MEZCLAS ASFÁLTICAS

ÍNDICE DE TABLAS

		Página
Tabla 2.1 E	Especificaciones para Cementos Asfálticos	14
Tabla 2.2	Especificaciones para Gradaciones Densas ASTM D3515	23
Tabla 2.3 G	Gradaciones para mezclas asfálticas abiertas en caliente	24
Tabla 2.4 V	alores comunes de una Mezcla Asfáltica Fina	25
Tabla 2.5 G	radación mezcla asfáltica fina (FAM)	26
Tabla 2.6 G	Gradación mezcla asfáltica drenante	28
Tabla 3.1	Granulometría de materiales M.A. Densa y M.A. Fina	47
Tabla 3.2	Granulometría de la grava para M.A. Abiertas	48
Tabla 3.3	Granulometría agregados para M.A. Drenante	49
Tabla 3.4	Requerimiento según el tamaño de material que se tenga	51
Tabla 3.5	Desgaste para agregados M.A. Finas y Densas	54
Tabla 3.6	Desgaste de los ángeles para agregados M.A. Abiertas	54
Tabla 3.7	Desgaste de los ángeles para gravilla M.A. Drenante	55
Tabla 3.8 E	Ensayo Equivalente de Arena en M.A.	57
Tabla 3.9 Í	ndice de aplanamiento y alargamiento de agregados en M.A	60
Tabla 3.10	Peso específico de la grava en M.A. densas y finas	65
Tabla 3.11	Peso específico de la gravilla en M.A. densas y finas	65
Tabla 3.12	Peso específico de la grava en M.A. Abiertas	65
Tabla 3.13	Peso específico de la gravilla en M.A. Abiertas	66
Tabla 3.14	Peso específico de la gravilla en M.A. Drenantes	66
Tabla 3.15	Peso específico de la arena en M.A. densas y finas	70
Tabla 3.16	Peso específico de la arena en M.A. Abiertas	70
Tabla 3.17	Peso específico de la arena M.A. Drenantes	70
Tabla 3.18	Tabla de resultados de penetración del C.A.	74
Tabla 3.19	Tabla de resultados de viscosidad del C.A.	76
Tabla 3.20	Tabla de resultado del peso específico del C.A.	78
Tabla 3.21	Tabla de resultados ductilidad	81
Tabla 3 22	Resultados de Punto de Inflamación	84

Tabla 3.23	Requisitos de calidad de agregados para mezclas asfálticas84
Tabla 3.24	Diseño granulométrico para una M.A. Densa85
Tabla 3.25	Diseño granulométrico para una M.A. Fina
Tabla 3.26	Diseño granulométrico para una M.A. Abierta
Tabla 3.27	Diseño granulométrico para una M.A. Drenante
Tabla 3.28	Dosificación de M.A. Densas para 5 probetas
Tabla 3.29	Dosificación de M.A. Finas para 5 probetas
Tabla 3.30	Dosificación de M.A. Abiertas para 5 probetas
Tabla 3.31	Dosificación de M.A. Drenantes para 5 probetas
Tabla 3.32	Diseño Marshall para mezclas asfálticas densas
Tabla 3.33	Porcentaje óptimo de asfalto M.A. Densa
Tabla 3.34	Porcentaje óptimo de asfalto M.A. Fina
Tabla 3.35	Porcentaje óptimo de asfalto M.A. Abierta
Tabla 3.36	Porcentaje óptimo de asfalto M.A. Drenante o Porosa119
Tabla 3.37	Resumen número de contactos para M.A. Densas
Tabla 3.38	Resumen número de contactos para M.A. Finas
Tabla 3.39	Resumen número de contactos para M.A. Abiertas
Tabla 3.40	Resumen número de contactos para M.A. Drenantes
Tabla 3.41	Porcentaje de vacíos para una M.A. Densa
Tabla 3.42	Porcentaje de vacíos para una M.A. Fina
Tabla 3.43	Porcentaje de vacíos para una M.A. Abierta
Tabla 3.44	Porcentaje de vacíos para una M.A. Drenante
Tabla 3.45	Caracterización para agregados de 1", ¾" y ½" para una M.A. Densa141
Tabla 3.46	Caracterización de tamaño para 1" en una M.A. Densa
Tabla 3.47	Caracterización de tamaño para ¾" en una M.A. Densa143
Tabla 3.48	Caracterización de tamaño para ½" en una M.A. Densa144
Tabla 3.49	Caracterización para agregados de 1", ¾" y ½" para una M.A. Fina145
Tabla 3.50	Caracterización de tamaño para 1" en una M.A. Fina
Tabla 3.51	Caracterización de tamaño para ¾" en una M.A. Fina147
Tabla 3.52	Caracterización de tamaño para ½" en una M.A. Fina148
Tabla 3.53	Caracterización para agregados de 1", ¾" y ½" para una M.A. Abierta149

Tabla 3.54	Caracterización de tamaño para 1" en una M.A. Abierta
Tabla 3.55	Caracterización de tamaño para ¾" en una M.A. Abierta151
Tabla 3.56	Caracterización de tamaño para ½" en una M.A. Abierta
Tabla 3.57	Caracterización para agregados de 1", ¾" y ½" para una M.A. Drenante.153
Tabla 3.58	Caracterización de tamaño para 3/8" en una M.A. Drenante
Tabla 3.59	Caracterización de tamaño para 1/4" en una M.A. Drenante
Tabla 3.60	Distribución de partículas en M.A. Densa
Tabla 3.61	Distribución de partículas en M.A. Fina
Tabla 3.62	Distribución de partículas en M.A. Abierta
Tabla 3.63	Distribución de partículas en M.A. Drenante
Tabla 3.64	Resultados Análisis Contacto agregado - agregado de la M.A. Densa171
Tabla 3.65	Resultados Análisis Contacto agregado - agregado de la M.A. Fina171
Tabla 3.66	Resultados Análisis Contacto agregado - agregado de la M.A. Abierta172
Tabla 3.67	Resultados Análisis Contacto agregado - agregado de la M.A. Drenante .172
Tabla 3.68	Resultados del Análisis de vacíos de la M.A. Densa
Tabla 3.69	Resultados del Análisis de vacíos de la M.A. Fina
Tabla 3.70	Resultados del Análisis de vacíos de la M.A. Abierta175
Tabla 3.71	Resultados del Análisis de vacíos de la M.A. Drenante
Tabla 3.72	Comparación entre mDicom y Radiant Dicom para M.A. Densa177
Tabla 3.73	Comparación entre mDicom y Radiant Dicom para M.A. Fina
Tabla 3.74	Comparación entre mDicom y Radiant Dicom para M.A. Abierta179
Tabla 3.75	Comparación entre mDicom y Radiant Dicom para M.A. Drenante180
Tabla 3.76	Cálculo del grado de incertumbre para una M.A. Densa185

ÍNDICE DE FIGURAS

	Página
Figura 2.1	Paquete estructural9
Figura 2.2	Comportamiento del pavimento frente a cargas de tránsito
Figura 2.3	Composición con emulsión asfáltica15
Figura 2.4	Ubicación de la Matriz Asfáltica Fina en una Mezcla Asfáltica26
Figura 2.5	Mezcla drenante
Figura 2.6	Tomografías computarizadas en mezclas asfálticas
Figura 2.7	Ejemplos de una sección de mezcla35
Figura 3.1	Ubicación chancadora Ramírez
Figura 3.2	Ubicación Alcaldía de Tarija43
Figura 3.3	Juego de tamices para realizar el análisis granulométrico
Figura 3.4	Pesado de los materiales retenidos en cada malla46
Figura 3.5	Curva granulométrica agregados M.A. Densa y Fina47
Figura 3.6	Curva granulométrica agregados M.A. abiertas
Figura 3.7	Curva granulométrica agregados para M.A. Drenante
Figura 3.8	Cilindro metálico para realizar la prueba de desgaste de "Los Ángeles"52
Figura 3.9	Pesaje de los materiales retenidos según el método de abrasión53
Figura 3.10	Introducción de la muestra en la máquina de "Los Ángeles"53
Figura 3.11	Tamización del material por malla N.º12
Figura 3.12	Lavado del material retenido en malla N.º 12
Figura 3.13	Probetas de ensayo por cada arena utilizado en diferente M.A56
Figura 3.14	Calibrador de longitud y calibrador de espesores58
Figura 3.15	Tamizado y pesado del material grueso
Figura 3.16	Agregados gruesos sumergidos en agua durante 24 horas
Figura 3.17	Obtención del peso en su condición superficialmente seca61
Figura 3.18	Preparación del equipo para hallar el peso sumergido del agregado62
Figura 3.19	Calibración de la balanza para el peso sumergido62
Figura 3.20	Balanza calibrada para conocer el peso sumergido del agregado63
Figura 3.21	Determinación del peso sumergido en agua del agregado grueso63
Figura 3.22	Secado en el horno del material grueso durante 24 horas

Figura 3.23	Agregados finos sumergidos en agua durante 24 horas	67
Figura 3.24	Secado del agregado fino	68
Figura 3.25	Colocación de las arenas en el cono metálico	68
Figura 3.26	Medición de la temperatura y pesaje del material fino	69
Figura 3.27	Equipo de Penetración	72
Figura 3.28	Muestra de C.A. en 3 vasos de precipitación de 50 ml	72
Figura 3.29	Ajuste de la aguja para ensayar la penetración	73
Figura 3.30	Medición de las muestras de C.A. con el equipo de penetración	73
Figura 3.31	Viscosímetro Saybolt	75
Figura 3.32	Medición de la temperatura del aceite y el asfalto	75
Figura 3.33	Medición del tiempo para calcular la Viscosidad Saybolt	76
Figura 3.34	Viscosidad del C.A.	76
Figura 3.35	Muestras colocadas en el baño María para el ensayo de peso específico	77
Figura 3.36	Ductilímetro	78
Figura 3.37	Preparación de los moldes	79
Figura 3.38	Colocación de los moldes en el baño María a temperatura de 25°C	80
Figura 3.39	Medición de la elongación de las muestras de asfalto en el ductilímetro	80
Figura 3.40	Llenado de la Copa de Cleveland con M.A.	82
Figura 3.41	Aplicación de calor a la copa de Cleveland con la M.A	82
Figura 3.42	Control de la temperatura en la copa de Cleveland	83
Figura 3.43	Control del destello y anotación de la temperatura en ese instante	83
Figura 3.44	Curva granulométrica para M.A. Densa	86
Figura 3.45	Curva granulométrica para una M.A. Fina	88
Figura 3.46	Curva granulométrica para una M.A. Abierta	90
Figura 3.47	Curva granulométrica para una M.A. Drenante	92
Figura 3.48	Contenido mínimo de las mezclas asfálticas estudiadas	93
Figura 3.49	Máquina de Marshall	.102
Figura 3.50	Mordaza para rotura de especímenes Marshall	.102
Figura 3.51	Extractor de muestras de asfaltos	.103
Figura 3.52	Muestras de las diferentes mezclas asfálticas estudiadas	.103
Figura 3.53	M.A. Densa: Densidad vs % C.A.	105

Figura 3.54	M.A. Densa: Estabilidad vs % C.A.	106
Figura 3.55	M.A. Densa: Fluencia vs % C.A	106
Figura 3.56	M.A. Densa: V.A.M. vs % C.A.	107
Figura 3.57	M.A. Densa: R.B.V. vs % C.A.	107
Figura 3.58	M.A. Densa: % Vacíos mezcla vs % C.A.	108
Figura 3.59	M.A. Fina: Densidad vs %C.A.	109
Figura 3.60	M.A. Fina: Estabilidad vs % C.A.	109
Figura 3.61	M.A. Fina: Fluencia vs % C.A.	110
Figura 3.62	M.A. Fina: V.A.M. vs % C.A.	110
Figura 3.63	M.A. Fina: R.B.V. vs % C.A.	111
Figura 3.64	M.A. Fina: % Vacíos Mezcla vs % C.A.	111
Figura 3.65	M.A. Abierta: Densidad vs % C.A. (135°C)	112
Figura 3.66	M.A. Abierta: Estabilidad vs % C.A.	113
Figura 3.67	M.A. Abierta: Fluencia vs % C.A.	113
Figura 3.68	M.A. Abierta: V.A.M. vs % C.A.	114
Figura 3.69	M.A. Abierta: R.B.V. vs % C.A.	114
Figura 3.70	M.A. Abierta: % Vacíos Mezcla vs % C.A.	115
Figura 3.71	M.A. Drenante o Porosa: Densidad vs % C.A.	116
Figura 3.72	M.A. Drenante o Porosa: Estabilidad vs % C.A.	116
Figura 3.73	M.A. Drenante o Porosa: Fluencia vs % C.A.	117
Figura 3.74	M.A. Drenante o Porosa: V.A.M. vs % C.A.	117
Figura 3.75	M.A. Drenante o Porosa: R.B.V. vs % C.A.	118
Figura 3.76	M.A. Drenante o Porosa: % Vacíos Mezcla vs % C.A	118
Figura 3.77	Tomógrafo Clínica Panosas	120
Figura 3.78	Extracción de imágenes mediante tomografía a diferentes alturas	120
Figura 3.79	Tomografía axial M.A. Densa	121
Figura 3.80	Tomografía axial de M.A. Fina	121
Figura 3.81	Tomografía axial M.A. Abierta	122
Figura 3.82	Tomografía axial M.A. Drenante	122
Figura 3.83	Contacto agregado – agregado para una mezcla asfáltica densa	123
Figura 3.84	Contacto agregado – agregado para una mezcla asfáltica fina	124

Figura 3.85	Contacto agregado – agregado para una mezcla asfáltica abierta125
Figura 3.86	Contacto agregado – agregado para una mezcla asfáltica drenante125
Figura 3.87	Medición del área de vacíos en las tomografías axiales130
Figura 3.88	Cálculo de las áreas de vacíos en T.C. de M.A. Densa
Figura 3.89	Cálculo de las áreas de vacíos en T.C. de M.A. Fina
Figura 3.90	Cálculo de las áreas de vacíos en T.C. de M.A. Abierta
Figura 3.91	Cálculo de las áreas de vacíos en T.C. de M.A. Drenante
Figura 3.92	Caracterización para una M.A. Densa
Figura 3.93	Caracterización para una M.A. Fina
Figura 3.94	Caracterización para una M.A. Abierta
Figura 3.95	Caracterización para una M.A. Drenante
Figura 3.96	Comparación curva granulométrica de laboratorio vs curva mDicom141
Figura 3.97	Comparación curva granulométrica de laboratorio vs curva mDicom145
Figura 3.98	Comparación curva granulométrica de laboratorio vs curva mDicom149
Figura 3.99	Comparación curva granulométrica de laboratorio vs curva mDicom153
Figura 3.100	Distribución para una mezcla asfáltica Densa156
Figura 3.101	Distribución para una mezcla asfáltica fina
Figura 3.102	Distribución para una mezcla asfáltica abierta157
Figura 3.103	Distribución para una mezcla asfáltica drenante
Figura 3.104	% Vacíos entre dos cortes de observación para una M.A. Densa163
Figura 3.105	% Vacíos entre dos cortes de observación para una M.A. Fina164
Figura 3.106	% Vacíos entre dos cortes de observación para una M.A. Abierta165
Figura 3.107	% Vacíos entre dos cortes de observación para una M.A. Drenante166
Figura 3.108	Contacto A-A entre dos cortes de observación para una M.A. Densa167
Figura 3.109	Contacto A-A entre dos cortes de observación para una M.A. Fina168
Figura 3.110	Contacto A-A entre dos cortes de observación para una M.A. Abierta .169
Figura 3.111	Contacto A-A entre dos cortes para una M.A. Drenante170
Figura 3.112	Comparación del número de contacto entre A-A en M.A173
Figura 3.113	Comparación de porcentaje de vacíos entre M.A
Figura 3.114	Comparación de la distribución de partículas en las M.A
Figura 3.115	Porcentaje de Vacíos para cada mezcla asfáltica estudiada

Figura 3.116	Puntos de Contacto en las mezclas analizadas	.183
Figura 3.117	Resultado de caracterización para M.A. Densa	.185
Figura 3.118	Resultado de distribucion de partículas de las mezclas estudiadas	.186