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 CAPÍTULO I  

INTRODUCCIÓN 

 

1.1 Problema 

1.1.1 Planteamiento del Problema 

Debido al incremento sostenido de los costos de construcción y las restricciones de tiempo 

en proyectos de estructuras de edificación, se ha generado la necesidad de plantear sistemas 

estructurales prefabricados y de bajo costo, convirtiéndose en una opción atrayente a ser 

aplicable de forma óptima como sistemas constructivos que tienen la potencialidad de operar 

con niveles inferiores de costo y tiempo de construcción. 

La prefabricación es un modo industrial de acelerar masivamente la construcción de obras 

civiles, para resolver problemas acumulados desde hace unos años, se vuelve a la producción 

de materiales alternativos y sistemas de bajo costo, que da como resultado una opción viable 

en construcciones, esto, resalta al ferrocemento como uno de estos materiales. 

El ferrocemento al considerarse un tipo de hormigón armado no convencional de paredes 

delgadas y compuesto por una matriz de mortero y un sistema de malla de refuerzo, hace que 

sea un material estructural alternativo, versátil y ligero que permite moldear secciones con 

mayor facilidad y precisión, facilitando la prefabricación y reducción de costos logísticos. 

Por consiguiente, en este proyecto se pretende realizar el análisis estructural de vigas de 

ferrocemento con sección transversal I, con la intención de que sea aplicado como una 

alternativa estructural y constructiva que tenga como característica ser un elemento 

prefabricado y de bajo costo, como una solución constructiva en nuestro medio. 

La finalidad de este estudio es evaluar el comportamiento de resistencia a corte y flexión 

de las vigas tipo I de ferrocemento a nivel de elemento estructural a partir de ensayos 

de flexión con cargas estáticas crecientes, para registrar los valores de carga y deflexión, 

los cuales permitirán analizar el comportamiento de los especímenes a medida que la carga 

aplicada se incrementa. El objetivo es validar el desempeño de las vigas de ferrocemento 

como elementos estructurales confiables, capaces de ser utilizados en aplicaciones reales. 
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1.1.2 Formulación del Problema 

¿Pueden las vigas tipo I de ferrocemento prefabricadas ser una alternativa estructural y 

constructiva viable para reducir costos en la construcción de estructuras civiles? 

1.1.3 Sistematización del Problema 

Tabla 1.1. Matriz PCES 

Problema Causa Efecto Solución 

Alto costo y 

baja 

optimización 

de tiempo del 

sistema de 

vigas 

tradicionales. 

Bajo rendimiento de las 

ventajas en sistemas 

constructivos 

tradicionales. 

Sobreconsumo en 

materiales y tiempos 

de ejecución poco 

productivos. 

Rediseño de secciones 

para minimizar el 

volumen de hormigón 

usando perfiles I. 

Desconocimiento o 

resistencia al uso de 

materiales no 

convencionales como el 

ferrocemento. 

Falta de adopción de 

alternativas más 

ligeras y baratas. 

Aplicación del 

ferrocemento bajo 

normativa ACI 549-18 

traducida y adaptada al 

contexto local. 

Desconocimiento de las 

ventajas de la 

prefabricación para 

elementos estructurales. 

Ampliación en 

tiempo de supervisión 

para fabricación y 

procesos 

constructivos. 

Desarrollo de líneas 

modulares de 

prefabricado. 

Limitaciones de diseño en 

vigas convencionales 

debido a la dificultad en el 

proceso constructivo  

in situ. 

Secciones 

convencionales con 

mayor peso propio y 

poca versatilidad en 

diseños. 

Integración de perfiles 

I de ferrocemento 

como alternativa 

estructural. 

Elevado manejo de 

logística en procesos 

constructivos y la cadena 

de suministro de 

materiales. 

Incremento de costos 

de transporte para 

provisión de 

materiales. 

Implementación de 

elementos 

prefabricados de 

montaje accesible. 

Fuente: Elaboración propia.  
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1.2 Objetivos  

1.2.1 Objetivo General 

Analizar el comportamiento a flexión a partir de ensayos experimentales realizados en 

laboratorio en vigas tipo I de ferrocemento, para su aplicación como elemento estructural 

prefabricado. 

1.2.2 Objetivos Específicos 

▪ Identificar mediante el ensayo a flexión el tipo de falla que experimentan las vigas de 

ferrocemento cuando se alcanza el límite de resistencia máximo. 

▪ Implementar un modelo de elementos finitos que simule el comportamiento obtenido 

a partir de los ensayos a flexión experimentales en vigas tipo I de ferrocemento 

realizados en laboratorio. 

▪ Proponer un segundo modelo de elementos finitos a escala de aplicación estándar, 

que permita analizar el comportamiento a flexión en vigas tipo I de ferrocemento. 

▪ Comprobar a partir de la simulación del ensayo a flexión el tipo de falla que 

experimentan las vigas I de ferrocemento cuando se alcanza el límite de resistencia a 

flexión en el segundo modelo de elementos finitos. 

▪ Proponer un tercer modelo de elementos finitos a escala de aplicación estándar, que 

permita analizar la interacción simultánea de la falla por flexión y corte en vigas tipo 

I de ferrocemento. 

▪ Verificar la aplicabilidad de las vigas tipo I de ferrocemento para estructuras de 

edificación. 

▪ Determinar la eficacia de las vigas tipo I de ferrocemento como alternativa estructural 

prefabricada, con un análisis técnico-económico en relación a un sistema 

convencional. 
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1.3 Justificación 

1.3.1 Justificación Teórica 

El presente trabajo de investigación se centra en el desarrollo de especímenes de vigas de 

ferrocemento con sección transversal tipo I, la razón para investigar este material alternativo 

se debe a sus características de ligereza, economía y eficiencia estructural. Estas propiedades 

permiten que las vigas de ferrocemento cumplan con los requisitos de seguridad estructural 

bajo cargas de servicio. 

Según diversos estudios previos, el ferrocemento ha sido ampliamente investigado en 

aplicaciones de vigas, como lo demuestran las investigaciones de Balaguru et al. (1977) en 

su artículo "Analysis and Behavior of Ferrocement in Flexure", Mansur y Ong (1991) en 

"Shear Strength of Ferrocement I-Beams", y Mohamed (2015) con "Elastic-Plastic Analysis 

of I-Shape Normal Strength Ferrocement Beams". Estos estudios han demostrado que las 

vigas de ferrocemento con sección tipo I tienen un comportamiento favorable a flexión. 

Además, el trabajo de Bin-Omar et al. (1988), titulado "Nonlinear Finite Element Analysis 

of Flanged Ferrocement Beams", proporciona una base sólida para el uso de modelado 

mediante el método de elementos finitos (FEM), para el análisis estructural de estos 

elementos. 

A partir de estos estudios, se establecerán criterios clave para el análisis estructural de vigas 

de ferrocemento tipo I, lo que facilitará la evaluación de su desempeño en términos de 

resistencia, trabajabilidad y costos, en comparación con otras soluciones estructurales 

disponibles. 

1.3.2 Justificación Metodológica 

Este estudio se basa en la fabricación de especímenes de vigas de ferrocemento con sección 

transversal tipo I, siguiendo las directrices proporcionadas en la "Design Guide for 

Ferrocement" ACI 549-18 y el código ACI 318-19. Mediante este enfoque, se llevará a cabo 

un análisis del comportamiento de la resistencia a flexión de las vigas, utilizando la 

metodología experimental definida en la norma ASTM C78. Esta metodología permite 

evaluar el desempeño estructural de los especímenes bajo cargas estáticas crecientes, 

proporcionando una comprensión del comportamiento de las vigas de ferrocemento en 

condiciones de flexión. 
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1.3.3 Justificación Práctica 

La investigación aborda la viabilidad del ferrocemento como material alternativo y sistema 

estructural prefabricado de bajo costo. Se busca optimizar la construcción mediante el uso de 

vigas de ferrocemento tipo I, que representan una solución económica y eficiente para 

proyectos de estructuras de edificación y desarrollo urbano. Este tipo de vigas ofrece ventajas 

considerables, especialmente en regiones con limitaciones logísticas, debido a su ligereza, 

que facilita el transporte y montaje en sitios de construcción. 

1.3.4 Justificación Social 

El uso de ferrocemento permite crear un material versátil, capaz de ser moldeado en secciones 

complejas con precisión. Esta propiedad facilita la prefabricación en entornos controlados, 

lo que resulta en reducción de tiempos de construcción y minimización de desperdicios de 

materiales en obra. En el ámbito social, esta investigación contribuirá significativamente a la 

optimización de recursos en proyectos de edificación masiva y desarrollo urbano en áreas de 

recursos limitados, al proporcionar una alternativa constructiva eficiente que puede mejorar 

la calidad de vida en estas zonas. 

1.4 Alcance del Estudio 

1.4.1 Tipo de Estudio 

La investigación tiene un carácter exploratorio, ya que su objetivo principal es analizar la 

resistencia a flexión de las vigas tipo I de ferrocemento y verificar el comportamiento de los 

elementos estructurales bajo cargas de servicio, comparando estos resultados con las 

predicciones teóricas basadas en modelos de diseño estándar. Adicionalmente, se llevará a 

cabo una verificación numérica utilizando el método de elementos finitos (FEM) para 

modelar y simular el comportamiento de las vigas de ferrocemento, comparando los 

resultados obtenidos de las simulaciones con los datos experimentales. Este enfoque 

permitirá validar y afinar las predicciones de comportamiento estructural del modelo FEM. 

Este estudio es de naturaleza cuantitativa, ya que se recopilarán y analizarán los datos 

experimentales y los resultados numéricos, con el objetivo de validar la hipótesis sobre el 

comportamiento estructural de las vigas de ferrocemento. 
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1.4.2 Variables 

Tabla 1.2. Matriz de Operalización de Variables 

Variable 
Definición 

Conceptual 
Dimensión Indicador Índice 

In
d
ep

en
d
ie

n
te

 

Vigas tipo I de 

ferrocemento 

Las vigas tipo I de 

ferrocemento son 

elementos estructurales 

lineales diseñados para 

resistir principalmente 

esfuerzos de flexión, 

caracterizados por su 

sección transversal en 

forma de "I". Estas 

vigas están compuestas 

por ferrocemento, un 

tipo de hormigón 

armado no 

convencional que 

consiste en una matriz 

de mortero de cemento 

reforzada con un 

sistema de refuerzo. 

D1: 

Composición 

del 

ferrocemento 

I1: 

Proporción de 

la matriz de 

mortero 

(cemento, 

arena, agua)  

I2: Tipo 

sistema de 

refuerzo. 

 

𝑘𝑔 

 

 

 

- 

D2: Geometría 

de la sección 

I1: Altura, 

ancho y 

espesor del 

alma y alas. 

𝑚𝑚 

D3: Proceso de 

fabricación 

I1: Técnica de 

moldeado.  

I2: Curado. 

- 

D
ep

en
d
ie

n
te

 

Comportamiento 

estructural 

El comportamiento 

estructural hace 

referencia a la respuesta 

integral de un 

componente ante 

cargas externas, 

considerando su 

resistencia, rigidez, 

ductilidad, estabilidad y 

modo de falla, lo que 

permite garantizar su 

funcionalidad y 

seguridad dentro de una 

estructura. 

D1: Carga 
I1: Carga 

monótona. 
𝑘𝑁 

D2: Deflexión 
I1: Deflexión 

progresiva. 
𝑚𝑚 

D3: Corte 

I1: Cortante 

máximo. 

I2: Cortante 

nominal. 

𝑘𝑁 

D4: Flexión 

I1: Momento 

de 

agrietamiento. 

I2: Momento 

de fluencia. 

I3: Momento 

de rotura. 

𝑘𝑁 ∙ 𝑚 

Fuente: Elaboración Propia.  
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1.4.3 Hipótesis 

Los valores de carga y deflexión que se presentarán en la parte experimental al alcanzar al 

límite de resistencia máxima en vigas con sección I de ferrocemento, presentarán valores 

aproximados alrededor del 10% en relación a los datos obtenidos mediante modelación 

numérica con el software DIANA FEA. 

1.4.4 Restricciones 

▪ No se realizarán ensayos sobre el sistema de refuerzo en el ferrocemento (malla de 

refuerzo, acero esquelético), para especificaciones técnicas ver (Anexo 1). 

▪ No se llevarán a cabo ensayos para determinar las propiedades físicas del cemento 

tipo IP-30 utilizado en la fabricación del ferrocemento, para especificaciones técnicas 

ver (Anexo 1). 

▪ Las vigas I de ferrocemento serán analizadas en laboratorio a partir del ensayo a 

flexión siguiendo el esquema de carga establecido en la normativa ASTM C78, que 

regulará los procedimientos para analizar el comportamiento obtenido.  

▪ La luz efectiva de ensayo en laboratorio se limitará a 900 mm, conforme a las 

restricciones de los aparatos de apoyo de la Prensa Universal AMSLER ubicada en 

instalaciones de Laboratorio de Tecnología de la Madera - Universidad Autónoma 

Juan Misael Saracho.  

▪ El análisis realizado en las vigas I de ferrocemento, evaluará su desempeño estructural 

desde una configuración simplemente apoyada.  
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 CAPÍTULO II 

MARCO TEÓRICO 

 

2.1 Ferrocemento 

El ferrocemento es considerado un tipo de hormigón armado, no convencional, 

caracterizándose por ser un compuesto delgado hecho con una matriz de mortero a base de 

cemento hidráulico reforzado con capas próximas entre sí de malla de alambre continuo y de 

diámetro relativamente pequeño, una definición más amplia de ferrocemento incluiría el uso 

de acero de acero de armazón además del sistema de malla y una matriz cementosa que 

permite la encapsulación completa del sistema de malla de refuerzo, cuya fineza limitará el 

tamaño de los granos de arena más grandes utilizados en la matriz cementosa, esta a su vez 

puede contener o no fibras discontinuas para mejorar el rendimiento en compuestos híbridos 

cuando sea deseable. La malla puede estar hecha de materiales metálicos o también se pueden 

utilizar mallas de otros materiales que se consideren adecuados para la aplicación del 

ferrocemento (Naaman, 2000).  

Figura 2.1. Sección típica de ferrocemento con acero esquelético 

 

Fuente: Guía de Construcción para Estructuras de Ferrocemento (UNATSABAR, 2003). 

2.1.1 Materiales constituyentes  

2.1.1.1 Matriz de mortero  

En presencia del agua, el cemento reacciona químicamente con ella en un proceso conocido 

como hidratación, formando un gel cementante. Con el tiempo, este gel se convierte en una 

masa sólida y dura que se conoce como pasta de cemento endurecido. Esta pasta, en su estado 

fresco aglutina y une las partículas del agregado (arena), formando un material cohesionado 
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y resistente conocido como mortero. Las propiedades del mortero no solo se rigen por el tipo 

y calidad de los materiales que lo constituyen, también por su relación de componentes. 

Los requisitos generales para elementos de ferrocemento son: que tengan resistencia a la 

compresión, impermeabilidad, dureza y resistencia al ataque químico, lo más elevadas 

posibles y, tal vez el factor más importante de todos, que su consistencia se mantenga 

uniforme, compacta, sin huecos, detrás de las concentraciones del refuerzo y de las mallas.  

La resistencia del mortero es inversamente proporcional a su relación agua/cemento, en tanto 

que su trabajabilidad es directamente proporcional a la cantidad de agua utilizada, por ello la 

matriz de mortero en el ferrocemento debe diseñarse de acuerdo con los procedimientos 

estándar de diseño de mezclas para mortero (Paul & Pama, 1992).  

2.1.1.1.1 Cemento  

El cemento es un conglomerante hidráulico que posee propiedades fundamentales de 

adhesión y cohesión, necesarias para unir agregados inertes como arena y grava, formando 

una masa sólida con resistencia mecánica y durabilidad adecuadas. Estas propiedades se 

desarrollan principalmente mediante la hidratación química, un proceso en el cual la adición 

controlada de agua permite al cemento fraguar, endurecerse y alcanzar características 

estructurales específicas (Nilson, 1999).  

 

Composición química típica del Clinker Portland: 

Cal combinada   (𝐶𝑎𝑂)   62.5% 

Sílice     (𝑆𝑖𝑂₂)   21% 

Alúmina   (𝐴𝑙₂𝑂₃)  6.5% 

Óxido de Hierro  (𝐹𝑒₂𝑂₃)  2.5% 

Anhídrido sulfúrico  (𝑆𝑂₃)   3% 

Cal libre   (𝐶𝑎𝑂)   0% 

Óxido de Magnesio  (𝑀𝑔𝑂)  2% 

Pérdida al fuego (P.F.)    2% 

Residuo insoluble (R.I.)    1% 

Álcalis    (𝑁𝑎₂𝑂 +  𝐾₂𝑂) 0.5% 
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Componentes principales de los cementos: 

a) Clínker Portland: obtenido por calcinación a temperaturas entre 1400℃ y 1500℃, 

generando silicatos cálcicos hidráulicos (𝐶₃𝑆, 𝐶₂𝑆, 𝐶₃𝐴, 𝐶₄𝐴𝐹), fundamentales para 

la resistencia inicial y final del cemento. 

b) Clínker aluminoso: producido por fusión controlada de calizas y bauxitas con un 

contenido mínimo de alúmina del 36%, utilizado especialmente en cementos 

refractarios o con requerimientos especiales de resistencia química y al calor. 

c) Escorias siderúrgicas (𝑺): obtenidas mediante enfriamiento rápido (templado) de la 

ganga fundida generada en procesos metalúrgicos del acero. Su incorporación al 

cemento incrementa resistencia química y reduce el calor de hidratación. 

d) Puzolanas naturales (𝑷), cenizas volantes (𝑽) y humo de sílice (𝑫): son 

materiales silíceos o alumino-silíceos que reaccionan químicamente con el hidróxido 

de calcio (𝐶𝑎(𝑂𝐻)₂), producto de la hidratación del cemento, formando compuestos 

cementantes adicionales que mejoran la resistencia, durabilidad e impermeabilidad 

del hormigón. 

e) Fillers calizos (𝑳): compuestos principalmente por carbonato cálcico molido 

finamente, mezclados con clínker Portland, que mejoran propiedades reológicas y la 

trabajabilidad, reducen la retracción y fisuración, y optimizan la hidratación del 

cemento (Varona Moya, López Juárez, & Bañón Blázquez, 2012). 

Clasificación y especificaciones técnicas según Norma Boliviana NB 011-95: 

a) Cemento Portland tipo I: Constituido principalmente por clínker Portland en 

proporción no menor del 95% y componentes adicionales en máximo 5% en masa. 

Utilizado en obras estructurales generales sin exposición especial. 

b) Cemento Portland con puzolana tipo IP: Clínker Portland del 70% al 94%, 

puzolana natural del 6% al 30% y otros componentes adicionales hasta un máximo 

del 5%. Indicado en obras hidráulicas y en ambientes agresivos, por su alta 

durabilidad química y baja generación de calor. 

c) Cemento Portland con filler calizo tipo IF: Clínker Portland del 80% al 94%, filler 

calizo del 6% al 15% y otros componentes adicionales hasta un máximo del 5%. 

Adecuado para aplicaciones donde se valora especialmente la trabajabilidad y control 

de retracción. 
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d) Cemento puzolánico tipo P: Clínker Portland mínimo del 60%, con puzolanas 

naturales o cenizas volantes en hasta 40%, más otros componentes adicionales hasta 

5%. Debe cumplir el ensayo de puzolanicidad según norma NB 642-95. Destaca por 

mejorar significativamente la resistencia química, durabilidad e impermeabilidad del 

hormigón. 

Tabla 2.1. Tabla resumen de clasificación según NB 011 

Fuente: Norma Boliviana NB 011-Cemento, 1995. 

Cemento IP-30 “El Puente” 

Según la clasificación mostrada en la tabla 2.1., por su composición, es un cemento portland 

que contiene como material cementante suplementario la puzolana, teniendo como 

característica una resistencia mínima a la compresión a los 28 días, de 30 MPa en mortero 

normalizado. 

Este cemento estándar sobrepasa las especificaciones de resistencia de la Norma Boliviana 

NB-011, tal como se puede observar en el siguiente gráfico: 

 

Tipos de cemento 
Proporción en masa % (1) 

Componentes principales 
Componentes 

Adicionales 

(%) 
Denominación Designación Tipo 

Clinker 

(%) 

Puzolana 

Natural 

(%) 

Filler 

Calizo 

(%) 

Cemento 

Portland 

Cemento 

Portland 
I 95 a 100 - - 0 a 5 

Cemento 

Portland con 

Puzolana 

IP 70 a 94 6 a 30 - 0 a 5 

Cemento 

Portland con 

Filler Calizo 

IF 80 a 94 - 6 a 15 0 a 5 

Cemento Puzolánico P ≥ 60 ≤ 40 - 0 a 5 
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Figura 2.2. Cemento “El Puente” IP-30 

 resistencia a compresión en cubos de mortero - NB 011 

 

Fuente: Ficha técnica de cemento El Puente IP-30. 

 

En la siguiente tabla se resumen las características y criterios de empleo de este cemento: 

Tabla 2.2. Características y criterios de empleo del cemento IP 

Cemento portland Tipo IP-30 

Características 
• Bajo calor de hidratación. 

• Baja retracción. 

Limitaciones • Resistencia mecánica media. 

• Poca resistencia química. 

Indicado para • Hormigón armado. 

• Hormigón en masa de pequeño o mediano volumen. 

• Pavimento y cimentaciones. 

• Estabilización de suelos. 

• Morteros. 

No indicado para • Obras en agua, terrenos o ambientes agresivos. 

• Macizos de gran volumen, sobre todo en dosificaciones altas. 

Precauciones • Cuidar el almacenamiento. 

• No debe prolongarse más de tres meses. 

Fuente: Adaptado de Hormigón Armado (Jiménez Montoya et al., 2013). 
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2.1.1.1.2 Agregado fino 

El término "agregado" hace referencia a los materiales inertes que se dispersan dentro de la 

pasta de cemento y constituye entre el 60% y el 70% del volumen total del mortero, los 

agregados deben ser capaces de generar una mezcla de trabajabilidad adecuada, que permitan 

una relación agua/cemento mínimo, para garantizar una penetración eficaz del mortero en la 

malla de refuerzo. Los agregados más comúnmente utilizados son las arenas naturales, que 

pueden ser mezclas de diversos tipos de materiales como sílice, roca basáltica o piedra caliza.  

Es crucial seleccionar adecuadamente los agregados, ya que el uso de arenas blandas puede 

provocar problemas de abrasión y reacciones químicas adversas a lo largo del tiempo. 

Además, un material con alta porosidad puede permitir la penetración de humedad dentro de 

secciones finas, lo cual afectaría negativamente tanto la durabilidad como el comportamiento 

estructural del mortero. Por lo tanto, la selección del agregado debe ser rigurosa para 

garantizar el rendimiento a largo plazo del ferrocemento. La granulometría de las partículas 

de arena es importante y debe cumplir, en lo posible, con las especificaciones de la norma 

ASTM C33 (UNATSABAR, 2003).  

Tabla 2.3. Granulometría del agregado fino ASTM C33 

 

Fuente: Especificación estándar para agregados para concreto (ASTM C33/C33M-03). 
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Figura 2.3. Rangos límite deseables del tamaño del agregado 

 

Fuente: Especificación estándar para agregados para concreto (ASTM C33/C33M-03). 

2.1.1.1.3 Agua 

La calidad del agua para mezclar el mortero es de vital importancia para el ferrocemento 

endurecido resultante. Las impurezas del agua pueden interferir en el fraguado del cemento 

y afectar adversamente la resistencia o provocar manchado en la superficie, y provocar la 

corrosión del refuerzo. El agua puede contener impurezas tales como arcillas, ácidos, sales 

solubles, materiales vegetales en descomposición y muchas otras sustancias orgánicas 

mientras estas se encuentren dentro de los limites prescritos en la norma ASTM C94/C94M. 

En ningún caso debe usarse agua con alto contenido de sulfatos para mezclar el mortero, ya 

que aumentará el riesgo de corrosión de la malla y del refuerzo (UNATSABAR, 2003).  

2.1.1.2 Sistema de refuerzo 

2.1.1.2.1 Acero esquelético 

En la construcción de ferrocemento, el acero esquelético está conformado, por alambrones o 

barras de acero que sirve para la conformación del esqueleto del ferrocemento y sustenta las 

mallas. Dicho refuerzo es necesario para formar el esqueleto, que dará la forma de la 

estructura a construir, alrededor del cual se unen posteriormente las capas de malla 

(generalmente en ambos lados). El uso de acero esquelético, cuando el espesor del 

ferrocemento lo permite, puede ser muy rentable. Actúa como espaciador, lo que permite 

ahorrar en capas de malla. También aumenta significativamente la resistencia a la tracción y 
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al corte por punzonamiento del ferrocemento. Si bien no agrega mucho a la superficie 

específica del refuerzo (importante para el control del ancho de grieta), puede aportar una 

resistencia significativa a la flexión, aunque es menos efectivo porque generalmente se coloca 

en el medio de la sección. Las propiedades del refuerzo esquelético son típicamente las de 

las barras de refuerzo estándar o los alambrones de pretensado utilizados en estructuras de 

hormigón armado o pretensado (Naaman, 2000). 

La norma NB 1225001, en su sección 20.2. establece que las barras y alambrones no 

pretensados deben presentar una geometría deformada (corrugas) para adherencia mecánica, 

donde la altura de corruga es ≥  2% del diámetro nominal, con un espaciado tal que haya al 

menos 5 resaltes por cada 100 𝑚𝑚 de longitud, según ACI 318-14 sección 20.2.1.1, 

asegurando anclaje y control de fisuración, también se indican las propiedades mínimas que 

estos deben tener: 

• Resistencia a la fluencia (𝑓𝑦): ≥ 420 𝑀𝑃𝑎 para barras longitudinales (Grado 60) y  

≥ 280 𝑀𝑃𝑎 para estribos transversales (Grado 40). 

• Resistencia última (𝑓𝑢): ≥ 1,25 · 𝑓𝑦, garantizando ductilidad post-fluencia. 

• Elongación mínima (𝜀𝑢): ≥ 9% en probeta de 200 𝑚𝑚, asegurando capacidad de 

deformación sin fractura. 

En conjunto, la NB 1225001 asegura que el acero esquelético empleado en ferrocemento 

reúna los requisitos de resistencia, ductilidad, adherencia y calidad necesarios para integrarse 

eficazmente con las mallas y el mortero, garantizando el desempeño estructural esperado. 
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Tabla 2.4. Especificaciones para barras y alambres de armadura no pretensada 

 

Fuente: Extraído de la Norma Boliviana NB 1225001. 

2.1.1.2.2 Malla de refuerzo 

Hasta ahora, las mallas de acero han sido el principal refuerzo de malla para el ferrocemento. 

Sin embargo, la investigación sobre mallas poliméricas o plásticas reforzadas con fibra trae 

alternativas e ímpetu adicionales a la construcción con ferrocemento, ya que el 

comportamiento del mismo depende en gran medida del tipo, grado de concentración, 

orientación, resistencia del refuerzo y de las dimensiones de las mallas que se distribuyen 

uniformemente en la masa del mortero. 

Las mallas de acero para ferrocemento incluyen mallas cuadradas tejidas o soldadas, mallas 

de alambre de forma hexagonal y láminas de metal expandido. A excepción de la malla 

metálica expandida, todas las mallas utilizadas deben ser preferiblemente galvanizadas para 

asegurar la resistencia a la corrosión (Naaman, 2000). 
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La Norma Boliviana NB 1225001, al adoptar los requerimientos del ACI 318-14 y remitir 

para el refuerzo en compuestos cementicios a la especificación ASTM A1064/A1064M, 

define a la malla electrosoldada como un conjunto prefabricado de hilos de acero de refuerzo 

dispuestos en sentidos ortogonales y unidos por soldadura por resistencia eléctrica en cada 

intersección. La malla de alambre liso electrosoldado según R20.2.1.7 se considera como 

elemento corrugado, debido a que el punto de soldadura por resistencia eléctrica proporciona 

un anclaje mecánico equivalente al de las corrugas, cumpliendo con la exigencia “resaltes ≥

 2% del diámetro” y “≥  5 resaltes en 100 𝑚𝑚” especificada para refuerzo corrugado.  

Tabla 2.5. Tipos de mallas para ferrocemento 

 

Fuente: Guía de Construcción para Estructuras de Ferrocemento (UNATSABAR, 2003). 

Este sistema de refuerzo debe cumplir las siguientes características técnicas mínimas: 

• Acero al carbono, grado mínimo G40 (𝑓𝑦 ≥ 280 𝑀𝑃𝑎). 

• Resistencia última (𝑓𝑢): ≥ 1,25 · 𝑓𝑦 

• Ductilidad (elongación 𝜀𝑢): ≥ 9% en probeta de 200 𝑚𝑚. 

• Resistencia al corte en soldadura: ≥ 0,75 · 𝑓𝑦 · 𝐴𝑤 (𝐴𝑤 = área del alambre en la 

soldadura), garantizando que la soldadura no sea el eslabón más débil. 
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• Diámetro nominal del alambre conforme a ASTM A510/A510M-18 varia de 0.9 𝑚𝑚 

a 25 𝑚𝑚 de diámetro con tolerancia de ± 0.05 𝑚𝑚. 

• Espaciamiento entre ejes de alambre: típicamente 25 × 25 𝑚𝑚 a 150 × 150 𝑚𝑚; 

tolerancia ± 2 𝑚𝑚. 

2.1.2 Consideraciones en elementos de ferrocemento 

Una visión general de la composición del ferrocemento, los parámetros de refuerzo y las 

propiedades se proporciona a continuación: 

Tabla 2.6. Características del compuesto 

 

Fuente: Adaptado de Ferrocemento y Compuestos Cementosos Laminados 

(Naaman, 2000). 

Tabla 2.7. Características del refuerzo para ferrocemento 

 

Fuente: Adaptado de Ferrocemento y Compuestos Cementosos Laminados 

(Naaman, 2000). 
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2.1.2.1 Detalles de refuerzo y recubrimiento del compuesto 

Para asegurar un buen comportamiento del ferrocemento, el refuerzo debe colocarse 

mediante el siguiente criterio: 

Figura 2.4. Disposición del sistema de refuerzo en el ferrocemento 

 

Fuente: Guía de Construcción para Estructuras de Ferrocemento 

 (UNATSABAR, 2003). 

El recubrimiento recomendado del refuerzo es aproximadamente 2 𝑚𝑚. Sin embargo, se 

puede usar un valor menor siempre que el refuerzo esté galvanizado, la superficie esté 

protegida con un recubrimiento adecuado y el ancho de la fisura esté limitado por el 

espaciamiento de la malla (UNATSABAR, 2003).  

Ahora bien, se recomienda tentativamente que para un material de ferrocemento dado (sin 

refuerzo esquelético) con un grosor 𝑡, el espaciamiento recomendado de los alambres 

transversales, 𝑠, no debe ser mayor que ℎ. Además, el número de capas de malla, 𝑛, debe ser 

preferiblemente tal que: 

 𝑛 ≥  0.16 ∙ ℎ, donde ℎ está en 𝑚𝑚. (2.1) 

Si se utiliza refuerzo esquelético, se recomienda que el refuerzo esquelético no ocupe más 

del 50% del grosor del material de ferrocemento. Si ℎ′ es el grosor en el cual se distribuyen 

las mallas, el número de capas de malla debe ser preferiblemente tal que: 

 𝑛 ≥  0.16 ∙ ℎ′, donde ℎ′ está en 𝑚𝑚. (2.2) 
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2.1.2.2 Fracción de volumen de refuerzo 

La fracción de volumen del refuerzo (𝑉𝑓), es el volumen de refuerzo por unidad de volumen 

de ferrocemento, siendo la relación entre el volumen de refuerzo y el volumen del compuesto 

(refuerzo y matriz) (ACI 549, 2018). Se tiene que: 

 
𝑉𝑓 =

𝑉𝑟𝑒𝑓𝑢𝑒𝑟𝑧𝑜

𝑉𝑐𝑜𝑚𝑝𝑢𝑒𝑠𝑡𝑜
 (2.3) 

Donde: 

𝑉𝑟𝑒𝑓𝑢𝑒𝑟𝑧𝑜: Volumen total de refuerzo (mallas y acero esquelético). 

𝑉𝑐𝑜𝑚𝑝𝑢𝑒𝑠𝑡𝑜: Volumen total del ferrocemento (refuerzo y matriz). 

Este parámetro es adimensional y expresa la proporción de refuerzo en el compuesto, el 

volumen de refuerzo incluye el acero esquelético. 

Al dividir 𝑉𝑓 entre el número de capas de malla dispuestas en el elemento, se obtiene la 

siguiente expresión: 

 
𝑉𝑓𝑖 =

𝑉𝑓

𝑁
 (2.4) 

 Donde: 

 𝑉𝑓𝑖: Fracción de volumen de refuerzo para la capa de malla 𝑖. 

 𝑁: Número de capas de malla. 

2.1.2.3 Factor de eficiencia del refuerzo 

El factor de eficiencia del refuerzo, denotado como 𝜂, es un parámetro esencial en el diseño 

de elementos estructurales de ferrocemento, particularmente cuando se analizan esfuerzos de 

flexión y tensión. Este factor cuantifica la efectividad de la malla de refuerzo en transmitir 

esfuerzos dentro de la matriz de mortero, considerando las características geométricas y 

mecánicas de la malla, así como su interacción con el mortero. 

Representa la relación entre la resistencia efectiva de la malla de refuerzo y su resistencia 

teórica máxima, considerando la anisotropía de las mallas utilizadas en ferrocemento (como 

mallas electrosoldadas, mallas expandidas o mallas de alambre tejido) que tienen 

comportamientos diferentes en direcciones longitudinales (𝐿), transversales (𝑇) y angulares 

(𝜃). Por lo tanto, 𝜂 varía según la dirección de análisis. 

El valor de 𝜂 depende de múltiples factores, entre los cuales destacan: 
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• Tipo de malla: Mallas con mayor área de contacto con el mortero (por ejemplo, 

mallas expandidas) tienden a tener valores de η más altos debido a una mejor 

transferencia de esfuerzos. 

• Orientación de la malla: En la dirección longitudinal (𝜂𝐿), la eficiencia suele ser 

mayor porque los alambres o fibras están alineados con la dirección principal del 

esfuerzo. En la dirección transversal (𝜂𝑇), la eficiencia puede ser menor debido a la 

menor contribución de los alambres perpendiculares. 

En lugar de los valores derivados de pruebas para un sistema de malla particular, se pueden 

usar los valores de 𝜂 dados en la Tabla 2.8. (Naaman y Homrich, 1986) para tipos comunes 

de refuerzo y direcciones de carga. El factor de eficiencia global se aplica tanto si el refuerzo 

está en las zonas de tracción como en las de compresión del miembro. Las definiciones de 

las direcciones del refuerzo se ilustran en la Figura 2.9. 

Tabla 2.8. Valores del factor de eficiencia global η del refuerzo 

 

Fuente: Guide to Ferrocement (ACI 549-18). 

. 

Figura 2.5. Direcciones longitudinales y transversales asumidas para el refuerzo 

 

Fuente: Guide to Ferrocement (ACI 549-18). 

El factor de eficiencia global 𝜂, cuando se multiplica por la fracción de volumen del refuerzo, 

da la fracción de volumen equivalente (o proporción de refuerzo equivalente) en la dirección 
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de carga considerada, conduce a un área equivalente (efectiva) de refuerzo por capa de malla 

en esa dirección de carga.  

Para mallas cuadradas, (𝜂 = 0.5) cuando la carga se aplica en una de las direcciones 

principales. Para una barra de refuerzo cargada a lo largo de su eje, (𝜂 = 1). 

2.1.2.4 Área efectiva del refuerzo 

El área efectiva del refuerzo representa la porción del área total de la malla que contribuye 

activamente a resistir los esfuerzos de tensión en una sección fisurada. Esta área no es igual 

al área total de la malla, debido a factores como la distribución no uniforme de esfuerzos en 

la malla y la anisotropía de la misma, que hace que su contribución varíe según la dirección 

de carga. 

La expresión propuesta por Naaman y Homrich (1986) para determinar el área de refuerzo 

por capa de malla considerada efectiva es la siguiente: 

 𝐴𝑠𝑖 = 𝜂 ⋅ 𝑉𝑓𝑖 ⋅ 𝐴𝑐 (2.5) 

Donde: 

𝐴𝑠𝑖: Área efectiva del refuerzo para la capa de malla i. 

𝜂: Factor de eficiencia global del refuerzo en la dirección de carga. 

𝐴𝑐: Área bruta de la sección transversal del mortero. 

2.1.2.5 Módulo efectivo del refuerzo 

Aunque las definiciones de la mayoría de las propiedades del ferrocemento son las mismas 

que para el hormigón armado, una propiedad que puede ser diferente es el módulo efectivo 

del sistema de refuerzo. Esto se debe a que el módulo elástico de una malla (acero u otro) no 

es necesariamente el mismo que el módulo elástico del filamento (alambre u otro) del cual 

está hecha.  

Para tener en cuenta los efectos del tipo de malla de refuerzo, se utiliza el término del módulo 

efectivo del sistema de refuerzo, denominado (𝐸𝑟).  

En el caso de las mallas de acero soldadas, Naaman y Homrich (1986) realizaron ensayos de 

tracción y compararon los resultados con el comportamiento de los alambres individuales, 

donde encontraron que la relación esfuerzo-deformación de las mallas soldadas era lineal y 

consistente con el módulo elástico de los alambres de acero. Por lo tanto, 𝐸𝑟 puede tomarse 

igual al módulo elástico de los alambres de acero; para otras mallas, 𝐸𝑟 puede determinarse 

a partir de pruebas de tracción en el compuesto de ferrocemento. 
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2.2 Características de los materiales 

2.2.1 Matriz de mortero 

2.2.1.1 Comportamiento del mortero bajo diferentes tipos de esfuerzos 

• Comportamiento bajo esfuerzo de compresión 

La resistencia del mortero a la compresión según ACI 549 en su sección 6.1.1. se determina 

a partir de cilindros estándar con 150 𝑚𝑚 de alto y 75 𝑚𝑚 de diámetro teniendo una relación 

altura/diámetro igual a 2 y ensayados de acuerdo con la norma ASTM C39/C39M, donde los 

cilindros son cargados longitudinalmente a una velocidad de deformación pequeña de tal 

modo que se llegue a la tensión máxima (resistencia a la compresión a los 28 días), esta varía 

dependiendo de las características de los agregados y la relación agua/cemento de la mezcla 

de mortero.  

El módulo de elasticidad para el mortero, puede aproximarse con la siguiente fórmula (ACI 

19.2.2.1.a): 

 𝐸𝑐 = 0.043 ∙ 𝑤𝑐
1.5 ∙ √𝑓′𝑐 (2.6) 

Donde: 

𝑤𝑐: Peso unitario del mortero en (𝑘𝑔 𝑚3⁄ ) 

𝑓𝑐′: Resistencia característica cilíndrica de compresión a los 28 días en (𝑀𝑃𝑎). 

La Ecuación (2.6) fue determinada utilizando cargas de corta duración y es válida para 

valores, del peso unitario del hormigón, que están entre el rango de 1440 (𝑘𝑔 𝑚3⁄ ) y  

2560 (𝑘𝑔 𝑚3⁄ ). Asimismo, esa ecuación proporciona el módulo secante a un esfuerzo de 

aproximadamente (0.5 ∙ 𝑓′𝑐). 

Para la representación de la curva esfuerzo-deformación del mortero de acuerdo a 

mencionado en la norma ACI 549, se puede representar de forma aproximada mediante el 

modelo constitutivo de Hognestad, que se muestra en la Figura 2.10. 
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Figura 2.6. Curva esfuerzo-deformación de Hognestad 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

• Comportamiento bajo esfuerzo de tracción 

La resistencia del mortero a esfuerzos de tracción está por debajo del 20% de su resistencia 

a la compresión, sin embargo, debido a la dificultad de sujetar las probetas y a las 

incertidumbres de tensiones secundarias inducidas por los aparatos de sujeción, el ensayo de 

tracción directa no es realizado, en cambio puede ser medida indirectamente en términos del 

esfuerzo de tracción que fractura un cilindro de hormigón colocado horizontalmente y 

cargado a lo largo de su diámetro. 
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Figura 2.7. Determinación de la resistencia a tracción 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

El esfuerzo de tracción a través del diámetro en el momento de la rotura es: 

 
𝑓𝑐𝑡 =

2 ∙ 𝑃

𝜋 ∙ ℎ ∙ 𝑑
 (2.7) 

La resistencia a esfuerzos de tracción también puede ser calculada por ensayos a la flexión 

en vigas de mortero de sección cuadrada. La resistencia a la tracción en flexión es conocida 

como el módulo de ruptura (𝑓𝑟). Este módulo es calculado utilizando la fórmula del esfuerzo 

por flexión. 
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Figura 2.8. Ensayo en viga para determinar la resistencia a la tracción 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

 
𝑓𝑟 =

𝑀

𝑆
 (2.8) 

Donde: 

𝑀: Momento flector al momento de la falla. 

𝑆: Módulo de la sección transversal. 

La resistencia por el ensayo de rotura del cilindro está entre el 50% y el 70% del valor del 

módulo de rotura. Esta diferencia se debe mayormente a la distribución de tensiones del 

elemento a flexión debido a que ésta es no lineal en el momento de falla. 

El módulo de ruptura 𝑓𝑟 puede ser correlacionado con la resistencia cilíndrica a la compresión 

𝑓′𝑐 mediante la siguiente ecuación: 

 𝑓𝑟 = 𝐾 ∙ 𝜆 ∙ √𝑓′𝑐 (2.9) 

Para hormigones normales 𝐾 varía entre 0.58 y 1.08; en consecuencia, el código ACI en su 

sección 19.2.3.1 recomienda tomar 0.62 como un valor conservador. 

 𝑓𝑟 = 0.62 ∙ 𝜆 ∙ √𝑓′𝑐 (2.10) 

Donde: 

𝜆: Factor que considera las propiedades mecánicas reducidas de hormigones de peso 

liviano, relativa a los hormigones de peso normal de igual resistencia a la compresión 

(ACI 19.2.4.1). 
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Figura 2.9. Valores de 𝝀 con base en la composición del agregado 

 

Fuente: Building Code Requirements for Structural Concrete (ACI 318-19). 

• Influencia de la velocidad de carga 

Cuando la carga se aplica rápidamente (en unos segundos) la resistencia de la probeta se 

incrementa en aproximadamente un 20% con respecto a la resistencia de la probeta ensayada 

de manera estándar, mientras que si la carga se aplica muy lentamente (en unos meses), la 

resistencia se ve reducida en un porcentaje similar. 

Para el diseño de elementos de ferrocemento se toma la resistencia a los 28 días de la matriz 

de mortero y se ignora la disminución que ésta sufre a causa de la aplicación de las cargas a 

largo plazo debido al sistema constructivo que se utiliza. Sin embargo, también suele 

ignorarse la ganancia en resistencia que se experimenta a medida que transcurre el tiempo. 

Dado que los compuestos cementicios usualmente ganan una resistencia entre 20% a 40% 

por encima de la que corresponde a los 28 días (hidratación después de este período), esto 

implica que ambas suposiciones tienden a compensarse y por lo tanto en general las hipótesis 

de diseño son seguras en este aspecto. 

Figura 2.10. Influencia de la velocidad de carga en la curva tensión-deformación 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 
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• Módulo de Poisson 

La relación entre la deformación transversal y la deformación en la dirección de la carga 

uniaxial aplicada es llamada módulo de Poisson (𝜈) que varía entre 0.15 y 0.20 para 

hormigón. Dado que no hay información disponible sobre la variación del módulo de Poisson 

con respecto a las propiedades del mortero al considerar la compatibilidad de este mismo con 

el hormigón se puede llegar a asumir un valor de módulo de Poisson igual a: “0.20” para el 

mortero, de acuerdo a las consideraciones hechas por Bin-Omar, Abdel-Rahman y Al-

Sulaimani (1989). 

Figura 2.11. Deformaciones longitudinales y transversales medidas en una probeta 

sometida a compresión uniaxial 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

La Figura 2.16 muestra las deformaciones medidas en una probeta ensayada en compresión 

hasta la rotura. Durante la mayor parte del rango de cargas el volumen del espécimen decrece, 

pero cuando se alcanzan esfuerzos elevados, cercanos a la resistencia a compresión de la 

probeta, las deformaciones transversales se vuelven tan altas que el volumen de la probeta 

comienza a crecer, lo cual es un indicador de que la resistencia a compresión está siendo 

alcanzada. La falla de una probeta cargada uniaxialmente en compresión generalmente va 

seguida por el alejamiento de las fibras paralelas cargadas y un incremento de volumen 

(Córdova Alvestegui, 2015).  
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2.2.2 Acero de refuerzo 

• Comportamiento del acero bajo esfuerzo monótono 

Las curvas típicas tensión-deformación de las barras de acero que se utilizan en hormigón 

armado son obtenidas de barras de acero cargadas monótonamente a tracción. El módulo de 

elasticidad del acero (𝐸𝑠) está dado por la pendiente de la parte lineal elástica de la curva, 

que para el caso del acero es generalmente tomado como 200000 𝑀𝑃𝑎. 

El esfuerzo en el punto de fluencia, llamado tensión de fluencia, es una propiedad importante 

del acero de refuerzo, se denomina como (𝑓𝑦). 

El factor que afecta las propiedades mecánicas y la curva esfuerzo-deformación del acero es 

su composición química, donde la introducción de carbono y aditivos de aleación en el acero 

aumenta su resistencia, pero corresponde una disminución de la deformabilidad de los aceros, 

y por lo tanto una reducción en la capacidad de disipación de energía, generalmente 

cuantificada por el factor de ductilidad. La deformabilidad de los aceros también se ve 

disminuida por los procesos de endurecimiento en frío a que puedan ser sometidos. 

Figura 2.12. Tensión de fluencia para aceros con punto de fluencia no definido 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

En la Figura 2.13, se muestran los resultados obtenidos de los ensayos realizados a diferentes 

tipos de acero y comparando las curvas tensión-deformación, observándose que, al aumentar 
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la resistencia del acero, la platea de fluencia va disminuyendo hasta desaparecer en el acero 

de pretensado. 

• Curvas idealizadas tensión-deformación para acero en tracción o compresión 

En el diseño de elementos estructurales, para simplificar los cálculos se pueden asumir 

diferentes tipos de curvas que representan de una manera aproximada el comportamiento del 

acero. 

La más simple y utilizada de todas las idealizaciones es la llamada “elástica perfectamente 

plástica”, donde la primera parte es elástica y lineal hasta el punto de fluencia y a partir de 

ese punto se asume que el acero no puede resistir mayores cargas por lo que el diagrama se 

mantiene constante en lo que se llama la zona plástica. En esta idealización no se toma en 

cuenta la fase de endurecimiento por deformación del acero. 

La segunda idealización es llamada “aproximación tri-lineal” porque todo el comportamiento 

del acero es representado por tres líneas rectas. En esta idealización la fase de endurecimiento 

por deformación es asumida lineal (Córdova Alvestegui, 2015). 

Figura 2.13. Diferentes idealizaciones de la curva tensión-deformación para el acero 

 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 
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2.3 Teoría de flexión en elementos de ferrocemento 

Para el desarrollo de la teoría de flexión en el análisis y diseño de vigas de ferrocemento es 

necesario considerar ciertas suposiciones fundamentales, para la simplificación y reducción 

de incertidumbres y variables del problema. 

2.3.1 Flexión en vigas de material homogéneo, elástico e isótropo 

El ferrocemento es un material no homogéneo porque está constituido por dos tipos de 

material totalmente distintos (mortero, acero), además no tiene un comportamiento elástico, 

y por último no es isótropo, porque no presenta las mismas propiedades en todas sus 

direcciones. Por lo tanto, los procedimientos utilizados para el diseño de vigas de materiales 

homogéneos, no se aplican. Pero, algunos principios fundamentales se pueden mantener y 

sobre la base de ellos desarrollar un método para el diseño y análisis en del ferrocemento. 

Los principios fundamentales que intervienen en el diseño de vigas de material elástico, 

homogéneo e isótropo son los siguientes: 

• En cualquier sección transversal existe una distribución de esfuerzos que puede ser 

descompuesta en dos componentes: una perpendicular (normal) y la otra paralela (tangencial) 

a la sección. Los esfuerzos normales a la sección son los esfuerzos por flexión y son los que 

resisten los momentos flectores, mientras que los esfuerzos tangenciales son los esfuerzos 

por corte y son los que resisten las fuerzas cortantes. 

• Una sección transversal del elemento que era plana antes de la aplicación de las 

cargas, se mantiene plana una vez que las cargas actúan sobre el elemento. Esto quiere decir 

que la distribución de los esfuerzos a lo largo de la sección transversal es lineal y proporcional 

a la distancia desde el eje neutro. 

• Los esfuerzos normales (esfuerzos por flexión), dependen de la deformación de la 

sección en el punto considerado de acuerdo a la variación de la curva tensión-deformación. 

Para un material elástico, el esfuerzo 𝑓 es igual a la deformación 𝜀 multiplicada por el módulo 

de elasticidad. 

• La distribución de los esfuerzos de corte 𝑣 en la sección transversal depende de la 

forma de la sección y del diagrama tensión-deformación del material. Los esfuerzos cortantes 

son mayores a nivel del eje neutro y cero en las fibras extremas, además estos esfuerzos son 

iguales en planos verticales y horizontales de un punto. 
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En cualquier punto a lo largo y alto del elemento se pueden hallar los esfuerzos principales 

de compresión 𝑓2 y tracción 𝑓1 conociendo los esfuerzos cortantes y de flexión en ese punto 

y utilizando la técnica del círculo de Mohr o las ecuaciones correspondientes. 

Tracción principal: 

 
𝑓1 =

1

2
∙ (𝑓 + √𝑓2 + 4 ∙ 𝑣2) (2.11) 

Compresión principal: 

 
𝑓2 =

1

2
∙ (𝑓 − √𝑓2 + 4 ∙ 𝑣2) (2.12) 

Figura 2.14. Esfuerzos en un punto cualquiera de una viga 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

El esfuerzo principal tiene un ángulo ∝ con la horizontal que puede hallarse con la siguiente 

ecuación: 

 
𝑡𝑎𝑛(2 ∙ 𝛼) =

2 ∙ 𝑣

𝑓
 (2.13) 

Como los esfuerzos cortantes verticales y horizontales son iguales y como los esfuerzos por 

flexión son cero en el plano del eje neutro, los esfuerzos principales en cualquier punto de 

ese plano forman un ángulo de 45° con la horizontal y tienen una intensidad igual al esfuerzo 

cortante. 

Figura 2.15. Esfuerzos en un punto cualquiera sobre el eje neutro de la viga 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 
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Cuando se tiene un comportamiento elástico del material o el nivel de esfuerzo se mantiene 

dentro del rango de comportamiento elástico de ese material, entonces el eje neutro pasa por 

el centro de gravedad de la sección y los esfuerzos por flexión 𝑓 y corte 𝑣 pueden ser hallados 

utilizando las ecuaciones típicas de la resistencia de materiales. 

 
𝑓 =

𝑀 ∙ 𝑦

𝐼
 (2.14) 

 
𝑓𝑚𝑎𝑥 =

𝑀 ∙ 𝑐

𝐼
=
𝑀

𝑆
 (2.15) 

 
𝑣 =

𝑉 ∙ 𝑄

𝐼 ∙ 𝑏
 (2.16) 

Donde: 

𝑓: Esfuerzo de flexión a una distancia y desde el eje neutro. 

𝑀: Momento flector externo en la sección. 

𝑦: Distancia desde el eje neutro al punto considerado de la sección. 

𝐼: Momento de inercia de la sección alrededor del eje neutro. 

𝑐: Distancia desde el eje neutro a la fibra extrema. 

𝑆: Módulo de la sección transversal 𝐼/𝑐. 

𝑣: Esfuerzo de corte (horizontal o vertical) en cualquier punto de la sección. 

𝑉: Fuerza cortante externa en la sección. 

𝑄: Momento estático, alrededor del eje baricéntrico, de la porción de la sección 

transversal entre la línea del punto en cuestión y la fibra extrema más cercana 

(superior o inferior) de la viga. 

𝑏: Ancho de la sección en donde se determina la tensión de corte. 

2.3.2 Suposiciones básicas de la teoría de flexión en el ferrocemento 

Para el desarrollo de una teoría sencilla y que pueda ser aplicada en la práctica, se deben 

realizar una serie de suposiciones para facilitar el desarrollo de las ecuaciones que predicen 

el comportamiento de una sección de ferrocemento sometida a esfuerzos de flexión. Para 

ello, se van a considerar las siguientes suposiciones: 

1) Las secciones planas antes de la flexión se siguen manteniendo planas después de 

ella. 

2) La curva tensión – deformación para el acero es conocida. 

3) La resistencia a la tracción de la matriz de mortero no es tomada en cuenta. 
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4) La curva tensión-deformación es conocida para la matriz de mortero y ésta define la 

magnitud y distribución del esfuerzo de compresión. 

5) El acero y el mortero trabajan como una sola unidad. 

La primera suposición que corresponde al principio de Navier-Bernoulli, implica que la 

deformación longitudinal en la matriz de mortero y en el acero de refuerzo en varios puntos 

a través de la sección transversal será proporcional a la distancia desde el eje neutro. 

Ciertamente esta suposición es correcta en la zona de compresión de la matriz de mortero, 

pero en la zona de tracción las fuerzas producen cierto deslizamiento del acero de refuerzo 

con respecto a la matriz de mortero y esto significa que la suposición no es completamente 

aplicable cerca de las fisuras. Sin embargo, si se mide la deformación en una longitud que 

incluye varias fisuras, se encuentra que el principio de Navier-Bernoulli es aplicable a la 

deformación promedio medida.  

La segunda suposición significa que las propiedades del acero están bien definidas. 

Normalmente se utiliza la idealización elástica perfectamente plástico para la curva tensión-

deformación del acero. Eso presume que el incremento de tensión por endurecimiento pasado 

el punto de fluencia es ignorado, tal como lo indica la sección 20.2.2.1 del código ACI 318. 

Esta suposición es razonable debido a que no es conveniente confiar en un incremento de la 

resistencia del acero en la fase plástica, sobre todo si la ley constitutiva no es conocida.  

La tercera suposición nos dice que cualquier tensión de tracción que existe en el hormigón 

por debajo del eje neutro es pequeña y tiene un pequeño brazo de palanca. Por lo que, de 

existir alguna contribución en la resistencia a flexión, no se comete un error apreciable al 

ignorarla. 

La cuarta suposición es necesaria para estimar el comportamiento de la sección. Debido a 

que las deformaciones en la matriz de mortero comprimida son proporcionales a la distancia 

desde el eje neutro, las curvas tensión-deformación de la matriz de mortero, descrita 

anteriormente, indican la forma del bloque de esfuerzos de compresión para varias etapas de 

carga. En la siguiente figura se puede apreciar cómo cambia la forma del diagrama de 

esfuerzos en la zona comprimida (por encima del eje neutro) a medida que se incrementa el 

momento flector en la sección. Cuando el momento es pequeño, la distribución de esfuerzos 

es triangular y a medida que éste se incrementa, el esfuerzo se curva hasta tener la forma 
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aproximada de una parábola, que representa el comportamiento que tiene la matriz de 

mortero a compresión (Córdova Alvestegui, 2015) . 

Figura 2.16. Distribución de tensiones de compresión correspondientes a diferentes 

diagramas de deformación 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Figura 2.17. Distribución de esfuerzos de compresión en la zona de compresión 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Diferentes ensayos realizados en laboratorios de todo el mundo dieron como resultado 

valores para todos los factores 𝐾 (𝐾1, 𝐾2 y 𝐾3), pero debido a la complejidad del diagrama 

real de esfuerzos es que muchos investigadores han propuesto el uso de diagramas 

equivalentes más sencillos para simplificar el análisis y diseño de elementos de hormigón 

armado y en nuestro caso ferrocemento. Para hallar la resistencia a la flexión de una sección 

solo se necesita saber la magnitud de (𝐾1 ∙ 𝐾3) y la posición de 𝐾2 de la fuerza de compresión 

de la matriz de mortero, el código ACI-549 en su sección 5.2.1 permite la asunción del 
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diagrama rectangular equivalente de esfuerzos simplificando de sobremanera los cálculos sin 

afectar la exactitud de los resultados. 

El código ACI 318 indica en su sección 22.2.2.4.3 que el factor 𝛽1 debe ser tomado como 

0.85 para resistencias del hormigón 𝑓′𝑐  entre 17 (𝑀𝑃𝑎) y 28 (𝑀𝑃𝑎). Para hormigones con 

resistencias superiores a 28 (𝑀𝑃𝑎), 𝛽1 debe ser reducido continuamente a una razón de 0.05 

por cada 7 (𝑀𝑃𝑎) de resistencia por encima de 28 (𝑀𝑃𝑎), pero el factor 𝛽1 no debe ser 

tomado menos de 0.65. De la anterior definición se puede deducir la siguiente fórmula 

aproximada: 

 𝛽1 = 1.05 − 0.007 ∙ 𝑓′𝑐 (2.17) 

Pero 0.65 ≤ 𝛽1 ≤ 0.85 donde 𝑓′𝑐 está en (𝑀𝑃𝑎). 

Figura 2.18. Variación de 𝜷𝟏 en función de la resistencia característica 𝒇’𝒄 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Parámetros del diagrama rectangular: 

 𝑎

𝑐
= 𝛽1 (2.18) 

 𝐶 = 𝐾1 ∙ 𝐾3 ∙ 𝑓
′
𝑐
∙ 𝑏 ∙ 𝑐 = 0.85 ∙ 𝑓′𝑐 ∙ 𝑏 ∙ 𝑎 (2.19) 

 𝐾1 − 𝐾3 = 0.85 ∙
𝑎

𝑐
= 0.85 ∙ 𝛽1 (2.20) 

 𝐾2 ∙ 𝑐 = 0.5 ∙ 𝑎 (2.21) 

 𝐾2 = 0.5 ∙
𝑎

𝑐
= 0.5 ∙ 𝛽1 (2.22) 
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El código ACI 549 en su sección 5.2.1.1 recomienda asumir el valor de 0.003 como 

deformación máxima (𝜀𝑐), en la fibra extrema de compresión de la matriz de mortero en una 

sección sometida a flexión hasta alcanzar su resistencia máxima. Para este valor de 

deformación el mortero en compresión no muestra fisuras ni desintegración visibles (efecto 

de Poisson). 

La quinta suposición es necesaria porque de otra manera se tendrían diferentes deformaciones 

para el hormigón y el acero en un mismo nivel, por lo tanto, la adherencia entre los dos 

materiales es esencial para el adecuado comportamiento de las secciones de ferrocemento.  

2.4 Resistencia a la flexión en vigas de ferrocemento 

2.4.1 Comportamiento de secciones a flexión pura 

a) Sección controlada por compresión 

Las secciones están controladas por compresión, cuando la deformación neta a tracción en el 

acero de refuerzo extremo, es menor que la deformación cedente (𝜀𝑠 < 𝜀𝑦), y a la vez, el 

mortero en compresión alcanza su deformación máxima 𝜀𝑐𝑢 = 0.003, esto significa que el 

mortero alcanzará su máxima capacidad antes de que el acero fluya, por lo tanto, la tensión 

en el acero de tracción no alcanza la tensión de fluencia (𝑓𝑠 < 𝑓𝑦). 

b) Sección controlada por tracción 

Las secciones están controladas por tracción, cuando la deformación neta en el acero de 

refuerzo extremo a tracción cumple que 𝜀𝑠 mayor o igual que 𝜀𝑦, al mismo tiempo que el 

mortero a compresión alcanza su deformación máxima 𝜀𝑐𝑢 = 0.003, éste alcanzará su 

tensión de fluencia 𝑓𝑦 antes de que el mortero alcance su resistencia máxima. Si el acero tiene 

un comportamiento elástico perfectamente plástico, la fuerza resultante en el acero se 

mantiene constante en el valor (𝐴𝑠 ∙ 𝑓𝑦) para cualquier incremento de carga en el elemento. 

c) Sección balanceada 

Las secciones están en una zona de transición, entre las fallas controladas por compresión y 

las controladas por tracción, cuando la deformación neta a tracción del acero de refuerzo 

extremo es 𝜀𝑠 = 𝜀𝑦 al mismo tiempo que el mortero a compresión alcanza su deformación 

máxima 𝜀𝑐𝑢 = 0.003. 

Esta falla se presenta para una cuantía particular de acero en la sección, para la cual, tanto el 

mortero como el acero, alcanzan simultáneamente sus capacidades máximas. 
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Figura 2.19. Secciones balanceadas controlada por compresión y controlada por 

tracción 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Figura 2.20. Diferentes tipos de fallas de una sección 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

2.4.2 Método de compatibilidad de deformaciones 

Cuando se tiene que analizar o diseñar vigas cuya sección ya sea regular o irregular, y que 

además tengan diferentes niveles de refuerzo, se puede utilizar un procedimiento basado en 

la compatibilidad de deformaciones. Para ilustrar el método, se considera la sección de 

ferrocemento mostrada en la Figura 2.21, como se trata de una viga, se asume que sobre ella 

no actúa carga axial alguna de tal modo que sobre la sección se desarrolla un diagrama de 

deformaciones no uniforme, con base al diagrama de deformaciones es posible determinar 

los esfuerzos en cada una de las filas de acero y en la porción de mortero sometido a 

compresión. 
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Figura 2.21. Compatibilidad de deformación en una sección de ferrocemento 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Por triángulos similares: 

 𝜀𝑐
𝑐
=
𝜀𝑐 − 𝑧 ∙ 𝜀𝑦

𝑑1
⟹ 𝑐 = (

𝜀𝑐
𝜀𝑐 − 𝑧 ∙ 𝜀𝑦

) (2.23) 

 𝜀𝑐
𝑐
=

𝜀𝑠𝑖
𝑐 − 𝑑𝑖

⟹ 𝜀𝑠𝑖 = (
𝑐 − 𝑑𝑖
𝜀𝑐

) (2.24) 

Una vez calculados los valores de 𝑐, 𝜀𝑠4, 𝜀𝑠3, 𝜀𝑠2 y 𝜀𝑠1, se calculan los esfuerzos en el 

hormigón y en cada fila de aceros. 

 𝑓𝑠𝑖 = 𝜀𝑠𝑖 ∙ 𝐸𝑠 (2.25) 

Pero con la condición de que (−𝑓𝑦 < 𝑓𝑠𝑖 < 𝑓𝑦) 

𝛽1 = 1.05 − 0.007 ∙ 𝑓′
𝑐
⟹ 𝑎 = 𝛽1 ∙ 𝑐 

Pero con la condición de que (0.65 ≤ 𝛽1 ≤ 0.85) 

Figura 2.22. Diagrama tensión-deformación del acero 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 
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Cuando se tienen calculados los esfuerzos en cada uno de los elementos de la sección 

transversal, se procede a hallar la posición y magnitud de la resultante de cada uno de ellos. 

Mortero: 

 𝐶𝑐 = (0.85 ∙ 𝑓′𝑐) ∙ 𝑎 ∙ 𝑏 (2.26) 

Acero: 

Si 𝑎 < 𝑑𝑖 ⟹ 𝐹𝑠𝑖 = 𝑓𝑠𝑖 ∙ 𝐴𝑠𝑖 (2.27) 

Si 𝑎 ≥ 𝑑𝑖 ⟹ 𝐹𝑠𝑖 = (𝑓𝑠𝑖 − 0.85 ∙ 𝑓′𝑐) ∙ 𝐴𝑠𝑖 (2.28) 

Se toma la fuerza como positiva si es compresión. 

Para hallar la posición del eje neutro se debe tantear el valor de 𝑧, hasta que la sumatoria de 

las fuerzas en el sentido perpendicular a la sección sea cero (𝑃𝑛 = 0). 

 
𝑃𝑛 = 𝐶𝑐 +∑𝐹𝑠𝑖

𝑛

𝑖=1

= 0 (2.29) 

Una vez hallada la posición del eje neutro se halla el momento nominal 𝑀𝑛 y para ello se 

procede a realizar la sumatoria de momentos alrededor del centro de gravedad de la sección 

de hormigón calculado sin considerar las barras de acero. 

 
𝑀𝑛 = 𝐶𝑐 ∙ (

ℎ

2
−
𝑎

2
) +∑[𝐹𝑠𝑖 ∙ (

ℎ

2
− 𝑑𝑖)]

𝑛

𝑖=1

 (2.30) 

Figura 2.23. Fuerzas internas en una sección de ferrocemento 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

2.5 Análisis a flexión de vigas de ferrocemento con sección transversal I  

De acuerdo al aumento de carga a flexión (momento flector) y con apoyo en la teoría 

planteada sobre la resistencia a la flexión en vigas de ferrocemento, se consideran tres estados 

de comportamiento de una sección sometida a flexión. 
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2.5.1 Estado de agrietamiento 

En esta etapa, la matriz de mortero ha alcanzado su resistencia a la tracción llegando a su 

condición de agrietamiento en el área traccionada, antes de que el acero llegue al límite de 

fluencia, como se muestra en la siguiente figura: 

Figura 2.24. Distribución de esfuerzos y deformaciones en la sección para el estado de 

agrietamiento 

 

Fuente: Elaboración propia. 

Para obtener el momento y curvatura de agrietamiento, se hace necesario considerar una 

sección transformada, que implica el reemplazo de la sección real transversal acero-mortero, 

por una sección equivalente conformada únicamente de mortero, a través de la relación de 

módulos de elasticidad de los materiales constituyentes, denominada como relación modular: 

 
𝑛 =

𝐸𝑠
𝐸𝑐

 (2.31) 

Para el sistema de refuerzo el factor de transformación se define como (𝑛 − 1) debido a que 

la sección de acero está embebida dentro de la matriz de mortero, al transformar el acero a 

mortero es imperativo restar una vez la sección que ocupa el sistema de refuerzo dentro del 

mortero evitando la duplicación del área ocupada por el refuerzo al realizar la 

homogeneización del material, teniendo la siguiente expresión para el área de la sección 

equivalente: 

 
𝐴𝑆𝐸 = 𝐴𝑐 + (𝑛 − 1) ∙∑𝐴𝑠𝑖

𝑛

𝑖=0

 (2.32) 
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𝐴𝑆𝐸 = 𝑏𝑤 ∙ ℎ𝑤 + 2 ∙ [(𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓] + (𝑛 − 1) ∙∑𝐴𝑠𝑖

𝑛

𝑖=0

 (2.33) 

La posición del eje neutro se determina mediante la aplicación del primer momento estático 

de área en la sección transformada, donde la suma de momentos de las fuerzas internas (acero 

transformado y mortero) debe ser igual a cero para mantener el equilibrio estático, se tiene 

las siguientes expresiones: 

1) Primer momento estático de área en la sección equivalente 

 𝑄𝑆𝐸 = 𝐴𝑆𝐸 ∙ 𝑐 (2.34) 

2) Primer momento estático de área en la sección de mortero 

 
𝑄𝑐 = 𝑏𝑤 ∙ ℎ𝑤 ∙

ℎ𝑤
2
+ (𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓 ∙

ℎ𝑓

2
+ (𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓 ∙ (ℎ𝑤 −

ℎ𝑓

2
) (2.35) 

3) Primer momento estático de área en la sección de acero transformado 

 
𝑄𝑠𝑖 = (𝑛 − 1) ∙∑(𝐴𝑠𝑖 ∙ 𝑑𝑠𝑖)

𝑛

𝑖=0

 (2.36) 

Del equilibrio estático de las expresiones anteriores: 

 𝐴𝑆𝐸 ∙ 𝑐 = 𝑄𝑐 + 𝑄𝑠𝑖 (2.37) 

Despejando la profundidad del eje neutro de la igualdad, se tiene: 

 
𝑐 =

𝑄𝑐 + 𝑄𝑠𝑖
𝐴𝑆𝐸

 (2.38) 

La inercia de la sección transformada respecto al eje neutro se calcula aplicando el segundo 

momento de área, este cálculo implica la suma de las inercias de cada subsección (acero 

transformado y mortero) con respecto al eje neutro, aplicando el teorema de ejes paralelos o 

teorema de Steiner, se tiene: 

 
𝐼𝑆𝐸 =∑(𝐼𝑖,𝑐𝑔 + 𝐴𝑖 ∙ 𝑑𝑖

2)

𝑛

𝑖=0

 (2.39) 

Donde: 

𝐼𝑖,𝑐𝑔: Inercia propia de cada elemento respecto a su centroide. 

𝐴𝑖 ∙ 𝑑𝑖
2
: Término de Steiner, donde  𝑑𝑖 es la distancia entre el centroide del elemento 

y el eje neutro. 
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Dado que la inercia propia de una barra individual respecto a su centroide (𝐼𝑠𝑖,𝑐𝑔) es 

despreciable frente al término (𝐴𝑠𝑖 ∙ 𝑑𝑠𝑖
2), esto válido para refuerzos distribuidos (mallas o 

barras delgadas), con estas consideraciones la expresión para el cálculo de la inercia de las 

secciones de acero trasformado es la siguiente: 

 𝐼𝑠𝑖 ≈ (𝑛 − 1) ∙ 𝐴𝑠𝑖 ∙ (𝑑𝑠𝑖 − 𝑐)
2 (2.40) 

Para el cálculo de la inercia de la sección de mortero, se tendrá lo siguiente: 

 
𝐼𝑐 = [

𝑏𝑤 ∙ ℎ𝑤
3

12
+ 𝑏𝑤 ∙ ℎ𝑤 ∙ (

ℎ𝑤
2
− 𝑐)

2

] 

+[
(𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓

3

12
+ (𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓 ∙ (

ℎ𝑓

2
− 𝑐)

2

] 

+{
(𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓

3

12
+ (𝑏𝑓 − 𝑏𝑤) ∙ ℎ𝑓 ∙ [(ℎ𝑤 −

ℎ𝑓

2
) − 𝑐]

2

} 

(2.41) 

Entonces la expresión para determinar la inercia de la sección transformada respecto al eje 

neutro, quedara de la siguiente forma: 

 
𝐼𝑆𝐸 = 𝐼𝑐 +∑[(𝑛 − 1) ∙ 𝐴𝑠𝑖 ∙ (𝑑𝑠𝑖 − 𝑐)

2]

𝑛

𝑖=0

 (2.42) 

El momento de agrietamiento, es el momento flector mínimo que provoca la formación de la 

primera fisura visible en un elemento de ferrocemento, debido a que los esfuerzos de tracción 

en la fibra más alejada del eje neutro alcanzan el módulo de ruptura de la matriz de mortero, 

está dado por la formula planteada en la norma ACI 318-19 en su sección 24.2.3.5. 

 
𝑀𝑐𝑟 =

𝑓𝑟 ∙ 𝐼𝑆𝐸
𝑦𝑡

 (2.43) 

Donde: 

𝑀𝑐𝑟: Momento de agrietamiento. 

𝑓𝑟: Modulo de ruptura del ferrocemento. 

𝐼𝑆𝐸: Momento de inercia de la sección equivalente respecto al eje neutro. 

𝑦𝑡: Distancia desde el eje neutro hasta la fibra extrema en tracción. 
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La curvatura de agrietamiento, es la representación del instante en que se forma la primera 

fisura debido a la flexión en un elemento estructural, partiendo de la compatibilidad de 

deformaciones y la linealidad de las mismas, se tiene: 

Deformación de agrietamiento: 

 
𝜀𝑎 =

𝑓𝑟
𝐸𝑐

 (2.44) 

Curvatura de agrietamiento 

 𝜙𝑐𝑟 =
𝜀𝑎

(ℎ − 𝑐)
 (2.45) 

Reemplazando la ecuación 2.44 en 2.45, se tiene: 

 
𝜙𝑐𝑟 =

𝑓𝑟
𝐸𝑐 ∙ (ℎ − 𝑐)

 (2.46) 

2.5.2 Estado de fluencia 

En esta etapa, el acero se encuentra justo en la fluencia, mientras que la matriz de mortero no 

ha alcanzado su agotamiento. 

En este estado, se pueden presentar tres casos que se describen a continuación: 

Caso A: Comportamiento lineal de la matriz de mortero y el acero a compresión 

del sistema de refuerzo no ha cedido 

Figura 2.25. Distribución de esfuerzos y deformaciones en la sección para el  

“Caso A” en el estado de fluencia 

 

Fuente: Elaboración propia. 
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Caso B: Comportamiento lineal de la matriz de mortero y el acero a compresión 

del sistema de refuerzo ha cedido 

Figura 2.26. Distribución de esfuerzos y deformaciones en la sección para el 

“Caso B” en el estado de fluencia 

 

Fuente: Elaboración propia. 

Para ambos casos se considera lo siguiente: 

De acuerdo a Park y Paulay (1974), siguiendo el modelo constitutivo de Honestad, se 

considera que el comportamiento de la matriz de mortero es aproximadamente lineal si el 

esfuerzo en la fibra extrema a compresión (𝑓𝑐) no supera el 70% de la resistencia a la 

compresión (𝑓′𝑐). 

 𝑓𝑐 ≤ 0.70 ∙ 𝑓′𝑐 (2.47) 

 𝑓𝑐 = 𝐸𝑐 ∙ 𝜀𝑐 (2.48) 

Además, se tiene que la deformación unitaria en la fibra extrema en compresión (𝜀𝑐) aun no 

alcanza el valor de la deformación unitaria última (𝜀𝑐𝑢). 

 𝜀𝑐 < 𝜀𝑐𝑢 (2.49) 

Para el acero se debe verificar que, si la fibra extrema a compresión ha llegado a superar o 

no al límite de fluencia, y que la fibra extrema en tracción haya alcanzado a su límite de 

fluencia, donde: 

Caso A 𝑓′𝑠𝑖 < 𝑓′𝑦 (2.50) 

Caso B 𝑓′𝑠𝑖 ≤ 𝑓′𝑦 (2.51) 
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Para ambos casos, se tiene: 

 𝑓𝑠𝑖 ≤ 𝑓𝑦 (2.52) 

En el caso de las deformaciones del acero, se debe verificar si en la fibra extrema a 

compresión se ha alcanzado o no el valor de la deformación de fluencia, mientras que la 

deformación en la fibra extrema a tracción haya llegado al valor de la deformación de 

fluencia. 

Caso A 𝜀′𝑠𝑖 < 𝜀′𝑦 (2.53) 

Caso B 𝜀′𝑠𝑖 ≥ 𝜀′𝑦 (2.54) 

Para ambos casos, se tiene: 

 𝜀𝑠𝑖 ≤ 𝜀𝑦 (2.55) 

Se plantea el equilibrio de fuerzas en el sistema. 

 
𝐶𝑐 +∑𝐹𝑠𝑖

𝑛

𝑖=0

= 0 (2.56) 

Donde (𝐹𝑠𝑖), es la resultante para las fuerzas tanto en la zona en compresión como en tracción 

en el acero del sistema de refuerzo, al estar distribuido en forma de capas la capa extrema a 

tracción es la que se encuentra en el límite de fluencia, misma que será denotada como (𝑓𝑠). 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑(𝐴′𝑠𝑖 ∙ 𝑓
′
𝑠𝑖
− 𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖)

𝑛

𝑖=1

 (2.57) 

Los esfuerzos tanto a compresión  𝑓′
𝑠𝑖

 como a tracción 𝑓𝑠𝑖 en cada capa del sistema de 

refuerzo siguen la proporcionalidad dada por la ley de Hook, por lo tanto, se tiene que: 

 𝑓𝑠𝑖 = 𝑓′𝑠𝑖 = 𝐸𝑠 ∙ 𝜀𝑠𝑖 (2.58) 

Se plantea la siguiente relación de deformaciones para cada capa de malla en la sección 

transversal. 

 𝜀𝑠
𝑑𝑠 − 𝑐

=
𝜀𝑠𝑖

𝑐 − 𝑑𝑠𝑖
 (2.59) 

Donde: 

𝜀𝑠: Deformación unitaria de fluencia. 

𝑑𝑠: Profundidad de la capa extrema en tracción del refuerzo. 

Despejando (𝜀𝑠𝑖) de la Ecuación (2.59), nos queda una expresión que dará los valores de la 

deformación unitaria del acero para cada capa de malla, donde los valores positivos 
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corresponderán a la deformación unitaria en la zona en comprensión, mientras que los valores 

negativos corresponden a la deformación unitaria en la zona en tracción.  

 
𝜀𝑠𝑖 =

𝜀𝑠 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑑𝑠 − 𝑐
 (2.60) 

Con la expresión (2.60), ya no es necesario tener una distinción entre los componentes del 

sistema de refuerzo para la zona en comprensión como en la zona en tracción, por lo tanto, 

generalizando los términos en la ecuación (2.57), al reemplazar (2.58) y (2.60), se tendrá lo 

siguiente: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑[𝐴𝑠𝑖 ∙ 𝐸𝑠 ∙
𝜀𝑠 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑑𝑠 − 𝑐
]

𝑛

𝑖=1

 (2.61) 

Reduciendo la expresión: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=
𝐸𝑠 ∙ 𝜀𝑠
𝑑𝑠 − 𝑐

∑[𝐴𝑠𝑖 ∙ (𝑐 − 𝑑𝑠𝑖)]

𝑛

𝑖=1

 (2.62) 

La resultante de las fuerzas a compresión del mortero (𝐶𝑐) es la suma de la fuerza a 

compresión aportada por las alas (𝐶𝑐𝑓) y la fuerza a compresión aportada por el alma (𝐶𝑐𝑤), 

teniendo que: 

 𝐶𝑐 = 𝐶𝑐𝑓 + 𝐶𝑐𝑤 (2.63) 

 
𝐶𝑐 =

𝑓𝑐 ∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤)

2
+
𝑓𝑐 ∙ 𝑐 ∙ 𝑏𝑤

2
 (2.64) 

Se plantea la relación de deformaciones unitarias: 

 𝜀𝑐
𝑐
=

𝜀𝑠
𝑑𝑠 − 𝑐

 (2.65) 

Despejando la deformación en la matriz de mortero: 

 𝜀𝑐 =
𝜀𝑠 ∙ 𝑐

𝑑𝑠 − 𝑐
 (2.66) 

Reemplazando (2.48) y (2.66) en la ecuación (2.64), se tiene: 

 

𝐶𝑐 =
𝐸𝑐 ∙

𝜀𝑠 ∙ 𝑐
𝑑𝑠 − 𝑐

∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤)

2
+
𝐸𝑐 ∙

𝜀𝑠 ∙ 𝑐
𝑑𝑠 − 𝑐

∙ 𝑐 ∙ 𝑏𝑤

2
 

(2.67) 

Operando: 

 
𝐶𝑐 = 𝐸𝑐 ∙ 𝜀𝑠 ∙

[𝑐 ∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤)] + (𝑐
2 ∙ 𝑏𝑤)

2 ∙ (𝑑𝑠 − 𝑐)
 (2.68) 
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Reemplazando (2.67) y (2.62) en la ecuación (2.56), se tendrá la expresión que permitirá 

encontrar la profundidad del eje neutro. 

 
𝐸𝑐 ∙ 𝜀𝑠 ∙

[𝑐 ∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤)] + (𝑐
2 ∙ 𝑏𝑤)

2 ∙ (𝑑𝑠 − 𝑐)
+
𝐸𝑠 ∙ 𝜀𝑠
𝑑𝑠 − 𝑐

∑(𝐴𝑠𝑖 ∙ (𝑐 − 𝑑𝑠𝑖))

𝑛

𝑖=0

= 0 (2.69) 

Luego se debe verifica que: 

Caso (a): {
𝜀′𝑠𝑖 < 𝜀𝑦

𝑓𝑐 ≤ 0.70 ∙ 𝑓′𝑐
 

Caso (b): {
𝜀′𝑠𝑖 ≥ 𝜀𝑦

𝑓𝑐 ≤ 0.70 ∙ 𝑓′𝑐
 

Finalmente, se obtiene el momento de fluencia de la sección, haciendo el equilibrio en la 

capa extrema de acero en tracción del sistema de refuerzo: 

 
𝑀𝑦 = 𝐶𝑐𝑓 ∙ (𝑑𝑠 −

ℎ𝑓

3
) + 𝐶𝑐𝑤 ∙ (𝑑𝑠 −

𝑐

3
) +∑[𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖 ∙ (𝑑𝑠𝑖 − 𝑑𝑠)]

𝑛

𝑖=0

 (2.70) 

La curvatura está dada por: 

 𝜙𝑦 =
𝜀𝑐
𝑐

 (2.71) 

Caso A: Comportamiento no lineal de la matriz de mortero y el acero a 

compresión del sistema de refuerzo ha cedido 

Figura 2.27. Distribución de esfuerzos y deformaciones en la sección para el  

“Caso C” en el estado de fluencia 

 

Fuente: Elaboración propia. 

Para este caso se considera lo siguiente: 
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Se establece un modelo bilineal equivalente (elastoplástico) para representar el 

comportamiento no lineal del mortero. Para ello, se define la siguiente deformación elástica 

del mortero: 

Figura 2.28. Modelo elastoplástico equivalente para el mortero 

 

Fuente: Adaptado de Reinforced concrete structures (Park & Paulay, 1974). 

El esfuerzo en la fibra extrema a compresión (𝑓𝑐) ha superado el 70% de la resistencia a la 

compresión 𝑓′𝑐. Además, la deformación unitaria en la fibra extrema en compresión (𝜀𝑐) aún 

no alcanza el valor de la deformación unitaria última (𝜀𝑐𝑢). 

 0.70 ∙ 𝑓′
𝑐
< 𝑓𝑐 ≤ 𝑓′𝑐 (2.72) 

 𝑓𝑐 = 0.85 ∙ 𝑓′𝑐 (2.73) 

 𝜀𝑐 < 𝜀𝑐𝑢 (2.74) 

El acero a compresión no ha llegado al límite de fluencia, en cambio la fibra extrema en 

tracción ha alcanzado a su límite de fluencia. 

 𝑓′𝑠𝑖 < 𝑓′𝑦 (2.75) 

 𝑓𝑠𝑖 ≤ 𝑓𝑦 (2.76) 

Siguiendo la compatibilidad de deformaciones, se tiene que la deformación en la fibra 

extrema a compresión no ha alcanzado e incluso superado el valor de la deformación de 

fluencia, mientras que la deformación en la fibra extrema a tracción solo ha alcanzado el 

valor de la deformación de fluencia. 

 𝜀′𝑠𝑖 ≥ 𝜀𝑦 (2.77) 

 𝜀𝑠𝑖 ≤ 𝜀𝑦 (2.78) 

Se plantea el equilibrio de fuerzas. 
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𝐶𝑐1 + 𝐶𝑐2 +∑𝐹𝑠𝑖

𝑛

𝑖=1

= 0 (2.79) 

Donde:  

La resultante de las fuerzas en la zona en compresión y tracción del acero del sistema de 

refuerzo, al estar distribuido en forma de capas, la capa extrema a tracción es la alcanza 

primero su límite de fluencia. 

La resultante de las fuerzas en el acero, está dada por: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑(𝐴′𝑠𝑖 ∙ 𝑓
′
𝑠𝑖
− 𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖)

𝑛

𝑖=1

 (2.80) 

Los esfuerzos tanto a compresión  𝑓′
𝑠𝑖

 como a tracción 𝑓𝑠𝑖 en cada capa del sistema de 

refuerzo siguen la proporcionalidad dada por la ley de Hook, por lo tanto, se tiene que: 

 𝑓𝑠𝑖 = 𝑓′𝑠𝑖 = 𝐸𝑠 ∙ 𝜀𝑠𝑖 (2.81) 

Se plantea la siguiente relación de deformaciones para cada capa de malla en toda la sección 

transversal. 

 𝜀𝑠
𝑑𝑠 − 𝑐

=
𝜀𝑠𝑖

𝑐 − 𝑑𝑠𝑖
 (2.82) 

 

Despejando 𝜀𝑠𝑖 de la ecuación (2.81), nos queda una expresión que dará los valores de la 

deformación unitaria del acero para cada capa de malla, donde los valores positivos 

corresponderán a la deformación unitaria en la zona en comprensión, mientras que los valores 

negativos corresponden a la deformación unitaria en la zona en tracción. 

 
𝜀𝑠𝑖 =

𝜀𝑠 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑑𝑠 − 𝑐
 (2.83) 

La expresión (2.82), generaliza forma para determinar la deformación de los componentes 

del sistema de refuerzo para la zona en comprensión como en la zona en tracción, por lo 

tanto, al reemplazar (2.80) y (2.82) en la ecuación (2.79), se tendrá lo siguiente: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑[𝐴𝑠𝑖 ∙ 𝐸𝑠 ∙
𝜀𝑠 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑑𝑠 − 𝑐
]

𝑛

𝑖=1

 (2.84) 
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Reduciendo la expresión: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=
𝐸𝑠 ∙ 𝜀𝑠
𝑑𝑠 − 𝑐

∑[𝐴𝑠𝑖 ∙ (𝑐 − 𝑑𝑠𝑖)]

𝑛

𝑖=1

 (2.85) 

La resultante de las fuerzas a compresión del mortero en la parte rectangular (𝐶𝑐1) es la suma 

de la fuerza a compresión aportada por las alas (𝐶𝑐𝑓) y la fuerza a compresión aportada por 

el alma (𝐶𝑐𝑤). 

 𝐶𝑐1 = 𝐶𝑐𝑓 + 𝐶𝑐𝑤 (2.86) 

 𝐶𝑐1 = 0.80 ∙ 𝑓′𝑐 ∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤) + 0.80 ∙ 𝑓′𝑐 ∙ (𝑐 − 𝑚) ∙ 𝑏𝑤 (2.87) 

Mientras que la resultante de las fuerzas a compresión del mortero en la parte rectangular 

(𝐶𝑐2) será: 

 
𝐶𝑐2 =

0.80 ∙ 𝑓′𝑐 ∙ 𝑚 ∙ 𝑏𝑤
2

 (2.88) 

Se plantea la relación de deformaciones unitarias por triángulos similares: 

 𝜀𝑐𝑦

𝑚
=

𝜀𝑠
𝑑𝑠 − 𝑐

 (2.89) 

Despejando: 

 
𝑚 =

𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐)

𝜀𝑠
 (2.90) 

 

Reemplazando (2.89) en la ecuación (2.86), se tiene: 

 
𝐶𝑐1 = 0.80 ∙ 𝑓′𝑐 ∙ ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤) + 0.80 ∙ 𝑓′𝑐 ∙ (𝑐 −

𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐)

𝜀𝑠
) ∙ 𝑏𝑤 (2.91) 

 
𝐶𝑐1 = 0.80 ∙ 𝑓′𝑐 ∙ [ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤) + (𝑐 −

𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐)

𝜀𝑠
) ∙ 𝑏𝑤] (2.92) 

Sustituyendo (2.89) en la ecuación (2.87), se tiene: 

 
𝐶𝑐2 =

0.80 ∙ 𝑓′𝑐 ∙ 𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐) ∙ 𝑏𝑤

2 ∙ 𝜀𝑠
 (2.93) 
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Reemplazando (2.91), (2.92) y (2.84) en la ecuación (2.78), se tendrá la expresión que 

permitirá encontrar la profundidad del eje neutro. 

 
[ℎ𝑓 ∙ (𝑏𝑓 − 𝑏𝑤) + (𝑐 −

𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐)

𝜀𝑠
) ∙ 𝑏𝑤 +

𝜀𝑐𝑦 ∙ (𝑑𝑠 − 𝑐) ∙ 𝑏𝑤

2 ∙ 𝜀𝑠
] 

(0.80 ∙ 𝑓′
𝑐
) +

𝐸𝑠 ∙ 𝜀𝑠
𝑑𝑠 − 𝑐

∑(𝐴𝑠𝑖 ∙ (𝑐 − 𝑑𝑠𝑖))

𝑛

𝑖=0

= 0 

(2.94) 

Luego se debe verificar que se cumpla con: 

Caso (c): {
𝜀′𝑠𝑖 < 𝜀𝑦

0.70 ∙ 𝑓′𝑐 < 𝑓𝑐 ≤ 𝑓′𝑐
 

Finalmente, el momento de fluencia de la sección, se obtendrá haciendo el equilibrio en la 

capa extrema de acero en tracción del sistema de refuerzo: 

 
𝑀𝑦 = 𝐶𝑐𝑓 ∙ (𝑑𝑠 −

ℎ𝑓

2
) + 𝐶𝑐𝑤 ∙ [𝑑𝑠 −

(𝑐 − 𝑚)

2
] 

+𝐶𝑐2 ∙ (𝑑𝑠 − 𝑐 +
2 ∙ 𝑚

3
) +∑[𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖 ∙ (𝑑𝑠𝑖 − 𝑑𝑠)]

𝑛

𝑖=0

 

(2.95) 

La curvatura está dada por: 

 𝜙𝑦 =
𝜀𝑐
𝑐

 (2.96) 

2.5.3 Estado de rotura 

Se considera que el mortero alcanza su agotamiento luego de que el acero del sistema de 

refuerzo a tracción ha superado su límite de fluencia, para representar el comportamiento no 

lineal del mortero, se plantea el bloque equivalente de Whitney, que simplifica la distribución 

de esfuerzos en la sección. Ahora bien, considerando la incorporación del acero de refuerzo 

en compresión en la sección, se distinguen dos escenarios: 
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Caso A: El acero de refuerzo superior en compresión ha cedido 

Figura 2.29. Distribución de esfuerzos y deformaciones en la sección para el  

“Caso A” en estado de rotura 

 

Fuente: Elaboración propia. 

 

Caso B: El acero de refuerzo superior en compresión ha cedido 

Figura 2.30.Distribución de esfuerzos y deformaciones en la sección para el  

“Caso B” en estado de rotura 

 

Fuente: Elaboración propia. 

 

Para ambos casos se tiene el mismo procedimiento al aplicar el método de compatibilidad de 

deformaciones, la diferencia radica en la verificación de las deformaciones unitarias en el 

acero ubicado en la zona de compresión; concretamente, se debe analizar si dicho acero se 

encuentra en estado elástico o ha alcanzado su límite de fluencia, donde: 
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Caso A 𝜀′𝑠𝑖 ≥ 𝜀𝑠 (2.97) 

Caso B 𝜀′𝑠𝑖 < 𝜀𝑠 (2.98) 

Se plantea la relación de deformaciones unitarias por triángulos similares: 

 𝜀𝑐𝑢
𝑐
=

𝜀𝑠𝑖
𝑐 − 𝑑𝑠𝑖

 (2.99) 

Despejando la deformación unitaria para cada capa de acero (los valores positivos para 

compresión y negativos para tracción), se tiene: 

 
𝜀𝑠𝑖 =

𝜀𝑐𝑢 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑐
 (2.100) 

Si 𝜀𝑠𝑖 ≥ 𝜀𝑦𝑖 ⟹ 𝑓𝑠𝑖 = 𝑓𝑦 (2.101) 

Si 𝜀𝑠𝑖 < 𝜀𝑦𝑖 ⟹ 𝑓𝑠𝑖 = 𝐸𝑠 ∙ 𝜀𝑠𝑖 (2.102) 

Estableciendo el equilibrio de fuerzas del sistema: 

 
𝐶𝑐 +∑𝐹𝑠𝑖

𝑛

𝑖=0

= 0 (2.103) 

La resultante a compresión del mortero será:  

 𝑎 = 𝛽1 ∙ 𝑐 (2.104) 

 𝐶𝑐 = 0.85 ∙ 𝑓′𝑐 ∙ 𝛽1 ∙ 𝑐 ∙ 𝑏𝑓 (2.105) 

La resultante de los esfuerzos del acero, está dada por la sumatoria de las fuerzas en cada 

capa de acero del sistema de refuerzo, donde: 

Si 𝑐 ≤ 𝑑𝑖 ⟹ 𝐹𝑠𝑖 = 𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖 (2.106) 

Si 𝑐 > 𝑑𝑖 ⟹ 𝐹𝑠𝑖 = 𝐴′𝑠𝑖 ∙ (𝑓𝑠𝑖 − 0.85 ∙ 𝑓′𝑐) (2.107) 

Entonces, se tiene que: 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑[𝐴′𝑠𝑖 ∙ (𝑓𝑠𝑖 − 0.85 ∙ 𝑓
′
𝑐
) + 𝐴𝑠𝑖 ∙ 𝑓𝑠𝑖]

𝑛

𝑖=1

 (2.108) 

Reemplazando (2.99) en (2.107): 

 
∑𝐹𝑠𝑖

𝑛

𝑖=1

=∑[𝐴′𝑠𝑖 ∙ (
𝜀𝑐𝑢 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑐
− 0.85 ∙ 𝑓′

𝑐
) + 𝐴𝑠𝑖 ∙

𝜀𝑐𝑢 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑐
]

𝑛

𝑖=1

 (2.109) 
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Para hallar la posición del eje neutro se debe realizar un proceso iterativo, reemplazando las 

ecuaciones (2.104) y (2.108) en (2.102), se tiene: 

 
∑[𝐴′𝑠𝑖 ∙ (

𝜀𝑐𝑢 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑐
− 0.85 ∙ 𝑓′

𝑐
) + 𝐴𝑠𝑖 ∙

𝜀𝑐𝑢 ∙ (𝑐 − 𝑑𝑠𝑖)

𝑐
]

𝑛

𝑖=1

 

+0.85 ∙ 𝑓′
𝑐
∙ 𝛽1 ∙ 𝑐 ∙ 𝑏𝑓 = 0 

(2.110) 

Una vez hallada la posición del eje neutro se debe verificar lo siguiente para determinar el 

caso de análisis en el que se encuentra: 

Caso A: {𝜀′𝑠𝑖 ≥ 𝜀𝑦 

Caso B: {𝜀′𝑠𝑖 < 𝜀𝑦 

El momento nominal 𝑀𝑛 o momento último 𝑀𝑢, se determina al realizar la sumatoria de 

momentos alrededor del centro de gravedad del bloque de compresiones calculado sin 

considerar las barras de acero. 

 
𝑀𝑢 =∑[𝐹𝑠𝑖 ∙ (

𝑎

2
− 𝑑𝑖)]

𝑛

𝑖=1

 (2.111) 

El análisis flexional en vigas de ferrocemento con sección en I, presentado por Mohammed 

(2015) en su estudio: “Elastic-plastic analysis of i-shaped normal strength Ferrocement 

beams”, reveló que: 

- La profundidad del bloque de compresión (𝑐) se aproxima al espesor del ala (ℎ𝑓), por 

ello, se puede asumir que 𝑐 ≈ ℎ𝑓 para todas las cuantías de malla electrosoldada y 

acero estructural en las alas. 

- El esfuerzo de compresión en el acero de refuerzo (𝐴′𝑠) es aproximadamente 0.5 ∙ 𝑓𝑦. 

Además de estas aproximaciones, se planteó la ecuación que limita la curvatura en este 

estado, según la fórmula: 

 
𝜙𝑢 =

0.85 ∙ 𝑓′𝑐
𝐸𝑐 ∙ 𝑐

 (2.112) 

2.5.4 Deformaciones de flexión de las secciones 

2.5.4.1 Cálculo de deformaciones a partir de curvaturas 

Según Park y Paulay (1974), se puede calcular la rotación y deflexión de un miembro 

integrando las curvaturas a lo largo del mismo, debido a que la curvatura se define como la 

rotación por longitud unitaria del miembro, se tiene la siguiente expresión que proporciona 
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la rotación entre dos puntos cuales quiera 𝐴 y 𝐵 del miembro, siendo que 𝑑𝑥 es un elemento 

de longitud del miembro: 

 
𝜃𝐴𝐵 = ∫ 𝜙 𝑑𝑥

𝐵

𝐴

 (2.113) 

La deflexión transversal del punto 𝐴 desde la tangente al eje del miembro en el punto 𝐵 

debido a la curvatura a lo largo de toda la longitud del miembro entre esos puntos esta dado 

por: 

 
Δ𝐴𝐵 = ∫ 𝑥 ∙ 𝜙 𝑑𝑥

𝐵

𝐴

 (2.114) 

Donde, 𝑥 es la distancia del elemento 𝑑𝑥 desde 𝐴. 

Las ecuaciones (2.112) y (2.113) son generalizaciones de los teoremas del área de momento 

y se aplican si están involucradas curvaturas elásticas o plásticas. Se pueden calcular las 

rotaciones y deflexiones de los miembros cuando se conocen las relaciones momento-

curvatura y la distribución de momento flexionante.  

Los autores Paul y Pama (1992), establecen ecuaciones para el cálculo de la deflexión de una 

viga de ferrocemento sometida a diferentes patrones de carga en diferentes rangos, aplicando 

los teoremas de área momento.  

Figura 2.31. Distribución de momento y curvatura para diferentes cargas 

 

a) Rango elástico (0 ≤ 𝑀 ≤ 𝑀𝑐𝑟 ; 0 ≤ 𝜙 ≤ 𝜙𝑐𝑟) 

 

 
Δ𝑐 =

𝜙

24
 (3 − 4 ∙ 𝜔2) 𝐿2 (2.115) 

L/2

P/2

P/2

P/2
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b) Rango de agrietamiento (𝑀𝑐𝑟 ≤ 𝑀 ≤ 𝑀𝑦 ; 𝜙𝑐𝑟 ≤ 𝜙 ≤ 𝜙𝑦) 

 

 
Δ𝑐 =

𝜙𝑐𝑟
6
 (𝜔 ∙ 𝐿)2 (1 + 𝑟) +

𝜙

24
[3 − 4 ∙ 𝜔2(1 + 𝑟 + 𝑟2)] ∙ 𝐿2 (2.116) 

Donde: 

 
𝑟 =

𝑀𝑐𝑟

𝑀
 (2.117) 

 

c) Rango de fluencia (𝑀𝑦 ≤ 𝑀 ≤ 𝑀𝑢 ; 𝜙𝑦 ≤ 𝜙 ≤ 𝜙𝑢) 

 

Fuente: Extraído de Ferrocement. (Paul & Pama, 1992). 

 
Δ𝑐 =

1

24
 {4 ∙ 𝜔2[𝜙𝑐𝑟(𝑟2 + 𝑟 ∙ 𝑟2) + 4 ∙ 𝜙𝑦(1 + 𝑟2 − 𝑟2 ∙ 𝑟 − 𝑟

2)]

+ 𝜙[3 − 4 ∙ 𝜔2(1 + 𝑟2 + 𝑟2
2)]}𝐿2 

(2.118) 

Donde: 

 
𝑟2 =

𝑀𝑦

𝑀
 (2.119) 

Las curvas de carga-deflexión obtenidas por las expresiones planteadas, se aproximan a las 

curvas experimentales promedio obtenidas por Balaguru, Naaman y Shah (1977).  

M
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2.6 Resistencia a corte y tensión diagonal en vigas de ferrocemento 

El termino falla por tensión diagonal, viene a ser el correcto para describir la falla por corte 

de elementos de ferrocemento; hasta el presente, a pesar de que se han realizado muchos 

experimentos, la falla por corte es todavía difícil de predecir con exactitud.  

El análisis y diseño para corte no están relacionados directamente con el corte como tal, sino 

con las tensiones diagonales que son producidas por una combinación de esfuerzos por corte 

y flexión. 

2.6.1 Tensión diagonal en vigas elásticas homogéneas 

Para materiales elásticos y homogéneos las tensiones, en cualquier sección de una viga, 

pueden ser halladas utilizando las siguientes ecuaciones: 

Tensiones por corte: 

 
𝑣 =

𝑉 ∙ 𝑄

𝐼 ∙ 𝑏
 (2.120) 

Tensiones por flexión: 

 
𝑓 =

𝑀 ∙ 𝑦

𝐼
 (2.121) 

Donde: 

𝑉: Fuerza cortante en la sección considerada (𝑁). 

𝑄: Momento estático, alrededor del eje baricéntrico, de la porción de la sección 

transversal entre la línea del punto en cuestión y la fibra extrema más cercana 

(superior o inferior) de la viga (𝑚𝑚3). 

𝐼: Momento de inercia de la sección alrededor del eje baricéntrico de la sección 

(𝑚𝑚4). 

𝑏 = Ancho de la sección en donde se determina la tensión de corte (𝑚𝑚). 

𝑀 = Momento flector en la sección considerada (𝑁 ∙ 𝑚𝑚). 

𝑦 = Distancia desde el eje baricéntrico al punto donde se desea hallar el esfuerzo por 

flexión (𝑚𝑚). 

La función de las tensiones de corte es fácilmente visualizada en el comportamiento de una 

viga laminada bajo la acción de una carga. 
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Figura 2.32. Esfuerzos de corte horizontal y vertical 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Figura 2.33. Trayectoria de tensiones en una viga rectangular homogénea 

 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

Tracción principal: 

 
𝑓1 =

1

2
∙ (𝑓 + √𝑓2 + 4 ∙ 𝑣2) (2.122) 

Compresión principal: 

 
𝑓2 =

1

2
∙ (𝑓 − √𝑓2 + 4 ∙ 𝑣2) (2.123) 



60 

 

La magnitud de las tensiones de corte 𝑣 y por flexión 𝑓 cambia a lo largo de la viga y 

verticalmente con respecto del eje neutro por lo tanto la inclinación y la magnitud de las 

tensiones principales también varían de un punto a otro. 

La flexión no es la única responsable de producir esfuerzos de tracción en las fibras extremas, 

ya que éstos pueden existir a lo largo del elemento con inclinaciones y magnitudes diferentes; 

producto no solamente de esfuerzos de corte sino por una combinación de esfuerzos de corte 

y flexión que existen en toda la viga y pueden producir el colapso de la misma si no se los 

toma en cuenta (Córdova Alvestegui, 2015). 

2.6.2 Vigas de ferrocemento sin refuerzo por corte 

El comportamiento de las vigas de ferrocemento, antes de la aparición de fisuras, es similar 

al de una viga homogénea de material elástico. La primera fisura en una viga aparece donde 

el esfuerzo de tracción supera la resistencia del material, lo que comúnmente ocurre en fibras 

extremas de la sección y donde los momentos son máximos,  

En el siguiente cuadro se presenta un resumen del tipo de fisura y el lugar donde generalmente 

se presenta (Córdova Alvestegui, 2015). 

Tabla 2.9. Tipos de fisuras por esfuerzos de corte 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

2.6.3 Criterio para la formación de fisuras diagonales 

Las tensiones principales están en función de los esfuerzos por corte, de los esfuerzos por 

flexión o de una combinación de ambos, dependiendo de la posición del punto a lo largo de 

la viga. 

La forma de los diagramas de momento y corte dependen directamente del tipo de carga, su 

intensidad y distribución sobre la viga. Los esfuerzos que éstos producen varían a lo largo de 

la viga, por lo tanto, existirán zonas en la viga donde los esfuerzos por corte son 

predominantes o los esfuerzos por flexión son predominantes o ambos esfuerzos son 

predominantes. Entonces, de acuerdo a este razonamiento, se puede predecir con bastante 

precisión el lugar donde las fisuras aparecen y la forma que ellas adoptan (verticales o 

inclinadas). Cuando los esfuerzos por flexión son los predominantes, las fisuras son verticales 



61 

 

y comienzan desde las fibras extremas en tracción, mientras que, si los esfuerzos por cortante 

son los predominantes, las fisuras son inclinadas y están localizadas a media altura de la 

sección. En las zonas donde ambos esfuerzos están presentes, generalmente las fisuras 

comienzan siendo verticales para luego inclinarse. 

En la Figura 2.34 se presenta la mitad de una viga simplemente apoyada que ha estado 

sometida a una carga uniforme repartida cuyo valor se ha incrementado paulatinamente hasta 

la aparición de fisuras. En la viga se pueden observar claramente los siguientes tres tipos de 

fisuras: 

a) Fisuras por flexión: Se presentan en forma vertical desde la cara traccionada y se 

aproximan al eje neutro de la viga. Estas fisuras son típicas en regiones donde el 

esfuerzo por flexión es grande y el esfuerzo por corte es pequeño o no existe. 

b) Fisuras por flexión y corte: Se presentan inicialmente en forma vertical desde la 

cara traccionada y se inclinan a medida que se acercan al eje neutro de la viga. Estas 

fisuras son típicas en regiones donde existe una combinación de esfuerzos por flexión 

y corte de magnitudes comparables. 

c) Fisuras en el alma por corte: Se presentan desde su inicio en forma inclinada y 

generalmente cerca del eje neutro de la viga. Estas fisuras son típicas en regiones 

donde el esfuerzo por corte es grande y el esfuerzo por flexión es pequeño o no existe. 

Figura 2.34. Fisuras por tensión diagonal 

 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 
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Donde: 

𝑉𝑐𝑟: Fuerza de corte que produce la primera fisura. 

Es evidente que el corte para el cual se forman fisuras diagonales depende de la relación entre 

la fuerza cortante y el momento flector, o más precisamente de la relación entre el esfuerzo 

cortante 𝑣 y el esfuerzo por flexión 𝑓 en la parte superior de la fisura por flexión. Ninguno 

de estos dos esfuerzos puede ser calculado con precisión, pero es evidente que: 

 
𝑣 = 𝐾1 ∙

𝑉

𝑏 ∙ 𝑑
 (2.124) 

Donde 𝐾1 depende de la profundidad de penetración de la fisura por flexión. De igual manera: 

 
𝑓 = 𝐾2 ∙

𝑀

𝑏 ∙ 𝑑2
 (2.125) 

Donde 𝐾2 depende también de la configuración de las fisuras. 

 𝑣

𝑓
=
𝐾1
𝐾2
∙
𝑉 ∙ 𝑑

𝑀
 (2.126) 

Los valores de 𝐾1 𝐾2⁄ fueron investigados mediante ensayos y se dedujo la siguiente fórmula: 

 
𝑣𝑐𝑟 =

𝑉𝑐𝑟
𝑏𝑤 ∙ 𝑑

= 0.16 ∙ 𝜆 ∙ √𝑓′𝑐 + 17 ∙
𝜌 ∙ 𝑉 ∙ 𝑑

𝑀
≤ 0.30 ∙ 𝜆 ∙ √𝑓′𝑐 (2.127) 

 𝑉𝑐𝑟 = 𝑣𝑐𝑟 ∙ 𝑏𝑤 ∙ 𝑑 (2.128) 

 
𝜌 =

𝐴𝑠
𝑏𝑤 ∙ 𝑑

 (2.129) 

𝑣𝑐𝑟: Tensión nominal de corte para la cual se forma la fisura por flexión y corte 

Una ecuación más simple que da resultados conservadores es la siguiente: 

 
𝑣𝑐𝑟 =

𝑉𝑐𝑟
𝑏𝑤 ∙ 𝑑

= 0.17 ∙ 𝜆 ∙ √𝑓′𝑐 (2.130) 
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Figura 2.35. Correlación de las ecuaciones con ensayos 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

2.7 Análisis y diseño de vigas de hormigón armado por corte 

Según ACI 549, el diseño de estructuras de ferrocemento para esfuerzos cortantes puede 

llevarse a cabo de acuerdo con ACI 318, la resistencia nominal al corte se puede expresar de 

la siguiente manera: 

 𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 (2.131) 

Donde: 

𝑉𝑛 = Resistencia nominal al corte de la viga. 

𝑉𝑐 = Fuerza de corte resistida por el hormigón. 

𝑉𝑠 = Fuerza de corte resistida por los estribos. 

Para poder determinar la resistencia nominal al corte, es necesario saber la resistencia que 

tiene la matriz de mortero al corte, siendo esta igual al corte que produce la primera fisura 

inclinada en el elemento, la fórmula aproximada está dada por: 

 𝑉𝑐 = 0.17 ∙ 𝜆 ∙ √𝑓′𝑐 ∙ 𝑏𝑤 ∙ 𝑑𝑠 (2.132) 

Donde: 

𝜆 = Factor de modificación que tiene en cuenta las propiedades mecánicas reducidas 

del hormigón ligero (ACI 19.2.4). Se toma el valor de 𝜆 igual a 1 para hormigón de 

densidad normal. 

Por otro lado, se tiene el refuerzo con estribos verticales en dirección perpendicular al eje de 

la viga, siendo estos los alambres trasversales de la malla de refuerzo.  
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En la Figura 2.36, se presenta el diagrama de cuerpo libre de un pedazo de viga limitada en 

el extremo derecho por una fisura inclinada de corte. 

Figura 2.36. Estribos verticales para resistir el corte 

 

Fuente: Diseño de estructuras de hormigón armado (Córdova Alvestegui, 2015). 

La fuerza total cortante 𝑉𝑠  que resisten los estribos a lo largo de la fisura es simplemente la 

multiplicación de la tensión de fluencia del acero 𝑓𝑦   por el área efectiva equivalente del 

refuerzo trasversal 𝐴𝑣  y por el número de estribos que son cortados por la fisura. Para 

determinar el número de estribos que son cortados por una fisura, se ha determinado mediante 

ensayos de laboratorio que la proyección horizontal de la fisura es aproximadamente igual al 

canto útil de la sección 𝑑. Por tanto, el número de estribos es igual a 𝑑 𝑠⁄ . 

 
𝑉𝑠 = 𝐴𝑣 ∙ 𝑓𝑦 ∙

𝑑𝑠
𝑠

 (2.133) 

El código ACI 318, controla indirectamente los esfuerzos cortantes limitando el máximo 

corte que puede ser resistido por la sección, con la siguiente expresión:  

 𝑉𝑚𝑎𝑥 = 𝑉𝑐 + 0.66 ∙ √𝑓′𝑐 ∙ 𝑏𝑤 ∙ 𝑑𝑠 (2.134) 
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2.8 DIANA FEA (software de elementos finitos) 

DIANA FEA, es un código de elementos finitos de propósito general, basado en el Método 

de Desplazamientos (DIANA es un acrónimo de DIsplacement method ANAlyser), ofrece un 

entorno robusto y especializado para capturar la fisuración, la no linealidad y los 

acoplamientos físicos típicos de la ingeniería estructural y geotécnica, con herramientas de 

modelado y posprocesado pensadas para interpretar resultados ingenieriles y apoyar 

decisiones de diseño y evaluación.  

2.8.1 Conceptos generales del método de elementos finitos  

Para problemas de elasticidad lineal, el sistema de ecuaciones a resolver es: 

 𝐾𝑢 = 𝑓 (2.135) 

Donde, 𝐾 es la matriz de rigidez del sistema, 𝑢 es el vector de los grados de libertad nodales 

desconocidos, tales como desplazamientos y rotaciones, y 𝑓 es el vector de fuerzas nodales 

correspondientes a los grados de libertad. 

2.8.1.1 Formulación global  

Al considerar un cuerpo tridimensional general, denotado como 𝑉, el problema se identifica 

por los desplazamientos desconocidos 𝑢 y fuerzas internas conocidas por unidad de volumen 

𝑔. Las fuerzas externas en forma de fuerzas concentradas y tracciones conocidas 𝑡  se aplican 

en la parte 𝑆𝑡 de la frontera y son conocidas como las condiciones de frontera naturales. Los 

desplazamientos 𝑢 están especificados como valores conocidos 𝑢̅ en la parte 𝑆𝑢 de la frontera 

y son llamadas las condiciones de frontera esenciales. En el Método de Elementos Finitos, el 

cuerpo 𝑉 se aproximará como un ensamblaje de elementos finitos, conectados por puntos 

nodales en las fronteras de los elementos. 

2.8.1.1.1 Desplazamientos 

Para resolver el problema, los desplazamientos 𝑢 deben cumplir una continuidad y 

diferenciabilidad en el grado necesario. En la frontera 𝑆𝑢, los desplazamientos deben 

satisfacer la condición de frontera esencial: 

 𝑢 = 𝑢̅    en     𝑆𝑢 (2.136) 

Los desplazamientos de un punto específico (𝑥, 𝑦, 𝑧) se asumen como funciones continuas 

expresadas en términos de variables discretizadas en los puntos nodales y se aproximan 

como: 

 𝑢𝑐(𝑥, 𝑦, 𝑧) ≈ 𝑢̅(𝑥, 𝑦, 𝑧) = 𝑁(𝑥, 𝑦, 𝑧)𝑢 (2.137) 
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Donde 𝑁 es la matriz de interpolación de desplazamientos, y 𝑢 es un vector de variables 

nodales, tales como componentes de desplazamientos y rotaciones, conocido como el vector 

de grados de libertad. La matriz de interpolación 𝑁 contiene las funciones de forma descritas 

en términos de variables independientes, como coordenadas, y está definida localmente para 

cada elemento individual. 

2.8.1.1.2 Deformaciones y esfuerzos  

Las deformaciones en cualquier punto de la estructura se pueden determinar mediante: 

 𝜀 = 𝐿𝑢 (2.138) 

Donde L es un operador diferencial que define un campo de deformaciones compatibles. El 

campo de deformaciones ahora se puede expresar como la derivada del vector 𝑢, de la forma: 

 𝜀 = 𝐿𝑢̅ = 𝐿𝑁𝑢 = 𝐵𝑢 (2.139) 

Donde la matriz 𝐵 define la relación deformación-desplazamiento para un punto específico 

y se denomina matriz diferencial. Asumiendo un comportamiento elástico lineal, la relación 

entre esfuerzos y deformaciones en un punto particular se puede escribir como: 

 𝜎 = 𝐷(𝜀 + 𝜀0) + 𝜎0 (2.140) 

Donde la matriz 𝐷 es la relación esfuerzo-deformación y depende de las propiedades del 

material, como el módulo de Young 𝐸 y la relación de Poisson 𝜈. El vector 𝜀0 representa las 

deformaciones iniciales, y el vector 𝜎0 contiene los esfuerzos residuales iniciales. 

2.8.1.1.3 Equilibrio 

En un problema estructural, las ecuaciones de equilibrio que gobiernan se pueden escribir 

como: 

 𝐿𝑇𝜎 + 𝑔 = 0    en    𝑉 

𝐿𝑛
𝑇𝜎 + 𝑔 = 𝑡    en    𝑆𝑡 

(2.141) 

Donde 𝑔 es el vector de fuerzas internas conocidas por unidad de volumen, con 𝑉 como el 

volumen total o el dominio del modelo. El vector 𝑡 representa las fuerzas de tracción 

conocidas en la frontera 𝑆𝑡, como cargas superficiales, de borde y puntuales. Para la 

derivación de las ecuaciones de equilibrio, se puede utilizar la condición de estacionariedad 

de la energía potencial total. 

2.8.1.1.4 Principio de desplazamientos virtuales  

Una forma más sencilla de introducir las relaciones de equilibrio de la ecuación (2.141) se 

puede hacer invocando el principio de desplazamientos virtuales. Este principio establece 
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que una estructura elástica está en equilibrio bajo un sistema de carga dado si, para cualquier 

desplazamiento virtual desde un estado de deformación compatible, el trabajo virtual es igual 

a la energía virtual de deformación. La ecuación del trabajo virtual se puede escribir como: 

 
∫ 𝛿𝜀𝑇𝜎 𝑑𝑉
𝑉

= ∫ 𝛿𝑢𝑇𝑔 𝑑𝑉
𝑉

= ∫ 𝛿𝑢𝑇𝑡 𝑑𝑆𝑡
𝑆𝑡

 (2.142) 

Donde 𝛿𝜀 son las deformaciones virtuales que corresponden a los desplazamientos virtuales 

𝛿𝑢. Sustituyendo las ecuaciones (2.136) y (2.139) en (2.142) obtenemos: 

 
𝛿𝑢𝑇∫ 𝐵𝑇𝜎 𝑑𝑉

𝑉

= 𝛿𝑢𝑇 (∫ 𝑁𝑇𝑔 𝑑𝑉
𝑉

+∫ 𝑁𝑇𝑡 𝑑𝑆𝑡
𝑉

) = 𝛿𝑢𝑇𝑟 (2.143) 

Donde 𝑟 es el vector de fuerzas internas correspondiente al vector de grados de libertad 

nodales 𝑢. El principio del trabajo virtual establece que la ecuación (2.143) debe satisfacerse 

para cualquier 𝑢, de modo que: 

 
∫ 𝐵𝑇𝜎 𝑑𝑉
𝑉

= 𝑟 (2.144) 

Estas ecuaciones no aseguran que el equilibrio se satisfaga en cada punto, pero garantizan 

que los esfuerzos satisfagan el equilibrio en un sentido promedio ponderado. Sustituyendo 

las ecuaciones (2.140) y (2.139), el lado izquierdo de la ecuación (2.144) se puede escribir 

como: 

 
∫ 𝐵𝑇𝜎 𝑑𝑉
𝑉

= (∫ 𝐵𝑇𝐷𝐵 𝑑𝑉
𝑉

)𝑢 − ∫ 𝐵𝑇𝐷𝜀0 𝑑𝑉
𝑉

+∫ 𝐵𝑇𝜎0 𝑑𝑉
𝑉

= 𝑟 (2.145) 

Al combinar la expresión de 𝑟 en las ecuaciones (2.143) y (2.145), obtenemos: 

 𝐾𝑢 = 𝑓 (2.146) 

Donde: 

 
𝐾 = ∫ 𝐵𝑇𝐷𝐵 𝑑𝑉

𝑉

 (2.147) 

Es la matriz de rigidez del sistema, y 𝑓 es el vector del lado derecho definido por: 

 𝑓 = 𝑓𝑔 + 𝑓𝑡 + 𝑓𝜀0 − 𝑓𝜎0 + 𝑓𝑐 (2.148) 

Con: 

𝑓𝑔 = ∫ 𝑁𝑇𝑔 𝑑𝑉
𝑉

 

La contribución de las fuerzas internas. 
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𝑓𝑡 = ∫ 𝑁𝑇𝑡 𝑑𝑆𝑡
𝑆𝑡

 

La contribución de las tracciones superficiales. 

𝑓𝜀0 = ∫ 𝐵𝑇𝐷𝜀0 𝑑𝑉
𝑉

 

El efecto de las deformaciones iniciales. 

𝑓𝜎0 = ∫ 𝐵𝑇𝐷𝜎0 𝑑𝑉
𝑉

 

El efecto de los esfuerzos iniciales. 

𝑓𝑐 

La contribución de las fuerzas nodales concentradas. 

Esto genera un conjunto de ecuaciones lineales simultáneas que pueden resolverse de manera 

directa o indirecta: 

 𝑢 = 𝐾−1𝑓 (2.149) 

2.8.1.2 Discretización en elementos 

En el Método de Elementos Finitos, el dominio de solución 𝑉 se divide en un número finito 

de elementos𝑉𝑒, que están conectados por puntos nodales en las fronteras entre elementos. 

De este modo, el dominio de solución se discretiza y se representa como un conjunto de 

elementos. Los desplazamientos desconocidos en cada elemento ahora se aproximan 

mediante funciones continuas expresadas en términos de variables nodales; estas funciones 

dentro de cada elemento finito se denominan funciones de interpolación o de forma. 

2.8.1.2.1 Desplazamientos 

En cada elemento, los desplazamientos de un punto arbitrario (𝑥, 𝑦, 𝑧) pueden medirse en un 

sistema de coordenadas cartesianas locales convenientes y se aproximan mediante funciones 

de forma y variables nodales: 

 𝑢𝑐(𝑥, 𝑦, 𝑧) = 𝑁𝑢𝑒 (2.150) 

Donde 𝑁 es la matriz de interpolación con funciones de forma 𝑁(𝑥, 𝑦, 𝑧), y 𝑢𝑒 es el vector 

de desplazamientos nodales del elemento, expresado en los ejes locales (𝑥, 𝑦, 𝑧). A partir de 

ahora, la distinción entre matrices, vectores y escalares de elementos y de estructuras se hará 

añadiendo un subíndice 𝑒 a las cantidades de los elementos siempre que esta distinción no 
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sea evidentemente reconocida. Este vector del elemento puede componerse a partir de las 

variables nodales del vector de grados de libertad del sistema 𝑢 mediante: 

 𝑢𝑒 = 𝑇𝑒𝑢 (2.151) 

Donde 𝑇𝑒 es la matriz de transformación del elemento, que transforma los grados de libertad 

correspondientes del sistema a los grados de libertad locales del elemento, orientados en el 

sistema de coordenadas (𝑥, 𝑦, 𝑧). El resto es idéntico a la Sección 2.8.1.1. 

2.8.1.2.2 Deformaciones y esfuerzos  

Usando la ley deformación-desplazamiento para compatibilidad y asumiendo que las 

funciones de forma 𝑁 son conocidas, la forma discreta de la relación deformación-

desplazamiento puede escribirse como: 

 𝜀 = 𝐵𝑢𝑒 (2.152) 

De manera similar a la Ecuación (2.140) para todo el dominio, la relación entre las 

deformaciones y los esfuerzos, incluyendo deformaciones iniciales y esfuerzos iniciales, 

puede escribirse para un elemento como: 

 𝜎 = 𝐷(𝜀 − 𝜀0) + 𝜎0 (2.153) 

Donde 𝐷 es la matriz de rigidez que representa la ley esfuerzo-deformación, usualmente 

derivada de la ley de Hooke, y varía de un elemento a otro. A menudo, la matriz 𝐷 solo se 

define en un sistema de coordenadas cartesianas locales del elemento (𝑥𝑙 , 𝑦𝑙, 𝑧𝑙). Para obtener 

las deformaciones en este sistema, es necesario aplicar una transformación de deformaciones: 

 𝜀𝑙 = 𝑇𝜀𝜀 (2.154) 

Donde 𝑇𝜀 es la matriz de transformación de deformaciones. Con la Ecuación (2.152), el 

vector de deformaciones locales 𝜀𝑙 puede ahora relacionarse directamente con el vector de 

grados de libertad locales del elemento 𝑢𝑒 mediante: 

 𝜀𝑙 = 𝑇𝜀𝐵𝑢𝑒 = 𝐵𝑙𝑢𝑒 (2.155) 

2.8.1.2.3 Ensamblaje de elementos 

El proceso de ensamblaje de los elementos también maneja las restricciones y las 

dependencias lineales (uniones). 
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2.8.1.2.3.1 Restricciones lineales 

La ecuación general de unión para la conexión excéntrica de tres traslaciones y tres rotaciones 

es: 

 

{
 
 

 
 
𝑢𝑥𝑖
𝑢𝑦𝑖
𝑢𝑧𝑖
𝜃𝑥𝑖
𝜃𝑦𝑖
𝜃𝑧𝑖}
 
 

 
 

=

[
 
 
 
 
 
1 0 0 0 −𝛥𝑧 𝛥𝑦
0 1 0 𝛥𝑧 0 −𝛥𝑥
0 0 1 −𝛥𝑦 𝛥𝑥 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

{
 
 

 
 
𝑢𝑥𝑗
𝑢𝑦𝑗
𝑢𝑧𝑗
𝜃𝑥𝑗
𝜃𝑦𝑗
𝜃𝑧𝑗}
 
 

 
 

 (2.156) 

Donde 𝑢𝑥𝑖 denota la traslación 𝑥 del nodo esclavo, 𝜃𝑦𝑗 la rotación 𝑦 del nodo maestro, 𝛥𝑥 la 

excentricidad en la dirección 𝑥, etc. 

2.8.1.2.4 Energía virtual de deformación 

Una vez que la estructura ha sido idealizada como un ensamblaje de elementos, la forma 

integral de la Ecuación de Trabajo Virtual (2.142) puede reescribirse como una suma del 

trabajo virtual realizado por los elementos individuales con volúmenes 𝑉𝑒 y superficies de 

frontera 𝑆𝑒: 

 

∑∫ 𝛿𝜀𝑇𝜎 𝑑𝑉
𝑉𝑒

𝑛𝑒

𝑒=1

=∑∫ 𝑢𝑇𝑔𝑒 𝑑𝑉
𝑉𝑒

𝑛𝑒

𝑒=1

+∑∫ 𝑢𝑇𝑡𝑒 𝑑𝑆
𝑆𝑒

𝑛𝑒

𝑒=1

 (2.157) 

Donde 𝑛𝑒 es el número total de elementos, 𝑔𝑒 es la fuerza corporal del elemento por unidad 

de volumen, y 𝑡𝑒 son las tracciones del elemento por unidad de área que actúan a lo largo de 

la frontera del elemento 𝑆𝑒. El término tracciones no está limitado a superficies de frontera 

reales, sino que también se utiliza para superficies interiores. Para cada elemento, su frontera 

𝑆𝑒 puede dividirse en una parte exterior y una parte interior con interfaces imaginarias con 

elementos adyacentes. 

La Ecuación (2.157) es de importancia fundamental para el Método de Elementos Finitos 

basado en desplazamientos e impone ciertas restricciones sobre las funciones de 

desplazamiento. En la aproximación del Principio de Desplazamientos Virtuales en 

elementos finitos, intentaremos garantizar el equilibrio, que para un elemento se expresa 

como: 

 
∫ 𝛿𝑢𝑇(𝐿𝑇𝜎 + 𝑔𝑒) 𝑑𝑉
𝑉𝑒

−∫ (𝐿𝑛
𝑇𝜎 − 𝑡𝑒) 𝑑𝑆

𝑆𝑒

= 0 (2.158) 
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Se puede demostrar que este teorema solo es válido siempre y cuando todas las derivadas de 

𝑢 y 𝜎 sean finitas a través de𝑉. En general, los esfuerzos no logran continuidad en las 

interfaces entre los elementos. Sin embargo, si las funciones de forma son elegidas de manera 

que los desplazamientos coincidan en los nodos y los elementos adyacentes (𝑖 y 𝑗) tengan 

desplazamientos idénticos en su interfaz, entonces se cumple una condición de continuidad 

de los esfuerzos en el sentido medio en la forma de: 

 
∫ 𝛿𝑢𝑇(𝐿𝑛

𝑇𝜎𝑖 − 𝐿𝑛
𝑇𝜎𝑗 − 𝑡𝑒̅) 𝑑𝑆

𝑆𝑒𝑖+𝑗

= 0 (2.159) 

Donde 𝑡𝑒̅ es la contribución de las cargas externas aplicadas. Esta expresión es otra 

aproximación para satisfacer el equilibrio y, por lo tanto, la ecuación de equilibrio (Ecuación 

2.158) es válida dentro de un único elemento y hasta su frontera superficial 𝑆𝑒. 

Asumiendo que las funciones de desplazamiento cumplen con las condiciones de la Ecuación 

(2.157), las integraciones pueden realizarse sobre los volúmenes y superficies del elemento. 

Sustituyendo respectivamente los desplazamientos y las deformaciones de los elementos con 

las Ecuaciones (2.150) y (2.152), la ecuación de trabajo virtual para un elemento individual 

puede escribirse como: 

 
𝛿𝑢𝑒

𝑇∫ 𝐵𝑇𝜎 𝑑𝑉
𝑉𝑒

= 𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑔𝑒 𝑑𝑉

𝑉𝑒

+ 𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑡𝑒 𝑑𝑆

𝑆𝑒

 (2.160) 

La forma integral de las tracciones en la frontera del elemento ∫𝑁𝑇𝑡𝑒 𝑑𝑆 puede reemplazarse 

por un vector de fuerzas nodales cinemáticamente equivalentes 𝑟𝑒, correspondiente al vector 

de grados de libertad del elemento 𝑢𝑒. Reordenando y sustituyendo 𝑟𝑒 por las tracciones en 

la frontera, la ecuación de trabajo virtual puede expresarse en la forma: 

 
𝛿𝑢𝑒

𝑇 (∫ 𝐵𝑇𝜎 𝑑𝑉
𝑉𝑒

−∫ 𝑁𝑇𝑔𝑒 𝑑𝑉
𝑉𝑒

) = 𝛿𝑢𝑒
𝑇𝑟𝑒 (2.161) 

Ya que esta relación es válida para cualquier desplazamiento virtual 𝛿𝑢𝑒, la ecuación de 

equilibrio para un elemento puede escribirse como: 

 
∫ 𝐵𝑇𝜎 𝑑𝑉
𝑉𝑒

−∫ 𝑁𝑇𝑔𝑒 𝑑𝑉
𝑉𝑒

= 𝑟𝑒 (2.162) 
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2.8.1.2.5 Matriz de rigidez del elemento  

La Ecuación (2.162) es válida para cualquier relación esfuerzo-deformación, y en el caso de 

un comportamiento elástico lineal, sustituyendo la Ecuación (2.153) para los esfuerzos se 

obtiene: 

 𝐾𝑒𝑢𝑒 + 𝑓𝑒 = 𝑟𝑒 (2.163) 

Donde: 

 
𝐾𝑒 = ∫ 𝐵𝑇𝐷𝐵 𝑑𝑉

𝑉𝑒

 (2.164) 

Es la matriz de rigidez del elemento, y 

 
𝑓𝑒 = ∫ 𝑁𝑇𝑔𝑒 𝑑𝑉

𝑉𝑒

−∫ 𝐵𝑇𝐷𝜀0 𝑑𝑉
𝑉𝑒

+∫ 𝐵𝑇𝜎0 𝑑𝑉
𝑉𝑒

 (2.165) 

Es la contribución del elemento al vector del lado derecho𝑓. 

Retomando la Ecuación (2.157) y usando la aproximación por tramos para los 

desplazamientos de la Ecuación (2.150) y la relación discreta deformación-desplazamiento 

de la Ecuación (2.152), la ecuación de trabajo virtual ahora se obtiene como: 

 

∑𝛿𝑢𝑒
𝑇∫ 𝐵𝑇𝜎 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

=∑𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑔𝑒 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

+∑𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑡𝑒 𝑑𝑆

𝑆𝑒

𝑛𝑒

𝑒=1

 (2.166) 

La sustitución de la relación esfuerzo-deformación de la Ecuación (2.153), en el caso de un 

comportamiento elástico lineal, conduce a: 

 

∑𝛿𝑢𝑒
𝑇 (∫ 𝐵𝑇𝐷𝐵 𝑑𝑉

𝑉𝑒

)𝑢𝑒

𝑛𝑒

𝑒=1

=∑𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑔𝑒 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

+ 

∑𝛿𝑢𝑒
𝑇∫ 𝑁𝑇𝑡𝑒 𝑑𝑆

𝑆𝑡𝑒

𝑛𝑒

𝑒=1

+∑𝛿𝑢𝑒
𝑇 (∫ 𝐵𝑇𝐷𝜀0 𝑑𝑉

𝑉𝑒

−∫ 𝐵𝑇𝜎0 𝑑𝑉
𝑉𝑒

)

𝑛𝑒

𝑒=1

 

(2.167) 

2.8.1.2.5.1 Transformación 

Con 𝑇 como la matriz de transformación, la Ecuación (2.164) se escribe como: 

 
𝐾𝑒 = 𝑇𝑇 (∫ 𝐵𝑇𝐷𝐵 𝑑𝑉

𝑉𝑒

)𝑇 (2.168) 

La multiplicación previa y posterior con 𝑇 transforma la rigidez del elemento de coordenadas 

locales a coordenadas globales. La creación de las matrices de rigidez de los elementos 𝐾𝑒 

según la Ecuación (2.168), DIANA lleva a cabo el Análisis Estático Lineal. 
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2.8.1.3 Ensamblaje del vector de carga 

El vector de carga 𝑓 está compuesto por las fuerzas nodales externas especificadas en el 

archivo de entrada y por el ensamblaje de las cargas de los elementos. Estas cargas de los 

elementos se pueden subdividir en los siguientes componentes: 

1. Fuerzas nodales equivalentes debido a efectos térmicos, efectos resultantes de 

diferencias en concentración y deformaciones iniciales. La suma de estos efectos da 

como resultado una deformación inicial equivalente, que puede transformarse en 

cargas nodales. 

2. Fuerzas nodales equivalentes resultantes de los esfuerzos iniciales. 

3. Fuerzas nodales equivalentes resultantes de cargas en las fronteras de los 

elementos. 

4. Fuerzas nodales equivalentes resultantes de efectos de aceleración (peso propio). 

La aplicación de Diana para el Análisis Estático Lineal calcula las contribuciones anteriores 

por elemento y, posteriormente, para cada grado de libertad, las contribuciones de los 

elementos conectados se superponen y se suman a las cargas nodales externas especificadas, 

formando así el vector de carga 𝑓. 

2.8.1.4 Equilibrio 

Invocando el teorema de los desplazamientos virtuales, las ecuaciones de equilibrio del 

ensamblaje de elementos son: 

 𝐾𝑢 = 𝑓 (2.169) 

Donde la matriz 𝐾 es la matriz de rigidez del ensamblaje de elementos: 

 

𝐾 =∑𝑇𝑒
𝑇𝐾𝑒𝑇𝑒

𝑛𝑒

𝑒=1

 (2.170) 

Y el vector 𝑓 es el vector del lado derecho: 

 𝑓 = 𝑓𝑔 + 𝑓𝑡 + 𝑓𝜀0 − 𝑓𝜎0 + 𝑓𝑐 (2.171) 

con: 

𝑓𝑔 =∑𝑇𝑒
𝑇∫ 𝑁𝑇𝑔𝑒 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

 

La contribución de las fuerzas internas de los elementos. 
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𝑓𝑡 =∑𝑇𝑒
𝑇∫ 𝑁𝑇𝑡𝑒 𝑑𝑆

𝑆𝑒

𝑛𝑒

𝑒=1

 

La contribución de las tracciones superficiales de los elementos. 

𝑓𝜀0 =∑𝑇𝑒
𝑇∫ 𝐵𝑇𝐷𝜀0 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

 

El efecto de las deformaciones iniciales de los elementos. 

𝑓𝜎0 =∑𝑇𝑒
𝑇∫ 𝐵𝑇𝜎0 𝑑𝑉

𝑉𝑒

𝑛𝑒

𝑒=1

 

El efecto de los esfuerzos iniciales de los elementos. 

𝑓𝑐 

La contribución de las fuerzas nodales concentradas. 

2.8.2 Tipos de elemento finito 

A continuación, se presenta una visión general de las clases de elementos finitos en DIANA. 

2.8.2.1 Armaduras (trusses) y cables 

Los elementos de armadura (truss) son barras que deben cumplir la condición de que sus 

dimensiones 𝑑 perpendiculares al eje de la barra sean pequeñas en relación con la longitud 𝑙 

de la barra. 

Figura 2.37. Características de elementos de armadura 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

La deformación de los elementos de armadura solo puede ser el alargamiento axial ∆𝑙; no 

existe deformación por flexión ni por cortante. Los elementos truss pueden emplearse para 

analizar estructuras de barras con conexiones articuladas, como cubiertas espaciales (space 

decks), rigidizadores en muros o partes estructurales unidas mediante articulaciones. 

También pueden utilizarse para el modelado de barras de refuerzo discretas. 
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En DIANA, los tipos de elementos truss se representan como líneas. Los elementos pueden 

tener funciones de interpolación lineales o cuadráticas para el campo de desplazamientos. En 

los elementos con interpolación lineal hay solo dos nodos, mientras que los elementos con 

interpolación cuadrática tienen tres nodos a lo largo de la línea. Existen tres tipos de 

elementos truss: regulares, mejorados y elementos de cable. En comparación con los truss 

regulares, los elementos mejorados incorporan grados de libertad adicionales perpendiculares 

al eje de la barra; por lo tanto, pueden utilizarse en análisis geométricamente no lineales y en 

análisis dinámicos. 

2.8.2.2 Elementos de cuerpo bidimensionales 

En un modelo bidimensional, los elementos se definen sobre una única superficie plana y las 

deformaciones y cargas están restringidas a actuar en el plano de dicha superficie. Se pueden 

distinguir tres configuraciones diferentes de un modelo bidimensional: 

▪ Elementos de esfuerzo plano (membrana) 

Estos elementos pueden utilizarse para modelar muros o paneles. Deben ser planos, es decir, 

las coordenadas de los nodos del elemento deben estar en un único plano, el plano 𝑥𝑦 del 

elemento. Este plano puede tener cualquier orientación arbitraria dentro del sistema de 

coordenadas tridimensional 𝑋𝑌𝑍. Los elementos deben ser delgados, es decir, el espesor 𝑡 

debe ser pequeño en relación con las dimensiones 𝑏 en el plano del elemento. El espesor 𝑡 de 

estos elementos es definido por el usuario. Las cargas 𝐹 deben actuar en el plano del 

elemento. En estos elementos, solo existen tensiones dentro del plano de la superficie, y las 

deformaciones fuera del plano se consideran como resultado del efecto de Poisson. 

Figura 2.38. Características elemento de esfuerzo plano 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 
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▪ Elementos de deformación plana 

Estos elementos pueden utilizarse para modelar una sección transversal de una estructura 

(infinitamente) larga, como un túnel, una pantalla de pilotes o una presa. Deben estar 

posicionados en el plano global 𝑋𝑌 del modelo, es decir, la coordenada 𝑍 correspondiente de 

los nodos del elemento debe ser cero. Las cargas 𝐹 deben actuar en el plano del elemento. 

Los elementos de deformación plana se caracterizan por tener un espesor 𝑡 igual a la unidad 

y por presentar componentes de deformación perpendiculares a la cara del elemento igual a 

cero: 𝜀𝑧𝑧 = 0. El efecto de Poisson generará tensiones fuera del plano. 

Figura 2.39. Características elemento de deformación plana 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

▪ Elementos axisimétricos 

Estos elementos describen un anillo sólido. Los elementos bidimensionales se rotan alrededor 

del eje global 𝑌 formando un anillo sólido. Estos elementos pueden emplearse en estructuras 

axisimétricas como tanques cilíndricos, torres de enfriamiento, tubos, conectores o pozos 

cilíndricos de excavación. Deben estar posicionados en el plano global 𝑋𝑌, es decir, la 

coordenada 𝑍 de los nodos del elemento debe ser cero. DIANA considera el eje 𝑌 como eje 

de simetría rotacional, por lo tanto, cada elemento modela un anillo. Las cargas 𝐹 deben 

actuar en el plano del elemento. En estos elementos, sólo hay deformaciones en el plano del 

elemento. Se consideran las tensiones circunferenciales, las cuales se calculan a partir del 

efecto de Poisson y la deformación circunferencial resultante del desplazamiento radial. La 

circunferencia del anillo sólido se define por la distancia del elemento al eje de rotación, que 

es el eje global 𝑌. 
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Figura 2.40. Características del elemento axisimétrico 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

2.8.2.3 Cuerpos o sólidos tridimensionales 

Los elementos sólidos son elementos de propósito general que resultan muy atractivos, ya 

que las geometrías arbitrarias pueden rellenarse fácilmente con elementos sólidos, sin 

necesidad de considerar ingenierilmente la reducción de geometrías reales a geometrías 

simplificadas, como ocurre con los elementos de viga, placa y/o cascarón. En años anteriores, 

debido a su tendencia a generar grandes sistemas de ecuaciones, estos elementos solían 

aplicarse solo cuando otros elementos no eran adecuados o producían resultados de análisis 

inexactos. Actualmente, debido a la potencia del hardware, los procedimientos de análisis 

son mucho más eficientes y las fuerzas de sección transversal y los momentos flectores 

pueden calcularse eficientemente usando elementos compuestos; por ello, los elementos 

sólidos pueden emplearse eficazmente en el trabajo de ingeniería cotidiano. 

Los elementos sólidos se caracterizan por las siguientes propiedades: 

Figura 2.41. Características del elemento solido 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 
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La situación de esfuerzo es tridimensional. La carga puede ser arbitraria. Las dimensiones en 

las tres direcciones axiales 𝑋, 𝑌 y 𝑍 son del mismo orden de magnitud 

2.8.2.4 Vigas (Beams) 

Los elementos de viga son barras que deben cumplir la condición de que sus dimensiones 𝑑 

perpendiculares al eje de la barra sean pequeñas en relación con la longitud 𝑙 de la misma. 

Figura 2.42. Características del elemento de viga 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Los elementos de viga pueden presentar deformación axial ∆𝑙, deformación por cortante 𝜸, 

curvatura 𝜿 y torsión; por lo tanto, pueden describir fuerza axial, fuerza cortante y momentos. 

Se emplean típicamente para analizar pórticos bidimensionales y tridimensionales. En 

combinación con elementos continuo–sólido también pueden modelar rigidizadores en 

placas o cascarones, etc. DIANA ofrece tres clases de elementos viga: 

▪ Clase I: Elementos de viga clásicos con secciones transversales integradas 

directamente. Pueden utilizarse en análisis lineal y en análisis geométricamente no 

lineal. El análisis físico no lineal (material) se limita a diagramas generalizados 

esfuerzo–deformación. 

▪ Clase II: Elementos de viga clásicos completamente integrados numéricamente. 

Pueden utilizarse en análisis lineal, geométricamente no lineal y físicamente no lineal. 

▪ Clase III: Elementos de viga tipo Mindlin completamente integrados numéricamente. 

Pueden utilizarse en análisis lineal, geométricamente no lineal y físicamente no lineal. 

2.8.2.5 Placas y cáscaras 

Las estructuras de placa o cáscara con un espesor que es relativamente pequeño en 

comparación con las dimensiones en el plano y con cargas fuera del plano, pueden definirse 

con elementos de flexión de placa o de cáscara. Estos elementos pueden estar ubicados en 

cualquier parte del espacio tridimensional. Se pueden distinguir tres tipos diferentes de 

elementos de placa y cáscara: 
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2.8.2.5.1 Elementos de placa en flexión 

Los elementos de placa en flexión deben cumplir las siguientes condiciones relativas a la 

forma y a la carga 

Figura 2.43. Características elementos de placa en flexión 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Deben ser planos, es decir, las coordenadas de los nodos del elemento deben estar en un único 

plano, el plano 𝑥𝑦 del elemento. El espesor 𝑡 debe ser pequeño en relación con las 

dimensiones 𝑏 en el plano del elemento. La carga de fuerza 𝐹 debe actuar perpendicular al 

plano del elemento, la carga de momento 𝑀 debe actuar alrededor de un eje contenido en el 

plano del elemento. 

Los elementos de placa en flexión se caracterizan por lo siguiente: la tensión normal 

perpendicular a la cara es cero, lo que significa que se cumple la condición de esfuerzo plano. 

Las normales al plano del elemento permanecen rectas después de la deformación, pero por 

definición no tienen por qué seguir siendo perpendiculares al plano. El desplazamiento 

perpendicular al plano no varía a lo largo del espesor. 

DIANA ofrece dos clases de elementos de placa en flexión: la primera basada en la teoría de 

Kirchhoff discreta (denominados placas Kirchhoff discretas), y la segunda basada en la teoría 

de Mindlin-Reissner (denominados simplemente placas Mindlin). Ambas clases se integran 

numéricamente. 

2.8.2.5.2 Elementos de lámina plana  

Los elementos de lámina plana son, básicamente, una combinación de elementos de esfuerzo 

plano y elementos de placa en flexión. Pero, a diferencia de los de esfuerzo plano, sus 

variables básicas son fuerzas en lugar de tensiones de Cauchy. Los elementos de lámina plana 

deben cumplir las condiciones relativas a forma y carga que se indican a continuación. 
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Figura 2.44. Características elemento de lámina plana 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Deben ser planos, es decir, las coordenadas de los nodos del elemento deben estar en un 

mismo plano, el plano 𝑥𝑦 del elemento; de lo contrario, deben usarse elementos de cáscara 

curvada. Deben ser delgados, es decir, el espesor 𝑡 debe ser pequeño en relación con las 

dimensiones 𝑏 en el plano del elemento. Las cargas de fuerza 𝐹 pueden actuar en cualquier 

dirección entre perpendicular al plano y dentro del plano. Las cargas de momento 𝑀 deben 

actuar en el plano del elemento. 

Los elementos de lámina plana (flat shell) se caracterizan por lo siguiente: las normales al 

plano del elemento permanecen rectas tras la deformación. El desplazamiento perpendicular 

al plano no varía a lo largo del espesor. 

2.8.2.5.3 Elementos de cáscara curva 

Los elementos de cáscara curvada en DIANA se basan en el enfoque isoparamétrico de sólido 

degenerado, introduciendo dos hipótesis de cáscara: 

Normales rectas (Straight-normals): se asume que las normales permanecen rectas, pero no 

necesariamente ortogonales a la superficie de referencia. Se incluye la deformación cortante 

transversal según la teoría de Mindlin-Reissner. 

Tensión normal nula (Zero-normal-stress): se asume que el componente de tensión normal 

en la dirección normal de la base laminar se anula, 𝜎𝑧𝑧𝑙(𝜉,𝜂,𝑧) = 0. El plano tangente del 

elemento está definido por una base laminar que corresponde a un sistema de coordenadas 

cartesianas locales (𝑥𝑙 , 𝑦𝑙) definido en cada punto de la cáscara, con 𝑥𝑙 y 𝑦𝑙 tangentes al plano 

de la superficie 𝜉, 𝜂 y un eje 𝑧𝑙 perpendicular a ella. 
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Figura 2.45. Características elemento de cáscara curva 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Las deformaciones laminares en el plano 𝜀𝑥𝑥, 𝜀𝑦𝑦, y 𝛾𝑥𝑦 varían linealmente en la dirección 

del espesor. Las deformaciones cortantes transversales 𝛾𝑥𝑧 y 𝛾𝑦𝑧 se imponen constantes a lo 

largo del espesor. Dado que las tensiones y deformaciones cortantes transversales reales 

varían parabólicamente a través del espesor, esas deformaciones cortantes se tratan como una 

deformación constante equivalente sobre un área correspondiente. Se aplica un factor de 

corrección de cortante usando la condición de que una tensión cortante transversal constante 

produzca aproximadamente la misma energía de deformación cortante que la tensión cortante 

real. 

2.8.2.5.3.1 Ejes 

DIANA usa el eje 𝒙̅ para establecer los ejes 𝑥𝑦𝑧 para las rotaciones en los nodos 𝑥̂𝑦̂𝑧̂ para 

las deformaciones y tensiones localmente dentro del elemento. El eje 𝒛 se define siempre 

perpendicular al plano del elemento; a partir de 𝑦 se crea ⊥ 𝑧𝑥̅, finalmente, 𝑥 ⊥ 𝑦𝑧 según la 

regla de la mano derecha. Nótese que los ejes locales predeterminados del elemento son 

totalmente independientes de los ejes globales 𝑋𝑌𝑍 del modelo. 

Figura 2.46. Ejes 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 
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2.8.2.5.3.2 Variables 

a) Desplazamientos 

Figura 2.47. Desplazamientos 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Las variables básicas en los nodos de los elementos de cáscara curvada son las traslaciones 

𝑢𝑋, 𝑢𝑌 y 𝑢𝑍 en las direcciones globales 𝑋𝑌𝑍, y las rotaciones 𝜙𝑥 y 𝜙𝑦 alrededor de los ejes 

locales +𝑥 y +𝑦 en el plano tangente. 

 

𝑢𝑒 =

{
 
 

 
 
𝑢𝑋
𝑢𝑌
𝑢𝑍
𝜙𝑥
𝜙𝑦}
 
 

 
 

 (2.172) 

b) Deformaciones 

Los desplazamientos nodales dan lugar a las deformaciones 𝑑𝑢𝑋, 𝑑𝑢𝑌 y 𝑑𝑢𝑍 de una porción 

infinitesimal 𝑑𝑋 𝑑𝑌. 

Figura 2.48. Traslaciones 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 
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y las deformaciones 𝑑𝜙𝑥̂, 𝑑𝜙𝑦̂ de una porción infinitesimal 𝑑𝑥̂ 𝑑𝑦̂. 

Figura 2.49. Rotaciones 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

A partir de estas deformaciones, DIANA deduce las deformaciones de Green–Lagrange en 

los ejes locales 𝑥̂𝑦̂𝑧̂ según: 

 

𝜀̂ =

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥}
 
 

 
 

= Τ𝜀 ∙

{
 
 

 
 
𝜀𝑋𝑋
𝜀𝑌𝑌
𝜀𝑍𝑍
𝛾𝑋𝑌
𝛾𝑌𝑍
𝛾𝑍𝑋}

 
 

 
 

 (2.173) 

donde Τ𝜀 denota la matriz de transformación de la orientación global 𝑋𝑌𝑍 a la local 𝑥̂𝑦̂𝑧̂, 

donde: 

 
𝜀𝑋𝑋 =

𝜕𝑢𝑋
𝜕𝑋

       𝜀𝑌𝑌 =
𝜕𝑢𝑌
𝜕𝑌

       𝜀𝑍𝑍 =
𝜕𝑢𝑧
𝜕𝑍

 (2.174) 

 
𝛾𝑋𝑌 =

𝜕𝑢𝑋
𝜕𝑌

+
𝜕𝑢𝑌
𝜕𝑋

       𝛾𝑌𝑍 =
𝜕𝑢𝑌
𝜕𝑍

+
𝜕𝑢𝑍
𝜕𝑌

       𝛾𝑍𝑋 =
𝜕𝑢𝑍
𝜕𝑋

+
𝜕𝑢𝑋
𝜕𝑍

 (2.175) 

Estas deformaciones de Green–Lagrange se evalúan en todos los puntos de integración. La 

convención de signos para las deformaciones es: una elongación produce deformación 

positiva, y una curvatura positiva tiene el lado convexo en la dirección +𝑧. 

c) Tensiones 

DIANA puede calcular y reportar dos tipos de tensiones para elementos de cáscara curvada: 

tensiones de Cauchy y momentos y fuerzas generalizados. 

- Cauchy 

A partir de las deformaciones básicas, DIANA obtiene las tensiones de Cauchy en los puntos 

de integración. 
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𝜎 =

{
 
 

 
 

𝜎𝑥𝑥
𝜎𝑦𝑦

𝜎𝑧𝑧 = 0
𝜎𝑥𝑦 = 𝜎𝑦𝑥
𝜎𝑦𝑧 = 𝜎𝑧𝑦
𝜎𝑧𝑥 = 𝜎𝑥𝑧}

 
 

 
 

 (2.176) 

Figura 2.50. Tensiones de Cauchy 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

La Fig. 2.50, muestra estas tensiones en un cubo unitario en su dirección positiva. Nótese que 

la tensión de tracción es positiva. 

- Momentos y fuerzas generalizados 

A partir de las tensiones básicas, DIANA puede obtener los momentos flectores 𝑚 y las 

fuerzas 𝑓. 

 
𝑚 = {

𝑚𝑥𝑥

𝑚𝑦𝑦

𝑚𝑥𝑦 = 𝑚𝑦𝑥

} (2.177) 

 

𝑓 =

{
 
 

 
 

𝑛𝑥𝑥
𝑛𝑦𝑦

𝑛𝑥𝑦 = 𝑛𝑦𝑥
𝑞𝑥𝑧
𝑞𝑦𝑧 }

 
 

 
 

 (2.178) 

La Fig. 2.51, muestra estos momentos y fuerzas sobre la porción infinitesimal 𝑑𝑥̂  𝑑𝑦̂ en su 

dirección positiva. 
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Figura 2.51. Momentos y fuerzas generalizados 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

La convención de signos es que un momento positivo genera tensiones positivas en la cara 

superior, y que una fuerza cortante positiva genera tensiones cortantes positivas. 

2.8.2.5.3.3 Espesor 

El espesor 𝑡 de los elementos de cáscara curvada puede ser uniforme o no uniforme. A esta 

propiedad se le puede asociar una función espacial. Los valores 𝑡1 a 𝑡𝑛 son los espesores 𝑡 

en los nodos respectivos del elemento. 

Figura 2.52. Espesor 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Si solo se especifica un valor (𝑡1), entonces el espesor es uniforme. La variación del espesor 

no uniforme (cónico/ahusado) sobre el área del elemento depende del orden de interpolación 

del elemento: lineal, cuadrático, de tercer orden, etc. 

2.8.2.5.3.4 Elemento CQ40S - cuadrilateral, 8 nodos 

Tipo de elemento CQ40S [Fig. 26.19]: elemento de cáscara curvada isoparamétrico 

cuadrilateral de ocho nodos. 
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Figura 2.53. CQ40S 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

a) Distribución de deformaciones y tensiones en el área del elemento 

Tabla 2.10. Distribución de deformaciones y tensiones en el área del elemento (CQ40S) 

Variables Símbolo Dirección 𝒙 Dirección 𝒚 

Deformación 
𝜀𝑥𝑥 Variación lineal Variación cuadrática 

𝜀𝑦𝑦 Variación cuadrática Variación lineal 

Curvatura 
𝜅𝑥𝑥 Variación lineal Variación cuadrática 

𝜅𝑦𝑦 Variación cuadrática Variación lineal 

Momento 
𝑚𝑥𝑥 Variación lineal Variación cuadrática 

𝑚𝑦𝑦 Variación cuadrática Variación lineal 

Fuerza de membrana 
𝑛𝑥𝑥 Variación lineal Variación cuadrática 

𝑛𝑦𝑦 Variación cuadrática Variación lineal 

Fuerza cortante 
𝑞𝑥𝑧 Variación lineal Variación cuadrática 

𝑞𝑦𝑧 Variación cuadrática Variación lineal 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

 

b) Polinomios: interpolación cuadrática 

Tabla 2.11. Polinomios para CQ40S 

Variables Symbols Polinomios 

Translaciones 𝑢𝑖  (𝜉, 𝜂) 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂 + 𝑎4𝜉
2 + 𝑎5𝜂

2 + 𝑎6𝜉
2𝜂 + 𝑎7𝜉𝜂

2 

Rotaciones 𝜙𝑖 (𝜉, 𝜂) 𝑏0 + 𝑏1𝜉 + 𝑏2𝜂 + 𝑏3𝜉𝜂 + 𝑏4𝜉
2 + 𝑏5𝜂

2 + 𝑏6𝜉
2𝜂 + 𝑏7𝜉𝜂

2 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 
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2.8.2.6 Refuerzos embebidos (embedded reinforcements) 

Las características principales de los refuerzos embebidos son: 

- Los refuerzos se embeben en los elementos estructurales, los llamados elementos 

madre. 

DIANA ignora el espacio/volumen ocupado por una armadura embebida. El elemento 

madre no disminuye ni en rigidez ni en peso. La armadura embebida no contribuye al 

peso (masa) del elemento. 

- Las armaduras embebidas no tienen grados de libertad propios. Por defecto, en 

armaduras embebidas las deformaciones en las armaduras se calculan a partir del 

campo de desplazamientos de los elementos madre. Esto implica adherencia perfecta 

entre la armadura y el material circundante. No obstante, mediante una opción 

adicional de entrada puede especificarse que la armadura no esté adherida a los 

elementos de embebido [Sección 54]. 

- Las armaduras de acero en hormigón pueden presentar pérdidas de anclaje en sus 

extremos. En verificaciones de diseño y en todos los análisis estructurales este efecto 

puede considerarse reduciendo el módulo de Young sobre una cierta longitud al inicio 

y/o al final de las barras o mallas. 

- La técnica de embebido permite que las líneas de la armadura no coincidan con las 

líneas de la malla. Esto permite generar la malla de elementos finitos sin tener que 

anticipar la ubicación de las armaduras. 

- Los puntos de ubicación se determinan automáticamente, ya que DIANA identifica 

los elementos que son intersectados por las armaduras embebidas (los elementos de 

embebido), a lo que llamamos método de discretización elemento por elemento.  

- La contribución de la rigidez de la armadura a la rigidez del elemento madre 

correspondiente se calcula automáticamente. Si para el elemento respectivo se define 

la opción no adherida (not bonded), esa armadura no contribuirá a la matriz de rigidez. 

La opción no adherida puede emplearse para simular el pretensado de cables con 

barras de refuerzo. 
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2.8.2.6.1 Barras de refuerzo en elementos de cáscara curvada 

Las barras de refuerzo pueden embeberse en todos los elementos de cáscara curvada. Los 

elementos de cáscara curvada se verifican automáticamente para el embebido de barras de 

refuerzo especificadas mediante secciones. 

Figura 2.54. Barra embebida en elemento de cáscara curvada 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

Para embeber barras en cáscaras curvadas, DIANA necesita, para cada elemento de cáscara, 

los puntos de ubicación de la partícula embebida en ese elemento. Estos puntos de ubicación 

se generan mediante la discretización de la armadura. 

Excentricidades. Los puntos de ubicación pueden definirse mediante excentricidades en la 

dirección local 𝒛 (espesor), respecto a puntos especificados. Si las excentricidades son cero, 

los puntos de ubicación coinciden con los puntos especificados. 

Hay dos condiciones para que una sección de barra quede embebida en un elemento de 

cáscara curvada: 

1) Debe intersecar uno o dos bordes del elemento, pero ninguno de ellos más de una vez; 

2) Los puntos de ubicación calculados deben quedar dentro del dominio de espesor del 

elemento. 
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Figura 2.55. Excentricidades en elementos de cáscara curvada 

 

Fuente: DIANA Documentation 10.5 (DIANA FEA BV, 2021). 

2.8.3 Modelado de fisuras 

Los dos enfoques principales son la fisuración discreta y la fisuración distribuida (smeared). 

La fisuración discreta se modela directamente como una discontinuidad entre dos elementos, 

usando una interfaz. El modelo de material define entonces cómo se comporta la fisura. En 

cambio, con la fisuración distribuida, el material fisurado se modela como un medio continuo 

y anisótropo. Se recomienda un modelo discreto cuando se conoce dónde aparecerán las 

fisuras. De este modo se puede seguir el comportamiento de apertura, deslizamiento y cierre 

de las fisuras especificadas. La fisuración distribuida, por otro lado, se usa cuando no se sabe 

con exactitud dónde ocurrirán las fisuras. La fisuración se describe mediante relaciones 

tensión–(deformación de fisura) para fisuración distribuida.  

La hipótesis de fisuración distribuida puede emplearse tanto para rotura a compresión como 

para fallo a cortante, y es el método recomendado para el modelado de fisuras, donde la 

variable principal es la deformación de fisura 𝜀𝑐𝑟. DIANA descompone la respuesta en una 

parte elástico-lineal y una parte asociada a la fisura. Esa parte “de fisura” se expresa con 

componentes en un sistema local ligado a la grieta: normal 𝑛 (apertura, modo I) y tangencial 

𝑡 (deslizamiento, modos II/III). Teniendo la deformación de fisura en la dirección normal a 

la grieta en un punto de integración del elemento denominado 𝜀𝑐𝑟,𝑛𝑛 o Eknn. 
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Figura 2.56. Modos de fractura en mecánica de la fractura 

 

Fuente: Extraido de Numerisk simulering av ikke-lineær oppførsel av armert betong 

(Hallberg, 2014) 

2.8.3.1 Ancho de banda de fisura para fisuración distribuida 

Uno de los retos de la fisuración distribuida es la sensibilidad a la malla a nivel de material. 

El tamaño del elemento determina la energía disipada con la fisura. Una solución a este 

problema es introducir el ancho de banda de fisura, ℎ𝑐𝑟. Este es un parámetro común en los 

modelos constitutivos con enfoque de fisura distribuida y puede describirse como una escala 

de longitud usada para normalizar el efecto del tamaño del elemento en la redistribución de 

energía. El ancho de banda ℎ𝑐𝑟, también conocido como longitud equivalente ℎ𝑒𝑞, debe 

determinarse mediante un procedimiento automático. DIANA ofrece dos métodos 

automáticos: el método basado en el elemento de Rots y el método de proyección de 

Govindjee. Mientras que el método de Rots considera la forma y otras propiedades del 

elemento, el método de Govindjee también tiene en cuenta la dirección de la fisura. Por ello, 

se prefiere el método de Govindjee. La Figura 2.57 muestra ejemplos de anchos de banda 

cuando se considera la orientación de la fisura. Para un elemento cuadrilátero cuadrático de 

forma cuadrada, el ancho estimado es: 

 ℎ𝑐𝑟 = √2ℎ. (2.179) 

Figura 2.57. Anchos de banda de fisura cuando se considera la orientación de la fisura 

 

Fuente: Extraído de Guidelines for Nonlinear Finite Element Analysis of Concrete 

Structures (Hendriks & Roosen, 2019). 
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Algunas implementaciones ofrecen ancho ponderado (Weighted crack width, CRKWDT) 

para reducir el sesgo de alineación donde el ancho de fisura local se evalúa como: 

 𝑤 = (∑𝜀𝑐𝑟) ℎ𝑐𝑟 (2.180) 

2.8.3.2 Fisuración basada en deformación total 

DIANA ofrece varios modelos para fisuración distribuida. Rijkswaterstaat recomienda 

utilizar un modelo de fisuración basado en la deformación total (Total Strain Crack Model, 

TSCM). Este modelo describe la tensión como función de la deformación. El método se basa 

en la teoría del campo de compresión modificada presentada por Vecchio & Collins y su 

extensión 3D por Selby & Vecchio. El TSCM se usa comúnmente por su robustez. La entrada 

para el TSCM consta de dos partes:  

Propiedades básicas del material (como el coeficiente de Poisson y el módulo de Young).  

Definiciones del comportamiento del material a tracción, compresión y cortante. También 

pueden aplicarse modelos de influencia lateral para describir el efecto de la fisuración lateral 

y el confinamiento sobre el comportamiento del material. 

2.8.3.2.1 Modelos de fisuras fijas y rotantes 

Existen tres variantes del TSCM: fijo, rotante y rotante a fijo. En esta última variante, una 

deformación umbral decide cuándo pasar de un modelo rotante a uno fijo. En todas las 

variantes, la tensión se evalúa en las direcciones definidas por las direcciones de fisura. Esas 

direcciones son fijas o rotan continuamente con las direcciones principales del vector de 

deformación. 

El modelo de fisuras rotantes es un procedimiento computacional con un concepto coaxial 

tensión–deformación. El plano de fisura rota para seguir las direcciones principales  

(Figura 2.58). El plano principal siempre coincidirá con el plano de fisura, por lo que no 

habrá componente cortante. 
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Figura 2.58. Tensiones en concreto fisurado. 

 

Fuente: Extraído de The modified compression field theory for reinforced concrete 

elements subjected to shear (Vecchio & Collins, 1986) 

El modelo de fisuras fijas tiene un concepto tensión-deformación fijo. Las relaciones tensión-

deformación se evalúan en un sistema de coordenadas fijo, establecido en el momento de la 

fisuración. Si se usa un modelo de fisuras fijas, debe combinarse con un modelo adecuado de 

retención al corte. 

Según Rijkswaterstaat, debe usarse un modelo rotante. El argumento es que un modelo 

rotante dará una cota inferior de la carga de fallo y sufrirá menos de bloqueo espurio de 

tensiones. El bloqueo de tensiones es un error que puede ocurrir en un análisis por elementos 

finitos con fisuración distribuida: como las fisuras se representan como un efecto distribuido 

y no como una discontinuidad geométrica real, la reducción de tensiones en un punto de 

integración fisurado no provoca relajación en los elementos vecinos. Por tanto, la 

deformación del elemento fisurado produce tensiones espurias “bloqueadas” alrededor de las 

fisuras localizadas, haciendo que los elementos parezcan más rígidos de lo que son. 

La Figura 2.59, muestra un ejemplo de este comportamiento. 
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Figura 2.59. Bloqueo severo de tensiones alrededor de una fisura fija. 

 

Fuente: Extraído de Towards a uniform and optimal approach for safe NLFEA  

of reinforced concrete beams (de Putter, 2020) 

De acuerdo con de Putter et al., la variante más adecuada del TSCM depende del modo de 

fallo. Un modelo rotante funciona bien para fallos relativamente dúctiles en vigas con 

estribos, mientras que un modelo fijo funciona mejor para fallos más frágiles en vigas sin 

estribos. 
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2.9 Ensayos de laboratorio 

2.9.1 Análisis granulométrico y módulo de finura de los agregados (ASTM C136) 

Este método de ensayo se utiliza para determinar la distribución por tamaño de las partículas 

de los áridos finos y gruesos mediante el uso de tamices. 

Algunas especificaciones para los áridos, que tienen referencia con este método de ensayo, 

contienen requerimientos granulométricos que incluyen ambas fracciones, áridos finos y 

gruesos. Se incluyen las instrucciones para el análisis granulométrico de estos árido. 

Este método de ensayo se usa principalmente para determinar la granulometría de los 

materiales propuestos para ser utilizados como áridos o que están siendo empleados como 

áridos. Los resultados se usan para determinar la concordancia de la distribución del tamaño 

de las partículas con los requerimientos de las especificaciones aplicables y para proporcionar 

la información necesaria para controlar la producción de diversos productos de los áridos y 

de mezclas que contengan áridos. La información también puede ser de utilidad para 

establecer relaciones concernientes a la porosidad y al macizo. 

2.9.1.1 Módulo de finura 

El módulo de finura (FM) del agregado fino se obtiene, conforme a la norma ASTM C 125 se 

calcula sumando los porcentajes retenidos acumulados en los tamices estándar (nombrados 

más abajo) y dividiendo la suma entre 100. Cambios significativos en la granulometría de la 

arena tienen una repercusión importante en la demanda de agua y, en consecuencia, en la 

trabajabilidad del hormigón, por lo que si hubiese una variación significativa en la 

granulometría de la arena deben hacerse ajustes en el contenido de cemento y agua para 

conservar la resistencia del hormigón. Para no tener que recalcular la dosificación del 

hormigón el módulo de finura del agregado fino, entre envíos sucesivos, no debe variar en 

más de ±0.2. 

En el agregado fino hay dos elementos que deben ser considerados, por un lado, el módulo 

de finura (MF), y por el otro la continuidad en los tamaños, ya que algunas arenas pueden 

tener módulos de finuras aceptables (entre 2.2 y 3.1) y carecer de alguna clase 

granulométrica. Si consideramos únicamente el módulo de finura, pueden obtenerse dos 

condiciones desfavorables: una de ellas existe cuando el módulo de finura es mayor a 3.1 

(arena gruesa), en donde puede ocurrir que las mezclas sean poco trabajables, faltando 

cohesión entre sus componentes y requiriendo mayores consumos de cemento para mejorar 
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su trabajabilidad; la otra condición es cuando el módulo de finura es menor a 2.2 (arena fina), 

en este caso puede ocurrir que las mezclas sean pastosas y que haya mayor consumo de 

cemento y agua para una resistencia determinada, y también una mayor probabilidad que 

ocurran agrietamientos de tipo contracción por secado. 

2.9.1.1.1 Cálculo de módulo de finura 

 
𝑀𝐹 =

% 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑑𝑜 𝑒𝑛 𝑙𝑜𝑠 𝑡𝑎𝑚𝑖𝑐𝑒𝑠

100
 (2.181) 

2.9.2 Densidad aparente ("peso unitario”) e índice de huecos en los agregados  

(ASTM C29) 

Este método de ensayo permite determinar la densidad aparente ("peso unitario") de un 

agregado tanto en su condición compactada o suelta y calcular los huecos entre las partículas 

en los agregados finos, gruesos o mezclas de agregados, basada en la misma determinación. 

Este método se aplica a los agregados que no exceden los 125 𝑚𝑚 de tamaño máximo 

nominal. 

Densidad aparente: de un agregado, la masa de una unidad de volumen de los agregados a 

granel, en la que el volumen incluye el volumen de las partículas individuales y el volumen 

de los huecos de aire entre las partículas.  Se expresa en 𝑘𝑔/𝑚3. 

Peso unitario: peso (masa) por unidad de volumen.  (Término desaprobado - usar de 

preferencia densidad aparente.) 

Estas definiciones dependen de los siguientes parámetros principales: 

▪ La gravedad especifica de los agregados. 

▪ El tamaño de los granos, descritos por la curva granulométrica. 

▪ La forma y textura de los granos. 

▪ El grado de compactación, es la manera en la cual se realiza el acomodo. 

▪ El efecto pared ejercido por el recipiente donde se realiza la prueba. 

Se sabe que, para medir estos valores, el agregado debe estar en condición seca, pues tendrá 

el efecto de incrementar el valor del peso unitario del agregado grueso y generará el efecto 

de abundamiento del agregado fino.  (Barriga, 2007). 

2.9.3 Peso específico y absorción del agregado fino (ASTM C 128) 

Este método de ensayo determina la densidad promedio de una cantidad de partículas de 

áridos finos, la densidad relativa y la absorción de los áridos finos. Dependiendo del 

procedimiento usado, la densidad en kg/m3 es expresada como secada al horno, saturada 
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superficialmente seca o como densidad aparente. La densidad y la densidad relativa se 

determinan después de secar los áridos. La porosidad de los agregados, su impermeabilidad 

y absorción influyen en las propiedades como la adherencia entre el agregado y los materiales 

cementicios, así como la estabilidad química y la resistencia a la abrasión.(Barriga, 2007) 

2.9.4 Dosificación de mortero 

Para la dosificación de mortero en peso, se parte de la relación de componentes: 

 𝒄 ∶ 𝒂 ∶ 𝒘 (2.182) 

Donde: 

𝑐: Cantidad o partes de conglomerante. 

𝑎: Cantidad o partes de arena. 

𝑤: Cantidad o partes de agua. 

Sabiendo que la arena es un conjunto de partículas macroscópicas sólidas, esta presentara un 

volumen de huecos existentes frente a su volumen total o de conjunto. 

Figura 2.60. Volúmen de conjunto en material granular 

 

Fuente: Materiales de construcción (Universidad Politécnica de Madrid, s. f.). 

Nota 1. Se muestran el volumen total de la materia granular, volumen relativo de 

granos más volumen de huecos entre granos. 

Nota 2. 𝑃𝑑 = Peso seco del material granular. 

Para obtener un determinado volumen de mortero se busca que el volumen existente de 

vacíos en la arena correspondiente al espacio no ocupado por los sólidos, sean rellenados por 

la pasta que resulta de la mezcla entre el cemento y el agua. 
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Por lo tanto, se asume que el volumen de mortero a diseñar (𝑉𝑚) será igual al volumen de 

arena (𝑉𝑎). 

 𝑉𝑚 = 𝑉𝑎 (2.183) 

El peso de la arena (𝑃𝑎) será igual al producto del volumen de arena con el peso unitario 

compacto de la arena (𝑃𝑈𝑐). 

 𝑃𝑎 = 𝑉𝑎 · 𝑃𝑈𝑐 (2.184) 

Empleando la relación de componentes planteada en (2.173), el peso del cemento (𝑃𝑐), tendrá 

la siguiente expresión: 

 
𝑃𝑐 =

𝑃𝑎
𝑎
· 𝑐 (2.185) 

Utilizando la relación de componentes, la fórmula para determinar el peso del agua (𝑃𝑎) será 

la siguiente: 

 
𝑃𝑤 =

𝑃𝑎
𝑎
· 𝑤 (2.186) 

Se deberá verificar que los valores obtenidos cumplan con el volumen de mortero a diseñar 

y no superen el mismo. Es decir que el volumen de la pasta puede ser superior o inferior al 

volumen de poros disponibles en la arena, como se muestra en la figura 2.44: 

Figura 2.61. Suposiciones del volumen de pasta en el volumen de arena 

 

Fuente: Materiales de construcción (Universidad Politécnica de Madrid, s. f.). 

El escenario buscado es, que el volumen de la pasta sea igual al volumen de poros disponibles 

en la arena. 
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Para realizar esta comprobación de los valores obtenidos, se tiene que comparar el volumen 

de vacíos de la arena (𝑉𝑣𝑎) con el volumen de pasta (𝑉𝑝𝑎𝑠𝑡𝑎), expresados de la siguiente forma: 

 
𝑉𝑣𝑎 = 𝑉𝑎 −

𝑃𝑎
𝛾𝑎

 (2.187) 

 
𝑉𝑝𝑎𝑠𝑡𝑎 =

𝑃𝑐
𝛾𝑐
+
𝑃𝑤
𝛾𝑤

 (2.188) 

Donde: 

𝛾𝑎: Peso específico aparente de la arena 

𝛾𝑎: Peso específico del cemento 

𝛾𝑎: Peso específico del agua 

Se debe cumplir: 

𝑉𝑣𝑎 = 𝑉𝑝𝑎𝑠𝑡𝑎 ⟹ Los valores son correctos. 

𝑉𝑣𝑎 ≠ 𝑉𝑝𝑎𝑠𝑡𝑎 ⟹ Los valores se deben corregir. 

En caso de realizar la corrección de estos valores, se tiene que calcular el volumen de mortero 

que se obtiene (𝑉𝑚𝑜), el cual será la suma del volumen de arena y el volumen de pasta menos 

el volumen de vacíos de la arena, siendo este último rellenado en parte por la pasta, por lo 

tanto, se tiene que: 

 𝑉𝑚𝑜 = 𝑉𝑎 + 𝑉𝑝𝑎𝑠𝑡𝑎 − 𝑉𝑣𝑎 (2.189) 

Con el volumen de mortero obtenido, se calcularán los pesos corregidos de cada componente: 

 
𝑃′𝑐 =

𝑉𝑚
𝑉𝑚𝑜

· 𝑃𝑐 (2.190) 

 
𝑃′𝑎 =

𝑉𝑚
𝑉𝑚𝑜

· 𝑃𝑎 (2.191) 

 
𝑃′𝑤 =

𝑉𝑚
𝑉𝑚𝑜

· 𝑃𝑤 (2.192) 

Con los nuevos valores de componentes, se debe realizar la comprobación entre el volumen 

de mortero obtenido con los valores corregidos y el volumen de mortero a diseñar, se tiene 

que: 

 
𝑉′𝑚𝑜 =

𝑃′𝑎
𝐺𝑠

+
𝑃′𝑐
𝛾𝑐
+
𝑃′𝑤
𝛾𝑤

 (2.193) 

Entonces: 

 𝑉′𝑚𝑜 = 𝑉𝑚 (2.194) 
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2.9.5 Ensayo de resistencia a la compresión del hormigón (ASTM C 39) 

Este ensayo permite la determinación de la resistencia a la compresión de los especímenes 

cilíndricos de hormigones moldeados en laboratorio o en campo obtenido por medio de la 

extracción de núcleos. Se limita a hormigones con peso unitario mayor que 800 kg/m3. 

Se necesita ser cuidadoso en la interpretación del significado para determinar la resistencia a 

la compresión por este método de ensayo, porque la resistencia no es una propiedad 

fundamental o intrínseca del hormigón hecho con materiales dados. Los valores obtenidos 

dependerán del tamaño y forma del espécimen, revoltura, procedimiento de mezclado, los 

métodos de muestreo, moldeo, fabricación y edad, temperatura y condiciones de humedad 

durante el curado. 

2.9.5.1 Tipos de fallas en cilindros sometidos a compresión 

Según la norma ASTM C39 hay seis tipos de fallas que dependen de muchos factores como 

lo son: la formación de los conos, confinamiento de las partículas, nivelación de los 

cabezales, entre otros. En la Figura 2.45 se muestran los tipos de fallas que se presentaron en 

los ensayos. 

Figura 2.62. Tipos de fracturas en ensayos a compresión 

 

 

Fuente: Resistencia a la Compresión de Especímenes Cilíndricos de Hormigón 

(ASTM C39/C39M-18). 

2.9.6 Ensayo de resistencia a la flexión del ferrocemento (ASTM C78):  

La norma ACI 549-18 (Guide to Ferrocement), en su sección 6.1.2, define el ensayo de 

flexión para vigas de ferrocemento como la prueba en la que un elemento prismático, 

simplemente apoyado, es sometido a carga en sus tercios medios siguiendo el procedimiento 

descrito en la ASTM C78, “Método de prueba estándar para la resistencia a la flexión del 
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concreto”. Este protocolo experimental tiene como propósito evaluar la resistencia a flexión 

de la viga, considerando la interacción entre la matriz de mortero y el sistema de refuerzo. 

Durante la aplicación de cargas crecientes, se registra la curva carga–deflexión, lo que 

permite identificar el comportamiento del elemento junto a su capacidad última de carga 

antes del colapso. Adicionalmente, el método facilita la cuantificación de la deformación 

residual tras la descarga, con ello, la ACI 549-18 (Guide to Ferrocement) asegura que los 

resultados obtenidos sean comparables y reproducibles.  

Figura 2.63. Esquema del ensayo a flexión en vigas 

 

Fuente: Método de carga a tercios de la luz libre (ASTM C78, 2002) 

Diagrama de momento: Zona constante de momento flector.  
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Diagrama de cortante: Fuerza cortante en apoyo. 
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 CAPÍTULO III 

DESARROLLO DE LA INVESTIGACIÓN 

3.1 Recolección de datos  

Para la elaboración de la dosificación de las probetas de hormigón, se debe realizar ensayos 

a los agregados: 

3.1.1 Procedencia de los agregados  

Los agregados utilizados en este estudio se recolectaron de la Chancadora del Temporal la 

cual extrae el material del río Guadalquivir. 

Figura 3.1. Planta chancadora de áridos el Temporal. 

 

Fuente: Elaboración propia con el uso del software Google Earth. 

 

3.1.2 Análisis granulométrico del agregado fino 

Se realiza el ensayo haciendo pasar el agregado fino por los tamices de la norma ASTM C-136, 

con el objeto de verificar si es apto para la elaboración de mortero. 
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Tabla 3.1. Granulometría del agregado fino 

Peso Total (𝒈𝒓) 1000  

Tamices 
Tamaño 

(𝒎𝒎) 

Peso Ret. 

(𝒈𝒓) 

Ret. Acum. 

(𝒈𝒓) 
% Ret. 

% Que Pasa 

del Total 

Especificación 

ASTM C-33 

3/8" 9.52 0.00 0.00 0.00 100 100 100 

N°4 4.75 31.45 31.45 3.15 96.86 95 100 

N°8 2.36 155.37 186.82 18.68 81.32 80 100 

N°16 1.18 148.92 335.73 33.57 66.43 50 85 

N°30 0.6 163.83 499.57 49.96 50.04 25 60 

N°50 0.3 262.75 762.32 76.23 23.77 10 30 

N°100 0.15 196.60 958.92 95.89 4.11 2 10 

Base - 41.06 999.98 100.00 0.00 - - 

Suma 999.98  

Perdidas 0.02 

MF 2.77 

Fuente: Elaboración propia. 

Figura 3.2. Curva granulométrica del agregado fino 

 

Fuente: Elaboración propia. 
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3.1.3 Densidad Aparente “peso unitario” del agregado fino. 

Este tipo de ensayo permite calcular los huecos entre las partículas del agregado fino tanto 

en estado suelto como compactado según ASTM C-29. Los resultados son mostrados en la 

Tabla 3.2 y Tabla 3.3. 

a) Peso unitario suelto 

Tabla 3.2. Peso unitario suelto del agregado fino 

Muestra 

Peso 

Recipiente 

(𝒈𝒓) 

Volumen 

Recipiente 

(𝒄𝒎𝟑) 

Peso Recipiente 

+ Muestra 

Suelta 

(𝒈𝒓) 

Peso 

muestra 

Suelta 

(𝒈𝒓) 

Peso 

Unitario 

Suelto 

(𝒈𝒓 𝒄𝒎𝟑⁄ ) 

1 2610.00 2959.47 7390.00 4780.00 1.62 

2 2610.00 2959.47 7395.00 4785.00 1.62 

3 2610.00 2959.47 7370.00 4760.00 1.61 

Promedio 1.61 

Fuente: Elaboración propia. 

b) Peso unitario compactado  

Tabla 3.3. Peso unitario compactado del agregado fino 

Muestra 

Peso 

Recipiente 

(𝒈𝒓) 

Volumen 

Recipiente 

(𝒄𝒎𝟑) 

Peso Recipiente + 

Muestra 

Compactada 

(𝒈𝒓) 

Peso 

muestra 

Compactada 

(𝒈𝒓) 

Peso 

Unitario 

Compactado 

(𝒈𝒓 𝒄𝒎𝟑⁄ ) 

1 2610.00 2959.47 7600.00 4990.00 1.69 

2 2610.00 2959.47 7650.00 5040.00 1.70 

3 2610.00 2959.47 7695.00 5085.00 1.72 

Promedio 1.70 

Fuente: Elaboración propia. 
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3.1.4 Peso específico y absorción del agregado fino.  

Con este tipo de ensayo se determinará la densidad relativa y la absorción del agregado fino. 

Tabla 3.4. Peso específico y absorción del agregado fino 

Muestra 

 

Peso 

Muestra 

 

 

(𝒈𝒓) 

 

Peso 

de 

Matraz 

 

(𝒈𝒓) 

Peso 

Muestra+ 

Matraz 

+Agua 

 

(𝒈𝒓) 

Peso del  

Agua 

Agregado 

Al Matraz 

𝑾 

(𝒈𝒓) 

Peso 

Muestra 

Secada 

 

𝑨 

(𝒈𝒓) 

Vol. 

Del 

Matraz 

 

𝑽 

(𝒄𝒎𝟑) 

 

Peso 

Especifico 

a Granel 

 

(𝒈𝒓 𝒄𝒎𝟑⁄ ) 

Peso 

Especifico 

Saturado 

con Sup. 

Seca 

(𝒈𝒓 𝒄𝒎𝟑⁄ ) 

 

Peso 

Especifico 

Aparente 

 

(𝒈𝒓 𝒄𝒎𝟑⁄ ) 

% De 

Abs. 

1 500 235.5 1019.18 283.68 486.6 483.14 2.44 2.51 2.62 2.68 

2 500 236.7 1034.30 297.60 487.2 493.85 2.48 2.55 2.66 2.56 

3 500 177.7 989.90 312.20 485.4 509.07 2.47 2.54 2.66 2.92 

Promedio 2.46 2.53 2.64 2.72 

Fuente: Elaboración propia. 

Nota: Para el diseño de la mezcla de mortero se usará el valor del peso específico aparente del agregado fino. 

La norma ASTM C-128 da como resultado tres valores de “peso específico”: 

a) Peso específico a granel: Es el peso del sólido del agregado incluyendo los vacíos entre partículas. 

b) Peso específico saturado con superficie seca: Incluye el volumen de los poros cerrados y el agua que éstos pueden retener, pero 

excluye el agua en la superficie. 

c) Peso específico aparente: Mide el peso del sólido del agregado, sin considerar los poros cerrados ni abiertos. 
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3.1.5 Determinación de los materiales para 𝟏 𝒄𝒎𝟑 de mortero 

La ejecución de los ensayos previos a la dosificación ratifica que los agregados son aptos 

para usarse en la dosificación del hormigón, al cumplir con los parámetros y valores 

especificados en las normas correspondientes. Con esto se procede a determinar la 

dosificación para un mortero con la siguiente relación de componentes: 

Tabla 3.5. Relación de componentes para la dosificación de mortero 

Cemento 

𝒄 

Arena 

𝒂 

Agua 

𝒘 

1 2 0.5 

Fuente: Elaboración propia. 

Los datos necesarios para realizar la dosificación fueron determinados con los ensayos 

previos, esto se muestran a continuación: 

Peso específico del cemento (𝛾𝑐):    3.03 𝑔𝑟 𝑐𝑚3⁄  

Peso unitario compactado de la arena (𝑃𝑈𝑐): 1.70 𝑔𝑟 𝑐𝑚3⁄  

Peso específico de la arena (𝛾𝑎):   2.64 𝑔𝑟 𝑐𝑚3⁄  

Peso específico del agua (𝛾𝑤):   1.00 𝑔𝑟 𝑐𝑚3⁄  

Se parte con la suposición que el volumen de mortero a diseñar (𝑉𝑚) será igual al volumen 

de arena (𝑉𝑎). 

𝑉𝑚 = 𝑉𝑎 = 1 𝑐𝑚3 

El peso de la arena (𝑃𝑎) será igual al producto del volumen de arena con el peso unitario 

compacto de la arena (𝑃𝑈𝑐). 

𝑃𝑎 = 1 · 1.70 = 1.70 𝑔𝑟 

Empleando la relación de componentes establecida, el peso del cemento (𝑃𝑐), será: 

𝑃𝑐 =
1.70

2
· 1 = 0.85 𝑔𝑟 

Utilizando la relación de componentes, la fórmula para determinar el peso del agua (𝑃𝑎) será 

la siguiente: 

𝑃𝑤 =
1.70

2
· 0.5 = 0.43 𝑔𝑟 

Se verifica que los valores obtenidos cumplan con el volumen de mortero a diseñar y no 

superen el mismo.  
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Para realizar esta comprobación de los valores obtenidos, se tiene que comparar el volumen 

de vacíos de la arena (𝑉𝑣𝑎) con el volumen de pasta (𝑉𝑝𝑎𝑠𝑡𝑎), expresados de la siguiente forma: 

𝑉𝑣𝑎 = 1 −
1.70

2.64
= 0.36 𝑐𝑚3 

𝑉𝑝𝑎𝑠𝑡𝑎 =
0.85

3.03
+
0.43

1.00
= 0.71 𝑐𝑚3 

Donde: 

[𝑉𝑣𝑎 = 0.36 𝑐𝑚3]  ≠  [𝑉𝑝𝑎𝑠𝑡𝑎 = 0.71 𝑐𝑚3] ⟹ Los valores se deben corregir. 

Para realizar la corrección de estos valores, se tiene que calcular el volumen de mortero que 

se obtiene (𝑉𝑚𝑜), el cual será la suma del volumen de arena y el volumen de pasta menos el 

volumen de vacíos de la arena, siendo este último rellenado en parte por la pasta, por lo tanto, 

se tiene que: 

𝑉𝑚𝑜 = 1 + 0.71 − 0.36 = 1.35 𝑐𝑚3 

Con el volumen de mortero obtenido, se calcularán los pesos corregidos de cada componente: 

𝑃′𝑐 =
1

1.35
· 0.85 = 0.63 𝑔𝑟 

𝑃′𝑎 =
1

1.35
· 1.70 = 1.26 𝑔𝑟 

𝑃′𝑤 =
1

1.35
· 0.43 = 0.31 𝑔𝑟 

Con los nuevos valores de componentes, se debe realizar la comprobación entre el volumen 

de mortero obtenido con los valores corregidos y el volumen de mortero a diseñar, se tiene 

que: 

𝑉′𝑚𝑜 =
1.26

2.64
+
0.63

3.03
+
0.31

1.00
= 1 𝑐𝑚3 

Entonces: 

𝑉′𝑚𝑜 = 𝑉𝑚 

[𝑉′𝑚𝑜 = 1 𝑐𝑚
3] = [𝑉𝑚 = 1 𝑐𝑚3] 
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Con estas cantidades determinadas para 1 𝑐𝑚3 de mortero, se tienen la siguiente tabla: 

Tabla 3.6. Cantidad de materiales necesarios para 𝟏 𝒄𝒎𝟑 de mortero 

Componente Valor Unidad Proporción 

Cemento 0.63 𝑔𝑟 1 

Agregado fino seco 1.26 𝑔𝑟 2 

Agua de diseño 0.31 𝑔𝑟 0.5 

Fuente: Elaboración propia. 

Con las cantidades en peso de los componentes, se obtienen los siguientes rendimientos: 

Tabla 3.7. Rendimiento de materiales para 𝟏 𝒎𝟑 de mortero 

Componente Valor Unidad 

Cemento 630 𝑘𝑔 𝑚3⁄  

Agregado fino seco 0.48 𝑚3 𝑚3⁄  

Agua de diseño 0.31 𝑚3 𝑚3⁄  

Fuente: Elaboración propia. 
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3.1.6 Informe de rotura a compresión de probetas 

Los resultados obtenidos del ensayo ASTM C39, de rotura a compresión a las distintas probetas elaboradas se presentan en las siguientes 

tablas: 

Tabla 3.8. Resistencia de esfuerzo a compresión en probetas de mortero 

Muestra 

 

Edad 

 

(𝒅𝒊𝒂𝒔) 

 

∅ 

 
(𝒄𝒎) 

 

h 

 

(𝒄𝒎) 

 

Sección 

 

(𝒄𝒎𝟐) 

 

V 

 

(𝒎𝟑) 

 

Slump 

 

(𝒄𝒎) 

 

Peso 

 

(𝒌𝒈) 

 

Densidad 

 

(𝒌𝒈 𝒎𝟑⁄ ) 

Densidad 

Promedio 

 

(𝒌𝒈 𝒎𝟑⁄ ) 

 

Lectura 

 

(𝒌𝑵) 

Resistencia 

a 

Compresión 

(𝑴𝑷𝒂) 

Tipo de 

Ruptura 

Promedio de 

Resistencia a 

Compresión 

(𝑴𝑷𝒂) 

1 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 

2155.08 

219.40 29.69 Tipo 2 

31.08 

2 28 9.7 19.5 73.90 0.0014 17.60 3.11 2158.20 241.30 32.65 Tipo 3 

3 28 9.7 19.5 73.90 0.0014 17.60 3.11 2158.20 233.10 31.54 Tipo 3 

4 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 235.50 31.87 Tipo 3 

5 28 9.7 19.5 73.90 0.0014 17.60 3.09 2140.85 220.30 29.81 Tipo 3 

6 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 223.60 30.26 Tipo 3 

7 28 9.7 19.5 73.90 0.0014 17.60 3.11 2158.20 230.40 31.18 Tipo 2 

8 28 9.7 19.5 73.90 0.0014 17.60 3.14 2179.02 231.20 31.29 Tipo 3 

9 28 9.7 19.5 73.90 0.0014 17.60 3.10 2151.26 231.70 31.35 Tipo 3 

10 28 9.7 19.5 73.90 0.0014 17.60 3.10 2147.79 231.40 31.31 Tipo 3 

11 28 9.7 19.5 73.90 0.0014 17.60 3.09 2140.85 234.30 31.71 Tipo 3 

12 28 9.7 19.5 73.90 0.0014 17.60 3.10 2151.26 219.90 29.76 Tipo 3 

13 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 221.70 30.01 Tipo 3 

14 28 9.7 19.5 73.90 0.0014 17.60 3.07 2130.45 230.60 31.21 Tipo 3 

15 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 220.00 29.77 Tipo 3 

16 28 9.7 19.5 73.90 0.0014 17.60 3.09 2140.85 221.10 29.92 Tipo 3 

17 28 9.7 19.5 73.90 0.0014 17.60 3.10 2151.26 219.50 29.70 Tipo 2 
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Muestra 

 

Edad 

 

(𝒅𝒊𝒂𝒔) 

 

∅ 

 
(𝒄𝒎) 

 

h 

 

(𝒄𝒎) 

 

Sección 

 

(𝒄𝒎𝟐) 

 

V 

 

(𝒎𝟑) 

 

Slump 

 

(𝒄𝒎) 

 

Peso 

 

(𝒌𝒈) 

 

Densidad 

 

(𝒌𝒈 𝒎𝟑⁄ ) 

Densidad 

Promedio 

 

(𝒌𝒈 𝒎𝟑⁄ ) 

 

Lectura 

 

(𝒌𝑵) 

Resistencia 

a 

Compresión 

(𝑴𝑷𝒂) 

Tipo de 

Ruptura 

Promedio de 

Resistencia a 

Compresión 

(𝑴𝑷𝒂) 

18 28 9.7 19.5 73.90 0.0014 17.60 3.07 2126.98 

2155.08 

220.40 29.82 Tipo 3 

31.08 

19 28 9.7 19.5 73.90 0.0014 17.60 3.11 2158.20 227.90 30.84 Tipo 2 

20 28 9.7 19.5 73.90 0.0014 17.60 3.08 2133.92 217.70 29.46 Tipo 5 

21 28 9.7 19.5 73.90 0.0014 17.60 3.09 2144.32 238.40 32.26 Tipo 2 

22 28 9.7 19.5 73.90 0.0014 17.60 3.10 2151.26 242.90 32.87 Tipo 2 

23 28 9.7 19.5 73.90 0.0014 17.60 3.10 2147.79 245.90 33.28 Tipo 2 

24 28 9.7 19.5 73.90 0.0014 17.60 3.08 2137.38 231.00 31.26 Tipo 3 

25 28 9.7 19.5 73.90 0.0014 17.60 3.07 2130.45 233.50 31.60 Tipo 3 

26 28 9.7 19.5 73.90 0.0014 17.60 3.09 2144.32 221.10 29.92 Tipo 3 

27 28 9.7 19.5 73.90 0.0014 17.60 3.13 2168.61 245.80 33.26 Tipo 3 

28 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 233.10 31.54 Tipo 3 

29 28 9.7 19.5 73.90 0.0014 17.60 3.11 2154.73 245.80 33.26 Tipo 3 

30 28 9.7 19.5 73.90 0.0014 17.60 3.34 2317.81 221.30 29.95 Tipo 3 

Cálculo de la media muestral; 𝒇𝒄𝒎 (𝑴𝑷𝒂) 31.08      

Cálculo de la desviación estándar; 𝒔 (𝑴𝑷𝒂) 1.21      

Cálculo del coeficiente de variación; 𝑪𝑶𝑽 (%) 3.89      

Factor estadístico para un nivel de confianza del 95%; 𝒌 1.645      

Determinación del valor característico; 𝒇𝒄𝒓 = 𝒇𝒄𝒎 ∙ 𝒔 ∙ 𝒌 (𝑴𝑷𝒂) 29.09      

Resistencia característica a compresión adoptada; 𝒇′𝒄 (𝑴𝑷𝒂) 28.00      

Fuente: Elaboración propia. 
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3.2 Planteamiento de la viga de ferrocemento con sección transversal I  

Para el desarrollo de la investigación se plantea la siguiente sección trasversal, siguiendo los 

lineamientos establecidos para secciones de ferrocemento en el Capítulo II. 

Figura 3.3. Vista transversal sección I de ferrocemento 

 

Fuente: Elaboración propia con el software Revit. 

Con la sección transversal definida, se define la longitud del espécimen a ensayar, con la 

limitación que la distancia máxima entre apoyos de la prensa universal es de 900 𝑚𝑚, por 

lo cual se toma una longitud igual a 1000 𝑚𝑚, para los especímenes de ferrocemento. 
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Figura 3.4. Vista isométrica viga de ferrocemento con sección I 

 

Fuente: Elaboración propia con el software Revit. 

Con la geometría y la distribución del refuerzo ya definidas, se obtienen los valores del 

volumen del sistema de refuerzo (ver Anexo 2) y el volumen del compuesto: 

𝑉𝑐𝑜𝑚𝑝𝑢𝑒𝑠𝑡𝑜 = (2 ∙ (150 − 35) ∙ 25 + 35 ∙ 300) ∙ 1000 = 16250000 𝑚𝑚3 

𝑉𝑟𝑒𝑓𝑢𝑒𝑟𝑧𝑜 = 361020.83 𝑚𝑚3 

La fracción de volumen de refuerzo se calcula con la ecuación (2.3): 

𝑉𝑓 =
361020.83 𝑚𝑚3

16250000 𝑚𝑚3
= 0.022 

La fracción de volumen de refuerzo para cada nivel de refuerzo se calcula con (2.4), donde 

𝑁 es igual a 17 niveles de malla de refuerzo: 

𝑉𝑓𝑖 =
0.022

17
= 0.0013 
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El factor de eficiencia para mallas cuadradas soldadas que se observan en la Figura 2.8, será 

el siguiente: 𝜂 = 0.50 

El área efectiva para cada nivel de malla de refuerzo se determina con la ecuación (2.5), por 

lo tanto, se tiene: 

𝐴𝑠𝑖 = 0.50 ∙ 0.0013 ∙ 16250 𝑚𝑚
2 = 10.62 𝑚𝑚2 

El módulo efectivo del refuerzo al tratarse de mallas soldadas, se toma igual al módulo de 

elasticidad del acero, como se explicó en la sección 2.1.2.5.  

𝐸𝑟 = 𝐸𝑠 = 200000 𝑀𝑃𝑎 

Con base en la Figura 3.3, se plantea la siguiente tabla donde se listará la posición de cada 

nivel de refuerzo junto al área efectiva. 

Tabla 3.9. Área efectiva y posición de cada nivel de refuerzo en sección 

𝑵 
𝑨𝒔𝒊 

(𝒎𝒎𝟐) 

𝒅𝒔𝒊 

(𝒎𝒎) 

1 10.62 4.75 

2 10.62 7.75 

3 84.82 13.00 

4 10.62 18.25 

5 10.62 21.25 

6 10.62 44.00 

7 10.62 70.50 

8 10.62 97.00 

9 10.62 123.5 

10 10.62 150.00 

11 10.62 176.5 

12 10.62 203.00 

13 10.62 229.50 

14 10.62 256.00 

15 10.62 278.75 

16 10.62 281.75 

17 84.82 287.00 

18 10.62 292.25 

19 10.62 295.25 

Fuente elaboración propia. 
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3.3 Análisis de la resistencia a la flexión en vigas de ferrocemento 

3.3.1 Estado de agrietamiento 

Para realizar los cálculos en este estado, se tienen los siguientes datos: 

Para el mortero. 

 𝑤𝑐 = 2155.08 
𝑘𝑔

𝑚3⁄      (Tabla 3.8) 

 𝑓′𝑐 = 28 𝑀𝑃𝑎      (Tabla 3.8) 

 𝐸𝑐 = 0.043 ∙ 2155.081.5 ∙ √28 = 22763.68 𝑀𝑃𝑎  (2.6) 

Para el sistema de refuerzo. 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

Donde la relación modular estará dada por (2.31): 

𝑛 =
200000 

22763.68 
= 8.79 

Con el objetivo de optimizar el manejo y procesamiento de los datos de cada nivel de refuerzo 

y cada subsección de mortero, se decidió organizar la información de forma tabular; así, se 

estructura de la siguiente manera: 

Tabla 3.10. Propiedades estáticas en áreas efectivas de refuerzo 

𝑵 
𝑨𝒔𝒊 

(𝒎𝒎𝟐) 

𝒅𝒔𝒊 

(𝒎𝒎) 

𝑨𝒔𝒊 ∙ 𝒅𝒔𝒊 

(𝒎𝒎𝟑) 

𝑨𝒔𝒊 ∙ (𝒅𝒔𝒊 − 𝒄)
𝟐 

(𝒎𝒎𝟒) 

(𝒏 − 𝟏)[∙ 𝑨𝒔𝒊 ∙ (𝒅𝒔𝒊 − 𝒄)
𝟐] 

(𝒎𝒎𝟒) 

1 10.62 4.75 50.44 224020.21 1744204.28 

2 10.62 7.75 82.29 214861.93 1672898.59 

3 84.82 13.00 1102.70 1592042.92 12395524.76 

4 10.62 18.25 193.78 184313.08 1435047.62 

5 10.62 21.25 225.64 176014.88 1370438.47 

6 10.62 44.00 467.21 119307.20 928916.75 

7 10.62 70.50 748.59 67110.30 522515.67 

8 10.62 97.00 1029.97 29826.80 232229.19 

9 10.62 123.5 1311.36 7456.70 58057.30 

10 10.62 150.00 1592.74 0.00 0.00 

11 10.62 176.5 1874.13 7456.70 58057.30 

12 10.62 203.00 2155.51 29826.80 232229.19 
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𝑵 
𝑨𝒔𝒊 

(𝒎𝒎𝟐) 

𝒅𝒔𝒊 

(𝒎𝒎) 

𝑨𝒔𝒊 ∙ 𝒅𝒔𝒊 

(𝒎𝒎𝟑) 

𝑨𝒔𝒊 ∙ (𝒅𝒔𝒊 − 𝒄)
𝟐 

(𝒎𝒎𝟒) 

(𝒏 − 𝟏)[∙ 𝑨𝒔𝒊 ∙ (𝒅𝒔𝒊 − 𝒄)
𝟐] 

(𝒎𝒎𝟒) 

13 10.62 229.50 2436.90 67110.30 522515.67 

14 10.62 256.00 2718.28 119307.20 928916.75 

15 10.62 278.75 2959.85 176014.88 1370438.47 

16 10.62 281.75 2991.71 184313.08 1435047.62 

17 84.82 287.00 24344.20 1592042.92 12395524.76 

18 10.62 292.25 3103.20 214861.93 1672898.59 

19 10.62 295.25 3135.05 224020.21 1744204.28 

𝚺 350.16  52523.56 5229908.05 40719665.26 

Fuente: Elaboración propia 

Nota: La columna 4 tabula los resultados del primer momento estático de área 

para cada nivel de refuerzo; la columna 5 tabula los resultados de la aplicación 

del teorema de ejes paralelos de cada nivel de refuerzo respecto a la 

profundidad del eje neutro. 

 

Tabla 3.11. Propiedades estáticas de cada subsección de mortero 

𝑵 
𝑨𝒄𝒊 

(𝒎𝒎𝟐) 

𝒅𝒄𝒊 

(𝒎𝒎) 

𝑨𝒄𝒊 ∙ 𝒅𝒄𝒊 

(𝒎𝒎𝟑) 

𝑨𝒄𝒊 ∙ (𝒅𝒄𝒊 − 𝒄)
𝟐 

(𝒎𝒎𝟒) 

𝑰𝒄𝒊 

(𝒎𝒎𝟒) 

1 2875 12.50 35937.50 54355468.75 149739.58 

2 10500 150.00 1575000.00 0.00 78750000 

3 2875 287.50 826562.50 54355468.75 149739.58 

𝚺 16250  2437500.00 108710937.50 79049479.17 

Fuente: Elaboración propia 

Nota: La columna 4 tabula los resultados del primer momento estático de área 

para cada subsección de mortero; la columna 5 tabula los resultados de la 

aplicación del teorema de ejes paralelos de cada subsección respecto a la 

profundidad del eje neutro; la columna 6 tabula los resultados de la inercia 

propia de cada subsección respecto a su centroide. 
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Aplicando la ecuación (2.32) para el cálculo del área de la sección equivalente, y teniendo la 

sumatoria del área efectiva para cada nivel de refuerzo de la tabla 3.10, se tiene: 

𝐴𝑆𝐸 = 16250 + (8.79 − 1) ∙ 350.18 = 18976.25 𝑚𝑚
2  

Se procede a calcular la profundidad del eje neutro con la ecuación (2.38), dividiendo la 

sumatoria de los momentos estáticos de primer orden con el área de la sección equivalente: 

𝑐 =
2437500 + (8.79 − 1) ∙ 52523.56

18976.25
= 150 𝑚𝑚 

Una vez determinada la profundidad del eje neutro, se procede a calcular la inercia de la 

sección equivalente, siendo esta la suma del segundo momento estático de área de cada 

subsección con respecto al eje neutro. 

La ecuación (2.42), permite calcular la inercia de la sección transformada, donde: 

𝐼𝑆𝐸 = 108710937.5 + 79049479.17 + 40719665.26 = 228480081.93 𝑚𝑚4 

Para el cálculo del módulo de ruptura, se debe determinar el factor 𝜆, el cual considera las 

propiedades mecánicas reducidas para hormigones livianos, donde: 

 𝜆=0.00047∙2155.08=1     (Figura 2.8) 

Con la ecuación (2.10), se tiene: 

𝑓𝑟 = 0.62 ∙ 1 ∙ √28 = 3.28 𝑀𝑃𝑎 

El momento de agrietamiento está definido por la ecuación (2.43.) 

𝑀𝑐𝑟 =
3.28 ∙ 228480081.93 

(300 − 150)
∙ 10−6 = 5.00 𝑘𝑁 ∙ 𝑚 

𝑴𝒄𝒓 = 𝟓. 𝟎𝟎 𝒌𝑵 ∙ 𝒎 

La curvatura de agrietamiento sigue la expresión (2.46.) 

𝜙𝑐𝑟 =
3.28

22763.68 ∙ (300 − 150)
∙ 103 = 0.00096 

1

𝑚
 

𝝓𝒄𝒓 = 𝟎. 𝟎𝟎𝟎𝟗𝟔 
𝟏

𝒎
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3.3.2 Estado de fluencia 

A continuación, se muestran los datos para este estado: 

Para el mortero. 

 𝐸𝑐 = 22763.68 𝑀𝑃𝑎  

 𝜀𝑐𝑢 = 0.003 

 𝑓′𝑐 = 28 𝑀𝑃𝑎 

Para el sistema de refuerzo. 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

- Malla de refuerzo: 

 𝑓𝑦1 = 304 𝑀𝑃𝑎 

𝜀𝑦1 =
304

200000
= 0.00152 

- Acero esquelético: 

 𝑓𝑦2 = 500 𝑀𝑃𝑎 

𝜀𝑦2 =
500

200000
= 0.0025 

Este estado comienza cuando la fibra más externa en tracción del acero alcanza el punto de 

fluencia. En consecuencia, será necesario que: 

 𝜀𝑠 = 𝜀𝑦1 = 0.00152 

 𝑑𝑠 = 𝑑19 = 295.25 𝑚𝑚 

Para determinar la profundidad del eje neutro, es necesario realizar un proceso iterativo que 

garantice el cumplimiento del equilibrio de fuerzas, conforme a lo planteado en la ecuación 

(2.56). A través de este proceso, se obtuvo el valor de la profundidad del eje neutro, el cual 

es: 

𝒄 = 𝟕𝟖. 𝟒𝟎 𝒎𝒎 

Con el fin de optimizar el manejo y procesamiento de los datos correspondientes a cada nivel 

de refuerzo y subsección de mortero, se optó por organizar la información en un formato 

tabular, obteniéndose como resultado del proceso iterativo lo siguiente: 
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Tabla 3.12. Propiedades del refuerzo para cada nivel en el estado de fluencia 

𝑵 
𝑨𝒔𝒊 

(𝒎𝒎𝟐) 
𝒅𝒔𝒊 

(𝒎𝒎) 
𝜺𝒔𝒊 
- 

𝒇𝒔𝒊 
(𝑴𝑷𝒂) 

𝑭𝒔𝒊 
(𝒌𝑵) 

𝑭𝒔𝒊 ∙ (𝒅𝒔 − 𝒅𝒔𝒊) 
(𝒌𝑵 ∙ 𝒎) 

1 10.62 4.75 0.00052 103.25 1.10 0.318 

2 10.62 7.75 0.00050 99.05 1.05 0.302 

3 84.82 13.00 0.00046 91.69 7.78 2.195 

4 10.62 18.25 0.00042 84.33 0.90 0.248 

5 10.62 21.25 0.00040 80.12 0.85 0.233 

6 10.62 44.00 0.00024 48.23 0.51 0.129 

7 10.62 70.50 0.00006 11.08 0.12 0.026 

8 10.62 97.00 -0.00013 -26.07 -0.28 -0.055 

9 10.62 123.5 -0.00032 -63.22 -0.67 -0.115 

10 10.62 150.00 -0.00050 -100.37 -1.07 -0.155 

11 10.62 176.5 -0.00069 -137.52 -1.46 -0.173 

12 10.62 203.00 -0.00087 -174.67 -1.85 -0.171 

13 10.62 229.50 -0.00106 -211.83 -2.25 -0.148 

14 10.62 256.00 -0.00124 -248.98 -2.64 -0.104 

15 10.62 278.75 -0.00140 -280.87 -2.98 -0.049 

16 10.62 281.75 -0.00143 -285.07 -3.03 -0.041 

17 84.82 287.00 -0.00146 -292.43 -24.81 -0.205 

18 10.62 292.25 -0.00150 -299.79 -3.18 -0.010 

19 10.62 295.25 -0.00152 -304.00 -3.23 0.000 

𝚺 350.16    -35.15 2.23 

Fuente: Elaboración propia. 

Nota: Las ecuaciones utilizadas en esta tabla fueron definidas en la sección 2.5.2: la columna 

4 emplea la ecuación (2.60) para la determinación de la deformación unitaria en cada nivel 

de refuerzo; la columna 5 emplea ecuación (2.58) para determinar los esfuerzos tanto a 

compresión como a tracción en cada nivel de refuerzo; para la columna 5 la ecuación (2.62) 

permite determinar la fuerza resultante en cada nivel de refuerzo, la columna 6 tabula los 

resultados del momento en cada nivel de refuerzo respecto a la fibra extrema de acero en 

tracción. 
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Usando la formula (2.68), obtenemos la resultante de las fuerzas a compresión del mortero: 

𝐶𝑐 = 22763.68 ∙ 0.00152 ∙
[78.40 ∙ 25 ∙ (150 − 35)] + (78.402 ∙ 35)

2 ∙ (295.25 − 78.40)
∙ 10−3 = 35.15 𝑘𝑁 

Se verifica el equilibrio de fuerzas (2.56): 

35.15 𝑘𝑁 + (−35.15 𝑘𝑁) = 0 

Ahora se debe realizar la verificación del caso correspondiente a la sección, para lo cual, en 

primer lugar, se determina la deformación unitaria utilizando la ecuación (2.66) y el esfuerzo 

en la fibra extrema a compresión del mortero a partir de la ecuación (2.48): 

𝜀𝑐 =
0.00152 ∙ 78.401

295.25 − 78.401
= 0.00055             <    𝜀𝑐𝑢 = 0.003 

𝑓𝑐 = 22763.68 ∙ 0.00055 = 12.51 𝑀𝑃𝑎   ≤    0.70 ∙ 𝑓′
𝑐
= 19.6 𝑀𝑃𝑎 

En segundo lugar, verificamos si la deformación unitaria en la fibra extrema a compresión 

del acero ha alcanzado o no su punto de fluencia, lo que nos permite determinar el caso en el 

que se encuentra la sección: 

𝜀′𝑠1 = 0.00052           <    𝜀′𝑦1 = 0.00152 

𝑓′𝑠1 = 103.25 𝑀𝑃𝑎   <    𝑓′𝑦1 = 304 𝑀𝑃𝑎 

Como el acero a compresión aún no ha comenzado ha llegado a su punto de fluencia, la 

sección se encuentra en el Caso (a): Comportamiento lineal de la matriz de mortero y el acero 

a compresión del sistema de refuerzo no ha cedido. 

Finalmente, determinaremos el momento de fluencia haciendo el equilibrio de fuerzas en la 

capa extrema de acero en tracción (𝑑𝑠), con base en la ecuación (2.70), se tiene:  

𝑀𝑦 = [
25 ∙ (150 − 35)

2
∙ (295.25 −

25

3
) +

78.40 ∙ 35

2
∙ (295.25 −

78.40

3
)] ∙ 12.51 ∙ 10−6 

            +[2.23] = 12.01 𝑘𝑁 ∙ 𝑚 

𝑴𝒚 = 𝟏𝟐. 𝟎𝟏 𝒌𝑵 ∙ 𝒎 

La curvatura de fluencia está dada por (2.71): 

𝜙𝑦 =
0.00055

78.40
∙ 103 = 0.007 

1

𝑚
 

𝝓𝒚 = 𝟎. 𝟎𝟎𝟕𝟎 
𝟏

𝒎
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3.3.3 Estado de rotura 

A continuación, se muestran los datos para este estado: 

Para el mortero. 

 𝑓′𝑐 = 28 𝑀𝑃𝑎 

 𝜀𝑐𝑢 = 0.003 

 𝛽1 = 0.85       (2.17) 

Para el sistema de refuerzo. 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

- Malla de refuerzo: 

 𝑓𝑦1 = 304 𝑀𝑃𝑎 

𝜀𝑦1 =
304

200000
= 0.00152 

- Acero esquelético: 

 𝑓𝑦2 = 500 𝑀𝑃𝑎 

𝜀𝑦2 =
500

200000
= 0.0025 

Se llega a este estado cuando la fibra más externa en compresión del mortero ha alcanzado 

su deformación máxima unitaria. Para determinar la profundidad del eje neutro, es necesario 

realizar un proceso iterativo que garantice el cumplimiento del equilibrio de fuerzas, 

conforme a lo planteado en la ecuación (2.103), A través de este proceso, se obtuvo el valor 

de la profundidad del eje neutro, teniendo: 

𝑐 = 20.39 𝑚𝑚 ⟹   𝑎 = 0.85 ∙ 20.39 = 17.33 𝑚𝑚 (2.104) 

Con el fin de optimizar el manejo y procesamiento de los datos correspondientes a cada nivel 

de refuerzo y subsección de mortero, se optó por organizar la información en un formato 

tabular, obteniéndose como resultado del proceso iterativo lo siguiente: 
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Tabla 3.13. Propiedades del refuerzo para cada nivel en el estado de fluencia 

𝑵 
𝑨𝒔𝒊 

(𝒎𝒎𝟐) 

𝒅𝒔𝒊 

(𝒎𝒎) 

𝜺𝒔𝒊 

- 

𝒇𝒔𝒊 

(𝑴𝑷𝒂) 

𝑭𝒔𝒊 

(𝒌𝑵) 

𝑭𝒔𝒊 ∙ (
𝒂

𝟐
− 𝒅𝒔𝒊) 

(𝒌𝑵 ∙ 𝒎) 

1 10.62 4.75 0.0023 304.00 2.98 0.012 

2 10.62 7.75 0.0019 304.00 2.98 0.003 

3 84.82 13.00 0.0011 217.38 16.42 -0.071 

4 10.62 18.25 0.0003 62.86 0.41 -0.004 

5 10.62 21.25 -0.0001 -25.44 -0.27 0.003 

6 10.62 44.00 -0.0035 -304.00 -3.23 0.114 

7 10.62 70.50 -0.0074 -304.00 -3.23 0.200 

8 10.62 97.00 -0.0113 -304.00 -3.23 0.285 

9 10.62 123.5 -0.0152 -304.00 -3.23 0.371 

10 10.62 150.00 -0.0191 -304.00 -3.23 0.456 

11 10.62 176.5 -0.0230 -304.00 -3.23 0.542 

12 10.62 203.00 -0.0269 -304.00 -3.23 0.627 

13 10.62 229.50 -0.0308 -304.00 -3.23 0.713 

14 10.62 256.00 -0.0347 -304.00 -3.23 0.798 

15 10.62 278.75 -0.0380 -304.00 -3.23 0.872 

16 10.62 281.75 -0.0385 -304.00 -3.23 0.882 

17 84.82 287.00 -0.0392 -500.00 -42.41 11.805 

18 10.62 292.25 -0.0400 -304.00 -3.23 0.915 

19 10.62 295.25 -0.0404 -304.00 -3.23 0.925 

𝚺 350.16    -61.86 19.45 

Fuente: Elaboración propia. 

Nota: Las ecuaciones utilizadas en esta tabla fueron definidas en la sección 2.5.2: la columna 

4 emplea la ecuación (2.100) para la determinación de la deformación unitaria en cada nivel 

de refuerzo; la columna 5 emplea las expresiones  (2.101) y (2.102) para determinar los 

esfuerzos tanto a compresión como a tracción en cada nivel de refuerzo; para la columna 5 

la ecuación (2.108) permite determinar la fuerza resultante en cada nivel de refuerzo, la 

columna 6 tabula los resultados del momento en cada nivel de refuerzo respecto a la fibra 

extrema de acero en tracción. 
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Usando la formula (2.105), obtenemos la resultante del bloque de compresión del mortero: 

𝐶𝑐 = 0.85 ∙ 28 ∙ 0.85 ∙ 20.39 ∙ 150 ∙ 10
−3 = 61.86 𝑘𝑁 

Se verifica el equilibrio de fuerzas (2.110): 

61.86 𝑘𝑁 + (−61.86 𝑘𝑁) = 0 

Ahora se debe determinar en qué caso se encuentra la sección, para lo cual, verificamos si la 

deformación unitaria en la fibra extrema a compresión del acero ha alcanzado o no su punto 

de fluencia: 

𝜀′𝑠1 = 0.0023   ≥    𝜀′𝑦1 = 0.00152 

Como el acero a compresión ha superado su punto de fluencia, la sección se encuentra en el 

Caso (b): El acero de refuerzo superior en compresión ha cedido. 

Finalmente, determinaremos el momento último de la sección 𝑀𝑢, al realizar la sumatoria de 

momentos alrededor del centro de gravedad del bloque de compresiones calculado sin 

considerar las barras de acero, con base en la ecuación (2.111), se tiene: 

𝑴𝒖 = 𝟏𝟗. 𝟒𝟓 𝒌𝑵 ∙ 𝒎 

La curvatura de fluencia está dada por (2.112): 

𝜙𝑢 =
0.85 ∙ 28

22763.68 ∙ 20.39
∙ 103 = 0.051 

1

𝑚
 

𝝓𝒖 = 𝟎.𝟎𝟓𝟏 
𝟏

𝒎
 

3.4 Análisis de las deflexiones en las vigas de ferrocemento a partir de curvaturas 

Como se expuso en el Capítulo II, sección 2.6, al generalizar los teoremas del área de 

momento y aplicarlos a las curvaturas elásticas y plásticas establecidas, es posible determinar 

las deflexiones de los miembros, dado que se disponen de las relaciones momento-curvatura 

y del diagrama de momento del esquema de carga para el ensayo a flexión ASTM C76 (Figura 

2.36). 

Se tienen los siguientes datos:  

 𝐿 = 900 𝑚𝑚 = 0.9 𝑚 

𝜔 =
1

3
 

  



122 

 

3.4.1 Estado de agrietamiento: 

 𝑀𝑐𝑟 = 5.00 𝑘𝑁 ∙ 𝑚 

𝜙𝑐𝑟 = 0.00096 
1

𝑚
 

La deflexión máxima en centro luz está dada por la ecuación (2.115). 

Δ𝑐𝑟 =
0.00096

24
 [3 − 4 ∙ (

1

3
)
2

] ∙ 0.92 ∙ 103 = 0.083 𝑚𝑚 

𝚫𝒄𝒓 = 𝟎. 𝟎𝟖 𝒎𝒎 

La carga máxima para este estado siguiendo la (Figura 2.46), será: 

𝑃𝑐𝑟 =
2 ∙ 𝑀

𝜔 ∙ 𝐿
=
2 ∙ 5.00

1
3 ∙ 0.9

= 33.33 𝑘𝑁 

𝑷𝒄𝒓 = 𝟑𝟑. 𝟑𝟏 𝒌𝑵 

3.4.2 Estado de fluencia: 

𝑀𝑦 = 12.01 𝑘𝑁 ∙ 𝑚 

𝜙𝑦 = 0.0070 
1

𝑚
 

Se determina la deflexión máxima en centro luz, donde 𝑟 esta dado por (2.117): 

𝑟 =
𝑀𝑐𝑟

𝑀
=

5

12.01
= 0.42 

La deflexión está dada por la ecuación (2.116) 

Δ𝑦 =
0.00096

6
 (
1

3
∙ 0.9)

2

(1 + 0.42) +
0.007

24
[3 − 4 ∙ (

1

3
)
2

(1 +
1

3
+ (

1

3
)
2

)] ∙ 0.92 ∙ 103 

𝚫𝒚 = 𝟎. 𝟓𝟔 𝒎𝒎 

La carga máxima para este estado siguiendo la (Figura 2.46), será: 

𝑃𝑦 =
2 ∙ 𝑀

𝜔 ∙ 𝐿
=
2 ∙ 12.01

1
3 ∙ 0.9

= 80.07 𝑘𝑁 

𝑷𝒚 = 𝟖𝟎. 𝟎𝟒 𝒌𝑵 

  



123 

 

3.4.3 Estado de rotura: 

𝑀𝑢 = 19.45 𝑘𝑁 ∙ 𝑚 

𝜙𝑢 = 0.051 
1

𝑚
 

Se determina la deflexión máxima en centro luz, donde 𝑟2 esta dado por (2.119): 

𝑟2 =
𝑀𝑦

𝑀
=
12.01

19.45
= 0.62 

La deflexión está dada por la ecuación (2.116) 

Δ𝑢 =
1

24
 {4 ∙ (

1

3
)
2

[0.00096 ∙ (0.62 + 0.42 ∙ 0.62) + 4 ∙ 0.07

∙ (1 + 0.62 − (0.62 ∙ 0.42) − 0.422)] + 0.56

∙ [3 − 4 ∙ (
1

3
)
2

(1 + 0.62 + 0.622)]} ∙ 0.92 ∙ 103 = 4.167 𝑚𝑚 

𝚫𝒖 = 𝟒. 𝟏𝟕 𝒎𝒎 

La carga máxima para este estado siguiendo la (Figura 2.46), será: 

𝑃𝑢 =
2 ∙ 𝑀

𝜔 ∙ 𝐿
=
2 ∙ 19.45

1
3 ∙ 0.9

= 129.67 𝑘𝑁 

𝑷𝒖 = 𝟏𝟐𝟗. 𝟔𝟕 𝒌𝑵 

3.5 Análisis de la resistencia a corte y tensión diagonal en vigas de ferrocemento 

Como se mencionó en el capítulo anterior, el análisis y diseño para corte no están 

relacionados directamente con el corte como tal, sino con las tensiones diagonales que son 

producidas por una combinación de esfuerzos por corte y flexión. 

Se tienen los siguientes datos: 

Para el mortero. 

 𝑤𝑐 = 2155.08 
𝑘𝑔

𝑚3⁄      (Tabla 3.8) 

 𝑓′𝑐 = 28 𝑀𝑃𝑎      (Tabla 3.8) 

 𝜆 = 0.00047 ∙ 2155.08 = 1     (Figura 2.8) 

 𝑏𝑤 = 35 𝑚𝑚 

Para el sistema de refuerzo. 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

 𝑓𝑦1 = 304 𝑀𝑃𝑎 
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 𝑑𝑠 = 𝑑19 = 295.25 𝑚𝑚 

 𝑠 = 25 𝑚𝑚 

 𝑉𝑓 = 0.022 

 𝐸𝑐 = 0.043 ∙ 2155.081.5 ∙ √28 = 22763.68 𝑀𝑃𝑎  (2.6) 

Para poder determinar la resistencia nominal al corte, es necesario saber la resistencia que 

tiene la matriz de mortero al corte, con la ecuación (2.132) se tiene: 

𝑉𝑐 = 0.17 ∙ 1 ∙ √28 ∙ 35 ∙ 295.25 ∙ 10−3 = 9.30 𝑘𝑁 

Para una configuración de estribos verticales, la fuerza total cortante que resisten los estribos 

estará dada por (2.133), antes debemos calcular el área efectiva del refuerzo transversal, con 

base en la ecuación (2.4), la Tabla 3.9 indica que el número de niveles de refuerzo transversal 

es (𝑁 = 38), se tiene: 

𝑉𝑓𝑖 =
0.022

38
= 0.00058 

La ecuación (2.5) nos permite calcular el área de refuerzo efectiva, donde el área del 

compuesto 𝐴𝑐 corresponde al área longitudinal del alma de la viga de ferrocemento (𝑏𝑤 ∙ 𝐿𝑇) 

𝐴𝑠𝑖 = 𝐴𝑣 = 0.50 ∙ 0.00058 ∙ 35 ∙ 1000 = 10.23 𝑚𝑚2 

De acuerdo a (2.133), la fuerza de corte resistida por los estribos será: 

𝑉𝑠 = 10.23 ∙ 304 ∙
295.25

25
∙ 10−3 = 36.73 𝑘𝑁 

La resistencia nominal al corte de la viga está dada por (2.131), donde: 

𝑉𝑛 = 9.30 + 36.73 = 46.03 𝑘𝑁 

Se debe tener en cuenta que la resistencia nominal al corte no supere el máximo corte que 

puede ser resistido por la sección, determinado por la ecuación (2.134), se tiene que: 

𝑉𝑚𝑎𝑥 = 9.30 + 0.66 ∙ √28 ∙ 35 ∙ 295.25 ∙ 10−3 = 45.39 𝑘𝑁   ≤    𝑉𝑛 = 46.03 𝑘𝑁 

Debido a que el valor de la resistencia nominal al corte supera el valor máximo de corte 

resistido por la sección, se adoptan los siguientes valores máximos para fuerza cortante: 

𝑽𝒎𝒂𝒙 = 𝟒𝟓. 𝟑𝟗 𝒌𝑵. 

𝑷𝒎𝒂𝒙 = 𝟐 ∙ 𝟒𝟓. 𝟑𝟗 = 𝟗𝟎. 𝟕𝟖 𝒌𝑵. 
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3.6 Tabulación de los resultados del análisis teórico 

En esta sección se organizarán y mostrarán los datos obtenidos del modelo analítico en un 

formato tabular, facilitando su manejo y comparación con los resultados experimentales y 

numéricos. 

Tabla 3.14. Valores determinados del comportamiento teórico 

Estado 

Momento 

Flector 

𝑴 
(𝒌𝑵 ∙ 𝒎) 

Fuerza 

Cortante 

𝑽 
(𝒌𝑵) 

Carga 

 

𝑷 
(𝒌𝑵) 

Curvatura 

𝝓 

(
𝟏

𝒎
) 

Deflexión 

 

∆ 
(𝒎𝒎) 

Agrietamiento 5.00 - 33.31 0.00096 0.08 

Fluencia 12.01 - 80.04 0.0070 0.56 

Rotura 19.45 - 129.65 0.051 4.17 

Corte - 45.39 90.78  - 

Fuente: Elaboración propia. 

Nota: La columna de carga fue determinada para el esquema de carga ASTM C78 (Figura 

2.46), con la ecuación de momento flector en el tercio central (𝑀 = 𝜔 ∙ 𝐿 ∙ 𝑃 2⁄ ); y de fuerza 

cortante (𝑉 = 𝑃 2⁄ ) 

3.7 Ensayo a flexión en vigas de ferrocemento 

Los especímenes de ferrocemento deben ensayarse de acuerdo con las disposiciones 

aplicables de la prueba estándar ASTM C78, “Método de prueba estándar para la resistencia 

a la flexión del hormigón”, utilizando una viga simplemente apoyada con carga en el tercio 

medio.  

3.7.1 Configuración del ensayo 

El ensayo se realiza tomando como referencia el esquema de carga establecido en la norma 

ASTM C78. 
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Figura 3.5. Ensayo experimental en viga tipo I de ferrocemento 

 

Fuente: Elaboración propia. 

3.7.2 Características de los especímenes de ferrocemento 

En la Tabla 3.15 se recogen las principales características de los especímenes de vigas de 

ferrocemento tipo I. Para cada espécimen se indican: 

Tabla 3.15. Datos de los especímenes de ferrocemento a ensayar 

Muestra 

 

Edad 

 

(𝒅𝒊𝒂𝒔) 

 

Peso 

 

(𝒌𝒈) 

 

Longitud 

𝑳 

(𝒎𝒎) 

Ancho 

de Ala 

𝒃𝒇 

(𝒎𝒎) 

Ancho 

de Alma 

𝒃𝒘 

(𝒎𝒎) 

Altura 

de Ala 

𝒉𝒇 

(𝒎𝒎) 

Altura 

de Alma 

𝒉𝒘 

(𝒎𝒎) 

V-1 28 37.84 1000 150 35 25 300 

V-2 28 37.86 1000 150 35 25 300 

V-3 28 37.87 1000 150 35 25 300 

V-4 28 37.83 1000 150 35 25 300 

V-5 28 37.83 1000 150 35 25 300 

Fuente: Elaboración propia. 

3.7.3 Resultados del ensayo a flexión  

Los especímenes se sometieron a ensayos de flexión estática bajo un régimen de carga 

progresiva (monotónica). En la Tabla 3.16 se presentan los valores máximos de carga y 

deflexión alcanzados, así como los modos de fallo observados. 
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Tabla 3.16. Valores máximos obtenidos del ensayo a flexión 

Muestra 

 

Luz 

Efectiva 

 

𝑳 

(𝒎𝒎) 

Tercio 

de 

Luz 

Libre 

𝝎 ∙ 𝑳 

(𝒎𝒎) 

 

Carga 

Máxima 

 

𝑷 

(𝒌𝑵) 

 

Deflexión 

Máxima 

 

∆ 

(𝒎𝒎) 

 

Momento 

Flector 

 

𝑴 

(𝒌𝑵 ∙ 𝒎) 

 

Fuerza 

Cortante 

 

𝑽 

(𝒌𝑵) 

Modo 

de Fallo 

V-1 900 300 87.00 4.78 13.05 43.50 
Tensión 

Diagonal 

V-2 900 300 89.00 6.59 13.35 44.50 
Tensión 

Diagonal 

V-3 900 300 88.00 5.02 13.20 44.00 
Tensión 

Diagonal 

V-4 900 300 89.00 6.42 13.35 44.50 
Tensión 

Diagonal 

V-5 900 300 89.00 5.97 13.35 44.50 
Tensión 

Diagonal 

Fuente: Elaboración propia. 

Durante la prueba, se registraron continuamente los valores de carga y deflexión central. 

Estos datos se detallan en el Anexo 1 y se ilustran en la Figura 3.6. 

Figura 3.6. Curvas carga-deflexión de las vigas ensayadas 

 
Fuente: Elaboración propia. 
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3.8 Modelo de elementos finitos (Modelo 1) 

La configuración del ensayo fue modelada utilizando el software de elementos finitos 

DIANA. Donde se tiene un modelo en tres dimensiones, con un tipo de mallado 

cuadrangular/hexaédrico como tipo dominante de elemento, y como orden de mallado se 

tiene elementos de orden cuadrático para el cual se establece el método de determinación 

para la ubicación de los nodos intermedios de cada elemento la Interpolación Lineal, para el 

cual el nodo intermedio puede ubicarse dentro o fuera de la geometría definida. 

Figura 3.7. Nuevo proyecto y definición de las propiedades generales 

 

Fuente: Elaboración propia con el uso del software DIANA. 

3.8.1 Discretización de la geometría y definición de condiciones de contorno 

La geometría tridimensional de la viga, junto con el bloque aplicador de carga y los apoyos 

representada en la Figura 3.8, se generó en DIANA y se discretizó empleando elementos 

“CQ40S” de cáscara curva (Curved Shell Elements) de segundo orden.  

Figura 3.8. Vista en elevación de viga tipo I de ferrocemento ensayada en laboratorio 

 

Fuente: Elaboración propia con el uso del software Revit. 
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Esta elección permite representar con precisión la curvatura de la viga y garantizar una 

distribución adecuada de las cargas y restricciones en la frontera del modelo. 

Figura 3.9. Geometrías de los elementos 

 

Fuente: Elaboración propia con el uso del software DIANA. 

Se asignan las condiciones de desplazamiento en los apoyos, donde en uno de ellos se 

restringen las traslaciones en los ejes 𝑥, 𝑧; mientras que en el otro se limita solo la traslación 

en el eje 𝑧. Las condiciones de carga se asignan a los bloques aplicadores de carga mediante 

fuerzas puntuales en el eje 𝑧. 

Figura 3.10. Condiciones de contorno en apoyos y bloques aplicadores de carga 

 

Fuente: Elaboración propia con el uso del software DIANA. 

Se define la geometría del sistema de refuerzo utilizando elementos de la clase Reinforcement 

Elements, específicamente del tipo Embedded Bar, que están disponibles como opción 

predefinida en DIANA. 
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Figura 3.11. Geometría de los elementos del sistema de refuerzo 

 

Fuente: Elaboración propia con el uso del software DIANA. 

3.8.2 Modelado del comportamiento físico de los materiales 

3.8.2.1 Modelo del material de mortero  

El Código Modelo CEB-FIP (MC) 2010 se empleó para caracterizar las propiedades de 

compresión y tracción del mortero en el modelo analítico, tal como se detalla a continuación:  

Tabla 3.17. Características del material de mortero 

Propiedades del mortero Formulas MC 2010 Valores 

Resistencia característica a 

compresión 
𝑓𝑐𝑘 = 𝑓′𝑐 [𝑀𝑃𝑎] 28 𝑀𝑃𝑎 

Valor medio de la resistencia a 

compresión 
𝑓𝑐𝑚 = 𝑓𝑐𝑘 + Δ𝑓 [𝑀𝑃𝑎] 31.08 𝑀𝑃𝑎 

Resistencia a tracción 𝑓𝑐𝑡𝑚 = 0.3 ∙ (𝑓𝑐𝑘)
2
3⁄  [𝑀𝑃𝑎] 2.77 𝑀𝑃𝑎 

Energía de fractura por tracción 𝐺𝐹 = 73 ∙ 𝑓𝑐𝑚
0.18 ∙ 10−3 [𝑁 𝑚𝑚⁄ ] 0.14𝑁 𝑚𝑚⁄  

Energía de fractura por compresión 𝐺𝐶 = 250 ∙ 𝐺𝐹 [
𝑁
𝑚𝑚⁄ ] 33.88𝑁 𝑚𝑚⁄  

Fuente: Elaboración propia. 
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Se introducen los datos en el modelo analítico de material, donde se utilizan las propiedades 

lineales del material ya mencionadas: 

Tabla 3.18. Propiedades del mortero utilizados en el modelo FEM 

Descripción Valores 

Propiedades lineales del mortero 

Módulo de elasticidad 22763.7 𝑀𝑃𝑎 

Coeficiente de Poisson 0.2 

Densidad de Masa 2155.08 
𝑘𝑔

𝑚3⁄  

Modelo de fisuración basado en la deformación total 

Orientación de la fisura Rotativa 

Comportamiento a tracción 

Curva de tracción Exponencial 

Resistencia última a tracción 2.77 𝑀𝑃𝑎 

Energía de fractura a tracción 0.14 𝑁 𝑚𝑚⁄  

Especificación del ancho de banda de grieta Govindjee 

Resistencia residual a tracción 0 𝑀𝑃𝑎 

Reducción del coeficiente de Poisson 

Modelo de reducción Basado en daño 

Comportamiento a compresión 

Curva de compresión Parabólica 

Resistencia última a compresión 28 𝑀𝑃𝑎 

Energía de fractura en compresión 33.88 𝑁 𝑚𝑚⁄  

Resistencia residual a compresión 0 𝑀𝑃𝑎 

Reducción por fisuración lateral 

Modelo de reducción Vecchio y Collins 1986 

Confinamiento de esfuerzos 

Modelo de confinamiento Sin incremento 

Fuente: Elaboración propia. 
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En la implementación actual en Diana, el modelo constitutivo basado en la deformación total 

se desarrolla siguiendo los principios de la Teoría del Campo de Compresión Modificado, 

propuesta originalmente por Vecchio y Collins. Al igual que el modelo de fisura fija 

multidireccional, los modelos de fisura basados en la deformación total adoptan un enfoque 

de fisuración distribuida para la energía de fractura, un enfoque comúnmente utilizado es el 

concepto de tensión-deformación coaxial, en el cual las relaciones tensión-deformación se 

evalúan en las direcciones principales del vector de deformación, es conocido también como 

el modelo de fisura rotativa, 

El comportamiento a tracción del hormigón armado se puede modelar utilizando diferentes 

enfoques, para el modelo de fisura de deformación total (Total Strain Crack) se implementan 

las siguientes funciones basadas en la energía de fractura, todas ellas relacionadas con una 

anchura de fisura (crack bandwidth), como es habitual en los modelos de fisura difusa 

(smeared crack); para el comportamiento a tracción del mortero se tiene: 

Figura 3.12. Comportamiento a tracción predefinido para el modelo de fisura de 

deformación total 

 

Fuente: Manual de usuario de DIANA (47.5.5). 

Para el comportamiento a compresión del mortero, la respuesta compresiva se caracteriza 

mediante funciones constitutivas de endurecimiento–ablandamiento basadas en la energía de 

fractura, como se muestra a continuación: 

La curva parabólica en Diana es una formulación basada en la energía de fractura, según 

Feenstra. La curva parabólica se describe mediante tres valores característicos. 
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Figura 3.13. Curva de compresión parabólica 

 

Fuente: Manual de usuario de DIANA (47.5.6.2). 

3.8.2.2 Elementos de refuerzo  

En DIANA, es posible simular el sistema de refuerzo utilizando refuerzos automáticamente 

embebidos. Estos incluyen barras y mallas de refuerzo que se pueden integrar en todos los 

tipos de elementos estructurales, la opción de embebido, implica que los elementos de 

refuerzo se acoplan automáticamente con los elementos de mortero circundantes, sin 

necesidad de establecer manualmente elementos de interfaz de unión entre el refuerzo y el 

concreto. Esto significa que la rigidez es aportada únicamente por los refuerzos embebidos y 

los elementos de mortero base.  

Para la malla de refuerzo: 

Tabla 3.19. Propiedades de la malla de alambre electrosoldado utilizados en el modelo 

FEM 

Descripción Valores 

Elasticidad lineal 

Módulo de elasticidad 200000 𝑀𝑃𝑎 

Límite de fluencia 304 𝑀𝑃𝑎 

Plasticidad de Von Mises 

Endurecimiento plástico Relación deformación plástica-tensión de fluencia 

Diagrama tensión-deformación Elástico-perfectamente plástico 

Hipótesis de endurecimiento Endurecimiento por deformación 

Tipo de endurecimiento Endurecimiento isotrópico 

Fuente: Elaboración propia. 
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Para definir el comportamiento elastoplástico en el refuerzo, se sigue el criterio de fluencia 

de Von Mises, es un modelo empleado para predecir el inicio del flujo plástico en materiales 

dúctiles considerando únicamente la energía de distorsión. Para la condición de fluencia de 

Von Mises se consideran dos hipótesis diferentes: endurecimiento por deformación y 

endurecimiento por trabajo 

Para el acero esquelético: 

Tabla 3.20. Propiedades de las barras de acero utilizados en el modelo FEM 

Descripción Valores 

Elasticidad lineal 

Módulo de elasticidad 200000 𝑀𝑃𝑎 

Límite de fluencia 500 𝑀𝑃𝑎 

Plasticidad de Von Mises 

Endurecimiento plástico Relación deformación plástica-tensión de fluencia 

Diagrama tensión-deformación Elástico-perfectamente plástico 

Hipótesis de endurecimiento Endurecimiento por deformación 

Tipo de endurecimiento Endurecimiento isotrópico 

Fuente: Elaboración propia. 

Para los apoyos y el bloque aplicador de carga:  

Se usa como material acero de característica elástico lineal isótropo, como se muestra a 

continuación: 

Tabla 3.21. Propiedades del acero en el modelo FEM 

Descripción Valores 

Propiedades lineales del acero 

Módulo de elasticidad 200000 𝑀𝑃𝑎 

Coeficiente de Poisson 0.15 

Densidad de Masa 7850 
𝑘𝑔

𝑚3⁄  

Fuente: Elaboración propia. 

3.8.3 Creación de la malla y procedimiento de análisis numérico 

Se asignan los espesores correspondientes a la geometría de cada elemento y se procede a 

realizar el mallado del modelo de tipo cuadrangular/hexaédrico, con un tamaño de malla de 

10 𝑚𝑚, como se muestra a continuación: 
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Figura 3.14. Creación de la malla en los elementos Shell 

 

Fuente: Elaboración propia con el uso del software DIANA. 

 

Figura 3.15. Vista isométrica del mallado 

 

Fuente: Elaboración propia con el uso del software DIANA. 
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Figura 3.16. Vista isométrica 3D de los elementos Shell 

 

Fuente: Elaboración propia con el uso del software DIANA. 

Ahora que la malla esta lista, se procede a agregar el caso de carga según método de prueba 

estándar ASTM C78 para ensayo a flexión, se añade y configura el tipo análisis, definiendo 

y ejecutando para este caso el tipo de análisis estructural no lineal.  
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Resultados del proceso de análisis 

Para visualizar los desplazamientos, se seleccionó el nodo correspondiente a la fibra extrema 

inferior de la sección central de la viga. Esta acción en DIANA abre la ventana de resultados, 

que presenta las deflexiones tanto en formato gráfico como tabular, tal como se muestra a 

continuación: 

Figura 3.17. Inspección de los resultados para las deflexiones 

 

Fuente: Elaboración propia con el uso del software DIANA. 
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 CAPÍTULO IV 

ANÁLISIS DE RESULTADOS 

4.1 Análisis comparativo de los modelos Experimental, Teórico y FEM (Modelo 1)  

Para evaluar la función de las vigas tipo I de ferrocemento como elemento estructural 

sometido a solicitaciones de flexión, es imprescindible partir desde la validación de un primer 

modelo FEM que refleje el comportamiento experimental a cortante obtenido a través del 

ensayo a flexión realizado en laboratorio apoyado de .la predicción de un comportamiento 

teórico calculado. 

4.1.1 Curvas carga-deflexión 

Las curvas carga-deflexión obtenidas en los tres enfoques (teórico, experimental y FEM) se 

comparan para evaluar el comportamiento obtenido a partir del ensayo a flexión realizado en 

las vigas de ferrocemento. 

Figura 4.1 Curva carga-deflexión Teórico vs. Experimental vs. FEM 

 

Fuente: Elaboración propia. 

La comparación entré las curvas carga–deflexión (Figura 4.1) muestra que el modelo FEM 

(Modelo 1), se aproxima a los resultados obtenidos del comportamiento experimental 

registrados, lo que permite realizar el contraste con el modelo analítico teórico. Los 

resultados teóricos, experimentales y del modelo FEM en términos de carga y deflexión para 

cada estado fundamental, se muestra a continuación: 
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Tabla 4.1.Comparación carga-deflexión en etapas críticas: 

Etapa 

Critica 
Fuente 

Carga 

(𝒌𝑵) 

Δ 

Carga 

(𝒌𝑵) 

Varia-

ción 

(%) 

Deflexión 

(𝒎𝒎) 

Δ 

Deflexión 

(𝒎𝒎) 

Varia-

ción 

(%) 

Fisuración 

Experimental 𝟏𝟒. 𝟎𝟎 - - 𝟎. 𝟏𝟐 - - 

FEM 𝟏𝟑. 𝟗𝟗 −0.01 −0.07 𝟎. 𝟏𝟑 +0.01 +8.3 

Teórico 𝟑𝟑. 𝟑𝟏 +19.31 +137.9 𝟎. 𝟎𝟖 −0.04 −33.3 

Fluencia 

Experimental 𝟖𝟎. 𝟎𝟎 - - 𝟐. 𝟎𝟐 - - 

FEM 𝟖𝟎. 𝟓𝟏 +0.51 +0.64 𝟏. 𝟗𝟓 −0.07 −3.5 

Teórico 𝟖𝟎. 𝟎𝟒 +0.04 +0.05 𝟎. 𝟓𝟔 −1.46 −72.3 

Rotura 

Experimental 𝟖𝟗. 𝟎𝟎 - - 𝟔. 𝟑𝟑 - - 

FEM 𝟖𝟑. 𝟗𝟔 −5.04 −5.7 𝟔. 𝟏𝟕 −0.16 −2.5 

Teórico 𝟗𝟎. 𝟕𝟖 +1.78 +2.0 𝟒. 𝟏𝟕 −2.16 −34.1 

Fuente: Elaboración propia. 

 

1) Comparación de los resultados del estado de agrietamiento 

El modelo FEM muestra que la primera aparición de microfisuras en la cara traccionada en 

la zona del tercio central (esto se visualiza en, el modelo de deformación de fisura “crack 

strain”. Figura 4.4. b), se presenta a una carga de 13.99 𝑘𝑁 con una deflexión de 0.13 𝑚𝑚, 

contrastando con los resultados experimentales (14.00 𝑘𝑁 y 0.12 𝑚𝑚). La deflexión 

experimental es ligeramente menor que la predicha por el FEM, con un error de – 0.07 % en 

carga y +8.3 % en deflexión; la concordancia entre ambos sigue siendo muy significativa. 

En cambio, el modelo teórico sitúa el agrietamiento en 33.31 𝑘𝑁 y 0.08 𝑚𝑚, es decir, 

+137.9 % de carga y – 33.3 % de deflexión respecto del ensayo. 

Por lo tanto, el FEM proporciona un buen ajuste en términos de carga y deflexión inicial, 

simulando mejor los efectos de fisuración en las primeras etapas. Esto confirma que el 

ferrocemento comienza a agrietarse a cargas mucho más bajas de las que predice el modelo 

teórico, el cual no captura adecuadamente la deformabilidad del material a medida que se 

desarrollan las microfisuras. 
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2) Comparación de los resultados del estado de fluencia 

El modelo de deformación de fisura, (Figura 4.5. b) muestra como las fisuras verticales 

producto de los esfuerzos a flexión dejaron de ser significativos, en comparación con las 

fisuras inclinadas que comenzaron a propagarse en los tercios extremos del modelo en donde 

se tiene los mayores valores de esfuerzos cortantes.  

El modelo teórico ubica el punto de fluencia en 80.04 kN y 0.56 mm; el ensayo reporta 80.00 

kN y 2.02 mm, de modo que la teoría subestima la deflexión en –72.3 %. En contraste, el 

FEM predice 80.51 kN y 1.95 mm, con errores de +0.64 % en carga y –3.5 % en deflexión, 

acercándose mucho más a la respuesta experimental.  

▪ En el modelo teórico, se subestima la deflexión al no considerarse los efectos no 

lineales que se desarrollan una vez que el material comienza a agrietarse y se produce 

fluencia, donde las primeras fisuras no afectan la carga significativamente, pero 

aumentan la deformabilidad de la viga. 

▪ El modelo FEM tiene la capacidad de capturar el comportamiento plástico del 

material y la interacción entre el refuerzo y el mortero. Durante la fase de fluencia, el 

modelo simula no solo la deformación del refuerzo también la deformación del 

mortero alrededor de las áreas fisuradas, mostrando una transición progresiva en la 

rigidez y deflexión, lo que concuerda más con los resultados experimentales. 

▪ La diferencia entre el modelo FEM y el resultado experimental es pequeña, lo que 

indica que el modelo está aproximadamente bien ajustado en cuanto a la simulación 

de los efectos de fluencia.  

 

3) Comparación de los resultados del estado de rotura 

Para este estado, se tiene que las tensiones principales están en función de los esfuerzos por 

corte, condensando las deformaciones de fisura de forma inclinada en los tercios extremos 

donde el esfuerzo por corte es predominante (Figura 4.6. b). 

El modelo teórico prevé 90.78 𝑘𝑁 y 4.17 𝑚𝑚, valores superiores a los observados, con 

errores de +2.0 % en carga y – 34.1 % en deflexión respecto del ensayo (89.00 𝑘𝑁 y 

6.33 𝑚𝑚). El FEM, por su parte, predice 83.96 𝑘𝑁 y 6.17 𝑚𝑚, lo que supone – 5.7 % en 

carga y – 2.5 % en deflexión frente al resultado experimental, proporcionando una 

aproximación muy cercana.  
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En el modelo teórico, el estado de rotura se predice con suposiciones que son insuficientes 

para modelar las fisuras progresivas y la deformación plástica que ocurren al acercarse al 

colapso. 

El modelo FEM incluye los efectos de fisuración no lineal y fluencia, lo que le permite 

modelar de manera más precisa la reducción de rigidez y la distribución de tensiones dentro 

de la viga, lo que se refleja en las deflexiones finales que se asemejan más a las obtenidas 

experimentalmente. 

Efectos de fisuración en la rotura: 

Durante el ensayo, las fisuras diagonales se presentaron en las últimas etapas de carga e 

inclinadas desde su aparición, solo se presentaron en el tercio extremo y su tamaño 

aumentaba progresivamente a medida que la carga aumentaba, reduciendo de manera 

progresiva la capacidad de carga de la viga. El modelo FEM tiene la capacidad de capturar 

esta propagación de grietas y simular cómo la viga va perdiendo rigidez a medida que se 

desarrollan las fisuras. 

 

Figura 4.2. Vista en elevación viga tipo I de ferrocemento ensayada en laboratorio 

 

Fuente: Elaboración propia con el uso del software Revit. 
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Figura 4.3. Distribución en el instante de aparición de las primeras fisuras según el 

modelo FEM: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔;

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂;

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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Figura 4.4. Distribución en el instante de fluencia según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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Figura 4.5. Distribución en el instante de rotura según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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4.1.2 Mecanismo de falla 

En el ensayo experimental, se pudo evidenciar que los especímenes tuvieron como 

mecanismo de falla la tensión diagonal, debido a que la viga experimentó cargas aplicadas 

en el tercio central, que superaron su capacidad de corte en las últimas etapas de carga, debido 

a esto se generaron tensiones principales en función de los esfuerzos por corte, que se 

distribuyeron a lo largo de la viga. Estas tensiones causaron la apertura de fisuras diagonales, 

que comenzaron en el punto de aplicación de la carga en dirección a la zona cercana al apoyo. 

A medida que la carga aumentó, estas fisuras se propagaron diagonalmente a través de los 

tercios extremos de la viga, afectando las fibras del espécimen hasta llegar al colapso por el 

incremento de carga. 

Figura 4.6. Comparación Modelo Experimental vs. Modelo FEM: 

(𝒂) 𝑷𝒂𝒕𝒓ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂𝒔 𝑹𝒆𝒂𝒍𝒆𝒔; 

 

(𝒃) 𝑷𝒂𝒕𝒓ó𝒏 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

Fuente: Elaboración propia. 
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4.2 Análisis del comportamiento a flexión (Modelo 2) 

Debido a que el ensayo experimental tiene limitaciones en la luz libre entre apoyos 

(900 𝑚𝑚), y al ser realizado según el esquema de carga ASTM C78, la fuerza cortante en la 

viga es la mitad de la carga aplicada en el punto central (𝑉 = 𝑃 2⁄ ), dando como resultado 

fuerzas verticales muy elevadas que alcanzan fácilmente la resistencia máxima a corte que 

puede resistir la sección, este produce fisuras diagonales propagadas entre el bloque aplicador 

de carga y el apoyo, por lo tanto, conduce a una falla por tensión diagonal. 

Como se pudo evidenciar en las comparaciones del Modelo 1 desarrollado en DIANA, son 

capaces de simular el comportamiento de las vigas tipo I de ferrocemento de una forma 

aproximada al comportamiento real; por lo tanto, es un modelo valido para el estudio de estos 

elementos. 

Por consiguiente, para realizar el análisis a flexión se plantea desarrollar en DIANA el ensayo 

a flexión, planteando un modelo numérico de una viga tipo I de ferrocemento con una luz 

efectiva de 2700 𝑚𝑚 bajo esquema de carga ASTM C78, de modo que se aprovechen las 

ecuaciones planteadas en el Capítulo II.  

Figura 4.7. Vista en elevación de viga tipo I de ferrocemento a escala estándar 

(Modelo 2) 

 

Fuente: Elaboración propia con el software Revit. 

  



147 

 

Se tienen los siguientes datos del análisis teórico: 

Tabla 4.2. Valores calculados para el comportamiento teórico 

Estado 

Momento 

Flector 

𝑴 

(𝒌𝑵 ∙ 𝒎) 

Fuerza 

Cortante 

𝑽 

(𝒌𝑵) 

Carga 

 

𝑷 

(𝒌𝑵) 

Deflexión 

 

∆ 

(𝒎𝒎) 

Agrietamiento 5.00 - 8.33 0.645 

Fluencia 12.01 - 20.01 4.04 

Rotura 19.45 - 32.41 30.33 

Corte - 45.39 90.78 - 

Fuente: Elaboración propia. 

Nota: La columna de carga fue determinada para el esquema de carga ASTM C78 (Figura 

2.46), con la ecuación de momento flector en el tercio central (M=ω∙L∙P⁄2); y de fuerza 

cortante (V=P⁄2) 

4.2.1 Curvas carga-deflexión 

Para la modelación numérica en DIANA, se siguió todo el proceso establecido en la sección 

3.8, y con el respectivo proceso de análisis, se obtuvieron los siguientes resultados: 

Figura 4.8. Curva carga-deflexión Teórico vs. FEM 

 

Fuente: Elaboración propia. 

0

10

20

30

0 10 20 30 40

C
ar

ga
 (

k
N

)

Deflexión (mm) 

Teórico

Modelo FEM



148 

 

Tabla 4.3. Carga-deflexión en etapas críticas: Teórico vs FEM (Modelo 2) 

Etapa 

Critica 
Fuente 

Carga 

(𝒌𝑵) 

Δ 

Carga 

(𝒌𝑵) 

Variación 

(%) 

Deflexión 

(𝒎𝒎) 

Δ 

Deflexión 

(𝒎𝒎) 

Variación 

(%) 

Fisuración 
Teórico 𝟖. 𝟑𝟑 - - 𝟎. 𝟔𝟓 - - 

FEM 𝟑. 𝟗𝟖 −4.35 −52.2 𝟎. 𝟔𝟓 +0.00 0.0 

Fluencia 
Teórico 𝟐𝟎. 𝟎𝟏 - - 𝟒. 𝟎𝟒 - - 

FEM 𝟐𝟎. 𝟔𝟐 +0.61 +3.0 𝟕. 𝟔𝟎 +3.56 +88.1 

Rotura 
Teórico 𝟑𝟐. 𝟒𝟏 - - 𝟑𝟎. 𝟑𝟑 - - 

FEM 𝟑𝟑. 𝟑𝟒 +0.93 +2.9 𝟑𝟖. 𝟎𝟓 +7.72 +25.5 

Fuente: Elaboración propia. 

 

1) Comparación de los resultados del estado de agrietamiento 

El modelo FEM predice que las primeras microfisuras aparecen en la viga de ferrocemento 

a una carga de 3.94 𝑘𝑁 y una deflexión de 0.65 𝑚𝑚 en la cara en tracción; ello implica 

incluir los efectos de la fisuración del mortero y su interacción con el refuerzo, capturando el 

fenómeno mucho antes que el punto de agrietamiento teórico y evidenciando una mayor 

sensibilidad del modelo numérico. Por su parte, el modelo teórico fija el agrietamiento en 

8.33 𝑘𝑁 con la misma deflexión de 0.65 𝑚𝑚. Esta discrepancia muestra que la carga inicial 

prevista por el FEM es −52 % inferior a la teórica, mientras que la deformación coincide 

(0 % de diferencia), subrayando que la formulación analítica subestima la aparición temprana 

de fisuras al no considerar la deformabilidad adicional generada por el agrietamiento, 

mantiene deflexiones menores y una carga de agrietamiento sustancialmente mayor. A partir 

de este punto el comportamiento no lineal se manifiesta y las deflexiones crecen con rapidez. 

 

2) Comparación de resultados en el estado de fluencia 

Para este estado, el modelo de fisuración indica que las fisuras verticales producto de los 

esfuerzos a flexión son las más significativas concentrándose en la zona central.  

El modelo teórico ubica la fluencia en 20.01 𝑘𝑁 con 4.04 𝑚𝑚 de deflexión; el FEM la sitúa 

en 20.62 𝑘𝑁 (variación de +3 % en carga) y 7.60 𝑚𝑚 (error de +88 % en deflexión), en 

este punto de transición entre deformación elástica y plástica esta diferencia en la deflexión 
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es significativa y sugiere que el modelo FEM está tomando en cuenta la deformación plástica 

que ocurre a medida que el mortero comienza a ceder bajo carga, indicando que puede 

capturar adecuadamente el comportamiento no lineal en el elemento y con el refuerzo, por lo 

tanto, lo hace preciso en cuanto a la predicción de deflexiones en esta fase.  

Desarrollo de fluencia en la viga: Al llegar al punto de fluencia, el mortero comienza a 

experimentar deformaciones plásticas no recuperables, en este punto, el sistema de refuerzo 

comienza a asumir la carga de manera más significativa, ya que el mortero ya no puede 

resistir los esfuerzos de tracción de manera efectiva. Sin embargo, la rigidez de la viga 

disminuye debido a la fluencia del material.  

 

3) Comparación de resultados en el estado de rotura 

Para este estado, se tiene que las tensiones principales están en función de los esfuerzos a 

flexión, condensando las deformaciones de fisura verticales en la zona central. 

El modelo teórico estima la falla en 32.41 kN y 30.33 mm; el FEM pronostica 33.34 kN 

(variación de +2.9 % en carga) y 38.05 mm (variación de +25.5 % en deflexión). La deflexión 

es mayor en el modelo FEM en comparación con el modelo teórico, lo que indica que el 

modelo numérico captura la pérdida de rigidez debido a los efectos plásticos y de fisuración 

de la viga bajo cargas extremas, sin embargo, el modelo teórico es capaz de estimar de manera 

inicial la carga máxima que se tendrá en el elemento, mostrando una concordancia con las 

suposiciones del comportamiento y las propiedades del material asumidas en el análisis 

teórico. 
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Figura 4.9. Distribución en el instante de aparición de las primeras fisuras según el 

modelo FEM: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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Figura 4.10. Distribución en el instante de fluencia según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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Figura 4.11. Distribución en el instante de rotura según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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4.3 Análisis del comportamiento simultáneo a flexión y corte (Modelo 3) 

Para realizar el análisis con la interacción simultánea a flexión y corte, se plantea desarrollar 

en DIANA el ensayo a flexión bajo esquema de carga ASTM C78, planteando un modelo 

numérico de una viga tipo I de ferrocemento con una luz efectiva de 2700 𝑚𝑚 y con una 

separación entre aplicadores de carga igual a (𝐿 3⁄ ), como se muestra a continuación: 

 

Figura 4.12. Vista en elevación de viga tipo I de ferrocemento a escala estándar 

(Modelo 3) 

 

Fuente: Elaboración propia con el uso del software Revit. 

 

Se tienen los siguientes datos del análisis teórico: 

Tabla 4.4. Valores determinados del comportamiento teórico 

Estado 

Momento 

Flector 

𝑴 

(𝒌𝑵 ∙ 𝒎) 

Fuerza 

Cortante 

𝑽 

(𝒌𝑵) 

Carga 

 

𝑷 

(𝒌𝑵) 

Deflexión 

 

∆ 

(𝒎𝒎) 

Agrietamiento 5.00 - 11.10 0.75 

Fluencia 12.01 - 26.68 5.07 

Rotura 19.45 - 43.22 37.51 

Corte - 45.39 90.78 - 

Fuente: Elaboración propia. 

Nota: La columna de Carga fue determinada para el esquema de carga ASTM C78 (Figura 

2.46), con la ecuación de momento flector en el tercio central (M=ω∙L∙P⁄2); y de fuerza 

cortante (V=P⁄2) 
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4.3.1 Curvas carga-deflexión 

Para la modelación numérica en DIANA, se sigue todo el proceso establecido en la sección 

3.8, y con el respectivo proceso de análisis del cual se obtuvieron los siguientes resultados: 

 

Figura 4.13. Curva carga-deflexión Teórico vs. FEM 

 

Fuente: Elaboración propia 

Tabla 4.5. Carga-deflexión en etapas críticas: Teórico vs FEM 

Etapa 

Critica 
Fuente 

Carga 

(𝒌𝑵) 

Δ 

Carga 

(𝒌𝑵) 

Variación 

(%) 

Deflexión 

(𝒎𝒎) 

Δ 

Deflexión 

(𝒎𝒎) 

Variación 

(%) 

Fisuración 
Teórico 𝟏𝟏. 𝟏𝟎 - - 𝟎. 𝟕𝟓 - - 

FEM 𝟓. 𝟎𝟎 −6.10 −54.9 𝟎. 𝟕𝟎 +0.05 −6.7 

Fluencia 
Teórico 𝟐𝟔. 𝟔𝟖 - - 𝟓. 𝟎𝟕 - - 

FEM 𝟐𝟔. 𝟕𝟎 +0.02 +0.1 𝟖. 𝟕𝟏 +3.64 +71.8 

Rotura 
Teórico 𝟒𝟑. 𝟐𝟐 - - 𝟑𝟕. 𝟓𝟏 - - 

FEM 𝟒𝟐. 𝟔𝟖 −0.54 −1.3 𝟑𝟗. 𝟕𝟐 +2.21 +5.9 

Fuente: Elaboración propia. 
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1) Comparación de los resultados del estado de agrietamiento 

El modelo FEM indica la aparición de las primeras microfisuras a 5.00 𝑘𝑁 con 0.70 𝑚𝑚 de 

deflexión en la cara traccionada, lo que confirma que el cálculo numérico incorpora la 

degradación de rigidez del mortero y su interacción con la malla antes del umbral analítico. 

Por su parte, la formulación teórica sitúa el agrietamiento en 11.10 𝑘𝑁 y 0.75 𝑚𝑚; la 

discrepancia entre ambos modelos equivale a – 54.9 % en carga, mientras que la diferencia 

de deformación es solo – 6.7 %. Esta brecha evidencia que la teoría lineal elástica-perfecta 

subestima la sensibilidad inicial del ferrocemento al agrietamiento. 

 

2) Comparación de resultados en el estado de fluencia 

El patrón numérico muestra fisuras verticales dominantes en el tercio central, con inclinación 

creciente hacia los extremos donde prevalece el corte. La teoría fija la fluencia en 26.68 𝑘𝑁 

y 5.07 𝑚𝑚; el FEM la localiza prácticamente en la misma carga (26.70 𝑘𝑁, +0.1 % de 

variación), pero con 8.71 𝑚𝑚 de deflexión, es decir +71.8 % respecto al valor analítico. 

Esta diferencia refleja la capacidad del FEM para reproducir la plastificación del mortero y 

la transferencia gradual de esfuerzos al refuerzo: a medida que el mortero cede, la rigidez 

flexional se reduce y la deformación se amplifica. El resultado confirma que, para modelar 

la fluencia con precisión, es imprescindible incluir las no linealidades materiales y la 

evolución de fisuras que el enfoque teórico omite. 

 

3) Comparación de resultados en el estado de rotura 

En la fase final, las fisuras verticales del vano central se inclinan hacia los apoyos; 

predominan las diagonales por corte-flexión en los tercios extremos. El modelo teórico 

pronostica el colapso a 43.22 𝑘𝑁 con 37.51 𝑚𝑚 de deflexión. El FEM predice 42.68 𝑘𝑁 

(−1.3 % en carga) y 39.72 𝑚𝑚 (+5.9 % en deflexión). 

La ligera subestimación de la resistencia y la mayor deformación calculada por el FEM 

demuestran que el análisis no lineal capta mejor la pérdida de rigidez asociada a la fisuración 

progresiva y al ablandamiento plástico del mortero, mientras que la teoría mantiene una 

rigidez residual mayor de la que realmente posee la viga al borde del colapso.  
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Figura 4.14. Distribución en el instante de aparición de las primeras fisuras según el 

modelo FEM: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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Figura 4.15. Distribución en el instante de fluencia según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐;  
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Figura 4.16. Distribución en el instante de rotura según la predicción teórica de: 

(𝒂) 𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔; 

 

(𝒃) 𝑫𝒆𝒇𝒐𝒓𝒎𝒂𝒄𝒊ó𝒏 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂; 

 

(𝒄) 𝑨𝒏𝒄𝒉𝒐 𝒅𝒆 𝑭𝒊𝒔𝒖𝒓𝒂 𝑷𝒐𝒏𝒅𝒆𝒓𝒂𝒅𝒐; 
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4.4 Análisis técnico-económico en aplicación estructural de vigas I de ferrocemento 

Debido al enfoque adoptado en esta investigación para el análisis del comportamiento de 

vigas tipo I de ferrocemento al ser sometidas a ensayos a flexión, su campo de aplicación se 

ha limitado a desempeñar como “elemento simplemente apoyado”. 

En este contexto, se propone como alternativa de aplicación estructural viable el uso de 

“Vigas I de ferrocemento en sistema de losa aligerada unidireccional”, como se muestra 

en la Figura 4.17.  

Figura 4.17. Sección transversal sistema de piso con vigas I de ferrocemento 

 

Fuente: Elaboración propia con el uso del software Revit. 

- Análisis técnico 

Para llevar a cabo el análisis técnico como alternativa de aplicación de vigas tipo I de 

ferrocemento en un sistema de losa aligerada unidireccional, se plantea el siguiente modelo 

para la estructura de la edificación: 

Figura 4.18. Vista isométrica modelo sólido de edificación 

 

Fuente: Elaboración propia con el uso del software Revit. 
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Figura 4.19. Vista en planta 2do nivel de edificación con sistema de  

losa aligerada unidireccional con vigas I de ferrocemento 

 

Fuente: Elaboración propia con el uso del software Revit. 

Con base al modelo solido de la estructura, se tiene el siguiente modelo analítico estructural 

a ser analizado en el software ETABS: 

Figura 4.20. Modelo estructural con sistema de losas unidireccionales 

 

Fuente: Elaboración propia con el uso del software ETABS. 
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El método adoptado para este análisis es el Diseño por Factores de Carga y Resistencia 

(LRFD). Según los resultados obtenidos del modelo FEM para vigas tipo I de ferrocemento 

se tienen los siguientes valores de resistencia de diseño, afectados con los factores de 

reducción de resistencia ϕ (Tabla 21.2.1. ACI 318-19) correspondientes: 

Para la resistencia a flexión se obtiene el valor del momento resistente a partir de los 

resultados de carga máxima en el (Modelo 2): 

ϕ𝑀𝑛 = 0.9 ∙
33.34 ∙ 1.2

2
= 18.00 𝑘𝑁 ∙ 𝑚 

𝛟𝑴𝒏 = 𝟏𝟖. 𝟎𝟎 𝒌𝑵 ∙ 𝒎 

Se asigna la tipología de carga junto a las hipótesis de carga para determinar la resistencia 

requerida: 

Tabla 4.6. Cargas permanentes para entrepiso 

Elemento Carga Unidad 

Cargas por unidad de área en losas 

Mortero de nivelación 1.53 𝑘𝑁 𝑚2⁄  

Cielo raso 0.35 𝑘𝑁 𝑚2⁄  

Pegamento cerámico 0.11 𝑘𝑁 𝑚2⁄  

Cerámico 0.18 𝑘𝑁 𝑚2⁄  

Sub Total 2.17 𝒌𝑵 𝒎𝟐⁄  

Cargas por unidad de área en muros 

Muro de ladrillo e =12 cm 1.06 𝑘𝑁 𝑚2⁄  

Revoque grueso 0.28 𝑘𝑁 𝑚2⁄  

Revoque fino 0.06 𝑘𝑁 𝑚2⁄  

Sub Total 1.74 𝒌𝑵 𝒎𝟐⁄  

TOTAL 4.00 𝒌𝑵 𝒎𝟐⁄  

Fuente: Elaboración propia. 

Tabla 4.7. Cargas permanentes para cubierta 

Elemento Carga Unidad 

Cargas por unidad de área en cubierta 

Peso de cubierta 2.00 𝑘𝑁 𝑚2⁄  

Fuente: Elaboración propia 
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Tabla 4.8. Sobrecargas de uso para entrepiso y cubierta 

Elemento Sobrecarga Unidad 

Habitaciones de viviendas  2.00 𝑘𝑁 𝑚2⁄  

Azoteas accesibles solo privadamente 1.50 𝑘𝑁 𝑚2⁄  

Fuente: Elaboración propia 

Donde las fuerzas internas máximas a considerar, para el sistema de losa unidireccional 

debido a las solicitaciones de carga mayoradas según la Figura 4.21, serán: 

Figura 4.21. Valores máximos de momento flector en losas unidireccionales 

 

Fuente: Elaboración propia con el uso del software ETABS. 

Con los valores de resistencia requerida obtenidos del análisis estructural, se garantiza la 

seguridad cuando: 

𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎 𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑑𝑎 ≤ 𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎 𝑑𝑒 𝑑𝑖𝑠𝑒ñ𝑜 

𝑈 ≤ ϕ𝑆𝑛 

Para la resistencia a flexión: 

𝑀 = 6.56 𝑘𝑁 ∙ 𝑚 < ϕ𝑀𝑛 = 18.00 𝑘𝑁 ∙ 𝑚 

Para dicho valor de momento flector de acuerdo a los resultados obtenidos de carga y 

deflexión en el segundo modelo FEM mostrado en la Figura 4.8, el valor de la deflexión es 

6.42 𝑚𝑚, dicho valor no debe ser superar la deflexión máxima establecida en la  

tabla 24.2.2 del código ACI 318-19 y NB 1225001, en consecuencia, se tiene que: 
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Δ = 6.42 𝑚𝑚 ≤  Δ𝑚𝑎𝑥 =
𝑙

240
=
2700

240
= 11.25 𝑚𝑚 

Para ambos requerimientos la aplicación de vigas tipo I de ferrocemento como elemento 

estructural es viable, ya que cumple con los criterios de seguridad tanto en flexión como la 

deformación máxima por flexión, lo que garantiza su desempeño seguro bajo las cargas 

aplicadas sin alcanzar su capacidad máxima, garantizando la seguridad. 

- Análisis económico 

Con el objetivo de evaluar el costo-beneficio de las vigas tipo I de ferrocemento como 

alternativa en un sistema de losa unidireccional, se llevará a cabo una comparación directa 

con un sistema de hormigón armado para piso que consiste en una losa aligerada 

unidireccional conformada por vigas T de hormigón armado, con prestaciones estructurales 

equivalentes, como se detalla a continuación: 

Figura 4.22. Sección transversal losa aligerada unidireccional de HºAº 

 

Fuente: Diseño de concreto reforzado (Mc Cormac & Brown, 2017). 

Para el diseño a flexión se tienen los siguientes datos. 

- Para el hormigón: 

 𝑓′𝑐 = 21 𝑀𝑃𝑎 

 𝜀𝑐𝑢 = 0.003 

 𝛽1 = 0.85       (2.17) 

- Para las barras de refuerzo: 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

 𝑓𝑦 = 500 𝑀𝑃𝑎 

𝜀𝑦 =
500

200000
= 0.0025 

El Modelo 2 de elementos finitos, nos da el siguiente momento último: 

𝑀𝑢 = 20.00 𝑘𝑁 ∙ 𝑚 



164 

 

Si se supone que el eje neutro se sitúa dentro del espesor de ala (ℎ𝑓), se puede calcular igual 

que para las vigas rectangulares. 

Entonces, la cuantía será igual a la expresión dada para la cuantía máxima: 

𝜌 = 𝜌𝑚𝑎𝑥 =
0.85 ∙ 𝑓′𝑐 ∙ 𝛽1

𝑓𝑦
∙ (

𝜀𝑐𝑢
2 ∙ 𝜀𝑐𝑢 + 𝜀𝑦

) 

𝜌 =
0.85 ∙ 21 ∙ 0.85

500
∙ (

0.003

2 ∙ 0.003 + 0.0025
) = 0.0107 

La ecuación para determinar la profundidad efectiva es la siguiente: 

𝑀𝑢 = ϕ ∙ 𝜌 ∙ 𝑓𝑦 ∙ (1 −
𝜌 ∙ 𝑓𝑦

1.70 ∙ 𝑓′
𝑐

) ∙ 𝑏𝑤 ∙ 𝑑
2 

Teniendo en cuenta que 𝑏𝑤 = ℎ 2⁄ , se tiene que: 

𝑀𝑢 = ϕ ∙ 𝜌 ∙ 𝑓𝑦 ∙ (1 −
𝜌 ∙ 𝑓𝑦

1.70 ∙ 𝑓′
𝑐

) ∙
𝑑3

2
 

20 = 0.9 ∙ 0.0107 ∙ 500 ∙ (1 −
0.0107 ∙ 500

1.70 ∙ 21
) ∙
𝑑3

2
∙ 103 

Realizando el proceso iterativo, se obtiene la profundidad efectiva: 

𝑑 = 0.214 𝑚 = 214 𝑚𝑚 

Adoptando un recubrimiento 𝑟 = 30 𝑚𝑚, la altura será igual a: 

ℎ = 𝑑 + 𝑟 = 214 + 30 = 249 𝑚𝑚 ≈ 250 𝑚𝑚 

𝑏𝑤 =
ℎ

2
=
250

2
= 125 𝑚𝑚 ≈ 150 𝑚𝑚 

El espesor de la carpeta de compresión esta dado por: 

ℎ𝑓 = 0.5 ∙ 𝑏𝑤 = 0.5 ∙ 150 

ℎ𝑓 = 75 𝑚𝑚 

Se tiene el ancho efectivo del ala de acuerdo a la figura: 

𝑏𝑓 ≤ 16 ∙ ℎ𝑓 + 𝑏𝑤 

𝑏𝑓 ≤ 16 ∙ 75 + 150 

𝑏𝑓 ≤ 1350 

𝑏𝑓 = 1000 𝑚𝑚 
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Adoptando un diámetro de barras 𝜙𝑏 = 10 𝑚𝑚, con un área de: 

𝐴𝑏 = 𝜋 ∙ (
𝜙𝑏
2
)
2

= 78.54 𝑚𝑚 

𝑑 = ℎ − 𝑟 −
𝜙𝑏
2

 

𝑑 = 250 − 30 −
10

2
= 215 𝑚𝑚 

Con la geometría definida se verifica que el eje neutro se situé dentro del ala, el valor de 𝑎 

se calcula de la siguiente forma: 

𝑎 =
𝑀𝑢

0.85 ∙ ϕ ∙ 𝑓′𝑐 ∙ 𝑏𝑓 ∙ (𝑑 −
ℎ𝑓
2
)

 

𝑎 =
20

0.85 ∙ 0.9 ∙ 21 ∙ 103 ∙ 1 ∙ (0.215 −
0.075
2 )

 

𝑎 = 7.02 𝑚𝑚 

La distancia 𝑐 al eje neutro es igual a 𝑎 𝛽1⁄ , entonces: 

𝑐 =
7.02

0.85
= 8.25 𝑚𝑚 

𝑐 = 8.25 𝑚𝑚  ≤   ℎ𝑓 = 75 𝑚𝑚 

El valor calculado de 𝑐 es menor que el espesor del ala, la sección puede suponerse como 

rectangular. Por lo tanto, para determinar el área de acero de refuerzo a tracción, se puede 

usar la siguiente expresión: 

(
ϕ ∙ 𝑓𝑦

2

1.70 ∙ 𝑓′
𝑐
∙ 𝑏𝑓

) ∙ 𝐴𝑠
2 + ϕ ∙ 𝑓𝑦 ∙ 𝑑 ∙ 𝐴𝑠 +𝑀𝑢 = 0 

(
0.9 ∙ 5002

1.70 ∙ 21 ∙ 1000
) ∙ 𝐴𝑠

2 + 0.9 ∙ 500 ∙ 215 ∙ 𝐴𝑠 + 20.00 ∙ 10
6 = 0 

Realizando el proceso iterativo se tiene: 

𝐴𝑠 = 209.63 𝑚𝑚
2 

El número de barras en la zona a tracción, será igual a: 

𝑁𝑏 =
𝐴𝑠
𝐴𝑏

=
209.63

78.54
= 2.67 ≈ 3 𝑏𝑎𝑟𝑟𝑎𝑠 𝜙 10 𝑚𝑚 

Se dispondrán “2 𝑏𝑎𝑟𝑟𝑎𝑠 𝜙 6 𝑚𝑚”, en la zona a compresión como armadura de montaje. 
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Para el diseño a corte se tienen los siguientes datos: 

- Para el hormigón. 

 𝑓′𝑐 = 21 𝑀𝑃𝑎 

 𝜆 = 1       (Figura 2.8) 

 𝑏𝑤 = 125 𝑚𝑚 

- Para el sistema de refuerzo. 

 𝐸𝑠 = 200000 𝑀𝑃𝑎 

 𝑓𝑦 = 420 𝑀𝑃𝑎 

 𝑑 = 215 𝑚𝑚 

Se adopta un espaciamiento entre ejes estribos igual a: 

 𝑠 = 250 𝑚𝑚 

Resistencia aporta el hormigón al corte, ecuación (2.132) se tiene: 

𝑉𝑐 = 0.17 ∙ 1 ∙ √21 ∙ 300 ∙ 215 ∙ 10−3 = 25.12 𝑘𝑁 

Para una configuración de estribos verticales, la fuerza total cortante que resisten los estribos 

estará dada por (2.133). 

Se adopta un diámetro de barras 𝜙𝑏 = 6 𝑚𝑚, con un área de 𝐴𝑏 = 𝜋 ∙ (
𝜙𝑏

2
)
2

= 28.27 𝑚𝑚 

𝐴𝑣 = 2 ∙ 𝐴𝑏 = 2 ∙ 28.27 = 56.55 𝑚𝑚2 

De acuerdo a (2.133), la fuerza de corte resistida por los estribos será: 

𝑉𝑠 = 56.55 ∙ 420 ∙
215

250
∙ 10−3 = 20.43 𝑘𝑁 

La resistencia nominal al corte de la viga está dada por (2.131), donde: 

𝑉𝑛 = 20.43 + 25.12 = 45.55 𝑘𝑁 

El cortante último estará dado por el Modelo 3, siendo 𝑉𝑢 = 42.68 𝑘𝑁. 

Entonces, se tiene: 

𝑉𝑛 = 45.55 𝑘𝑁 > 𝑉𝑢 = 42.68 𝑘𝑁  

Por lo tanto, la sección de viga de hormigón armado usada para la comparación será la 

siguiente: 
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Figura 4.23. Sección transversal viga convencional de hormigón armado 

 

Fuente: Elaboración Propia. 

 

Del análisis de precios unitarios (ver Anexo 2), se tiene lo siguiente: 

▪ Para fabricar 1 𝑚2 de losa unidireccional aligerada de HºAº, tiene un costo de 

producción de: 𝟕𝟖𝟔. 𝟎𝟐 𝑩𝒔. 

▪ Para fabricar 1 𝑚2 de losa unidireccional aligerada con Vigas I de Ferrocemento, 

tiene un costo de producción de: 𝟕𝟔𝟗. 𝟐𝟐 𝑩𝒔. 

 

Tabla 4.9. Comparación de costos por 𝟏 𝒎𝟐 

Material Costo (Bs) 
Diferencia 

absoluta (Bs) 

Relación 

de costos 

Diferencia 

(%) 

Losa Aligerada de HºAº 786.02 

16.80 1.02 2.16% Losa Aligerada con 

Vigas I de Ferrocemento 
769.22 

Fuente: Elaboración propia 

 

En un primer punto de comparación el costo de producción por 1 𝑚2 de Losa Aligerada de 

HºAº, es 1.02 veces más caro que el costo de producción de una Losa Aligerada con Vigas I 

de Ferrocemento, representando un incremento del 2.16%, dando un sobrecosto en la Losa 

Aligerada con Vigas I de Ferrocemento de 16.80 𝐵𝑠. Por cada 1 𝑚2. 

 

mm

mm

mm

C/250 mm

 h = 250 mm

 bw = 150 mm

d = 210 mm

r = 40 mm

hf = 75 mm

bf = 750 mm
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Tabla 4.10. Comparación Losa aligerada de Ferrocemento vs. Losa aligerada de HºAº 

Concepto 

Losa Aligerada 

con Vigas I de 

Ferrocemento 

Losa Aligerada 

de HºAº 

Relación 

𝑭°
𝑽°𝑷°⁄  

Consumo de Hormigón  

In Situ por metro cuadrado 
0.07 𝑚

3

𝑚2⁄  0.11 𝑚
3

𝑚2⁄  𝟑𝟔. 𝟑𝟔%  

Peso por metro cuadrado 274.46 
𝑘𝑔

𝑚2⁄  352 
𝑘𝑔

𝑚2⁄  𝟐𝟐. 𝟎𝟑%  

Costo por metro cuadrado 769.22 𝐵𝑠. 𝑚2⁄  786.02 𝐵𝑠. 𝑚2⁄  𝟐. 𝟐𝟔% 

Fuente: Elaboración Propia 

Nota: La densidad de 2155.08 𝑘𝑔 𝑚3⁄  empleada para el mortero de 

Ferrocemento y 2400 𝑘𝑔 𝑚3⁄  para el hormigón.  

 

Si bien aplicar las vigas tipo I de ferrocemento como sistema de losa unidireccional aligerada 

proporciona un ahorro en el consumo de hormigón por metro cuadrado fabricado in situ de 

(𝟑𝟔. 𝟑𝟔%) y por ende en el peso por metro cuadrado del sistema de piso en un (𝟐𝟐. 𝟎𝟑%) 

frente a un sistema de convencional de HºAº, esto no se ve reflejado en el costo por metro 

teniendo una diferencia apreciable del (𝟐. 𝟐𝟔%) en costo por metro cuadrado. 
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 CAPÍTULO V 

CONCLUSIONES Y RECOMENDACIONES 

5.1 Conclusiones 

A partir de los resultados obtenidos y en respuesta a los objetivos establecidos en la 

investigación, se puede concluir que: 

▪ Se identificó a partir del ensayo a flexión en laboratorio que las vigas tipo I de 

ferrocemento ensayadas, “fallaron por tensión diagonal” debido a que las tensiones 

principales están en función de los esfuerzos por corte, donde la carga promedio de 

colapso fue (𝑃𝑒𝑥𝑝 = 89 𝑘𝑁), un valor cercano al calculado para la carga teórica 

asociada al cortante máximo (𝑃𝑉,𝑀𝑎𝑥 = 90.78 𝑘𝑁). En consecuencia, las vigas tipo I 

de ferrocemento ensayadas, alcanzaron su resistencia a corte máxima 𝑉𝑢, antes de 

alcanzar la resistencia a flexión máxima 𝑀𝑢, donde la carga teórica calculada asociada 

al momento máximo es (𝑃𝑀,𝑀𝑎𝑥 = 129.67 𝑘𝑁), necesaria para producir la falla a 

flexión en los especímenes de ferrocemento. 

Los resultados son mostrados en la Figura 5.1. 

Figura 5.1. Comparación de cargas máximas: momento teórico, corte crítico teórico y 

vigas I de ferrocemento ensayadas (V-1 a V-5) 

 

Fuente: Elaboración propia 
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▪ Se implementó un primer modelo de elementos finitos dentro del software DIANA, 

que replicó el ensayo a flexión en laboratorio de las vigas tipo I de ferrocemento. 

Utilizando como modelo de fisura la fisuración basada en deformación total y con un 

modelo grieta rotativa, la simulación reprodujo el mismo patrón de fisuras diagonales 

(Figura 4.6), confirmando que la falla está gobernada por el cortante, los resultados 

obtenidos del modelo FEM mostraron una concordancia en relación al ensayo 

experimental para cada estado: 

➢ Estado de agrietamiento: 

En carga: Experimental (14 𝑘𝑁) vs. FEM (13.99 𝑘𝑁), concordancia del 

−0.07 %, del modelo FEM respecto al Experimental. 

En deflexión: Experimental (0.12 𝑚𝑚) vs. FEM (0.13 𝑚𝑚), concordancia 

del +8.3 %, del modelo FEM respecto al Experimental. 

➢ Estado de fluencia: 

En carga: Experimental (80 𝑘𝑁) vs. FEM (80.51 𝑘𝑁), concordancia del 

+0.64 %, del modelo FEM respecto al Experimental. 

En deflexión: Experimental (2.02 𝑚𝑚) vs. FEM (1.95 𝑚𝑚), concordancia 

del −3.5 %, del modelo FEM respecto al Experimental. 

➢ Estado de rotura: 

En carga: Experimental (89 𝑘𝑁) vs. FEM (83.96 𝑘𝑁), concordancia del 

−5.7 %, del modelo FEM respecto al Experimental. 

En deflexión: Experimental (6.33 𝑚𝑚) vs. FEM (6.17 𝑚𝑚), concordancia 

del −2.5 %, del modelo FEM respecto al Experimental. 

El modelo FEM en todos los casos satisface el criterio de la variación de valores 

dentro de un 10 % fijado en la hipótesis, validando el modelo numérico de elementos 

finitos. 

▪ Se compararon las predicciones del modelo teórico con los resultados obtenidos 

experimentalmente del ensayo a flexión, en todos los estados límite: 

➢ Estado de agrietamiento: 

En carga: Experimental (14 𝑘𝑁) vs. Teórico (33.31 𝑘𝑁), concordancia del 

+137.9 %, del modelo Teórico respecto al Experimental. 
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En deflexión: Experimental (0.12 𝑚𝑚) vs. Teórico (0.08 𝑚𝑚), 

concordancia del −33.3 %, del modelo Teórico respecto al Experimental. 

➢ Estado de fluencia: 

En carga: Experimental (80 𝑘𝑁) vs. Teórico (80.04 𝑘𝑁), concordancia del 

+0.05 %, del modelo Teórico respecto al Experimental. 

En deflexión: Experimental (2.02 𝑚𝑚) vs. Teórico (0.56 𝑚𝑚), 

concordancia del −72.3 %, del modelo Teórico respecto al Experimental. 

➢ Estado de rotura: 

En carga: Experimental (89 𝑘𝑁) vs. Teórico (90.78 𝑘𝑁), concordancia del 

+2.0 %, del modelo Teórico respecto al Experimental. 

En deflexión: Experimental (6.33 𝑚𝑚) vs. Teórico (4.17 𝑚𝑚), 

concordancia del −34.1 %, del modelo Teórico respecto al Experimental. 

La predicción del modelo teórico brindo una buena aproximación de la capacidad 

última, aunque subestima las deflexiones finales, motivo por el cual su uso debe 

limitarse a cálculos preliminares de resistencia. 

Figura 5.2. Comparación de cargas por estado límite (fisuración, fluencia y rotura) 

entre resultados experimentales, modelo FEM y predicción teórica 

 

Fuente: Elaboración propia 
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Figura 5.3. Comparación de cargas y deflexiones por estado límite (fisuración, 

fluencia y rotura) entre resultados experimentales, modelo FEM y predicción teórica 

 

Fuente: Elaboración propia 
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➢ Estado de fluencia: 

En carga: Teórico (20.01 𝑘𝑁) vs. FEM (20.62 𝑘𝑁), concordancia del 

−3.0 %, del modelo FEM respecto al modelo Teórico. 

En deflexión: Teórico (4.04 𝑚𝑚) vs. FEM (7.60 𝑚𝑚), concordancia del 

+88.1 %, del modelo FEM respecto al modelo Teórico. 

➢ Estado de rotura: 

En carga: Teórico (32.41 𝑘𝑁) vs. FEM (30.33 𝑘𝑁), concordancia del 

−25.5 %, del modelo FEM respecto al modelo Teórico. 

En deflexión: Teórico (30.33 𝑚𝑚) vs. FEM (38.05 𝑚𝑚), concordancia del 

+25.5 %, del modelo FEM respecto al modelo Teórico. 

Por tanto, el segundo modelo FEM, al mostrar un ajuste preciso del comportamiento 

global, se valida como herramienta de diseño y optimización de vigas tipo I de 

ferrocemento a escala real, mientras que la ecuación teórica debe limitarse a 

verificaciones preliminares de capacidad resistente. 

Figura 5.4. Comparación de cargas teórica y numérica (Modelo FEM 2) en los estados 

límite de fisuración, fluencia y rotura para la viga tipo I de ferrocemento. 

 

Fuente: Elaboración propia 
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Figura 5.5. Comparación de deflexiones teórica y numérica (Modelo FEM 2) en los 

estados límite de fisuración, fluencia y rotura para la viga tipo I de ferrocemento. 

 

Fuente: Elaboración propia 
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▪ Se propuso un tercer modelo FEM en el software DIANA, a una escala de aplicación 

de 2700 mm de luz entre apoyos, y configuración de ensayo a cuatro puntos (dos 

cargas puntuales en el tercio central separadas 900 mm), lo cual permitió simular la 

interacción simultánea de flexión y corte en la viga tipo I de ferrocemento modelada, 

la simulación, sustentada preliminarmente en la expresión del modelo teórico, 

reprodujo la carga máxima con alta precisión y aunque la teoría continuó 

subestimando las deflexiones mostró los siguientes desvíos en relación con el modelo 

FEM: 

➢ Estado de agrietamiento: 

En carga: Teórico (11.10 𝑘𝑁) vs. FEM (5 𝑘𝑁), concordancia del −54.9 %, 

del modelo FEM respecto al modelo Teórico. 

En deflexión: Teórico (0.75 𝑚𝑚) vs. FEM (0.70 𝑚𝑚), concordancia del 

−6.7 %, del modelo FEM respecto al modelo Teórico. 

➢ Estado de fluencia: 

En carga: Teórico (26.68 𝑘𝑁) vs. FEM (26.70 𝑘𝑁), concordancia del 

−0.1 %, del modelo FEM respecto al modelo Teórico. 

En deflexión: Teórico (5.07 𝑚𝑚) vs. FEM (8.71 𝑚𝑚), concordancia del 

+71.8 %, del modelo FEM respecto al modelo Teórico. 

➢ Estado de rotura: 

En carga: Teórico (43.22 𝑘𝑁) vs. FEM (42.68 𝑘𝑁), concordancia del 

−1.3 %, del modelo FEM respecto al modelo Teórico. 

En deflexión: Teórico (37.51 𝑚𝑚) vs. FEM (39.72 𝑚𝑚), concordancia del 

+5.9 %, del modelo FEM respecto al modelo Teórico. 

Por consiguiente, el tercer modelo FEM al mostrar una congruencia precisa con el 

comportamiento global observado en las vigas tipo I de ferrocemento, queda validado 

como recurso confiable para el análisis de las mismas, mientras que la formulación 

teórica debe restringirse a aproximaciones iniciales de resistencia. 
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Figura 5.6. Comparación de cargas teórica y numérica (Modelo FEM 3) en los estados 

límite de fisuración, fluencia y rotura para la viga tipo I de ferrocemento. 

 

Fuente: Elaboración propia 
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▪ Se demostró a partir de la simulación del ensayo a flexión en el tercer modelo FEM 

y utilizando un modelo de fisuración basado en deformación total y un modelo de 

grieta rotativa para una viga tipo I de ferrocemento, que el gráfico de contornos de la 

deformación de fisura (Figura 4.12. b) mostró, en el estado de rotura, que las tensiones 

principales se concentraron de forma vertical desde la fibra inferior en el tercio central 

y, al propagarse hacia los apoyos, adoptaron inclinaciones pronunciadas, generando 

grietas diagonales significativas en los tercios externos, los gráficos de contorno de 

deflexiones (Figura 4.11. a.) y de contorno del ancho de fisura (Figura 4.11. c.) 

corroboraron un modo de falla donde interactuaron simultáneamente flexión y corte, 

máxima apertura de fisura vertical en el tercio central (dominada por momento) y 

fisuras inclinadas controladas por cortante en las zonas de mayor esfuerzo transversal. 

En consecuencia, el modelo se consideró apto para evaluar la rigidez efectiva y la 

ductilidad cuando actúan simultáneamente flexión y corte de vigas tipo I de 

ferrocemento en aplicaciones prefabricadas de escala real, mientras que la 

formulación teórica queda limitada a comprobaciones preliminares de capacidad 

resistente. 

▪ Se verificó la aplicabilidad de las vigas tipo I de ferrocemento como sistema de piso 

para estructuras de edificación, específicamente en configuraciones de losa 

unidireccional aligerada. Mediante un modelo de análisis estructural, se determinaron 

las solicitaciones máximas de diseño (𝑀𝑢), las cuales se contrastaron con los valores 

de resistencia última obtenidos en el “Modelo FEM 2” para el momento nominal 

(𝑀𝑛), afectado por un coeficiente de minoración de resistencia (ϕ). 

Para la resistencia a flexión: 

𝑀𝑢 = 6.56 𝑘𝑁 ∙ 𝑚 < ϕ𝑀𝑛 = 18.00 𝑘𝑁 ∙ 𝑚 

Para la deflexión: 

Δ = 6.42 𝑚𝑚 ≤  Δ𝑚𝑎𝑥 = 11.25 𝑚𝑚 

Para ambos requerimientos, la viga tipo I de ferrocemento demostró ser eficiente 

como elemento estructural prefabricado en un sistema de losa aligerada 

unidireccional, las solicitaciones de diseño a flexión (𝑀𝑢) permanece por debajo de 

la resistencia nominal a flexión (ϕ𝑀𝑛), y las deflexiones (Δ) están por debajo de la 
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deflexión máxima (Δ𝑚𝑎𝑥), satisfaciendo los factores de seguridad exigidos por la NB 

1225001, garantizando el desempeño seguro. 

▪ Se comprobó a través de un análisis técnico-económico en las vigas tipo I de 

ferrocemento, la viabilidad como alternativa estructural prefabricada al comparar su 

costo y peso propio por metro cuadrado ante un sistema de piso convencional de losa 

aligerada unidireccional de hormigón armado de prestaciones equivalentes (Figura. 

4.23), donde se concluye:  

➢ Se tiene un costo para el sistema de losa aligerada unidireccional con vigas 

tipo I de ferrocemento de (769.22 𝐵𝑠. 𝑚2⁄ ) frente a (786.02 𝐵𝑠. 𝑚2⁄ ) para 

una losa aligerada unidireccional de hormigón armado con prestaciones 

equivalentes, es decir un ahorro del 2.16 %. 

Figura 5.8. Comparación del costo por metro entre vigas. 

 

Fuente: Elaboración propia 
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Figura 5.9. Comparación del costo por metro entre vigas. 

 

Fuente: Elaboración propia 

Sumadas a la rapidez de producción y montaje inherente al sistema prefabricado, 

estas reducciones indican que la viga tipo I de ferrocemento es una solución más 
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con pequeña y mediana luz. 
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para comparar el rendimiento de diferentes geometrías y observar cómo afecta el 

diseño de la viga a la eficiencia y el comportamiento estructural. 

▪ Considerar la aplicación de diferentes tipos de carga, como cargas cíclicas o cargas 

de impacto, para simular condiciones más cercanas a las situaciones reales que 

pueden experimentar las vigas de ferrocemento en uso estructural. Esto permitirá 

evaluar el comportamiento en fases más avanzadas de carga y bajo cargas más 

complejas. 

▪ Continuar refinando el modelo de elementos finitos, especialmente en lo que respecta 

a la simulación de fisuras y fluencia. Se podrían incorporar parámetros adicionales 

para representar más fielmente la interacción entre el refuerzo y el mortero, así como 

los efectos no lineales que se desarrollan durante las fases de fluencia y rotura. 

▪ Desarrollar estudios adicionales sobre la viabilidad económica y práctica de 

implementar vigas de ferrocemento tipo I en proyectos de edificación y desarrollo 

urbano. Esto incluiría un análisis detallado del costo-beneficio y la logística de 

implementación en sitios de construcción, considerando factores como transporte, 

manejo en obra y tiempos de montaje. 

▪ Realizar un análisis comparativo entre el ferrocemento y otros materiales alternativos 

de bajo costo, como el concreto celular o el concreto reforzado con fibras, para 

determinar cuál ofrece mejores ventajas en términos de resistencia, durabilidad, costo 

y facilidad de fabricación en diferentes tipos de proyectos estructurales. 


