CAPÍTULO V: APLICACIÓN DEL MODELO Y ANÁLISIS DE RESULTADOS

5.1. CONSIDERACIONES INICIALES PARA AMBOS MODELOS

Es necesario contar con diversos elementos fundamentales para el modelamiento hidráulico, como las características geométricas de la presa, topografía del vaso, valores de rugosidad del valle aguas abajo, así como las condiciones iniciales y de contorno del río.

En los modelos IBER y HEC-RAS se emplearon las mismas condiciones de entrada, integrando en ambos programas el modelo digital del terreno (MDT) procesado, los coeficientes de rugosidad asignados, la geometría de la brecha y el tiempo estimado de rotura.

La Tabla 5.1 presenta los parámetros utilizados para el cálculo de la dimensión de la brecha, el tiempo de rotura y el correspondiente caudal pico de rotura.

Tabla 5.1: Niveles y volúmenes característicos de la represa El Tranque

NIVEL DE AGUAS MÁXIMAS ORDINARIAS (NAMO):	3.023,90 msnm
VOLÚMEN MÁXIMO ORDINARIO (V _{NAMO}):	5.025.685,94 m ³
NIVEL DE AGUAS MÁXIMAS EXTRAORDINARIAS (NAME):	3.025,85 msnm
VOLÚMEN MÁXIMO EXTRA ORDINARIO (V _{NAME}):	6.414.449,21 m ³
NIVEL DEL CAUCE O COTA BASE (C _{BASE}):	3.009 msnm
ALTURA DESDE EL CAUCE HASTA LA CORONA:	17,00 m
ALTURA DESDE EL CAUCE HASTA EL NAMO:	14,90 m
ALTURA DESDE EL CAUCE HASTA EL NAME:	16,85 m

Fuente: Elaboración propia.

5.1.1. Topografía del modelo

Para la información topográfica se emplearon Modelos Digitales de Terreno (MDT) con resolución espacial de 5 × 5 metros, descargados a través de la plataforma LandViewer de EOS Data Analytics. Esta herramienta ofrece acceso gratuito a imágenes y datos satelitales provenientes de misiones como Sentinel-2, Landsat 7 y 8, y especialmente ALOS PALSAR, reconocido por sus modelos de elevación de alta precisión. El MDT seleccionado fue complementado con la topobatimetría levantada por el CIAGUA en 2019, con el objetivo de obtener una representación más precisa del terreno.

5.1.2. Coeficiente de rugosidad de Manning

La estimación de dichos coeficientes se realizó mediante un enfoque empírico, complementado con el criterio propio, tomando como referencia los rangos propuestos por libro de canales abiertos de Ven Te Chow (1959) y el United States Soil Conservation Service (USSCS).

Con base en el uso del suelo, se generó un ráster de rugosidades incorporado al modelo digital del terreno, lo que permitió asignar valores de Manning de forma espacial y mejorar la precisión de la simulación hidráulica.

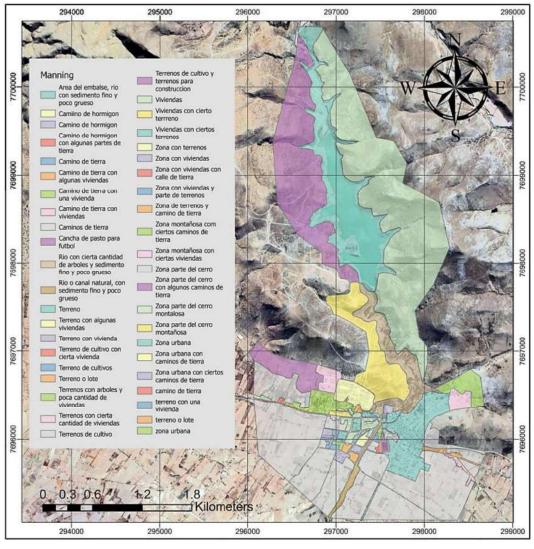


Figura 5.1: Ráster de rugosidades

Fuente: Elaboración propia.

5.1.3. Dimensión de la brecha de rotura

Para estimar el ancho medio de la brecha, se evaluaron tres fórmulas: la de la Guía (1996), Froehlich (2008) y Xu y Zhang (2009). Se eligió esta última por considerar factores clave como el tipo de presa, la causa de rotura y la erodibilidad del material.

A continuación, se presenta el cálculo de la geometría para una falla por sobrevertido. Según la fórmula 3.6, y considerando una presa con pantalla de hormigón y erodibilidad media, se obtuvo:

- o $B_T = 0.026$ (Presas con pantalla).
- $B_C = 0.149$ (Para roturas de sobrevertido). $B_E = -0.140$ (Para erodibilidad media).

$$B = 0.026 + 0.149 - 0.140 = 0.035$$

Realizando el cálculo en condición sin avenida, hasta la cota NAMO, se sustituyen los valores de la Tabla 5.1 y se aplica el coeficiente B en la fórmula 3.5.

$$b = 17 m \cdot \left[0,787 \left(\frac{17 m}{15} \right)^{0,133} \cdot \left(\frac{5.025.685,94 m^3^{1/3}}{14,9 m} \right)^{0,652} \cdot e^{0,035} \right]$$

$$b = 69.24 m$$

Cabe señalar que este valor corresponde al ancho promedio; para su implementación en los modelos es necesario calcular el ancho inferior mediante la siguiente fórmula:

$$b_{inf} = b - \frac{(z_i + z_d) \cdot H}{2} \tag{5.1}$$

Donde:

- b_{inf} : Ancho inferior de la brecha.
- z_i : Es el talud izquierdo.
- z_d : Es el talud derecho
- *H*: Es la altura de la brecha.
- b : Ancho medio de la brecha.

Entonces, considerando que los taludes de la brecha para una presa de enrocado son de 1, según lo indicado en el punto 3.4.6.2, se aplica la fórmula 5.1.

$$b_{inf} = 69,24 \text{ m} - \frac{(1+1)\cdot 14,9 \text{ m}}{2}$$

$$b_{inf} = 54,34 \text{ m}$$

$$b = 84,14 \text{ m}$$

$$b = 54,34 \text{ m}$$

Figura 5.2: Geometría de la brecha para el escenario sin avenida Fuente: Elaboración propia.

A continuación, la tabla con los resultados del ancho inferior de la brecha.

Tabla 5.2: Ancho inferior de la brecha para distintos escenarios

ANCHO INFERIOR DE LA BRECHA				
Sin avenida		Con avenida		
Sobrevertido	Sifonamiento	Sobrevertido	Sifonamiento	
54,34 m	25,53 m	50,53 m	22,49 m	
84,14 m	55,33 m	84,23 m	56,19 m	

Fuente: Elaboración propia.

5.1.4. Tiempos de rotura

Para la estimación del tiempo de rotura, la Guía Técnica para la Clasificación de Presas propone dos expresiones empíricas: una incluida en la propia guía y otra desarrollada por Froehlich (2008). A continuación, se presenta el cálculo del tiempo de rotura utilizando la ecuación 3.1 de la guía técnica para un escenario sin avenida.

Para su aplicación, se sustituyen en la fórmula los valores de la Tabla 5.1 correspondientes al volumen de agua en el momento de la rotura y a la altura de la presa medida desde el cauce.

$$T = 4.8 \cdot \frac{\sqrt{5,026 \ hm^3}}{17 \ m}$$

$$T = 0.63 horas$$

Dado que ambas fórmulas arrojaron valores similares, se optó por utilizar el promedio de los resultados obtenidos.

Tabla 5.3: Tiempos de rotura para diferentes escenarios

N°	AUTOR	TIEMPO DE ROTURA (Hrs)		
		SIN AVENIDA	CON AVENIDA	
1	Guía Técnica para Clasificaión de Presas (1996), f(V, H)	0,633	0,715	
2	Froehlich (2008), f(Vw, hw)	0,741	0,837	
	PROMEDIO	0,687	0,776	

Fuente: Elaboración propia.

5.1.5. Caudal pico de rotura

El caudal pico de rotura se utiliza para estimar el flujo máximo generado tras la falla de una presa. Este valor es clave para dimensionar obras de protección, evaluar el riesgo aguas abajo, delimitar zonas inundables y validar los resultados de modelos numéricos. Además, sirve como referencia en estudios preliminares, en la clasificación del riesgo potencial de la presa y en la planificación de medidas de emergencia.

El caudal máximo de rotura se estimó mediante ecuaciones empíricas que relacionan el volumen almacenado (V_p , en m^3) y la altura de agua desde el lecho del cauce hasta el nivel del embalse al momento de la rotura (h_p , en m). Se consideraron dos escenarios:

- Condición normal de operación (presa llena hasta el nivel operativo máximo).
- Condición de avenida de proyecto (presa llena más el incremento por avenida).

5.1.5.1. Caudal pico de rotura en condición sin avenida

Para el cálculo en condición sin avenida, se consideró el volumen máximo operativo del embalse, correspondiente a la cota de la cresta del vertedero (3.023,9 msnm), con un volumen de 5,026 hm³. La altura desde el lecho del río hasta la lámina de agua en esta condición es de 14,9 metros. Los resultados obtenidos se resumen en la siguiente tabla:

Tabla 5.4: Caudal pico de rotura en condición sin avenida

N°	AUTOR	ECUACIÓN	DATOS		CAUDAL PICO	
IN.	AUTOR	ECUACION	Vw, S (m ³)	hw, hd (m)	m	³ /s
1	Froehlich (1995), f(Vw, hw)	$Q_P = 0.607(Vw^{0.296} \cdot hw^{1.24})$	5.025.685,94	14,90	Qp=	1.639,81
2	McDonald y Langridge-Monopolis (1984), f (Vw, hw)	$Q_P = 3,85(Vw \cdot hw)^{0,411}$	5.025.685,94	14,90	Qp=	6.634,86
3	McDonald y Langridge-Monopolis (1984), f (Vw, hw)	$Q_P = 1,154(Vw \cdot hw)^{0,412}$	5.025.685,94	14,90	Qp=	2.025,12
4	Kirkpatrik (1977), f(hw)	$Q_P = 1,268(hw + 0,3)^{2,5}$	-	14,90	Qp =	1.142,16
5	SCS (1981), f(hw)	$Q_P = 16,6(hw)^{1,85}$	-	14,90	Qp =	2.457,55
6	Reclamation (1982), f (hw)	$Q_P = 19,1(hw)^{1,85}$	-	14,90	Qp =	2.827,67
7	Costa (1985), f (S, hd)	$Q_P = 0.981(S \cdot hd)^{0.42}$	5.025.685,94	14,90	Qp =	1.990,26
8	Hagen (1982), f (S hd)	$Q_P = 0.54(S \cdot hd)^{0.5}$	5.025.685,94	14,90	Qp =	4.672,88
9	Costa (1985), envolvente f(S, hd)	$Q_P = 2,634(S \cdot hd)^{0,44}$	5.025.685,94	14,90	Qp =	7.679,69
10	Evans (1986), f(Vw)	$Q_P = 0.72(Vw)^{0.53}$	5.025.685,94	-	Qp =	2.564,28
11	Singh and Snorrason (1984), f(S)	$Q_P = 1,776(S)^{0,47}$	5.025.685,94	-	Qp=	2.506,14
12	Costa (1985), envolvente, f(S)	$Q_P = 1.122(S)^{0.57}$	5.025.685,94	-	Qp=	7.407,54
13	Singh y Snorrason (1984), f(hd)	$Q_P = 13.4(hd)^{1.89}$	-	14,90	Qp =	2.210,18

Fuente: Elaboración propia.

Dado que las fórmulas utilizadas son de carácter empírico, los resultados presentan un grado considerable de incertidumbre. Por esta razón, se optó por utilizar el caudal pico de rotura mínimo estimado. En el caso de condición de funcionamiento normal, el caudal de rotura adoptado fue de 1.142,16 m³/s.

5.1.5.2. Caudal pico de rotura en condición con avenida

Para la condición con avenida, la cota hasta el volumen máximo de crecida (3.025,85 msnm), equivalente a un volumen de 6,414 hm³ y una altura de 16,85 m desde el lecho del río hasta la lámina de agua. Los resultados se muestran en la tabla siguiente:

Tabla 5.5: Caudal pico de rotura en condición con avenida

N°	AUTOR	ECUACIÓN	DATOS		CAUDAL	
1	AUTOR	ECUACION	Vw, S (m ³)	hw, hd (m)	m	³ / _S
1	Froehlich (1995), f(Vw, hw)	$Q_P = 0,607(Vw^{0,296} \cdot hw^{1,24})$	6.414.449,21	16,85	Qp =	2.052,51
2	McDonald y Langridge-Monopolis (1984), f (Vw, hw)	$Q_P = 3,85 (Vw \cdot hw)^{0,411}$	6.414.449,21	16,85	Qp=	7.715,00
3	McDonald y Langridge-Monopolis (1984), f (Vw, hw)	$Q_P = 1,154(Vw \cdot hw)^{0,412}$	6.414.449,21	16,85	Qp=	2.355,67
4	Kirkpatrik (1977), f(hw)	$Q_P = 1,268(hw + 0,3)^{2,5}$	-	16,85	Qp=	1.544,47
5	SCS (1981), f(hw)	$Q_P = 16,6(hw)^{1,85}$	-	16,85	Qp=	3.085,45
6	Reclamation (1982), f (hw)	$Q_P = 19.1(hw)^{1.85}$	-	16,85	Qp=	3.550,12
7	Costa (1985), f (S, hd)	$Q_P = 0.981(S \cdot hd)^{0.42}$	6.414.449,21	16,85	Qp=	2.321,92
8	Hagen (1982), f (S hd)	$Q_P = 0.54(S \cdot hd)^{0.5}$	6.414.449,21	16,85	Qp=	5.614,01
9	Costa (1985), envolvente f(S, hd)	$Q_P = 2,634(S \cdot hd)^{0,44}$	6.414.449,21	16,85	Qp=	9.025,47
10	Evans (1986), f(Vw)	$Q_P = 0.72 (Vw)^{0.53}$	6.414.449,21	-	Qp=	2.918,28
11	Singh and Snorrason (1984), f(S)	$Q_P = 1,776(S)^{0,47}$	6.414.449,21	-	Qp=	2.810,66
12	Costa (1985), envolvente, f(S)	$Q_P = 1.122(S)^{0.57}$	6.414.449,21	-	Qp=	8.512,82
13	Singh y Snorrason (1984), f(hd)	$Q_P = 13,4(hd)^{1,89}$	-	16,85	Qp=	2.788,55

Fuente: Elaboración propia.

Como se optó por utilizar el caudal pico de rotura mínimo estimado. En el caso de condición de avenida, el caudal de rotura adoptado fue de 1.544,47 m³/s.

5.2. MODELACIÓN DE ROTURA DE PRESA CON HEC-RAS 2D

5.2.1. Metodología

Para la simulación de la rotura de presa se ha utilizado únicamente el software HEC-RAS 2D, junto con su módulo integrado RAS Mapper. Con la disponibilidad de herramientas nativas dentro del propio entorno de HEC-RAS, las cuales permiten gestionar la topografía, definir condiciones de frontera, generar mallas 2D, aplicar brechas de rotura y visualizar resultados sin requerir extensiones adicionales.

A continuación, se describen los pasos realizados, estructurados en tres etapas: pre-proceso, cálculo con HEC-RAS y post-proceso:

a) PRE-PROCESO:

- Creación de un nuevo proyecto HEC-RAS.
- Importación del Modelo Digital de Elevación (MDE).
- Creación del terreno en RAS Mapper.
- Definición de la Storage Área.
- Generación de la malla 2D.
- Definición del conector hidráulico SA/2D.
- Asignación de los coeficientes de rugosidad de Manning.
- Inserción de línea de salida.

b) CÁLCULO CON HEC-RAS:

- Definición de las condiciones de contorno.
- Definición de la brecha de rotura.
- Configuración de las condiciones iniciales.
- Simulación hidrodinámica.

c) POST-PROCESO:

- Generación de mapas temáticos.
- Visualización de resultados en 3D View.
- Exportación de resultados.

5.2.1.1. Pre-Proceso

1) Creación de un nuevo proyecto HEC-RAS

Dentro de la interfaz principal de HEC-RAS 6.6, se procedió a la creación del proyecto, definiendo la ubicación del archivo principal y estableciendo las carpetas de trabajo correspondientes. Esta organización permitió estructurar adecuadamente los elementos del modelo, tales como la geometría, el terreno y los resultados generados durante la simulación. El procedimiento inicial se ilustra en la Figura 5.4.

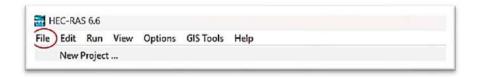


Figura 5.3: Creación de nuevo proyecto en HEC-RAS

Fuente: Elaboración propia.

2) Importación del Modelo Digital de Elevación (MDE)

Una vez creado el proyecto, se ingresó a RAS Mapper e importó el MDT en formato GeoTIFF (resolución 5×5 m), que sirvió como base topográfica del dominio hidráulico.

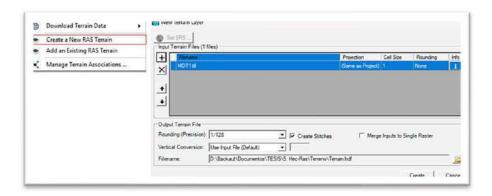


Figura 5.4: Creación de terreno en HEC-RAS

Fuente: Elaboración propia.

3) Creación del terreno en RAS Mapper.

Una vez generado el terreno de trabajo a partir del modelo digital, este debe ser visualizado en RAS Mapper con el fin de verificar su integridad, continuidad y nivel de detalle. En caso de detectarse inconsistencias o errores en la topografía como vacíos, elevaciones anómalas o zonas planas no justificadas será necesario corregir el terreno, ya sea mediante su edición directa en software SIG como ArcGIS, o ajustando los datos de entrada antes de su nueva importación a HEC-RAS.

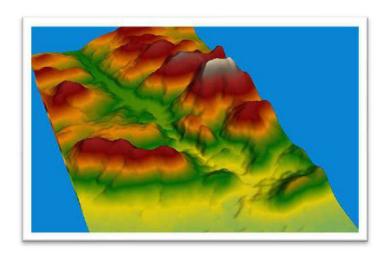


Figura 5.5: Terreno de trabajo creado en RAS Mapper en vista 3D Fuente: Elaboración propia.

4) Definición de la Storage Área

En HEC-RAS, el embalse se modela como una Storage Area que representa la superficie ocupada por el agua antes de la rotura. Puede definirse desde planos CAD, trazarse en RAS Mapper según la topografía o delimitarse con imágenes satelitales. Es fundamental que su contorno refleje fielmente la forma real del vaso de almacenamiento.

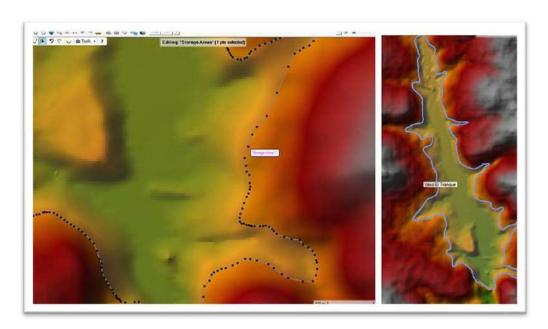


Figura 5.6: Creación del área de almacenamiento (Storage Area)

Fuente: Elaboración propia.

5) Generación de la malla 2D

Definida el área de almacenamiento (Storage Area), se traza el dominio 2D mediante una malla (2D Flow Area) que representa el comportamiento hidráulico aguas abajo de la presa, desde el punto de rotura hasta el sector urbano de Culpina.

Como la trayectoria del flujo no se conoce antes de la simulación, se delimita inicialmente una zona amplia que incluya el cauce y posibles áreas de desbordamiento. Luego, con una primera simulación, la malla puede ajustarse solo a la zona realmente inundada, optimizando el cálculo y reduciendo la carga computacional.

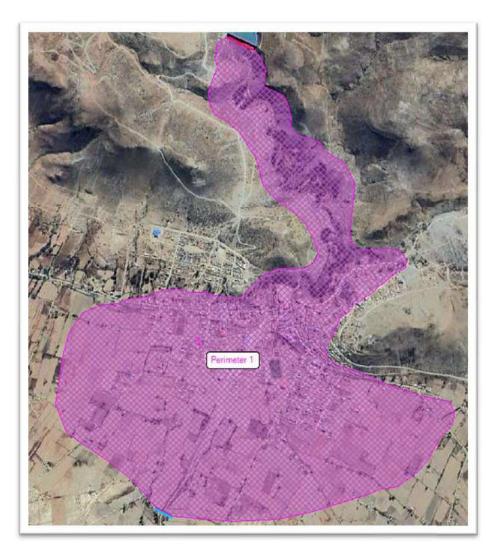


Figura 5.7: Generación de malla 2D Fuente: Elaboración propia.

6) Definición del conector hidráulico SA/2D.

Definida el área de almacenamiento (Storage Area), se traza el dominio 2D mediante una malla (2D Flow Area) que representa el comportamiento hidráulico aguas abajo de la presa, desde el punto de rotura hasta el sector urbano de Culpina.

Como la trayectoria del flujo no se conoce antes de la simulación, se delimita inicialmente una zona amplia que incluya el cauce y posibles áreas de desbordamiento. Luego, con una primera simulación, la malla puede ajustarse solo a la zona realmente inundada, optimizando el cálculo y reduciendo la carga computacional.

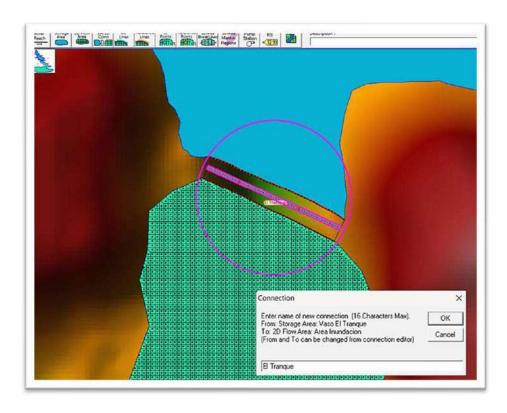


Figura 5.8: Generación del conector hidráulico SA/2D Fuente: Elaboración propia.

7) Asignación de los coeficientes de rugosidad de Manning.

Para insertar el shapefile de rugosidades en RAS Mapper, se crea una capa de tipo Land Cover Layer, que permite asignar coeficientes de Manning al modelo según el uso del suelo. Luego se importa el archivo y, en la opción Add Field, se selecciona el atributo con los valores de rugosidad, asegurando su correspondencia con cada zona (cauce, áreas urbanas, vegetación, etc.). Esta capa se emplea en la simulación para calcular las pérdidas por fricción en el dominio 2D.

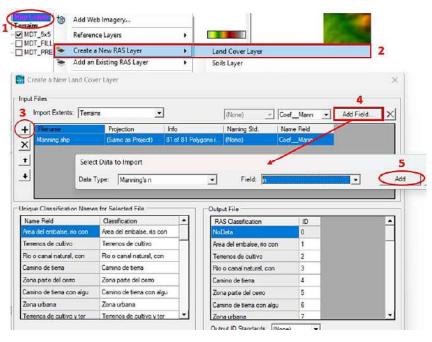


Figura 5.9: Integrar los coeficientes de rugosidades Manning Fuente: Elaboración propia.

Una vez creada la malla 2D (2D Flow Area), se accede a sus propiedades en RAS Mapper para calcular las condiciones hidráulicas del dominio, interpolar el terreno y asignar la rugosidad de Manning. También se define el tamaño de celda, que influye en la precisión y el tiempo de simulación. Según la Guía Técnica de Clasificación de Presas, el tamaño de celda no debe ser menor que la resolución del MDT; en este caso, se fijó en 5 × 5 m.

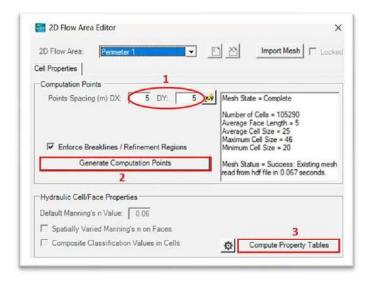


Figura 5.10: Generación de las propiedades hidráulicas de la malla de cálculo Fuente: Elaboración propia.

8) Inserción de línea de salida

Para completar la configuración del modelo, se crea una línea de condición de frontera de salida (Boundary Condition Line), que define por dónde el flujo abandona el dominio. Esta línea evita acumulaciones no físicas y debe trazarse de izquierda a derecha, desde el interior del área 2D hacia el borde, asegurando una salida correcta del flujo.

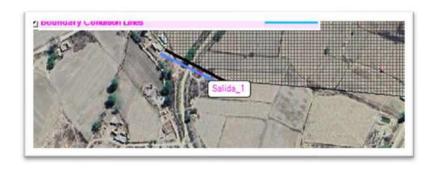


Figura 5.11: Generación del conector hidráulico SA/2D en HEC-RAS Fuente: Elaboración propia.

5.2.1.2. Cálculo con HEC-RAS

1) Definición de las condiciones de contorno.

Una vez completado el post-proceso, es necesario definir las condiciones de contorno tanto para el área de almacenamiento (Storage Area) como para la malla de cálculo (2D Flow Area), antes de ejecutar la simulación del modelo. Para ello, se accede a la opción View/Edit Geometry Data, ubicada en la pestaña principal del entorno de trabajo de HEC-RAS, como se muestra en la figura siguiente.

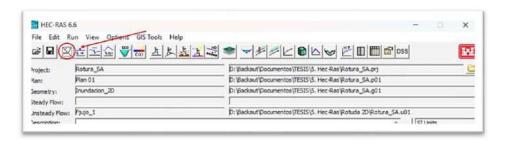


Figura 5.12: Abrir el View/Edit Geometry en HEC-RAS Fuente: Elaboración propia.

En el editor de geometría (View/Edit Geometry Data), el primer paso es configurar la Storage Area. Al seleccionarla y hacer clic en Editar, se accede a dos métodos para definir su volumen.

El método Area vs Depth permite ingresar manualmente el área y la cota mínima, pero es poco preciso. En este estudio se usó Elevation vs Volume Curve, que representa mejor la geometría real del embalse. Esta curva se puede cargar manualmente o generar desde el MDT con la opción Compute E-V Table from Terrain en RAS Mapper.

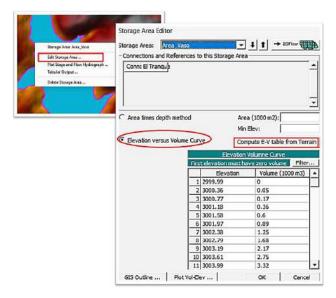


Figura 5.13: Editor del área de almacenamiento en HEC-RAS Fuente: Elaboración propia.

Seleccionado el método Elevation vs Volume Curve, el embalse se representa de forma más realista, permitiendo simular con mayor precisión su comportamiento. Luego, se inserta la brecha de rotura sobre el conector SA/2D, configurando una estructura hidráulica que actúe como vertedero. Se debe especificar el tipo de presa y el mecanismo de rotura (desbordamiento o sifonamiento).

En el corte transversal del terreno (Figura 5.15) se ubica el punto de inserción de la estructura, donde es esencial definir correctamente las cotas clave: la cota mínima del lecho y la cota de corona, fijada en 3.026 msnm, para garantizar la coherencia geométrica del modelo.

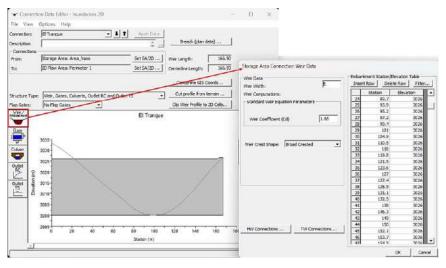


Figura 5.14: Definición de la estructura en HEC-RAS Fuente: Elaboración propia.

2) Definición de la brecha de rotura.

Una vez configurada la estructura hidráulica en el conector, se accede a la opción Breach (Plan Data) en el Connection Data Editor (ver Figura 5.16). Allí se definen las condiciones de rotura: geometría, mecanismo de falla, tiempo de formación y progresión del colapso. Estos parámetros son clave para simular con precisión la liberación del caudal durante la rotura.

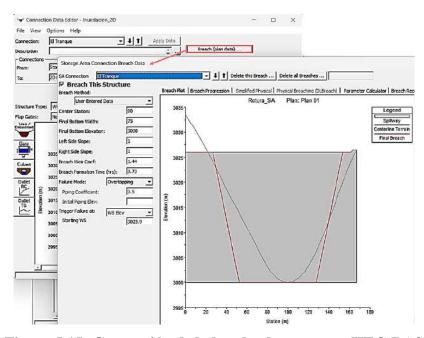


Figura 5.15: Generación de la brecha de rotura en HEC-RAS Fuente: Elaboración propia.

En esta sección se ingresan los valores geométricos de la brecha, previamente calculados mediante fórmulas empíricas (Tabla 5.2), incluyendo el ancho medio y los taludes laterales, asumiendo una forma trapezoidal típica de presas de enrocado.

Luego, se define la evolución temporal de la rotura mediante la opción Breach Progression, que controla cómo se abre la brecha. HEC-RAS permite elegir entre progresión lineal o en forma de S (S-curve). Esta última, más realista para presas de materiales sueltos, representa una apertura gradual y mejora la estabilidad numérica del modelo.

En este estudio se seleccionó la progresión en S, por su mayor adecuación al proceso de erosión interna. La Figura 5.15 muestra cómo se configura esta opción en el editor de brechas.

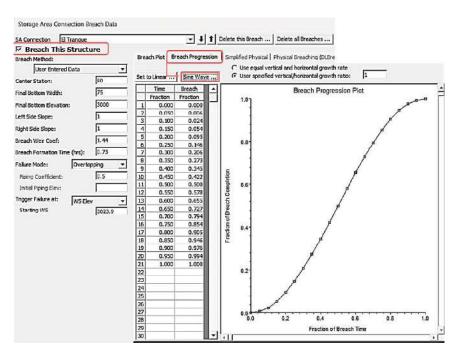


Figura 5.16: Configurar progresión de rotura de la brecha en HEC-RAS Fuente: Elaboración propia.

3) Configuración de las condiciones iniciales.

Para iniciar la simulación, es fundamental definir las condiciones iniciales, lo cual incluye ingresar el volumen de agua en el área de almacenamiento (Storage Area). Existen varias opciones disponibles en HEC-RAS para suministrar el volumen al embalse:

- Precipitación directa: útil cuando el llenado del embalse depende exclusivamente de la lluvia, aunque esta opción requiere modelar toda la cuenca, lo que incrementa significativamente el tiempo de cálculo.
- Lateral Inflow Hydrograph: recomendado para simular el llenado del embalse a partir de un caudal predefinido, como el aporte de un río.
- Groundwater Interflow: aplicable en modelos más complejos que integran flujos subterráneos entre elementos.

En HEC-RAS puede definirse directamente la cota inicial del agua en el área de almacenamiento; sin embargo, en este estudio se utilizó un Lateral Inflow Hydrograph. Esto se debió a que, al aplicar el método Elevación vs Volumen (Figura 5.14), el volumen almacenado no coincidía con la cota deseada (3023,9 msnm, NAMO) para el escenario sin avenida.

Para representar con precisión el llenado hasta dicha cota, se optó por ingresar el volumen mediante un hidrograma lateral controlado, evitando inconsistencias en el inicio de la simulación. A continuación, se detalla esta configuración.

Se utilizó la fórmula básica para estimar el caudal necesario que permita llenar el embalse hasta el volumen deseado en un intervalo de tiempo determinado:

$$Caudal (m^{3}/seg) = \frac{Volumen(m^{3})}{Tiempo (s)}$$
(5.2)

Para el escenario sin avenida, se consideraron los siguientes datos de entrada:

- Volumen = $5,025,685.64 \text{ m}^3$
- Tiempo = 4 horas = 14,400 segundos

$$Q = \frac{5.025.685,64 \, m^3}{14.400 \, \text{s}} = 348,06 \, m^3 /_S$$

Este valor se ingresó en la ventana Lateral Inflow Hydrograph como un caudal constante. En la tabla correspondiente, se definió una simulación de 15 horas, configurando el hidrograma de la siguiente manera:

- Desde la hora 1:00:00 hasta 4:00:00: caudal constante de 348,06 m³/s
- Antes y después de ese intervalo: caudal igual a 0 m³/s

Hydrograph Data				
	Date	Simulation Time	Lateral Inflow	
		(hours)	(m3/s)	
1	21Sep2008 2400	0:00:00	0	
2	22Sep2008 0100	1:00:00	348.06	
3	22Sep2008 0200	2:00:00	348.06	
4	22Sep2008 0300	3:00:00	348.06	
5	22Sep2008 0400	4:00:00	348.06	
6	22Sep2008 0500	5:00:00	0	
7	22Sep2008 0600	6:00:00	0	
8	22Sep2008 0700	7:00:00	0	
9	22Sep2008 0800	8:00:00	0	
10	22Sep2008 0900	9:00:00	0	
11	22Sep2008 1000	10:00:00	0	
12	22Sep2008 1100	11:00:00	0	
13	22Sep2008 1200	12:00:00	0	
14	22Sep2008 1300	13:00:00	0	
15	22Sep2008 1400	14:00:00	0	

Figura 5.17: Ingresar hidrograma de entrada en HEC-RAS Fuente: Elaboración propia.

Esta configuración simula un llenado controlado y repentino del embalse, seguido de una estabilización. El tiempo de aporte puede ajustarse según la duración total del modelo. En este caso, considerando una simulación de 48 horas, se decidió que el embalse se llene durante las primeras 3 horas del análisis.

4) Simulación hidrodinámica.

La ventana Unsteady Flow Analysis permite configurar y ejecutar la simulación en flujo no permanente. En este estudio se modeló la rotura de presa, considerando el llenado del embalse, la falla y la propagación de la onda de inundación. Se utilizó el archivo de geometría "Inundación" (malla 2D) y el archivo de flujo "Flujo_1", que incluye el hidrograma lateral, las condiciones iniciales y los parámetros de la brecha, como se muestra en la figura siguiente.

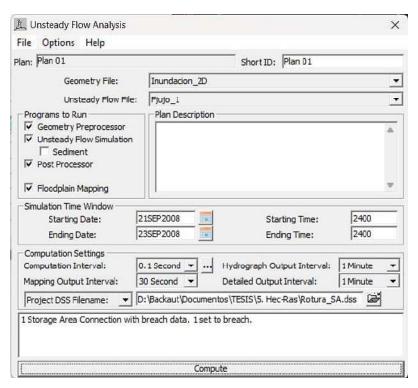


Figura 5.18: Ventana de ejecución de la simulación en HEC-RAS Fuente: Elaboración propia.

La simulación se ejecutó durante 48 horas, con un intervalo de cálculo de 0,1 s y salidas cada 1 min 30 s, generando mapas detallados de profundidad y velocidad. Se verificó previamente la conexión SA/2D y su correcta configuración. Finalmente, se ejecutó el modelo con la opción Compute, manteniendo el periodo de simulación definido.

5.2.1.3. Post-proceso

1) Generación de mapas temáticos.

Dentro de RAS Mapper, es posible visualizar los principales resultados hidráulicos de la simulación, tales como los tirantes de agua (Depth), las velocidades del flujo (Velocity) y los niveles del agua o cotas de superficie libre (WSE). Estos mapas permiten analizar la magnitud y extensión de la inundación generada, como se muestra en la figura siguiente.

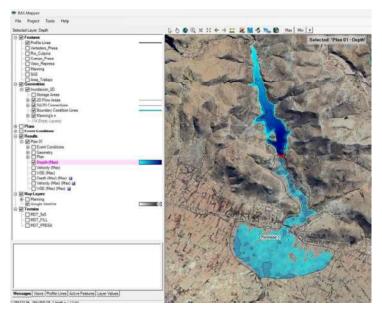


Figura 5.19: Visualización de resultados en HEC-RAS Fuente: Elaboración propia.

2) Visualización de resultados en 3D View.

En RAS Mapper, el módulo 3D View permite visualizar de forma dinámica la evolución del evento, desde el llenado del embalse hasta la rotura y propagación de la onda de inundación. Además, posibilita generar animaciones o videos, útiles para análisis técnicos y presentaciones.

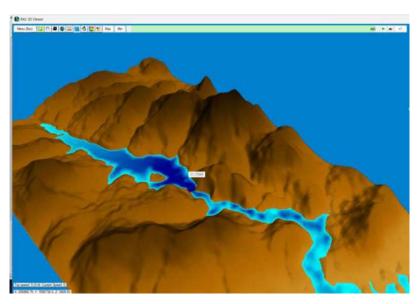


Figura 5.20: Visualización de resultados en 3D View Fuente: Elaboración propia.

3) Exportación de resultados.

Para exportar los resultados desde RAS Mapper, se debe hacer clic derecho sobre la capa deseada (por ejemplo, profundidad o velocidad) y seleccionar la opción Export. Al hacerlo, se abrirá una ventana donde es necesario definir la opción Layer Extent, que determina el área que se desea exportar. El archivo se genera en formato shapefile (SHP), lo que permite abrirlo posteriormente en ArcGIS u otro software SIG. Esta exportación es fundamental para elaborar mapas de inundación detallados y realizar análisis espaciales, como la estimación de zonas de riesgo en función del tirante de agua.

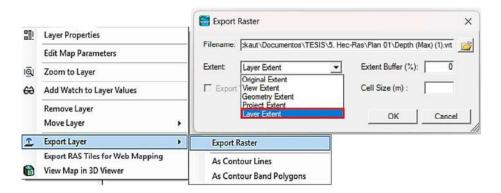


Figura 5.21: Exportar resultados desde RAS Mapper Fuente: Elaboración propia.

5.3. MODELACIÓN DE ROTURA DE LA PRESA CON IBER

5.3.1. Metodología

La metodología aplicada para el estudio hidráulico del escenario sin avenida, correspondiente al nivel de aguas máximas ordinarias (NAMO), se centró en la simulación del comportamiento hidráulico del embalse y la propagación de la onda de rotura bajo condiciones normales de operación, sin crecida adicional. El objetivo fue analizar la cota de la lámina de agua, el funcionamiento hidráulico y la superficie de inundación resultante tras la rotura de la presa.

Los pasos seguidos en el desarrollo del modelo fueron los siguientes:

- Creación de la geometría.
- Definición de las condiciones de contorno.

- Generación de la malla 2D.
- Asignación de los usos del suelo (coeficientes de Manning).
- Definición de los datos del problema y brecha.
- Ejecución del modelo.
- Extracción de resultados.
- Generación de mapas de inundación.

5.3.2. Creación de la geometría

El primer paso para crear un proyecto en IBER consiste en definir la superficie de trabajo. Esta puede generarse directamente en el entorno del programa, trazando sobre una imagen satelital importada y subdividiendo el dominio en zonas como el embalse y el terreno circundante. Sin embargo, para agilizar el proceso, se optó por realizar previamente el trazado del contorno en ArcGIS, utilizando entidades polilínea, y luego importar dicho trazado en formato shapefile al entorno de IBER. En la Figura 5.19 se muestra el procedimiento seguido para esta etapa.

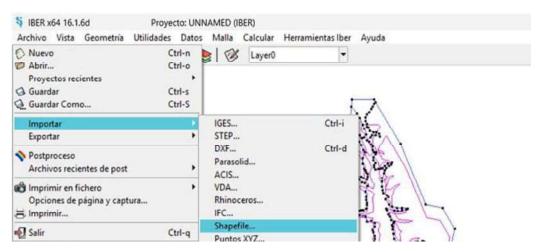


Figura 5.22: Importar superficie de trabajo en IBER Fuente: Elaboración propia.

5.3.3. Definición de las condiciones de contorno

Para definir las condiciones de contorno en IBER, es necesario asignar una entrada 2D y una salida 2D, ya que el modelo debe contar con puntos definidos por donde el agua ingresa y egresa del dominio. En este caso, la entrada se ubicó en la cola del embalse, simulando el flujo que lo alimenta como muestra en la siguiente figura:

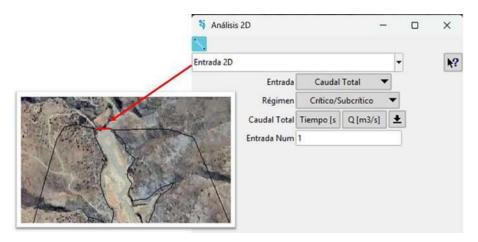


Figura 5.23: Asignar entrada 2D en IBER Fuente: Elaboración propia.

Mientras que la salida se estableció en una sección aguas abajo del río Culpina Mayu, más allá del punto donde atraviesa la población de Culpina. Esta configuración permite representar adecuadamente la dirección del flujo y garantizar el correcto funcionamiento hidráulico del modelo.

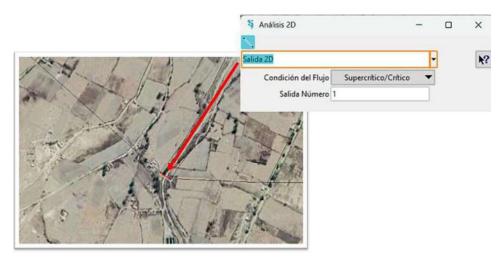


Figura 5.24: Asignar Salida 2D en IBER Fuente: Elaboración propia.

5.3.4. Generación de la malla 2D

Para generar la malla en IBER, se creó una malla no estructurada, ajustando la precisión y el tamaño de celda según la relevancia hidráulica de cada zona. Se usaron celdas de 5 m en el embalse, 20–30 m en áreas montañosas sin flujo esperado, y celdas más finas en la represa y

brecha de rotura para representar con mayor detalle el comportamiento del flujo y optimizar el cálculo.

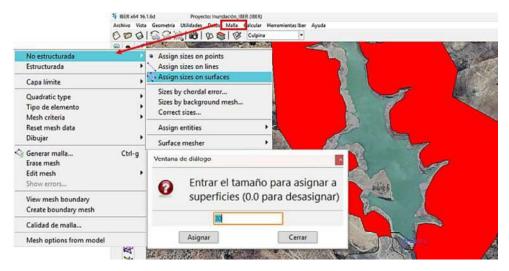


Figura 5.25: Asignación de tamaño de malla en IBER Fuente: Elaboración propia.

La Figura siguiente muestra la diferencia de tamaño de malla según la región del dominio, evidenciando la adaptación del modelo a la topografía y la importancia hidráulica de cada sector.

Figura 5.26: Malla no estructurada en la zona de estudio Fuente: Elaboración propia.

5.3.5. Asignación de los usos del suelo (coeficientes de Manning)

A diferencia de HEC-RAS, que permite importar coberturas desde un archivo shapefile (SHP), en IBER los coeficientes de rugosidad se asignan manualmente, aunque dispone de

una biblioteca de valores y admite la creación de nuevos. Para mantener la coherencia, en este estudio se utilizaron en ambos modelos los mismos coeficientes, obtenidos del shapefile de rugosidades mostrado en la Figura 5.2.

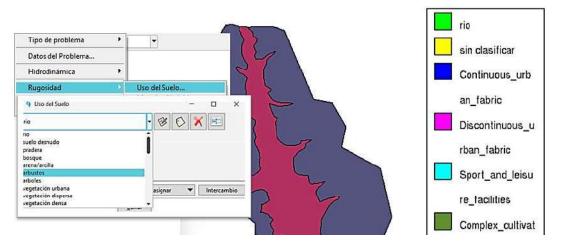


Figura 5.27: Asignación de rugosidades en IBER Fuente: Elaboración propia.

5.3.6. Definición de los datos del problema y brecha

Es necesario definir las características básicas de la simulación, lo cual se realiza desde el módulo "Datos del problema". En este estudio, se estableció un tiempo total de simulación de 24 horas, equivalente a 86.400 segundos, con una frecuencia de salida de resultados cada 60 segundos, permitiendo así un adecuado nivel de detalle temporal en los resultados.

Figura 5.28: Configuración de la simulación. Datos Fuente: Elaboración propia.

También se debe definir el esquema de cálculo numérico, seleccionando en este caso el método de segundo orden, el cual ofrece mayor precisión en la resolución del flujo. Adicionalmente, el programa permite especificar el número de procesadores a utilizar, lo que

contribuye a reducir significativamente el tiempo de simulación, optimizando el rendimiento computacional del modelo.

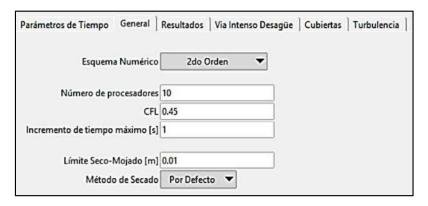


Figura 5.29: Configuración de la simulación. General Fuente: Elaboración propia.

En la pestaña de Resultados se seleccionan las variables a calcular, activando la opción de riesgo para generar mapas asociados y vector calado para visualizar la deformación del vaso y la formación de la brecha, mejorando la interpretación del comportamiento hidráulico.

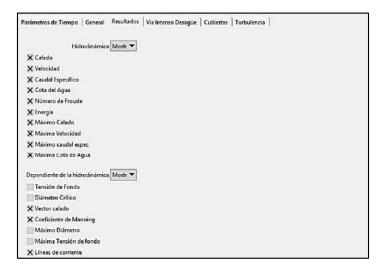


Figura 5.30: Configuración de la simulación. Resultados Fuente: Elaboración propia.

Finalmente, se definió la brecha de rotura con geometría trapezoidal, opción seleccionada por su adecuación al caso de estudio. Se utilizó el tiempo de rotura de la Tabla 5.3 y las dimensiones finales mostradas en la Figura 5.3, permitiendo una simulación más realista del colapso de la presa.

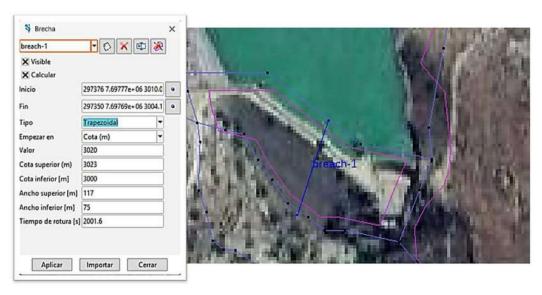


Figura 5.31: Configuración de la brecha

Fuente: Elaboración propia.

5.3.7. Ejecución del modelo

IBER resuelve el flujo en lámina libre mediante las ecuaciones de Saint Venant en 2D. A diferencia de HEC-RAS, no requiere definir el tipo de régimen, ya que lo detecta automáticamente; en este caso, se ejecutó en régimen mixto por la naturaleza transitoria del fenómeno. La simulación se inicia desde la pestaña Calcular > Calcular.

Figura 5.32: Imagen del cómputo de la simulación

Fuente: Elaboración propia.

5.3.8. Extracción de mapas de resultados

Al igual que en HEC-RAS, en IBER se exportaron los resultados en formato compatible con ArcGIS, permitiendo generar mapas de inundación. Se exportaron variables como calado, velocidad y elevación del agua para su análisis espacial.

La Figura 5.33 ilustra el comportamiento del flujo al desbordar tanto por la presa como por el vertedero, ofreciendo un nivel de detalle más alto en comparación con la representación generada por HEC-RAS.

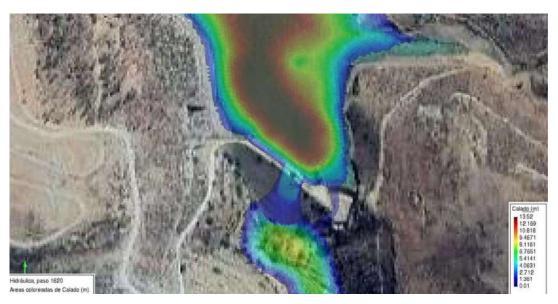


Figura 5.33: Grafico de la simulación en IBER Fuente: Elaboración propia.

5.4. ANÁLISIS DE RESULTADOS POR ROTURA DE PRESA DE ROCKFILL

Se trazaron las secciones transversales más representativas a lo largo del valle aguas abajo de la presa, seleccionando puntos críticos que atraviesan zonas urbanas vulnerables del municipio de Culpina. En estas secciones se analizaron los valores máximos de caudal, con el objetivo de comparar los resultados obtenidos mediante los modelos IBER y HEC-RAS. Adicionalmente, se evaluaron los tirantes y velocidades máximas alcanzadas en cada punto.

Las ubicaciones correspondientes a las secciones analizadas se muestran en la Figura 5.40.

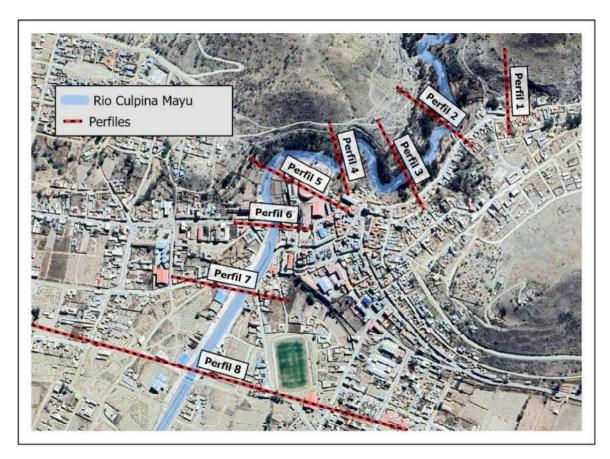


Figura 5.34: Distribución de perfiles transversales Fuente: Elaboración propia.

5.4.1. Comparación de resultados obtenidos con IBER y HEC-RAS

Se realizó un análisis comparativo entre los resultados obtenidos por ambos softwares, con el objetivo de identificar las diferencias en la simulación del comportamiento hidráulico. El análisis se centró en los hidrogramas y limnigramas generados en la brecha de rotura y en las secciones transversales correspondientes a los puntos más críticos del valle.

5.4.1.1. Comportamiento del flujo en las secciones sin avenida

La Figura 5.35 presenta el hidrograma correspondiente al caudal pico de rotura generado en la brecha. En este se observa que el modelo HEC-RAS estimó un valor de caudal pico superior al obtenido con IBER, lo cual refleja diferencias en la forma en que cada modelo representa el proceso de vaciado del embalse tras la rotura.

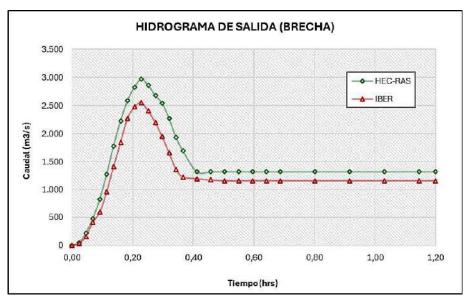


Figura 5.35: Hidrogramas en la sección de brecha bajo condición sin avenida

La Figura 5.36 presenta el limnígrafo que representa la variación del nivel de agua en el embalse a lo largo del tiempo durante el proceso de rotura. Se observa que el modelo IBER simula un vaciado más rápido del embalse en comparación con HEC-RAS, indicando una mayor descarga en menor tiempo.

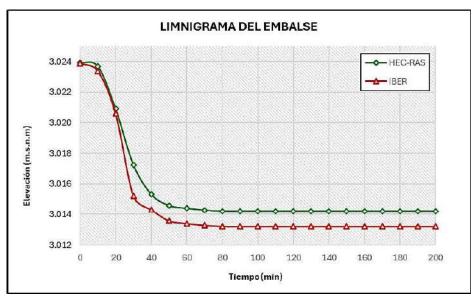


Figura 5.36: Limnigramas en la sección de brecha bajo condición sin avenida Fuente: Elaboración propia.

La Figura 5.37 muestra los hidrogramas obtenidos en cada uno de los perfiles transversales analizados. Se observa una diferencia en los valores máximos de caudal entre ambos

modelos, donde IBER presenta resultados aproximadamente un 14 % menores en comparación con los obtenidos mediante HEC-RAS.

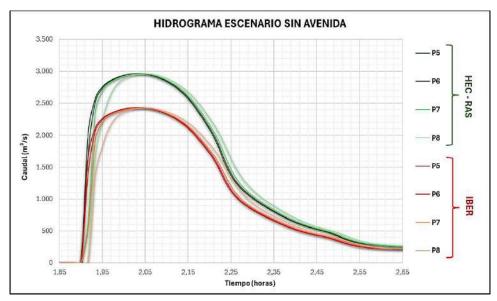


Figura 5.37: Hidrogramas en las diferentes secciones bajo condición sin avenida Fuente: Elaboración propia.

La Tabla 5.6 presenta un resumen de los caudales máximos registrados en cada una de las secciones transversales analizadas, lo cual permite comparar el comportamiento del flujo a lo largo del valle bajo los distintos escenarios evaluados.

Tabla 5.6: Caudales pico en condición sin avenida

	Caudal Máximo		
N°	[m ³ /s]		
	HEC-RAS	IBER	
Brecha	2968,670	2553,056	
Perfil 1	6,313	5,177	
Perfil 2	2965,379	2431,611	
Perfil 3	2965,474	2431,689	
Perfil 4	2966,973	2432,918	
Perfil 5	2968,062	2433,811	
Perfil 6	2965,610	2431,800	
Perfil 7	2963,665	2430,205	
Perfil 8	2960,147	2427,321	

Fuente: Elaboración propia.

5.4.1.2. Comportamiento del flujo en las secciones con avenida

La Figura 5.38 presenta el hidrograma correspondiente al caudal pico de rotura generado en la brecha en condición con. De igual manera se observa que el modelo HEC-RAS estimó un valor de caudal pico superior al obtenido con IBER.

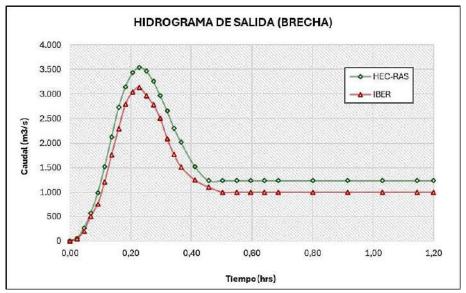


Figura 5.38: Hidrogramas en la sección de brecha bajo condición con avenida. Fuente: Elaboración propia.

El limnígrafo de la Figura 5.39, con avenida, muestra un vaciado más rápido del embalse.

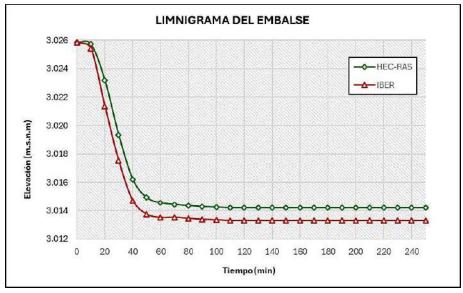


Figura 5.39: Limnigramas en la sección de brecha bajo condición con avenida Fuente: Elaboración propia.

En la Figura 5.40, de igual manera en condición con avenida, los caudales simulados con IBER resultaron aproximadamente un 14 % menores en comparación con los obtenidos mediante HEC-RAS.

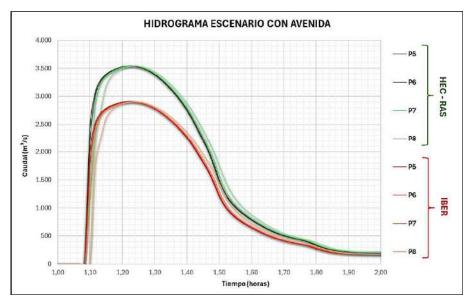


Figura 5.40: Hidrogramas en las diferentes secciones bajo condición con avenida Fuente: Elaboración propia.

La Tabla 5.7 presenta un resumen de los caudales máximos registrados en cada una de las secciones transversales analizadas en condición con avenida.

Tabla 5.7: Caudales pico en condición con avenida

	Caudal Máximo		
N°	[m ³ /s]		
	HEC-RAS	IBER	
Brecha	3539,000	3132,723	
Perfil 1	6,222	5,102	
Perfil 2	3545,948	2907,677	
Perfil 3	3544,573	2906,550	
Perfil 4	3538,762	2901,785	
Perfil 5	3543,836	2905,946	
Perfil 6	3542,272	2904,663	
Perfil 7	3544,485	2906,478	
Perfil 8	3540,172	2902,941	

Fuente: Elaboración propia.

5.4.2. Llanuras de inundación y distribución de velocidades

Con base en los escenarios previamente definidos, se procedió a la generación de las llanuras de inundación mediante las simulaciones hidrodinámicas realizadas en los modelos IBER y HEC-RAS. Los escenarios considerados fueron los siguientes:

- Rotura con avenida
- Rotura sin avenida
- Avenida natural en ausencia de la presa

Para cada uno de estos casos, se extrajeron los resultados en formato ráster correspondientes a la velocidad del flujo y al tirante (calado) del agua. Esta información espacial fue fundamental para la delimitación y caracterización de las zonas potencialmente inundables a lo largo del valle aguas abajo de la presa.

Además, los productos ráster generados constituyeron la base para la elaboración de los mapas de riesgo y afectación, al permitir identificar no solo el alcance espacial de la inundación, sino también la magnitud de los parámetros hidráulicos involucrados, como la velocidad del flujo y el tirante. Esta información fue esencial para aplicar los criterios establecidos en la normativa de clasificación de presas según su riesgo potencial, permitiendo categorizar las áreas afectadas según su nivel de peligrosidad y su grado de impacto sobre infraestructuras y zonas habitadas.

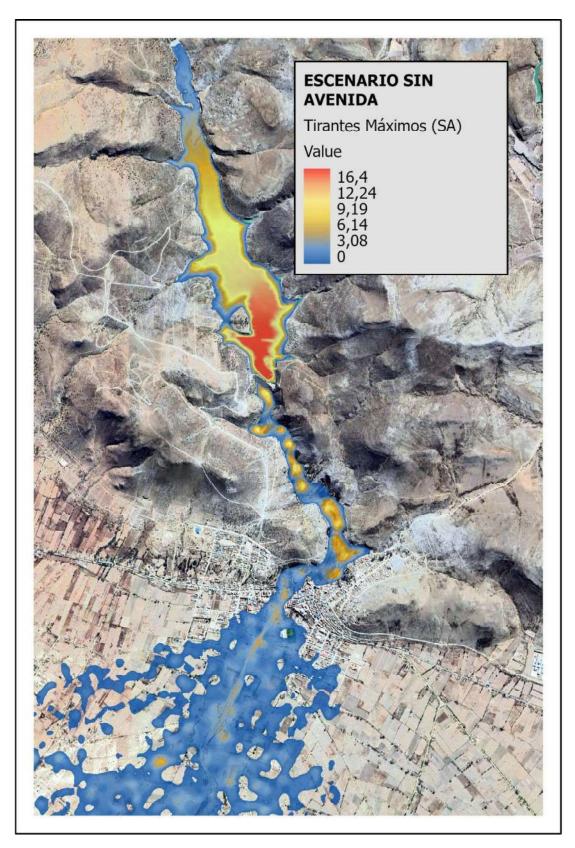


Figura 5.41: Distribución del tirante de agua en escenario sin avenida Fuente: Elaboración propia.

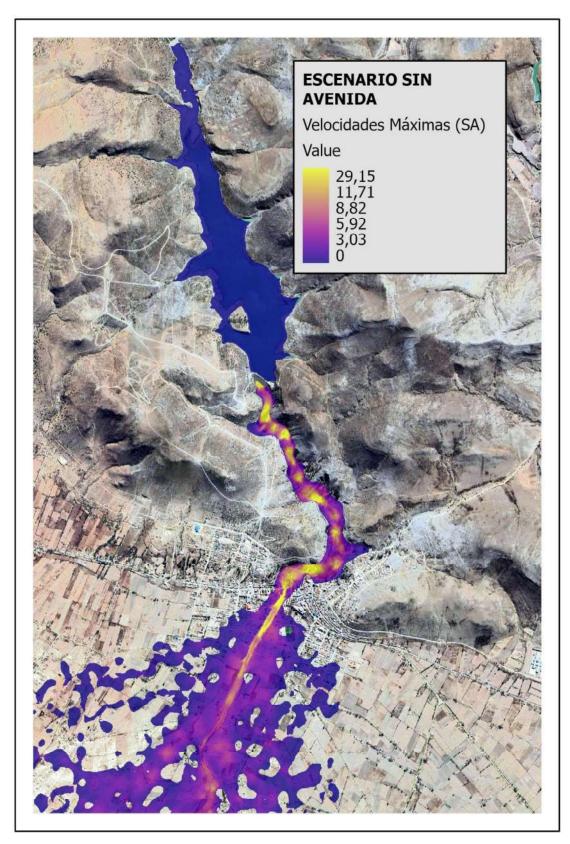


Figura 5.42: Distribución de velocidades máximas del flujo en escenario sin avenida Fuente: Elaboración propia.

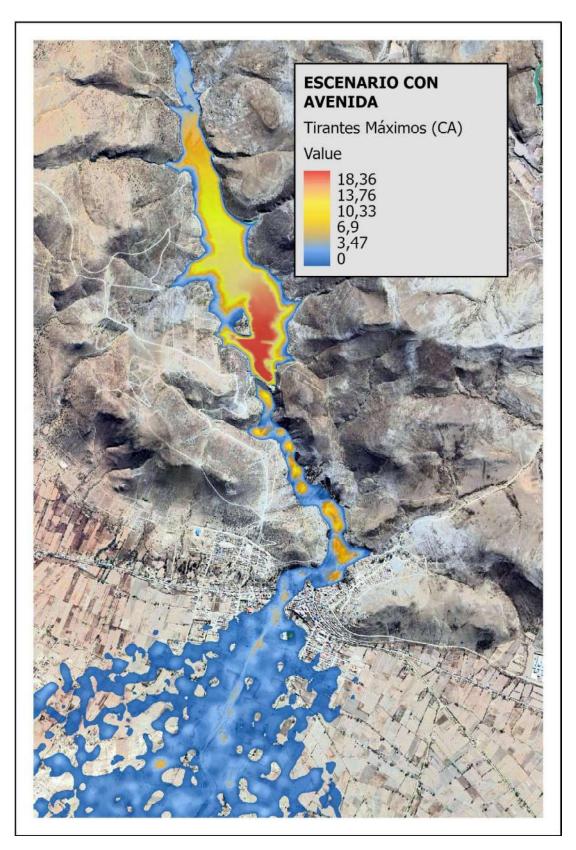


Figura 5.43: Distribución del tirante de agua en escenario con avenida Fuente: Elaboración propia.

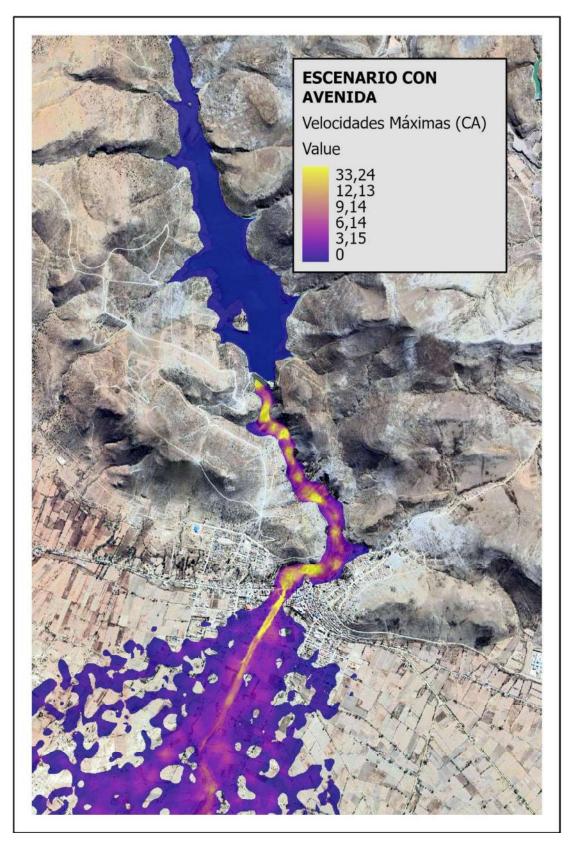


Figura 5.44: Distribución de velocidades máximas del flujo en escenario con avenida Fuente: Elaboración propia.

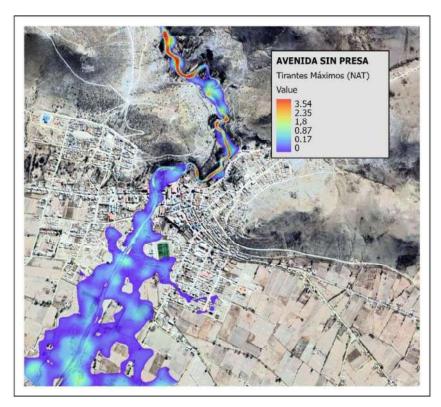


Figura 5.45: Tirante de agua — Avenida sin presa Fuente: Elaboración propia.

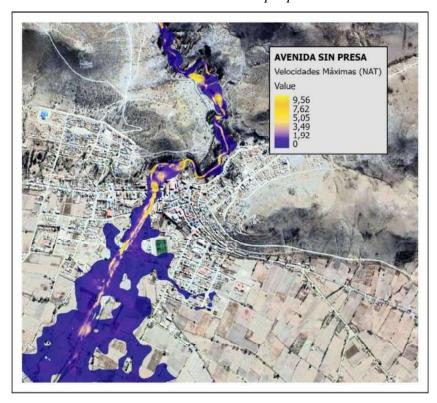


Figura 5.46: Velocidades máximas del flujo — Avenida sin presa Fuente: Elaboración propia.

5.4.3. Alturas y distribución de velocidades del flujo

Las secciones transversales analizadas corresponden a las ubicadas en la Figura 5.34, y los resultados hidráulicos fueron obtenidos a partir del modelo HEC-RAS. Se optó por utilizar este modelo debido a su capacidad para representar con mayor detalle la distribución de velocidades del flujo en cada sección, tanto en condición de avenida como sin avenida.

En la siguiente tabla se presentan los principales parámetros hidráulicos registrados en las secciones descritas, incluyendo el tirante máximo y las velocidades máxima, mínima y media, lo que permite caracterizar el comportamiento del flujo en los puntos más críticos aguas abajo de la presa.

Tabla 5.8: Características del flujo de las secciones de estudio

		Distancia a	Tirante	Velocidad	Velocidad	Velocidad
⋖	N°	la Presa	Máximo	Máxima	Mínima	Media
		[km]	[m]	[m/s]	[m/s]	[m/s]
VEN	1	1,53	3,82	1,33	0,36	0,38
A	2	1,47	6,54	6,18	0,09	3,21
IIS	3	1,60	5,01	9,34	0,06	4,18
ESCENARIO SIN AVENIDA	4	1,74	3,55	18,38	0,01	6,75
NA	5	1,86	2,18	14,21	0,45	6,27
3	6	1,97	4,98	18,47	0,14	4,97
ES	7	2,14	4,72	12,71	0,64	3,17
	8	2,35	5,13	14,92	0,18	1,94
		Distancia a	Tirante	Velocidad	Velocidad	Velocidad
ΑC	N°	la Presa	Máximo	Máxima	Mínima	Media
		[km]	[m]	[m/s]	[m/s]	[m/s]
₩	1	1,53	4,33	1,44	0,12	0,41
-						
Z	2	1,47	6,85	6,73	0,24	3,62
CON	3	1,47 1,60	6,85 5,31	6,73 10,06	0,24 0,20	3,62 4,60
RIO CON	-	·	•		•	
NARIO CON	3	1,60	5,31	10,06	0,20	4,60
CENARIO CON	3	1,60 1,74	5,31 3,86	10,06 19,42	0,20 0,46	4,60 7,41
ESCENARIO CON AVENIDA	3 4 5	1,60 1,74 1,86	5,31 3,86 2,48	10,06 19,42 14,80	0,20 0,46 0,44	4,60 7,41 6,67

Fuente: Elaboración propia.

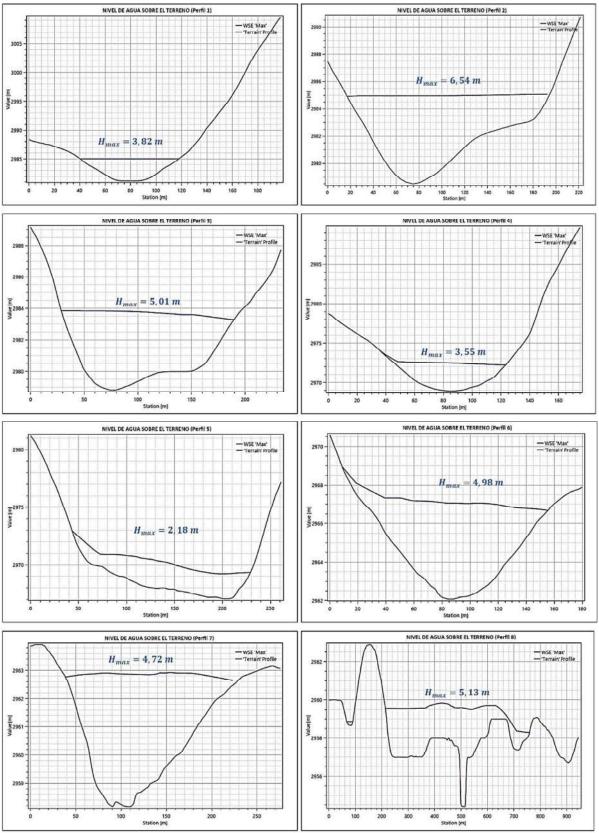


Figura 5.47: Variación de la altura de agua en los perfiles en escenario sin avenida Fuente: Elaboración propia.

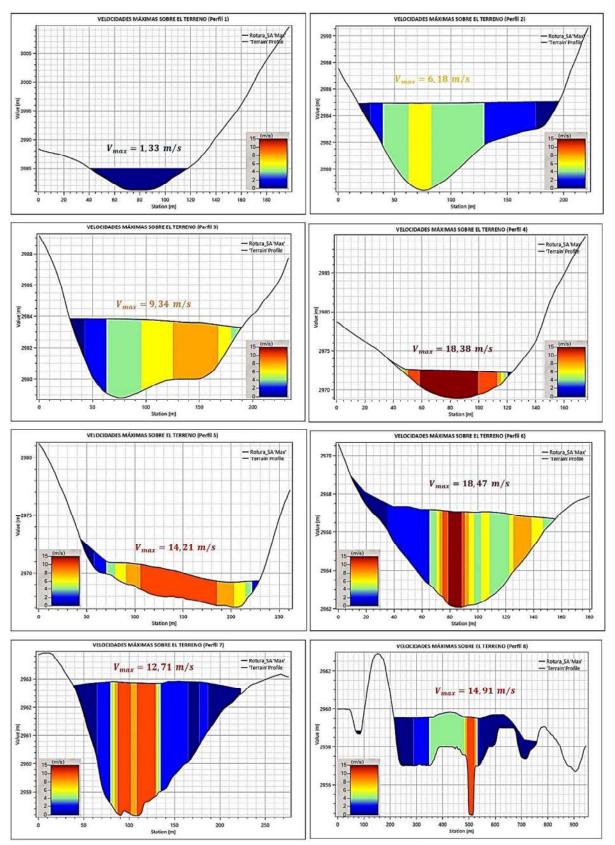


Figura 5.48: Distribución de velocidades en los perfiles en escenario sin avenida Fuente: Elaboración propia.

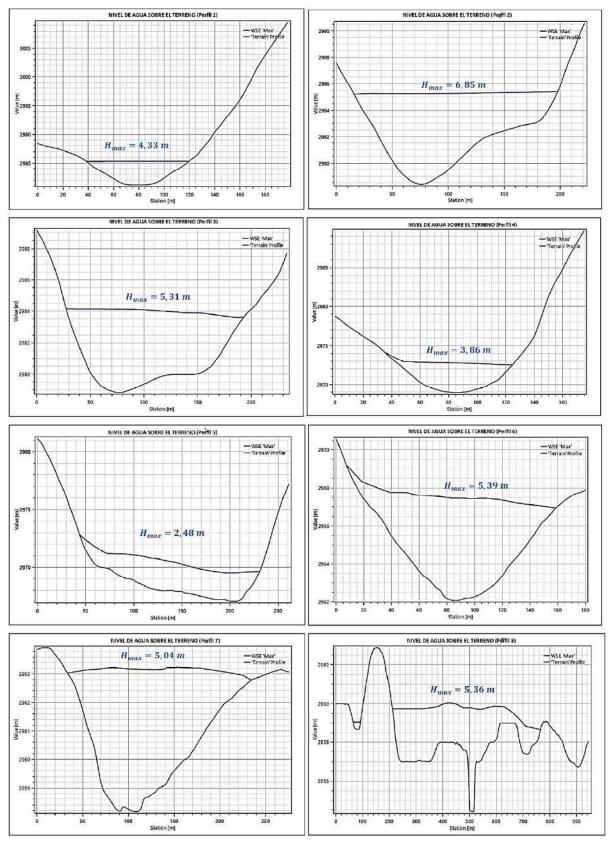


Figura 5.49: Variación de la altura de agua en los perfiles en escenario con avenida Fuente: Elaboración propia.

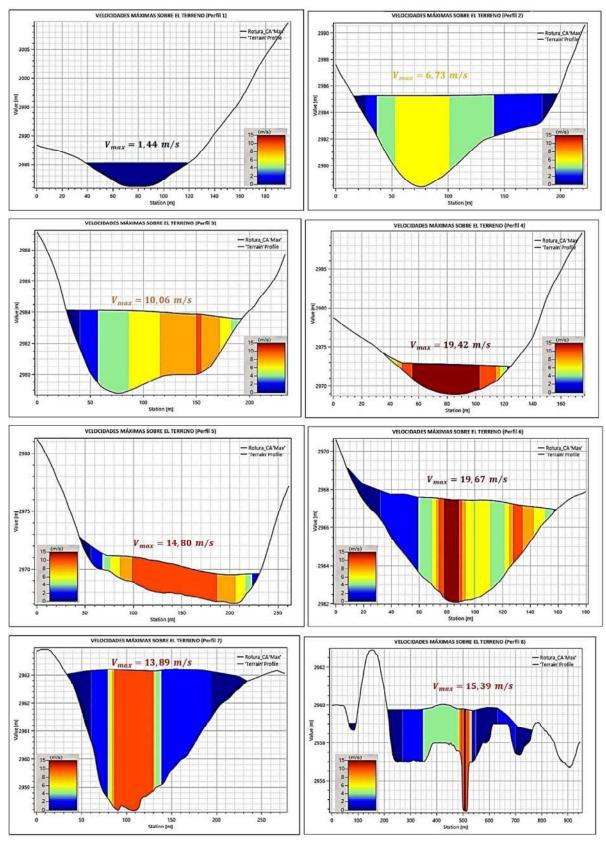


Figura 5.50: Distribución de velocidades en los perfiles en escenario con avenida Fuente: Elaboración propia.

5.5. ESTIMACIÓN DEL RIESGO POR INUNDACIÓN

La inundación que afecta al poblado de Culpina corresponde a un régimen dinámico, por lo que los daños y el grado de afección están determinados por variables hidráulicas, como el tirante del flujo (calado) y la velocidad del agua, evaluadas para cada sección y momento del evento.

De acuerdo con la normativa española de clasificación de presas según su riesgo potencial, se utiliza una metodología basada en un gráfico de doble entrada (calado vs. velocidad), como el mostrado previamente en la figura 3.2, el cual identifica tres niveles de afección: leve y grave.

Con base en estos criterios, se elaboraron los mapas de inundación a partir de los resultados generados con HEC-RAS, el cual presentó valores más elevados en comparación con IBER. Por ello, se tomó como referencia el producto del calado y la velocidad para identificar las zonas de mayor afectación. Esta metodología se aplicó a los tres escenarios de rotura analizados, permitiendo comparar los niveles de riesgo hidráulico en función de los valores extremos obtenidos.

En cuanto a los daños materiales, y de acuerdo con la tabla 3.1, se observa que los rangos establecidos por la metodología original no se ajustan a la realidad del contexto boliviano. Por ello, se usó otra tabla donde reduce umbrales a fin de adaptar la metodología y hacerla aplicable a nivel local. Los nuevos valores propuestos se presentan en la siguiente tabla.

Tabla 5.9: Clasificación de daños potenciales propuesta para Bolivia

	DAÑOS POTENCIALES			
ELEMENTO	MUY IMPORTANTES	IMPORTANTES	MODERADOS	
	Categoría A	Categoría B	Categoria C	
Industrias y polígonos industriales y propiedades rústicas	nº de instalaciones >10	5< nº de instalaciones <10	nº de instalaciones < 5	
Cultivos a secano	Superficie > 1000 has	300 has < superficie < 1000	Superficie <300 has	
Cultivos a regadía	Superficie > 500 has	100 has < superficie < 500	Superficie <100 has	
Carretera	red nacional	red departamental	camino vecinal	

Fuente: Análisis de funcionalidad y riesgo de la presa Pajchani, 2017.

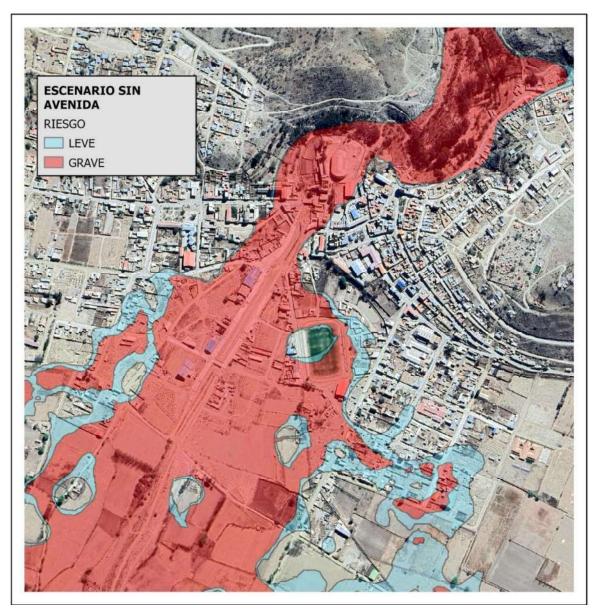


Figura 5.51: Mapa de riesgo ante rotura de presa sin avenida Fuente: Elaboración propia.

La Figura 5.53 muestra el mapa de riesgo generado para la condición sin avenida. En él se identifica la zona roja como aquella con valores superiores a 0,5 m²/s, lo que corresponde a un riesgo grave según los criterios establecidos. Se observa que estas áreas afectan directamente a varias viviendas y zonas de importancia dentro del núcleo urbano de Culpina.

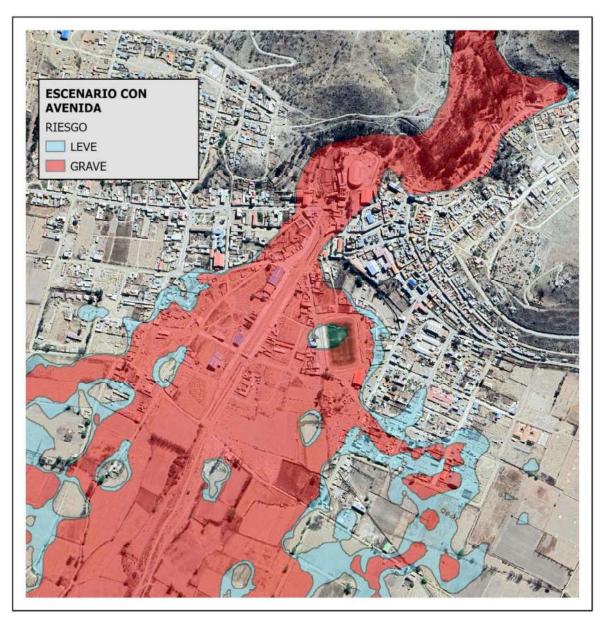


Figura 5.52: Mapa de riesgo ante rotura de presa con avenida Fuente: Elaboración propia.

La Figura 5.53 presenta el mapa de riesgo correspondiente a la condición con avenida. En comparación con el escenario sin avenida, se evidencia una mayor extensión de áreas afectadas, abarcando un número más amplio de zonas urbanas dentro del área de influencia en Culpina.

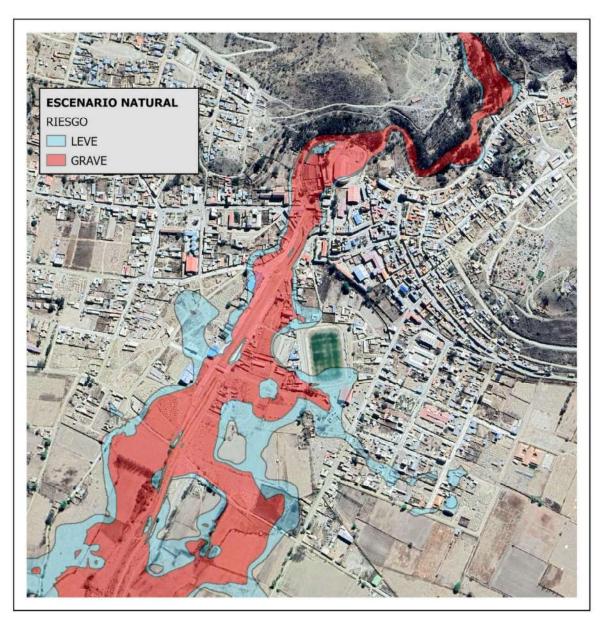


Figura 5.53: Mapa de riesgo por avenida sin presencia de presa Fuente: Elaboración propia.

La Figura 5.53 muestra el análisis de riesgo asociado al comportamiento de la avenida en régimen natural, sin la influencia del embalse. Para este escenario se utilizó el hidrograma correspondiente al caso límite, según lo descrito en el apartado 3.4.5.

5.6. CLASIFICACIÓN DE LA PRESA

Según lo establecido en el Capítulo 3 sobre la normativa de clasificación de presas, se procede al análisis correspondiente una vez generadas las llanuras de inundación para el escenario de rotura sin avenida, representadas en la Figura 5.51.

Las llanuras fueron exportadas a ArcGIS para realizar un análisis espacial detallado. La metodología consistió en identificar, dentro del área inundada:

- a) La cantidad de viviendas impactadas.
- b) La afectación a servicios esenciales.
- c) Los daños materiales potenciales.
- d) Las posibles afectaciones medioambientales generadas por la rotura.

Este enfoque integral permite realizar una clasificación técnica de la presa basada en el riesgo potencial aguas abajo, conforme a los lineamientos normativos.

a) Número de viviendas afectadas → CATEGORÍA A.

El análisis espacial realizado en ArcGIS indica que la onda de inundación impacta un total de 204 viviendas habitadas, lo cual, según la normativa, representa una afección grave, ya que se superan ampliamente las 5 viviendas mínimas establecidas para considerarse como tal. Además, de acuerdo con la Figura 3.2, las condiciones de calado y velocidad en esta zona refuerzan la gravedad del impacto.

b) Servicios esenciales afectados → CATEGORÍA A.

La onda de avenida alcanza directamente el núcleo urbano de Culpina, afectando múltiples servicios esenciales:

- > Red de agua potable, incluyendo captaciones y pasos de quebrada del sistema comunitario.
- Mercado central de Culpina.
- > Terminal de buses, afectando el sistema de transporte.
- > Toma de riego, que abastece aproximadamente 3.000 ha, quedando sin suministro.

➤ Infraestructura deportiva, como una cancha de fútbol de césped natural, un coliseo deportivo y una cancha techada de fútbol de salón, ambas con afectación grave: calado de hasta 3 m y velocidades superiores a 1,77 m/s.

c) Daños materiales → CATEGORÍA C.

- ➤ Terrenos de cultivo a secano → CATEGORÍA C
 Se identificaron aproximadamente 203 ha de cultivos de secano inundadas. Según la Tabla 5.9, este valor se encuentra por debajo del umbral de 3.000 ha, por lo que se clasifica como una afección moderada.
- ➤ Infraestructura vial (carreteras) → CATEGORÍA C.
 La inundación impacta tramos significativos del sistema vial urbano, especialmente en el centro de Culpina. Aunque no afecta una gran longitud de la carretera troncal, estos puntos estratégicos justifican la clasificación como daño importante.

d) Daños medioambientales → CATEGORÍA A.

Se evaluó el impacto sobre edificaciones religiosas y patrimoniales.

- La parroquia principal de Culpina se ve afectada con un calado estimado de 2 metros y una velocidad de 8 m/s, lo cual constituye una afección grave.
- ➤ Una iglesia de la comunidad mormona también presenta una inundación de hasta 3 metros, reforzando la gravedad del daño ambiental y cultural.
- Rotura de la presa El Tranque, la cual representa no solo una infraestructura hidráulica funcional, sino también un elemento de valor histórico y simbólico para la población de Culpina, constituyéndose en un bien patrimonial significativo para la región.

Conclusión:

Con base en los resultados del análisis, se concluye que la clasificación de la presa El Tranque, bajo el escenario sin avenida, corresponde a la CATEGORÍA A, ya que se cumplen múltiples criterios de afección grave establecidos por la normativa, siendo el factor determinante el impacto directo sobre la población, infraestructura esencial y servicios urbanos.

5.7. OBRAS DE PROTECCIÓN Y DURABILIDAD DE LA PRESA

5.7.1. Alternativas de protección ante una posible rotura de presa

Con el objetivo de disminuir el riesgo de inundación ante una posible rotura de la presa El Tranque, se plantearon dos alternativas basadas en los resultados de las simulaciones hidráulicas. La primera consiste en un vertedero de laminación, cuya función es atenuar la onda de avenida y reducir su impacto sobre la zona urbana. La segunda propone una obra de encauzamiento con muros de gaviones, diseñada para conducir el flujo dentro del cauce y evitar desbordamientos que afecten a infraestructuras y viviendas.

5.7.1.1. Vertedero de laminación

Como medida de reducción del caudal pico en caso de rotura de la represa, se planteó la incorporación de un vertedero tipo Creager en el modelo hidráulico de HEC-RAS. La estructura, de 100 metros de longitud y 10 metros de altura, fue ubicada aguas arriba de la zona urbana de Culpina.

Figura 5.54: Localización del vertedero de laminación para atenuar la onda de rotura Fuente: Elaboración propia.

Aunque no se realizó un diseño estructural detallado, su incorporación permitió simular la atenuación del caudal pico de rotura, demostrando su efectividad como medida de control y reducción del riesgo de inundación.

5.7.1.2. Obra de encauzamiento con muros de contención

El sistema de encauzamiento tiene como objetivos principales la estabilización del cauce, la protección contra inundaciones y la restauración fluvial, lo que a su vez permite salvaguardar áreas de cultivo, zonas urbanas, infraestructuras y actividades productivas situadas en márgenes vulnerables.

Figura 5.55: Vista en obra del encauzamiento con muros de gaviones Fuente: Elaboración propia.

Como medida alternativa ante una posible rotura de la represa El Tranque, se propuso en el modelo HEC-RAS una obra de encauzamiento del río mediante muros de gaviones a ambos márgenes, con una altura de 5 metros y una sección hidráulica ampliada a 30 metros. Aunque no se desarrolló un diseño estructural detallado, los resultados de la simulación hidráulica evidenciaron que esta intervención permite contener y guiar los caudales de rotura, evitando desbordamientos en la zona urbana de Culpina y disminuyendo significativamente el riesgo de afectación directa.

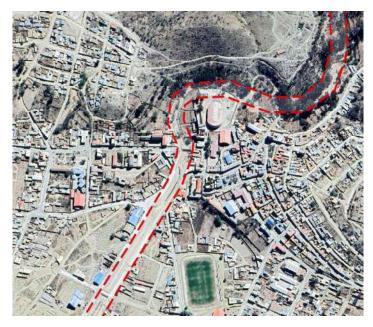


Figura 5.56: Ubicación o trazado del encauzamiento Fuente: Elaboración propia.

A continuación, se presenta el mapa de riesgo resultante tras la aplicación conjunta de ambas obras de protección.

Figura 5.57: Mapa de riesgo con obras de protección Fuente: Elaboración propia.

5.7.2. Prolongación de la vida útil de la presa

La represa El Tranque presenta un problema crítico de sedimentación, principalmente por la acumulación de sedimentos finos. Como medida de mitigación, la represa fue previamente elevada con el objetivo de compensar la pérdida de volumen útil.

Con base en la información topobatimétrica de 2013 y 2019, descrita en el punto 4.3.4, se estimó una pérdida de 405,098.08 m³, equivalente al 7.46 % del volumen útil en seis años, con una tasa anual de 1.24 %. Bajo esta tendencia, la vida útil remanente del embalse se estimó en 71.65 años.

La cuenca tributaria, de 51 km², presenta una degradación específica de 1676.13 ton/km²·año, lo que indica una alta producción de sedimentos. A continuación, se estima el volumen acumulado de sedimentos con base a la información topobatimétrica.

○ Pérdida adicional esperada (2019 – 2025):

$$1,24\% \times 6 \ a\tilde{n}os = 7,44\%$$

o Pérdida total acumulada desde 2013 a 2025:

$$7,46\%(2013 - 2019) + 7,44\%(2019 - 2025) = 14,9\%$$

o Volumen de sediment0 (2019 – 2025):

$$V_{sed} = 5.430.784,02 \, m^3 \times 14,9\% = 809.186,819 \, m^3$$

• Volumen actual proyectado (2025):

$$V_{2025} = 5.430.784,02 \, m^3 - 809.186,819 \, m^3 = 4.621.597,20 \, m^3$$

Vaciar un embalse para su limpieza no siempre es posible. Una vez que se ha vaciado un embalse y se ha desecado hay que extraer miles de toneladas de material. Y después hay que plantearse qué hacer con esos sedimentos, por ejemplo, si se utilizan como nuevo suelo fértil, como relleno, si hay que hacerle algún tratamiento previo.

Se trata de un proceso costoso económicamente y ambientalmente, y dado que la represa El Tranque presenta una alta tasa de sedimentación, se proponen las siguientes medidas con el objetivo de prolongar su vida útil.

5.7.2.1. Elevación de la corona y reubicación de la obra de toma

Una de las medidas estructurales adoptadas en el pasado para contrarrestar los efectos de la sedimentación en la represa El Tranque fue la elevación de la corona del dique, realizada en el año 1991, cuando se incrementó la altura en 5 metros. Esta intervención permitió recuperar volumen útil perdido por la acumulación de sedimentos y extender la vida operativa del embalse.

Como parte de esa medida, también se llevó a cabo la reubicación de la obra de toma a una nueva cota, con el fin de garantizar la captación de agua con menor concentración de sedimentos finos, mejorando la eficiencia del sistema. Estas acciones sentaron un precedente técnico importante y pueden ser consideradas nuevamente como alternativa futura si las condiciones de sedimentación continúan agravándose.

5.7.2.2. Construcción de un sistema de desagüe de fondo y dique de cola

La represa El Tranque no dispone de un sistema de desagüe de fondo, lo que dificulta la evacuación de sedimentos acumulados en el embalse. Se propone la construcción de esta infraestructura para permitir el vaciado controlado de sedimentos y preservar la capacidad de almacenamiento útil.

Adicionalmente, se plantea la instalación de un dique de cola aguas arriba, que funcione como barrera de retención de sedimentos finos. Esta estructura favorecería la decantación previa, reduciendo el ingreso de sedimentos al embalse principal y mejorando la eficiencia operativa a largo plazo

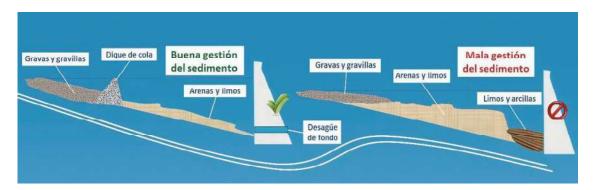


Figura 5.58: Ilustración de ejemplos de distribución de sedimentos en un embalse Fuente: Eselagua, 2016.