ANEXO 1: DATOS DE PRECIPITACIONES MÁXIMAS DIARIAS

ANEXO 1: Datos de precipitaciones máximas diarias

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: CULPINA
 Lat. S.:
 20°49'5.88"

 Provincia: SUD CINTI
 Long. W.:
 64°56'52.08"

 Departamento: CHUQUISACA
 Altura:
 2.970 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
1973												29,90	****
1974	19,30	27,10	16,40	0.00	0,00	0.00	0,00	0,00	2,20	0.00	3,00	14,60	27,10
1975	29,30	27,30	17,30	0,80	3,00	0,00	0,00	0,50	7,30	9,30	7,80	16,60	29,30
1976	20,10	28,20	17,40	3,20	3,60	0,00	0,00	5,40	0,00	45,20	5,00	8,50	45,20
1977	15,00	41,00	22,50	0,00	0,00	0,00	0,00	2,00	3,20	15,50	17,40	23,70	41,00
1978	11,50	26,00	17,40	4,00	0,00	0,00	0,00	0,80	0,00	7,80	7,60	28,30	28,30
1979	18,90	8,20	20,70	2,00	0,00	0,00	0,00	0,00	0,00	1,70	4,50	16,80	20,70
1980	8,80	19,60	8,80	0,30	8,80	0,00	0,00	0,00	0,50	13,50	3,20	3,00	19,60
1981	23,00	14,70	13,40	6,30	0,00	0,00	0,00	2,70	7,30	1,00	10,90	18,60	23,00
1982	14,00	22,00	17,30	14,10	3,50	0,00	0,00	0,00	11,20	2,60	11,40	18,50	22,00
1983	6,80	11,80	6,00	1,80	2,40	0,00	3,60	0,60	8,50	4,40	9,60	14,30	14,30
1984	11,40	15,10	18,50	4,00	0,00	0,00	0,20	16,70	0,50	23,00	19,50	25,30	25,30
1985	8,80	26,30	8,80	25,00	0,00	19,40	2,00	1,60	3,60	2,60	21,60	47,50	47,50
1986	8,80	28,80	24,50	19,10	,			/	,	,	,		****
1987	-,			13,60	0,00	0,00							****
1988	21,20	10,50	23,00	11,20	0,20	0,00	0,00	0,00	3,00	3,20	8,20	50,00	50.00
1989	,	,	,	,	,	,	0,00	0,00	12,20	17,20	24,00	13,20	****
1990	14,20	13,40	20,00	25,00	1,20	0,00	0,00	0,00	0,00	1,10	5,00	20,00	25,00
1991	24,50	14,50	16.00	10.00	0,00	0,00	0,00	0.00	0,00	5,40	11,20	20.00	24,50
1992	22,00	16,00	9,00	0,30	0,20	1,00	0.00	0.00	0,00	9,50	29,30	20,00	29,30
1993	5,50	10,50	20,00	25,50	0,00	0,00	0,00	0,00	0,00	19,50	11,00	27,00	27,00
1994	19,50	10,00	7,50	4,00	0,00	0,00	0,00	0,00	0,50	23,50	6,50	14,00	23,50
1995	19,00	20,00	9,00	6,00	0,00	0,00	-,	-,	-,		-,		****
1996	,		.,	-,	-,	-,							****
1997											5,00	9,70	****
1998	16,90	18,70	16,00	5,00	0,00	0,00	0,00	0,00	0,00	6,60	3,20	4,70	18,70
1999	16,00	20,00	18,70	4,50	0,00	0,00	0,00	0,00	41,00	9,00	5,00	4,20	41,00
2000	29,80	4,80	4,50	4,80	0.00	0.00	0,00	0.00	0,00	5,20	0,00	1,50	29,80
2001	0.00	16,00	8,10	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0.00	17,10	17,10
2002	2,70	21,50	6,00	8,50	0,00	0,00	0,00	0,00	0,00	8,50	12,00	9,10	21,50
2003	22,50	8,50	14,30	7,30	0,00	0,00	0,00	2,50	0,00	6,00	4,20	83,00	83,00
2004	9,50	16,50	6,50	1,00	0,00	0,30	0,00	7,20	2,10	1,00	2,10	8,00	16,50
2005	13,20	25,50	15,00	8,60	0,00	0.00	0.00	0.00	7,00	5,30	0.00	13,00	25,50
2006	40,00	24,00	21,00	0,00	0,00	0,00	0,00	0,00	2,10	1,20	11,30	13,00	40,00
2007	34,20	5,00	12,70	0,00	0,00	0,00	0,00	3,10	1,80	12,50	5,60	19,60	34,20
2008	22,80	14,20	24,10	0,00	0,00	0,00	0,00	0,00	0,00	3,50	7,30	23,60	24,10
2009	11,60	4,20	12,10	9,50	0,00	0,00	0,00	0,00	8,70	0,00	15,50	17,60	17,60
2010	43,20	18,30	18,40	0,00	8,20	0.00	0.00	0.00	0,00	4,30	0.00	9,10	43,20
2011	9,10	16,20	6,10	6,20	4,30	0,00	0,00	0,00	4,60	10,80	0,00	14,00	16,20
2012	17,40	37,40	8,30	18,40	0,00	0,00	0,00	0,00	0,00	13,20	7,40	7,30	37,40
2013	17,70	9,60	6,00	0,00	0,00	4,80	0,00	0,00	0,50	4,20	4,30	60,50	60,50
2014	34,60	19,10	5,10	4,10	4,20	0,50	0,00	4.70	5,30	6,60	11,20	11,70	34,60
2015	17,00	12,30	19,60	4,10	0,00	0,00	0,00	0,00	1,30	13,30	6,00	17,40	19,60
2016	11,50	17,10	20,10	10,10	0,00	0,00	0,00	0,70	0,10	2,10	2,50	6,20	20,10
2017	29,70	12,30	15,40	3,20	0,00	0,00	0,40	0,00	3,50	2,80	5,50	11,50	29,70
2018	33,50	31,00	8,10	0,00	0,00	0,00	0,00	0,00	8,60	4,10	4,50	52,00	52,00
2019	16,90	27,50	5,00	1,10	0,00	0,10	12,50	0,00	2,70	4,10	13,20	16,30	27,50
2020	19,10	17,00	7,80	0,00	0,00	0,00	0,00	0,00	11,80	10,00	4,30	15,70	19,10
2021	8,70	11,40	4,10	6,10	0,00	0,00	0,00	0,00	17,20	3,60	14,30	20,00	20,00
2022	43,10	3,40	15,60	1,50	0,60	0,00	0,00	0,00	0,00	2,50	0,00	18,20	43,10
2023	14,50	9,40	23,60	5,20	0,00	0,00	0,00	0,00	0,00	9,50	11,70	31,50	31,50
2024	12,50	35,00	14,70	1,60	0,00	0,00	0,00	0,00	1,20	14,60	21,00	1,10	35,00
2025	13,00	,**		-,	-,**	-,**	-,~~	,	-,	,	,	-,**	****

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: Culpina (GPRS)
 Lat. S.:
 20°49′46.92″

 Provincia: SUD CINTI
 Long. W.:64°56′39.84″

 Departamento: CHUQUISACA
 Altura:
 2.965
 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
2013			0,70	0,10	0,00	3,10	0,00	0,00			0,00	0,00	****
2014													****
2015								0,20	1,60	13,50	1,60	1,60	****
2016	2,90	4,30	3,90	3,90	0,00	0,10	0,00	0,60	1,50				****
2017					5,80	0,10	0,60	0,20	3,40	2,30	5,90	10,90	****
2018	30,40	28,20	10,60	0,30	0,10	0,80	0,00	0,20	8,80	6,10	1,10	0,00	30,4
2019								0,00	1,10	0,10	4,10	2,60	****
2020	7,70	2,70	3,50	0,00	0,00	0,00	0,00	0,00	15,90	9,80	4,50	13,80	15,9
2021	9.80	11.30	4.30	4.40	0.10	0.10	0.00	0.10	2.40	0.20	4.10	0.10	11.3

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: El Tranque (GPRS)
 Lat. S.:
 20°48'38.88"

 Provincia: SUD CINTI
 Long. W: 64°56'52.08"

 Departamento: CHUQUISACA
 Altura:
 3.034
 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
2017						0,90	0,60	0,30	4,70	4,60	6,40	10,10	****
2018	39,60	33,40	9,60	1,70	0,10	0,60	0,00	2,60	12,20	3,60	7,40	34,90	39,60
2019	17,60	46,90				0,00	12,70	0,00	2,50	2,20	12,10	14,30	****
2020	12,60	18,30	14,30	1,80	0,30	0,90	0,00	0,00	10,60	4,10	1,00	2,90	18,30
2021	0,60	2,30	6,30	9,00	0,50	0,00	0,00	0,80	26,50	3,80	18,40	28,00	28,00
2022	21.90	6.10	11.70	2.80	0.90	0.00	0.00	0.10	0.30	5.00	2 90	18.80	21.90

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: Kumi Motón
 Lat. S.:
 20°49'0.12"

 Provincia: SUD CINTI
 Long. W: 64°55'59.88"

 Departamento: CHUQUISACA
 Altura:
 2.970
 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
1994	9,00	17,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	7,00	0,00	15,00	17,00
1995	9.00	9.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	9.00

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: Incahuasi_CHUQ
 Lat. S.:
 20°48'0.0"

 Provincia: SUD CINTI
 Long. W.:64°54'0.0"

 Departamento: CHUQUISACA
 Altura:
 2.965
 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
2014												0,00	****
2015	0,00			0,00	0,00	0,00	0,00	0,00		0,00			****
2016	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2017	0,00	0,00	0,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	****
2018	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2019	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2020	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2021	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2022	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2023	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: CULPINA
 Lat. S.:
 20°46'0.12"

 Provincia: NOR CINTI
 Long. W.: 64°52'0.12"

 Departamento: CHUQUISACA
 Altura:
 2.980 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
1990	20,20	20,20	14,50	0,00	0,00	0,00	0,00	0,00	0,00	13,30	20,90	18,50	20,90
1991	44,70	18,80	16,20	20,60	0,00	0,00	0,00	2,50	4,50	7,50	13,10	15,50	44,70
1992	20,60	32,50	18,50	1,50	0,00	0,00	0,00	0,00	3,40	8,70	13,50	21,50	32,50
1993	24,50	24,50	40,50	4,70	15,50	0,00	0,00	3,20	1,50	43,60	32,50	18,50	43,60
1994	15,50	26,50	10,00	3,50	1,50	0,00	0,00	0,00	2,50	18,50	28,50		****
1995	28,50	19,50	27,50	10,50	9,50	0,00	0,00	0,00	9,20	3,50	12,20	16,50	28,50
1996	10,80	24,70	31,50	11,30	14,30	0,00	0,00	12,60	6,60	2,20	10,60	22,50	31,50
1997	11,40									4,80	7,50	7,30	****
1998	15,50	20,50	7,40	4,80	0,00	0,00	0,00	0,00	0,00	14,50	22,50	3,30	22,50
1999	40,60	26,50	45,40	11,40	0,00	0,00	0,00	0,00	0,00	20,00	7,00	9,80	45,40
2000	150,20	18,50	52,50	0,00	0,00	0,00	0,00	0,00	0,00	3,40	3,40	13,50	150,20
2001		47,20	44,30	0,00	0,00	0,00	0,00	0,70	0,00	0,00	0,00	65,50	****
2002	52,50	49,50	28,50	1,70	0,00	0,00	4,30	0,00	0,00	35,50	26,60	15,60	52,50
2003	29,80	20,00	29,40										****

ALTURA MAXIMA DIARIA DE PRECIPITACIÓN (mm)

 Estación: Arpaja Alta
 Lat. S.:
 20°40'36.84"

 Provincia: NOR CINTI
 Long. W.:64°56'53.16"

 Departamento: CHUQUISACA
 Altura:
 3.061
 msnm

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	MAX
1994	40,00	38,00	7,80	2,00	0,00	0,00	0,00	0,00	0,30	29,10	5,40	20,90	40
1995	20,20	35,50	40,00	1,70	2,10	0,00	0,00	0,00	9,50	17,50	21,50	56,00	56
1996	20,10	15,00	21,50	13,20	20,80	0,00	0,00	16,50	11,30	12,30	19,20	32,00	32
1997	31,00	38,00											****
1998													****
1999													****
2000													****
2001													****
2002	27,40			20,00	0,00	7,00	0,00	1,30	0,00	37,90	15,10	20,00	****
2003	14,20	28,00	21,20	1,80	1,80	0,00	0,00	0,00	0,00	22,00	8,10	82,50	82,5
2004	13,10	27,10	15,50	10,40	0,00	0,00	0,00	0,00	0,00	0,00	6,00	0,00	27,1
2005	0.00	22.40	11.70										****

ANEXO 2:

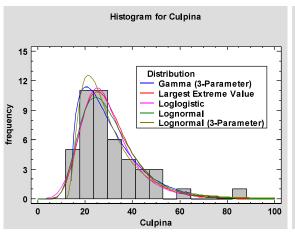
CÁLCULO HIDROLÓGICO Y CAUDAL MÁXIMO CON HEC-HMS

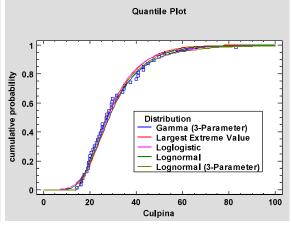
ANEXO 2: Cálculo hidrológico y caudal máximo con HEC-HMS

N°	AÑO	Pmax
1	1974 - 1975	29,30
2	1975 - 1976	28,20
3	1976 - 1977	45,20
4	1977 - 1978	26,00
5	1978 - 1979	28,30
6	1979 - 1980	19,60
7	1980 - 1981	23,00
8	1981 - 1982	22,00
9	1982 - 1983	18,50
10	1983 - 1984	18,50
11	1984 - 1985	26,30
12	1989 - 1990	25,00
13	1990 - 1991	24,50
14	1991 - 1992	22,00
15	1992 - 1993	29,30
16	1993 - 1994	27,00
17	1997 - 1998	18,70
18	1998 - 1999	41,00
19	1999 - 2000	29,80
20	2000 - 2001	16,00
21	2001 - 2002	21,50
22	2002 - 2003	22,50
23	2003 - 2004	83,00
24	2004 - 2005	25,50
25	2005 - 2006	40,00
26	2006 - 2007	34,20
27	2007 - 2008	24,10
28	2008 - 2009	23,60
29	2009 - 2010	43,20
30	2010 - 2011	16,20
31	2011 - 2012	37,40
32	2012 - 2013	17,70
33	2013 - 2014	60,50
34	2014 - 2015	19,60
35	2015 - 2016	20,10
36	2016 - 2017	29,70
37	2017 - 2018	33,50
38	2018 - 2019	52,00
39	2019 - 2020	19,10
40	2020 - 2021	17,20
41	2021 - 2022	43,10
42	2022 - 2023	23,60
43	2023 - 2024	35,00

Parámetros Estadisticos								
N° Datos	43,00							
Media (hd)	29,31							
Desv. (Sd)	13,08							
Moda (Ed)	29,30							

COMPARACIÓN DE DISTRIBUCIONES CON EL SOFTWARE STATGRAPHICS

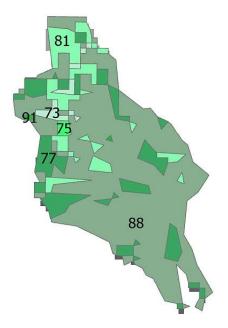

<u>Diferencias entre distribuciones según el sofware Statgraphics</u>


N°	Distribution	Est. Parameters	Log Likelihood	KS D
1	Gamma (3-Parameter)	3	-169,25	0,0665628
2	Lognormal (3-Parameter)	3	-169,53	0,0627966
3	Inverse Gaussian	2	-171,295	0,0972872
4	Birnbaum-Saunders	2	-171,402	0,0994887
5	Lognormal	2	-171,437	0,0939784
6	Largest Extreme Value	2	-171,91	0,0890796
7	Loglogistic	2	-172,144	0,0820157
8	Gamma	2	-173,407	0,121837
9	Weibull	2	-177,899	0,143197
10	Logistic	2	-177,979	0,116536
11	Laplace	2	-177,992	0,138506
12	Normal	2	-180,482	0,170757
13	Uniform	2	-190,339	0,445997

Orden de la mejor distribución aplicable

og Max Vero	simulitud	Distribución
-169	,250	Gamma (3-Parameter)
-169	,525	Lognormal (3-Parameter)
-17:	,295	Inverse Gaussian

Kolr	nogorov-Smirnov	Distribución
1	0,0627966	Lognormal (3-Parameter)
2	0,0665628	Gamma (3-Parameter)
3	0,0820157	Loglogistic



PRECIPITACIONES MÁXIMAS				
Periodo de retorno (T) Años	Largest Extreme Value (Gumbel)	Lognormal (3-Parameter)	Gamma (3-Parameter)	
100	66,1473	84,8111	75,1693	
500	80,5587	117,242	93,2987	
1.000	86,7543	133,21	101,01	
5.000	101,133	175,482	118,757	
7.000	104,13	185,276	122,441	
10.000	107,325	196,116	126,346	

NÚMERO DE CURVA CON DATOS CGN250

CONDICIÓN	ECUACIÓN	NC
NORMAL (CHAII)	DATOS CGN250	85,19
SECA (CHAI)	$NC(I) = \frac{4.2 \cdot NC(II)}{10 - 0.058 \cdot NC(II)}$	70,72
HÚMEDA (CHAIII)	$NC(III) = \frac{23 \cdot NC(II)}{10 + 0.13 \cdot NC(II)}$	92,97

DESCRIPCIÓN	FORMULA	VALOR
S: Retención potencial	$S = \frac{25400}{NC} - 254$	19,21
I _a : Adstración inicial	$I_a = 0.2 \cdot S$	3,841

TIEMPO DE CONCENTRACIÓN Y TIEMPO DE RETARDO

PARAMETROS DE LA CUENCA:

PARÁMETROS CARACTERISTICOS DE LA CUENCA				
VARIABLES	VALOR	UNIDAD		
Área de la cuenca (<mark>A</mark>).	51,18	km²		
Longitud del cauce principal más largo (<mark>L</mark>).	16,50	km		
Pendiente promedio del cauce principal (S).	0,0551	m/m		
Desnivel máximo del cauce principal (<mark>H</mark>).	947,00	m		
Número de curva (<mark>NC</mark>)	92,97	-		

TIEMPO DE CONCENTRACIÓN

ECUACIÓN	FORMULA	VARIABLES	7	·c
Vivniah	$Tc = 0.06628 \cdot \left(\frac{L}{S^{0.5}}\right)^{0.77}$	L (km)	1 751 640	105,08 min
Kirpich		S (m/m)	1,751 hrs	
Tomor	$Tc = 0.1251 \cdot \left(\frac{L}{S^{0.25}}\right)^{0.76}$	L (km)	1 007 hro	100 50 :
Temez	$Ic = 0.1251 \cdot \left(\frac{1}{S^{0.25}}\right)$	S (m/m)	1,827 hrs	109,59 min
V. T. Ohaw	$Tc = 0.273 \cdot \left(\frac{L}{S^{0.25}}\right)^{0.64}$	L (km)	0.010.6=0	150 00 min
V.T. Chow	$S^{0,25}$	S (m/m)	2,610 hrs	156,62 min
Johnstone	$Tc = 0.4624 \cdot \left(\frac{L}{S^{0.5}}\right)^{0.5}$	L (km)	3,876 hrs	232,56 min
Cross	$Ic = 0.4624 \cdot \left(\frac{1}{S^{0.5}}\right)$	S (m/m)	3,6701113	232,30 111111
Cuerpo de	$Tc = 0.28 \cdot \left(\frac{L}{S^{0.25}}\right)^{0.76}$	L (km)	4,088 hrs	245,29 min
ingenieros USA	$IC = 0.28 \cdot \left(\frac{1}{S^{0.25}}\right)$	S (m/m)	4,0001113	245,29111111
SCS Rancer	$Tc = 0.947 \cdot \left(\frac{L^3}{H}\right)^{0.385}$	L (km)	1,724 hrs	102 45 min
303 harroer	$IC = 0.947 \cdot \left(\frac{H}{H}\right)$	H (m)	1,7241113	103,45 min
Kirpich, Z.	$Tc = \left(\frac{0,871 \cdot L^3}{H}\right)^{0,385}$	L (km)	1,726 hrs	103,58 min
P	$Ic = \left(\frac{H}{H}\right)$	H (m)	1,7201113	103,38 11111
Cafornia	$Tc = 0.066 \cdot \left(\frac{L}{S^{0.5}}\right)^{0.77}$	L (km)	1,744 hrs	104,63 min
Calonna		S (m/m)		
Ventura -	T- 0.05 A	A (km²)	1,523 hrs	91,40 min
Hera	$Tc = 0.05 \cdot \sqrt{\frac{A}{S}}$	S (m/m)	1,020 1110	01,4011111
Chereque	$Tc = \left(\frac{0.871 \cdot L^3}{H}\right)^{0.385}$	L (km)	1,726 hrs	103,58 min
- Chereque	(11)	H (m)	1,7201110	100,00111111
Basso, E.	$Tc = 0.067 \cdot \left(\frac{L}{S^{0.5}}\right)^{0.77}$	L (km)	1,770 hrs	106,22 min
	$S^{0,5}$	S (m/m)	2,7700	100,22
	$4.\sqrt{4} + 15.7$	L (km)		
Giandotti	$T_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{25.3 \cdot (S \cdot L)^{0.5}}$	A (km²)	2,212 hrs	132,69 min
		S (m/m)		
	$Tc = 0.1914 \cdot \left(\frac{L}{A^{0.1} \cdot S^{0.25}}\right)$	L (km)		
Williams		A (km²)	4,397 hrs	263,79 min
Ecuación de retardo	$Tc = \frac{0,02968 \cdot L^{0.8} \cdot (2540 - 22,86 \cdot NC)^{0.7}}{NC^{0.7} \cdot S^{0.5}}$	L (km)		
		NC (-)	3,391 hrs	203,44 min
SCS		S (m/m)		

ANÁLISIS:

Para obtener un promedio representativo del tiempo de concentración (Tc), es recomendable seleccionar los valores más cercanos o similares, promediando únicamente aquellos resultados obtenidos a partir de distintas fórmulas que presenten una variación mínima entre sí. Esto permite evitar la influencia de valores atípicos y obtener un resultado más preciso, en lugar de calcular un promedio directo de todas las ecuaciones.

Tiempo de concentración (Tc) = 1,753 hrs - 105,16 min

TIEMPO DE RETARDO:

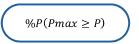
DESCRIPCIÓN	FORMULA RESULTAL		.TADO
Tiempo de retardo (<mark>tr</mark>).	$t_r = T_C \cdot \left(\frac{6}{10}\right)$	1,052 hrs	63,098 min

INTERVALO DE TIEMPO PARA EL HISTOGRAMA DE PRECIPITACIÓN:

DESCRIPCIÓN	FORMULA	RESULTADO	
Intervalo de tiempo (Δt).	$\Delta t \approx 0.174 \cdot T_C$	0,305 hrs	18,30 min

DURACION HIPOTETICA DE LA LLUVIA:

DESCRIPCIÓN	FORMULA	Тс	D
Duración de la lluvia (D).	$D \ge T_C$	1,753 hrs	2,000 hrs


NUMERO DE INTERVALOS PARA EL HIETOGRAMA:

DESCRIPCIÓN	FORMULA	N
Numero de intervalos (N).	$N = \frac{D}{\Delta t}$	6,00

TORMENTA HIPOTÉTICA

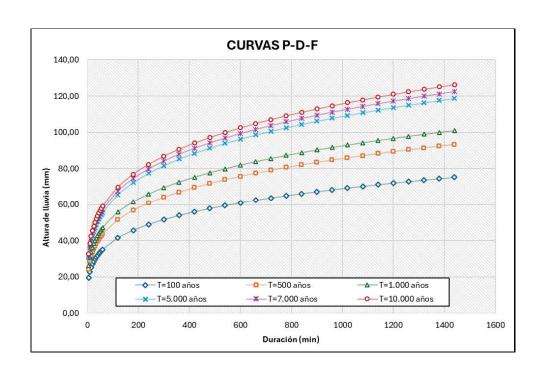
PERIODOS DE RETORNO A USAR:

CALCULO DEL PARÁMETRO g:

PRECIPITACIONES MÁXIMAS PROBABLES				
Т	%P (Pn	ıax ≥ P)	Pmax	
[años]	[-]	[%]	[mm]	
100	0,99000	99,00	75,1693	
500	0,99800	99,80	93,2987	
1000	0,99900	99,90	101,0100	
5.000	0,99980	99,98	118,7570	
7.000	0,99986	99,99	122,4410	
10.000	0,99990	99,99	126,3460	

Estación	CULPINA
Latitud	-20,818
Longitud	-64,948
Altura	2970

CORRELACIÓN	ZONA	EXPRESIÓN	g
g - Latitud	Altiplano - Cordillera Occidental	$g = 0.024268301 \cdot Latitud + 0.753874606$	0,248657116
g - Altitud	Cordillera Oriental	$g = 0.000051111 \cdot Altitud + 0.087356945$	0,239156615
g - Longitud	Subandino - Precámbrico	$g = 0.011832535 \cdot Longitud + 1.026481973$	0,25798249


$$P_D = P_t^T \times \left(\frac{D}{1440}\right)^g$$

 $m{P}_D$: Precipitación máxima de duración "D" en (mm). $m{P}_t^T$: Precipitación máxima para un T determiando(mm).

D: Duración de la precipitación en (minutos).

g: Coeficiente de desagregación de la tormenta.

	Precipitaciones máximas en 24 hrs (mm).						
-	75,17	93,30	101,01	118,76	122,44	126,35	
Duración			Periodos de re	etorno (años).			
(minutos)	100	500	1.000	5.000	7.000	10.000	
			Precipitad	ión (mm).			
5	19,40	24,08	26,07	30,65	31,60	32,61	
10	22,90	28,42	30,77	36,18	37,30	38,49	
15	25,23	31,32	33,91	39,86	41,10	42,41	
20	27,03	33,55	36,32	42,70	44,03	45,43	
25	28,51	35,39	38,31	45,04	46,44	47,92	
30	29,78	36,97	40,02	47,05	48,51	50,06	
35	30,90	38,35	41,52	48,82	50,33	51,94	
40	31,90	39,60	42,87	50,40	51,97	53,62	
45	32,82	40,73	44,10	51,84	53,45	55,16	
50	33,65	41,77	45,22	53,17	54,82	56,56	
55	34,43	42,73	46,26	54,39	56,08	57,87	
60	35,15	43,63	47,24	55,54	57,26	59,08	
120	41,49	51,50	<i>55,7</i> 5	65,55	67,58	69,74	
180	45,72	56,74	61,43	72,22	74,46	76,84	
240	48,97	60,78	65,81	77,37	79,77	82,31	
300	51,66	64,11	69,41	81,61	84,14	86,82	
360	53,96	66,97	72,51	85,25	87,89	90,69	
420	55,98	69,49	75,23	88,45	91,19	94,10	
480	57,80	71,74	77,67	91,32	94,15	97,15	
540	59,45	73,79	79,89	93,93	96,84	99,93	
600	60,97	75,67	81,93	96,32	99,31	102,48	
660	62,37	77,42	83,82	98,54	101,60	104,84	
720	63,69	79,05	85,58	100,62	103,74	107,05	
<i>7</i> 80	64,92	80,57	87,23	102,56	105,74	109,11	
840	66,08	82,01	88,79	104,39	107,63	111,07	
900	67,18	83,38	90,27	106,13	109,42	112,91	
960	68,22	84,68	91,68	107,78	111,13	114,67	
1020	69,22	85,91	93,01	109,36	112,75	116,34	
1080	70,17	87,10	94,29	110,86	114,30	117,95	
1140	71,08	88,23	95,52	112,30	115,79	119,48	
1200	71,96	89,32	96,70	113,69	117,22	120,96	
1260	72,81	90,37	97,84	115,02	118,59	122,37	
1320	73,62	91,38	98,93	116,31	119,92	123,74	
1380	74,41	92,35	99,99	117,55	121,20	125,07	
1440	75,17	93,30	101,01	118,76	122,44	126,35	

ANÁLISIS DE PRECIPITACIÓN POR EL MÉTODO DE BLOQUE ALTERNO

VALORES DE PRECIPITACIÓN PARA UN T = 100 AÑOS

N	Duración (minutos)	P ^T t mm	ΔP mm	N	P (HEC-HMS) mm
0	0,00	0,00	-	-	-
1	20,00	27,03	27,03	5	2,06
2	40,00	31,90	4,87	3	3,25
3	60,00	35,15	3,25	1	27,03
4	80,00	<i>37,</i> 66	2,50	2	4,87
5	100,00	39 <i>,72</i>	2,06	4	2,50
6	120,00	41,49	1,77	6	1,77

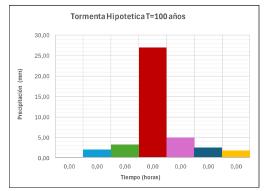
VALORES DE PRECIPITACIÓN PARA UN T = 500 AÑOS

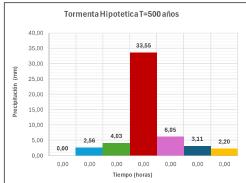
N	Duración (minutos)	P ^T t	ΔP mm	N	P (HEC-HMS) mm
0	0,00	0,00	-	-	-
1	20,00	33,55	33,55	5	2,56
2	40,00	39,60	6,05	3	4,03
3	60,00	43,63	4,03	1	33,55
4	80,00	46,74	3,11	2	6,05
5	100,00	49,30	2,56	4	3,11
6	120,00	51,50	2,20	6	2,20

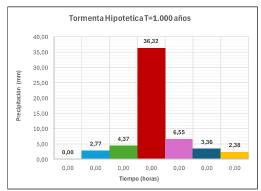
VALORES DE PRECIPITACIÓN PARA UN T = 1.000 AÑOS

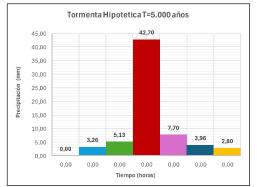
N	Duración (minutos)	P ^T t	ΔP mm	N	P (HEC-HMS) mm
0	0,00	0,00	-	-	-
1	20,00	36,32	36,32	5	2,77
2	40,00	42,87	6,55	3	4,37
3	60,00	47,24	4,37	1	36,32
4	80,00	50,60	3,36	2	6,55
5	100,00	53,37	2,77	4	3,36
6	120,00	<i>55,7</i> 5	<i>2,</i> 38	6	2,38

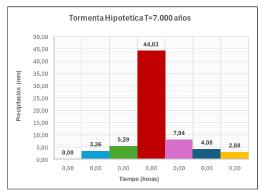
VALORES DE PRECIPITACIÓN PARA UN T = 5.000 AÑOS

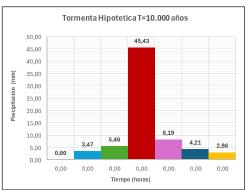

N	Duración (minutos)	P ^T t	ΔP mm	N	P (HEC-HMS) mm
0	0,00	0,00	-	-	-
1	20,00	42,70	42,70	5	3,26
2	40,00	50,40	7,70	3	5,13
3	60,00	55,54	5,13	1	42,70
4	80,00	59,49	3,96	2	7,70
5	100,00	62,75	3,26	4	3,96
6	120,00	65,55	2,80	6	2,80

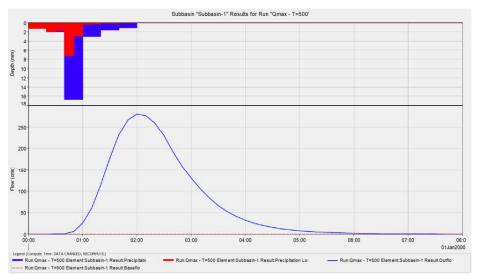

VALORES DE PRECIPITACIÓN PARA UN T = 7.000 AÑOS

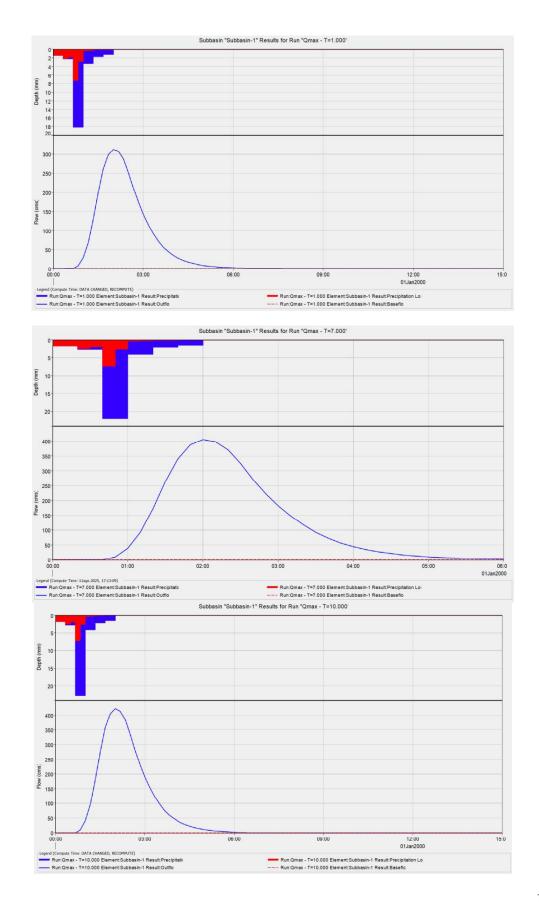

N	Duración	P ^T t	ΔΡ	N	P (HEC-HMS)
	(minutos)	mm	mm		mm
0	0,00	0,00	-	-	-
1	20,00	44,03	44,03	5	3,36
2	40,00	51,97	7,94	3	5,29
3	60,00	57,26	5,29	1	44,03
4	80,00	61,34	4,08	2	7,94
5	100,00	64,70	3,36	4	4,08
6	120,00	6 <i>7,</i> 58	2,88	6	2,88

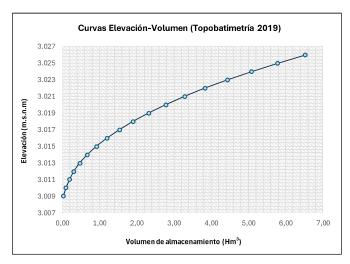

VALORES DE PRECIPITACIÓN PARA UN T = 10.000 AÑOS


N	Duración	\mathbf{P}_{t}^{T}	ΔΡ	N	P (HEC-HMS)
	(minutos)	mm	mm	N	mm
0	0,00	0,00	ı	•	-
1	20,00	45,43	45,43	5	3,47
2	40,00	53,62	8,19	3	5,46
3	60,00	59,08	5,46	1	45,43
4	80,00	63,29	4,21	2	8,19
5	100,00	66,76	3,47	4	4,21
6	120,00	69 <i>,74</i>	2,98	6	2,98








ANEXO 3: CÁLCULO DE LAMINACIÓN CON HEC-HMS

ANEXO 3: Cálculo de laminación con HEC-HMS

1.- DATOS DE ENTRADA PARA EL CÁLCULO.

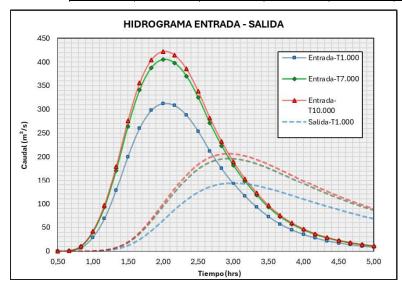
Para el análisis de laminación del embalse se dispuso de levantamientos topobatimétricos realizados en 2013 por el SENAMHI y en 2020 por CIAGUA, ambos en coordinación con el Ministerio de Medio Ambiente y Agua. Para los cálculos se empleó la información de 2020, al ser la más actualizada y representativa de las condiciones del embalse.

COTA	VOL 2019		
m.s.n.m	m³		
3009	30.760,555		
3010	97.632,510		
3011	192.174,845		
3012	311.736,060		
3013	467.111,155		
3014	668.686,160		
3015	915.297,165		
3016	1.204.261,065		
3017	1.534.347,835		
3018	1.904.906,840		
3019	2.318.985,560		
3020	2.780.369,115		
3021	3.285.314,940		
3022	3.834.262,945		
3023	4.432.173,035		
3024	5.083.146,790		
3025	5. <i>7</i> 86.567,695		
3026	6.526.994,015		

2.- METODOLOGIA DE CALCULO DEL CAUDAL DE SALIDA EN HEC-HMS.

En el modelo HEC-HMS, el proceso de laminación del embalse se realiza mediante el método de la piscina a nivel (level pool routing), el cual permite simular la relación entre el almacenamiento y el caudal de salida en función de la elevación del agua. Para el cálculo del caudal vertido, se considera la cota de la cresta del vertedero (NAMO). Dado que la represa El Tranque cuenta con un vertedero de perfil Creager de cresta libre no controlada, se emplea la siguiente ecuación:

$$Q = C \cdot L \cdot H^{3/2}$$


DONDE:

- Q: Caudal que fluye por el vertedero (m³/s)
- L: Longitud efectiva de la cresta del vertedero (m).
- H: Carga hidráulica sobre la cresta (m), medida desde la NAMO hasta el nivel de agua aguas arriba.
- $\textbf{\textit{C}: } Coeficiente \ de \ des \ carga \ (C=2 \ para \ perfil \ Creager \ como \ valor \ est\'andar \ para \ c\'alculos \ iniciales).$

Valores según el tipo de vertedero.

Longitud de verdetero (L) = 38,00 m Coeficiente de descarga (C) = 2,00

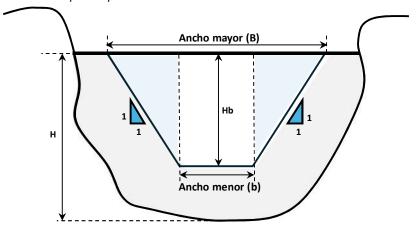
Tiomno	T = 1.00	00 años	T = 7.00	00 años	<u>T</u> = 10.0	00 años
Tiempo	Caudal (I)	Caudal (o)	Caudal (I)	Caudal (o)	Caudal (I)	Caudal (o)
hrs	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,17	0,00	0,00	0,00	0,00	0,00	0,00
0,33	0,00	0,00	0,00	0,00	0,00	0,00
0,50	0,03	0,00	0,12	0,00	0,14	0,00
0,67	0,34	0,00	0,79	0,00	0,89	0,00
0,83	6,91	0,02	10,12	0,04	10,75	0,04
1,00	28,97	0,26	39,86	0,44	41,94	0,48
1,17	68,72	1,49	92,61	2,40	97,11	2,55
1,33	128,76	4,83	171,44	7,23	179,41	7,72
1,50	200,25	12,02	263,96	18,05	275,78	19,27
1,67	260,38	24,76	340,74	36,94	355,59	39,37
1,83	297,96	42,88	387,79	63,41	404,34	67,47
2,00	312,71	64,62	405,20	94,26	422,21	99,85
2,17	308,15	87,38	397,69	124,67	414,13	131,94
2,33	287,97	107,50	370,27	152,34	385,37	161,03
2,50	254,00	123,99	325,29	174,31	338,38	184,00
2,67	212,38	135,41	271,27	188,73	282,10	198,93
2,83	175,29	141,65	223,54	195,67	232,42	205,95
3,00	143,18	143,55	182,40	196,54	189,64	206,56
3,17	115,97	142,04	147,66	192,80	153,51	202,34
3,33	92,73	138,00	118,00	185,73	122,68	194,65
3,50	72,92	132,15	92,78	176,40	96,46	184,62
3,67	57,12	125,15	72,69	165,71	75,57	173,21
3,83	44,93	117,56	57,19	154,44	59,46	161,23
4,00	35,30	109,79	44,92	143,15	46,70	149,25
4,17	27,74	102,11	35,30	132,16	36,70	137,64
4,33	21,86	94,70	27,82	121,71	28,93	126,61
4,50	17,23	87,66	21,93	111,91	22,79	116,29
4,67	13,58	80,74	17,28	102,82	17,96	106,72
4,83	10,70	74,34	13,62	94,44	14,16	97,93
5,00	8,40	68,45	10,70	86,71	11,12	89,87

т	Q _{max}			
	(1)	(0)		
[años]	[m³/s]	[m ³ /s]		
1.000	312,71	143,55		
7.000	405,2	196,54		
10.000	422,21	206,56		

ANEXO 4: COEFICIENTES DE RUGOSIDAD DE MANNING

ANEXO 4: Coeficientes de rugosidad de Manning

FID	Grupo	Manning	n
0	D-3 Corrientes mayores	D-3 Corrientes mayores/a. Sección regular, sin cantos rodados ni matorrales	0,030
1	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
2	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
3	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
4	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
5	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
6	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
7	C. Excavado o dragado	a.3 Con gravas, sección uniforme, limpio	0,025
8	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
9	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0.040
10	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
11	C. Excavado o dragado	a. En tierra, recto y uniforme/a.2 Limpio, exposición a la intemperie	0,022
12	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
13	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,038
14	C. Excavado o dragado	a. En tierra, recto y uniforme/a.3 Con gravas, sección uniforme, limpio	0,025
15	D-2 Planicies de inundación	Áreas urbanas densamente edificadas, con vegetación y obstáculos	0,100
16	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
17	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,040
18	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,040
19	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,040
20	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
21	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
22	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
23	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
24	D-2 Planicies de inundación	Áreas urbanas densamente edificadas, con vegetación y obstáculos	0,100
25	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,040
26	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,040
27	D-2 Planicies de inundación	Áreas urbanas densamente edificadas, con vegetación y obstáculos	0,100
28	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
29	D. Corrientes naturales	b. Corrientes montañosas con bancas empinadas y vegetación sumergida	0,040
30	D. Corrientes naturales	D-3 Corrientes mayores/a. Sección regular, sin cantos rodados ni matorrales	0,030
31	D. Corrientes naturales	D-3 Corrientes mayores/a. Sección regular, sin cantos rodados ni matorrales	0,030
32	C. Excavado o dragado	a. En tierra, recto y uniforme/a.3 Con gravas, sección uniforme, limpio	0,035
33	C. Excavado o dragado	a. En tierra, recto y uniforme/a.3 Con gravas, sección uniforme, limpio	0,025
34	C. Excavado o dragado	a. En tierra, recto y uniforme/a.3 Con gravas, sección uniforme, limpio	0,025
35	B. Canales revestidos	j. Revestimiento Vegetal	0,023
	C. Excavado o dragado	a. En tierra, recto y uniforme/a.3 Con gravas, sección uniforme, limpio	0,025
	B. Canales revestidos	i. Asfalto/i.2 Rugoso	0,023
38	C. Excavado o dragado	a. En tierra, recto y uniforme/a.2 Limpio, exposición a la intemperie	0,022
39	B. Canales revestidos	i. Asfalto/i.2 Rugoso	0,022
40	B. Canales revestidos	i. Asfalto/i.2 Rugoso	0,016
41	D-2 Planicies de inundación.	b.3 Campos de cultivo maduros	0,010
42	C. Excavado o dragado	a. En tierra, recto y uniforme/a.2 Limpio, exposición a la intemperie	0,040
43	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,022
44	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,070
45	C. Excavado o dragado	a. En tierra, recto y uniforme/a.2 Limpio, exposición a la intemperie	0,070
46	D-2 Planicies de inundación	c.5 Matorrales medios a densos	0,022
47	D-2 Planicies de inundación	c.5 Matorrales medios a densos c.5 Matorrales medios a densos	0,070
48	D-2 Planicies de inundación		0,070
49	C. Excavado o dragado	a. En tierra, recto y uniforme/a.2 Limpio, exposición a la intemperie	0,022


ANEXO 5:

CÁLCULO DEL TIEMPO DE ROTURA Y DIMENSIONES DE LA BRECHA

ANEXO 5: Cálculo del tiempo de rotura y dimensiones de la brecha

FORMA DE LA BRECHA DE ROTURA

La brecha generada en presas de materiales sueltos debe considerarse de forma trapezoidal, adoptando taludes laterales de **1H:1V**. Para estimar el ancho medio de la brecha, se recomienda utilizar las fórmulas empíricas presentada:

NIVELES Y VOLÚMENES DE LA REPRESA EL TRANQUE					
VARIABLES	SIMBOLOGÍA	VALOR	UNIDAD		
Cota Base.	C_{BASE}	3009	m.s.n.m		
Cota Corona.	C_{Corona}	3026	m.s.n.m		
Altura hasta la corona.	H_{Corona}	17,00	m		
Cota N. A.M. O	C_{NAMO}	3023,9	m.s.n.m		
Volumen N. A. M. O	V_{NAMO}	5,026	hm³		
Altura N. A.M. O	H_{NAMO}	14,90	m		
Cota N.A.M.E	C_{NAME}	3025,85	m.s.n.m		
Volumen N.A.M.E	V_{NAME}	6,414	hm³		
Altura N. A.M. E	H_{NAME}	16,85	m		

Guía Técnica para Clasificaión de Presas (1996).

$$b = 20 \cdot (VH)^{0,25}$$

V: Volúmen de embalse en **Hm³**.

H: Altura de la presa sobre el cauce en **m**.

ANCHO MEDIO DE LA BRECHA		
SIN AVENIDA	CON AVENIDA	
60,81 m	64,63 m	

Froehlich (2008).

$$b = 22,46 \cdot K_0 \cdot V_W^{0,32} \cdot H_b^{0,04}$$

 K_0 : Coeficiente de causa de rotura.

 $-Para rotura sin avenida K_0 = 1$

– Para rotura con avenida $K_0 = 1.3$

 V_W : Volumen almacenado en el momento de rotura en Hm^3 .

H_h: Altura de la brecha en m.

- Para rotura encadenada de presas $H_b = H$

ANCHO MEDIO DE LA BRECHA		
SIN AVENIDA	CON AVENIDA	
42,17 m	59,27 m	

Xu & Zhang (2009).

$$b = H_b \cdot \left[0.787 \left(\frac{H}{15} \right)^{0.133} \cdot \left(\frac{V_W^{-1/3}}{H_W} \right)^{0.652} \cdot e^B \right]$$

 $H = H_b$: Altura de la presa sobre el cauce en **m**.

 V_W : Volumen almacenado en el momento de rotura en m^3 .

 H_W : Altura desde la lámina de agua hasta el fondo de la brecha en **m**.

B: Coeficiente que depende de la tipología de la presa.

$$B = B_T + B_C + B_E$$

B_T: Coeficiente que depende del tipo de presa.

 $-B_T = -0.041$ para presas de núcleo impermeable.

 $-B_T = 0.026$ para presas de pantalla.

 $-B_T = -0.226$ para presas homogéneas.

 B_c : Coeficiente que depende de la causa de rotura de la presa.

 $-B_C = 0.149$ para roturas por sobrevertido.

 $-B_C = -0.389$ para roturas por erosion interna o sifonamiento.

B_E: Coeficiente que depende de la erodibilidad.

 $-B_E = 0.291$ para presas de erodibilidad alta.

 $-B_E = -0.140$ para presas de erodibilidad media.

 $-B_E = -0.391$ para presas de erodibilidad baja.

	ANCHO MEDIO DE LA BRECHA		
	SIN AVENIDA CON AVENIDA		
Sobrevertido	69,24 m	67,38 m	
Sifonamiento	40,43 m	39,34 m	

<u>Resumen</u>

N° AUTOR			ANCHO MEDIO DE LA BRECHA (m)		
			SIN AVENIDA	CON AVENIDA	
1	Guía Técnica para Clasificaión de Presas (1996)		60,81	64,63	
2	Froehlich (2008)		42,17	59,27	
3 Xu & Zhang (2009).	Sobrevertido	69,24	67,38		
	Xu & Zhang (2009).	Sifonamiento	40,43	39,34	

Talud izquiero: 1	ANCHO INFERIOR DE LA BRECHA			
Talud derecho: 1	Sin avenida		Con avenida	
Altura de la brecha (H)	Sobrevertido	Sifonamiento	Sobrevertido	Sifonamiento
$b_{inf} = b - \frac{(z_i + z_d) \cdot H}{2}$	54,34 m	25,53 m	50,53 m	22,49 m
$b_{sup} = b_{inf} + (z_i + z_d) \cdot H$	84,14 m	55,33 m	84,23 m	56,19 m

TIEMPO DE ROTURA

Se denomina tiempo de formación de brecha al intervalo comprendido entre el inicio del proceso de rotura y el momento en que la brecha alcanza su tamaño final, durante el cual ocurre la erosión y arrastre progresivo del material del dique. Este tiempo puede estimarse mediante fórmulas empíricas que consideran parámetros como el volumen del embalse involucrado en la rotura ($\mathbf{H}_{\mathbf{w}}$) y la altura desde el cauce a la corona de la presa ($\mathbf{H}_{\mathbf{o}}$ O $\mathbf{H}_{\mathbf{b}}$).

Datos:

NIVELES Y VOLÚMENES DE LA REPRESA EL TRANQUE				
VARIABLES	SIMBOLOGÍA	VALOR	UNIDAD	
Cota Base .	C_{BASE}	3009	m.s.n.m	
Cota Corona.	C_{Corona}	3026	m.s.n.m	
Altura hasta la corona.	H_{Corona}	17,0	m	
Cota N. A.M.O.	C_{NAMO}	3023,9	m.s.n.m	
Volumen N.A.M.O.	V_{NAMO}	5,026	hm³	
Cota N. A. M. E	C_{NAME}	3026	m.s.n.m	
Volumen N. A. M. E	V_{NAME}	6,414	hm³	

<u>Cálculo:</u>

N°	AUTOR	ECUACIÓN	TIEMPO DE ROTURA (Hrs)	
			SIN AVENIDA	CON AVENIDA
1	Guía Técnica para Clasificaión de Presas (1996), f(V, H)	$T = 4.8 \cdot \frac{\sqrt{V}}{H}$	0,633	0,715
2	Froehlich (2008), f(Vw, hw)	$T = 5,62 \cdot \frac{\sqrt{V_W}}{H_b}$	0,741	0,837
	PROMEDIO			0,776