CAPÍTULO I INTRODUCCIÓN

CAPÍTULO I INTRODUCCIÓN

1.1 Introducción

La planificación y ejecución de proyectos de infraestructura urbana requieren una precisión y eficiencia cada vez mayores para asegurar el desarrollo sostenible y la adecuada gestión del espacio urbano. En este contexto, los avances tecnológicos en topografía y fotogrametría han abierto nuevas oportunidades para mejorar los métodos tradicionales de levantamiento topográfico. Entre estas innovaciones, el uso de drones equipados con tecnología de posicionamiento RTK (Real Time Kinematic) y cámaras de alta resolución para aerofotogrametría ha demostrado ser una herramienta poderosa en la recopilación de datos geoespaciales precisos y detallados.

El levantamiento topográfico y aerofotogramétrico de vías urbanas mediante drones ofrece múltiples ventajas, como la reducción del tiempo de trabajo en campo, el aumento de la seguridad al minimizar la exposición de los topógrafos a riesgos en zonas de tráfico, y la obtención de datos de alta precisión que son esenciales para la planificación, diseño y mantenimiento de infraestructuras viales. Además, la capacidad de generar modelos digitales de elevación (DEM), ortofotos y nubes de puntos en 3D proporciona una base sólida para la toma de decisiones informadas en proyectos de ingeniería civil.

Sin embargo, a pesar de los beneficios evidentes, la adopción de drones en levantamientos topográficos y aerofotogramétricos también plantea desafíos técnicos y económicos. La inversión inicial en equipos de drones, software especializado y la capacitación del personal puede ser significativa. Además, las regulaciones locales sobre el uso de drones y las condiciones ambientales pueden afectar la operatividad y eficiencia de estos levantamientos.

Este trabajo tiene como objetivo realizar un análisis técnico-económico exhaustivo de los levantamientos topográficos y aerofotogramétricos de vías urbanas utilizando drones. Se evaluará la precisión de los datos obtenidos, la eficiencia operativa en comparación con los métodos tradicionales y los costos asociados a la implementación de esta tecnología. Mediante estudios de caso y comparaciones detalladas, se pretende proporcionar una visión clara de los beneficios y limitaciones de utilizar drones en levantamientos urbanos, así como recomendaciones para su implementación efectiva en proyectos de ingeniería civil.

1.2 Justificación

La realización de un análisis técnico-económico de un levantamiento con drones topográficos y aerofotogramétricos en la Avenida Integración de la Ciudad de Tarija se justifica por la necesidad de mejorar la precisión y eficiencia en la gestión de la infraestructura vial urbana, reducir costos y tiempos en el relevamiento de datos, optimizar la planificación y diseño de la vía, aumentar la seguridad laboral, garantizar el cumplimiento de normativas y promover la innovación tecnológica en el desarrollo urbano, ofreciendo así una oportunidad estratégica para modernizar la ciudad y promover su desarrollo sostenible.

1.3 Planteamiento del problema

La planificación, diseño y mantenimiento efectivos de las vías urbanas son aspectos críticos para el desarrollo sostenible y la calidad de vida en las ciudades. En este contexto, la Avenida Integración de la Ciudad de Tarija enfrenta desafíos significativos en términos de gestión de infraestructura vial, tales como la necesidad de obtener datos precisos y actualizados para la toma de decisiones informadas en su planificación y diseño, así como la optimización de recursos económicos y temporales. Los métodos tradicionales de levantamiento topográfico y aerofotogramétrico pueden resultar costosos, lentos y propensos a errores, lo que dificulta la obtención de información precisa y detallada de la vía. Ante esta problemática, surge la interrogante sobre cómo mejorar la eficiencia y precisión en el levantamiento de datos de la Avenida Integración, considerando el uso de drones equipados con tecnología RTK y cámaras de alta resolución para aerofotogrametría como una posible solución. Sin embargo, se plantea la incertidumbre sobre la viabilidad técnica y económica de esta alternativa, así como sus implicaciones en términos de regulaciones locales, seguridad laboral y cumplimiento de estándares de calidad. En este sentido, se hace necesario realizar un análisis técnico-económico exhaustivo para evaluar la conveniencia y efectividad del uso de drones en el levantamiento topográfico y aerofotogramétrico de la Avenida Integración de la Ciudad de Tarija, a fin de identificar posibles beneficios, limitaciones y recomendaciones para su implementación exitosa.

1.4 Objetivos de Proyecto de Aplicación

1.4.1 Objetivo general

Evaluar el impacto técnico y económico del uso de drones equipados con tecnología RTK y cámaras de alta resolución para aerofotogrametría en el levantamiento topográfico de la Avenida Integración en la Ciudad de Tarija, con el fin de proporcionar recomendaciones para su implementación efectiva en la gestión de infraestructura vial urbana.

1.4.2 Objetivos específicos

- Analizar los aspectos regulatorios y normativos relacionados con el uso de drones en el levantamiento topográfico y aerofotogramétrico de la Avenida Integración, identificando posibles restricciones y requisitos legales que deben cumplirse.
- Evaluar la precisión y calidad de los datos obtenidos mediante el uso de drones en el levantamiento topográfico y aerofotogramétrico de la Avenida Integración, mediante la comparación con datos de referencia obtenidos por métodos convencionales.
- Determinar los costos asociados al uso de drones en el levantamiento topográfico y aerofotogramétrico de la Avenida Integración, incluyendo la inversión inicial en equipos, software y capacitación, así como los costos operativos y de mantenimiento a largo plazo.
- Proporcionar recomendaciones específicas para la implementación exitosa del uso de drones en el levantamiento topográfico y aerofotogramétrico de la Avenida Integración, considerando aspectos técnicos, económicos, regulatorios y de seguridad.

1.5 Alcance del estudio de aplicación

El alcance del estudio de aplicación comprende una serie de etapas clave para llevar a cabo una evaluación exhaustiva de la viabilidad técnica y económica del levantamiento topográfico y aerofotogramétrico utilizando drones en la Avenida Integración de la ciudad de Tarija. Inicialmente, se delimitará la zona de estudio, seleccionando el tramo de la Avenida Integración que mejor represente las características topográficas y urbanas pertinentes para el análisis. Posteriormente, se definirán con precisión los objetivos del estudio, que incluirán la evaluación de la precisión de los datos obtenidos mediante drones, la comparación de la

eficiencia en la captura de datos y la determinación de la calidad de los productos cartográficos generados, como ortofotos y modelos digitales de elevación.

1.6 Unidades de estudio

La unidad de estudio corresponde a todo al tramo de la Avenida Integración, que abarca zonas residenciales, comerciales y de tránsito vehicular mixto. Se eligió este segmento por su diversidad topográfica y la presencia de restricciones aéreas que permiten evaluar tanto la precisión técnica como la viabilidad normativa.

1.7 Decision muestral

Se empleó un muestreo intencional no probabilístico para seleccionar el tramo de estudio. Este criterio se basó en:

- Representatividad de características urbanas y topográficas.
- Accesibilidad para instalación de puntos de control.
- Existencia de zonas con restricciones de altitud según DGAC.

Esta decisión asegura un análisis profundo y aplicable a contextos urbanos similares.

CAPÍTULO II MARCO TEÓRICO

CAPÍTULO II MARCO TEÓRICO

2.1 Historia del Levantamiento Topográfico

El levantamiento topográfico, es la primera fase del estudio técnico y descriptivo de un terreno, en el cual se examinan las características físicas, geográficas y geológicas y las variaciones o alteraciones existentes del mismo, con un conjunto de métodos y operaciones para medir, procesar y transmitir los datos del terreno, que permiten representar con mayor detalle y exactitud gráficamente en un plano y a escala reducida, marcando todos los puntos que tengan algún interés relevante, así como también si existen alteraciones en el terreno hechas por el hombre como construcciones, excavaciones, etc.

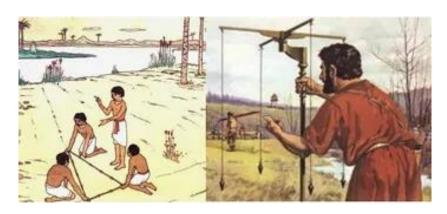
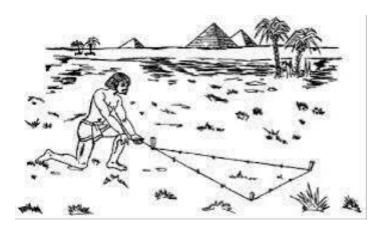



Figura 2.1 Inicios de topografía

Fuente: Arquitectura e Ingeniería Esarco.es.

Etimológicamente, la palabra "topográfico" viene de la palabra griega Topos que significa "lugar" y gráphein que es "escritura", "descripción" o "representación gráfica" (τοπογραφια). De esta forma, podemos entender el levantamiento topográfico como la topografía de un lugar determinado y punto de partida de cualquier edificación. La aplicación de esta disciplina está presente en diversas actividades humanas que requieren tener conocimiento de la superficie del terreno durante y después de la ejecución de cualquier proyecto como la realización de obras civiles tales como vías de comunicación, canales, embalses, construcción, acueductos, futuras carreteras, edificios, puentes, etc.

Figura 2.2 Triangulación en Egipto

Fuente: Arquitectura e Ingeniería Esarco.es.

2.2 Creación de Mapas y Cartografía

El levantamiento topográfico es fundamental para la elaboración de mapas topográficos y cartas geográficas que representan la configuración del terreno, incluyendo detalles como elevaciones, pendientes, cuerpos de agua, vegetación y características humanas.

LEVANTAMIENTO TOPOGRAFICO CON TECNOLOGÍA LIDAR
PLANTA ELÉCTRICA "UMAPALCA"

| INTERCACIÓN PROFINCIAL
| INTERCACIÓN PROFIN

Figura 2.3 Plano topográfico de planta eléctrica en Umapalca

Fuente: Topógrafo. Wilson Efrain Paco Achu

2.3 Planificación y Diseño de Proyectos

Permite obtener información precisa del terreno necesario para la planificación y diseño de proyectos de ingeniería civil, arquitectura, urbanismo y obras públicas, como carreteras, puentes, edificios, sistemas de drenaje, entre otros.

2.4 Control de Calidad y Monitoreo

Facilita el seguimiento y control de la calidad en la ejecución de proyectos, permitiendo comparar las mediciones del terreno real con los diseños y especificaciones previamente establecidos.

Figura 2.4 Replanteo con estación total

Fuente: Constructora Villner.

2.5 Estudios Ambientales y Gestión del Territorio

Proporciona datos fundamentales para la evaluación ambiental, la gestión de recursos naturales, la planificación del uso del suelo y la conservación del medio ambiente.

2.6 Análisis Geoespacial

Permite realizar análisis geoespaciales avanzados, como la modelización de terrenos, la identificación de áreas de riesgo natural, la delimitación de cuencas hidrográficas y la planificación de rutas óptimas.

2.7 Métodos Tradicionales de Levantamiento Topográfico

Figura 2.5 Equipos topográficos convencionales

Fuente: South Instrument

Los métodos tradicionales de levantamiento topográfico han sido utilizados durante siglos para medir y representar la superficie terrestre con precisión. Estos métodos se basan en técnicas de medición directa y angular, y aunque han sido en gran parte suplantados por tecnologías más avanzadas como los sistemas GPS y los drones, todavía se utilizan en ciertas situaciones donde se requiere precisión y detalle específicos. Aquí se presentan algunos de los métodos tradicionales más comunes:

2.7.1 Poligonación

Este método implica el establecimiento de una red de triángulos interconectados mediante mediciones de distancia y ángulo. Se utilizan estaciones totales, teodolitos o taquímetros para medir las distancias entre puntos y los ángulos entre las líneas. A partir de estos datos, se calculan las coordenadas de cada punto mediante trigonometría.

2.7.2 Radiación

En este método, se establece un punto de referencia conocido y se mide la distancia y el ángulo desde este punto a otros puntos de interés. Esto se realiza utilizando instrumentos como teodolitos o taquímetros. Los datos se registran en un cuaderno de campo y luego se utilizan para calcular las coordenadas de los puntos.

2.7.3 Triangulación

Similar a la poligonación, la triangulación implica la medición de distancias y ángulos entre puntos, pero se basa en el principio de la trigonometría esférica para determinar la posición de los puntos en función de la intersección de las líneas de visión desde estaciones conocidas.

2.7.4 Trilateración

Este método se basa en la medición precisa de distancias entre puntos utilizando métodos como la medición con cinta métrica, estaciones totales o distanciómetros. Se necesita al menos un punto de referencia conocido para calcular las coordenadas de los demás puntos mediante el uso de triangulación.

2.7.5 Nivelación

La nivelación se utiliza para determinar las diferencias de altitud entre puntos en un terreno. Se emplean instrumentos como niveles y miras de nivel para medir las diferencias de elevación entre puntos de referencia conocidos y los puntos de interés. Esto es fundamental para establecer perfiles de elevación precisos.

2.8 Importancia del Levantamiento Topográfico en Ingeniería y Cartografía

El levantamiento topográfico desempeña un papel fundamental en la ingeniería y la cartografía, ya que proporciona información precisa y detallada sobre la forma y las características del terreno. Su importancia radica en varios aspectos clave que afectan directamente a la planificación, el diseño y la ejecución de proyectos en estos campos. Aquí se detallan algunos de los aspectos más relevantes:

2.9 Planificación de Proyectos de Ingeniería

Antes de iniciar cualquier proyecto de ingeniería, ya sea la construcción de una carretera, un puente, una presa o cualquier otra infraestructura, es crucial comprender el terreno en el que se llevará a cabo. El levantamiento topográfico proporciona datos precisos sobre la topografía, incluyendo elevaciones, pendientes, curvas de nivel y características naturales y artificiales del terreno, lo que permite a los ingenieros realizar una planificación precisa y eficiente.

2.10 Diseño de Infraestructuras

Con la información obtenida a través del levantamiento topográfico, los ingenieros pueden diseñar infraestructuras de manera más precisa y segura. La topografía del terreno influye en aspectos como la ubicación de estructuras, la planificación de drenajes y sistemas de alcantarillado, la determinación de niveles de cimentación y la evaluación de riesgos geotécnicos, entre otros aspectos cruciales del diseño.

2.11 Gestión del Territorio

En el ámbito de la cartografía y la gestión del territorio, el levantamiento topográfico es esencial para la elaboración de mapas y cartas geográficas precisas. Estos mapas son utilizados por urbanistas, planificadores regionales, autoridades gubernamentales y otros profesionales para tomar decisiones informadas sobre el uso del suelo, la conservación del medio ambiente, la delimitación de áreas protegidas y la planificación urbana.

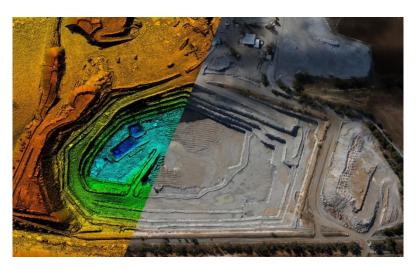


Figura 2.6 Combinación de DEM con fotogrametría

Fuente: Pix4d

2.12 Control de Calidad y Monitoreo

Durante la construcción y ejecución de proyectos, el levantamiento topográfico se utiliza para realizar un seguimiento y control de la calidad. Los datos obtenidos se comparan con los diseños y especificaciones previamente establecidos para garantizar que la construcción se realice de acuerdo con los estándares requeridos.

2.13 Estudios Ambientales

En el ámbito de la ingeniería ambiental y la gestión de recursos naturales, el levantamiento topográfico es utilizado para realizar estudios de impacto ambiental, evaluación de riesgos naturales, seguimiento de cambios en el paisaje y delimitación de áreas sensibles. Esto es fundamental para la conservación de la biodiversidad, la gestión de cuencas hidrográficas y la prevención de desastres naturales.

2.14 Historia de los drones

Figura 2.7 Dron de exploración

Fuente: DJI

La historia de los drones se remonta a principios del siglo XX, aunque los primeros conceptos de vehículos aéreos no tripulados datan de mucho antes. Aquí te presento un resumen de los hitos más importantes en la historia de los drones:

2.14.1 Primeros Conceptos y Experimentos (Siglos XIX y XX)

Los primeros indicios de vehículos aéreos no tripulados se remontan al siglo XIX, con inventores como Nikola Tesla, quien en 1898 presentó un concepto de un "barco teleautomático" que podría transportar explosivos. Durante la Primera Guerra Mundial, se realizaron experimentos con aviones no tripulados como el "Kettering Bug" desarrollado por Charles Kettering en Estados Unidos.

2.14.2 Segunda Guerra Mundial

Durante la Segunda Guerra Mundial, se desarrollaron drones para su uso en misiones de reconocimiento y bombardeo. Uno de los más conocidos fue el "Aerial Target" británico, utilizado para entrenar a las defensas antiaéreas. En Estados Unidos, se desarrollaron drones como el "Radioplane OQ-2" fabricado por la compañía Radioplane Corporation, que más tarde fue adquirida por la famosa actriz y aviadora, Marilyn Monroe.

2.14.3 Guerra Fría y Desarrollo Militar

Durante la Guerra Fría, se intensificó el desarrollo de drones con fines militares. Estados Unidos y la Unión Soviética utilizaron drones para misiones de reconocimiento y vigilancia. En la década de 1960, la CIA desarrolló el "Lockheed D-21", un drone de alta velocidad utilizado para misiones de espionaje sobre la Unión Soviética.

Figura 2.8 Dron de alta capacidad de carga

Fuente: DJI

2.14.4 Drones Modernos

A partir de la década de 1980, se produjo un avance significativo en la tecnología de drones, con el desarrollo de sistemas de navegación por satélite y la miniaturización de componentes electrónicos. Esto permitió la creación de drones más pequeños, maniobrables y capaces de transportar una variedad de sensores y cámaras.

2.14.5 Uso Civil y Comercial

A medida que la tecnología de drones se volvió más accesible y asequible, comenzaron a surgir aplicaciones civiles y comerciales en campos como la agricultura, la fotografía aérea, la cartografía, la vigilancia de infraestructuras y la entrega de paquetes. Empresas como DJI, Parrot y AeroVironment se convirtieron en líderes en la fabricación de drones de consumo y profesional.

2.15 Regulación y Normativas

El rápido crecimiento del uso de drones llevó a la implementación de regulaciones y normativas para garantizar la seguridad y la privacidad. Organizaciones gubernamentales como la FAA (Administración Federal de Aviación) en Estados Unidos y la EASA (Agencia Europea de Seguridad Aérea) en Europa establecieron reglas para el vuelo de drones, incluyendo restricciones de altitud, zonas de exclusión y requisitos de licencia.

Figura 2.9 Logo dirección general de aeronáutica civil

Fuente: Dirección general de aeronáutica civil

2.16 Innovaciones Futuras

A medida que la tecnología continúa avanzando, se espera que los drones sigan evolucionando con características como la inteligencia artificial, la autonomía de vuelo, la detección y evitación de obstáculos, y la capacidad de realizar tareas más complejas de forma autónoma.

2.16.1 Evolución de los Drones en Topografía

La evolución de los drones en topografía ha sido una transformación significativa que ha revolucionado la forma en que se recopilan datos geoespaciales y se realizan levantamientos

topográficos. A lo largo de las últimas décadas, los drones han pasado de ser dispositivos principalmente utilizados con fines militares y recreativos a herramientas indispensables en diversos campos, incluida la topografía. Aquí se presenta un resumen de la evolución de los drones en topografía:

Figura 2.10 Dron DJI Phantom 4 Pro

Fuente: DJI

2.16.2 Orígenes Militares y Recreativos

Los drones, también conocidos como UAVs (Vehículos Aéreos No Tripulados) o RPAS (Sistemas de Aeronaves Pilotadas a Distancia), tienen sus raíces en aplicaciones militares y recreativas. Inicialmente, fueron desarrollados para tareas de vigilancia y reconocimiento en el ámbito militar, y posteriormente ganaron popularidad en el mercado recreativo como dispositivos para tomar fotografías y vídeos aéreos.

2.16.3 Adopción en Topografía y Cartografía

Con el avance de la tecnología y la miniaturización de los componentes electrónicos, los drones comenzaron a utilizarse en aplicaciones civiles, incluida la topografía y la cartografía. La capacidad de volar de manera autónoma y capturar imágenes aéreas de alta resolución los convirtió en herramientas valiosas para recopilar datos geoespaciales en áreas de difícil acceso o de gran extensión.

2.16.4 Desarrollo de Sensores Especializados

A medida que la demanda de aplicaciones específicas en topografía y cartografía aumentaba, se desarrollaron sensores especializados para drones, como cámaras multiespectrales, LiDAR (Light Detection and Ranging) y cámaras termográficas. Estos sensores permiten obtener datos más detallados y precisos sobre el terreno, incluyendo información sobre la vegetación, la elevación y la temperatura superficial.

2.16.5 Avances en la Autonomía y la Estabilidad

Los drones modernos han experimentado mejoras significativas en cuanto a la autonomía de vuelo y la estabilidad. Los sistemas de navegación por GPS y los algoritmos de control de vuelo han permitido que los drones realicen misiones de levantamiento topográfico de manera más precisa y eficiente, incluso en condiciones climáticas adversas.

2.16.6 Integración de Software GIS y de Procesamiento de Imágenes

La integración de software GIS (Sistemas de Información Geográfica) y de procesamiento de imágenes ha simplificado el flujo de trabajo en topografía con drones. Ahora es posible planificar misiones de vuelo, procesar imágenes, generar modelos digitales de elevación y crear ortofotos de manera automatizada, lo que agiliza el proceso de obtención de datos topográficos.

2.17 Ventajas y Limitaciones del Uso de Drones en Topografía

Las ventajas son las siguientes:

2.17.1 Eficiencia y Velocidad

Los drones pueden cubrir grandes áreas de terreno en un corto período de tiempo, lo que permite la recopilación rápida de datos topográficos. Esto agiliza los procesos de mapeo y levantamiento, reduciendo significativamente los tiempos y costos de trabajo.

2.17.2 Acceso a Áreas Remotas o Peligrosas

Los drones pueden acceder a áreas de difícil acceso o peligrosas para los topógrafos, como terrenos montañosos, bosques densos, zonas de desastre o sitios de construcción activos. Esto

mejora la seguridad del personal y reduce los riesgos asociados con el trabajo en terrenos complicados.

2.17.3 Flexibilidad y Adaptabilidad

Los drones pueden equiparse con una variedad de sensores, incluyendo cámaras RGB, cámaras multiespectrales, LiDAR y cámaras térmicas. Esto proporciona flexibilidad para adaptarse a diferentes tipos de proyectos y aplicaciones, permitiendo la recopilación de datos específicos para cada caso.

2.17.4 Precisión y Resolución

Los drones pueden capturar datos con una alta precisión y resolución espacial, lo que resulta en modelos digitales de elevación y ortofotos de alta calidad. Esto facilita la generación de mapas topográficos precisos y detallados, así como la realización de análisis geoespaciales avanzados.

2.17.5 Costo Efectividad

Aunque la inversión inicial en equipos y capacitación puede ser significativa, el uso de drones en topografía a menudo resulta en una reducción de los costos operativos a largo plazo. Esto se debe a la eficiencia en la recolección de datos, la eliminación de la necesidad de equipos costosos como estaciones totales y la minimización de los gastos asociados con el personal y la logística.

2.18 Limitaciones

2.18.1 Limitaciones de Altitud y Condiciones Climáticas

Los drones están sujetos a regulaciones de vuelo que limitan su altitud máxima y restringen su operación en ciertas condiciones climáticas, como vientos fuertes, lluvia intensa o neblina densa. Esto puede afectar la disponibilidad y la viabilidad de la captura de datos en determinadas circunstancias.

2.18.2 Precisión Vertical Limitada

Aunque los drones pueden proporcionar una alta precisión horizontal en los datos recopilados, la precisión vertical puede ser limitada, especialmente en terrenos accidentados

o áreas con vegetación densa. Esto puede requerir técnicas adicionales de corrección y procesamiento para mejorar la exactitud de los modelos digitales de elevación.

2.18.3 Requerimientos de Capacitación y Certificación

El uso seguro y efectivo de drones en topografía requiere capacitación y certificación adecuadas por parte de los operadores. Esto puede implicar costos adicionales y tiempo de dedicación para adquirir las habilidades necesarias para pilotar y mantener los drones de manera competente.

2.18.4 Vulnerabilidad a Interferencias Electromagnéticas

Los drones pueden ser susceptibles a interferencias electromagnéticas que pueden afectar su navegación y capacidad de comunicación. Esto puede resultar en la pérdida de conexión con el piloto o la estación de control, lo que representa un riesgo potencial para la seguridad y la integridad de la misión.

2.18.5 Privacidad y Consideraciones Legales

El uso de drones en topografía plantea preocupaciones en relación con la privacidad y la protección de datos, especialmente cuando se capturan imágenes de propiedades privadas o áreas sensibles. Es fundamental cumplir con las regulaciones y normativas locales relacionadas con la privacidad y obtener los permisos necesarios antes de realizar vuelos sobre ciertas áreas.

2.19 Componentes Esenciales de un Dron para Topografía

2.19.1 Plataforma de Vuelo (Airframe)

El airframe es la estructura principal del dron que sostiene todos los componentes y carga útil. Puede estar construido con materiales como plástico, fibra de carbono o aluminio, y su diseño influye en aspectos como la resistencia, la estabilidad y la capacidad de carga del dron.

2.19.2 Controlador de Vuelo (Flight Controller)

El controlador de vuelo es el cerebro del dron, responsable de procesar los datos de los sensores y los comandos del piloto para controlar la estabilidad, la navegación y el vuelo

autónomo del dron. Incluye una unidad de procesamiento, sensores como giroscopios y acelerómetros, y software de control de vuelo.

2.19.3 Sistema de Navegación y Posicionamiento

Este sistema utiliza tecnologías como el GPS (Sistema de Posicionamiento Global), GLONASS, Galileo o sistemas de navegación inercial (IMU) para determinar la posición, velocidad y orientación del dron durante el vuelo. Proporciona datos cruciales para la navegación precisa y la geolocalización de los datos recopilados.

2.19.4 Propulsión (Motores y Hélices)

Los motores eléctricos y las hélices son responsables de proporcionar la potencia y la sustentación necesarias para el vuelo del dron. La eficiencia y el rendimiento de estos componentes afectan la capacidad de maniobra, la velocidad y la autonomía del dron.

2.19.5 Sistema de Alimentación (Batería)

Las baterías proporcionan la energía necesaria para alimentar todos los sistemas del dron, incluyendo los motores, el controlador de vuelo, los sensores y la carga útil. La capacidad, el peso y la autonomía de la batería son factores importantes a considerar en el diseño y la operación del dron.

2.19.6 Carga Útil (Payload)

La carga útil del dron incluye los sensores y equipos necesarios para recopilar datos topográficos, como cámaras RGB, cámaras multiespectrales, LiDAR, cámaras térmicas, o equipos de medición GNSS (Sistema Global de Navegación por Satélite). La elección de la carga útil depende de los requisitos específicos de cada proyecto.

2.19.7 Sistema de Comunicación y Control Remoto

Este sistema permite la comunicación bidireccional entre el dron y la estación de control remoto, permitiendo al piloto enviar comandos de vuelo, recibir datos de telemetría y monitorear el estado del dron en tiempo real durante la misión.

2.19.8 Sistema de Estabilización (Gimbal)

El gimbal es un sistema de estabilización que sostiene y estabiliza la carga útil, como una cámara, durante el vuelo. Permite capturar imágenes y vídeos de alta calidad con mínima vibración y movimiento, lo que garantiza la precisión y la calidad de los datos recopilados.

2.20 Características y Funcionalidades del Dron Phantom 4 RTK

El dron Phantom 4 RTK es una herramienta avanzada diseñada específicamente para aplicaciones de topografía y cartografía que requieren una alta precisión en la recopilación de datos geoespaciales. Aquí te presento una descripción detallada de sus características y funcionalidades principales:

2.20.1 Sistema RTK Integrado

Una de las características más destacadas del Phantom 4 RTK es su sistema RTK (Real-Time Kinematic) integrado, que proporciona una precisión centimétrica en la geolocalización del dron. Esto se logra mediante la combinación de datos de posicionamiento de satélite con estaciones base terrestres, lo que permite corregir errores de señal y mejorar la precisión absoluta de los datos recopilados.

2.20.2 Cámara de Alta Resolución

El dron está equipado con una cámara RGB de alta resolución que captura imágenes de hasta 20 megapíxeles. Esta cámara permite la captura de imágenes de alta calidad con una gran cantidad de detalles, lo que es fundamental para la creación de ortofotos y modelos digitales de elevación precisos.

Figura 2.11 Lente óptico de cámara de dron

Fuente: DJI

2.20.3 Sistema de Evitación de Obstáculos

El Phantom 4 RTK cuenta con un avanzado sistema de evitación de obstáculos que utiliza sensores visuales y ultrasónicos para detectar y evitar obstáculos durante el vuelo. Esto mejora la seguridad y la fiabilidad del dron, especialmente en entornos urbanos o áreas con vegetación densa.

2.20.4 Modos de Vuelo Inteligentes

El dron ofrece una variedad de modos de vuelo inteligentes que facilitan la planificación y ejecución de misiones de topografía. Estos incluyen modos como el vuelo autónomo, el seguimiento de objetos, la planificación de rutas predefinidas y la captura de imágenes en intervalos regulares.

2.20.5 Transmisión de Datos en Tiempo Real

El Phantom 4 RTK permite la transmisión de datos en tiempo real entre el dron y la estación de control remoto, lo que permite al operador monitorear el progreso de la misión y recibir datos de telemetría durante el vuelo.

Figura 2.12 Controlador RC de dron DJI

Fuente: DJI

2.20.6 Software de Post procesamiento

El dron viene con software de post procesamiento dedicado que permite el procesamiento y la corrección de los datos recopilados para mejorar la precisión y la calidad de los resultados finales. Esto incluye la corrección diferencial de los datos RTK y la generación de productos cartográficos como ortofotos y modelos digitales de elevación.

2.20.7 Portabilidad y Facilidad de Uso

A pesar de su potencia y capacidad, el Phantom 4 RTK es compacto y fácil de transportar, lo que lo hace ideal para su uso en el campo. Además, su interfaz de usuario intuitiva y su sistema de control remoto simplifican la operación del dron, lo que permite a los usuarios concentrarse en la recopilación y análisis de datos.

2.21 Tecnología RTK (Real-Time Kinematic)

La tecnología RTK (Real-Time Kinematic) es un método avanzado de posicionamiento que se utiliza para obtener mediciones precisas de la ubicación de un receptor GPS en tiempo real. Esta técnica se basa en la corrección diferencial de las señales de los satélites GPS para eliminar errores y mejorar la precisión absoluta de los datos de posicionamiento.

Figura 2.13 Base RTK de DJI

Fuente: DJI

2.21.1 Principio Básico del GPS

El GPS (Sistema de Posicionamiento Global) consta de una red de satélites que orbitan la Tierra y transmiten señales de radio hacia la superficie terrestre. Estas señales son recibidas por receptores GPS en la Tierra, que utilizan la información de tiempo y distancia de múltiples satélites para calcular su posición.

2.21.2 Errores en la Señal GPS

A pesar de la precisión del sistema GPS, existen varios errores que pueden afectar la precisión de las mediciones de posición. Estos errores pueden ser causados por la ionosfera y la troposfera de la atmósfera terrestre, la geometría de los satélites, los retrasos en los relojes de los satélites y los errores de multipath (reflexiones de señales en objetos cercanos).

2.21.3 Corrección Diferencial

La tecnología RTK utiliza una estación base terrestre, ubicada en un punto conocido con coordenadas precisas, para monitorear las señales de los satélites GPS y calcular los errores atmosféricos y de reloj en tiempo real. Estas correcciones diferenciales se transmiten al receptor RTK montado en el dron, permitiendo al receptor calcular su posición con una precisión centimétrica.

2.21.4 Proceso de Corrección

Cuando el receptor RTK recibe las correcciones diferenciales de la estación base, utiliza esta información para corregir los errores en las mediciones de posición obtenidas a partir de las señales de los satélites GPS. Al eliminar estos errores, el receptor puede determinar su posición con una precisión mucho mayor que la proporcionada por el GPS estándar.

2.21.5 Tiempo Real

La característica clave de la tecnología RTK es que proporciona correcciones en tiempo real, lo que significa que las mediciones de posición se corrigen instantáneamente mientras se realiza la captura de datos. Esto permite obtener resultados precisos en el campo sin necesidad de procesamiento posterior, lo que es crucial para aplicaciones que requieren resultados inmediatos, como el levantamiento topográfico.

2.21.6 Aplicaciones

La tecnología RTK se utiliza en una variedad de aplicaciones que requieren mediciones precisas de posición, incluyendo topografía, cartografía, agricultura de precisión, construcción, navegación marítima y control de vehículos autónomos.

2.22 Aplicaciones y Usos del Dron Phantom 4 RTK

El dron Phantom 4 RTK tiene una amplia gama de aplicaciones y usos en diversos campos que requieren levantamientos topográficos precisos y eficientes. A continuación, se describen algunas de las principales aplicaciones y usos de este dron:

2.22.1 Topografía y Cartografía

Una de las aplicaciones principales del Phantom 4 RTK es en el campo de la topografía y la cartografía. Este dron permite la captura de datos geoespaciales precisos y detallados, incluyendo modelos digitales de elevación (DEM), modelos digitales de superficie (DSM), ortofotos y nubes de puntos LiDAR. Estos datos son fundamentales para la planificación, diseño y gestión de proyectos de ingeniería, construcción, planificación urbana y gestión del territorio.

2.22.2 Agricultura de Precisión

El Phantom 4 RTK se utiliza en agricultura de precisión para monitorear y gestionar los cultivos de manera más eficiente. Con cámaras multiespectrales y cámaras térmicas, este dron puede detectar enfermedades, estimar la salud de los cultivos, identificar áreas con estrés hídrico y optimizar la aplicación de fertilizantes y pesticidas. Esto ayuda a los agricultores a mejorar el rendimiento de los cultivos y reducir el uso de insumos agrícolas.

2.22.3 Inspección de Infraestructuras

El Phantom 4 RTK se utiliza para realizar inspecciones de infraestructuras como carreteras, puentes, líneas eléctricas, torres de telecomunicaciones y edificios. Con su capacidad para volar de manera autónoma y capturar imágenes de alta resolución, este dron permite identificar y evaluar daños, detectar anomalías y realizar inspecciones visuales de manera segura y eficiente.

2.22.4 Gestión Ambiental

En el ámbito de la gestión ambiental, el Phantom 4 RTK se utiliza para realizar estudios de impacto ambiental, monitorear cambios en el paisaje, evaluar la salud de los ecosistemas y delimitar áreas protegidas. Con cámaras multiespectrales y LiDAR, este dron puede

proporcionar información detallada sobre la vegetación, la cobertura del suelo, la calidad del agua y otros parámetros ambientales clave.

2.22.5 Emergencias y Rescate

En situaciones de emergencia y rescate, el Phantom 4 RTK se utiliza para realizar misiones de búsqueda y rescate, evaluación de daños y gestión de desastres. Con su capacidad para volar en áreas de difícil acceso y capturar imágenes en tiempo real, este dron proporciona información crucial para coordinar operaciones de rescate, identificar áreas afectadas y evaluar la magnitud de los daños.

2.23 Características y Funcionalidades del Dron Phantom 4 Pro

El dron Phantom 4 Pro es una herramienta avanzada diseñada para una variedad de aplicaciones, desde la fotografía aérea hasta la topografía y la cinematografía profesional. A continuación, se describen sus características y funcionalidades principales:

2.23.1 Cámara de Alta Resolución

El Phantom 4 Pro está equipado con una cámara de alta resolución que puede capturar imágenes de hasta 20 megapíxeles. Esta cámara cuenta con un sensor de imagen de una pulgada y una lente de apertura ajustable que permite tomar fotografías de alta calidad con una excelente claridad y detalle.

2.23.2 Grabación de Video en 4K

Además de tomar fotografías de alta resolución, el Phantom 4 Pro puede grabar video en resolución 4K a 60 fotogramas por segundo. Esto permite la captura de videos suaves y detallados con una calidad excepcional, lo que lo convierte en una herramienta ideal para la producción cinematográfica y la videografía profesional.

2.23.3 Sistema de Evitación de Obstáculos

El dron está equipado con un avanzado sistema de evitación de obstáculos que utiliza sensores visuales y ultrasónicos para detectar y evitar obstáculos durante el vuelo. Esto mejora la seguridad y la fiabilidad del dron, permitiendo realizar vuelos más seguros y confiables en entornos complejos.

2.23.4 Modos de Vuelo Inteligentes

El Phantom 4 Pro ofrece una variedad de modos de vuelo inteligentes que facilitan la captura de imágenes y videos de alta calidad. Estos modos incluyen el modo ActiveTrack, que permite al dron seguir automáticamente a un objeto en movimiento, y el modo TapFly, que permite al piloto controlar el dron simplemente tocando la pantalla de su dispositivo móvil.

2.23.5 Sistema de Posicionamiento Preciso

El dron utiliza un sistema de posicionamiento visual y GPS para determinar su posición y orientación con precisión. Esto permite vuelos estables y precisos, incluso en condiciones de baja visibilidad o en entornos urbanos donde la señal GPS puede ser débil o interferida.

2.23.6 Transmisión de Video en Tiempo Real

El Phantom 4 Pro ofrece transmisión de video en tiempo real a través de su sistema Lightbridge, que permite al piloto ver lo que ve el dron en tiempo real y controlarlo de manera remota desde una distancia de hasta 7 km.

2.23.7 Duración de la Batería Mejorada

La batería del Phantom 4 Pro ofrece una duración de vuelo mejorada en comparación con modelos anteriores, lo que permite hasta 30 minutos de tiempo de vuelo por carga. Esto proporciona más tiempo en el aire para capturar imágenes y videos sin interrupciones.

2.24 Diferencias Clave entre el Phantom 4 Pro y el Phantom 4 RTK

El Phantom 4 Pro y el Phantom 4 RTK son dos versiones del popular dron Phantom 4 de DJI, diseñadas para diferentes aplicaciones y con características específicas que los distinguen. A continuación, se presentan las diferencias clave entre estos dos modelos:

2.24.1 Precisión Geoespacial

Phantom 4 Pro: El Phantom 4 Pro no está equipado con un sistema RTK integrado, por lo que su precisión geoespacial depende del sistema de posicionamiento GPS estándar, que puede tener una precisión de varios metros.

Phantom 4 RTK: El Phantom 4 RTK está equipado con un sistema RTK (Real-Time Kinematic) integrado, que proporciona una precisión geoespacial centimétrica en tiempo

real. Esto lo hace ideal para aplicaciones que requieren levantamientos topográficos de alta precisión.

2.24.2 Cámaras y Sensores

Phantom 4 Pro: El Phantom 4 Pro está equipado con una cámara de alta resolución que puede capturar imágenes de hasta 20 megapíxeles y grabar video en 4K a 60 fotogramas por segundo. También cuenta con un sistema de evitación de obstáculos y sensores visuales.

Phantom 4 RTK: El Phantom 4 RTK también cuenta con una cámara de alta resolución, pero su enfoque principal está en la precisión geoespacial. Además, puede estar equipado con sensores y cámaras específicas para aplicaciones de topografía, como cámaras multiespectrales y LiDAR.

2.24.3 Aplicaciones y Usos

Phantom 4 Pro: El Phantom 4 Pro es ideal para aplicaciones como fotografía y videografía aérea, inspección de infraestructuras, agricultura de precisión y gestión ambiental. Su precisión geoespacial estándar lo hace adecuado para aplicaciones que no requieren una precisión centimétrica.

Phantom 4 RTK: El Phantom 4 RTK está diseñado específicamente para aplicaciones de topografía y cartografía que requieren una precisión geoespacial extremadamente alta. Se utiliza para levantamientos topográficos, creación de mapas digitales, estudios de impacto ambiental y otros proyectos que requieren datos geoespaciales precisos.

2.25 Software y Post procesamiento

Phantom 4 Pro: El Phantom 4 Pro utiliza software estándar de procesamiento de imágenes y videos para editar y analizar los datos capturados. No requiere un software especializado para el post procesamiento de datos geoespaciales.

Phantom 4 RTK: El Phantom 4 RTK viene con software de post procesamiento dedicado que permite el procesamiento y la corrección de los datos recopilados para mejorar la precisión y la calidad de los resultados finales. Esto incluye la corrección diferencial de los datos RTK y la generación de productos cartográficos como ortofotos y modelos digitales de elevación.

CAPÍTULO III RELEVAMIENTO DE INFORMACIÓN

CAPÍTULO III RELEVAMIENTO DE INFORMACIÓN

3.1 Método de la investigación

En el presente trabajo, la metodología aplicada será de tipo exploratoria, ya que el estudio se enfoca en analizar y examinar características específicas de la avenida Integración en Tarija, mediante vuelos con drones. La metodología empleada tiene un enfoque cuantitativo, ya que se llevará a cabo un procesamiento detallado de datos obtenidos mediante técnicas de fotogrametría. Para ello, se utilizarán herramientas informáticas que permitirán extraer y analizar todos los archivos posibles, generando modelos tridimensionales y ortomosaicos precisos que aporten información relevante para el estudio de esta zona.

3.2 Técnicas de recolección de datos

3.2.1 Tipos de técnicas e instrumentos

Para el presente estudio, se utilizaron diversos métodos de recolección de datos que se describen a continuación:

3.2.2 Inspección Directa

Se realizó una visita a la avenida con el fin de identificar la ubicación de puntos control que este de libre acceso, pero también que sea visible para la aerofotogrametría, luego se verifico las líneas eléctricas presentes, objetos metálicos cercanos como también edificaciones o construcciones que obstruyan el despegue del dron.

3.2.3 Páginas y registros

Para los datos obtenidos en sitios web se centró en imágenes satelitales como sitio planificación de vuelo y autorización de vuelo de la empresa DJI,Google Earth y Dronedeploy con el fin optimizar la altura de vuelo como la ruta de la misma y la cantidad de baterías necesarias.

3.3 Criterios de validez y confiabilidad de los instrumentos

Se utilizo equipamiento exclusivo para Topografía como ser Drone RTK con la posibilidad de enlazar a una base RTK South G2 que nos brinda una excelente corrección en tiempo real

de las fotografías además se utilizó más 25 de puntos de control para la calibración de las fotos mediante software especializado en fotogrametría.

Se realizo los permisos correspondientes en coordinación con el aeropuerto de Tarija de acuerdo a la zona de vuelo y restricciones según el área brindada por DGAC para coordinar con la empresa DJI en la solicitud de desbloqueo temporal.

3.4 Técnicas para el procesamiento y análisis de datos

Para el desarrollo del proyecto se realizó la siguiente secuencia de etapas las cuales son:

3.4.1 Primera etapa

Para la primera etapa, se realizó la planificación del área de vuelo primeramente mediante imagen satelital considerando el punto de inicio, la dirección, la división de áreas como también el tiempo de vuelo, la altura de vuelo, todos estos datos se exportaron a Dronedeploy que es un sitio web de optimización de vuelo donde se verifica la cantidad de baterías por vuelo de acuerdo a la marca del dron y el modelo. También en Google Earth se realizó la ubicación previa de puntos de control, los inicios de vuelo, el orden de cada operación como también se fijó la cantidad de personal necesario y el día de inicio de trabajo de acuerdo a pronósticos climáticos satelital que favorezcan la aerofotogrametría.

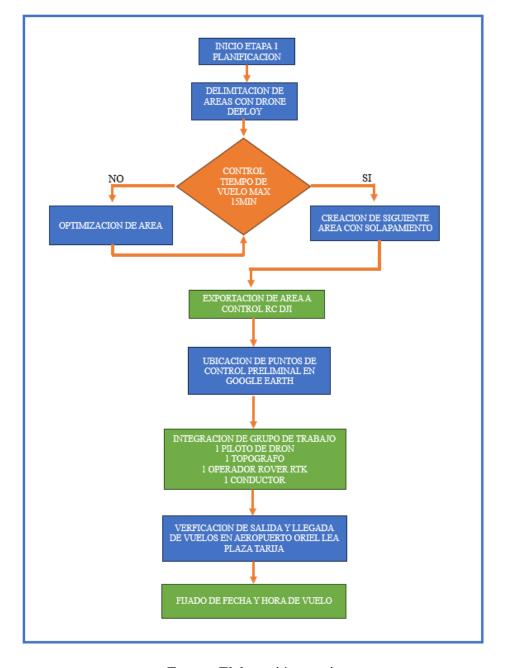


Figura 3.1 Diagrama de planificación de vuelo

Fuente: Elaboración propia

3.4.2 Segunda etapa

Para la segunda etapa para la extracción de datos el topógrafo fijo la base RTK en un punto fijo en medio de cada vuelo, el piloto de dron ubico el punto de despegue en un área donde no exista objetos metálicos y de libre ascenso vertical, luego el conductor ira marcando y dejando las dianas para puntos de control en la ubicación planificada pudiendo reubicar los

puntos en caso de que la zona no sea visible o exista vegetación excesiva, en una zona lo más cercano a lo planificado luego el operador del Rover ira puntuando las coordenadas de los puntos de control colocados informando una vez medido el último punto para iniciar el despegue. Se repite el procedimiento en cada área de vuelo.

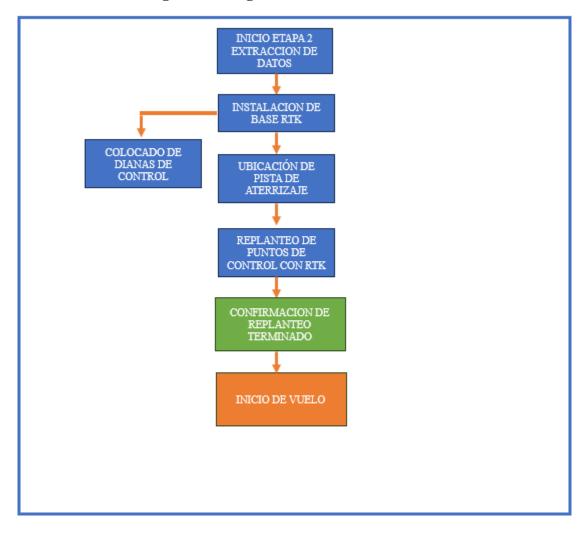


Figura 3.2 Diagrama de obtención de datos

Fuente: Elaboración propia

3.4.3 Tercera etapa

En la tercera etapa se realizara el procesamiento de datos, se debe descargar los datos de la aerofogrametría del micro SD del dron y las coordenadas de los puntos de control realizados con el RTK, luego se debe importar las fotografías en el software de procesamiento se realiza un procesamiento inicial donde se escala las imágenes para la extracción de puntos claves

luego se importa los CGP del Rover RTK a través del controlador y se calibra las fotos semi manualmente haciendo coincidir sus coordenadas con los puntos de control vistas en las fotografías y una por una luego se vuele hacer el primer procesamiento donde se reorientaran las fotos y se realizara una previsualización del ortomosaico y dem, en el segundo procesamiento se genera la nube de puntos y mediante interpolación de los mismo se crea una malla 3d con la textura de las imágenes aquí es donde también se define la clasificación de la nube de puntos en donde se distinguirán los puntos de acuerdo si es vegetación, edificación, carreteras y objetos de creación humana. Por último, en el tercer procesamiento se crea el ortomosaico, el MDS y el MDT definiendo la resolución de salida.

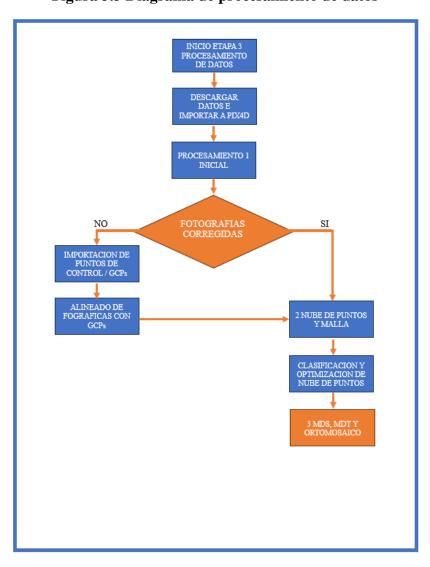


Figura 3.3 Diagrama de procesamiento de datos

Fuente: Elaboración propia

3.5 Aspectos regulatorios para operaciones en las cercanías de aeródromos y helipuertos

Al realizar vuelos en zonas urbanas, es fundamental considerar las áreas de restricción de vuelo, especialmente en relación con la ubicación de aeropuertos y helipuertos. En el caso de Tarija, el Aeropuerto Internacional Oriel Lea Plaza es el punto de referencia principal para estas regulaciones.

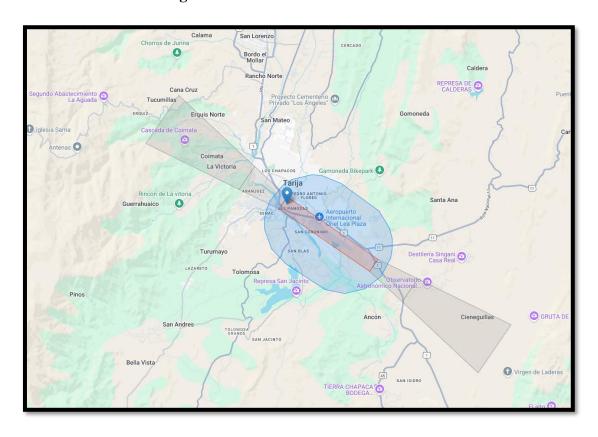


Figura 3.4 Zonas de restricción de vuelo

Fuente: Elaboración propia

Zona restringida: volar está prohibido en esta zona. Las solicitudes de desbloqueo para esta zona tardarán más en procesarse

Zona de altitud restringida: la altitud de vuelo está limitada en esta zona. Las solicitudes de desbloqueo para esta zona tardarán más en procesarse

Zona de autorización: volar en esta zona está limitado. Las solicitudes de desbloqueo se conceden automáticamente

3.6 Verificación de restricción de vuelo en el proyecto

En el caso específico de la Avenida Integración, se identificó que el área se encuentra dentro de una zona de altitud restringida y una zona de autorización. Para facilitar el trabajo y garantizar el cumplimiento de las normativas, se realizó una solicitud a DJI para uniformizar la altura de vuelo en esta área.

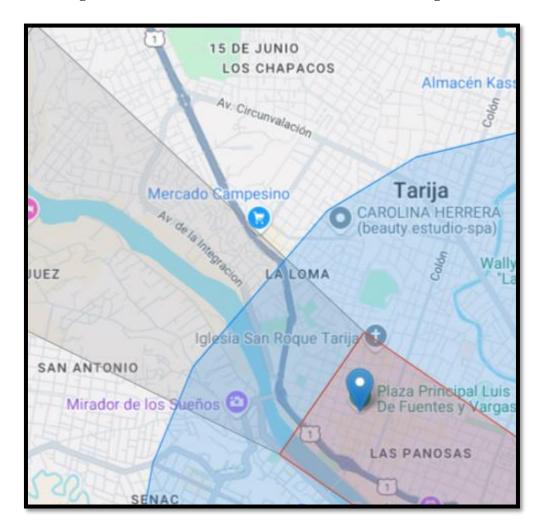


Figura 3.5 Zonas de restricción de vuelo en la Av. Integración

Fuente: Elaboración propia

3.7 Proceso de Desbloqueo de Zona GEO

Para solicitar el desbloqueo de una zona GEO en DJI, es necesario seguir un proceso específico a través de la plataforma DJI Fly Safe. A continuación, se detallan los pasos a seguir:

3.8 Creación de Cuenta en DJI Fly Safe

El primer paso es acceder a la página oficial de DJI Fly Safe y crear una cuenta. Para facilitar el registro, se recomienda vincular la cuenta directamente con Gmail, lo que agiliza el acceso y la gestión de permisos.

3.9 Registro de aeronave

Una vez dentro de la cuenta, acceda a la sección de Gestión de Dispositivos y agregue el dron que desea registrar, proporcionando el Número de Serie (N/S) del controlador de vuelo, el modelo del dron y un nombre identificativo para el equipo.

* N/S del controlador de vuelo:

Ten en cuenta que el número de serie no contiene las letras O ni I. En su lugar, introduce los números 0 o 1. Asegúrate de conectar la aeronave con la aplicación DJI primero y, a continuación, comprueba e introduce el número de serie del controlador. de vuelo. De lo contrario, la función de desbloqueo no funcionará adecuadamente. ¿Cómo encontrar el N/S del controlador de vuelo?

Introducir el N/S del controlador de vuelo

* Modelo de avión:

Phantom 4 RTK

Nombre del dispositivo:

DRON CIAGUA

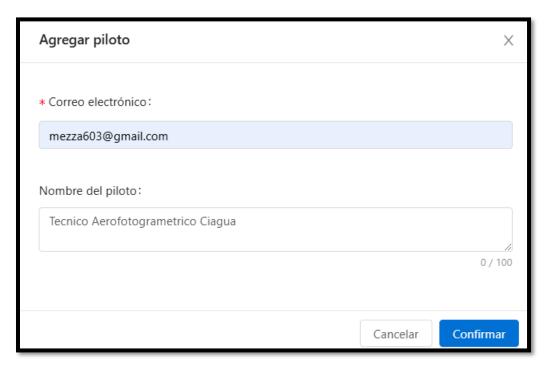

O / 100

Figura 3.6 Cuestionario de registro de dron en DJI

3.10 Registro de Piloto

Registre al piloto utilizando su cuenta de Gmail y asigne un nombre para identificarlo en el sistema, lo que permitirá una correcta gestión dentro de la plataforma.

Figura 3.7 Cuestionario de registro de piloto en DJI

Fuente: Elaboración propia

3.11 Solicitud de Desbloqueo de Zona GEO

Una vez registrado se debe gestionar una solicitud de desbloqueo mediante el comando de nueva solicitud de desbloqueo

ഉ FLYSAFE الرك Solicitud de desbloqueo ⊕ Solicitud de desbloqueo Solicitud de desbloqueo + Nueva solicitud de desbloqueo Certificación de antecedentes Cómo solicitar el desbloqueo SG Gestión de dispositivos Se Gestión de pilotos Hacer Esperando revisión En revisión Aceptada Rechazada Operació R Comentarios de usuarios Piloto/Muelle Discos Validez Preguntas frecuentes Desblogu 0UYKG7K00 05/11/2024-Sin personali 20007 11/11/2024 nombre1 zado Desbloau 0UYKG7K00 05/11/2024-Aceptada personali zado Desbloqu Capital eo 0UYKG7K00 2024.11.04-Oriel Lea Aceptada

Figura 3.8 Solicitud de desbloqueo en DJI

20007

2024.11.10

Plaza 2

Luego se debe seleccionar un desbloqueo personalizado

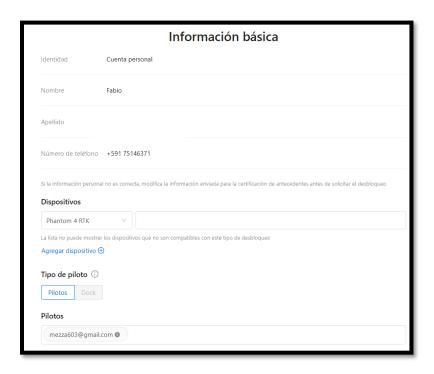

personali

Figura 3.9 Ventana de tipo de desbloqueo

Elija la aeronave registrada y asigne al piloto correspondiente.

Figura 3.10 Cuestionario de información básica

Fuente: Elaboración propia

Luego, especifique la zona de vuelo, la altitud requerida, el motivo del desbloqueo y adjunte cualquier documento de respaldo necesario.

Figura 3.11 Área de petición de desbloqueo

3.12 Puntos de control

Para mejorar la precisión de cada fotografía y asegurar una buena calibración se tomaron los siguientes puntos de control

Tabla 3.1 Coordenadas de puntos de control

Coordenada	Coordenada	Altura	CÓDIGO
Este "X"	Norte "Y"	"Z"	CODIGO
318816.31	7620155.96	1954.63	1
318825.16	7620121.67	1953.21	2
318790.05	7620036.54	1946.95	3
318762.17	7620033.26	1946.59	4
318770.67	7619937.97	1938.86	5
318739.27	7619897.08	1935.71	6
318728.10	7619806.15	1933.6	7
318680.30	7619783.10	1932.37	8
318621.90	7619489.37	1926.00	9
318671.30	7619377.86	1924.58	10
318714.48	7619369.87	1923.97	11
318790.27	7619315.90	1923.01	12
318842.99	7619303.87	1922.65	13
318907.02	7619247.00	1921.42	14
318938.77	7619239.32	1921.49	15
319022.49	7619157.18	1920.15	16
319178.56	7619050.85	1919.00	17
319154.75	7619055.28	1919.00	18
319467.47	7618590.93	1913.82	19
319497.79	7618588.96	1913.49	20
319534.35	7618496.22	1912.27	21
319514.35	7618478.73	1912.05	22
319577.83	7618395.15	1911.55	23
319567.13	7618352.38	1910.52	24
319624.81	7618255.39	1909.38	25
319603.65	7618236.96	1909.01	26

Figura 3.12 Nube de Puntos con puntos de control

3.13 Fotogrametría

Se realizo el procesamiento de las fotografías con las siguientes coordenadas

Tabla 3.2 Coordenadas de fotogrametría

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
1	100_0024_0001.JPG	318898.55	7620215.45	2058.29
2	100_0024_0002.JPG	318906.45	7620205.65	2058.93
3	100_0024_0003.JPG	318931.23	7620222.16	2060.11
4	100_0024_0004.JPG	318951.75	7620235.66	2060.08
5	100_0024_0005.JPG	318971.84	7620248.50	2059.48
6	100_0024_0006.JPG	318990.65	7620260.92	2059.38
7	100_0024_0007.JPG	318991.47	7620262.26	2059.32
8	100_0024_0008.JPG	318973.37	7620283.23	2059.93
9	100_0024_0009.JPG	318958.94	7620300.38	2059.63
10	100_0024_0010.JPG	318957.49	7620299.74	2059.28
11	100_0024_0011.JPG	318936.02	7620283.74	2059.15
12	100_0024_0012.JPG	318916.22	7620269.31	2060.09
13	100_0024_0013.JPG	318895.73	7620254.91	2060.54
14	100_0024_0014.JPG	318877.92	7620242.98	2059.33
15	100_0024_0015.JPG	318862.47	7620264.36	2058.03
16	100_0024_0016.JPG	318859.36	7620269.03	2058.51
17	100_0024_0017.JPG	318881.57	7620285.05	2059.15
18	100_0024_0018.JPG	318901.46	7620299.60	2058.86
19	100_0024_0019.JPG	318921.93	7620314.59	2059.60
20	100_0024_0020.JPG	318941.62	7620329.01	2058.63
21	100_0024_0021.JPG	318961.17	7620342.97	2057.88
22	100_0024_0022.JPG	318964.70	7620344.67	2057.47
23	100_0024_0023.JPG	318983.06	7620323.90	2058.15
24	100_0024_0024.JPG	318998.75	7620305.05	2057.50
25	100_0024_0025.JPG	319014.57	7620286.44	2056.88
26	100_0024_0026.JPG	319031.12	7620267.69	2057.65
27	100_0024_0027.JPG	319042.08	7620253.95	2058.67
28	100_0024_0028.JPG	319018.99	7620239.08	2058.12
29	100_0024_0029.JPG	318998.17	7620225.42	2058.33
30	100_0024_0030.JPG	318976.65	7620211.98	2058.47

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
31	100_0024_0031.JPG	318956.08	7620198.70	2058.81
32	100_0024_0032.JPG	318935.18	7620185.30	2058.78
33	100_0024_0033.JPG	318924.41	7620178.20	2058.71
34	100_0024_0034.JPG	318939.47	7620155.74	2058.33
35	100_0024_0035.JPG	318943.03	7620151.41	2058.80
36	100_0024_0036.JPG	318967.14	7620165.69	2058.97
37	100_0024_0037.JPG	318987.15	7620178.64	2058.02
38	100_0024_0038.JPG	319007.94	7620192.51	2057.86
39	100_0024_0039.JPG	319028.47	7620205.99	2057.30
40	100_0024_0040.JPG	319049.38	7620219.67	2056.78
41	100_0024_0041.JPG	319070.19	7620233.03	2056.89
42	100_0024_0042.JPG	319090.25	7620245.92	2057.15
43	100_0024_0043.JPG	319091.53	7620247.29	2057.39
44	100_0024_0044.JPG	319074.34	7620269.05	2057.53
45	100_0024_0045.JPG	319057.94	7620287.68	2056.66
46	100_0024_0046.JPG	319042.30	7620306.54	2057.21
47	100_0024_0047.JPG	319026.26	7620325.35	2057.45
48	100_0024_0048.JPG	319010.26	7620344.49	2057.76
49	100_0024_0049.JPG	318994.11	7620362.96	2058.09
50	100_0024_0050.JPG	318977.42	7620381.36	2057.58
51	100_0024_0051.JPG	318969.27	7620389.69	2056.42
52	100_0024_0052.JPG	318946.85	7620373.29	2056.27
53	100_0024_0053.JPG	318926.73	7620358.89	2056.46
54	100_0024_0054.JPG	318907.08	7620344.55	2056.49
55	100_0024_0055.JPG	318887.16	7620330.20	2056.32
56	100_0024_0056.JPG	318866.55	7620315.59	2056.69
57	100_0024_0057.JPG	318846.39	7620300.88	2057.27
58	100_0024_0058.JPG	318838.51	7620296.32	2057.46
59	100_0024_0059.JPG	318822.59	7620317.92	2057.38
60	100_0024_0060.JPG	318819.97	7620322.61	2057.53
61	100_0024_0061.JPG	318842.27	7620339.07	2056.81
62	100_0024_0062.JPG	318862.41	7620353.68	2056.27
63	100_0024_0063.JPG	318882.05	7620368.02	2055.56
64	100_0024_0064.JPG	318902.14	7620382.65	2055.57
65	100_0024_0065.JPG	318922.55	7620397.22	2056.05

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
66	100_0024_0066.JPG	318942.40	7620411.58	2056.46
67	100_0024_0067.JPG	318962.41	7620426.14	2056.82
68	100_0024_0068.JPG	318975.29	7620434.51	2057.25
69	100_0024_0069.JPG	318993.32	7620413.65	2056.86
70	100_0024_0070.JPG	319009.30	7620395.21	2056.80
71	100_0024_0071.JPG	319025.18	7620376.38	2056.16
72	100_0024_0072.JPG	319041.32	7620357.57	2056.33
73	100_0024_0073.JPG	319057.15	7620338.84	2055.96
74	100_0024_0074.JPG	319073.40	7620320.03	2056.29
75	100_0024_0075.JPG	319089.64	7620301.23	2056.49
76	100_0024_0076.JPG	319105.62	7620282.44	2056.34
77	100_0024_0077.JPG	319121.86	7620263.29	2056.13
78	100_0024_0078.JPG	319137.26	7620245.21	2056.47
79	100_0024_0079.JPG	319140.71	7620240.14	2056.54
80	100_0024_0080.JPG	319117.17	7620224.77	2056.32
81	100_0024_0081.JPG	319096.83	7620211.44	2055.96
82	100_0024_0082.JPG	319076.01	7620197.98	2055.59
83	100_0024_0083.JPG	319055.27	7620184.68	2055.60
84	100_0024_0084.JPG	319034.19	7620171.05	2055.76
85	100_0024_0085.JPG	319013.39	7620157.45	2056.32
86	100_0024_0086.JPG	318992.66	7620144.24	2056.54
87	100_0024_0087.JPG	318971.89	7620130.78	2056.33
88	100_0025_0001.JPG	318982.15	7620201.57	2061.67
89	100_0025_0002.JPG	318962.73	7620183.10	2060.96
90	100_0025_0003.JPG	318945.26	7620166.55	2060.76
91	100_0025_0004.JPG	318927.13	7620149.29	2060.54
92	100_0025_0005.JPG	318909.33	7620132.10	2061.22
93	100_0025_0006.JPG	318891.54	7620115.26	2061.60
94	100_0025_0007.JPG	318873.77	7620098.04	2061.60
95	100_0025_0008.JPG	318855.70	7620080.83	2061.31
96	100_0025_0009.JPG	318849.62	7620074.47	2061.30
97	100_0025_0010.JPG	318846.45	7620048.23	2061.63
98	100_0025_0011.JPG	318842.76	7620023.96	2061.91
99	100_0025_0012.JPG	318839.42	7619998.83	2062.67
100	100_0025_0013.JPG	318835.49	7619973.18	2064.95

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
101	100_0025_0014.JPG	318832.83	7619950.62	2061.32
102	100_0025_0015.JPG	318829.59	7619926.76	2059.09
103	100_0025_0016.JPG	318824.14	7619901.28	2059.87
104	100_0025_0017.JPG	318822.63	7619890.51	2060.09
105	100_0025_0018.JPG	318817.11	7619867.23	2059.01
106	100_0025_0019.JPG	318811.34	7619843.26	2058.84
107	100_0025_0020.JPG	318804.82	7619819.00	2058.62
108	100_0025_0021.JPG	318799.07	7619795.61	2058.81
109	100_0025_0022.JPG	318796.33	7619791.90	2058.94
110	100_0025_0023.JPG	318782.96	7619773.26	2058.65
111	100_0025_0024.JPG	318769.13	7619753.57	2059.64
112	100_0025_0025.JPG	318754.08	7619732.65	2058.03
113	100_0025_0026.JPG	318739.86	7619712.77	2058.16
114	100_0025_0027.JPG	318737.53	7619707.06	2058.44
115	100_0025_0028.JPG	318731.38	7619687.90	2059.56
116	100_0025_0029.JPG	318722.11	7619664.61	2059.02
117	100_0025_0030.JPG	318713.14	7619641.45	2059.28
118	100_0025_0031.JPG	318708.82	7619630.53	2060.00
119	100_0025_0032.JPG	318682.96	7619641.42	2059.80
120	100_0025_0033.JPG	318678.58	7619644.26	2059.87
121	100_0025_0034.JPG	318688.03	7619669.34	2059.19
122	100_0025_0035.JPG	318696.59	7619691.96	2058.51
123	100_0025_0036.JPG	318705.59	7619715.22	2058.52
124	100_0025_0037.JPG	318712.12	7619731.17	2058.69
125	100_0025_0038.JPG	318727.06	7619751.57	2058.25
126	100_0025_0039.JPG	318741.42	7619771.70	2058.09
127	100_0025_0040.JPG	318755.99	7619792.11	2058.15
128	100_0025_0041.JPG	318769.70	7619811.61	2059.17
129	100_0025_0042.JPG	318775.25	7619836.81	2058.87
130	100_0025_0043.JPG	318781.43	7619860.76	2058.40
131	100_0025_0044.JPG	318787.20	7619884.38	2057.22
132	100_0025_0045.JPG	318791.96	7619903.02	2056.98
133	100_0025_0046.JPG	318795.43	7619927.45	2057.31
134	100_0025_0047.JPG	318799.57	7619952.35	2058.54
135	100_0025_0048.JPG	318803.02	7619976.86	2058.30

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
136	100_0025_0049.JPG	318806.32	7620001.20	2057.54
137	100_0025_0050.JPG	318810.07	7620025.26	2057.60
138	100_0025_0051.JPG	318813.54	7620049.87	2057.27
139	100_0025_0052.JPG	318816.98	7620074.08	2057.72
140	100_0025_0053.JPG	318820.37	7620092.64	2058.49
141	100_0025_0054.JPG	318839.58	7620110.95	2058.29
142	100_0025_0055.JPG	318857.27	7620128.29	2058.55
143	100_0025_0056.JPG	318875.02	7620145.49	2058.16
144	100_0025_0057.JPG	318892.88	7620162.46	2058.22
145	100_0025_0058.JPG	318910.72	7620179.53	2058.38
146	100_0025_0059.JPG	318927.87	7620197.52	2060.39
147	100_0025_0060.JPG	318946.83	7620213.48	2057.56
148	100_0025_0061.JPG	318960.04	7620227.66	2058.89
149	100_0025_0062.JPG	318939.80	7620246.23	2058.81
150	100_0025_0063.JPG	318936.75	7620250.58	2058.11
151	100_0025_0064.JPG	318917.60	7620231.52	2057.95
152	100_0025_0065.JPG	318899.13	7620214.15	2057.39
153	100_0025_0066.JPG	318881.28	7620196.98	2057.05
154	100_0025_0067.JPG	318862.55	7620179.28	2055.86
155	100_0025_0068.JPG	318845.16	7620162.49	2057.66
156	100_0025_0069.JPG	318827.52	7620145.53	2058.21
157	100_0025_0070.JPG	318810.04	7620128.55	2058.78
158	100_0025_0071.JPG	318792.15	7620111.76	2057.87
159	100_0025_0072.JPG	318788.49	7620106.36	2057.60
160	100_0025_0073.JPG	318784.69	7620079.78	2057.50
161	100_0025_0074.JPG	318781.05	7620055.70	2057.19
162	100_0025_0075.JPG	318777.44	7620030.98	2057.25
163	100_0025_0076.JPG	318773.97	7620006.62	2058.43
164	100_0025_0077.JPG	318770.43	7619982.30	2059.02
165	100_0025_0078.JPG	318766.88	7619958.13	2059.00
166	100_0025_0079.JPG	318763.17	7619933.69	2058.93
167	100_0025_0080.JPG	318759.03	7619908.73	2058.91
168	100_0025_0081.JPG	318757.36	7619900.94	2059.01
169	100_0025_0082.JPG	318751.95	7619879.87	2059.14
170	100_0025_0083.JPG	318745.93	7619855.88	2059.50

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
171	100_0025_0084.JPG	318740.57	7619832.54	2059.22
172	100_0025_0085.JPG	318736.98	7619822.54	2058.74
173	100_0025_0086.JPG	318721.51	7619801.68	2058.13
174	100_0025_0087.JPG	318707.38	7619781.72	2058.25
175	100_0025_0088.JPG	318693.06	7619761.48	2058.47
176	100_0025_0089.JPG	318680.38	7619742.87	2058.96
177	100_0025_0090.JPG	318671.68	7619719.40	2059.31
178	100_0025_0091.JPG	318662.13	7619695.90	2058.79
179	100_0025_0092.JPG	318653.15	7619672.60	2057.46
180	100_0025_0093.JPG	318646.47	7619656.07	2059.61
181	100_0025_0094.JPG	318621.06	7619665.60	2059.21
182	100_0025_0095.JPG	318616.24	7619668.22	2059.16
183	100_0025_0096.JPG	318626.35	7619693.75	2059.10
184	100_0025_0097.JPG	318634.92	7619716.53	2058.96
185	100_0025_0098.JPG	318643.78	7619739.66	2059.38
186	100_0025_0099.JPG	318652.99	7619762.22	2060.47
187	100_0025_0100.JPG	318668.51	7619783.66	2060.66
188	100_0025_0101.JPG	318682.70	7619803.50	2060.92
189	100_0025_0102.JPG	318696.95	7619823.64	2061.13
190	100_0025_0103.JPG	318708.56	7619840.45	2060.74
191	100_0025_0104.JPG	318714.22	7619865.53	2060.13
192	100_0025_0105.JPG	318720.27	7619889.35	2059.36
193	100_0025_0106.JPG	318726.35	7619913.04	2059.42
194	100_0025_0107.JPG	318727.63	7619920.73	2059.80
195	100_0025_0108.JPG	318730.30	7619940.71	2059.94
196	100_0025_0109.JPG	318734.08	7619965.29	2059.52
197	100_0025_0110.JPG	318737.82	7619989.58	2059.68
198	100_0025_0111.JPG	318741.41	7620014.10	2060.59
199	100_0025_0112.JPG	318745.05	7620038.66	2061.23
200	100_0025_0113.JPG	318748.51	7620062.83	2060.19
201	100_0025_0114.JPG	318752.01	7620087.67	2059.35
202	100_0025_0115.JPG	318754.97	7620112.16	2059.68
203	100_0025_0116.JPG	318757.18	7620124.65	2060.01
204	100_0025_0117.JPG	318776.60	7620143.33	2058.93
205	100_0025_0118.JPG	318794.45	7620160.40	2059.13

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
206	100_0025_0119.JPG	318812.71	7620177.67	2060.07
207	100_0025_0120.JPG	318831.07	7620195.35	2061.26
208	100_0025_0121.JPG	318847.87	7620211.54	2059.07
209	100_0025_0122.JPG	318865.81	7620228.68	2059.13
210	100_0025_0123.JPG	318883.80	7620245.84	2059.58
211	100_0025_0124.JPG	318901.66	7620263.17	2059.41
212	100_0025_0125.JPG	318912.97	7620274.68	2059.41
213	100_0025_0126.JPG	318894.44	7620294.94	2058.68
214	100_0025_0127.JPG	318889.28	7620298.07	2059.39
215	100_0025_0128.JPG	318870.45	7620278.86	2059.19
216	100_0025_0129.JPG	318852.73	7620262.01	2059.03
217	100_0025_0130.JPG	318834.92	7620244.92	2059.31
218	100_0025_0131.JPG	318817.03	7620227.78	2059.22
219	100_0025_0132.JPG	318799.14	7620210.63	2059.14
220	100_0025_0133.JPG	318781.34	7620193.73	2058.88
221	100_0025_0134.JPG	318763.54	7620176.46	2059.24
222	100_0025_0135.JPG	318745.70	7620159.20	2059.42
223	100_0025_0136.JPG	318728.11	7620142.06	2060.39
224	100_0025_0137.JPG	318725.31	7620138.67	2060.49
225	100_0025_0138.JPG	318720.55	7620111.32	2061.05
226	100_0025_0139.JPG	318717.58	7620087.44	2061.26
227	100_0025_0140.JPG	318713.84	7620062.79	2060.59
228	100_0025_0141.JPG	318710.28	7620038.89	2060.21
229	100_0025_0142.JPG	318706.92	7620014.71	2059.35
230	100_0025_0143.JPG	318703.47	7619990.28	2058.94
231	100_0025_0144.JPG	318700.09	7619965.74	2058.86
232	100_0025_0145.JPG	318696.61	7619941.39	2059.51
233	100_0025_0146.JPG	318693.15	7619917.75	2059.35
234	100_0025_0147.JPG	318686.81	7619893.91	2059.36
235	100_0025_0148.JPG	318680.75	7619870.02	2059.07
236	100_0025_0149.JPG	318675.77	7619851.09	2059.64
237	100_0025_0150.JPG	318660.50	7619830.50	2059.72
238	100_0025_0151.JPG	318646.69	7619810.25	2058.91
239	100_0025_0152.JPG	318632.11	7619790.07	2059.53
240	100_0025_0153.JPG	318620.81	7619773.94	2058.72

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
241	100_0025_0154.JPG	318612.38	7619750.60	2057.74
242	100_0025_0155.JPG	318604.36	7619728.48	2060.16
243	100_0025_0156.JPG	318594.69	7619704.71	2059.68
244	100_0025_0157.JPG	318586.50	7619682.36	2059.29
245	100_0026_0001.JPG	318592.98	7619712.49	2027.13
246	100_0026_0002.JPG	318580.51	7619689.97	2026.00
247	100_0026_0003.JPG	318569.14	7619666.39	2027.28
248	100_0026_0004.JPG	318556.88	7619643.02	2028.99
249	100_0026_0005.JPG	318545.67	7619622.19	2028.57
250	100_0026_0006.JPG	318541.37	7619613.24	2028.04
251	100_0026_0007.JPG	318539.32	7619589.05	2026.77
252	100_0026_0008.JPG	318535.50	7619563.50	2028.75
253	100_0026_0009.JPG	318532.29	7619540.00	2028.66
254	100_0026_0010.JPG	318530.03	7619522.96	2029.53
255	100_0026_0011.JPG	318536.97	7619498.43	2027.94
256	100_0026_0012.JPG	318542.16	7619474.63	2027.49
257	100_0026_0013.JPG	318548.20	7619450.33	2026.87
258	100_0026_0014.JPG	318553.25	7619426.64	2027.40
259	100_0026_0015.JPG	318555.01	7619419.08	2027.91
260	100_0026_0016.JPG	318576.38	7619403.42	2029.27
261	100_0026_0017.JPG	318595.24	7619387.54	2028.92
262	100_0026_0018.JPG	318614.44	7619372.06	2029.19
263	100_0026_0019.JPG	318632.77	7619355.57	2028.02
264	100_0026_0020.JPG	318651.99	7619339.04	2028.01
265	100_0026_0021.JPG	318663.07	7619329.92	2028.75
266	100_0026_0022.JPG	318685.14	7619318.47	2029.75
267	100_0026_0023.JPG	318706.91	7619306.86	2028.24
268	100_0026_0024.JPG	318728.55	7619295.40	2026.86
269	100_0026_0025.JPG	318748.65	7619284.24	2026.85
270	100_0026_0026.JPG	318769.70	7619271.47	2027.76
271	100_0026_0027.JPG	318791.37	7619258.11	2028.18
272	100_0026_0028.JPG	318811.93	7619244.33	2028.20
273	100_0026_0029.JPG	318818.76	7619240.28	2028.19
274	100_0026_0030.JPG	318841.25	7619229.24	2029.74
275	100_0026_0031.JPG	318861.98	7619215.87	2028.58

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
276	100_0026_0032.JPG	318877.84	7619206.78	2028.77
277	100_0026_0033.JPG	318898.31	7619193.40	2027.34
278	100_0026_0034.JPG	318918.81	7619179.67	2026.57
279	100_0026_0035.JPG	318926.91	7619174.50	2026.98
280	100_0026_0036.JPG	318944.99	7619157.28	2027.23
281	100_0026_0037.JPG	318962.69	7619140.56	2028.69
282	100_0026_0038.JPG	318980.16	7619123.76	2028.52
283	100_0026_0039.JPG	318999.28	7619107.94	2028.78
284	100_0026_0040.JPG	319018.02	7619090.61	2026.96
285	100_0026_0041.JPG	319036.35	7619074.67	2028.43
286	100_0026_0042.JPG	319053.56	7619057.24	2028.40
287	100_0026_0043.JPG	319072.84	7619040.39	2029.36
288	100_0026_0044.JPG	319079.06	7619035.33	2029.46
289	100_0026_0045.JPG	319092.88	7619024.08	2029.87
290	100_0026_0046.JPG	319111.74	7619008.32	2028.99
291	100_0026_0047.JPG	319132.54	7618992.66	2027.75
292	100_0026_0048.JPG	319142.16	7618983.14	2025.66
293	100_0026_0049.JPG	319160.40	7619005.11	2024.44
294	100_0026_0050.JPG	319163.42	7619009.61	2024.42
295	100_0026_0051.JPG	319142.36	7619026.84	2024.87
296	100_0026_0052.JPG	319122.94	7619042.44	2025.47
297	100_0026_0053.JPG	319103.02	7619057.94	2026.44
298	100_0026_0054.JPG	319091.24	7619067.84	2026.31
299	100_0026_0055.JPG	319073.34	7619084.33	2026.57
300	100_0026_0056.JPG	319055.81	7619101.50	2027.70
301	100_0026_0057.JPG	319037.05	7619118.16	2027.38
302	100_0026_0058.JPG	319018.91	7619135.21	2026.96
303	100_0026_0059.JPG	319001.02	7619151.79	2026.29
304	100_0026_0060.JPG	318982.05	7619168.12	2025.02
305	100_0026_0061.JPG	318963.75	7619184.85	2024.36
306	100_0026_0062.JPG	318947.33	7619203.48	2026.31
307	100_0026_0063.JPG	318939.71	7619206.37	2025.39
308	100_0026_0064.JPG	318922.13	7619217.72	2025.10
309	100_0026_0065.JPG	318901.47	7619231.27	2025.93
310	100_0026_0066.JPG	318888.63	7619238.30	2025.50

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
311	100_0026_0067.JPG	318867.95	7619251.52	2028.32
312	100_0026_0068.JPG	318846.32	7619263.81	2029.25
313	100_0026_0069.JPG	318830.56	7619272.38	2027.72
314	100_0026_0070.JPG	318809.62	7619285.55	2026.98
315	100_0026_0071.JPG	318790.16	7619298.87	2025.15
316	100_0026_0072.JPG	318768.25	7619312.31	2025.51
317	100_0026_0073.JPG	318760.73	7619316.92	2025.69
318	100_0026_0074.JPG	318739.05	7619328.18	2025.15
319	100_0026_0075.JPG	318716.65	7619340.25	2025.45
320	100_0026_0076.JPG	318694.71	7619352.15	2026.38
321	100_0026_0077.JPG	318677.76	7619361.07	2024.91
322	100_0026_0078.JPG	318658.45	7619377.39	2024.44
323	100_0026_0079.JPG	318639.05	7619393.35	2025.85
324	100_0026_0080.JPG	318620.06	7619409.61	2027.13
325	100_0026_0081.JPG	318601.62	7619424.81	2026.13
326	100_0026_0082.JPG	318585.03	7619439.80	2025.40
327	100_0026_0083.JPG	318577.99	7619465.65	2025.13
328	100_0026_0084.JPG	318572.22	7619489.36	2025.18
329	100_0026_0085.JPG	318566.72	7619513.56	2024.99
330	100_0026_0086.JPG	318564.75	7619530.18	2026.42
331	100_0026_0087.JPG	318567.28	7619554.87	2024.37
332	100_0026_0088.JPG	318571.41	7619580.10	2025.57
333	100_0026_0089.JPG	318573.76	7619604.03	2025.50
334	100_0026_0090.JPG	318574.82	7619608.83	2025.56
335	100_0026_0091.JPG	318586.69	7619631.56	2025.44
336	100_0026_0092.JPG	318598.75	7619653.63	2025.61
337	100_0026_0093.JPG	318610.20	7619675.31	2024.88
338	100_0026_0094.JPG	318621.14	7619696.13	2024.64
339	100_0026_0095.JPG	318622.77	7619697.72	2024.56
340	100_0026_0096.JPG	318646.35	7619684.52	2022.79
341	100_0026_0097.JPG	318651.20	7619680.99	2024.61
342	100_0026_0098.JPG	318638.77	7619657.86	2023.48
343	100_0026_0099.JPG	318627.17	7619636.02	2025.06
344	100_0026_0100.JPG	318615.64	7619613.77	2024.85
345	100_0026_0101.JPG	318604.68	7619594.02	2025.06

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
346	100_0026_0102.JPG	318603.46	7619570.35	2022.52
347	100_0026_0103.JPG	318600.27	7619545.24	2022.94
348	100_0026_0104.JPG	318597.97	7619527.28	2024.19
349	100_0026_0105.JPG	318603.98	7619501.75	2023.92
350	100_0026_0106.JPG	318609.17	7619477.76	2024.26
351	100_0026_0107.JPG	318614.76	7619455.63	2026.11
352	100_0026_0108.JPG	318634.79	7619439.44	2024.79
353	100_0026_0109.JPG	318654.27	7619423.82	2025.63
354	100_0026_0110.JPG	318673.00	7619407.42	2024.88
355	100_0026_0111.JPG	318691.79	7619391.83	2026.11
356	100_0026_0112.JPG	318699.92	7619385.74	2026.68
357	100_0026_0113.JPG	318721.80	7619374.09	2026.24
358	100_0026_0114.JPG	318743.12	7619360.72	2023.65
359	100_0026_0115.JPG	318765.15	7619350.39	2025.45
360	100_0026_0116.JPG	318782.44	7619341.08	2024.34
361	100_0026_0117.JPG	318803.43	7619327.76	2023.76
362	100_0026_0118.JPG	318823.86	7619314.37	2023.10
363	100_0026_0119.JPG	318844.46	7619302.18	2026.63
364	100_0026_0120.JPG	318851.31	7619297.74	2026.94
365	100_0026_0121.JPG	318874.70	7619285.55	2026.70
366	100_0026_0122.JPG	318894.62	7619272.99	2026.13
367	100_0026_0123.JPG	318911.62	7619262.94	2026.09
368	100_0026_0124.JPG	318932.44	7619249.08	2025.03
369	100_0026_0125.JPG	318952.04	7619236.16	2026.54
370	100_0026_0126.JPG	318968.32	7619227.31	2026.41
371	100_0026_0127.JPG	318985.95	7619209.52	2024.82
372	100_0026_0128.JPG	319004.74	7619192.97	2024.54
373	100_0026_0129.JPG	319022.76	7619175.46	2024.14
374	100_0026_0130.JPG	319041.11	7619158.92	2024.20
375	100_0026_0131.JPG	319059.35	7619142.22	2024.23
376	100_0026_0132.JPG	319077.25	7619125.40	2024.66
377	100_0026_0133.JPG	319095.69	7619108.50	2024.22
378	100_0026_0134.JPG	319113.77	7619091.60	2024.48
379	100_0026_0135.JPG	319119.91	7619086.61	2024.51
380	100_0026_0136.JPG	319137.02	7619073.66	2024.08

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
381	100_0026_0137.JPG	319156.41	7619058.37	2024.39
382	100_0026_0138.JPG	319176.12	7619042.49	2024.28
383	100_0026_0139.JPG	319184.76	7619035.54	2025.58
384	100_0026_0140.JPG	319202.01	7619056.79	2024.77
385	100_0026_0141.JPG	319205.61	7619062.56	2024.95
386	100_0026_0142.JPG	319183.52	7619078.73	2024.57
387	100_0026_0143.JPG	319164.46	7619094.06	2025.41
388	100_0026_0144.JPG	319145.22	7619109.64	2025.49
389	100_0026_0145.JPG	319134.94	7619117.89	2025.45
390	100_0026_0146.JPG	319117.05	7619134.75	2025.43
391	100_0026_0147.JPG	319098.70	7619151.79	2024.88
392	100_0026_0148.JPG	319080.74	7619168.42	2025.66
393	100_0026_0149.JPG	319061.68	7619184.82	2025.10
394	100_0026_0150.JPG	319043.79	7619202.14	2025.45
395	100_0026_0151.JPG	319025.48	7619218.87	2025.29
396	100_0026_0152.JPG	319006.78	7619235.13	2024.48
397	100_0026_0153.JPG	318988.44	7619252.02	2024.11
398	100_0026_0154.JPG	318982.18	7619256.25	2023.64
399	100_0026_0155.JPG	318962.76	7619269.33	2024.37
400	100_0026_0156.JPG	318942.37	7619283.46	2025.79
401	100_0026_0157.JPG	318924.12	7619295.35	2027.05
402	100_0026_0158.JPG	318900.73	7619306.68	2027.34
403	100_0026_0159.JPG	318880.65	7619319.09	2026.67
404	100_0026_0160.JPG	318864.72	7619327.81	2025.62
405	100_0026_0161.JPG	318843.96	7619340.98	2025.13
406	100_0026_0162.JPG	318823.06	7619354.37	2025.31
407	100_0026_0163.JPG	318802.38	7619367.94	2025.46
408	100_0026_0164.JPG	318794.66	7619373.34	2025.59
409	100_0026_0165.JPG	318772.10	7619384.42	2024.89
410	100_0026_0166.JPG	318750.08	7619396.05	2024.59
411	100_0026_0167.JPG	318728.78	7619408.44	2025.49
412	100_0026_0168.JPG	318714.75	7619416.40	2025.77
413	100_0026_0169.JPG	318695.91	7619432.41	2025.18
414	100_0026_0170.JPG	318676.52	7619448.46	2025.36
415	100_0026_0171.JPG	318657.52	7619463.99	2024.73

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
416	100_0026_0172.JPG	318644.62	7619477.41	2023.81
417	100_0026_0173.JPG	318638.35	7619502.98	2024.42
418	100_0026_0174.JPG	318633.04	7619526.91	2024.99
419	100_0026_0175.JPG	318631.87	7619533.18	2025.00
420	100_0026_0176.JPG	318635.29	7619559.01	2024.90
421	100_0026_0177.JPG	318638.49	7619583.33	2024.18
422	100_0026_0178.JPG	318638.97	7619588.68	2024.90
423	100_0026_0179.JPG	318651.33	7619611.81	2025.25
424	100_0026_0180.JPG	318662.65	7619633.17	2024.02
425	100_0026_0181.JPG	318674.46	7619655.33	2023.99
426	100_0026_0182.JPG	318682.04	7619668.15	2024.47
427	100_0026_0183.JPG	318706.45	7619655.92	2025.94
428	100_0026_0184.JPG	318710.81	7619652.18	2026.65
429	100_0026_0185.JPG	318697.83	7619628.42	2024.62
430	100_0026_0186.JPG	318686.28	7619605.57	2025.65
431	100_0026_0187.JPG	318674.49	7619583.78	2026.32
432	100_0026_0188.JPG	318670.44	7619575.41	2025.80
433	100_0026_0189.JPG	318667.91	7619550.68	2024.42
434	100_0026_0190.JPG	318665.63	7619530.96	2023.24
435	100_0026_0191.JPG	318671.55	7619505.49	2022.94
436	100_0026_0192.JPG	318675.10	7619492.35	2023.42
437	100_0026_0193.JPG	318695.52	7619475.89	2023.50
438	100_0026_0194.JPG	318714.24	7619459.67	2023.61
439	100_0026_0195.JPG	318733.46	7619443.47	2024.53
440	100_0026_0196.JPG	318739.00	7619439.68	2024.95
441	100_0026_0197.JPG	318759.43	7619429.44	2025.68
442	100_0026_0198.JPG	318780.41	7619417.01	2025.54
443	100_0026_0199.JPG	318803.63	7619405.77	2026.19
444	100_0026_0200.JPG	318816.40	7619399.77	2026.69
445	100_0026_0201.JPG	318837.19	7619386.29	2026.97
446	100_0026_0202.JPG	318858.41	7619372.29	2026.33
447	100_0026_0203.JPG	318878.46	7619358.33	2025.39
448	100_0026_0204.JPG	318887.64	7619354.12	2026.03
449	100_0026_0205.JPG	318908.61	7619341.54	2025.45
450	100_0026_0206.JPG	318930.16	7619329.38	2025.61

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
451	100_0026_0207.JPG	318946.05	7619320.13	2024.85
452	100_0026_0208.JPG	318966.63	7619306.47	2025.07
453	100_0026_0209.JPG	318987.48	7619292.87	2025.15
454	100_0026_0210.JPG	319008.28	7619279.31	2025.54
455	100_0026_0211.JPG	319026.75	7619261.93	2026.70
456	100_0026_0212.JPG	319044.94	7619244.99	2026.79
457	100_0026_0213.JPG	319063.12	7619227.52	2026.72
458	100_0026_0214.JPG	319081.24	7619211.88	2026.08
459	100_0026_0215.JPG	319098.60	7619192.84	2026.30
460	100_0026_0216.JPG	319118.03	7619177.37	2027.11
461	100_0026_0217.JPG	319136.55	7619160.90	2027.67
462	100_0026_0218.JPG	319154.31	7619144.03	2026.69
463	100_0026_0219.JPG	319161.25	7619138.09	2026.32
464	100_0026_0220.JPG	319180.71	7619122.85	2024.99
465	100_0026_0221.JPG	319200.48	7619107.60	2025.56
466	100_0026_0222.JPG	319219.89	7619091.89	2026.26
467	100_0027_0001.JPG	319133.25	7618988.08	2018.77
468	100_0027_0002.JPG	319152.70	7618969.68	2017.95
469	100_0027_0003.JPG	319169.83	7618951.90	2018.67
470	100_0027_0004.JPG	319187.49	7618934.91	2018.54
471	100_0027_0005.JPG	319205.13	7618917.90	2019.47
472	100_0027_0006.JPG	319222.19	7618898.53	2017.58
473	100_0027_0007.JPG	319228.12	7618893.27	2017.61
474	100_0027_0008.JPG	319242.55	7618881.14	2017.49
475	100_0027_0009.JPG	319260.57	7618864.72	2018.88
476	100_0027_0010.JPG	319278.03	7618847.02	2019.08
477	100_0027_0011.JPG	319294.56	7618831.21	2017.82
478	100_0027_0012.JPG	319312.12	7618813.58	2016.74
479	100_0027_0013.JPG	319329.55	7618795.75	2015.86
480	100_0027_0014.JPG	319346.87	7618778.41	2016.33
481	100_0027_0015.JPG	319355.42	7618770.31	2016.48
482	100_0027_0016.JPG	319371.50	7618751.67	2016.50
483	100_0027_0017.JPG	319377.85	7618743.06	2016.81
484	100_0027_0018.JPG	319382.41	7618715.51	2015.36
485	100_0027_0019.JPG	319388.20	7618701.54	2015.54

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
486	100_0027_0020.JPG	319393.41	7618676.70	2016.99
487	100_0027_0021.JPG	319398.90	7618654.47	2017.59
488	100_0027_0022.JPG	319407.16	7618631.19	2017.58
489	100_0027_0023.JPG	319414.61	7618607.84	2017.72
490	100_0027_0024.JPG	319419.63	7618587.79	2017.49
491	100_0027_0025.JPG	319424.52	7618563.48	2017.80
492	100_0027_0026.JPG	319429.69	7618539.81	2018.01
493	100_0027_0027.JPG	319434.14	7618526.05	2018.02
494	100_0027_0028.JPG	319448.18	7618504.84	2017.23
495	100_0027_0029.JPG	319459.64	7618485.06	2016.97
496	100_0027_0030.JPG	319465.40	7618459.53	2016.46
497	100_0027_0031.JPG	319473.27	7618436.14	2017.80
498	100_0027_0032.JPG	319481.06	7618413.06	2017.88
499	100_0027_0033.JPG	319484.02	7618403.96	2017.68
500	100_0027_0034.JPG	319495.08	7618381.65	2017.85
501	100_0027_0035.JPG	319506.29	7618360.69	2016.91
502	100_0027_0036.JPG	319512.68	7618346.98	2017.08
503	100_0027_0037.JPG	319518.75	7618322.01	2018.25
504	100_0027_0038.JPG	319525.96	7618298.44	2017.84
505	100_0027_0039.JPG	319532.49	7618278.14	2016.95
506	100_0027_0040.JPG	319544.10	7618255.33	2017.37
507	100_0027_0041.JPG	319551.25	7618240.29	2018.37
508	100_0027_0042.JPG	319555.87	7618215.57	2018.49
509	100_0027_0043.JPG	319557.06	7618211.12	2019.43
510	100_0027_0044.JPG	319583.74	7618217.44	2017.35
511	100_0027_0045.JPG	319588.95	7618218.97	2016.53
512	100_0027_0046.JPG	319583.84	7618245.79	2016.90
513	100_0027_0047.JPG	319581.83	7618256.64	2017.03
514	100_0027_0048.JPG	319569.23	7618279.01	2016.71
515	100_0027_0049.JPG	319560.66	7618295.25	2017.09
516	100_0027_0050.JPG	319553.92	7618319.49	2017.36
517	100_0027_0051.JPG	319546.99	7618342.91	2017.08
518	100_0027_0052.JPG	319540.86	7618363.17	2016.83
519	100_0027_0053.JPG	319529.99	7618385.49	2016.69
520	100_0027_0054.JPG	319519.17	7618407.94	2016.48

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
521	100_0027_0055.JPG	319513.15	7618422.34	2016.96
522	100_0027_0056.JPG	319505.85	7618445.99	2016.96
523	100_0027_0057.JPG	319498.24	7618469.80	2016.77
524	100_0027_0058.JPG	319491.03	7618493.27	2016.98
525	100_0027_0059.JPG	319487.80	7618503.42	2017.05
526	100_0027_0060.JPG	319473.97	7618525.04	2016.96
527	100_0027_0061.JPG	319463.29	7618542.79	2016.68
528	100_0027_0062.JPG	319458.03	7618568.07	2016.60
529	100_0027_0063.JPG	319452.75	7618592.13	2017.25
530	100_0027_0064.JPG	319450.52	7618602.61	2017.03
531	100_0027_0065.JPG	319442.60	7618626.13	2016.81
532	100_0027_0066.JPG	319434.90	7618649.68	2017.00
533	100_0027_0067.JPG	319428.80	7618669.41	2016.95
534	100_0027_0068.JPG	319423.12	7618693.15	2016.97
535	100_0027_0069.JPG	319418.36	7618717.48	2017.45
536	100_0027_0070.JPG	319411.66	7618741.85	2017.21
537	100_0027_0071.JPG	319404.90	7618761.89	2017.04
538	100_0027_0072.JPG	319388.39	7618781.60	2017.29
539	100_0027_0073.JPG	319375.49	7618797.04	2016.69
540	100_0027_0074.JPG	319357.92	7618814.61	2017.32
541	100_0027_0075.JPG	319342.15	7618833.96	2019.41
542	100_0027_0076.JPG	319323.80	7618850.36	2018.26
543	100_0027_0077.JPG	319312.32	7618861.46	2017.52
544	100_0027_0078.JPG	319294.22	7618878.61	2017.31
545	100_0027_0079.JPG	319276.53	7618895.85	2017.16
546	100_0027_0080.JPG	319258.01	7618912.38	2018.18
547	100_0027_0081.JPG	319242.10	7618927.00	2018.46
548	100_0027_0082.JPG	319225.21	7618944.22	2017.79
549	100_0027_0083.JPG	319207.28	7618961.11	2016.34
550	100_0027_0084.JPG	319190.07	7618979.55	2017.38
551	100_0027_0085.JPG	319172.56	7618996.73	2017.59
552	100_0027_0086.JPG	319155.98	7619013.38	2018.71
553	100_0027_0087.JPG	319156.87	7619014.73	2018.31
554	100_0027_0088.JPG	319175.77	7619033.16	2017.58
555	100_0027_0089.JPG	319180.59	7619037.25	2017.61

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
556	100_0027_0090.JPG	319200.44	7619017.26	2015.83
557	100_0027_0091.JPG	319216.89	7618998.95	2015.35
558	100_0027_0092.JPG	319234.32	7618981.91	2016.53
559	100_0027_0093.JPG	319251.54	7618964.83	2017.43
560	100_0027_0094.JPG	319269.10	7618947.13	2017.42
561	100_0027_0095.JPG	319288.33	7618929.54	2017.45
562	100_0027_0096.JPG	319305.14	7618912.20	2016.50
563	100_0027_0097.JPG	319324.05	7618896.15	2016.71
564	100_0027_0098.JPG	319340.67	7618881.29	2017.13
565	100_0027_0099.JPG	319358.10	7618863.11	2017.48
566	100_0027_0100.JPG	319375.04	7618845.38	2017.30
567	100_0027_0101.JPG	319391.68	7618827.56	2018.60
568	100_0027_0102.JPG	319403.51	7618815.38	2018.65
569	100_0027_0103.JPG	319419.87	7618796.44	2019.18
570	100_0027_0104.JPG	319434.21	7618777.79	2017.99
571	100_0027_0105.JPG	319437.44	7618774.83	2018.12
572	100_0027_0106.JPG	319443.03	7618749.32	2017.00
573	100_0027_0107.JPG	319450.76	7618725.73	2018.44
574	100_0027_0108.JPG	319452.79	7618718.14	2018.38
575	100_0027_0109.JPG	319457.57	7618695.62	2017.79
576	100_0027_0110.JPG	319462.79	7618672.51	2018.15
577	100_0027_0111.JPG	319470.48	7618649.23	2017.56
578	100_0027_0112.JPG	319478.14	7618625.51	2017.22
579	100_0027_0113.JPG	319484.40	7618606.74	2016.88
580	100_0027_0114.JPG	319489.25	7618582.56	2016.27
581	100_0027_0115.JPG	319494.20	7618558.45	2016.26
582	100_0027_0116.JPG	319495.73	7618552.07	2016.42
583	100_0027_0117.JPG	319509.65	7618531.37	2016.27
584	100_0027_0118.JPG	319519.77	7618513.93	2016.31
585	100_0027_0119.JPG	319527.32	7618489.98	2016.63
586	100_0027_0120.JPG	319534.57	7618466.35	2015.82
587	100_0027_0121.JPG	319541.56	7618442.33	2016.15
588	100_0027_0122.JPG	319545.61	7618429.45	2016.46
589	100_0027_0123.JPG	319556.35	7618407.47	2016.96
590	100_0027_0124.JPG	319567.25	7618385.12	2016.39

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
591	100_0027_0125.JPG	319573.76	7618371.09	2016.91
592	100_0027_0126.JPG	319580.71	7618347.12	2016.95
593	100_0027_0127.JPG	319587.86	7618323.59	2017.61
594	100_0027_0128.JPG	319593.67	7618303.76	2017.78
595	100_0027_0129.JPG	319605.71	7618281.94	2017.30
596	100_0027_0130.JPG	319614.40	7618264.28	2018.03
597	100_0027_0131.JPG	319619.12	7618239.39	2017.60
598	100_0027_0132.JPG	319622.38	7618225.58	2018.51
599	100_0027_0133.JPG	319649.33	7618230.83	2016.95
600	100_0027_0134.JPG	319654.45	7618232.52	2017.27
601	100_0027_0135.JPG	319649.10	7618259.33	2017.38
602	100_0027_0136.JPG	319645.01	7618279.56	2017.50
603	100_0027_0137.JPG	319632.63	7618301.85	2017.00
604	100_0027_0138.JPG	319622.93	7618320.88	2017.24
605	100_0027_0139.JPG	319616.11	7618345.18	2017.73
606	100_0027_0140.JPG	319609.44	7618368.87	2017.64
607	100_0027_0141.JPG	319603.64	7618388.09	2017.18
608	100_0027_0142.JPG	319592.22	7618409.99	2016.52
609	100_0027_0143.JPG	319581.88	7618432.71	2016.43
610	100_0027_0144.JPG	319574.89	7618446.66	2016.53
611	100_0027_0145.JPG	319567.94	7618470.55	2016.76
612	100_0027_0146.JPG	319561.01	7618494.57	2017.46
613	100_0027_0147.JPG	319553.15	7618517.99	2016.99
614	100_0027_0148.JPG	319548.64	7618531.20	2017.13
615	100_0027_0149.JPG	319536.91	7618553.95	2019.08
616	100_0027_0150.JPG	319526.34	7618567.91	2019.07
617	100_0027_0151.JPG	319521.37	7618593.80	2018.79
618	100_0027_0152.JPG	319515.13	7618617.56	2016.95
619	100_0027_0153.JPG	319513.50	7618625.38	2016.97
620	100_0027_0154.JPG	319507.11	7618644.45	2016.55
621	100_0027_0155.JPG	319499.55	7618667.86	2016.62
622	100_0027_0156.JPG	319493.72	7618687.01	2016.77
623	100_0027_0157.JPG	319488.39	7618711.56	2016.61
624	100_0027_0158.JPG	319481.83	7618732.46	2015.74
625	100_0027_0159.JPG	319476.00	7618756.57	2016.15

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
626	100_0027_0160.JPG	319470.98	7618780.82	2017.22
627	100_0027_0161.JPG	319466.96	7618793.50	2017.53
628	100_0027_0162.JPG	319449.33	7618813.21	2017.11
629	100_0027_0163.JPG	319433.32	7618832.00	2018.15
630	100_0027_0164.JPG	319424.66	7618842.20	2017.87
631	100_0027_0165.JPG	319407.56	7618859.79	2017.06
632	100_0027_0166.JPG	319390.29	7618877.03	2018.10
633	100_0027_0167.JPG	319373.51	7618895.77	2018.34
634	100_0027_0168.JPG	319359.12	7618908.15	2017.81
635	100_0027_0169.JPG	319341.34	7618925.07	2017.21
636	100_0027_0170.JPG	319323.52	7618942.14	2017.45
637	100_0027_0171.JPG	319305.32	7618958.93	2017.41
638	100_0027_0172.JPG	319286.90	7618973.64	2016.14
639	100_0027_0173.JPG	319270.69	7618992.60	2016.83
640	100_0027_0174.JPG	319253.08	7619010.03	2016.97
641	100_0027_0175.JPG	319235.91	7619027.99	2017.35
642	100_0027_0176.JPG	319217.26	7619043.99	2017.36
643	100_0027_0177.JPG	319203.26	7619061.19	2018.11
644	100_0027_0178.JPG	319222.76	7619080.58	2018.60
645	100_0027_0179.JPG	319227.01	7619083.60	2018.08
646	100_0027_0180.JPG	319246.61	7619064.10	2017.29
647	100_0027_0181.JPG	319263.84	7619046.63	2018.66
648	100_0027_0182.JPG	319280.67	7619028.40	2018.32
649	100_0027_0183.JPG	319298.26	7619011.05	2017.75
650	100_0027_0184.JPG	319314.06	7618995.28	2017.24
651	100_0027_0185.JPG	319331.04	7618978.83	2016.20
652	100_0027_0186.JPG	319351.01	7618962.11	2016.90
653	100_0027_0187.JPG	319369.95	7618945.46	2017.22
654	100_0027_0188.JPG	319387.39	7618928.20	2017.13
655	100_0027_0189.JPG	319404.40	7618911.02	2018.71
656	100_0027_0190.JPG	319421.99	7618893.92	2018.16
657	100_0027_0191.JPG	319439.41	7618876.05	2017.84
658	100_0027_0192.JPG	319452.91	7618860.64	2018.32
659	100_0027_0193.JPG	319470.49	7618841.60	2019.49
660	100_0027_0194.JPG	319484.73	7618822.30	2017.85

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
661	100_0027_0195.JPG	319497.37	7618806.21	2018.01
662	100_0027_0196.JPG	319503.95	7618781.07	2017.42
663	100_0027_0197.JPG	319510.20	7618757.43	2017.37
664	100_0027_0198.JPG	319516.05	7618735.62	2016.86
665	100_0027_0199.JPG	319521.32	7618711.24	2017.28
666	100_0027_0200.JPG	319526.14	7618689.68	2017.43
667	100_0027_0201.JPG	319534.06	7618666.39	2016.96
668	100_0027_0202.JPG	319541.15	7618642.67	2016.80
669	100_0027_0203.JPG	319547.74	7618623.71	2016.90
670	100_0027_0204.JPG	319552.49	7618599.31	2016.82
671	100_0027_0205.JPG	319557.82	7618577.09	2016.61
672	100_0027_0206.JPG	319572.03	7618555.69	2016.08
673	100_0027_0207.JPG	319580.76	7618540.95	2016.01
674	100_0027_0208.JPG	319587.84	7618516.81	2016.38
675	100_0027_0209.JPG	319594.89	7618493.20	2016.45
676	100_0027_0210.JPG	319603.43	7618471.06	2018.76
677	100_0027_0211.JPG	319608.19	7618454.91	2019.79
678	100_0027_0212.JPG	319618.65	7618432.55	2019.24
679	100_0027_0213.JPG	319629.46	7618409.77	2019.36
680	100_0027_0214.JPG	319636.44	7618395.13	2018.88
681	100_0027_0215.JPG	319643.28	7618371.58	2017.50
682	100_0027_0216.JPG	319650.09	7618347.67	2017.15
683	100_0027_0217.JPG	319656.64	7618329.13	2017.30
684	100_0027_0218.JPG	319667.19	7618306.48	2017.02
685	100_0027_0219.JPG	319678.19	7618286.93	2016.63
686	100_0027_0220.JPG	319682.60	7618261.78	2015.75
687	100_0027_0221.JPG	319686.98	7618238.64	2016.42
688	100_0028_0001.JPG	319553.09	7618235.01	2011.56
689	100_0028_0002.JPG	319560.75	7618207.52	2013.59
690	100_0028_0003.JPG	319565.71	7618183.56	2015.78
691	100_0028_0004.JPG	319570.72	7618159.01	2017.96
692	100_0028_0005.JPG	319575.57	7618135.10	2016.88
693	100_0028_0006.JPG	319580.97	7618111.10	2014.80
694	100_0028_0007.JPG	319583.32	7618104.53	2014.67
695	100_0028_0008.JPG	319590.02	7618086.59	2014.83

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD
696	100 0028 0009.JPG	319598.17	7618063.37	"m.s.n.m." 2015.34
697	100_0028_0000.JPG	319607.73	7618040.71	2015.00
698	100 0028 0011.JPG	319629.49	7618023.43	2013.37
699	100_0028_0011.JPG	319648.53	7618009.09	2013.34
700	100 0028 0013.JPG	319668.43	7617994.83	2015.13
701	100_0028_0014.JPG	319687.25	7617980.25	2017.53
702	100 0028 0015.JPG	319698.73	7617971.27	2017.39
703	100_0028_0016.JPG	319715.64	7617962.17	2016.74
704	100 0028 0017.JPG	319727.39	7617985.37	2013.38
705	100_0028_0018.JPG	319731.28	7617992.30	2013.05
706	100 0028 0019.JPG	319713.38	7618002.66	2014.28
707	100_0028_0020.JPG	319693.93	7618016.30	2013.97
708	100 0028 0021.JPG	319674.58	7618030.78	2013.33
709	100 0028 0022.JPG	319654.75	7618046.55	2013.75
710	100_0028_0023.JPG	319634.71	7618062.36	2015.34
711	100_0028_0024.JPG	319632.89	7618065.54	2015.09
712	100 0028 0025.JPG	319625.14	7618087.73	2013.15
713	100_0028_0026.JPG	319616.53	7618110.91	2012.76
714	100 0028 0027.JPG	319612.32	7618123.55	2012.65
715	100_0028_0028.JPG	319607.51	7618147.98	2012.26
716	100 0028 0029.JPG	319602.11	7618172.48	2012.59
717	100_0028_0030.JPG	319597.58	7618196.20	2013.09
718	100_0028_0031.JPG	319592.25	7618220.60	2012.59
719	100_0028_0032.JPG	319587.99	7618242.69	2010.62
720	100_0028_0033.JPG	319615.69	7618246.52	2011.29
721	100_0028_0034.JPG	319622.25	7618246.36	2011.97
722	100_0028_0035.JPG	319627.99	7618220.01	2010.29
723	100_0028_0036.JPG	319633.58	7618195.88	2010.46
724	100_0028_0037.JPG	319638.41	7618171.87	2011.33
725	100_0028_0038.JPG	319643.50	7618147.92	2011.23
726	100_0028_0039.JPG	319648.39	7618126.29	2011.33
727	100_0028_0040.JPG	319657.24	7618102.36	2011.57
728	100_0028_0041.JPG	319665.54	7618080.61	2011.75
729	100_0028_0042.JPG	319668.52	7618077.56	2011.94
730	100_0028_0043.JPG	319686.82	7618063.17	2010.91

N	CÓDIGO	COORDENADA ESTE "m"	COORDENADA NORTE "m"	ALTITUD "m.s.n.m."
731	100_0028_0044.JPG	319706.66	7618048.33	2012.44
732	100_0028_0045.JPG	319725.29	7618033.88	2012.76
733	100_0028_0046.JPG	319737.21	7618024.96	2013.37
734	100_0028_0047.JPG	319751.47	7618018.18	2013.56
735	100_0028_0048.JPG	319763.82	7618041.24	2013.39
736	100_0028_0049.JPG	319767.53	7618046.06	2013.91
737	100_0028_0050.JPG	319752.54	7618055.09	2013.67
738	100_0028_0051.JPG	319733.00	7618070.09	2012.60
739	100_0028_0052.JPG	319713.53	7618085.15	2011.76
740	100_0028_0053.JPG	319694.03	7618100.07	2011.65
741	100_0028_0054.JPG	319691.18	7618102.47	2011.54
742	100_0028_0055.JPG	319682.16	7618130.01	2012.17
743	100_0028_0056.JPG	319676.54	7618142.50	2011.82
744	100_0028_0057.JPG	319672.35	7618165.28	2011.48
745	100_0028_0058.JPG	319666.73	7618190.62	2011.16
746	100_0028_0059.JPG	319662.15	7618214.76	2010.68
747	100_0028_0060.JPG	319657.28	7618237.82	2012.14
748	100_0028_0061.JPG	319654.31	7618254.46	2012.35
749	100_0028_0062.JPG	319680.93	7618260.45	2011.79
750	100_0028_0063.JPG	319687.08	7618260.24	2012.53
751	100_0028_0064.JPG	319692.02	7618234.24	2011.47
752	100_0028_0065.JPG	319698.24	7618209.49	2012.35
753	100_0028_0066.JPG	319703.17	7618185.41	2012.80
754	100_0028_0067.JPG	319708.59	7618161.03	2012.39
755	100_0028_0068.JPG	319712.17	7618144.69	2012.21
756	100_0028_0069.JPG	319721.54	7618120.58	2012.04
757	100_0028_0070.JPG	319723.58	7618118.12	2012.12
758	100_0028_0071.JPG	319742.93	7618103.23	2010.83
759	100_0028_0072.JPG	319762.16	7618089.06	2010.81
760	100_0028_0073.JPG	319776.70	7618078.06	2011.69

3.14 Posiciones de cámaras y solapamiento de imágenes

Podemos ver que en la zona central que es la zona de interés tenemos buen solapamiento de imágenes para mejorar la calidad de la zona del proyecto

2 **1** 500 m

Figura 3.13 Solapamiento de imágenes de aerofotogrametría

Tabla 3.3 Detalle de fotografías aéreas

Numero de imágenes	760	Imágenes alineadas	760
Altitud media de vuelo	106 m	Puntos de paso	540015
Resolución en terreno	2.83 cm/pix	Proyecciones	2885410
Área cubierta	25 hectáreas	Error de Re proyección	0.78 pix

Tabla 3.4 Detalles de cámara de dron

Modelo de cámara	Resolución	Distancia focal	Tamaño de píxel	Pre - calibrada
FC6310R (8.8mm)	4864 x 3648	8.8 mm	30 x 30 mm	Sí

Fuente: Elaboración propia

3.15 Posiciones de cámaras

En la imagen se verifica que la zona central tiene error cercano a cero y donde podría existir un poco mayor será corregido mediante puntos de control

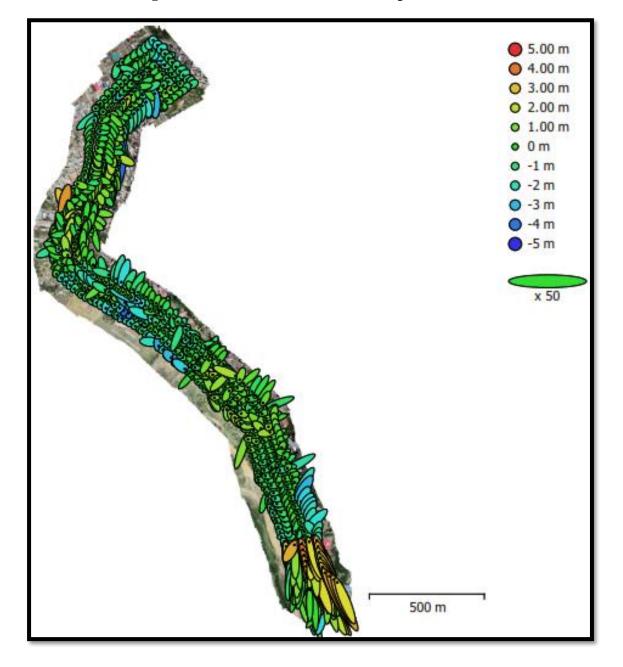


Figura 3.14 Ubicación de cámaras del plan de vuelo

El color indica el error en Z mientras el tamaño y forma de la elipse representan el error en XY.

Posiciones estimadas de las cámaras se indican con los puntos negros.

A continuación, la tabla de error máximo antes de la corrección mediante GPCs

Tabla 3.5 Error fotogramétrico sin corregir

Error en X	Error en Y	Error en Z	Error en XY	Error combinado
(m)	(m)	(m)	(m)	(m)
0.63	1.05	1.25	1.22	1.75

3.16 Puntos de control terrestre

En el caso de los puntos de control verificamos que los errores son centimétricos y ayudaran a la corrección de las imágenes desalineadas y vuelos solapados.

Figura 3.15 Ubicación de puntos de control y error

El color indica el error en Z mientras el tamaño y forma de la elipse representan el error en XY.

Las posiciones estimadas de puntos de apoyo se marcan con puntos o cruces.

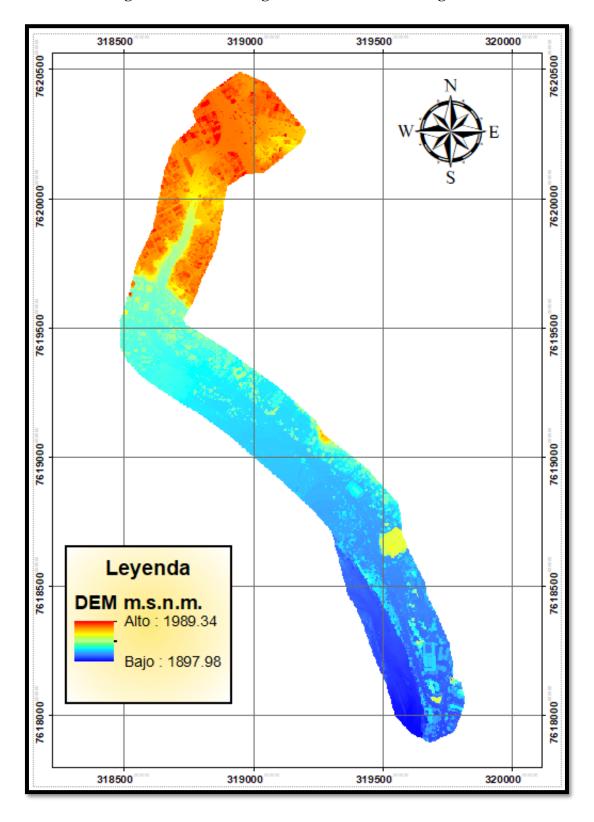
Tabla 3.6 Error máximo de puntos de control

Número	Error en X	Error en Y	Error en Z	Error en XY	Total (cm)
	(cm)	(cm)	(cm)	(cm)	
26	0.767133	0.542051	1.94403	0.939315	2.15907

Tabla 3.7 Errores de puntos de control

Nombre	Error en X (cm)	Error en Y (cm)	Error en Z (cm)	Total (cm)	Imagen (pix)
1	-0.10	0.06	1.09	1.10	0.34 (26)
2	-0.51	0.38	-2.54	2.62	0.77 (24)
3	0.47	-0.53	1.79	1.93	0.54 (27)
4	-0.60	0.41	0.02	0.73	0.29 (24)
5	0.77	0.12	1.89	2.04	0.72 (24)
6	0.83	-0.52	-1.81	2.06	0.68 (26)
7	-0.09	-0.05	-1.00	1.01	0.47 (27)
8	-0.82	0.65	1.02	1.46	0.50 (23)
9	0.07	-0.46	-1.30	1.38	1.18 (9)
10	0.09	0.08	0.01	0.12	0.43 (6)
11	0.47	0.93	0.82	1.33	0.58 (15)
12	0.34	-0.52	0.40	0.74	0.51 (8)
13	-0.92	-0.57	-1.87	2.16	1.76 (11)
14	0.20	0.17	3.35	3.36	1.33 (19)
15	-0.01	0.16	-2.54	2.55	2.02 (10)
16	-0.36	-0.96	1.65	1.94	0.93 (13)
17	0.36	0.51	-0.55	0.84	0.52 (11)
18	-0.01	-0.24	-0.74	0.78	0.39 (21)

Nombre	Error en X (cm)	Error en Y (cm)	Error en Z (cm)	Total (cm)	Imagen (pix)
19	-1.19	-0.02	-1.15	1.65	0.86 (13)
20	2.04	0.04	2.03	2.88	1.41 (13)
21	-0.62	0.05	1.31	1.45	0.66 (17)
22	-0.82	0.19	1.01	1.31	0.80 (11)
23	1.30	1.00	-6.08	6.30	2.63 (20)
24	-1.16	-1.34	2.02	2.69	1.69 (11)
25	0.90	0.64	-0.14	1.11	0.32 (25)
26	-0.62	-0.21	1.29	1.45	0.95 (13)
Total	0.76	0.54	1.94	2.15	1.00


3.17 Modelo digital de elevación

En el procesamiento del modelo digital de elevación se obtuvo las siguientes características:

Tabla 3.8 Resolución de DEM

Resolución:	5.66 cm/pix	
Densidad de puntos:	313 puntos/m ²	

Figura 3.16 Modelo digital de elevación Av. Integración

3.18 Detalles del procesamiento

Para mejorar la velocidad de procesamiento dado que el Software es de gran demanda se utilizó características recomendadas

Tabla 3.9 Detalles de Hardware del procesamiento

Hardware	Procesador: Intel ® Core TM i7-12700F 12° generacion	
	GPU: NVIDIA GeForce RTX 4060	
	Memoria RAM: 32gb	
	Memoria de almacenamiento: 1tb SSD	
Sistema operativo	Windows 11 Pro, 64 bits	

Fuente: Elaboración propia

3.19 Sistema de coordenadas

Para mejorar el posicionamiento se usó un solo sistema de coordenadas tanto en imágenes y puntos.

Tabla 3.10 Sistema de coordenadas

Sistema de coordenadas de la	WGS 84
imagen	
Sistema de coordenadas del	WGS 84 / UTM Zona 20S
punto de control terrestre	
(GCP)	
Sistema de coordenadas de	WGS 84 / UTM Zona 20S
salida	

3.20 Detalles de DSM, Ortomosaico y Detalles del índice

Se realizo el procesamiento de todos los archivos con alta calidad de resolución.

Tabla 3.11 Características de procesamiento

Filtros DSM Filtrado de ruido: si Suavizado de superficie: si Generado: si Método: Ponderación de distancia inversa Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixcl) Generacio: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de linea (vértices): 20 Tiempo de la generación del ortomosaico Tiempo de la generación del ortomosaico Tiempo de la generación DTM Tiempo de la generación DTM	Resolución de DSM y	1 x GSD (3.07 cm/pixel)
Filtros DSM Suavizado de superficie: si Generado: si Método: Ponderación de distancia inversa Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación del ortomosaico Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s	Ortomosaico	
Suavizado de superficie: si Generado: si Método: Ponderación de distancia inversa Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 DTM de trama Fusionar mosaicos: si Fusionar mosaicos: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno Generación de líneas de clevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación del ortomosaico Tiempo de la generación O1h:03m:33s	Ellana DCM	Filtrado de ruido: si
DSM de trama Método: Ponderación de distancia inversa Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno Generación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación del o1h:03m:33s Tiempo de la generación del o1h:03m:33s DTM	FIII OS DSM	Suavizado de superficie: si
Fusionar mosaicos: si Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (de): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación del olinea de ortomosaico Tiempo de la generación del olinea (vértices): 31 Tiempo de la generación del olinea (vértices): 20		Generado: si
Ortomosaico Generado: si Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 DTM de trama Generado: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s DTM	DSM de trama	Método: Ponderación de distancia inversa
Tiempo de la generación del ortomosaico Fusionar mosaicos: si Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de elevación (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación del ortomosaico Tiempo de la generación O1h:03m:33s DTM		Fusionar mosaicos: si
Ortomosaico Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 DTM de trama Generado: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s		Generado: si
Geo TIFF Sin transparencia: si Mosaicos de Google Maps y Kml: si DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del o1h:03m:33s Othoromosaico Tiempo de la generación O1h:00m:33s	Ortomosoico	Fusionar mosaicos: si
DSM de cuadricula Generado: si, Espaciado (cm): 100 Generado: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno Generación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s	Ortomosaico	Geo TIFF Sin transparencia: si
DTM de trama Generado: si Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno Generación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del o1h:03m:33s ortomosaico Tiempo de la generación O1h:00m:33s		Mosaicos de Google Maps y Kml: si
PTM de trama Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno Generación de líneas de contorno Tiempo de la generación del ortomosaico Tiempo de la generación Tiempo de la generación Olh:00m:33s DTM Fusionar mosaicos: si S x GSD (3.07 cm/pixel) Generado: si Base del contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 40min:46s Olh:03m:33s Olh:00m:33s	DSM de cuadricula	Generado: si, Espaciado (cm): 100
Fusionar mosaicos: si Resolución DTM 5 x GSD (3.07 cm/pixel) Generación de líneas de contorno (m): 1 Intervalo de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM 7 domin:46s Tiempo de la generación del ortomosaico 01h:03m:33s DTM 01h:00m:33s	DTM do tromo	Generado: si
Generación de líneas de contorno Generación de líneas de elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s DTM	D'INI de trama	Fusionar mosaicos: si
Generación de líneas de contorno contorno línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación Olh:03m:33s Olh:00m:33s	Resolución DTM	5 x GSD (3.07 cm/pixel)
elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de línea (vértices): 20 Tiempo de la generación DSM Tiempo de la generación del ortomosaico Tiempo de la generación O1h:00m:33s DTM	Canaración da líneas da	Generado: si Base del contorno (m): 1 Intervalo de
Tiempo de la generación DSM Tiempo de la generación del 01h:03m:33s ortomosaico Tiempo de la generación 01h:00m:33s		elevación (m): 1 Resolución (cm): 100 Tamaño mínimo de
Tiempo de la generación del 01h:03m:33s ortomosaico Tiempo de la generación 01h:00m:33s DTM	Contorno	línea (vértices): 20
ortomosaico Tiempo de la generación DTM 01h:00m:33s	Tiempo de la generación DSM	40min:46s
Tiempo de la generación O1h:00m:33s DTM	Tiempo de la generación del	01h:03m:33s
DTM	ortomosaico	
	Tiempo de la generación	01h:00m:33s
Tiampa da ganarar auryas da 100s	DTM	
Tiempo de general culvas de 028	Tiempo de generar curvas de	09s
nivel	nivel	

3.21 Parámetros del dron

En este capítulo se describen los parámetros de configuración del dron DJI Phantom 4 RTK, los cuales son esenciales para garantizar un funcionamiento óptimo durante las operaciones de vuelo. Estos parámetros incluyen configuraciones relacionadas con el vuelo, el sistema RTK, la batería, la gestión de colisiones, el control remoto y los procesos de calibración. Cada uno de estos aspectos se detalla a continuación.

3.21.1 Configuración del Dron

En esta sección se describen los parámetros básicos de configuración del dron, que incluyen:

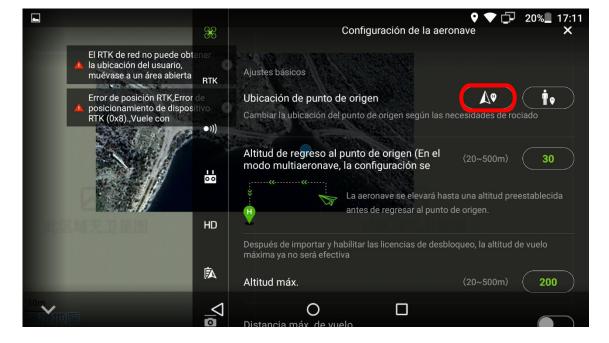


Figura 3.17 Pantalla de configuración de aeronave

Fuente: Elaboración propia

Primeramente se ajusta la ubicación del punto de origen, que es un punto en el suelo donde se realizara el despegue o la ubicación del control RC de la aeronave para asegurar el que el dron regrese al punto inicia debemos seleccionar que el punto de origen sea el lugar donde despego la nave, esto garantizara en caso de pérdida de señal del control, batería baja, fin de vuelo y regreso de emergencia este regrese a un punto conocido que además garantice que la zona esta despejada para el aterrizaje.

Configuración de la aeronave El RTK de red no puede obt la ubicación del usuario, Ajustes básicos muévase a un área abierta Error de posición RTK, Error Ubicación de punto de origen osicionamiento de dispos TK (0x8).,Vuele con Cambiar la ubicación del punto de origen según las ne Altitud de regreso al punto de origen (En el modo multiaeronave, la configuración se 0 La aeronave se elevará hasta una altitud preestablecida antes de regresar al punto de origen. HD EA Altitud máx. 4 0

Figura 3.18 Configuración de altura de retorno

Luego se configura la altitud de regreso que es la altura en la cual la aeronave se elevara para el retorno de la nave esta es sumada a la altura de vuelo inicial y tiene la función de evitar obstáculos que pueden tener una altura mayor a la de vuelo inicial es recomendable para cuestiones topográficas si no hay edificios o construcciones la altura sea menor a 30 metros ya que una altura mayor afectara al uso de la batería.

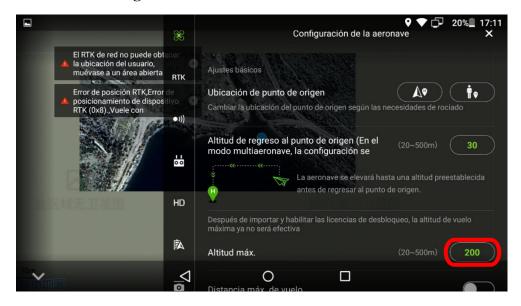


Figura 3.19 Restricción de altura de vuelo

En la altitud máxima será suficiente 200 metros ya que la aeronave en caso de topografía se realiza con altura máxima de 100 metros de altura de vuelo sin contar la altura de retorno y será suficiente en caso de utilizar el vuelo manual.

Configuración de la aeronave El RTK de red no puede obt la ubicación del usuario Altitud máx. muévase a un área abierta Error de posición RTK,Error miento de dispo Distancia máx. de vuelo K (0x8). Vuele con Reanudar operación▼ Señal del CR en vuelo perdida Solo disponible en el modo de trayectoria de vuelo. Cuando está habilitado, se llevará a cabo la acción seleccionada para cuando se pierda la señal del CR (se aplica a todas las aeronaves cuando se usa el modo Multiaeronave) HD Regreso al punto de origen▼ Se ha perdido la señal del CR EA. onar acción en caso de señal de CR perdida (En el modo multiaeronave, la O encias de desbloau

Figura 3.20 Desactivación de distancia máxima de vuelo

Fuente: Elaboración propia

Para la distancia máxima de vuelo será desactivada para topografía y este no limite en caso de que el área de planificación sea un poco extensa sin embargo se recomienda que el área de vuelo este a 500 metros a la redonda del punto de despegue para en caso de baja señal del control o aeronave sea corregida acercándonos hacia donde se está realizando el vuelo del dron.

Configuración de la aeronave El RTK de red no puede obt a ubicación del usuario Altitud máx. muévase a un área abierta rror de posición RTK,Error iento de dispos Distancia máx. de vuelo ((c Señal del CR en vuelo perdida Solo disponible en el modo de trayectoria de vuelo. Cuando está habilitado, se llevará a cabo la acción seleccionada para cuando se pierda la señal del CR (se aplica a todas las aeronaves cuando se usa el modo Multiaeronave) HD Regreso al punto de origen▼ Se ha perdido la señal del CR Ē 0

Figura 3.21 Acción en caso de pérdida de señal temporal

En ocasiones donde haya obstáculos terrestres desde el punto de vista del piloto como ser árboles, antenas, metales, hasta estructuras de hormigón armado e incluso automóviles es posible una perdida temporal del control CR por lo cual es recomendable acercarse hacia la aeronave para corregirlo y apuntar con el control al dron, para no detener el levantamiento aero fotogramétrico debemos seleccionar la opción reanudar operación.

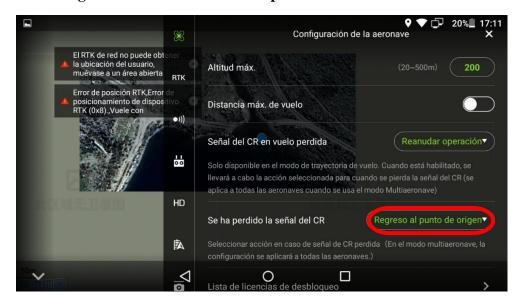


Figura 3.22 Acción en caso de pérdida de señal del control

En casos extremos donde aun acercándonos al dron haya una pérdida de señal inesperada se recomienda que el regreso sea al punto de origen debido a que es un punto conocido.

Configuración de la aeronave

RTIK

Señal del CR en vuelo perdida

Reanudar operación

Solo disponible en el modo de trayectória de vuelo. Cuando está habilitado, se llevara a cabo la acción seleccionada para cuando se pierda la señal del CR (se aplica a todas las aeronaves cuando se usa el modo Multiaeronave)

Se ha perdido la señal del CR

Regreso al punto de origen

Configuración se aplicará a todas las aeronaves.)

HD

Lista de licencias de desbloqueo

Pollosiy Hamburguesas

Avanzados

Ajustes avanzados

Figura 3.23 Pestaña de licencias para desbloque de zona geo

Fuente: Elaboración propia

En la opción lista de licencias de desbloqueo aparecerá los archivos de licencia solicitados a DJI para zonas de vuelo con restricción.

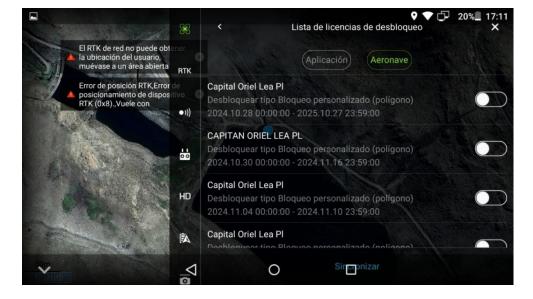


Figura 3.24 Lista de licencias instaladas

Al ingresar se desplegará una lista para instalar las licencias aceptadas para la zona de vuelo en caso de topografía en zonas urbanas.

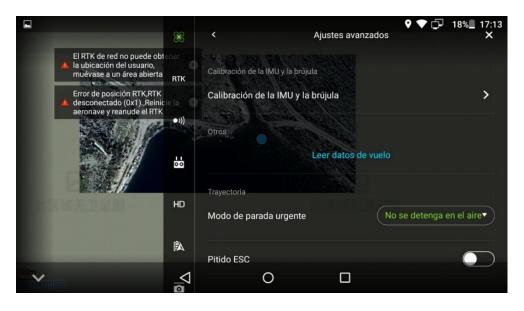


Figura 3.25 Ajustes avanzados

Fuente: Elaboración propia

En la parte de ajustes avanzados verificaremos la calibración de la IMU que es el sistema anticolisión y la brújula que corresponde a la dirección Norte que es sensible a materiales metálicos, además en la parte de modo de parada urgente debe estar habilitado para que la aeronave no se detenga en el aire, el pitido ESC es opcional y solo indica mediante sonido puede indicar diferentes situaciones, como calibración, pérdida de señal o pruebas automáticas y debe activarse de acuerdo a la comodidad del piloto.

Calibración de la IMU y la brújula

Error de posición RTK.RTK
desconectado (0x1). Reinícia la
aeronave y reanude el RTK
RTK

Acelerómetro
Desviación
Desvi

Figura 3.26 Calibración de sensores

Al ingresar a calibración veremos la desviación de los sensores del acelerómetro, giroscopio correspondiente al IMU y también la brújula para garantizar el vuelo estos dos factores deben estar en color verde que indican excelente calibración.

3.21.2 Configuración del Sistema RTK

El sistema RTK (Real-Time Kinematic) es una tecnología de posicionamiento que permite alcanzar una precisión centimétrica en la ubicación de un dron durante sus operaciones de vuelo. Esta tecnología es especialmente útil en aplicaciones que requieren alta precisión, como topografía, mapeo, agricultura de precisión, inspección de infraestructuras y otras tareas que demandan datos georreferenciados exactos.

Configuración RTK

El RTK de red no puede obtener la ubicación del usuario, muévase a un área abierta RTK

Posicionamiento RTK de la aeronave

hasta la próxima vez que la aeronave despegue

Cuando está deshabilitado, la aeronave usa el posicionamiento por satélite.

Mantener el modo de precisión de posicionamiento

Cuando se habilita durante el vuelo, el posicionamiento RTK no tendrá efecto

Cuando se encuentra un error de comunicación del módulo RTK, el estado actual de RTK se mantendrá automáticamente con una precisión gradualmente

10.1.1.

Red RTK personalizada▼

rror de posición RTK,Error

niento de dispos

((c

HD

EA.

Figura 3.27 Activación de RTK en aeronave

Fuente: Elaboración propia

Tipo de servicio RTK

Servidor NT

Para este caso se debe habilitar el posicionamiento por RTK el requisito es que el dron cuente con un módulo RTK y una base estática RTK.

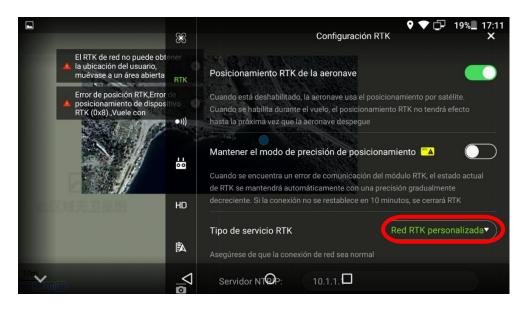
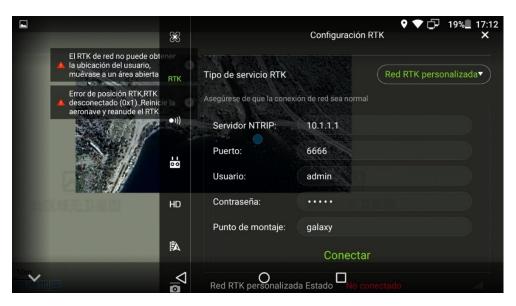



Figura 3.28 Selección del servicio RTK

Fuente: Elaboración propia

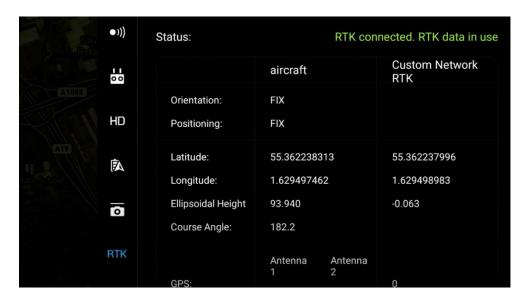

Para este levantamiento se usó una base RTK de la marca South el modelo Galaxy G2, que debe ser configurada en la red RTK personalizada

Figura 3.29 Configuración de red RTK para South

En el servidor NTRIP se coloca la dirección IP de la base a enlazar en este caso del Galaxy G2, el puerto puede ser 6666 por defecto, el usuario y contraseña es la cuenta con la que se ingresa al IP de la base RTK y varía según la marca, por último, el punto de montaje tiene el nombre de la base RTK designada.

Figura 3.30 Coordenadas en tiempo real de dron y base RTK

Si se enlaza correctamente la orientación y el posicionamiento aparecerá en modo FIX deberá aparecer también las coordenadas de la aeronave y la base RTK.

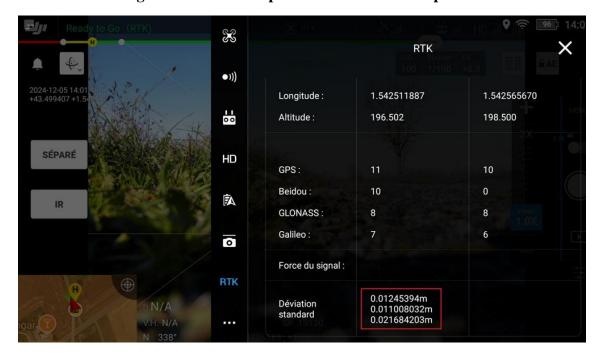


Figura 3.31 Error de posicionamiento en tiempo real

Fuente: Elaboración propia

Se debe verificar que la desviación estándar de las coordenadas sea menos a 0.05m.

3.21.3 Configuración de Gestión de Colisiones

El DJI Phantom 4 RTK cuenta con sensores de visión y ultrasonido para evitar colisiones. Los parámetros relacionados incluyen:

Activación/desactivación de sensores: Configuración de los sensores de detección de obstáculos.

Distancia de detección: Ajustes de la sensibilidad de los sensores para detectar obstáculos a diferentes distancias.

Comportamiento en caso de obstáculos: Configuración de acciones automáticas (detención, evasión, etc.).

Configuración de sensores X El RTK de red no puede obt la ubicación del usuario. Habilitar sistema anticolisión muévase a un área abierta RTK Cuando los sensores de obstáculos frontales detecten un obstáculo, la aeronave se detendrá. La máxima velocidad permitida con la Detección de Error de posición RTK,RTK desconectado (0x1).,Reinio obstáculos habilitada es de 14. aeronave y reanude el RTK •1)) La habilitación del sistema anticolisión habilitará automáticamente la Comprobación de obstáculos del RPO. Vaya a Ajustes avanzados para realizar los cambios El ángulo de visión de la cámara de detección de vista frontal es de 60 grados horizontalmente y 54 grados verticalmente. Los obstáculos más allá del campo de visión no pueden detectarse. Nota: Las cámaras de detección de obstáculos frontal no funcionan de HD más detalles. Mostrar mapa de radares

Figura 3.32 Activación de sistema anticolisión

Habilitar el sistema de anticolisión es indispensable para levantamientos topográficos y garantizar la seguridad del dron, mientras tanto el mapa de radares puede ser opcional dependiendo si se realizara el vuelo manual, pero para levantamientos topográficos generalmente no es necesario activarlo.

3.22 Configuración de plan de vuelo

Para el desarrollo del plan de vuelo se tomaron los siguientes criterios:

- La duración real de vuelo es 30 minutos sin considerar el retorno al punto de origen, aunque el fabricante indique una duración de 45 minutos.
- Los tiempos de vuelos deben tener una duración alrededor de 15min por vuelo para garantizar el retorno del dron
- Al realizar varios vuelos en zonas de gran tamaño debemos asegurarnos de que haya solapamiento entre cada plan de vuelo de al menos 10 metros

PHANTOM4 RTK
Mayor fiabilidad y precisión

Figura 3.33 Pantalla de inicio del controlador RC

Firmware del dispositivo

ارك

Volar

Aeronave no conectada

Planificar

En la pantalla de inicio veremos que es posible el vuelo manual mediante la opción volar en cambio para nuestro interés utilizaremos la opción planificar

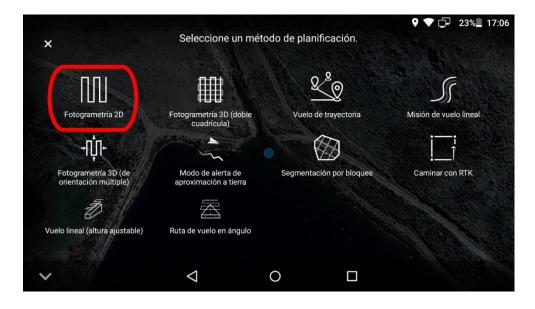


Figura 3.34 Selección de modo de plan de vuelo

Para levantamientos topográficos seleccionaremos la opción de Fotogrametría 2D sin embargo veremos a continuación una descripción de cada modo de vuelo.

3.22.1 Fotogrametría 2D

Este modo está diseñado para generar mapas o modelos bidimensionales de alta precisión. El dron realiza un vuelo en una cuadrícula paralela al terreno, capturando imágenes con solapamiento lateral y frontal para garantizar una cobertura completa sin distorsiones. Es ideal para aplicaciones como cartografía de terrenos planos, monitoreo agrícola o inspección de infraestructuras lineales, como carreteras y vías férreas, donde la precisión horizontal es crítica.

3.22.2 Fotogrametría 3D (Doble Cuadrícula)

Permite crear modelos tridimensionales detallados mediante dos pasadas de vuelo en direcciones perpendiculares (por ejemplo, norte-sur y este-oeste). Al combinar imágenes desde múltiples ángulos, se mejora la precisión en la reconstrucción de superficies verticales y estructuras complejas. Este método es esencial en minería para calcular volúmenes de material, en construcción para analizar edificios, o en arqueología para documentar yacimientos.

3.22.3 Vuelo de Trayectoria

En este modo, el dron sigue una ruta predefinida con parámetros fijos de altura, velocidad y ángulo de la cámara. El operador programa la trayectoria en el software, lo que permite automatizar misiones repetitivas. Es útil para inspeccionar infraestructuras como torres eléctricas, tuberías o paneles solares, donde se requiere consistencia en la recolección de datos o en la grabación de videos estructurados.

3.22.4 Misión de Vuelo Lineal

Este modo se enfoca en cubrir áreas alargadas mediante vuelos rectos con altitud constante. Al definir un punto de inicio y fin, el dron recopila datos de forma eficiente a lo largo de líneas extensas. Es ideal para inspeccionar redes de transmisión eléctrica, ferrocarriles, ríos o ductos, donde la cobertura lineal es prioritaria.

3.22.5 Fotogrametría 3D (Orientación Múltiple)

Mejora la calidad de los modelos 3D al capturar imágenes desde ángulos variados (verticales y oblicuos). El dron ajusta automáticamente la orientación de la cámara, lo que permite obtener detalles en superficies verticales y relieves complejos. Se utiliza en documentación patrimonial, inspección de fachadas arquitectónicas o análisis de estructuras industriales.

3.22.6 Modo de Alerta de Aproximación a Tierra

Este modo previene colisiones con el suelo u obstáculos bajos mediante sensores que monitorean la altura en tiempo real. Si el dron detecta un descenso peligroso, emite alertas y puede activar protocolos de seguridad. Es crucial en terrenos irregulares, como montañas, bosques o zonas urbanas con estructuras bajas.

3.22.7 Segmentación por Bloques

Divide áreas extensas en sectores más pequeños para facilitar la planificación y ejecución de misiones. Cada bloque se cubre con vuelos independientes, optimizando el tiempo y recursos en proyectos grandes. Es útil en agricultura de precisión para monitorear cultivos extensos, en minería para evaluar yacimientos o en mapeo de grandes extensiones territoriales.

3.22.8 Caminar con RTK

Permite que el dron siga al operador mientras se desplaza, manteniendo una posición relativa precisa gracias al sistema RTK. Al sincronizar la ubicación del operador con el dron, este ajusta su vuelo en tiempo real. Es ideal para inspecciones dinámicas en campo abierto, levantamientos topográficos móviles o seguimiento de equipos en movimiento durante obras.

3.22.9 Vuelo Lineal (Altura Ajustable)

Adapta la altitud del dron durante un vuelo recto para mantener una distancia constante respecto al terreno, incluso en pendientes o desniveles. El operador define cambios de altura en la ruta, lo que garantiza una captura uniforme de datos. Se aplica en inspección de taludes, monitoreo de erosión o terrenos con variaciones topográficas significativas.

3.22.10 Ruta de Vuelo en Ángulo

Combina vuelos verticales y diagonales para capturar imágenes desde perspectivas oblicuas. Al inclinar la trayectoria, se obtienen detalles en estructuras verticales o se analizan fenómenos como sombras y reflejos. Es útil en inspección de torres de comunicación, fotografía arquitectónica o estudios ambientales que requieren análisis multidisciplinarios.

3.23 Plan de vuelo del proyecto

Figura 3.35 Tramo 1 de vuelo (Rotonda El Mastil)

Fuente: Elaboración propia

Para crear el área del plan de vuelo es necesario crea los puntos del polígono pulsando la pantalla táctil del controlador, al lado derecho visualizaremos una serie de opciones como, la altura de vuelo con un valor de 100 a 120 metros como máximo para garantizar buena resolución del vuelo, la velocidad en caso de que no exista mucha presencia de viento podemos optar por subir la velocidad máxima permitida según altura indicada en el controlador, en modo cultivos hace referencia al área de vuelo para lo cual se usara con cobertura total, para el modo de disparo nos interesa que sea un disparo de distancia para que cada foto sea en la ubicación exacta de la trayectoria de vuelo.

Aeronav

Anterior

Anterior

Auterior

Figura 3.36 Configuración de modo de disparo fotográfico

En la parte de finalizar lo mejor será utilizar el regreso al punto de origen.

Figura 3.37 Pestaña de configuración de cámara

A continuación, realizaremos configuraciones de la cámara del dron.

Aeronav

Configuración de la cámara

Aeronav

Ae

Figura 3.38 Parámetros óptimos de cámara

Fuente: Elaboración propia

Para estas opciones la proporción será 4:3 que son dimensiones más regulares para fotogrametría, en el balance de blancos, como la fotogrametría es en un área urbana y no ubo presencia de nubes se consideró un día soleado sin embargo en condiciones donde exista abundante agua se usara la opción de agua, el ángulo de estabilizador siempre es de -90 grados para que las fotografías estén niveladas horizontalmente.

Aeronav

Ajustes avanzados

Aj

Figura 3.39 Parámetros óptimos de superposición de fotografías

En la parte de ajustes avanzados bastara con solapamiento entre cada trayectoria de fotogrametría al 75% tan en la tasa de superposición horizontal y vertical.

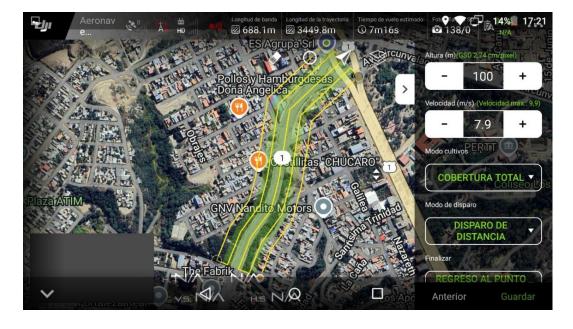


Figura 3.40 Tramo 2 de vuelo (zona con taludes)

Relazaremos la configuración de para todos los vuelos para el siguiente vuelo parte de la rotonda por la avenida integración hasta terminar el talud cercando

Aeronav

e...

The Fabrily

Condominic Office (m/s) (valoridad final 1990)

Fortaleza Real

Fo

Figura 3.41 Tramo 3 de vuelo (paralela a mini aeródromo)

Fuente: Elaboración propia

Luego cubrimos la curva de la avenida y trazamos el área recta hasta antes del punto celeste.

Figura 3.42 Tramo 4 de vuelo (Cine Center)

Para este vuelo partimos antes del punto celeste para crea el solapamiento de vuelo correspondiente.

Aeronav

e...

Aeronav

e...

Altura (m)(GSD 2.74 cm/gixel)

Casona del Molino

Casona de

Figura 3.43 Tramo 5 de vuelo (Rotonda cerca Hotel Los Ceibos)

Fuente: Elaboración propia

Y por último desde la Unidad Educativa Aniceto Arce terminando en la rotonda cercano al Hotel Los Ceibos.

3.24 Resumen metodológico

Este resumen presenta una guía práctica basada en la experiencia obtenida durante el levantamiento aerofotogramétrico realizado en la Avenida Integración de la ciudad de Tarija, con el propósito de facilitar la reproducción de este tipo de estudios por parte de profesionales en ingeniería civil y topografía. El proceso se estructura en tres fases principales: planificación, ejecución y procesamiento de datos, utilizando drones equipados con tecnología RTK y cámaras de alta resolución, junto a software especializado en fotogrametría.

3.24.1 Primera fase: planificación operativa y normativa

Se inicia con la inspección directa del área de estudio, identificando zonas visibles y accesibles para la ubicación de puntos de control terrestre. Se verifica la presencia de obstáculos como líneas eléctricas o edificaciones altas, y se analizan posibles interferencias electromagnéticas. Posteriormente, se planifica el vuelo con herramientas como Google Earth y DroneDeploy, estableciendo la altura, trayectoria, número de vuelos, puntos de despegue y número de baterías requeridas. Además, se consulta la normativa vigente sobre zonas de restricción aérea (GEO-zonas) y se gestiona el desbloqueo necesario ante la plataforma DJI FlySafe, en coordinación con la Dirección General de Aeronáutica Civil (DGAC).

3.24.2 Segunda fase: levantamiento en campo

Durante la captura de datos, se establece una base RTK fija en una zona libre de interferencias y se sincroniza con el sistema de navegación del dron. Se colocan mínimo 3 dianas como puntos de control por cada vuelo, cuyos datos son registrados con equipos GNSS diferenciales (Rover RTK). El piloto realiza vuelos automatizados con un dron Phantom 4 RTK, asegurando el solapamiento adecuado entre imágenes y manteniendo la altura planificada con altura mínima de 100 metros en zonas urbanas. Cada tramo del vuelo se ejecuta conforme al diseño establecido y bajo condiciones climáticas óptimas, minimizando errores por turbulencias o mala visibilidad.

3.24.3 Tercera fase: procesamiento y generación de productos cartográficos

Finalizado el trabajo de campo, se extraen las imágenes del dron y las coordenadas de los puntos de control. En el software Pix4D se importan las fotografías y se realiza un procesamiento inicial para generar puntos clave. Luego se calibra manualmente la posición de las imágenes mediante coincidencia con los GCPs. En una segunda etapa, se genera la nube de puntos y se clasifica por tipo de objeto (carreteras, edificaciones, vegetación). Finalmente, se elaboran los productos geoespaciales: ortomosaico, modelo digital de superficie (MDS) y modelo digital del terreno (MDT), ajustando la resolución según los requerimientos del proyecto.

CAPÍTULO IV ANÁLISIS DE RESULTADOS

CAPÍTULO IV ANÁLISIS DE RESULTADOS

Análisis técnico de resultados 4.1

El levantamiento topográfico realizado con el dron DJI Phantom 4 RTK en la Avenida

Integración, en Tarija, permitió obtener productos de alta precisión en un tiempo

significativamente menor al de los métodos tradicionales. A continuación, se describen los

principales resultados técnicos obtenidos:

4.1.1 Precisión y calidad del modelo

Gracias al uso del sistema RTK y a la correcta georreferenciación mediante puntos de control

terrestre (GCPs), se logró una precisión horizontal de ±3 cm y una precisión vertical de ±5

cm, valores dentro del margen aceptado para trabajos de ingeniería civil y diseño vial.

4.1.2 **Productos generados**

Se obtuvieron los siguientes productos a partir del procesamiento de imágenes con el

software Pix4D Mapper:

Ortomosaico de alta resolución (GSD: 2.83 cm/píxel)

Modelo Digital de superficie (MDS)

Modelo Digital de terreno (MDT)

Curvas de nivel (Intervalos de 1m)

Nube de puntos georreferenciada (Alta densidad)

Modelo 3D del terreno (Alta calidad)

4.1.3 Cobertura y eficiencia operativa

Área cubierta: 2.79 km de longitud de la avenida (con ancho promedio de 50 m).

Número de vuelos: 5 vuelos programados en una sola jornada.

Tiempo total de levantamiento: 5 horas (incluyendo instalación de dianas, vuelos y

levantamiento de GCPs).

92

4.1.4 Validación de resultados

Matching

? Georeferencing

Se validaron los datos del modelo mediante comparación con puntos topográficos levantados con equipo GNSS en campo. La diferencia promedio no superó los 5 cm, lo cual confirma la confiabilidad del modelo generado.

Adicionalmente, se utilizó el informe de calidad generado por Pix4D Mapper, el cual verificó la precisión del procesamiento fotogramétrico, confirmando que los errores de reproyección, la distribución de puntos de control y la calidad de la malla 3D se encuentran dentro de los parámetros óptimos. Este informe respalda la fidelidad geométrica del ortomosaico y del modelo digital de superficie.

Summary Project AV INTE v2 Processed 2024-11-04 23:59:51 FC6310R_8.8_4864x3648 (RGB) Camera Model Name(s) Average Ground Sampling Distance (GSD) 3.07 cm / 1.21 in 0.931 km2 / 93.0532 ha / 0.36 sq. mi. / 230.0586 acres Time for Initial Processing (without report) 20m:51s 1 Quality Check ? Images \odot median of 42334 keypoints per image ? Dataset 760 out of 760 images calibrated (100%), all images enabled \odot ? Camera Optimization \odot 1.03% relative difference between initial and optimized internal camera parameters

Figura 4.1 Validación de datos por Pix4d

Fuente: Informe de calidad Pix4d

median of 9938.57 matches per calibrated image

yes, 25 GCPs (25 3D), mean RMS error = 0.028 m

 \odot

4.2 Comparación Técnica entre Métodos de Levantamiento

Para la comparación se realizó en replanteo de la bajante escalonada ubicada en la Avenida Integración en la zona de taludes cercano a la zona del mástil

Self-311-1-924

Figura 4.2 Ubicación de área de comparación

Image © 2025 Airbus

Figura 4.3 Zona del bajante escalonado

4.2.1 Datos de replanteo tradicional con RTK

El replanteo se realizó con equipo RTK tomando en cuenta los datos del eje para generar un perfil de la bajante escalonada.

Tabla 4.1 Coordenadas de replanteo tradicional

PUNTO	ESTE (m)	NORTE (m)	ALTITUD (m.s.n.m.)
1	318746.63	7619771.84	1952.98
2	318745.85	7619773.54	1952.90
3	318744.07	7619771.21	1952.92
4	318745.80	7619773.60	1953.23
5	318745.73	7619773.66	1953.22
6	318744.15	7619771.12	1953.19
7	318744.14	7619771.14	1953.18
8	318745.61	7619773.59	1951.87

DUNTO	ECTE ()	NODTE ()	ALTITUD
PUNTO	ESTE (m)	NORTE (m)	(m.s.n.m.)
9	318744.72	7619773.75	1951.81
10	318744.75	7619773.72	1952.12
11	318744.83	7619773.80	1952.11
12	318745.30	7619773.62	1952.10
13	318745.30	7619773.67	1952.17
14	318744.07	7619771.27	1951.85
15	318743.62	7619771.21	1952.11
16	318743.70	7619771.27	1952.13
17	318743.21	7619771.45	1951.73
18	318743.17	7619771.43	1952.05
19	318744.71	7619772.49	1951.88
20	318743.95	7619772.58	1951.78
21	318744.36	7619772.56	1951.89
22	318743.17	7619771.45	1950.84
23	318743.90	7619772.52	1950.89
24	318744.70	7619773.71	1950.87
25	318744.18	7619773.85	1950.85
26	318743.51	7619772.65	1950.86
27	318742.68	7619771.54	1950.81
28	318742.06	7619771.61	1950.83
29	318742.90	7619772.69	1950.83
30	318743.71	7619773.96	1950.81
31	318741.99	7619771.53	1949.93
32	318742.82	7619772.68	1949.90
33	318743.43	7619773.85	1949.87
34	318742.82	7619774.04	1949.90
35	318741.52	7619772.90	1949.93
36	318740.83	7619771.73	1949.91

DUNTO	ECTE ()	NODTE ()	ALTITUD
PUNTO	ESTE (m)	NORTE (m)	(m.s.n.m.)
37	318740.00	7619771.89	1949.92
38	318740.77	7619773.07	1949.91
39	318741.35	7619773.78	1949.80
40	318739.82	7619771.87	1948.93
41	318740.71	7619773.17	1948.94
42	318740.98	7619773.81	1948.77
43	318740.60	7619773.91	1948.75
44	318739.94	7619773.08	1948.92
45	318740.29	7619772.98	1948.92
46	318739.32	7619771.93	1948.18
47	318738.94	7619772.07	1948.28
48	318738.47	7619772.14	1948.28
49	318739.89	7619773.03	1948.31
50	318739.50	7619773.17	1948.22
51	318739.06	7619773.34	1948.18
52	318739.60	7619774.65	1948.15
53	318739.98	7619774.58	1948.18
54	318740.14	7619774.47	1948.05
55	318739.67	7619774.68	1947.12
56	318739.22	7619774.79	1947.22
57	318738.59	7619774.87	1947.25
58	318738.97	7619773.50	1947.25
59	318738.42	7619773.65	1947.25
60	318738.02	7619773.91	1947.25
61	318738.40	7619772.35	1947.13
62	318737.97	7619773.71	1947.17
63	318737.25	7619772.44	1947.04
64	318737.74	7619772.30	1947.10

PUNTO	ECTE (m)	NORTE (m)	ALTITUD
FUNIO	ESTE (m)	NORTE (III)	(m.s.n.m.)
65	318737.21	7619772.32	1946.29
66	318738.23	7619774.88	1948.53
67	318738.49	7619774.71	1948.53
68	318744.19	7619773.42	1951.78
69	318736.89	7619773.85	1946.38
70	318737.59	7619775.08	1946.47
71	318737.96	7619775.01	1946.46
72	318738.46	7619774.90	1946.42
73	318736.49	7619772.56	1946.58
74	318737.46	7619775.13	1945.49
75	318737.34	7619775.06	1945.51
76	318736.95	7619775.21	1945.48
77	318736.48	7619775.33	1945.46
78	318736.92	7619774.08	1945.34
79	318736.43	7619774.25	1945.42
80	318735.97	7619774.40	1945.41
81	318735.27	7619773.07	1945.36
82	318735.40	7619772.97	1945.44
83	318735.42	7619773.06	1945.25
84	318736.36	7619775.33	1944.60
85	318735.73	7619775.50	1944.60
86	318734.94	7619775.52	1944.52
87	318734.62	7619774.58	1944.70
88	318735.22	7619774.08	1944.44
89	318735.76	7619774.00	1944.40
90	318735.04	7619772.96	1944.38
91	318734.84	7619773.14	1944.39
92	318734.67	7619773.21	1944.23

PUNTO	ECTE (m)	NORTE (m)	ALTITUD
PUNIO	ESTE (m)	NORTE (III)	(m.s.n.m.)
93	318735.78	7619771.67	1947.37
94	318735.45	7619771.72	1947.31
95	318735.03	7619771.74	1947.31
96	318736.26	7619772.91	1947.32
97	318735.87	7619773.08	1947.30
98	318735.36	7619773.23	1947.21
99	318734.66	7619775.28	1943.47
100	318734.37	7619775.66	1943.51
101	318733.97	7619775.63	1943.52
102	318732.90	7619772.97	1942.40
103	318732.48	7619773.03	1942.41
104	318732.15	7619773.06	1942.42
105	318732.53	7619774.37	1942.40
106	318733.31	7619774.28	1942.33
107	318733.65	7619775.52	1942.32
108	318733.09	7619775.05	1941.99
109	318732.18	7619774.33	1941.47
110	318727.57	7619775.23	1941.30
111	318727.47	7619775.24	1940.26
112	318726.75	7619775.46	1940.23
113	318726.55	7619775.41	1939.29
114	318725.76	7619775.61	1939.24
115	318725.66	7619775.63	1938.25
116	318721.28	7619777.22	1937.72
117	318721.14	7619777.40	1936.69
118	318716.07	7619779.30	1936.41
119	318714.86	7619776.95	1936.33
120	318715.67	7619779.57	1935.47

PUNTO	ECTE (m)	NODTE (m)	ALTITUD
PUNIO	ESTE (m)	NORTE (m)	(m.s.n.m.)
121	318715.90	7619779.33	1935.42
122	318715.00	7619778.80	1934.36
123	318714.82	7619778.86	1934.38
124	318714.23	7619779.06	1933.45
125	318710.58	7619780.35	1932.80
126	318727.96	7619776.48	1941.30
127	318727.86	7619776.49	1940.26
128	318727.14	7619776.72	1940.23
129	318726.94	7619776.67	1939.29
130	318726.15	7619776.87	1939.24
131	318726.05	7619776.89	1938.25
132	318727.43	7619774.36	1941.30
133	318727.34	7619774.37	1940.26
134	318726.61	7619774.59	1940.23
135	318726.42	7619774.55	1939.29
136	318725.63	7619774.75	1939.24
137	318725.52	7619774.76	1938.25
138	318721.45	7619777.87	1937.72
139	318721.31	7619778.04	1936.69
140	318720.96	7619775.68	1937.72
141	318720.81	7619775.85	1936.69
142	318710.12	7619778.88	1932.80
143	318710.99	7619781.06	1932.80
144	318744.96	7619773.33	1951.88
145	318744.61	7619773.40	1951.89
146	318744.14	7619773.36	1950.89
147	318743.75	7619773.49	1950.86
148	318743.14	7619773.53	1950.83

PUNTO	ECTE (m)	NORTE (m)	ALTITUD
runio	ESTE (m)	NORTE (III)	(m.s.n.m.)
149	318743.06	7619773.52	1949.90
150	318744.21	7619771.58	1951.88
151	318743.45	7619771.67	1951.78
152	318743.86	7619771.65	1951.89
153	318743.39	7619771.61	1950.89
154	318743.00	7619771.74	1950.86
155	318742.39	7619771.78	1950.83
156	318742.31	7619771.77	1949.90
157	318741.65	7619773.42	1949.93
158	318740.90	7619773.59	1949.91
159	318740.84	7619773.69	1948.94
160	318740.07	7619773.60	1948.92
161	318740.42	7619773.50	1948.92
162	318740.02	7619773.55	1948.31
163	318739.63	7619773.68	1948.22
164	318739.19	7619773.86	1948.18
165	318739.10	7619774.02	1947.25
166	318741.04	7619772.08	1949.93
167	318740.29	7619772.25	1949.91
168	318740.24	7619772.35	1948.94
169	318739.47	7619772.26	1948.92
170	318739.82	7619772.16	1948.92
171	318739.41	7619772.21	1948.31
172	318739.02	7619772.34	1948.22
173	318738.58	7619772.52	1948.18
174	318738.50	7619772.67	1947.25
175	318738.60	7619774.25	1947.25
176	318738.19	7619774.52	1947.25

PUNTO	ESTE (m)	NODTE (***)	ALTITUD
FUNIO	ESTE (m)	NORTE (m)	(m.s.n.m.)
177	318738.14	7619774.32	1947.17
178	318737.85	7619772.63	1947.25
179	318737.45	7619772.89	1947.25
180	318737.39	7619772.69	1947.17
181	318736.98	7619774.64	1946.38
182	318737.01	7619774.87	1945.34
183	318736.52	7619775.04	1945.42
184	318736.05	7619775.19	1945.41
185	318735.30	7619774.87	1944.44
186	318735.85	7619774.79	1944.40
187	318736.60	7619773.18	1946.38
188	318736.63	7619773.40	1945.34
189	318736.14	7619773.58	1945.42
190	318735.67	7619773.73	1945.41
191	318734.93	7619773.40	1944.44
192	318735.47	7619773.32	1944.40
193	318734.65	7619775.17	1944.70
194	318732.56	7619774.97	1942.40
195	318733.34	7619774.88	1942.33
196	318732.21	7619774.93	1941.47

4.2.2 Modelo 3d generado con dron RTK

El modelo tridimensional obtenido mediante fotogrametría con drone RTK presenta una precisión centimétrica estimada de ±5 cm, lo que significa que las coordenadas de los puntos del modelo pueden tener un error promedio máximo de 5 centímetros respecto a su posición real. Este nivel de precisión es adecuado para trabajos de ingeniería civil, especialmente en entornos urbanos donde no se requieren precisiones milimétricas. La resolución espacial del ortomosaico generado es de 5.66 cm por píxel, lo que permite una representación detallada

del terreno, ya que cada píxel equivale a un área real de 5.66×5.66 cm. Además, el modelo alcanza una densidad de 313 puntos por metro cuadrado, lo que proporciona una reconstrucción altamente detallada y continua de la superficie, mejorando la calidad de análisis topográficos, geométricos y volumétricos.

Figura 4.4 Modelado 3d de Bajante escalonada

Fuente: Elaboración propia

4.2.3 Comparación de Drone RTK vs Topografía Convencional RTK

El drone RTK es ideal para zonas urbanas, proyectos extensos, análisis visual y generación de productos 3D (modelos digitales, ortofotos). El RTK convencional sigue siendo útil cuando se requiere máxima precisión puntual, como en puntos de control, replanteo o en estructuras pequeñas. Para estudios técnicos y económicos, el drone es claramente más eficiente, económico y versátil.

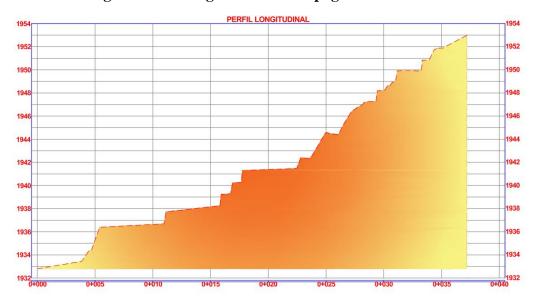


Figura 4.5 Perfil generado con topografía tradicional

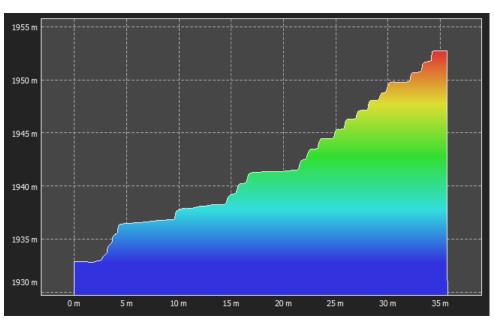


Figura 4.6 Perfil generado con Dron RTK

Fuente: Elaboración propia

Para el análisis, se compararon los datos de altitud correspondientes a un mismo punto geográfico según ambos métodos, lo que permitió realizar un análisis estadístico mediante correlación de alturas.

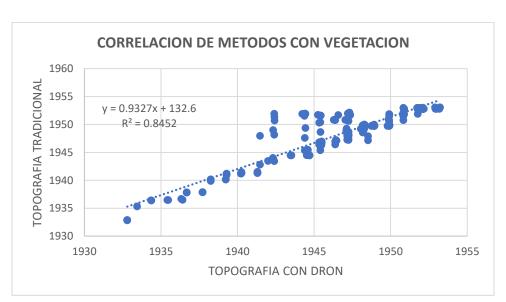


Figura 4.7 Validación de comparación de métodos en MDS

El valor $R^2 = 0.8452$ indica que el 84.52% de la variabilidad en los datos de la topografía con dron puede ser explicada por la relación lineal con los datos de la topografía tradicional. Esto sugiere que hay una fuerte correlación entre los dos métodos de medición.

Figura 4.8 Validación de comparación de métodos en MDT

Una vez realizado la corrección de puntos sin vegetación se identificó un valor $R^2 = 0.9814$ indica que el 98.14% de la variabilidad en los datos de la topografía se ajusta mejor comparando un modelo digital del terreno sin presencia de vegetación.

Tabla 4.2 Resumen técnico de comparación

Criterio	Topografía Drone RTK Convencional RTK		Comentario Técnico	
Resolución de puntos	Alta (densa nube de puntos)	Media (puntos cada ciertos metros)	El dron capta muchos más puntos.	
Continuidad del perfil	Suave, continua, interpolada	Escalonada, por puntos	El perfil con dron representa mejor la realidad.	
Precisión puntual (absoluta)	±2 a ±5 cm (con buena georreferenciación y GCPs)	±1 a ±2 cm (con base GNSS fija)	RTK convencional puede tener mejor precisión puntual.	
Cobertura de área	Alta (puede cubrir varias hectáreas en un solo vuelo)	Limitada (por tiempo y acceso físico)	El dron cubre más terreno más rápido.	
Tiempo de levantamiento	5–10 minutos por vuelo	Horas dependiendo del terreno	El dron es mucho más rápido.	
Procesamiento posterior	Necesita software Procesamier especializado (Pix4D, directo en soft de topograf		El dron requiere más procesamiento.	
Condiciones de trabajo	No requiere acceso directo al terreno	Requiere personal en campo	El dron es útil en zonas peligrosas o inaccesibles.	

Criterio	Drone RTK	Topografía Convencional RTK	Comentario Técnico
Visualización del terreno	Permite generar ortomosaicos, nubes de puntos, DSM, DTM	Solo puntos aislados	El dron da productos adicionales.

4.3 Análisis económico de topografía con drones RTK

Se realizo el análisis de precios unitarios, tomando en cuenta el parámetro del tiempo de trabajo, en relación del método fotogramétrico con dron RTK comparado con el método tradicional de medición topográfica.

4.3.1 Precios unitarios de Topografía con dron RTK

El precio unitario para este ítem fue elaborado en base a una metodología moderna que considera equipos especializados de georreferenciación aérea, personal técnico calificado y una lógica operativa optimizada para entornos urbanos. La estructura del análisis se compone de tres componentes fundamentales:

Se incluyo el uso de dianas o GCPs (Ground Control Points), que son puntos de control colocados en el terreno para mejorar la precisión de georreferenciación del producto final fotogramétrico.

La cuadrilla técnica está compuesta por:

- Un piloto de dron, encargado de la planificación y ejecución de los vuelos.
- Un operador GNSS (rover), que recoge datos de campo en tiempo real.
- Un topógrafo base, que configura el receptor maestro GNSS.
- Un conductor, que moviliza al equipo al lugar de trabajo.
- Se incluyen cargas sociales (50%) y el impuesto al valor agregado (14,94%) aplicado a la mano de obra, conforme a normativa boliviana vigente.

Para las herramientas y el equipo se utilizó un dron Phantom 4 RTK como principal herramienta de captura de datos, apoyado por equipo GNSS y un vehículo de transporte técnico.

La valorización del uso de equipo se basa en tarifas por hora de operación, incluyendo desgaste, mantenimiento y amortización del dron y accesorios, según costos estandarizados del sector.

Tabla 4.3 P.U. de topografía con Dron RTK en zonas urbanas

	ANÁLI	SIS DE PRECIOS	UNITARIOS		
PROYECTO:	ANÁLISIS TÉCNICO ECONÓMICO DE UN LEVANTAMIENTO CON DRONE TOPOGRÁFICO Y AEROFOTOGRAMÉTRICO DE VÍAS URBANAS. APLICACIÓN AVENIDA INTEGRACIÓN EN LA CIUDAD DE TARIJA				
ITEM:	Topografía con dron RTK en	zonas urbanas			
CANTIDAD:	25.00				
UNIDAD:	hectarea		MONEDA:	BOLIVIANOS	
	DESCRIPCIÓN	UNID.	CANTIDAD	PRECIO	COSTO TOTAL
1. MATERIA	LES				
Diana (GCPs)		Pza	0.30	50.00	15.00
			TOTAL	MATERIALES	15.00
2. MANO DE	OBRA		1	_	
Piloto de dron		hr.	0.20	30.00	6.00
Operador GNSS	· · · · · ·	hr.	0.20	15.00	3.00
Topografo (base		hr.	0.20	30.00	6.00
Conductor Categ	onductor Categoria B hr. 0.20 20.00		4.00		
			LIB TOTAL M	ANO DE ORDA	19.00
CARGAS SOCI	SUB TOTAL MANO DE OBRA CARGAS SOCIALES 50%				
	/A MANO DE OBRA 14,94%				9.50 4.26
1010251051	711.11.11.10.22.22.11.11.13.170		TOTAL M	ANO DE OBRA	32.76
3. EOUIPO M	AQUINARIA Y HERRAMIE	ENTAS	101112111	1110 22 02111	020.0
Dron Phantom 4		hr.	0.20	180.00	36.00
Base con Rover	GNSS (RTK South G2)	hr.	0.20	300.00	60.00
Workstation para	a software Pix4D	hr.	0.20	280.00	56.00
HERRAMIENT	AS 5%				1.64
TOTAL EQUIPO, MAQUINARIA Y HERRAMIENTAS				153.64	
	ENERALES Y ADMINISTRA	ATIVOS			
GASTOS GENE	ERALES 12%				24.17
TOTAL GASTOS GENERALES Y ADMINISTRATIVOS				24.17	
5. UTILIDAD					
UTILIDAD 10%			22.56		
TOTAL UTILIDAD				22.56	
6. IMPUESTO					ı
IMPUESTOS IT 3,09%			7.67		
TOTAL IMPUESTOS TOTAL PRECIO UNITARIO					
			TOTAL PREC	JO UNITARIO	255.80

4.3.2 Precios unitarios de Levantamiento topográfico convencional

Este precio unitario fue basado directamente en el ítem utilizado en el proyecto real: "ASF. CAM. PTA. CHACO – V.M. TRAMO CANALETAS - ENTRE RÍOS", que forma parte del sistema caminero nacional. Específicamente, se tomó el ítem correspondiente a "levantamiento topográfico con GPS RTK en vías", considerando condiciones similares de trabajo y recursos.

El proyecto ASF. CAM. PTA. CHACO – V.M. fue ejecutado bajo estándares nacionales de ingeniería vial, y su ítem de levantamiento topográfico fue documentado con precios oficiales revisados y aprobados en supervisión.

El análisis incluye:

- Mano de obra calificada: topógrafos y asistentes.
- Equipos: receptor GNSS, trípodes, jalones, transporte.
- Movilización, operación en campo y trazado.

La productividad estimada fue extraída del proyecto base: se estimó que una cuadrilla completa podría cubrir aproximadamente 5 hectáreas en 24 horas de trabajo (3 días completos), dependiendo de la complejidad del terreno.

Tabla 4.4 P.U. de Levantamiento topográfico convencional con GPS RTK

	ANÁLI	SIS DE PRECIOS	UNITARIOS		
PROYECTO: ANÁLISIS TÉCNICO ECONÓMICO DE UN LEVANTAMIENTO CON DRONE TOPOGRÁFICO Y AEROFOTOGRAMÉTRICO DE VÍAS URBANAS. APLICACIÓN AVENIDA INTEGRACIÓN EN LA CIUDAD DE TARIJA					
ITEM:	Levantamiento topográfico c	onvencional con G	PS RTK		
CANTIDAD:	25.00				
UNIDAD:	ha		MONEDA:	BOLIVIANOS	
	DESCRIPCIÓN	UNID.	CANTIDAD	PRECIO	COSTO TOTAL
1. MATERIA	LES		_		
Estacas de made	era	Pza	50.00	1.75	87.50
			mom i t	164 mpp 144 pg	07.70
2 MANO DE	ORDA		TOTAL	MATERIALES	87.50
Ayudante	UBKA	hr.	80.00	3.99	319.20
Operador GNSS	(soves)	hr.	80.00	3.59	287.28
Topografo	(lovel)	hr.	80.00	8.45	675.92
Тородгато		III.	00.00	0.43	013.72
			 SUB TOTAL M.	 ANO DE OBRA	1 282.40
CARGAS SOC	IALES 50%				641.20
IMPUESTOS I	VA MANO DE OBRA 14,94%				287.39
TOTAL MANO DE OBRA				2 210.99	
3. EQUIPO M	IAQUINARIA Y HERRAMIE	ENTAS			
Equipo topografi	co (RTK South G2)	hr.	40.00	14.18	567.00
HERRAMIENT	CA C 504				110.55
TIERRAWIENT		L EQUIPO, MAQ	UINARIA Y HE	RRAMIENTAS	677.55
4. GASTOS G	ENERALES Y ADMINISTRA				0.7.000
GASTOS GENI					357.12
TOTAL GASTOS GENERALES Y ADMINISTRATIVOS				357.12	
5. UTILIDAD					
UTILIDAD 10%			333.32		
TOTAL UTILIDAD			333.32		
6. IMPUESTO	OS				
IMPUESTOS IT 3,09%			113.29		
TOTAL IMPUESTOS			113.29		
TOTAL PRECIO UNITARIO				3 779.77	

4.3.3 Relación Costo – Productividad

Se utilizo la unidad correspondiente del precio unitario de cada ítem equivalente al área total y longitud de toda la Avenida Integración para lo cual se calculó los siguientes costos para la realización de la topografía:

Tabla 4.5 Costos totales de topografía de Avenida Integración

Ítem	Unidad	Cantidad	Costo Total (Bs)
Topografía con Drone RTK en zonas urbanas	ha	25	6395.00
Levantamiento topográfico convencional con GPS RTK	ha	25	94494.25

Fuente: Elaboración propia

El rendimiento económico por unidad cubierta es un factor clave para decidir qué método aplicar. Aquí se comparan ambos métodos según su costo por unidad y el tiempo requerido:

Tabla 4.6 Relación Costo - Productividad

Método	Costo Total (Bs)	Unidad de medida	Cobertura	Costo por unidad	Tiempo requerido
Drone RTK	6395.00	Hectárea	25 ha	255.80 Bs/ha	5 horas (5 vuelos)
Topografía Convencional (GPS RTK)	94494.25	Hectárea	25 ha	3779.70 Bs/ha	72 horas

Fuente: Elaboración propia

El levantamiento con Drone RTK es claramente más eficiente, económico y rápido frente a la topografía convencional. Este método no solo reduce significativamente los costos directos e indirectos, sino que también mejora la productividad y acelera la toma de decisiones en proyectos de infraestructura urbana. Ideal para aplicaciones donde se requiere alta cobertura, precisión centimétrica y entrega oportuna de resultados.

Tabla 4.7 Resumen comparativo

Concepto	Drone RTK	Topografía Convencional	Comparación respecto al dron
Costo total (Bs)	6395.00	94494.25	88099.25
Cobertura	25 ha	25 ha	Igual
Costo por hectárea (Bs/ha)	255.80	3779.70	3523.90
Tiempo requerido	5 horas (5 vuelos)	72 horas	67 horas
Velocidad de levantamiento	5 ha/hora	0.35 ha/hora	Drone 14.4 veces más rápido

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Con respecto al análisis normativo, se confirmó que en Bolivia existen regulaciones específicas para el uso de drones, las cuales incluyen zonas de restricción y requerimientos de autorización ante la DGAC. La operación del dron en el área de estudio fue posible tras la solicitud de permisos y desbloqueo de zonas GEO ante DJI, lo cual demuestra que es técnica y legalmente viable el uso de drones en zonas urbanas si se cumplen con los requisitos establecidos.

En relación con la precisión y calidad de los datos obtenidos, se comprobó que los drones con tecnología RTK permiten generar productos geoespaciales altamente precisos. Los resultados obtenidos del procesamiento en Pix4D Mapper, corroborados con los puntos de control terrestre (GCPs), arrojaron un margen de error horizontal de ±3 cm y vertical de ±5 cm, equiparable al obtenido mediante métodos tradicionales. Esta validación respalda la eficacia del método utilizado.

En el aspecto económico, se verificó que el levantamiento con drones representa un ahorro significativo en comparación con los métodos convencionales. El costo total con dron fue de 6395 Bs, mientras que el método tradicional alcanzó un total de 94494.25 Bs, lo que implica un ahorro de 88099.25 Bs, equivalente a más del 93%. Además, el tiempo de levantamiento se redujo de 72 horas a solo 5 horas, lo cual incrementa la eficiencia del proceso y disminuye los recursos requeridos.

En cuanto a la eficiencia técnica y operativa, se evidenció que el uso de drones permite una cobertura de 25 hectáreas con una velocidad de 5 ha/hora, frente a los 0.35 ha/hora del método tradicional. Esto representa un rendimiento 14.4 veces superior con el uso del dron RTK, lo cual lo posiciona como una herramienta ideal en proyectos que requieren alta productividad y precisión en corto tiempo.

Finalmente, en cuanto a la aplicabilidad del método, se constata que el uso de drones para levantamientos topográficos no solo mejora la calidad y velocidad de los datos recopilados, sino también la seguridad operativa al reducir la exposición de los trabajadores a condiciones adversas.

5.2 Recomendaciones

Incluir el cumplimiento normativo como un componente esencial en la planificación de cualquier levantamiento con drones, gestionando con anticipación los permisos y desbloqueos necesarios.

Promover estudios futuros que profundicen en el análisis del marco normativo en Bolivia sobre el uso de drones, considerando posibles actualizaciones de la DGAC y el desarrollo de políticas específicas para zonas urbanas con alta densidad poblacional.

Desarrollar líneas de investigación que analicen comparativamente distintos tipos de drones (multirrotores y ala fija) y tecnologías de georreferenciación (RTK, PPK) para determinar su aplicabilidad según la escala y complejidad del proyecto.

Proponer estrategias de financiamiento y adquisición de tecnología para instituciones públicas o privadas que busquen implementar el uso de drones como método sistemático en proyectos de catastro, infraestructura o planificación urbana.

Fortalecer programas de formación técnica y certificación en el manejo de drones y software fotogramétrico, con el fin de profesionalizar el uso de esta herramienta en la ingeniería civil boliviana.