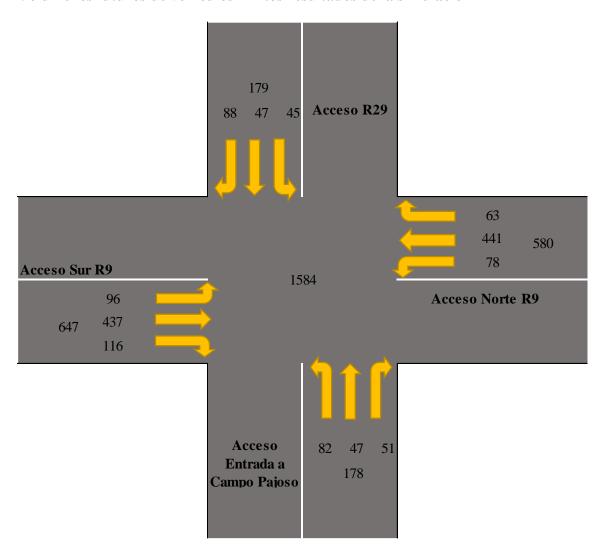

ANEXO 4 FOTOGRAMETRIA.



ANEXO 5 SEMAFORIZACION

Cálculo de Semaforización

Intersección Actual

Volúmenes futuros de vehículos mixtos resultados de la simulación

Factor de ajuste por presencia de vehículos pesados

$$f_{HV} = \frac{100}{100 + P_T(E_T - 1)}$$

P_T: Porcentaje de Veh. Pesados = 9.44 %

 E_T : Factor de Equivalencia para Veh. Pesd = 1.5

 $f_{HV} = 0.95$

Flujo de automóviles directos equivalentes

$$q_T = q_D + q_{V1} + q_{VD}$$

Vehículos directos equivalentes

 q_D = Movimientos de vueltas a la izquierda

 q_{VI} = Movimientos de vueltas a la izquierda

 q_{VD} = Movimientos de vueltas a la izquierda

FHMD = 0.92

Factor horario de máxima demanda

$$q_{VI} = \frac{V_I}{FHMD} \left(\frac{1}{f_{HV}}\right) E_{VI}$$

$$q_{VD} = \frac{V_D}{FHMD} \left(\frac{1}{f_{HV}}\right) E_{VD}$$

 E_{VI} : Factor de equivalencia de veh. directos giros izq.

E_{VD}: Factor de equivalencia de veh. directos giros der.

Automóviles directos equivalentes para vueltas hacia la izquierda EVI

	N° de carriles			
Flujo opuesto (Veh/h)	opuestos			
	1	2	3	
0	1.1	1.1	1.1	
200	2.5	2	1.8	
400	5	3	2.5	
600	10	5	4	
800	13	8	6	
1000	15	13	10	
≥1200	15	15	15	
Para vueltas a la izquierda prot	egidas	EVI =	1.05	

Automóviles directos equivalentes para vueltas ha	cia
la derecha EVD	

Volumen peatonal en el cruce peatonal en conflicto (Peat/hr)		Equivalente
Ninguno	0	1.18
Bajo	50	1.21
Moderado	200	1.32
Alto	400	1.52
Extremo	800	2.14

Acceso Sur R9

$\mathbf{V}_{\mathbf{DI}}$: 437 Veh/	Veh/h
---------------------------------------	-------

 V_{I} : 96 Veh/h E_{VI} : 1.05

 V_D : 116 Veh/h E_{VD} : 1.21

 q_D : 497 ADE/h

 q_{VI} : 115 ADE/h

 q_{VD} : 160 ADE/h

 q_T : 772 ADE/h

Acceso Entrada a Campo Pajoso

 V_{DI} : 47 Veh/h

 $\mathbf{V_{I}}$: 82 Veh/h $\mathbf{E_{VI}}$: 1.05

 V_D : 51 Veh/h E_{VD} : 1.21

 q_D : 53 ADE/h

 q_{VI} : 99 ADE/h

 q_{VD} : 71 ADE/h

 q_T : 223 ADE/h

Acceso Norte R9

V_{DI}: 441 Veh/h

 $\mathbf{V_{I}}$: 78 Veh/h $\mathbf{E_{VI}}$: 1.05

 V_D : 63 Veh/h E_{VD} : 1.21

 q_D : 502 ADE/h

qvi : 94 ADE/h

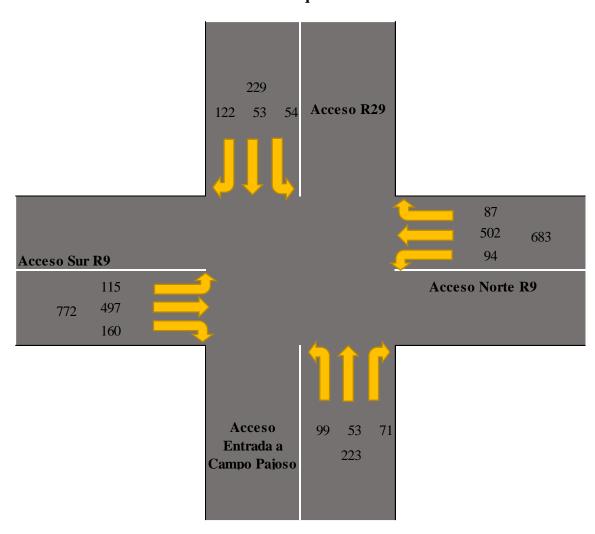
 q_{VD} : 87 ADE/h

 q_T : 683 ADE/h

Acceso Ruta 29

V_{DI} : 47 Veh/h

 $\mathbf{V_{I}}$: 45 Veh/h $\mathbf{E_{VI}}$: 1.05

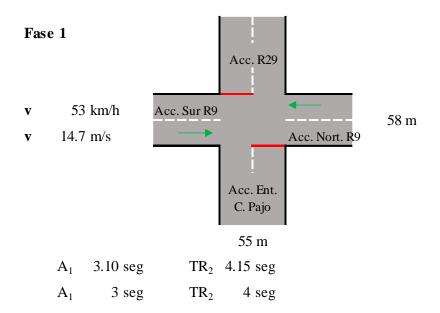

 $\mathbf{V_D}$: 88 Veh/h $\mathbf{E_{VD}}$: 1.21

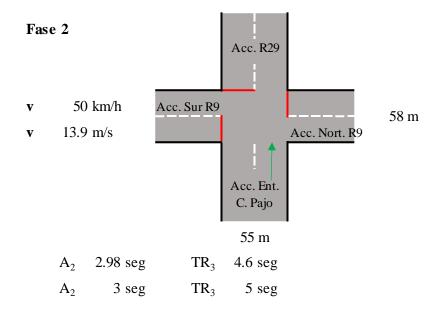
 q_D : 53 ADE/h q_{VI} : 54 ADE/h

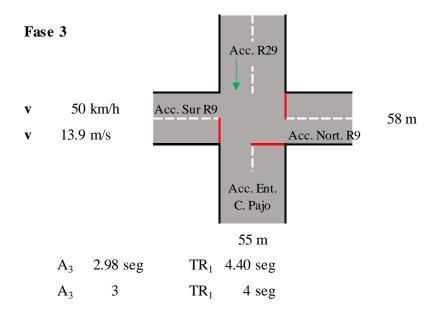
*qv*_D : 122 ADE/h

 q_T : 229 ADE/h

Volúmenes futuros de vehículos directos equivalentes




Cálculo de tiempos Amarillo y Todo Rojo por fases


$$A_i = t + \frac{v}{2a}$$

$$TR_i = \frac{w + L}{v}$$

- t Tiempo de percepción y reacción recomendado = 1 seg
- v Velocidad de aproximación de cada acceso
- a desaceleración recomendada por norma = 3.5 m/s^2
- w Ancho de cruce de la intersección
- L Longitud de Automóvil Equivalente recomendado = 6.1 m

Tiempo Perdido por Fases (li)

$$l_i = A_i + TR_i$$
 l_1 7 seg
 l_2 7 seg
 l_3 8 seg

Tiempo Total Perdido (L)

$$L = \sum li$$

$$L = 22 \text{ seg}$$

Máximas relaciones de flujo (Yi)

$$Yi = \frac{q_i max}{s}$$

s : flujo de saturación recomendado por HCM 2200 veh/h/carril

 q_i : flujo máximo por carril

Y1: 0.35

Y2: 0.10

Y3: 0.10

Cálculo de ciclo optimo (Co)

$$Co = \frac{1.5L + 5}{1 - \sum_{i=1}^{\varphi} Yi}$$

86 seg

Tiempo Efectivo Verde Total (gt)

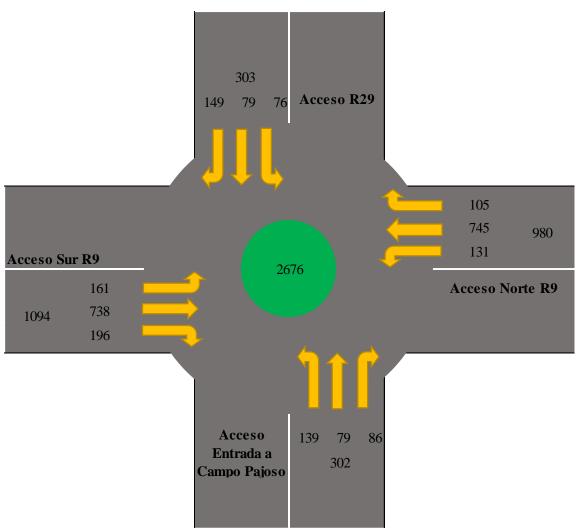
$$gt = Co - L$$

$$gt = 64 seg$$

Reparto de Tiempo de Verdes por fases

$$g1 = \frac{Y1}{Y1 + Y2 + Y3}(gt) = 40.36601$$
 seg

$$g2 = \frac{Y2}{Y1 + Y2 + Y3}(gt) = 11.66013$$
 seg


$$g3 = \frac{Y3}{Y1 + Y2 + Y3}(gt) =$$
 11.97386 seg

Tiempo Verde Reales (Gi)

$$GI$$
 = 40 seg $G2$ = 12 seg $G3$ = 12 seg

Rotonda

Volúmenes de futuros vehículos Mixtos resultados de la simulación

Factor de Ajuste por presencia de Vehículos Pesados

$$f_{HV} = \frac{100}{100 + P_T(E_T - 1)}$$

$$E_T$$
 Factor de Equivalencia para Veh. Pesd = 1.5

$$f_{HV} = 0.95$$

Flujo de automóviles directos equivalentes

$$q_T = q_D + q_{V1} + q_{VD}$$
 Vehículos directos equivalentes

 q_D Movimientos de vueltas a la izquierda

 q_{VI} Movimientos de vueltas a la izquierda

 q_{VD} Movimientos de vueltas a la izquierda

$$q_{VI} = \frac{V_I}{FHMD} \left(\frac{1}{f_{HV}}\right) E_{VI} \qquad q_{VD} = \frac{V_D}{FHMD} \left(\frac{1}{f_{HV}}\right) E_{VD}$$

E_{VI} Factor de equivalencia de veh. directos giros izq.

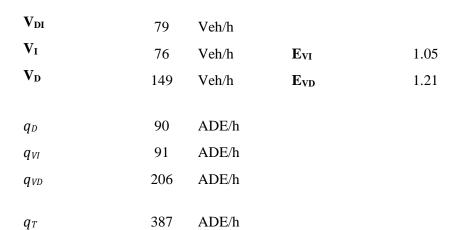
E_{VD} Factor de equivalencia de veh. directos giros der.

Automóviles directos equivalentes para vueltas hacia la izquierda EVI				
Eluis agus eta (Val-/k)	N° de Carriles Opuestos			
Flujo opuesto (Veh/h)	1	2	3	
0	1.1	1.1	1.1	
200	2.5	2	1.8	
400	5	3	2.5	
600	10	5	4	
800	13	8	6	
1000	15	13	10	
≥1200	15	15	15	
Para vueltas a la izquierda Protegidas EVI =			1.05	

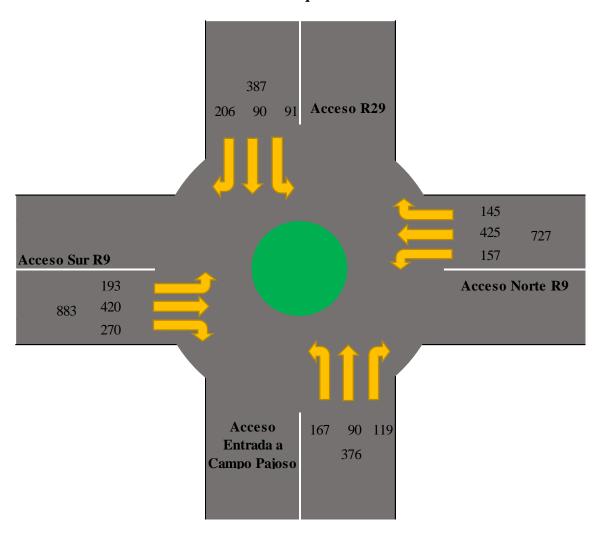
Automóviles directos equivalentes para vueltas hacia la derecha EVD				
Volumen peatonal en el cruce peatonal en conflicto (Peat/hr) Equivalente				
Ninguno	1.18			
Bajo	50	1.21		
Moderado	200	1.32		
Alto	400	1.52		
Extremo	800	2.14		

Acceso Sur R9

$\mathbf{V}_{ extsf{DI}}$	369	Veh/h		
V_{I}	161	Veh/h	$\mathbf{E}_{ ext{VI}}$	1.05
V_D	196	Veh/h	$\mathbf{E}_{ extbf{VD}}$	1.21
q_D	420	ADE/h		
q_{VI}	193	ADE/h		
$q_{\it VD}$	270	ADE/h		
q_T	883	ADE/h		


Acceso Entrada a Campo Pajoso

$\mathbf{V}_{ extsf{DI}}$	79	Veh/h		
$\mathbf{V_{I}}$	139	Veh/h	$\mathbf{E}_{\mathbf{VI}}$	1.05
V_D	86	Veh/h	$\mathbf{E}_{\mathbf{V}\mathbf{D}}$	1.21
q_D	90	ADE/h		
q_{VI}	167	ADE/h		
$q_{\it VD}$	119	ADE/h		
q_T	376	ADE/h		


Acceso Norte R9

$\mathbf{V}_{ extsf{DI}}$	373	Veh/h		
$\mathbf{V_{I}}$	131	Veh/h	$\mathbf{E}_{\mathbf{VI}}$	1.05
$\mathbf{V}_{\mathbf{D}}$	105	Veh/h	$\mathbf{E}_{\mathbf{VD}}$	1.21
q_D	425	ADE/h		
q_{VI}	157	ADE/h		
$q_{\it VD}$	145	ADE/h		
q_T	727	ADE/h		

Acceso Ruta 29

q_T 387 ADE/h Volúmenes futuros de vehículos directos equivalentes

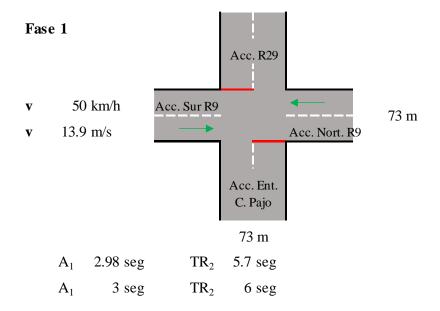
Cálculo de tiempos Amarillo y Todo Rojo por fases

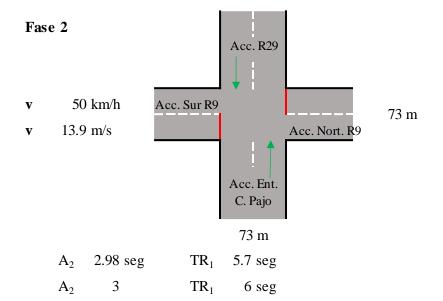
Tiempo de Amarillo

$$A_i = t + \frac{v}{2a}$$

Tiempo Rojo

$$TR_i = \frac{w+L}{v}$$


t Tiempo de persección y reacción recomendado = 1 seg


v Velocidad de aproximación de cada acceso

a desaceleración recomendada por norma = 3.5 m/s^2

w Ancho de cruce de la intersección

L Longitud de Automóvil Equivalente recomendado = 6.1 m

Tiempo Perdido por Fases (li)

$$l_i = A_i + TR_i$$

$$l_1 9 seg$$

$$l_2 9 seg$$

Tiempo Total Perdido (L)

$$L = \sum li$$

$$L=$$
 18 seg

Máximas relaciones de flujo (Yi)

$$Yi = \frac{q_i max}{s}$$

s flujo de saturación recomendado por HCM 2200 veh/h/carril

q_i flujo máximo por carril

$$YI = 0.40$$

$$Y2 = 0.18$$

Cálculo de ciclo optimo (Co)

$$Co = rac{1.5L + 5}{1 - \sum_{i=1}^{\varphi} Yi}$$
 $Co = 75.70$ 76 seg

Tiempo Efectivo Verde Total (gt)

$$gt = Co - L$$

$$gt = 58 \quad \text{seg}$$

Reparto de Tiempo de Verdes por fases

$$g1 = \frac{Y1}{Y1 + Y2}(gt) =$$
 40.33 seg

$$g2 = \frac{Y2}{Y1 + Y2}(gt) =$$
 17.67 seg

Tiempo Verde Reales (Gi)

$$G1 = 40 \operatorname{seg}$$

$$G2=$$
 18 seg

ANEXO 6 Reporte Fotográfico

Congestionamiento en hora pico en la intersección

Fotografía tomada desde la estación de aforo E2

Fotografía tomada desde la estación de aforo E3

Operador configurando la app para iniciar el aforo de los movimientos de vehículos del Acceso Norte en la estación E2

Operador en la estación E4 aforando los movimientos de los vehículos de Acceso Oeste

Operador registrando los movimientos de vehículos en la estación E1 para el Acceso Sur

Fotografía tomada desde la estación E1

Fotografía de la intersección tomada desde la estación E1

Fotografía de preparación para grabar los videos para determinar la velocidad en el Acceso Norte

Fotografía de señalización vertical de información de derecho de vía de la ruta 9

Fotografía de señal informativa y restricción de altura sobre la ruta 9 en el Acceso Sur

Fotografía del Acceso Norte de la intersección

ANEXO 7 Planos