UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

ANÁLISIS DE TRES EDIFICACIONES DE LA CIUDAD DE TARIJA SOMETIDAS A UN ANÁLISIS ESTÁTICO NO LINEAL SIMULADAS EN EL SOFTWARE SAP2000

POR:

CASTRO ESPINOZA SERGIO ANDRES

SEMESTRE I - 2025

Tarija – Bolivia

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

SOMETIDAS A UN ANÁLISIS ESTÁTICO NO LINEAL SIMULADAS	
	SOMETIDAS A UN ANÁLISIS ESTÁTICO NO LINEAL SIMULADAS

Por:

CASTRO ESPINOZA SERGIO ANDRES

PROYECTO ELABORADO EN LA ASIGNATURA PROYECTO DE ING. CIVIL II
CIV-502 (MENCIÓN ESTRUCTURAS)

GESTIÓN ACADÉMICA SEMESTRE I – 2025

Tarija – Bolivia

DEDICATORIA

A mis queridos padres, Sra. Wilma Espinoza Alcoba y Sr. Raul Castro Condori, por su amor incondicional, su sacrificio incansable y su inquebrantable fe en cada paso de mi vida. Su ejemplo de perseverancia y sus valores han sido la guía más valiosa, y su apoyo inquebrantable el motor que me impulsó a superar cada desafío. Este logro es, en esencia, la manifestación de todo lo que me han enseñado y entregado.

A mi amada hermana, Srta. Dalma Castro Espinoza, por su compañía leal, su alegría contagiosa y su comprensión en los momentos más exigentes. Tu aliento y el simple hecho de saber que cuento contigo, hicieron este camino mucho más liviano y significativo.

"Mi familia es mi inspiración, mi motivación y mi mayor felicidad."

ÍNDICE GENERAL

C	APİTU	JLO	I	. 1
1.	GE	NER	RALIDADES	. 1
	1.1.	Pro	blema	. 1
	1.1	.1.	Planteamiento	. 1
	1.1	.2.	Formulación	. 1
	1.1	.3.	Sistematización	. 1
	1.2.	Obj	etivos	. 2
	1.2	.1.	General	. 2
	1.2	.2.	Específicos	. 2
	1.3.	Just	tificación	. 2
	1.3	.1.	Académica	. 2
	1.3	.2.	Técnica	. 3
	1.3	.3.	Social	. 3
	1.4.	Alc	ance	. 3
	1.4	.1.	Hipótesis	. 3
C	APÍTU	JLO	II	. 5
2.	MA	ARC	O TEÓRICO	. 5
	2.1.	Aná	álisis sísmico inelástico	. 5
	2.2.	El c	oscilador de un grado de libertad	6
	2.3.	Sist	ema de varios grados de libertad	6
	2.4.	Mo	vimiento periódico	. 7
	2.4	.1.	Movimiento armónico simple	. 7
	2.4	.2.	El péndulo	. 7

2.4.3.	Oscilaciones amortiguadas	7
2.5. A	nálisis plástico de las estructuras	8
2.6. Pi	rocedimientos de análisis sísmico de estructuras	8
2.6.1.	Opciones para análisis inelásticos	9
2.6.2.	Análisis estático no lineal (Pushover)	9
2.7. D	emanda	10
2.7.1.	Amenaza sísmica en Bolivia	10
2.7.2.	Aceleración sísmica de Bolivia	12
2.7.3.	Clasificación de los suelos de cimentación	13
2.7.4.	Clasificación de edificios y estructuras	14
2.7.5.	Espectro de diseño	15
2.8. C	apacidad	17
2.8.1.	Análisis estático no lineal (Pushover)	17
2.8.2.	Cortante basal	27
2.8.3.	Peso sísmico efectivo	30
2.8.4.	Modelos constitutivos de los materiales	31
2.8.5.	Rótulas plásticas	35
2.9. D	esempeño	38
2.9.1.	Niveles de desempeño para elementos estructurales	39
2.9.2.	Niveles de desempeño para los elementos no estructurales	40
2.9.3.	Niveles de desempeño para las estructuras	40
2.10.	Sectorización de la curva de capacidad	41
2.11.	Deriva de piso	42
2.11.1	. Clasificación de la deriva de piso	43
A DÍTI II <i>(</i>	O III	$\Delta\Delta$

3.	DESAF	RROLLO DE LA INVESTIGACIÓN (MÉTODO PUSHOVER)	44
3	.1. Pre	sentación de la información	44
	3.1.1.	Descripción de las edificaciones	44
	3.1.2.	Tipo de suelo	47
	3.1.3.	Espectro de respuesta	47
	3.1.4.	Dimensión y cantidad de acero de los elementos estructurales	53
	3.1.5.	Cargas utilizadas en el modelo	64
	3.1.6.	Peso sísmico efectivo de las edificaciones	71
	3.1.7.	Centro de masa de cada nivel	72
	3.1.8.	Cálculo del cortante basal y distribución	73
3	.2. Mo	odelaje y análisis en SAP2000	78
	3.2.1.	Modelado en 3D en AutoCAD	78
	3.2.2.	Exportación del AutoCAD al SAP2000	78
	3.2.3.	Definir los materiales a utilizar	80
	3.2.4.	Definir las secciones de los elementos estructurales	81
	3.2.5.	Definición de la membrana	84
	3.2.6.	Restricción de la base del edificio	85
	3.2.7.	Asignación de los centros de masa	86
	3.2.8.	Definición de diafragmas	87
	3.2.9.	Definición de los estados de carga	88
	3.2.10.	Asignación de las cargas distribuidas	89
	3.2.11.	Modificación de los casos de carga	91
	3.2.12.	Añadir la función sísmica	95
	3.2.13.	Asignación de rótulas plásticas	97
	3.2.14.	Asignación de la fuente de masa	99

	3.2.15.	Configuración del análisis	100
	3.2.16.	Extracción de los resultados	102
C.	APÍTULO	IV	107
4.	PRESE	NTACIÓN Y ANÁLISIS DE RESULTADOS	107
	4.1. Cla	sificación de los modos de vibración	107
	4.2. Cu	rvas de capacidad	109
	4.2.1.	Edificio Corrado	109
	4.2.2.	Edificio Parque Bolivar	110
	4.2.3.	Edificio Pedro Antonio Flores	111
	4.3. Sec	ctorización de la curva de capacidad	113
	4.3.1.	Edificio Corrado	113
	4.3.2.	Edificio Parque Boliviar	114
	4.3.3.	Edificio Pedro Antonio Flores	116
	4.4. De	riva de piso	117
	4.4.1.	Edificio Corrado	118
	4.4.2.	Edificio Parque Bolivar	120
	4.4.3.	Edificio Pedro Antonio Flores	122
	4.5. Niv	vel de daño	125
	4.5.1.	Edificio Corrado	125
	4.5.2.	Edificio Parque Bolivar	127
	4.5.3.	Edificio Pedro Antonio Flores	129
C.	APÍTULO	V	132
5.	CONCLU	SIONES Y RECOMENDACIONES	132
	5.1. Conc	lusiones	132
	5.2. Recor	mendaciones	137

BIBLIOGRAFÍA	139
ANEXOS	141
ANEXO A-1. CONFIGURACIÓN ESTRUCTURAL SISMORRESISTENTE	
ANEXO A-2. RESPALDO DE ESTUDIOS DE SUELOS	146
ANEXO A-3. PLANOS DE LAS TRES EDIFICACIONES	147
<u>ÍNDICE DE IMÁGENES</u>	
Imagen 1. Procedimientos para análisis sísmicos inelásticos.	5
Imagen 2. (a) fuerza aplicada; (b) movimiento del terreno.	6
Imagen 3. (a) Pórticos de cortante de 2 niveles; (b) Fuerzas sobre las 2 masas	7
Imagen 4. Procedimiento de análisis sísmico inelástico.	9
Imagen 5. Tipos de sismo en el territorio boliviano.	11
Imagen 6. Aceleración sísmica en Bolivia y Tarija.	12
Imagen 7. Espectro elástico de pseudoaceleración parametrizado.	16
Imagen 8. Procedimiento Pushover.	18
Imagen 9. Tipos de modelos histeréticos.	19
Imagen 10. Coeficientes utilizados en ecuación de la amortiguación efectiva	20
Imagen 11. Coeficientes utilizados en ecuaciones para periodos efectivos	21
Imagen 12. Conversión del espectro de respuesta.	22
Imagen 13. Conversión del espectro de capacidad.	23
Imagen 14. Capacidad y demanda inicial de ADRS espectro.	24
Imagen 15. Representación bilineal de la capacidad espectro.	25
Imagen 16. Posible comportamiento de puntos usando MADRS.	26
Imagen 17. Modelo de esfuerzo/deformación del concreto confinado y no confinado	31
Imagen 18. Modelo de histéresis de Takeda	33
Imagen 19. Curva paramétrica simple esfuerzo/deformación para acero estructural	33
Imagen 20. Modelo de histéresis cinemático	35
Imagen 21. Parámetros de modelaje y criterios de aceptación para vigas	36
Imagen 22. Parámetros de modelaje y criterios de aceptación para columnas	37

Imagen 23. Parámetros de modelaje y criterios de aceptación para columnas	38
Imagen 24. Niveles de desempeño para las estructuras	40
Imagen 25. Sectorización de la curva de capacidad.	42
Imagen 26. Ubicación del edificio Corrado	45
Imagen 27. Ubicación del edificio Parque Bolivar	46
Imagen 28. Ubicación del edificio Pedro Antonio Flores.	47
Imagen 29. Sobre cargas de uso.	65
Imagen 30. Sobrecarga de uso de techos.	66
Imagen 31. Cálculo de cantidad de ladrillo.	66
Imagen 32. Edificio Corrado modelado en 3D AutoCAD.	78
Imagen 33. Selección del eje y unidades del modelo.	79
Imagen 34. Selección de las capas de vigas y columnas	79
Imagen 35. Modelo 3D del edificio Corrado.	80
Imagen 36. Crear nuevo material.	80
Imagen 37. Características del material (hormigón)	81
Imagen 38. Selección del tipo de sección.	82
Imagen 39. Introducción de las secciones de columnas.	82
Imagen 40. Introducción de la cantidad de acero de refuerzo en columnas	83
Imagen 41. Introducción de la cantidad de acero de refuerzo en columnas	84
Imagen 42. Creación de membranas	85
Imagen 43. Restricción en la base de las tres edificaciones.	86
Imagen 44. Ubicación de las coordenadas del punto	86
Imagen 45. Introducción de las coordenadas del centro de masa de 1 nivel, edificio	Corrado
	87
Imagen 46. Añadir nuevo diafragma rígido	87
Imagen 47. Insertar nuevo diafragma rígido	88
Imagen 48. Introducción de los patrones de cargas	89
Imagen 49. Asignación de las cargas distribuidas.	89
Imagen 50. Introducción de cargas en área.	90
Imagen 51. Introducción de la fuerza lateral en dirección X	
Imagen 52. Modificación del caso Modal.	92

Imagen 53. Configuración del caso Modal.	92
Imagen 54. Creación del caso de cargas gravitacionales	93
Imagen 55. Creación del caso de cargas con el Pushover.	94
Imagen 56. Asignación del desplazamiento de control.	94
Imagen 57. Resultados a guardas según el análisis.	95
Imagen 58. Importar el espectro de diseño.	96
Imagen 59. Configuración del espectro de diseño	96
Imagen 60. Añadir rótulas plásticas.	97
Imagen 61. Configuración de las rótulas plásticas en vigas.	98
Imagen 62. Configuración de rótulas plásticas en columnas	99
Imagen 63. Modificar la fuente de masa.	100
Imagen 64. Configuración de la fuente de masa	100
Imagen 65. Configuración de análisis.	101
Imagen 66. Inicio del análisis.	101
Imagen 67. Curva Pushover del edificio Corrado.	102
Imagen 68. Tabla de resultados de la curva de capacidad, edificio Corrado	103
Imagen 69. Mostrar las posibles rótulas plásticas.	104
Imagen 70. Rótulas plásticas en dirección X edificio Corrado.	104
Imagen 71. Rótulas plásticas en dirección Y edificio Corrado.	105
Imagen 72. Desplazamiento en el centro de masa, en un nivel "i" en un step "x"	106
Imagen 73. Nivel de daño en dirección X, paso 3, edificio Corrado	126
Imagen 74. Nivel de daño en dirección Y, paso 3, edificio Corrado	127
Imagen 75. Nivel de daño en dirección X, paso 5, edificio Parque Bolivar	128
Imagen 76. Nivel de daño en dirección Y, paso 6, edificio Parque Bolivar	129
Imagen 77. Nivel de daño en dirección X, paso 5, edificio Pedro Antonio Flores	130
Imagen 78. Nivel de daño en dirección Y, paso 5, edificio Pedro Antonio Flores	131
<u>ÍNDICE DE TABLAS</u>	
Tabla 1. Tipos de análisis para cálculo.	9
Tabla 2. Parámetros de clasificación de suelos.	

Tabla 3. Factor de importancia.	15
Tabla 4. Parametrización del espectro elástico de pseudoaceleración.	17
Tabla 5. Coeficiente de periodo corto	27
Tabla 6. Coeficiente de reducción.	28
Tabla 7. Factor de periodo largo.	29
Tabla 8. Coeficientes Ct y x.	29
Tabla 9. Niveles de desempeño para estructuras.	41
Tabla 10. Nivel de desempeño en función a la deriva de piso y daño global	43
Tabla 11. Tipo de suelo de cimentación de cada edificación	47
Tabla 12. Resumen de los límites del espectro de diseño de cada edificación	48
Tabla 13. Valores del espectro de respuesta edificación Corrado.	48
Tabla 14. Valores del espectro de diseño edificio Parque Bolívar	50
Tabla 15. Valores del espectro de respuesta edificio Pedro Antonio Flores.	52
Tabla 16. Resumen de dimensiones y armado del edificio Corrado	53
Tabla 17. Resumen de dimensiones y armado del edificio Parque Bolívar	54
Tabla 18. Resumen de dimensiones y armado del edificio Pedro Antonio Flores	55
Tabla 19. Resumen de secciones y armado de vigas edificio Corrado	56
Tabla 20. Resumen de secciones y armado de vigas edificio Parque Bolívar	58
Tabla 21. Resumen de secciones y armado de vigas edificio Pedro Antonio Flores	61
Tabla 22. Masa por cada nivel, edificio Corrado	72
Tabla 23. Masa por cada nivel, edificio Parque Bolivar	72
Tabla 24. Masa por cada nivel, edificio Pedro Antonio Flores.	72
Tabla 25. Centros de masas por nivel, edificio Corrado.	73
Tabla 26. Centros de masas por nivel, edificio Parque Bolívar	73
Tabla 27. Centros de masas por nivel, edificio Pedro Antonio Flores.	73
Tabla 28. Coeficientes de sitio de las tres edificaciones.	74
Tabla 29. Factor de modificación de respuesta de cada edificación	75
Tabla 30. Periodo fundamental y periodo largo de cada edificación.	75
Tabla 31. Coeficiente de respuesta sísmica de cada edificación.	76
Tabla 32. Cortante basal de cada edificación.	76
Tabla 33. Coeficiente "k" de cada edificación.	77

Tabla 34. Distribución del cortante basal, edificio Corrado. 77
Tabla 35. Distribución del cortante basal, edificio Parque Bolívar
Tabla 36. Distribución del cortante basal, edificio Pedro Antonio Flores
Tabla 37. Comportamiento dinámico, edificio Corrado. 107
Tabla 38. Comportamiento dinámico, edificio Parque Bolivar. 108
Tabla 39. Comportamiento dinámico, edificio Pedro Antonio Flores
Tabla 40. Desplazamientos objetivos. 109
Tabla 41. Desplazamientos en cada nivel en dirección en X, edificio Corrado
Tabla 42. Desplazamiento en cada nivel en dirección en Y, edificio Corrado
Tabla 43. Desplazamiento en cada nivel en dirección X, edificio Parque Bolivar 120
Tabla 44. Desplazamiento en cada nivel en dirección Y, edificio Parque Bolivar 121
Tabla 45. Desplazamiento en cada nivel en dirección X, edificio Pedro Antonio Flores. 123
Tabla 46. Desplazamiento en cada nivel en dirección Y, edificio Pedro Antonio Flores. 123
ÍNDICE DE GRÁFICOS
Gráfico 1. Edificio Corrado
Gráfico 1. Edificio Corrado. 50
Gráfico 1. Edificio Corrado
Gráfico 1. Edificio Corrado
Gráfico 1. Edificio Corrado
Gráfico 1. Edificio Corrado.50Gráfico 2. Edificio Parque Bolívar.51Gráfico 3. Edificio Pedro Antonio Flores.53Gráfico 4. Curva de capacidad en dirección X, edificio Corrado.110Gráfico 5. Curva de Capacidad en dirección Y, edificio Corrado.110
Gráfico 1. Edificio Corrado.50Gráfico 2. Edificio Parque Bolívar.51Gráfico 3. Edificio Pedro Antonio Flores.53Gráfico 4. Curva de capacidad en dirección X, edificio Corrado.110Gráfico 5. Curva de Capacidad en dirección Y, edificio Corrado.110Gráfico 6. Curva de capacidad en dirección X, edificio Parque Bolivar.111
Gráfico 1. Edificio Corrado.50Gráfico 2. Edificio Parque Bolívar.51Gráfico 3. Edificio Pedro Antonio Flores.53Gráfico 4. Curva de capacidad en dirección X, edificio Corrado.110Gráfico 5. Curva de Capacidad en dirección Y, edificio Corrado.110Gráfico 6. Curva de capacidad en dirección X, edificio Parque Bolivar.111Gráfico 7. Curva de capacidad en dirección Y, edificio Parque Bolivar.111
Gráfico 1. Edificio Corrado

Gráfico 14. Sectorización de la curva de capacidad en dirección X, edificio Pedro Antonio
Flores
Gráfico 15. Sectorización de la curva de capacidad en dirección Y, edificio Pedro Antonio
Flores
Gráfico 16. Deriva de piso en el punto de desempeño, dirección X, edificio Corrado 119
Gráfico 17. Deriva de piso en el punto de desempeño, dirección Y, edificio Corrado 119
Gráfico 18. Deriva de piso en el punto de desempeño, dirección Y, edificio Parque Bolivar.
Gráfico 19. Deriva de piso en el punto de desempeño, dirección Y, edificio Parque Bolivar.
Gráfico 20. Deriva de piso en el punto de desempeño, dirección X, edificio Pedro Antonio
Flores
Gráfico 21. Deriva de piso en el punto de desempeño, dirección Y, edificio Pedro Antonio
Flores 124