

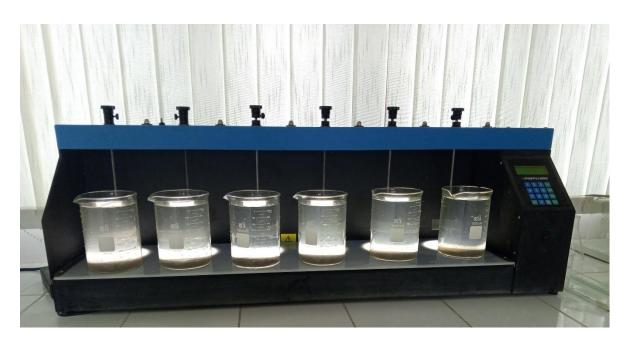
ANEXO 1 MEMORIA FOTOGRÁFICA DE LA PLANTA ALTO SENAC

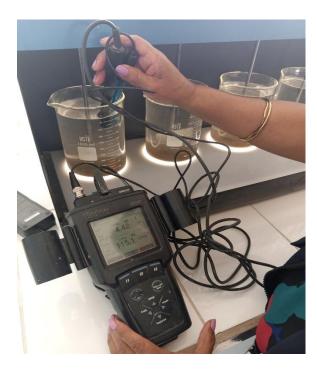
Planta Potabilizadora de agua Alto SENAC

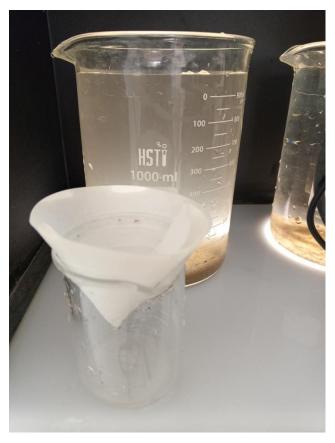
Pretratamiento: Canal de entrada, rejillas, vertedero, sensor de nivel y turbidímetro.

Tanques de mezcla rápida en la sala de dosificación.

Modificación del punto de inyección de hidróxido de calcio aguas arriba del vertedero


Equipos usados in situ para el control de calidad.


Adición de sulfato de aluminio e hipoclorito de calcio.


Mescla lenta y formación del floculo

Sedimentación después de la mezcla lenta

Medición del pH, temperatura y conductividad después de la sedimentación

Muestra de agua filtrada con papel filtro

Aforo con molinete hidráulico

Prueba de trazadores con cloro

ANEXO 2 PLANILLA DE VISITA TÉCNICA GENERAL

PLANILLA DE OBSERVACIÓN - PRIMERA VISITA TÉCNICA A LA PLANTA POTABILIZADORA ALTO SENAC

1 Datos Generales de la Visita

• Fecha: 13/01/2025

• Hora de inicio: 08:15 am

• Nombre del evaluador: Orosco Caro Mariana Belen

2 Infraestructura General

Edificaciones y Espacios Existentes

• Estado Físico: Bueno (B), Regular (R), Malo (M)

Componente o Área	Estado Físico	Descripción	Observaciones
Oficinas Administrativas	Bueno	Cuenta con un ambiente compartido para la sala de control y oficina.	Se incluye un sanitario en el ambiente.
Área de dosificación de coagulante	Bueno	El ambiente está equipado para realizar la coagulación.	Sin observaciones
Área de dosificación de gas cloro	Bueno	Cuenta con un ambiente propio.	Sin observaciones
Depósito	Bueno	Se tiene un ambiente el cuál esta utilizado por el operador.	Sin observaciones
Caminos y Accesos Internos	Bueno	Cuenta con todos los accesos y caminos internos necesarios para la libre circulación.	Sin observaciones

3 Área 1: Ingreso a la Planta

Componentes: Caudalímetro y Turbidímetro

• Funcionamiento: Operativo, No Operativo

Componente	Estado Físico	Funcionamiento	Descripción	Observaciones
Vertedero	Bueno	Operativo	Dispone de un sensor de nivel integrado. Vertedo triangu	
Turbidímetro	Bueno	Operativo	Tiene una caseta de resguardo.	Sin observaciones
Sistema de Control	Bueno	Operativo	Se encuentra en la sala de control.	Sin observaciones

4 Área 2: Estación de Dosificación

Componentes: Sistema de Dosificación de Coagulante

Componente	Estado Físico	Funcionamiento	Descripción	Observaciones
Sistema de Dosificación	Bueno	Operativo	Presenta condiciones óptimas de operación.	Sin observaciones
Tanques de Preparación	Bueno	Operativo	Se cuenta con 2 unidades, con una capacidad de 1000 litros cada una.	Sin observaciones
Válvulas y Conexiones	Bueno	Operativo	Presentan condiciones óptimas de operación.	Sin señales de fugas o deterioro.

5 Área 3: Batería de Filtros Rápidos

Observación General de los Filtros

Componente	Estado Físico	Funcionamiento	Descripción	Observaciones
Filtros	Bueno	Operativo	Se cuenta con nueve unidades de filtros rápidos.	Sin observaciones
Sistemas de Autolimpieza	Bueno	Operativo	Opera mediante un mecanismo de autolimpieza por gravedad.	No se registran irregularidades.
Estructura Soporte	Bueno	Operativo	Construida en hormigón armado (H-25).	Se evidencia señales de sellador de pequeñas fisuras.

Válvulas y Conexiones Bueno	Operativo	Presentan condiciones óptimas de operación.	Sin señales fugas deterioro.	de o
--------------------------------	-----------	---	------------------------------	---------

6 Área 4: Desinfección

Componentes: Sistema de Cloración

Componente	Estado Físico	Funcionamiento	Descripción	Observaciones
Sistema de Precloración	Bueno	No operativo	Actualmente inoperativo, en óptimas condiciones.	Sin observaciones
Sistema de Cloración	Bueno	Operativo	Desinfección con gas cloro	Sin observaciones
Equipos de Desinfección	Bueno	Operativo	Se cuentan con dos líneas de desinfección.	Sin observaciones

7 Área 5: Tanque de Almacenamiento

Componentes: Tanque y Conexiones

Componente	Estado Físico	Funcionamiento	Descripción	Observaciones
Tanque de Almacenamiento	Bueno	Operativo	Capacidad de almacenamiento de 4000 litros.	Sin observaciones
Conexiones hidráulicas	Bueno	Operativo	Se cuenta con todos los accesorios necesarios.	Sin observaciones
Sistema de Ventilación	Bueno	Operativo	Cuenta con un ventilador extractor.	Sin observaciones

8 Infraestructura de Servicios Complementarios

Áreas Complementarias y Servicios

Componente o Área	Estado Físico	Descripción	Observaciones
Servicios Sanitarios	Bueno	Se cuenta con un solo sanitario equipado.	Sin observaciones
Sala de Control	Bueno	Está equipada con un tablero de control HMI general de la planta	Sin observaciones

9 Observaciones Generales Finales

- En términos generales, la infraestructura, los equipos y los componentes de la planta se encuentran en condiciones satisfactorias, lo que evidencia un mantenimiento preventivo adecuado.
- las reparaciones en las estructuras de hormigón han sido ejecutadas de manera oportuna, mitigando la aparición de grietas o fugas y reforzando la confiabilidad del sistema.

10 Recomendaciones Preliminares

- Realizar visitas de inspección periódicas para evaluar de manera detallada el estado de cada componente.
- Comparar minuciosamente la infraestructura actual con los planos originales, verificando dimensiones y ubicaciones, a fin de identificar posibles discrepancias.

ANEXO 3 REGISTROS DE ANÁLISIS DE LOS PARÁMETROS DE CONTROL MÍNIMO

PLANILLA DE REGISTRO DE CONTROL DE PARÁMETROS

PLANTA POTABILIZADORA DE AGUA ALTO SENAC

Procedencia de la muestra: La Victoria

Fecha de muestreo: 15/1/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	14,80	08:05	Agua Cristalina
Entrada a la	рН		7,45	08:10	Sin Observaciones
Planta	Temperatura	°C	17,50	08:14	Sin Observaciones
	Turbiedad	NTU	1,62	08:15	Sin Observaciones
	Conductividad	μS/cm	14,80	08:22	No se está adicionando coagulantes
Ingreso de los	рН		7,43	08:25	Sin Observaciones
Filtros	Temperatura	°C	18	08:25	Sin Observaciones
	Turbiedad	NTU	1,56	08:30	Sin Observaciones
	Cloro Residual	mg/L	0,47	08:35	Sin Observaciones
	Conductividad	μS/cm	14,95	08:40	Sin Observaciones
Salida de los Filtros	pН		7,03	08:46	Sin Observaciones
	Temperatura	°C	18,60	08:50	Sin Observaciones
	Turbiedad	NTU	0,40	08:53	Sin Observaciones
	Cloro Residual	mg/L	0,52	09:03	Sin Observaciones
	Conductividad	μS/cm	15,01	09:10	Sin Observaciones
Salida de la Planta	рН		6,99	09:15	Se observa que el pH disminuye.
	Temperatura	°C	18,90	09:17	Sin Observaciones
	Turbiedad	NTU	0,48	09:20	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 20/01/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	20,01	08:45	Agua Turbia
Entrada a la	рН		7,56	08:48	Sin Observaciones
Planta	Temperatura	°C	15,70	08:50	Sin Observaciones
	Turbiedad	NTU	18,50	08:52	Sin Observaciones
	Conductividad	μS/cm	20,22	08:55	Sin Observaciones
Ingreso de	рН		7,07	08:58	Sin Observaciones
los Filtros	Temperatura	°C	15,5	09:03	Sin Observaciones
	Turbiedad	NTU	18,20	09:10	Sin Observaciones
	Cloro Residual	mg/L	1,26	09:15	Sin Observaciones
	Conductividad	μS/cm	21,80	09:20	Sin Observaciones
Salida de los Filtros	рН		7,20	09:24	Sin Observaciones
	Temperatura	°C	16,30	09:29	Sin Observaciones
	Turbiedad	NTU	1,59	09:30	Sin Observaciones
	Cloro Residual	mg/L	1,35	09:35	Sin Observaciones
	Conductividad	μS/cm	22,05	09:36	Sin Observaciones
Salida de la Planta	рН		7,01	09:38	Sin Observaciones
	Temperatura	°C	16,20	09:38	Sin Observaciones
	Turbiedad	NTU	1,60	09:40	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 23/1/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	19,93	08:45	Agua poco Turbia
Entrada a la	рН		7,70	08:48	Sin Observaciones
Planta	Temperatura	°C	16,31	08:50	Sin Observaciones
	Turbiedad	NTU	12,3	08:52	Sin Observaciones
	Conductividad	μS/cm	19,90	08:55	Sin Observaciones
Ingreso de	рН		7,70	08:58	Sin Observaciones
los Filtros	Temperatura	°C	16,2	09:03	Sin Observaciones
	Turbiedad	NTU	12,30	09:10	Sin Observaciones
	Cloro Residual	mg/L	0,76	09:15	Sin Observaciones
	Conductividad	μS/cm	20,69	09:20	Sin Observaciones
Salida de los Filtros	рН		7,50	09:24	Sin Observaciones
	Temperatura	°C	16,60	09:29	Sin Observaciones
	Turbiedad	NTU	1,85	09:30	Sin Observaciones
	Cloro Residual	mg/L	0,80	09:35	Sin Observaciones
	Conductividad	μS/cm	25,11	09:36	Sin Observaciones
Salida de la Planta	рН		7,20	09:38	Sin Observaciones
	Temperatura	°C	16,58	09:38	Sin Observaciones
	Turbiedad	NTU	1,90	09:40	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo:26/01/2025 Hras: 22:30 pm

Tipo de muestreo: Puntual

Fecha de ingreso a laboratorio: 27/01/2025

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	31,58	08:45	Agua turbia con presencia de color.
Entrada a la Planta	рН		8,20	08:45	Se observa a simple vista el color.
Flanta	Temperatura	°C	17,99	08:45	Sin Observaciones
	Turbiedad	NTU	80,10	08:50	Presenta turbiedad
	Conductividad	μS/cm	31,58	08:55	Sin Observaciones
Ingreso de los	pН		7,20	08:55	Sin Observaciones
Filtros	Temperatura	°C	17,99	08:55	Sin Observaciones
	Turbiedad	NTU	79,85	09:00	Sin Observaciones
	Cloro Residual	mg/L	0,96	09:05	Sin Observaciones
	Conductividad	μS/cm	41,58	09:10	Sin Observaciones
Salida de los Filtros	рН		6,20	09:10	Sin Observaciones
	Temperatura	°C	18,00	09:10	Sin Observaciones
	Turbiedad	NTU	2,91	09:12	Sin Observaciones
	Cloro Residual	mg/L	0,99	09:15	Sin Observaciones
	Conductividad	μS/cm	42,13	09:18	Sin Observaciones
Salida de la Planta	рН		6,05	09:18	Sin Observaciones
	Temperatura	°C	17,80	09:18	Sin Observaciones
	Turbiedad	NTU	2,90	09:22	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 29/01/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	20,90	10:10	Sin Observaciones
Entrada a la	рН		7,57	10:10	Sin Observaciones
Planta	Temperatura	°C	16,80	10:10	Sin Observaciones
	Turbiedad	NTU	4,68	10:15	Sin Observaciones
	Conductividad	μS/cm	20,90	10:20	Sin Observaciones
Ingreso de los	рН		7,58	10:20	Sin Observaciones
Filtros	Temperatura	°C	16,80	10:20	Sin Observaciones
	Turbiedad	NTU	4,68	10:23	Sin Observaciones
	Cloro Residual	mg/L	0,95	10:26	Sin Observaciones
Salida de los	Conductividad	μS/cm	21,20	10:30	Sin Observaciones
Filtros	рН		7,49	10:30	Sin Observaciones
	Temperatura	°C	16,20	10:30	Sin Observaciones
	Turbiedad	NTU	1,48	10:33	Sin Observaciones
	Cloro Residual	mg/L	0,94	10:35	Sin Observaciones
Salida de la	Conductividad	μS/cm	22,00	10:38	Sin Observaciones
Planta	рН		7,55	10:38	Sin Observaciones
	Temperatura	°C	16,10	10:38	Sin Observaciones
	Turbiedad	NTU	1,46	10:40	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 05/02/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	19,00	09:10	Agua cristalina.
Entrada a la	рН		7,38	09:13	Sin Observaciones
Planta	Temperatura	°C	19,80	09:14	Sin Observaciones
	Turbiedad	NTU	1,33	09:15	Sin Observaciones
	Conductividad	μS/cm	19,00	09:22	Sin Observaciones
Ingreso de	рН		7,39	09:25	Sin Observaciones
los Filtros	Temperatura	°C	18,70	09:25	Sin Observaciones
	Turbiedad	NTU	1,33	09:27	Sin Observaciones
	Cloro Residual	mg/L	0,55	09:35	Sin Observaciones
	Conductividad	μS/cm	20,00	09:40	Sin Observaciones
Salida de los Filtros	рН		7,14	09:46	Sin Observaciones
	Temperatura	°C	17,50	09:50	Sin Observaciones
	Turbiedad	NTU	0,30	09:55	Sin Observaciones
	Cloro Residual	mg/L	1,21	10:03	Sin Observaciones
	Conductividad	μS/cm	21,00	10:10	Sin Observaciones
Salida de la Planta	рН		7,10	10:17	Sin Observaciones
	Temperatura	°C	17,10	10:18	Sin Observaciones
	Turbiedad	NTU	0,26	10:20	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 12/02/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	46,18	09:05	Sin Observaciones
Entrada a la	рН		7,55	09:10	Sin Observaciones
Planta	Temperatura	°C	18,20	09:14	Sin Observaciones
	Turbiedad	NTU	35,90	09:15	Sin Observaciones
	Conductividad	μS/cm	57,53	09:22	Sin Observaciones
Ingreso de	рН		6,33	09:25	Sin Observaciones
los Filtros	Temperatura	°C	17,90	09:25	Sin Observaciones
	Turbiedad	NTU	35,85	09:27	Sin Observaciones
	Cloro Residual	mg/L	0,29	09:35	Sin Observaciones
	Conductividad	μS/cm	55,57	09:40	Sin Observaciones
Salida de los Filtros	рН		6,28	09:46	Sin Observaciones
	Temperatura	°C	17,40	09:50	Sin Observaciones
	Turbiedad	NTU	1,08	09:55	Sin Observaciones
	Cloro Residual	mg/L	0,33	10:03	Sin Observaciones
	Conductividad	μS/cm	53,28	10:10	Sin Observaciones
Salida de la Planta	рН		7,05	10:17	Sin Observaciones
	Temperatura	°C	17,10	10:18	Sin Observaciones
	Turbiedad	NTU	1,09	10:20	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 12/3/2025

Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	20,39	10:15	Sin Observaciones
Entrada a la	рН		7,05	10:18	Sin Observaciones
Planta	Temperatura	°C	20,40	10:19	Sin Observaciones
	Turbiedad	NTU	2,43	10:20	Sin Observaciones
	Conductividad	μS/cm	21,40	10:22	Sin Observaciones
Ingreso de	рН		7,10	10:25	Sin Observaciones
los Filtros	Temperatura	°C	20,40	10:27	Sin Observaciones
	Turbiedad	NTU	2,43	10:28	Sin Observaciones
	Cloro Residual	mg/L	0,56	10:35	Sin Observaciones
	Conductividad	μS/cm	18,20	10:40	Sin Observaciones
Salida de los Filtros	рН		6,95	10:43	Sin Observaciones
	Temperatura	°C	21,10	10:45	Sin Observaciones
	Turbiedad	NTU	0,31	10:49	Sin Observaciones
	Cloro Residual	mg/L	0,55	10:58	Sin Observaciones
	Conductividad	μS/cm	18,05	21:36	Sin Observaciones
Salida de la Planta	рН		6,90	11:04	Sin Observaciones
	Temperatura	°C	20,90	11:06	Sin Observaciones
	Turbiedad	NTU	0,32	11:11	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 08/03/2025

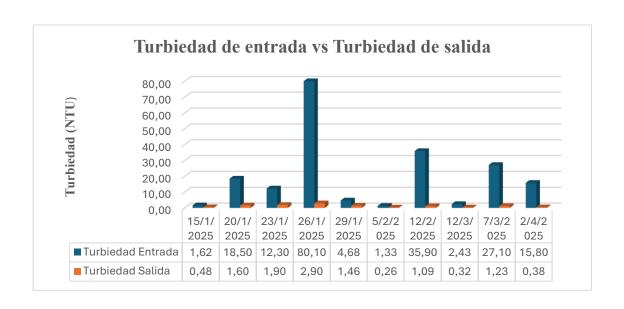
Tipo de muestreo: Puntual

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	15,85	08:40	Agua con turbiedad
Entrada a la	рН		6,65	08:43	Sin Observaciones
Planta	Temperatura	°C	19,70	08:46	Sin Observaciones
	Turbiedad	NTU	27,10	08:52	Sin Observaciones
	Conductividad	μS/cm	15,85	08:55	Sin Observaciones
Ingreso de	рН		6,66	08:58	Sin Observaciones
los Filtros	Temperatura	°C	19,80	09:03	Sin Observaciones
	Turbiedad	NTU	27,11	09:10	Sin Observaciones
	Cloro Residual	mg/L	0,94	09:15	Sin Observaciones
	Conductividad	μS/cm	13,76	09:20	Sin Observaciones
Salida de los Filtros	рН		6,99	09:24	Sin Observaciones
	Temperatura	°C	19,60	09:29	Sin Observaciones
	Turbiedad	NTU	1,24	09:30	Sin Observaciones
	Cloro Residual	mg/L	0,84	09:35	Sin Observaciones
	Conductividad	μS/cm	14,03	09:40	Sin Observaciones
Salida de la Planta	рН		6,88	09:42	Sin Observaciones
	Temperatura	°C	16,60	09:42	Sin Observaciones
	Turbiedad	NTU	1,23	09:45	Sin Observaciones

Procedencia de la muestra: La Victoria

Fecha de muestreo: 02/04/2025

Tipo de muestreo: Puntual


Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm	21,03	08:05	Agua poca turbia
Entrada a la	рН		7,26	08:05	Sin Observaciones
Planta	Temperatura	°C	14,20	08:05	Sin Observaciones
	Turbiedad	NTU	15,80	08:10	Sin Observaciones
	Conductividad	μS/cm	21,03	08:13	Sin Observaciones
Ingreso de	рН		7,25	08:13	Sin Observaciones
los Filtros	Temperatura	°C	14,2	08:13	Sin Observaciones
	Turbiedad	NTU	15,79	08:15	Sin Observaciones
	Cloro Residual	mg/L	0,52	08:18	Sin Observaciones
	Conductividad	μS/cm	19,95	08:20	Sin Observaciones
Salida de los Filtros	рН		6,96	08:20	Sin Observaciones
	Temperatura	°C	14,35	08:20	Sin Observaciones
	Turbiedad	NTU	0,38	08:23	Sin Observaciones
	Cloro Residual	mg/L	0,50	08:25	Sin Observaciones
	Conductividad	μS/cm	16,21	08:30	Sin Observaciones
Salida de la Planta	рН		6,75	08:30	Sin Observaciones
	Temperatura	°C	14,50	08:30	Sin Observaciones
	Turbiedad	NTU	0,38	08:35	Sin Observaciones

PROMEDIO DE MUESTREOS DE CONTROL DE PARÁMETROS EN LOS PUNTOS DE MUESTREO

	PROMEDIC	DE MUESTREOS	
Punto de Muestreo	Parámetro	Unidad	Valor promedio
	Conductividad	μS/cm	22,97
Entrada a la	рН		7,44
Planta	Temperatura	°C	17,66
	Turbiedad	NTU	19,98
	Conductividad	μS/cm	24,22
Ingreso de los	рН		7,17
Filtros	Temperatura	°C	17,55
	Turbiedad	NTU	19,91
	Cloro Residual	mg/L	0,73
	Conductividad	μS/cm	24,77
Salida de los Filtros	рН		6,97
1 11005	Temperatura	°C	17,57
	Turbiedad	NTU	1,15
	Cloro Residual	mg/L	0,70
	Conductividad	μS/cm	24,89
Salida de la Planta	pН		6,95
1 141144	Temperatura	°C	17,18
	Turbiedad	NTU	1,16

Comparación de parámetros de calidad del agua tratada con la Norma NB 512

Fecha de análisis		Residual ng/L)	Conduc (µS/	ctividad (cm)	p.	Н	Temp.	Turb (N7	
	Valor medi do	Valor NB 512	Valor medid o	Valor NB 512	Valor medid o	Valor NB 512	Valor medid o	Valor medid o	Valor NB 512
15/1/25	0,52	0,2-1,5	15,01	1500	6,99	6,5 - 9	18,90	0,48	5
20/1/25	0,35	0,2-1,5	22,05	1500	7,01	6,5 - 9	16,20	1,60	5
23/1/25	0,80	0,2-1,5	25,11	1500	7,20	6,5 - 9	16,58	1,90	5
27/1/25	0,99	0,2-1,5	42,13	1500	6,05	6,5 - 9	17,80	2,90	5
29/1/25	0,94	0,2-1,5	22,00	1500	7,55	6,5 - 9	16,10	1,46	5
5/2/25	1,21	0,2-1,5	21,00	1500	7,10	6,5 - 9	17,10	0,26	5
12/2/25	0,33	0,2-1,5	53,28	1500	7,05	6,5 - 9	17,10	1,09	5
12/3/25	0,55	0,2-1,5	18,05	1500	6,90	6,5 - 9	20,90	0,32	5
7/3/25	0,84	0,2-1,5	14,03	1500	6,88	6,5 - 9	16,60	1,23	5
2/4/25	0,50	0,2-1,5	16,21	1500	6,75	6,5 - 9	14,50	0,38	5

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes Laboratorio Oficial del "SENASAG"

INFORME DE ENSAYO

		I. INFORMACI	ÓN DEL SOLICITAN	ΓE	
Cliente:	Mariana Belén Oros	co Caro			
Solicitante:	Mariana Belén Oros	sco Caro			
Dirección:	Barrio Los Chapacos	s			
Teléfono/Fax	72975941	Соггео-е	****	Código	AG 0070/25

	11.	INFORMA(CIÓN DE LA MUESTRA						
Descripción de la muestra:	Agua de la pla	Agua de la planta potabilizadora de agua Alto Senac							
Codigo de muestreo:	M 1		vencimiento: *****	Lote: *****					
Fecha y hora de muestreo:	2025-04-02	Hr 9	9:30						
Procedencia (Localidad/Prov/ Opto)	Tarija - Cercad	lo - Tarija Bol	livia						
Lugar de muestreo:	Canal de Entra	ada		* **					
Responsable de muestreo:	Mariana Belér	Orosco Care	0						
Código de la muestra:	0476 FQ 0379		Fecha de recepción de la muestra:	2025-04-02					
Cantidad recibida:	3200 ml		Fecha de ejecución de ensayo:	De 2025-04-02 al 2025-04-09					

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADOS	LIMITES PERMISIBLES (para agua potable)		REFERENCIA DE LOS LIMITES
	ENSATO			Min.	Máx.	
Conductividad (25°C)	SM 2510-B	uS/cm	21,33		1500	NB 512:16
pH (24,9°C)	SM 4500-H-B		7,24	6,5	9,0	NB 512:16
Turbiedad	SM 2130-B	UNT	15,5		5	NB 512:16
Coliformes fecales	NB 31006:09	NMP/100ml	4,7 x 10 ¹		<1	NB 512:16
NB: Norma Boliviana SM: Standard Methods		imero Mas Probable Idades Nefelométricas de	e Turbiedad		Micro Siemens tenor que	L

¹⁾ Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

- 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 09 de abril del 2025

P. P. Co. SHALLAND

M.Sc. Ing. Freddy G. López Zamora

JEFE CEANID

riginal	: a	len	te

Copia: CEANID

UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO" FACULTAD DE "CIENCIAS Y TECNOLOGIA" CENTRO DE ANALISIS, INVESTIGACION Y DESARROLLO "CEANID" Laboratorio Oficial del Ministerio de Salud y Deportes Red de Laboratorios Oficiales de Análisis de Alimentos Red Nacional de Laboratorios de Micronutrientes

Laboratorio Oficial del "SENASAG" INFORME DE ENSAYO

I. INFORMACIÓN DEL SOLICITANTE						
Cliente:	Mariana Belén Orosco Care)				
Solicitante:	Mariana Belén Orosco Caro)				
Dirección:	Barrio Los Chapacos					
Teléfono/Fax	72975941	Correo-e	****	Código	AG 0070/25	

II. INFORMACIÓN DE LA MUESTRA

Descripción de la muestra:	Agua de la planta potabilizadora de agua Alto Senac					
Codigo de muestreo:	M 2 Fecha de vencimiento: ***** Lote: *****					*****
Fecha y hora de muestreo:	2025-04-02 Hr 9:45					
Procedencia (Localidad/Prov/ Dpto)	Tarija - Cercado - Tarija Bolivia					
Lugar de muestreo:	Tanque de almacenamiento de salida					
Responsable de muestreo:	Mariana Belén (Mariana Belén Orosco Caro				
Código de la muestra:	0477 FQ 0380 MB 0298 Fecha de recepción de la muestra: 2025-04-02					
Cantidad recibida:	3200 ml		Fecha de ejecución d	e ensayo:	De 2025-04-	02 al 2025-04-09

III. RESULTADOS

PARÁMETRO	TECNICA y/o MÉTODO DE	UNIDAD	RESULTADOS	LIMITES PERMISIBLES (para agua potable)		REFERENCIA DE
	ENSAYO			Min.	Máx.	
Cloro residual	HACH 2231-88	mg/I	0,48		1,5	NB 512:16
Conductividad (24,8°C)	SM 2510-B	uS/cm	16,62		1500	NB 512:16
pH (24,9°C)	SM 4500-H-B		6,41	6,5	9,0	NB 512:16
Turbiedad	SM 2130-B	UNT	0,38		5	NB 512:16
Coliformes fecales	NB 31004:07	UFC/100ml	< 1 (*)		<1	NB 512:16
NB: Norma Boliviana SM: Standard Methods		se observa desarrollo de dades Nefelométricas d			Micro Siemens Ienor que	

UFC: Unidad formadora de colonias mg/l: miligramo por litro

1) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio

- 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID
- 3) Los datos de la muestra y el muestreo, fueron suministrados por el cliente

Tarija, 09 de abril del 2025

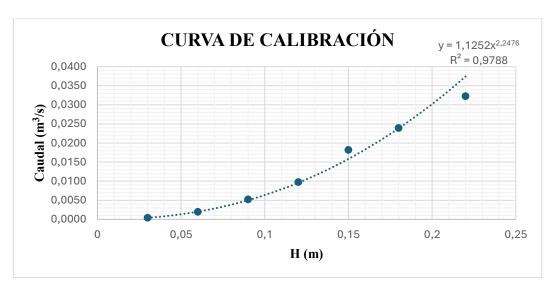
P. P. Co.S/tllot M.Sc. Ing. Freddy G. López Zamora JEFE CEANID

Orlginal: Cliente

Copia: CEANID

ANEXO 4 CALIBRACIÓN DEL VERTEDERO CALIBRACIÓN DEL VERTEDERO TRIANGULAR

Para el aforo volumétrico se tienen los siguientes datos recolectados:


H (cm)	Tiempo 1 (s)	Tiempo 2 (s)	Tiempo Promedio (s)
3	27,03	27,00	27,02
6	5,52	5,56	5,54
9	2,08	2,09	2,09
12	4,09	4,11	4,10
15	2,18	2,21	2,20
18	1,64	1,69	1,67
22	1,24	1,23	1,24

Con el promedio de los tiempos se procede a calcular el caudal mediante la siguiente ecuación:

$$Q_{real} = \frac{V}{t}$$

h (cm)	h (m)	Tiempo (s)	Q (L/s)	Q (m ³ /s)
3	0,03	27,02	0,4071	0,0004
6	0,06	5,54	1,9856	0,0020
9	0,09	2,09	5,2632	0,0053
12	0,12	4,10	9,7561	0,0098
15	0,15	2,2	18,1818	0,0182
18	0,18	1,67	23,9521	0,0240
22	0,22	1,24	32,2581	0,0323

A partir de estos datos se tiene la curva de calibración:

De donde se obtiene la ecuación calibrada del vertedero

$$Q=$$
 1, 1252 $\,\times$ H 2,2476

Coeficiente de determinación ($R^2 = 0.9788$)

Aproximadamente el 97.88% de la variabilidad del caudal es explicada por la variación de la carga, lo que confiere una alta fiabilidad a la curva de calibración para la estimación precisa del caudal en la planta.

Coeficiente de correlación (R = 0.9825)

Estos valores, cercanos a la unidad, indican una excelente bondad de ajuste de la ecuación empírica a los datos medidos. Indica la fuerza y dirección de la relación lineal entre la carga (H) y el caudal (Q); un valor cercano a 1 (positivo) significa una relación directa y muy fuerte.

Comparación de los caudales aforados con los caudales registrados en el tablero HMI

h (cm)	Q (L/s)	Q (L/s)
3	0,4071	0,4200
6	1,9856	2,0500
9	5,2632	5,4200
12	9,7561	10,0500
15	18,1818	18,2000
18	23,9521	24,6700
22	32,2581	32,3000

ANEXO 5 AFORO VOLUMÉTRICO DEL LAVADO DE LOS FILTROS

PLANILLA DE CAMPO – AFORO VOLUMÉTRICO DEL LAVADO DE FILTROS "PLANTA DE TRATAMIENTO DE AGUA POTABLE ALTO SENAC"

Fecha de realización:

Responsable: Orosco Caro Mariana Belén

Temperatura del agua: 15,5 °C

Método utilizado: Aforo volumétrico

Diámetro de la tubería de lavado: 8

Condiciones: Sistema por gravedad sin control de presión

Volumen del tanque de aforo: $100 L = 0.1 m^3$

Prueba	Tiempo (s)	Observaciones
1	3,00	Mayor presión inicial
2	4,00	Flujo constante
3	5,00	Flujo constante
4	4,00	Flujo constante
5	5,00	Sin observaciones

Determinación del caudal

Prueba	Tiempo (s)	Caudal (L/s)	Caudal (m³/s)
1	3,00	33,33	0,03
2	4,00	25,00	0,03
3	5,00	20,00	0,02
4	4,00	25,00	0,03
5	5,00	20,00	0,02
Promedio	4,20	24,67	0,02

ANEXO 6 TASA DE FILTRACIÓN TASA DE FILTRACIÓN

Datos

Dimensiones de cada filtro				
Ancho 1,4 m				
Largo 1,6 m				
Número de filt	9			

Área total de filtración = 20,16 m²

Cálculo de la tasa de filtración:

N°	Fecha	Caudal (L/s)	Caudal (m³/h)	Tasa de filtración (m³/m²·h)	Tasa de filtración (m³/m²·d)
1	15/1/2025	24,88	89,57	4,44	106,63
2	20/1/2025	19,55	70,38	3,49	83,79
3	23/1/2025	22,95	82,62	4,10	98,36
4	26/1/2025	14,80	53,28	2,64	63,43
5	29/1/2025	24,20	87,12	4,32	103,71
6	5/2/2025	26,25	94,50	4,69	112,50
7	12/2/2025	18,69	67,28	3,34	80,10
8	12/3/2025	23,95	86,22	4,28	102,64
9	7/3/2025	21,97	79,09	3,92	94,16
10	2/4/2025	24,60	88,56	4,39	105,43
PRO	MEDIO	22,18	79,86	3,96	95,07

ANEXO 7 PRUEBA DE JARRAS DATOS DE LA MUESTRA DE AGUA CRUDA

Procedencia de la muestra: La Victoria

Fecha de muestreo: 26/1/2025

Fecha de ingreso a laboratorio: 27/1/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	41,58
рН		7,2
Temperatura	°C	17,9
Turbiedad	NTU	625

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	50	4000	12500

ENSAYO N° 1						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	1	2	3	4	5	6
Hidróxido de Calcio (ml)	0,5	1	1,5	2	2,5	3
Conductividad (µS/cm)	115	184	238,4	307,7	360,9	400,3
рН	4,63	4,35	4,23	4,12	4,1	4,03
Temperatura (°C)	22	22,3	22,3	22,3	22,4	22,4
Turbiedad (NTU)	14,3	9,37	9,88	3,68	5,38	4,66

ENSAYO N° 2							
JARRA N°	1	2	3	4	5	6	
Sulfato de Aluminio (ml)	4	6	1	3	5	7	
Hidróxido de Calcio (ml)	4	6	3	5	7	9	
Conductividad (µS/cm)	313	414,5	107,7	229,2	372,4	462,7	
рН	4,29	4,12	5,34	4,45	4,22	4,14	
Temperatura (°C)	20,8	21,1	21	20,9	20,9	21	
Turbiedad (NTU)	3,17	3,14	17,3	4,66	2,14	3,84	

ENSAYO N° 3						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0	1	2	3	4	5
Hidróxido de Calcio (ml)	9	8	7	6	5	4
Conductividad (µS/cm)	76,71	169,8	192,7	328,2	314,3	392
pН	8,8	6,9	4,71	4,29	4,28	4,21
Temperatura (°C)	21,4	21	20,8	20,8	21	21,1
Turbiedad (NTU)	5,3	3,84	3,23	3,01	2,99	3,78

Procedencia de la muestra: La Victoria

Fecha de muestreo: 28/1/2025

Fecha de ingreso a laboratorio: 29/1/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	17,2
рН		7,03
Temperatura	°C	17,3
Turbiedad	NTU	150

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	70	4000	17500

ENSAYO N° 1						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0,5	1	1,5	2	2,5	3
Hidróxido de Calcio (ml)	8	10	15	20	25	30
Conductividad (µS/cm)	88,21	120,3	170,9	191,3	269,8	276,8
рН	8,28	8,18	7,33	8,06	8,83	8,84
Temperatura (°C)	17,7	17,5	17,4	17,6	17,6	17,9
Turbiedad (NTU)	9,93	3,93	2,95	2,78	0,96	1,35

Procedencia de la muestra: La Victoria

Fecha de muestreo: 12/2/2025

Fecha de ingreso a laboratorio: 13/2/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	45,18
рН		8,65
Temperatura	°C	18,5
Turbiedad	NTU	45,3

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	130	4000	32500

ENSAYO N° 1								
JARRA N°	1	2	3	4	5	6		
Sulfato de Aluminio (ml)	0,5	1	1,5	2	2,5	3		
Hidróxido de Calcio (ml)	0,5	1	2	3	4	5		
Conductividad (µS/cm)	78,4	77,2	82,1	99,7	105,5	126,8		
рН	6,4	5,4	4,2	4,17	4,16	4,15		
Temperatura (°C)	18,9	19	19	19,1	18,9	19		
Turbiedad (NTU)	17,8	22,08	30,03	25,6	12,4	8,53		

ENSAYO N° 2						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0,1	0,2	0,3	0,4	0,5	0,6
Hidróxido de Calcio (ml)	0,5	1	1,5	2	2,5	3
Conductividad (µS/cm)	57,53	63,57	66,56	73,25	79,86	84,05
рН	6,28	6,53	6,63	6,56	6,4	6,2
Temperatura (°C)	20	18,7	19,8	19,9	20,1	19,9
Turbiedad (NTU)	36,1	2,34	22,6	40,6	41,6	39,7

Procedencia de la muestra: La Victoria

Fecha de muestreo: 17/2/2025

Fecha de ingreso a laboratorio: 19/2/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	14,97
рН		6,05
Temperatura	°C	16,9
Turbiedad	NTU	18,4

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	100	4000	25000

ENSAYO N° 1					
JARRA N°	1	2	3		
Sulfato de Aluminio (ml)	0,2	0,3	0,5		
Hidróxido de Calcio (ml)	2,5	5	7,5		
Conductividad (µS/cm)	55,27	126,8	151,1		
рН	8,32	10,39	10,08		
Temperatura (°C)	17,1	16,8	16,9		
Turbiedad (NTU)	12,7	11,8	15,6		

ENSAYO N° 2					
JARRA N°	1	2	3		
Sulfato de Aluminio (ml)	0,1	0,1	1		
Hidróxido de Calcio (ml)	2	2,5	3		
Conductividad (µS/cm)	59,46	66,97	107,4		
pН	9,92	10,03	7,55		
Temperatura (°C)	17,3	17,1	17,2		
Turbiedad (NTU)	4,71	14,1	3,76		

Procedencia de la muestra: La Victoria

Fecha de muestreo: 17/2/2025

Fecha de ingreso a laboratorio: 19/2/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	17,61
pН		8
Temperatura	°C	16,6
Turbiedad	NTU	288

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	100	4000	25000

ENSAYO N° 1						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0,5	1	1,5	2	2,5	3
Hidróxido de Calcio (ml)	0	0,5	1	1,5	2	2,5
Conductividad (µS/cm)	52,97	99,9	145	194,6	197,6	237,9
рН	4,96	4,54	4,45	4,39	4,46	4,32
Temperatura (°C)	17	17,1	17,4	17,4	17,8	17
Turbiedad (NTU)	22,9	39,2	27,6	15,5	16	2,21

ENSAYO N° 2						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0,5	1	1,5	0,1	0,2	0,5
Hidróxido de Calcio (ml)	2,5	3	3,5	2,5	3	3,5
Conductividad (µS/cm)	69,72	115,7	174,2	135,7	104,38	90,9
рН	7,6	5,36	4,62	5,99	6,28	7,22
Temperatura (°C)	19,1	18,1	18,2	18,1	18,2	18,1
Turbiedad (NTU)	59,5	39,1	28,5	17,3	9,5	2,05

Procedencia de la muestra: La Victoria

Fecha de muestreo: 18/2/2025

Fecha de ingreso a laboratorio: 19/2/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	35,28
рН		7,85
Temperatura	°C	16,6
Turbiedad	NTU	737

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	50	4000	12500

ENSAYO N° 1						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio (ml)	0,5	0,5	0,5	1	1,5	1,5
Hidróxido de Calcio (ml)	0	2	2,5	3	4	5
Conductividad (µS/cm)	63,64	79,63	72,71	111,7	145,7	144,9
рН	5,04	6,47	6,65	5,13	4,77	5,26
Temperatura (°C)	17,1	17	17,2	17,3	17,3	17,2
Turbiedad (NTU)	3,67	2,8	0,99	3,85	1,61	1,67

DATOS DE LA MUESTRA DE AGUA CRUDA

Procedencia de la muestra: La Victoria

Fecha de muestreo: 3/3/2025

Fecha de ingreso a laboratorio: 3/3/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	22,03
pН		7
Temperatura	°C	18
Turbiedad	NTU	119

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	50	4000	12500

ENSAYO N° 1								
JARRA N° 1 2 3 4 5								
Sulfato de Aluminio (ml)	0,5	1	1,5	2	2,5	3		
Hidróxido de Calcio (ml)	2	4	6	8	10	12		
Conductividad (µS/cm)	69,5	109,2	180,2	185,5	206	252,8		
рН	4,8	4,48	4,3	4,2	4,18	4,16		
Temperatura (°C)	18,8	18,2	18,1	18,3	18,6	18,2		
Turbiedad (NTU)	23,9	17,9	13,9	11,1	7,43	7,67		

ENSAYO N° 2								
JARRA N°	1	2	3	4	5	6		
Sulfato de Aluminio (ml)	0,1	0,2	0,3	0,4	0,5	0,6		
Hidróxido de Calcio (ml)	10	12	14	16	18	20		
Conductividad (µS/cm)	75,24	59,02	86,56	95,26	104,5	115,2		
рН	8,94	8,95	9,28	9,22	8,99	9,1		
Temperatura (°C)	18,5	18,4	18,3	18,4	18,4	18,6		
Turbiedad (NTU)	27,2	23,3	27,1	29,6	4	17		

DATOS DE LA MUESTRA DE AGUA CRUDA

Procedencia de la muestra: La Victoria

Fecha de muestreo: 3/3/2025

Fecha de ingreso a laboratorio: 3/3/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	41,46
рН		8,63
Temperatura	°C	17,6
Turbiedad	NTU	52,6

Reactivo	kg	L	mg/L
Sulfato de Aluminio	400	4000	100000
hidróxido de Calcio	50	4000	12500

ENSAYO N° 1							
JARRA N°	1	2	3	4	5	6	
Sulfato de Aluminio (ml)	0,50	1,00	1,20	1,50	1,80	2,00	
Hidróxido de Calcio (ml)	1,00	1,50	2,00	2,50	3,00	3,50	
Conductividad (µS/cm)	69,81	106,20	124,20	149,10	176,80	181,80	
pH	7,36	5,35	4,04	4,60	4,37	4,37	
Temperatura (°C)	17,80	17,80	17,90	18,00	18,00	18,10	
Turbiedad (NTU)	4,71	3,52	14,14	17,10	19,20	16,20	

DATOS DE LA MUESTRA DE AGUA CRUDA

Procedencia de la muestra: La Victoria

Fecha de muestreo: 9/3/2025

Fecha de ingreso a laboratorio: 10/3/2025

Parámetro	Unidad	Valor Medido
Conductividad	μS/cm	31,16
рН		8,26
Temperatura	°C	15,5
Turbiedad	NTU	63,8

Reactivo	kg	L	mg/L
Sulfato de Aluminio	300	4000	75000
hidróxido de Calcio	280	4000	70000

ENSAYO N° 1								
JARRA N° 1 2 3 4 5						6		
Sulfato de Aluminio (ml)	0,3	0,5	0,8	1	1,3	1,5		
Hidróxido de Calcio (ml)	0,5	1	1,5	2	2,5	3		
Conductividad (µS/cm)	61,68	49,37	87,83	113,6	133,7	149,5		
рН	6,7	6,43	4,92	4,52	4,37	4,32		
Temperatura (°C)	15,8	15,8	15,7	15,8	15,8	15,9		
Turbiedad (NTU)	3,49	28,9	29,21	28,9	26,32	27,6		

Dosis o concentración química, se obtiene de la prueba de jarras y se expresa en %, ppm = mg/l o g/m³, es lo que el operador debe manejar.

Fecha (Análisis)	Turbiedad inicial (NTU)	pH inicia l	Conc. (Al ₂ (SO ₄) ₃) (mg/L)	Conc. (Ca(OH) ₂) (mg/L)	Turbiedad final (NTU)	pH final	Eficienci a
3/3/2025	119	7	50	225	4	8,99	96,64%
3/3/2025	52,6	8,63	50	12,5	4,71	7,36	91,05%
10/3/2025	63,8	8,26	22,5	35	3,49	6,7	94,53%
13/2/2025	45,3	8,65	20	32,5	2,34	6,53	94,83%
19/2/2025	18,4	6,05	100	75	3,76	6,53	79,57%
19/2/2025	288	8	50	87,5	2,05	7,22	99,29%
19/2/2025	737	7,85	50	62,5	0,99	6,65	99,87%
29/1/2025	150	7,03	250	437,5	0,96	8,83	99,36%
27/1/2025	625	7,2	100	80	3,84	6,9	99,39%

ANEXO 8 FICHA DE EVALUACIÓN DEL PRETRATAMIENTO FICHA TÉCNICA DE LA PLANTA POTABILIZADORA DE AGUA ALTO SENAC

1. DATOS GENERALES

• Fecha de visita: 17-01-2025

• Hora de inspección: 08:30 am

• Responsable: Orosco Caro Mariana Belen

2. DESCRIPCIÓN DEL PROCESO UNITARIO

El pretratamiento en la Planta Potabilizadora de Agua de Alto SENAC consiste en la captación de agua cruda a través de un canal de entrada de hormigón.

- **Remoción de sólidos gruesos**: Mediante una rejilla metálica desmontable y un colador perforado.
- Control de caudal y flujo: Utilizando compuertas metálicas, válvulas mariposa y válvula neumática.00.

3. INFRAESTRUCTURA Y EQUIPOS INSTALADOS

Componente	Características	Cantidad	Estado	Observaciones
Canal de ingreso	Conducto que dirige el agua hacia el siguiente proceso.	1	Bueno	Sin evidencias de fisuras ni deterioro.
Compuertas metálicas	Compuerta metálica con Volantes para regular el flujo de agua cruda.	2	Bueno	Sin corrosión ni deformaciones
Válvula mariposa DN 200	Con bridas DN 200 para controlar el flujo de agua.	1	Bueno	Operativa sin fugas.
Acoplamiento Universal	Conectar la tubería de entrada.	1	Bueno	Sin observaciones
Rejilla metálica desmontable	Separación entre barras de 4 mm	1	Bueno	Revisar que no presente corrosión.

Colador Perforado	DN 200 mm, con orificios de 2 cm de	1	Bueno	Sin observaciones
Inoxidable	diámetro		Ducho	Sin observaciones
Componente	Características	Cantidad	Estado	Observaciones
Vertedero	Vertedero triangular para el caudal de ingreso.	1	Bueno	Sin observaciones
Turbidímetro	Medir turbiedad del agua cruda y activar cierre si >20 NTU.	1	Bueno	Sin observaciones
Transmisor de nivel	Medir altura H en el vertedero para calcular caudal.	1	Bueno	Sin observaciones

4. EVALUACIÓN RECORRIDO EN PLANTA

• Infraestructura de llegada

Concepto	Si	No	Observación
¿El canal de entrada se conoce sus dimensiones?	Si		Se conocen las medidas del canal.
¿El canal de entrada coinciden sus dimensiones a la de sus planos?	Si		Las dimensiones han sido verificadas y son conformes a los planos, lo que favorece la operatividad y la seguridad estructural.
¿El canal de entrada presenta fugas o deterioro en su infraestructura?		No	No se han identificado signos de deterioro ni fugas.
¿En el canal de entrada se realiza mantenimiento?	Si		El mantenimiento es manual.

• Medición de caudal y la turbiedad

Concepto	Si	No	Observación
¿Se registran el caudal de operación normal a la entrada, salida y el gasto máximo y mínimo?	Si		No se cuenta con registros precisos,
¿Se conoce el tipo de medidor de caudal que se emplea? ¿Cuál sería?	Si		Sensor de nivel con cálculo de caudal según altura del vertedero.

Concepto	Si	No	Observación
¿Se realizan la calibración y mantenimiento de los medidores de	Si		Se realiza mantenimiento, pero no se tiene datos de calibración
flujo?			en la entrada de la planta.
¿Se realiza alguna derivación de caudal excedente o caudal de rechazo?		No	Se realiza manualmente el cierre de la compuerta de ingreso.
¿Se registra la turbiedad máxima y mínima a la entrada?	Si		Mediante un tablero de control.

• Pretratamiento

Concepto	Si	No	Observación		
¿Se requiere pretratamiento?	Si		Indispensable para eliminar sólidos que afecten los procesos posteriores.		
¿Existe sistema de presedimentación?		No	Sin observaciones		
¿Existe sistema de rejilla o cribado?	Si		Cuenta con una rejilla desmontable y un colador perforado.		

ANEXO 9 FICHA DE EVALUACIÓN DE LA COAGULACIÓN FICHA TÉCNICA DE LA PLANTA POTABILIZADORA DE AGUA ALTO SENAC

1. DATOS GENERALES

• Fecha de visita: 03-02-2025

• Hora de inspección: 09:10 am

• Responsable: Orosco Caro Mariana Belen

2. DESCRIPCIÓN DEL PROCESO UNITARIO

El proceso de coagulación en la Planta Alto SENAC utiliza sulfato de aluminio como coagulante primario y hidróxido de calcio para ajustar el pH del agua cruda. La dosificación se realiza mediante bombas de diafragma que inyectan las soluciones preparadas en la tubería antes del ingreso a los filtros, garantizando una mezcla rápida homogénea.

3. INFRAESTRUCTURA Y EQUIPOS INSTALADOS

Componente	Características	Cantidad	Estado actual	Observaciones
Tanque de dosificación	Capacidad: 1000 L Material: Polietileno reforzado con fibras de vidrio.	2	Bueno	Verificar limpieza interna trimensual.
Bombas dosificadoras Con diafragma	Caudal: 155 l/h Presión: 7 Bar	2	Bueno	Verificar desgaste de diafragmas cada 6 meses.
Codos PVC	Material: PVC. Diámetro de 1 ½" • Codos 90°	9	Bueno	Sin observaciones.
Tee PVC	Material: PVC. Diámetro de 1 ½"	7	Bueno	Sin observaciones.
Llaves Ball Valves	Llaves de paso de diámetro de 1 ½"	7	Bueno	Sin fugas, ni obstrucciones.

Codos AC	Material: Acero al carbono. DN 40 • Codos 90°	2	Bueno	Pintura anticorrosiva en buen estado.
Tee	Material: Acero al carbono. DN 40	1	Bueno	Sin observaciones.
Agitador mecánico	Tipo hélice Velocidad: 120 RPM	1	Bueno	Mantener rutina de lubricación y limpieza del eje y paletas.
Tanque multicapa negro	Capacidad: 400 L Material: Polietileno	1	Bueno	Uso exclusivo para hidróxido de calcio.
Llave de paso	Diámetro: ½" Material: Polietileno	1	Bueno	Sin observaciones.

4. EVALUACIÓN RECORRIDO EN PLANTA

Concepto	Si	No	Observación
¿Se verifica la dosificación conforme al caudal que entra en el sistema?	Si		El sistema de caudal es automático mediante sensor de nivel en el vertedero.
¿Se lleva a cabo adecuadamente la mezcla rápida?	Si		Se realiza por agitación hidráulica mediante el diseño del sistema de ingreso.
¿Se registran en la bitácora de actividades el estado del proceso y la dosificación empleada?		No	Aún no se implementa el registro sistemático en bitácora.
¿Se seleccionan la dosis óptima y las sustancias químicas adecuadamente? ¿Cómo se determina?	Si		Mediante pruebas de jarras según variación de turbiedad del agua cruda.
¿Se preparan las soluciones de coagulantes adecuadamente antes de la aplicación?	Si		Se realiza en tanques de dosificación conforme a protocolo.
¿Se ajusta el pH del influente?	Si		Se utiliza hidróxido de calcio para mantener el pH óptimo para coagulación.
¿La mezcla rápida se realiza de forma mecánica o hidráulica? ¿De qué tipo?	Si		Mecánica (agitador tipo hélice).
¿Como coagulante se emplea un polímero? ¿Cuál?		No	No se utiliza polímero, solo sulfato de aluminio como coagulante primario.

ANEXO 10 FICHA DE EVALUACIÓN DE LA FILTRACIÓN FICHA TÉCNICA DE LA PLANTA POTABILIZADORA DE AGUA ALTO SENAC

1. DATOS GENERALES

• Fecha de visita: 10-02-2025

• Hora de inspección: 08:25 am

• Responsable: Orosco Caro Mariana Belen

2. DESCRIPCIÓN DEL PROCESO UNITARIO

En la planta, este proceso se realiza a través de una batería de filtros auto limpiantes que operan por gravedad. El agua previamente tratada con coagulantes y sometida a mezcla rápida ingresa a los filtros, donde se produce la separación de impurezas mediante capas filtrantes de grava y arena.

3. INFRAESTRUCTURA Y EQUIPOS INSTALADOS

Componente	Características	Cantidad	Estado	Observaciones
Tubería	Tuberías de entrada de AC y de PVC.	1	Bueno	Sin fugas ni obstrucciones observadas.
Batería de filtros	Hormigón armado H-25, 9 unidades.	1	Bueno	Sin observaciones
Medio Filtrante	Grava (4-6 mm) y arena (0.5 mm).	9 filtros	Bueno	Sin observaciones
Válvulas Mariposa DN 200	Válvulas con brida, operación manual.	18	Bueno	Todas operativas.
Válvulas Mariposa DN 100	Válvulas con brida, operación manual.	9	Bueno	Todas operativas.
Columnas de Maniobra	Columnas simples con volante.	27	Bueno	Dos columnas requieren lubricación.
Barras de Prolongación	Barras para apertura de válvulas.	27	Bueno	Sin observaciones.

Componente	Características	Cantidad	Estado	Observaciones
Sistema de Lavado	Lavado ascendente por gravedad	9	Bueno	Sin observaciones.
Estructuras Metálicas	Barandas Planchas antideslizantes	1	Bueno	Sin observaciones.

4. EVALUACIÓN RECORRIDO EN PLANTA

Concepto	Si	No	Observación
¿Se conoce el tipo de filtro que se emplea?	Si		Filtros rápidos.
¿Se reparte el flujo uniformemente entre los filtros?	Si		Se realiza de forma manual mediante las columnas de maniobra.
¿Se conoce si la filtración es por gravedad o por presión?	Si		El sistema opera por gravedad, reduciendo el consumo energético y facilitando un proceso continuo y estable.
¿Se conoce el tipo de lecho filtrante? ¿Cuál es?	Si		El lecho filtrante está compuesto por grava (4-6 mm) y arena (0.5 mm).
¿Se conoce si es un medio dual o simple?	Si		Medio filtrante simple.
¿Se comprueba la pérdida de carga de los filtros?		No	No se cuenta con un sistema de medición de pérdida de carga.
¿Se tienen bien determinados los criterios para realizar el retrolavado? ¿Cuáles serían? (pérdida de carga/calidad del agua)		No	Para este se realizará las pruebas necesarias.
¿Se realiza con frecuencia el retrolavado?	Si		Según demanda operativa.
¿Se hace el retrolavado con bomba o por carga? ¿Desde un tanque elevado o por autolavado?	Si		Sistema de retrolavado por carga hidráulica.
¿Cómo se hace el retrolavado: aire – agua o sólo agua? ¿Se realiza lavado superficial?	Si		El procedimiento de retrolavado se ejecuta utilizando únicamente agua.
¿Se comprueba la calidad del agua a la salida de los filtros?	Si		Se realizan controles de los parámetros de control mínimo.

ANEXO 11 FICHA DE EVALUACIÓN DE LA DESINFECCIÓN FICHA TÉCNICA DE LA PLANTA POTABILIZADORA DE AGUA ALTO SENAC

1. DATOS GENERALES

• Fecha de visita: 17-02-2025

• Hora de inspección: 08:25 am

• Responsable: Orosco Caro Mariana Belen

2. DESCRIPCIÓN DEL PROCESO UNITARIO

El proceso de desinfección en la planta de tratamiento de agua potable Alto SENAC se lleva a cabo mediante la aplicación de gas cloro, con el objetivo de eliminar microorganismos patógenos y asegurar la potabilidad del agua. El gas cloro se dosifica de manera automática a través de un sistema de control que permite regular la dosis de desinfectante según la calidad del agua tratada.

Para la seguridad del proceso, la sala de cloración está equipada con un detector de fuga de gas cloro, un kit de emergencia y un sistema de respiración autónomo para el personal en caso de incidentes. Además, se cuenta con un sistema de ventilación mecánica para evitar la acumulación de gases peligrosos.

3. INFRAESTRUCTURA Y EQUIPOS INSTALADOS

Componente	Características	Cantida d	Estado	Observaciones
Dosificadores de Cloro	Tipo: Automático.	1	Bueno	Funciona con ajustes manuales.
Cloradores Hydro	Configuración: Inyección por bombas eyectoras.	1	Bueno	Sin observaciones
Manifold Hidráulico	Material: Acero inoxidable.	1	Bueno	Sin observaciones
Cilindros de Cloro	Capacidad: 68 kg. Nuevos	2	Bueno	Sin observaciones

Componente	Características	Cantida d	Estado	Observaciones
Detector de Fugas	Sensibilidad: Alta	1	Bueno	Sin observaciones
Kit de Emergencia	Incluye: Neutralizadores y herramientas.	1	Bueno	Sin observaciones
Bombas Eyectoras	Caudal: 5-35 L/min Presión:	1	Bueno	Sin observaciones
Ventilador Extractor	Modelo: Amsare Capacidad 1	1	Bueno	Sin observaciones
Báscula Simple	Capacidad:200 kg Exactitud: Alta.	2	Bueno	Una operativa.

4. EVALUACIÓN RECORRIDO EN PLANTA

Concepto	Si	No	Observación
¿Se conoce el tipo de desinfectante	Si		Se utiliza el gas cloro como
que dosifica en el agua?	O1		desinfectante.
			Se utiliza una dosis estándar de
¿A qué concentración se emplea?	Si		1,50 mg/L, ajustada en base a
			muestreo.
¿Se conoce el tipo de dosificador que			Se emplea un clorador Hydro con
se emplea?			sistema automático de
			dosificación.
¿Se conocen los mg/L de cloro	Si		Según la NB 512 el valor máximo
residual que debe tener el efluente?	SI		aceptable es de 0,2–1,5 mg/L.
¿Se llevan registros diarios del		No	No se lleva un registro escrito
consumo de cloro?		INU	sistemático; ajustes son visuales.
¿Se verifica el funcionamiento del			Se verificó visualmente durante la
equipo de seguridad en la zona de	Si		visita técnica.
cloración?			visita tecinica.
¿Se identifica la existencia de fugas			
de gas cloro? Y en su caso, ¿se reporta	Si		Existe detector digital de fugas; el
al encargado de planta? ¿Se reporta	31		protocolo de aviso es inmediato.
inmediatamente?			

¿Se cuenta con alarma para detectar	Ç;	Confirmada existencia de sensor y
fugas de gas cloro?	31	alarma sonora instalada.

ANEXO 12 FICHA DE EVALUACIÓN DEL ALMACENAMIENTO FICHA TÉCNICA DE LA PLANTA POTABILIZADORA DE AGUA ALTO SENAC

1. DATOS GENERALES

• Fecha de visita: 24-02-2025

• Hora de inspección: 08:25 am

• Responsable: Orosco Caro Mariana Belen

2. DESCRIPCIÓN DEL PROCESO UNITARIO

El proceso unitario de almacenamiento consiste en la recepción, contención y distribución controlada del agua tratada en un tanque de 400 m³ construido en hormigón H-25.

3. INFRAESTRUCTURA Y EQUIPOS INSTALADOS

Componente	Características	Cantidad	Estado	Observaciones
Tanque de almacenamiento	Hormigón H-25, 400 m ³	1	Bueno	Se observan fisuras que fueron selladas con impermeabilizante.
Impermeabilización	Cartón asfáltico	1	Bueno	Sin observaciones
Losa superior	Capa de gravilla	1	Bueno	De 3 centímetros de altura
Válvulas mariposa FFD	Con bridas DN 200Con bridas DN 100	5 2	Bueno	Lubricar cada 3 meses
Válvula de retención FFD	DN 200, material FFD	1	Bueno	Verificar cierre hermético
Válvulas ventosas FFD	DN 100, material FFD	2	Bueno	Sin observaciones
Codos AC	Material: Acero al carbono. DN 200 Codos 45°	5 4	Bueno	Sin observaciones

Reducciones	• Codos 90° DN 200 a 100,	2	D	G: 1 ·
concéntricas AC	acero al carbono	2	Bueno	Sin observaciones
Tee AC	Material: Acero al carbono. • DN 100 • DN 200	3	Bueno	Sin observaciones
Juntas desmontables FFD	Material: FFD • DN 100 • DN 200	2 3	Bueno	Revisar sellado cada 6 meses

4. EVALUACIÓN RECORRIDO EN PLANTA

Concepto	Si	No	Observación
¿El tanque de almacenamiento		No	No se identificaron fugas en la
presenta filtraciones visibles?			inspección visual.
¿La impermeabilización del tanque	Si		Se recomienda inspección
está en buenas condiciones?			periódica para garantizar su
			eficacia.
¿Las válvulas de control funcionan	Si		Todas las válvulas mariposa,
correctamente?			ventosas y de retención operativas.
¿Existen signos de corrosión en los		No	No se evidenció corrosión en las
componentes metálicos?			tuberías y accesorios de acero al
			carbono.
¿El sistema de ventilación del tanque	Si		Se cuenta con válvulas ventosas
es adecuado?			funcionales.
¿Se han detectado obstrucciones en		No	No se identificaron obstrucciones
las tuberías?			ni sedimentos significativos.

ANEXO 13 PLANILLA DEL CÁLCULO DE LA EFICIENCIA DE REMOCIÓN POR FECHAS DE MUESTREOS

PLANILLA DEL CÁLCULO DE LA EFICIENCIA DE REMOCIÓN

Procedencia de la muestra: La Victoria

Fecha de muestreo: 15/1/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 24,88 L/s

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Eficiencia
	Conductividad	μS/cm	14,80	08:05	
Entrada a la	рН		7,45	08:10	
Planta	Temperatura	°C	17,50	08:14	
	Turbiedad	NTU	1,62	08:15	
	Conductividad	μS/cm	14,80	08:22	Eficiencia de
Ingreso de	рН		7,43	08:25	coagulación-
los Filtros	Temperatura	°C	18	08:25	floculación
	Turbiedad	NTU	1,56	08:30	-
	Cloro Residual	mg/L	0,47	08:35	Eficiencia de los
Salida de los	Conductividad	μS/cm	14,95	08:40	filtros
Filtros	рН		7,03	08:46	intros
	Temperatura	°C	18,60	08:50	1
	Turbiedad	NTU	0,40	08:53	74,36%
Salida de la Planta	Cloro Residual	mg/L	0,52	09:03	
	Conductividad	μS/cm	15,01	09:10	Eficiencia General de la Planta
	рН		6,99	09:15	uc ia Fiailla
	Temperatura	°C	18,90	09:17	1
	Turbiedad	NTU	0,48	09:20	70,37%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 20/01/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 19,55 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo	1 ar ametro	Unidad	Medido	1101 a	Efficiencia
	Conductividad	μS/cm	20,01	08:45	
Entrada a la	рН		7,56	08:48	
Planta	Temperatura	°C	15,70	08:50	
	Turbiedad	NTU	18,50	08:52	
	Conductividad	μS/cm	20,22	08:55	Eficiencia de
Ingreso de	рН		7,07	08:58	coagulación-
los Filtros	Temperatura	°C	15,5	09:03	floculación
	Turbiedad	NTU	18,20	09:10	1,62%
	Cloro	mg/L	1,26	09:15	
	Residual	mg/L	1,20	07.13	Eficiencia de los
Salida de	Conductividad	μS/cm	21,80	09:20	filtros
los Filtros	рН		7,20	09:24	inuos
	Temperatura	°C	16,30	09:29	
	Turbiedad	NTU	1,59	09:30	91,26%
	Cloro	mg/L	0,35	09:35	
	Residual	mg/L	0,55	07.33	Eficiencia General
Salida de la	Conductividad	μS/cm	22,05	09:36	de la Planta
Planta	рН		7,01	09:38	ac ia i iama
	Temperatura	°C	16,20	09:38	
	Turbiedad	NTU	1,60	09:40	91,35%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 23/1/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 22,95 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo	Parametro	Unidad	Medido	нога	Efficiencia
	Conductividad	μS/cm	19,93	08:45	
Entrada a la	рН		7,70	08:48	
Planta	Temperatura	°C	16,31	08:50	
	Turbiedad	NTU	12,30	08:52	
	Conductividad	μS/cm	19,90	08:55	Eficiencia de
Ingreso de	рН		7,70	08:58	coagulación-
los Filtros	Temperatura	°C	16,20	09:03	floculación
	Turbiedad	NTU	12,30	09:10	-
	Cloro	mg/L	0,76	09:15	
	Residual	mg/L	0,70	07.13	Eficiencia de los
Salida de	Conductividad	μS/cm	20,69	09:20	filtros
los Filtros	рН		7,50	09:24	milos
	Temperatura	°C	16,60	09:29	
	Turbiedad	NTU	1,85	09:30	84,96%
	Cloro	mg/L	0,80	09:35	
	Residual	mg/L		07.33	Eficiencia General
Salida de la	Conductividad	μS/cm	25,11	09:36	de la Planta
Planta	pН		7,20	09:38	ac ia i iana
	Temperatura	°C	16,58	09:38	
	Turbiedad	NTU	1,90	09:40	84,55%

Procedencia de la muestra: La Victoria

Fecha de muestreo:26/01/2025 Hras: 22:30 pm

Tipo de muestreo: Puntual

Fecha de ingreso a laboratorio: 27/01/2025

Caudal: 14,8 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo	Parametro	Unidad	Medido	пога	Efficiencia
	Conductividad	μS/cm	31,58	08:45	
Entrada a la	рН		8,20	08:45	
Planta	Temperatura	°C	17,99	08:45	
	Turbiedad	NTU	80,10	08:50	
	Conductividad	μS/cm	31,58	08:55	Eficiencia de
Ingreso de	рН		7,20	08:55	coagulación-
los Filtros	Temperatura	°C	17,99	08:55	floculación
	Turbiedad	NTU	79,85	09:00	1,39%
	Cloro	mg/L	0,96	09:05	
	Residual	mg/L	0,50	07.03	Eficiencia de los
Salida de	Conductividad	μS/cm	41,58	09:10	filtros
los Filtros	рН		6,20	09:10	intros
	Temperatura	°C	18,00	09:10	
	Turbiedad	NTU	2,91	09:12	96,36%
	Cloro	mg/L	0,99	09:15	
	Residual	mg/L		07.13	Eficiencia General
Salida de la	Conductividad	μS/cm	42,13	09:18	de la Planta
Planta	рН		6,05	09:18	ac ia i iaina
	Temperatura	°C	17,80	09:18	
	Turbiedad	NTU	2,90	09:22	96,38%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 29/01/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 24,20 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo	1 ur urreer o	Circua	Medido	11014	Ziicienem
	Conductividad	μS/cm	20,90	10:10	
Entrada a la	рН		7,57	10:10	
Planta	Temperatura	°C	16,80	10:10	
	Turbiedad	NTU	4,68	10:15	
	Conductividad	μS/cm	20,90	10:20	Eficiencia de
Ingreso de	рН		7,58	10:20	coagulación-
los Filtros	Temperatura	°C	16,80	10:20	floculación
	Turbiedad	NTU	4,68	10:23	-
	Cloro	mg/L	0,95	10:26	
	Residual	mg/L	0,93	10.20	Eficiencia de los
Salida de	Conductividad	μS/cm	21,20	10:30	filtros
los Filtros	рН		7,49	10:30	muos
	Temperatura	°C	16,20	10:30	
	Turbiedad	NTU	1,48	10:33	68,38%
	Cloro	mg/L	0,94	10:35	
	Residual	mg/L		10.33	Eficiencia General
Salida de la	Conductividad	μS/cm	22,00	10:38	de la Planta
Planta	рН		7,55	10:38	uc ia i iaina
	Temperatura	°C	16,10	10:38	
	Turbiedad	NTU	1,46	10:40	68,80%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 05/02/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 26,15 L/s

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Eficiencia
Muestreo					
	Conductividad	μS/cm	19,00	09:10	
Entrada a la	рН		7,38	09:13	
Planta	Temperatura	°C	19,80	09:14	
	Turbiedad	NTU	1,33	09:15	
	Conductividad	μS/cm	19,00	09:22	Eficiencia de
Ingreso de	рН		7,39	09:25	coagulación-
los Filtros	Temperatura	°C	18,70	09:25	floculación
	Turbiedad	NTU	1,33	09:27	-
	Cloro		0,55	09:35	
	Residual	mg/L	0,33	09.33	Eficiencia de los
Salida de los	Conductividad	μS/cm	20,00	09:40	filtros
Filtros	рН		7,14	09:46	muos
	Temperatura	°C	17,50	09:50	
	Turbiedad	NTU	0,30	09:55	77,44%
	Cloro		1 21	10:03	
	Residual	mg/L	1,21	10:03	Eficiencia
Salida de la	Conductividad	μS/cm	21,00	10:10	General de la
Planta	рН		7,10	10:17	Planta
	Temperatura	°C	17,10	10:18	
	Turbiedad	NTU	0,26	10:20	80,45%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 12/02/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 18.69 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo	Parametro	Unidad	Medido	пога	Efficiencia
	Conductividad	μS/cm	46,18	09:05	
Entrada a	рН		7,55	09:10	
la Planta	Temperatura	°C	18,20	09:14	
	Turbiedad	NTU	35,90	09:15	
	Conductividad	μS/cm	57,53	09:22	Eficiencia de
Ingreso de	рН		6,33	09:25	coagulación-
los Filtros	Temperatura	°C	17,90	09:25	floculación
	Turbiedad	NTU	35,85	09:27	0,14%
	Cloro	mg/L	0,29	09:35	
	Residual	mg/L	0,27	07.33	Eficiencia de los
Salida de	Conductividad	μS/cm	55,57	09:40	filtros
los Filtros	рН		6,28	09:46	intros
	Temperatura	°C	17,40	09:50	
	Turbiedad	NTU	1,08	09:55	96,99%
	Cloro	mg/L	0,33	10:03	
	Residual	mg/L	0,55	10.03	Eficiencia
Salida de	Conductividad	μS/cm	53,28	10:10	General de la
la Planta	рН		7,05	10:17	Planta
	Temperatura	°C	17,10	10:18	
	Turbiedad	NTU	1,09	10:20	96,96%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 12/3/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 23,65 L/s

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Eficiencia
Muestreo					
	Conductividad	μS/cm	20,39	10:15	
Entrada a la	pН		7,05	10:18	
Planta	Temperatura	°C	20,40	10:19	
	Turbiedad	NTU	2,43	10:20	
	Conductividad	μS/cm	21,40	10:22	Eficiencia de
Ingreso de	рН		7,10	10:25	coagulación-
los Filtros	Temperatura	°C	20,40	10:27	floculación
	Turbiedad	NTU	2,43	10:28	-
	Cloro		0.56	10:35	
	Residual	mg/L	0,56	10:33	Eficiencia de los
Salida de los	Conductividad	μS/cm	18,20	10:40	filtros
Filtros	рН		6,95	10:43	muos
	Temperatura	°C	21,10	10:45	
	Turbiedad	NTU	0,31	10:49	87,24%
	Cloro		0.55	10:58	
	Residual	mg/L	0,55	10:38	Eficiencia
Salida de la	Conductividad	μS/cm	18,05	21:36	General de la
Planta	рН		6,90	11:04	Planta
	Temperatura	°C	20,90	11:06	
	Turbiedad	NTU	0,32	11:11	86,83%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 08/03/2025

Tipo de muestreo: Puntual

Responsable del muestreo: Orosco Caro Mariana Belen

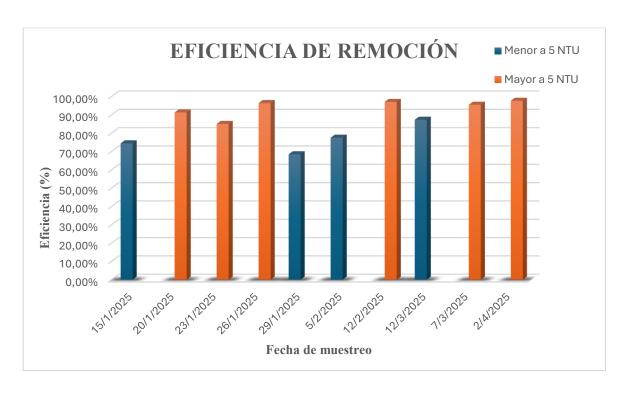
Caudal: 21,97 L/s

Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Eficiencia
	Conductividad	μS/cm	15,85	08:40	
Entrada a la	pН		6,65	08:43	
Planta	Temperatura	°C	19,70	08:46	
	Turbiedad	NTU	27,10	08:52	
	Conductividad	μS/cm	15,85	08:55	Eficiencia de
Ingreso de los	рН		6,66	08:58	coagulación- floculación
Filtros	Temperatura	°C	19,80	09:03	Hoculación
	Turbiedad	NTU	27,11	09:10	-
	Cloro Residual	mg/L	0,94	09:15	Eficiencia de los filtros
	Conductividad	μS/cm	13,76	09:20	
Salida de los Filtros	рН		6,99	09:24	
	Temperatura	°C	19,60	09:29	
	Turbiedad	NTU	1,24	09:30	95,43%
	Cloro Residual	mg/L	0,84	09:35	
	Conductividad	μS/cm	14,03	09:40	Eficiencia General de
Salida de la Planta	рН		6,88	09:42	la Planta
	Temperatura	°C	16,60	09:42	
	Turbiedad	NTU	1,23	09:45	95,46%

Procedencia de la muestra: La Victoria

Fecha de muestreo: 02/04/2025

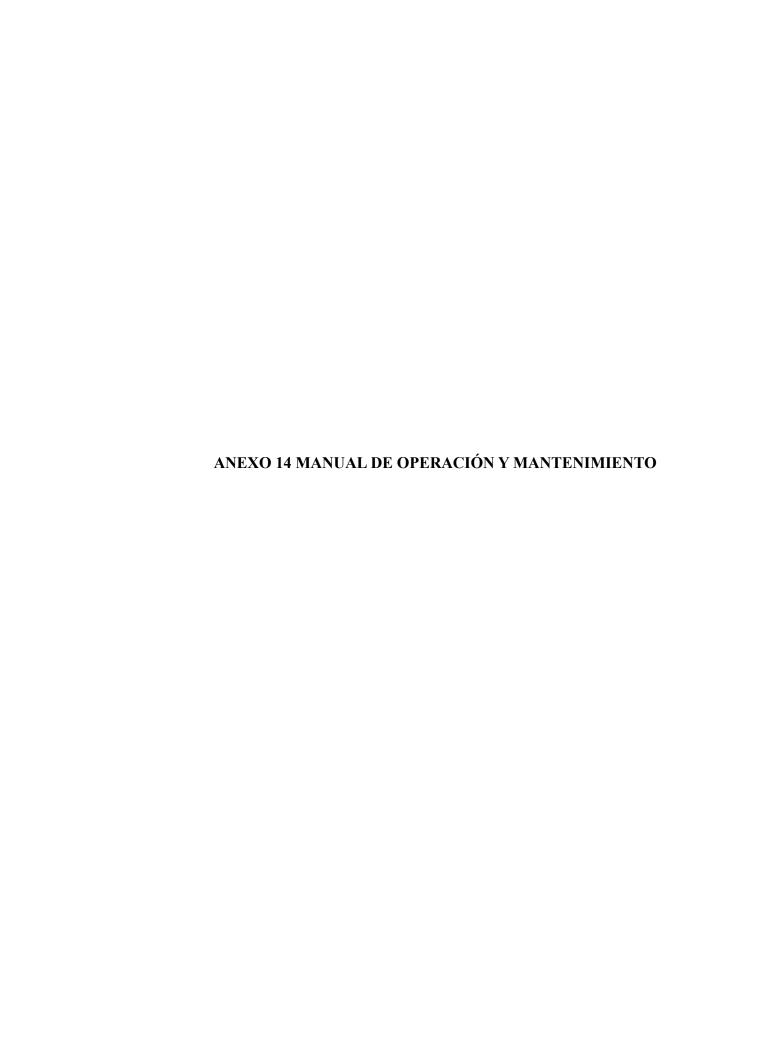
Tipo de muestreo: Puntual


Responsable del muestreo: Orosco Caro Mariana Belen

Caudal: 24,88 L/s

Punto de	Parámetro	Unidad	Valor	Hora	Eficiencia
Muestreo			Medido		
	Conductividad	μS/cm	21,03	08:05	
Entrada a la	рН		7,26	08:05	
Planta	Temperatura	°C	14,20	08:05	
	Turbiedad	NTU	15,80	08:10	
	Conductividad	μS/cm	21,03	08:13	Eficiencia de
Ingreso de	рН		7,25	08:13	coagulación-
los Filtros	Temperatura	°C	14,2	08:13	floculación
	Turbiedad	NTU	15,79	08:15	-
	Cloro	mg/L	0,52	08:18	
	Residual	mg/L	0,32	00.10	Eficiencia de los
Salida de	Conductividad	μS/cm	19,95	08:20	filtros
los Filtros	рН		6,96	08:20	muos
	Temperatura	°C	14,35	08:20	
	Turbiedad	NTU	0,38	08:23	97,59%
	Cloro	mg/L	0,50	08:25	
	Residual	mg/L	0,50	00.23	Eficiencia General
Salida de la	Conductividad	μS/cm	16,21	08:30	de la Planta
Planta	рН		6,75	08:30	GC 1a 1 failta
	Temperatura	°C	14,50	08:30	
	Turbiedad	NTU	0,38	08:35	97,59%

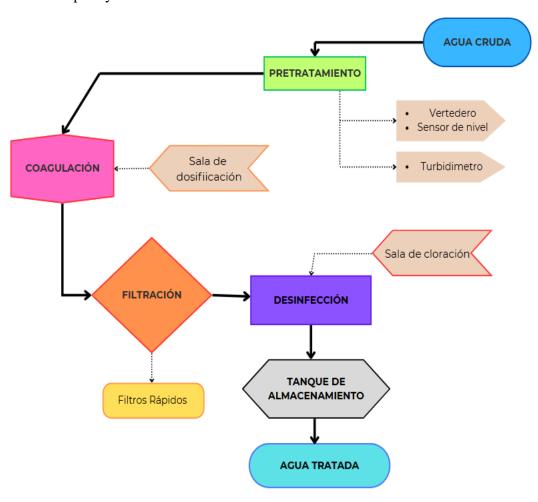
EFICIENCIAS DE ACUERDO A LAS TURBIEDADES REGISTRADAS MENORES A 5 NTU Y MAYORES A 5 NTU.


	EFICII	ENCIA
Fecha de muestreo	menor a 5 NTU	mayor a 5 NTU
15/1/2025	74,36%	-
20/1/2025	-	91,26%
23/1/2025	-	84,96%
26/1/2025	-	96,36%
29/1/2025	68,38%	-
5/2/2025	77,44%	-
12/2/2025	-	96,99%
12/3/2025	87,24%	-
7/3/2025	-	95,43%
2/4/2025	-	97,59%
PROMEDIO	76,86%	93,76%

Eficiencia general de la Planta Potabilizadora de Alto SENAC.

Fecha	EFICIENCIA				
геспа	Coagulación	Filtración	General		
15/1/2025	-	74,36%	70,37%		
20/1/2025	1,62%	91,26%	91,35%		
23/1/2025	-	84,96%	84,55%		
26/1/2025	1,39%	96,36%	96,38%		
29/1/2025	-	68,38%	68,80%		
5/2/2025	-	77,44%	80,45%		
12/2/2025	0,14%	96,99%	96,96%		
12/3/2025	-	87,24%	86,83%		
7/3/2025	-	95,43%	95,46%		
2/4/2025	-	97,59%	97,59%		
PROMEDIO	1,05%	87,00%	86,88%		

Fecha	Turbiedad entrada (NTU)	Turbiedad salida (NTU)	Eficiencia General (%)
15/1/2025	1,62	0,48	70,37%
20/1/2025	18,50	1,6	91,35%
23/1/2025	12,30	1,9	84,55%
26/1/2025	80,10	2,9	96,38%
29/1/2025	4,68	1,46	68,80%
5/2/2025	1,33	0,26	80,45%
12/2/2025	35,90	1,09	96,96%
12/3/2025	2,43	0,32	86,83%
7/3/2025	27,10	1,23	95,46%
2/4/2025	15,80	0,38	97,59%
PROMEDIO	19,98	1,16	86,88%



MANUAL DE OPERACIÓN Y MANTENIMIENTO PLANTA POTABILIZADORA DE AGUA ALTO SENAC – TARIJA

INTRODUCCIÓN

El presente manual tiene como propósito servir como una guía técnica para el personal operativo de la planta, proporcionando instrucciones claras y estructuradas para la operación diaria y el mantenimiento de los equipos e instalaciones que conforman el sistema de tratamiento. El uso adecuado de este manual permitirá al operador comprender el sistema, identificar alertas tempranas de mal funcionamiento y contribuir a una operación sostenible y segura de la planta potabilizadora.

La Planta Potabilizadora Alto SENAC, ubicada en Tarija, fue diseñada para garantizar el suministro de agua potable al barrio Alto SENAC a partir de la captación del Rincón de la Victoria, está diseñada para operar con un caudal de 25 L/s, y una turbiedad de 20 NTU. Los procesos unitarios que comprenden esta planta son el pretratamiento, la coagulación, la filtración rápida y la desinfección.

Responsabilidades

Cargo	Funciones Clave
Operario de planta	Ejecutar procedimientos diarios, registrar parámetros, realizar lavados de filtros.
Jefe de turno	Supervisar cumplimiento de protocolos, validar registros, gestionar emergencias.
Técnico de mantenimiento	Inspeccionar equipos, ejecutar mantenciones preventivas/correctivas.
Responsable de calidad	Verificar turbiedad, pH y cloro residual; reportar desviaciones.

EQUIPOS DE PROTECCIÓN PERSONAL

Se describe el equipo a utilizar, los operadores deben verificar el buen estado de los mismos antes de usarlos y que informen al supervisor si éste está dañado o deteriorado. El EPP está compuesto por:

- Casco de seguridad.
- Gafas de seguridad con protección lateral.
- Máscara respiratoria.
- Protectores auditivos (orejeras o tapones auditivos).
- Guantes de nitrilo resistentes a productos químicos.
- Guantes de cuero resistentes a cortes.
- Ropa de trabajo resistente, como overoles o monos.
- Chaqueta o chaleco reflectante.
- Botas de seguridad con puntera de acero.
- Botas de goma para trabajos en áreas húmedas.
- Faja lumbar para levantamiento de cargas.
- Arnés de seguridad y línea de vida para trabajos en altura.
- Mascarilla facial completa para manejo de químicos corrosivos.
- Tapones nasales o mascarilla de respiración para ambientes polvorientos.
- Careta facial para protección adicional del rostro.

• Capa impermeable para trabajos en áreas húmedas.

PRETRATAMIENTO

El pretratamiento constituye la primera barrera física contra sólidos gruesos, protegiendo equipos posteriores de daños y obstrucciones. Inicia con el canal de ingreso, que recibe el agua cruda y la dirige hacia las compuertas metálicas con volantes, utilizadas para regular el flujo mediante apertura/cierre manual según el caudal requerido. A continuación, la rejilla metálica desmontable y el colador perforado de acero inoxidable DN 200.

El flujo se monitorea mediante un vertedero triangular acoplado a un transmisor de nivel, mientras un turbidímetro mide turbiedad en tiempo real, activando alarmas si supera 20 NTU. El agua pretratada fluye luego a coagulación.

• Operación

	OPERACIÓN				
ACTIVIDAD	FRECUENCIA	DESCRIPCIÓN	EQUIPOS		
Apertura	Diaria	 Abrir compuertas metálicas (vueltas completas antihorario). Posicionar válvula mariposa DN 200 a 90°. 	Compuertas metálicas y Válvula mariposa		
revisión de rejilla/colador	Diaria	Revisar que la rejilla, colador no tenga obstrucciones.	Acoplamiento universal		
Prueba de estanqueidad	Mensual	 Llenar canal, marcar nivel. Si pérdida >2 cm/2 h, aplicar sellante epóxico. 	Canal de ingreso		
Lubricación compuertas	Mensual	1. Aplicar grasa lubricante en ejes.	Compuertas metálicas		
Revisión acoplamiento	Trimestral	Verificar alineación con nivel de burbuja.			
Renovación anticorrosión	Semestral	 Lijar áreas oxidadas en rejilla/compuertas. Aplicar 2 capas de pintura epóxica (esperar 24 h entre capas). 	Rejilla y Compuertas		
Actualización documentación	Anual	 Revisar planos "as-built". Registrar modificaciones en manual. 	Sistema completo		

Mantenimiento

	MANTENIMIENTO				
ACTIVIDAD	TIPO	FRECUENCIA	PROCEDIMIENTO		
Canal de entrada	Preventivo	Mensual	 Inspeccionar fisuras con linterna. Barrer sedimentos con escobón de cerdas suaves. 		
	Correctivo	Al detectar daño	 Limpiar zona fisurada con cepillo metálico. Aplicar sellante epóxico en capa de 3 mm. 		
Daiilla w	Preventivo	Diario (lluvias)/ semanal	Limpiar las rejillas retirando hojas, ramas o cualquier residuo presente.		
Rejilla y colador perforado	Correctivo	Si deformación	1. Desmontar, lavar con agua con cerdas metálicas (una vez al dia en época de lluvias y semanalmente en época de estiaje).		
Nimala di / u m	Preventivo	Semestral	 Nivelar con burbuja. Limpiar con cerdas suaves. 		
Nivelación y limpieza del vertedero	Correctivo	Si desnivel	 Ajustar tornillos niveladores hasta burbuja centrada. Lijar y pintar el vertedero con pintura epóxica. 		
Renovación anticorrosión	Preventivo	Semestral	 Lijar áreas oxidadas en rejilla/compuertas. Aplicar 2 capas de pintura epóxica (esperar 24 h entre capas). 		
	Correctivo	Si es necesario			

COAGULACIÓN - MEZCLA RÁPIDA

El proceso de coagulación integra la mezcla rápida como etapa fundamental para desestabilizar partículas coloidales. Utiliza sulfato de aluminio dosificado desde 2 tanques de 1000 L, impulsado por bombas de diafragma. Un agitador tipo hélice (120 RPM) garantiza dispersión homogénea en ≤1 minuto, mientras el tanque almacena cal para ajuste de pH. El agua coagulada fluye hasta el proceso de filtración.

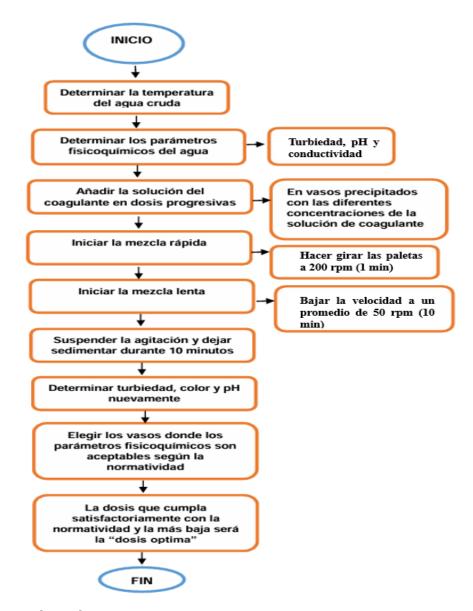
• Operación

	OPERACIÓN				
ACTIVIDAD	FRECUENCIA	DESCRIPCIÓN	EQUIPOS		
Dosificación	Diaria	 Llenar con 800 L de agua. Adicionar sulfato de aluminio. Mezclar 5 min con el agitador. 	Tanques de dosificación		
Mezcla rápida	Diaria	 Encender 5 min antes de agregar químico. Mantener 120 RPM durante dosificación. 	Agitador mecánico		
Alcalinizante	Mensual	1. Revisar capa interna sin abolsamientos.	Tanque de polietileno		
Inspección de fugas	Mensual	1. Inspeccionar fugas en codos/tee y llaves.	Sistema de tuberías		
Inspección del agitador	Semestral	1. Medir desgaste de paletas (tolerancia ±2 mm del diseño).	Agitador mecánico		
Dosificación	Anual	1. Realizar el inventario de reserva de los químicos			

• Mantenimiento

MANTENIMIENTO				
ACTIVIDAD	TIPO	FRECUENCIA	PROCEDIMIENTO	
Tanques de	Preventivo	Semanal para épocas de lluvia y mensual en época de estiaje.	 Vaciar los tanques. Lavar con agua y un cepillo. Desinfectar con cloro líquido. 	
dosificación	Correctivo	Al detectar fisura	 Aislar tanque. Limpiar zona con acetona. Aplicar resina epóxica + fibra de vidrio (capa de 5 mm). Curar 24 h. 	
Sistema de tuberías	Preventivo	Trimestral	1. Lijar y pintar tuberías AC (epóxico anticorrosivo).	

	Correctivo	Si fuga	1. Cortar sección dañada. 2. Repara las fugas en las conexiones y tuberías utilizando materiales de sellado adecuados (cinta de teflón, sellador de roscas o soldar parche en AC.)		
Agitador	Preventivo	Anual	 Apretar pernos de soporte. Desmontar, lavar con agua y con cepillo. 		
Agitador mecánico	Correctivo	Si hay desgaste	1. Desmontar las paletas desgastadas y reponer por unas nuevas.		
Bombas dosificadoras	Preventivo	Mensual	 Limpiar las bombas con paños para sacar todo el polvo. Lubricar válvulas con grasa Teflón. 		
dosmicadoras	Correctivo	Si no dosifica	 Desmontar cabezal. Limpiar válvulas de retención con aguja. 		


• Dosis optima

La cantidad de coagulante que se agrega se le llama dosis y se mide en mg/l. óseo peso de sulfato (mg) agregados por cada litro de agua que entra a la planta.

Para determinar la dosis optima de la PTAP Alto SENAC se utilizan los siguientes equipos:

- Test de jarras
- Medidor de pH- turbiedad y conductividad
- Sulfato de aluminio

A continuación, se describe el procedimiento mediante un diagrama de flujo para obtener la dosis óptima, a través de la prueba de ensayo denominada prueba de jarras.

FILTRACIÓN RÁPIDA

El sistema de filtración rápida consta de 9 filtros de hormigón armado H-25 con lecho dual: capa soporte de grava (4-6 mm) y capa activa de arena (0.5 mm de diámetro efectivo). El agua coagulada-floculada ingresa mediante tuberías de AC/PVC y se distribuye a los filtros mediante 18 válvulas mariposa DN 200 (control de entrada/salida) y 9 válvulas DN 100 (lavado). La operación manual se realiza con 27 columnas de maniobra y barras de prolongación. La eficiencia de remoción alcanza turbiedades <1 NTU.

• Operación

OPERACIÓN					
ACTIVIDAD	FRECUENCIA	DESCRIPCIÓN	EQUIPOS		
Inicio de operación	Diaria	 Girar el volante antihorario hasta tope (apertura total). Verificar flujo uniforme en la entrada de los filtros. 	Válvulas DN 200		
Inspección visual	Diaria	1. Verificar que en las rejillas no existan hojas u otros sólidos. 2. Mantener el nivel de agua adecuado en todas las unidades de filtración. Remover todo material flotante que se presente en la superficie de la unidad. Para ello se utilizarán espumaderas de tela con mango largo liviano.	Batería de filtros		
Lavado de filtros		 Cerrar válvula DN 200 (giro horario completo). Abrir válvula DN 100 (giro antihorario). Activar agua de lavado por 10 min. 			
Verificación de funcionamiento	Mensual	 Operar 5 ciclos apertura/cierre de las columnas. Lubricar ejes con grasa 	Columnas de maniobra		
Inspección de fugas	Trimestral	 Revisar físuras o grietas en la infraestructura. Inspeccionar corrosión con linterna. 	Infraestructura		
Inspección del agitador	Semestral				
Medios filtrantes	Anual	 Medir espesor capa de arena para verificar con los espesores de diseño. Nivelar superficie con un rastrillo. 	Medios filtrantes		

• Mantenimiento

MANTENIMIENTO					
ACTIVIDAD	TIPO	FRECUENCIA	PROCEDIMIENTO		
	Preventivo	Trimestral	 Limpiar sellos con alcohol isopropílico. Lubricar eje con grasa lubricante. 		
Válvulas	Correctivo		 Aislar tanque. Limpiar zona con acetona. Aplicar resina epóxica + fibra de vidrio (capa de 5 mm). Curar 24 h. 		
Desinfección de filtros	Preventivo	Mensual	 Se Apaga el sistema de dosificación con gas cloro. Se inyecta en la entrada de los filtros cloro líquido como desinfectante durante 3 horas. Se procede a lavar los filtros. 		
Fisura en filtros	Preventivo	Semestral	1. Inspeccionar visualmente que no existan zonas húmedas o fugas de agua.		
	Correctivo	Al detectar fisura	 Vaciar unidad afectada. Limpiar zona con chorro de arena. Aplicar mortero epóxico H-25. 		

DESINFECCIÓN

El sistema de desinfección con cloro gas garantiza la eliminación de patógenos mediante 2 cilindros de 68 kg conectados a un dosificador automático Hydro que inyecta cloro mediante bombas eyectoras y un manifold hidráulico de acero inoxidable. La dosificación se controla con báscula de 200 kg para inventario, mientras un detector de fugas y kit de emergencia aseguran operación segura. Una bomba periférica mantiene presión constante, y un ventilador extractor ventila la sala ante emergencias. El cloro residual objetivo es 0.2-1.5 mg/L en agua tratada.

• Operación

	OPERACIÓN				
ACTIVIDAD	FRECUENCIA	DESCRIPCIÓN	EQUIPOS		
Ajuste dosificación	Diaria	 Medir cloro residual en salida (método DPD). Regular válvula de aguja en manifold para mantener 0.8 mg/L. 	Hydro manifold		
Inspección visual	Diaria	1. Verificar que se esté realizando la dosificación mediante la burbuja del clorador.	Clorador Hydro		
Verificación de ventilación	Mensual	 Probar funcionamiento (15 min continuos). Limpiar rejilla con cepillo. 	Ventilador extractor		
Cambio de cilindro	Trimestral	 Pesar cilindro en báscula (registrar peso). Cerrar válvula del cilindro vacío (giro horario). Desconectar con llave fija 36 mm. Instalar cilindro nuevo con juntas nuevas. 	Cilindro de gas cloro		
Sistema de cloración	Semestral	Limpiar con agua destilada y cepillo nylon.	Bombas inyectoras		
Simulacro de fugas de gas	Anual	 Probar kit de emergencia (neutralizadores, herramientas). Simulacro de fuga mayor. 	Kit de emergencia		

Mantenimiento

MANTENIMIENTO						
ACTIVIDAD	TIPO	FRECUENCIA	PROCEDIMIENTO			
Limpieza de la sala de dosificación	Preventivo	Diario	 Barrer pisos con escoba de cerdas suaves. Limpiar superficies con trapo húmedo y desinfectante neutro. Eliminar residuos de químicos o polvo. 			
	Preventivo	Bimestral				
Mantenimiento de las bombas inyectoras	Correctivo	Reposición	 Si es posible, realizar una reparación inicial para detener la falla temporalmente. Si la reparación inicial no es suficiente, proceder con el reemplazo de componentes defectuosos. 			
Lubricación	Preventivo	Mensual	 Aplicar grasa Teflón en ejes de válvulas. Operar válvulas 5 veces (apertura/cierre completo). 			
	Correctivo	Anual	1. Reemplazo de válvulas por nuevas unidades.			

ALMACENAMIENTO

el tanque de almacenamiento se encuentra construido en hormigón armado H-25, con una capacidad volumétrica de 400 m³. La impermeabilización del tanque está constituida por una capa de cartón asfáltico, el sistema cuenta con un conjunto de válvulas y accesorios para el correcto funcionamiento.

• Operación

OPERACIÓN					
ACTIVIDAD	FRECUENCIA	DESCRIPCIÓN	EQUIPOS		
Inspección	Diaria	 Verificar que la línea de conducción hacia el tanque de almacenamiento se encuentra libre de obstáculos. Inspecciona el interior del tanque para detectar cualquier 	Tanque de almacenamiento		

		signo de deterioro, moho, incrustaciones, o sedimentos. 3. Revise que las tapas o compuertas de las cámaras de válvulas estén bien cerradas y aseguradas.	
Inspección visual	Mensual	1. Recorrer la infraestructura del tanque. 2. Revisar fisuras selladas (buscar humedad o filtraciones). 3. Inspeccionar cartón asfáltico. 4. Verifica los niveles de agua regularmente para asegurar que no haya pérdidas excesivas o desbordamientos.	Tanque de almacenamiento
Monitoreo de nivel	Trimestral	 Registrar nivel de agua. Verificar funcionamiento de ventosas (sin ruidos anormales). 	Tanque de almacenamiento

• Mantenimiento

	MANTENIMIENTO					
ACTIVIDAD	TIPO	FRECUENCIA	PROCEDIMIENTO			
Limpieza	Preventivo	Mensual	2. Eliminar maleza alrededor de la infraestructura.			
Mantenimiento de válvulas juntas y accesorios.	Preventivo	Mensual	 Lijar y pintar codos/reducciones con pintura epóxica anticorrosiva. Aplicar lubricante a base de silicona en superficies. 			
	Correctivo		 Si es posible, realizar una reparación inicial. Si la reparación inicial no es suficiente, proceder con el reemplazo de componentes defectuosos. 			

Reparación de fugas	Correctivo	Si hay fisura	 Para grietas en el tanque de almacenamiento se identifica visualmente la grieta. Se procede a limpiar el área dañada, eliminando cualquier residuo o sedimento utilizando cepillos de alambre o agua a presión. Aplica mortero o sellante en las áreas dañadas para sellar grietas.
Limpieza y desinfección	Preventivo	Anual	 Vaciar el tanque. Lavar paredes con cerdas y el fondo retirar sedimentos, incrustaciones y cualquier otro residuo. Desinfectar con hipoclorito 50 mg/L (4 h de contacto).
Impermeabilización	Preventivo	Anual	 Inspeccionar cartón asfáltico (sin desgarros). Aplicar emulsión asfáltica en bordes.
	Correctivo	Anual	 Limpiar área de la rotura del cartón asfáltico. Colocar parche de refuerzo impregnado en asfalto caliente. Cubrir con gravilla.

CONTROL DE MONITOREO Y PARÁMETROS MÍNIMOS

El control y monitoreo sistemático de los parámetros de calidad del agua constituye una actividad fundamental para asegurar la operación y garantizar que el agua producida cumpla con los estándares de potabilidad establecidos por la Norma Boliviana NB 512. Este proceso permite la detección temprana de desviaciones en la calidad del agua y en el desempeño de las unidades de tratamiento, facilitando la toma de decisiones operativas oportunas.

La frecuencia de monitoreo de cada parámetro debe ajustarse a las directrices de la Norma Boliviana NB 512 y a las necesidades operativas específicas de la planta. Se recomienda una frecuencia diaria en la entrada como así mismo la salida de la planta.

• Potencial de hidrógeno (pH), conductividad y temperatura

Materiales y equipos

- o Muestra de agua
- Medidor de bolsillo HANNA HI98130 (in situ)
- o Medidor multiparamétrico Thermo Orion (laboratorio)

Procedimiento

- 1. Colocar la muestra en un vaso limpio.
- 2. Enjuagar el electrodo tres veces con la misma muestra.
- 3. Introducir el electrodo del pH-metro y agitar suavemente.
- 4. Esperar la estabilización de la lectura y registrar el valor.
- 5. Comparar con los límites establecidos por la NB 512.

• Turbiedad

Materiales y equipos

- Muestra de agua
- o Turbidímetro portátil 2020WE/2020WI (in situ)
- o Turbidímetro HI93414 de HANNA (laboratorio)

Procedimiento

- 1. Llenar la celda del turbidímetro con la muestra.
- 2. Enjuagar previamente tres veces la celda con la misma muestra.
- 3. Secar la celda con el paño de microfibra que viene incluido en los accesorios del turbidímetro.
- 4. Colocar la celda en el equipo que coincida con la línea de medición del equipo y cerrar la tapa.
- 5. Esperar la lectura digital y registrar el valor.
- 6. Comparar con el valor máximo permitido según NB 512 (≤ 5 NTU en agua tratada).

Cloro residual

Materiales y equipos

Muestra de agua.

- o Colorímetro HANNA HI701 Checker HC (in situ y laboratorio).
- Reactivos HI93701-01 específicos para cloro libre.

Procedimiento

- 1. Llenar la celda del colorímetro con 10 mL de muestra.
- 2. Realizar la medición de la muestra C1 sin reactivo.
- 3. Una vez realizada la medición del C1 automáticamente solicita C2 y se debe añadir el reactivo a la celda y agitar suavemente.
- 4. Insertar la celda en el colorímetro y presionar para iniciar la medición.
- 5. Leer el resultado en pantalla y registrar el valor.
- 6. Verificar si se encuentra dentro del rango permitido por NB 512 (0.2 1.5 mg/L).

CALIBRACIÓN Y MANTENIMIENTO ESPECIALIZADO DE EQUIPOS

La calibración periódica y las reparaciones especializadas de la instrumentación y equipos electromecánicos son tareas críticas que exigen conocimientos técnicos avanzados. Estas tareas son realizadas por el personal técnico correspondiente de la institución COSAALT.

Este equipo especializado posee la capacitación, la experiencia y los recursos necesarios para llevar a cabo diagnósticos precisos, ajustes finos de instrumentación y reparaciones que garantizan la exactitud de los datos de monitoreo y la operatividad continua de la planta. El operador de planta no está capacitado ni se espera que realice estas intervenciones especializadas, asegurando así la integridad de los equipos y la fiabilidad del sistema de tratamiento.

REGISTRO Y BITÁCORA DE CAMPO

Como parte del Manual de Operación y Mantenimiento de la Planta de Tratamiento de Agua Potable Alto SENAC, se incorpora una bitácora de campo mediante planillas de registro diario, semanal y mensual. Estas planillas constituyen una herramienta esencial para documentar de forma sistemática todas las actividades operativas y de mantenimiento realizadas en la planta.

El registro en la bitácora permitirá monitorear parámetros de control mínimo, anotar las acciones de ajuste de dosificación, limpieza y lavado de filtros, así como cualquier incidencia técnica detectada en la infraestructura y equipos. Esta práctica garantiza la trazabilidad de la operación, facilita la toma de decisiones oportunas y respalda la planificación de mantenimientos preventivos y correctivos.

El llenado de las planillas debe ser responsabilidad del operador designado, quien deberá registrar con precisión los datos en campo y remitir la información a la jefatura técnica de la planta para su archivo y análisis.

PLANILLA DE REGISTRO DE CONTROL DE PARÁMETROS PLANTA POTABILIZADORA DE AGUA ALTO SENAC

Procedencia de la 1	nuestra:				
Fecha de muestreo	•				
Tipo de muestreo:					
Responsable del M	uestreo:				
Punto de Muestreo	Parámetro	Unidad	Valor Medido	Hora	Observaciones
	Conductividad	μS/cm			
Enter 1 1. Disease	рН				
Entrada a la Planta	Temperatura	°C			
	Turbiedad	NTU			
	Cloro Residual	mg/L			
Salida de la Planta	Conductividad	μS/cm			
	рН				
	Temperatura	°C			
	Turbiedad	NTU			

REGISTRO DE CAUDALES DE LA PLANTA

Responsable:

Fecha	Caudal de ingreso	Caudal de salida	Observaciones

CONTROL DEL LAVADO DE FILTROS PLANTA DE TRATAMIENTO DE AGUA POTABLE ALTO SENAC

	LAVADO DE FILTROS						
Filtro N° Fecha Hora Hora inicio final Observaciones							

AFORO VOLUMÉTRICO DEL LAVADO DE FILTROS "PLANTA DE TRATAMIENTO DE AGUA POTABLE ALTO SENAC"

Fecha de realización:

Temperatura del agua:

Diámetro de la tubería de lavado:

Método utilizado:

Responsable:

Prueba	Tiempo (s)	Observaciones

PRUEBA DE JARRAS

DATOS DE LA MUESTRA DE AGUA CRUDA

Proceden	icia de la	muestra:		
Fecha de	muestre	o:		
Tipo de r	nuestreo	:		
Fecha	de	ingreso	а	laboratorio:

Parámetro	Unidad	Valor Medido		Velocidad	Tiempo
Conductividad	μS/cm		Homogenización		
рН			Mezcla Rápida		
Temperatura	°C		Mezcla Lenta		
Turbiedad	NTU		Sedimentación		

Reactivo	kg	L
Sulfato de Aluminio		
Hidróxido de Calcio		

ENSAYO N°						
JARRA N°	1	2	3	4	5	6
Sulfato de Aluminio						
(ml)						
Hidróxido de Calcio						
(ml)						
Conductividad (µS/cm)						
pН						
Temperatura (°C)						
Turbiedad (NTU)						