UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA QUÍMICA

DISEÑO Y CONSTRUCCIÓN DE UN MOLINO DE MARTILLOS PARA SU USO EN EL LABORATORIO DE OPERACIONES UNITARIAS

Por:

YMAIBET ORTEGA MARAZ RAUL COARITE AGUILAR

Modalidad de graduación Proyecto de grado presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Química.

MARZO DE 2025 TARIJA – BOLIVIA

MSc. Ing. Marcelo Segovia Cortez	MSc. Ing. Fernando Erick Cortez Michel
DECANO (a)	VIDECANO (a)
APROBADA POR:	
TRIBUNAL:	
ING. JUAN PABLO	O HERBAS BARRANCOS
ING. IGNACIO ED	WIN VELASQUEZ SOZA

"El tribunal calificador del presente proyecto, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo ellos únicamente responsabilidad del autor"

DEDICATORIA

A mis padres, por ser mi refugio, mi guía y mi mayor fortaleza. Gracias por su amor incondicional, por cada sacrificio silencioso y por creer en mí. Nada de esto habría sido posible sin su apoyo inquebrantable.

A mi hermana, mi fuente de alegría e inspiración. Que este logro le demuestre que los sueños, aunque tardemos en alcanzarlos, siempre valen la pena. Deseo que su camino esté lleno de aprendizajes y que nunca dude de lo valiente y capaz que es.

A mis abuelos, quienes con su amor inmenso y su sabiduría han sido un pilar fundamental en mi vida. Gracias por sus palabras de aliento, por cada gesto de cariño y por enseñarme que la verdadera riqueza está en la familia.

A todos ustedes, que me han acompañado con paciencia y amor en este largo recorrido, les dedico este logro reflejo del esfuerzo compartido y del cariño que me han brindado en cada paso.

Ymaibet Ortega Maraz

A mis padres, quienes, con su amor incondicional, esfuerzo y sacrificio han hecho posible cada uno de mis logros. Gracias por enseñarme el valor del trabajo, la perseverancia y la honestidad. Su apoyo inquebrantable ha sido mi mayor fortaleza y mi mayor motivación para seguir adelante. Este logro es tan suyo como mío.

A mi familia, que con su cariño y aliento ha estado presente en cada paso de este camino. Sus palabras de ánimo y su confianza en mí han sido un refugio en los momentos difíciles y una fuente de inspiración en los desafíos.

A Dios, por darme la vida, la fuerza y la sabiduría para seguir adelante. Porque en cada tropiezo me ha dado la oportunidad de aprender y crecer.

Con amor y gratitud eterna,

Raul Coarite Aguilar

AGRADECIMIENTO

A lo largo de estos años de esfuerzo, aprendizajes y desafíos, he contado con el apoyo incondicional de mi familia, y hoy, al culminar esta etapa, quiero expresar mi más profundo agradecimiento. A mis padres y abuelos, por su amor incondicional y su apoyo inquebrantable, sin importar el tiempo que me haya tomado llegar hasta aquí. Gracias por creer en mí en cada paso incluso cuando yo dudaba, este logro es tanto suyo como mío. A mis tías, por cobijarme y hacerme sentir en casa durante mi vida universitaria. Gracias por abrirme las puertas de su hogar, por su cariño y por hacerme sentir siempre bienvenida. Cada uno de ustedes ha sido parte esencial de este camino, sus sacrificios, consejos y palabras de aliento fueron la fuerza que me impulsó a seguir adelante. Con todo mi cariño y gratitud.

Ymaibet Ortega Maraz

A Dios, por darme la vida, la fortaleza y la sabiduría para afrontar cada desafío.

A mis padres, por ser mi mayor ejemplo de esfuerzo, perseverancia y amor incondicional. Su sacrificio, apoyo constante y fe en mí han sido fundamentales para alcanzar este logro. Este triunfo también es suyo.

A mis docentes y asesores, por compartir su conocimiento, por su guía y paciencia a lo largo de mi formación. Sus enseñanzas han sido clave en mi desarrollo académico y profesional.

A mi familia, por su apoyo incondicional, y a quienes, de una u otra manera, contribuyeron a la realización de este trabajo.

Con gratitud infinita,

Raul Coarite Aguilar

ÍNDICE

RESUMEN	IV
ÍNDICE DE TABLAS	XI
ÍNDICE DE FIGURAS	XIII
GLOSARIO DE TERMINOS	XV
INTRODUCCIÓN	1
ANTECEDENTES	1
JUSTIFICACIÓN	5
OBJETIVOS	7
OBJETIVO GENERAL	7
OBJETIVOS ESPECÍFICOS	7
CAPÍTULO I MARCO TEÓRICO	1
1. MARCO TEÓRICO	8
1. 1. REDUCCIÓN DE TAMAÑO	8
1. 1. 1. Mecanismos de Reducción:	8
1. 1. 2. Energía para la reducción de tamaño	10
1. 1. 3. Equipos para la reducción de tamaño	12
1. 1. 1. Aplicaciones Industriales	13
1. 2. MOLIENDA	14
1. 2. 1. Definición	14
1. 2. 2. Objetivos de la molienda	14
1. 2. 3. Tipos de Molienda	15
1. 2. 4. Clasificación de la molienda	15
1. 2. 5. Variables de la operación	17
1. 3. LEYES DE DESINTEGRACIÓN E ÍNDICE DE TRABAJO	17
1. 3. 1. Teoría de Rittinger	18
1. 3. 2. Ley de Bond	
1. 3. 3. Ley de Kick	19

1. 4. MOLTURABILIDAD	20
1. 5. MOLINO	21
1. 5. 1. Principio de Funcionamiento	21
1. 5. 2. Tipos de molinos	22
1. 5. 2. 1. Molino de bolas o cilindros	25
1. 5. 2. 2. Molinos de discos:	25
1. 5. 2. 3. Molino de rodillo	26
1. 5. 2. 4. Molino de martillos	28
1. 5. 2. 4. 1. Características	28
1. 5. 2. 4. 2. Partes del molino de martillos	29
1. 5. 2. 4. 3. Principio de funcionamiento	30
1. 5. 2. 4. 4. Ventajas y desventajas	32
1. 5. 3. Método de Bond para el diseño de molinos	32
1. 6. CARACTERÍSTICAS DEL PRODUCTO QUE DETERMINAN LA SELECC	IÓN DE
LA MÁQUINA	33
1. 6. 1. Propiedades Físicas	34
1. 6. 2. Propiedades Químicas	36
1. 6. 3. Propiedades Reológicas	36
1. 7. SEPARACIONES MECÁNICAS	36
1. 7. 1. Tamizado	36
1. 7. 1. 1. Balances de masas aplicados a los tamices:	37
1. 7. 2. Tamiz	38
1. 7. 2. 1. Serie de tamices Tyler	38
1. 7. 2. 2. Eficiencia de un tamiz.	39
1. 7. 3. Análisis granulométrico	43
1. 7. 3. 1. Porcentaje de cernido	43
1. 7. 3. 2. Porcentaje de retenido	43
1. 7. 3. 3. Diámetro Medio	44
1. 7. 3. 4. Diagramas Granulométricos	44
1. 8. GRANOS Y CEREALES	46
1. 8. 1. Definición	46
1. 8. 2. Propiedades de los granos.	48
1 9 2 1 Durage	10

1. 8. 2. 2. Fractura	48
CAPÍTULO II ESTUDIO TÉCNICO PRELIMINAR	1
2. ESTUDIO TÉCNICO PRELIMINAR	51
2. 1. LOCALIZACIÓN DEL PROYECTO	51
2. 2. MÉTODOS	52
2. 2. 1. Inductivos	52
2. 2. 2. Deductivos	52
2. 2. 3. Experimental	52
2. 3. INGENIERÍA DEL PROYECTO	53
2. 3. 1. Caracterización de la materia prima	53
2. 3. 1. 1. Maíz	53
2. 3. 1. 2. Frijol	53
2. 3. 1. 3. Trigo	53
2. 3. 1. 4. Propiedades físicas de la materia prima	54
2. 3. 1. 5. Propiedades Mecánicas de la materia prima	54
2. 3. 1. 6. Composición química de la materia prima	55
2. 3. 1. 7. Resistencias de las Muestras.	55
2. 3. 1. 8. Acero	56
CAPÍTULO III PARTE EXPERIMENTAL	1
3. PARTE EXPERIMENTAL	59
3. 1. PARÁMETROS DE DISEÑO	59
3. 2. DETERMINACIÓN DEL MATERIAL PARA LA CONSTRUCCIÓN	59
3. 2. 1. Selección de materiales para la construcción del equipo	59
3. 2. 2. Selección del sistema eléctrico	60
3. 3. DIMENSIONAMIENTO DEL EQUIPO	61
3. 3. 1. Cálculo de potencia necesaria para la molienda	61
3. 3. 1. 1. Determinación de la potencia con el método de bond	61
3. 3. 1. 2. Factor de seguridad	64
3. 3. 1. 3. Corrección de la potencia de molienda	64
3. 3. 1. 4. Cálculo de la potencia del motor sin carga	66

3. 3. 1. 5. Factor dependiente de la velocidad de rotación	66
3. 3. 1. 6. Cálculo de la potencia necesaria para la trituración	67
3. 3. 1. 7. Potencia total para el funcionamiento del molino con carga	68
3. 3. 2. Determinación del número de martillos	68
3. 3. 2. 1. Cálculo de la masa de los martillos	68
3. 3. 2. 2. Cálculo de la velocidad tangencial de los martillos	70
3. 3. 2. 3. Cálculo del factor f	71
3. 3. 2. 4. Cálculo del número de martillos	71
3. 3. 2. 5. Diseño de los martillos	72
3. 3. 2. 6. Determinación de área de impacto del martillo	73
3. 3. 2. 7. Determinación del coeficiente de seguridad del martillo	73
3. 3. 2. 8. Longitud de los martillos	74
3. 3. 2. 9. Soporte del rotor para los martillos.	75
3. 3. 3. Cálculo de dimensiones del molino (carcasa)	77
3. 3. 3. 1. Capacidad del equipo de molienda	77
3. 3. 3. 2. Cálculo del volumen útil para la tolva	77
3. 3. 3. Volumen de la cámara de molienda	79
3. 3. 4. Eje principal	82
3. 3. 5. Velocidad tangencial final	83
3. 3. 3. 6. Energía necesaria para el rompimiento de granos	84
3. 3. 3. 7. Velocidad angular del rotor del molino	86
3. 3. 3. 8. Cálculo de la fuerza centrifuga	87
3. 3. 9. Relación de transmisión	87
3. 3. 4. CÁLCULO DE LA MOLTURABILIDAD Y FLUJO MÁSICO DEL MOLINO	88
3. 4. MUESTREO	90
3. 4. 1. Determinación de la humedad	90
3. 4. 2. Eliminación de impurezas y preparación de la muestra	92
3. 4. 3. Prueba de molienda	93
3. 4. 1. Balance de masa	95
3. 4. 2. Cálculo de la eficiencia	97
3. 5. DETERMINACIÓN DEL RENDIMIENTO DE LA MOLIENDA	98
3. 5. 1. Tamizado	98

ANEXO 2 PLANOS DE DISEÑO DEL MOLINO	
ANEXO 1 TAMAÑOS DE TAMICES ESTÁNDAR	128
ANEXOS	107
BIBLIOGRAFÍA	121
5. 2. RECOMENDACIONES	120
5. 1. CONCLUSIONES	119
5. CONCLUSIONES Y RECOMENDACIONES	119
CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES	1
4. 5. 2. Recursos totales	118
4. 5. 1. 3. Prueba de molienda	117
4. 5. 1. 2. Recursos humanos	117
4. 5. 1. 1. Recursos materiales	115
4. 5. 1. Análisis de costos	115
4. 5. REQUERIMIENTOS PRESUPUESTARIOS	
4. 4. 1. Características técnicas del motor utilizado para el molino	114
4. 4. ESPECIFICACIONES TÉCNICAS DEL EQUIPO	114
4. 3. 1. Análisis y discusión de resultados	113
4. 3. RESULTADOS DE VALIDACIÓN DEL EQUIPO	112
4. 2. 2. Descripción de los implementos	112
4. 2. 1. Montaje del molino	111
4. 2. CONSTRUCCIÓN DEL MOLINO	110
4. 1. RESULTADOS DE LA CARACTERIZACIÓN DE LA MATERIA PRIMA	110
4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	110
CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	1
3. 5. 5. Cálculo de la eficiencia del proceso de molienda	
3. 5. 4. Diámetro medio	
3. 5. 3. Análisis diferencial y análisis acumulativo	
tiempo de molienda	
3. 5. 2. Determinación de las fracciones de masas retenidas en los tamices en función	

ANE	XO 3 CARACTERISTICAS TECNICAS DEL MOTOR	141
ANE	XO 4 CONSTRUCCION DEL EQUIPO	144
ANE	XO 5 PRUEBA DE MOLIENDA CON LAS DIFERENTES MUESTRAS .	147
ANE	XO 6 RESULTADO DE LOS ANÁLISIS FISICOQUIMICOS DE LAS	
MUE	ESTRAS	156
ANE	XO 7 MANUAL DE USO Y MANTENIMIENTO DEL MOLINO DE	
	RTILLOS	160
1. I	DATOS GENERALES	2
2. (CARACTERÍSTICAS TÉCNICAS:	2
3. (COMPONENTES PRINCIPALES:	2
4. I	PUESTA EN MARCHA	2
4. 1.	INSPECCIÓN INICIAL	2
4. 2.	INSTALACIÓN DEL TAMIZ	2
4. 3.	CONEXIÓN DEL EQUIPO	3
4.4.	PRUEBA DE FUNCIONAMIENTO	3
5. (OPERACIÓN	3
5. 1.	CARGA DE LA MUESTRA	3
5. 2.	ENCENDIDO Y CONFIGURACIÓN	3
5.3.	PROCESO DE MOLIENDA	3
5.4.	APAGADO Y DESCARGA	3
6. N	MANTENIMIENTO	4
6. 1.	LIMPIEZA	
	REVISIÓN DE COMPONENTES	
	Lubricación	
	Almacenamiento	
	XO: RESOLUCIÓN DE PROBLEMAS COMUNES	
	OGRAMAS DE SEGURIDAD:	
TICE!	UITKAWAS DE SELTUKIDAD:	

ÍNDICE DE TABLAS

TABLA I-1 EQUIPOS PARA REDUCCIÓN DE TAMAÑO DE PARTÍCULAS.	12
TABLA I-2 TAMAÑO DE MOLIENDA EN FUNCIÓN DEL TIPO DE MOLINO.	16
TABLA I-3 CLASIFICACIÓN DE EQUIPOS DE REDUCCIÓN DE TAMAÑO	16
TABLA I-4 CARACTERÍSTICAS DE LOS MOLINOS	23
TABLA I-5 FUERZA MÁXIMA DE FRACTURA DE GRANOS	49
TABLA I-6 FUERZA MÁXIMA DE FRACTURA DE LEGUMBRES	49
TABLA II-1 UBICACIÓN GEOGRÁFICA DEL PROYECTO	51
TABLA II-2 PROPIEDADES FÍSICAS DE LA MATERIA PRIMA	54
TABLA II-3 PROPIEDADES MECÁNICAS DE LA MATERIA PRIMA	54
TABLA II-4 COMPOSICIÓN QUÍMICA DE LA MATERIA PRIMA	55
TABLA II-5 DUREZA DE VICKER/FRIABILIDAD	55
TABLA II-6 PROPIEDADES MECÁNICAS DEL ACERO AL CARBONO A131	57
TABLA II-7 CRIBAS DEL MOLINO	58
TABLA III-1 CARACTERÍSTICAS DE LA MATERIA PRIMA PARA EL DIMENSIONAMIENTO	59
TABLA III-2 MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DEL EQUIPO	59
TABLA III-3 EQUIPO Y MATERIALES PARA EL SISTEMA ELÉCTRICO	61
TABLA III-4 POTENCIA NECESARIA PARA LA MOLIENDA	62
TABLA III-5 VALORES DEL FACTOR F A DIFERENTES VELOCIDADES TANGENCIALES	71
TABLA III-6 RELACIÓN MASA/TIEMPO QUE PASA POR CADA TAMIZ.	89
TABLA III-7 FLUJO MÁSICO O CAPACIDAD DE MOLIENDA DEL MOLINO EN 1 HORA. (KG/H)	90
TABLA III-8 PROCEDIMIENTO PARA LA DETERMINACIÓN DE HUMEDAD	91
TABLA III-9 PROCESO DE PREPARACIÓN DE LA MUESTRA	92
TABLA III-10 PROCEDIMIENTO DE LA MOLIENDA	93
TABLA III-11 RESULTADOS DE LA PRUEBA DE MOLIENDA	94
TABLA III-12 RESULTADOS DE LA MOLIENDA	95
TABLA III-13 FRACCIONES DE MASAS RETENIDAS Y ACUMULADAS PARA LA MALLA 1 MM	99
TABLA III-14 FRACCIONES DE MASAS RETENIDAS Y ACUMULADAS PARA LA MALLA 2 MM	100
TABLA III-15 FRACCIONES DE MASAS RETENIDAS Y ACUMULADAS PARA LA MALLA 3 MM	100
TABLA III-16 CÁLCULO DE FRACCIONES (XI, YI) PARA EL ANÁLISIS GRANULOMÉTRICO MALL	а 1 мм
	102
TABLA III-17 CÁLCULO DE FRACCIONES (XI, YI) PARA EL ANÁLISIS GRANULOMÉTRICO MALL	А 2 ММ
	104
TABLA III-18 CÁLCULO DE FRACCIONES (XI, YI) PARA EL ANÁLISIS GRANULOMÉTRICO MALL	а 3 мм

	xii
Tabla III-19 Diámetro medio para malla 1mm	107
Tabla III-20 Diámetro medio para malla 2mm	108
Tabla III-21 Diámetro medio para malla 3mm	108
Tabla IV-1 Caracterización de la materia prima	110
TABLA IV-2 DESCRIPCIÓN DE LOS COMPONENTES DEL MOLINO	112
TABLA IV-3 VELOCIDAD TANGENCIAL DE OPERACIÓN.	112
TABLA IV-4 ENERGÍA ESPECIFICA DE PERCUSIÓN	112
TABLA IV-5 VELOCIDAD ANGULAR DE OPERACIÓN	113
Tabla IV-6 Relación de transmisión	113
TABLA IV-7 COSTO DE MATERIALES PARA LA CONSTRUCCIÓN DEL MOLINO	116
TABLA IV-8 COSTO DE MANO DE OBRA REQUERIDA PARA LA CONSTRUCCIÓN DEL EQUIPO	117
TABLA IV-9 COSTO DE LAS PRUEBAS DE MOLIENDA	117
TABLA IV-10 COSTO TOTAL DE CONSTRUCCIÓN DEL MOLINO	118

ÍNDICE DE FIGURAS

FIGURA 1-1 TIPOS DE FUERZAS QUE ACTÚAN EN LA REDUCCIÓN MECÁNICA	ç
FIGURA 1-2 ENERGÍA CONSUMIDA PARA MOLER UN PRODUCTO	11
FIGURA 1-3 MOLINO DE RODILLOS	27
FIGURA 1-4 PARTES DE UN MOLINO DE MARTILLOS	30
FIGURA 1-5 PRINCIPIO DE TRABAJO DE MOLINO DE MARTILLOS	31
FIGURA 1-6 RELACIÓN ENTRE EL CONTENIDO DE HUMEDAD Y LA PRODUCTIVIDAD DE UN MOLINO DE	Е
Martillos	35
FIGURA 1-7 SERIE DE TAMICES TYLER	39
FIGURA 1-8 PRODUCTIVIDAD DE UN MOLINO DE MARTILLOS RESPECTO A LOS ORIFICIOS DE LA CRIBA	40
FIGURA 1-9 PRODUCTIVIDAD ESPECÍFICA DEL MOLINO DE MARTILLOS.	41
FIGURA 1-10 DIAGRAMA GRANULOMÉTRICO	45
FIGURA 1-11 CEREALES MÁS CONSUMIDOS	46
FIGURA 1-12 LEGUMBRES MÁS CONSUMIDAS	47
FIGURA 2-1 REFERENCIA DE LA UBICACIÓN DEL PROYECTO	51
FIGURA 3-1 RELACIÓN POTENCIA (P) VS TIEMPO	63
FIGURA 3-2 ILUSTRACIÓN DIGITAL DEL MARTILLO	69
Figura 3-3 Diseño de los martillos	72
FIGURA 3-4 ÁREA DE IMPACTO DEL MARTILLO	73
FIGURA 3-5 SOPORTE PARA MARTILLOS	75
FIGURA 3-6 SOPORTE DE MARTILLOS	76
FIGURA 3-7 ILUSTRACIÓN DE LA TOLVA	78
Figura 3-8 Cámara de molienda	80
Figura 3-9 Cámara de molienda, vista lateral	81
FIGURA 3-10 EJE PRINCIPAL.	82
FIGURA 3-11 ANÁLISIS DIFERENCIAL PARA MALLA 1 MM	103
FIGURA 3-12 ANÁLISIS ACUMULATIVO PARA MALLA 1 MM	103
FIGURA 3-13 ANÁLISIS DIFERENCIAL PARA MALLA 2 MM	104
FIGURA 3-14 ANÁLISIS ACUMULATIVO PARA MALLA 2 MM	105
FIGURA 3-15 ANÁLISIS DIFERENCIAL PARA MALLA 3 MM	106
FIGURA 3-16 ANÁLISIS ACUMULATIVO PARA MALLA 3 MM	106
FIGURA 4-1 DIAGRAMA DE FLUJO DE LA CONSTRUCCIÓN DEL MOLINO	110
FIGURA 4-2 DIAGRAMA DEL MONTAJE DEL EQUIPO	111
FIGURA 4-3 MOTOR DEL MOLINO	114
FIGURA 4-4 PLACA DE CARACTERÍSTICAS DEL MOTOR DEL MOLINO	115

	xiv
FIGURA 5-1 COMPRA DE PIEZAS Y MATERIALES PARA LA FABRICACIÓN DEL MOLINO	144
FIGURA 5-2 FABRICACIÓN DE LAS PARTES DEL EQUIPO	145
FIGURA 5-3 PULIDO Y LIJADO DE LAS PIEZAS DEL MOLINO DE MARTILLOS	146
FIGURA 5-4 PROCESO DE MOLIENDA CON EL MOLINO DE MARTILLOS	147
FIGURA 5-5 MOLIENDA DE LA MATERIA PRIMA	148
FIGURA 5-6 LIMPIEZA DEL EQUIPO	150
FIGURA 5-7 TAMIZADO DEL PRODUCTO.	152
FIGURA 5-8 MAÍZ TAMIZADO	153
FIGURA 5-9 FRIJOL TAMIZADO	154
FIGURA 5-10 TRIGO TAMIZADO	155