

Capítulo I

El Proyecto

12

1.1 Título del proyecto

Mejoramiento en el manejo de la información y tiempo de atención al cliente

mediante la gestión de reservas de pedidos en línea en “My Burguer”.

1.2 Área de trabajo

Desarrollo de Sistemas de Información.

1.3 Responsables del proyecto

Carrera de Ingeniería Informática – Taller III – Grupo 2

Marcia Milenka Andrade Llanos

1.4 Entidades asociadas

 U.A.J.M.S. “Universidad Autónoma Juan Misael Saracho”

 Facultad de Ciencias y Tecnología.

 “My Burguer”

1.5 Duración del proyecto

La duración del proyecto es de 10 meses aproximadamente

1.6 Grupo responsable del proyecto

Marcia Milenka Andrade Llanos – Estudiante de la Carrera de Ingeniería

Informática.

13

2. Personal vinculado al proyecto

2.1 Director responsable del proyecto

Apellido Paterno Apellido Materno Nombre C.I.

Andrade Llanos Marcia Milenka 7177285 Tja.

Profesión Carrera o Unidad Facultad:

Estudiante Ingeniería Informática Ciencias y Tecnología

Telf. Oficina Celular Correo electrónico Firma

 79254690 marcia.andrade.llanos@gma

il.com

Tabla 1. Director responsable del proyecto

2.2 Participantes equipo de trabajo

Categoría Nombres y Apellidos Profesión C.I. Firma

TUTOR

ASESOR Luis Delfín Briceño

Gordy

Gerente “My Burguer” 5049145

2.3 Equipo de trabajo de: Empresas/Instituciones/Organizaciones

Participantes/Cooperantes

Nombre: Hamburguesería “My Burguer”

Dirección: Avenida Font, B/ Juan XXIII Telef. Oficina:

Nombre y Apellidos Cargo C.I. Firma

Luis Delfín Briceño Gordy Gerente “My Burguer” 5049145

14

3. Descripción del proyecto

3.1 Resumen ejecutivo del proyecto

A medida que la ciudad se moderniza, la población experimenta transformaciones en

los estilos de vida. El momento de la comida rápida se ha establecido como una

necesidad moderna de una manera silenciosa pero fuerte en la ciudad. La urgencia de

realizar más tareas durante el día lleva a la persona común a minimizar los tiempos,

uno de ellos es el tiempo de la alimentación.

Actualmente en nuestro entorno, factores como la globalización y la aceleración del

desarrollo tecnológico, están cambiando la forma de hacer negocios. Las empresas se

están viendo obligadas a reestructurar sus procesos internos, con el fin de mejorar sus

tiempos de respuesta y ser más eficientes, para lo cual están utilizando herramientas

tecnológicas de información que mejoren o incrementen su productividad.

El proyecto se centrará en mejorar el manejo de la información en cuanto se refiere a

la atención al cliente y gestión de reservas en línea de comida rápida, sector donde los

sistemas informáticos se están empezando a utilizar cada vez con mayor intensidad,

teniendo una gran acogida en el mercado actual.

“My Burguer” es una empresa dedicada a la venta de comida rápida en la ciudad de

Tarija, actualmente cuenta con varias áreas de trabajo y de organización, pero el

proyecto se centrará en optimizar el manejo de la información y tiempo de atención al

cliente.

Toda empresa comienza de manera básica, con la organización de su información de

forma manual, siendo muchas veces un método eficiente pero con el tiempo estas

funciones se comienzan a multiplicar y es necesario dar un gran paso y migrar hacia

la nueva tecnología, adquiriendo sistemas de información más modernos y capaces de

procesar grandes volúmenes de información, cubriendo así las nuevas necesidades de

la empresa. Actualmente la forma de administrar la información en el sector

mencionado no satisface las necesidades y los requerimientos de la empresa, dado

15

que el mercado local tiene un elevado índice de crecimiento, con necesidades

alimenticias.

Dado que actualmente el volumen de información se maneja de forma manual, en la

mayoría de los casos da como resultado retrasos al momento de realizar la

planificación efectiva de la empresa, resultando en un perjuicio al desempeño de

algunos empleados.

“My Burguer” suele incurrir en problemas de organización de los pedidos realizados

por clientes debido a un registro manual inadecuado sobre la información de los

productos y un flujo inconveniente de los pedidos, lo que provoca que existan quejas

y demoras en la atención al cliente; de manera similar este método de

almacenamiento de la información afecta a la organización en el armado de los

menús, por esto es que pocas personas conocen los productos que ofrece, reduciendo

significativamente el abanico de gustos y detectar las nuevas necesidades del mercado

y por ende los ingresos; todos estos problemas perjudican de manera significativa el

manejo de información provocando retrasos en los procesos y funciones que afectan

al rendimiento empresarial y la atención a los clientes del mercado de “My Burguer”.

Toda la información se encuentra registrada en hojas manuscritas, la cuál podría ser

almacenada en un sistema informático capaz de optimizar espacio físico, acceso a los

datos vía internet, publicitar sus productos en línea, facilitar horarios de reservas en

línea, reducir los tiempos de atención a los clientes internos y externos,

contribuyendo de esta manera a la fluidez en el crecimiento empresarial, ofreciendo

una presentación visual de sus productos por la web, con la facilidad de reservar

pedidos dentro de un horario determinado por la empresa; además una fuente de

información rápida y oportuna con la finalidad de coadyuvar la comunicación interna

y la manipulación de los datos que se manejan de manera interna, obtener e

implementar reportes, accesos vía internet o intranet y desde cualquier plataforma, ya

sea, Windows, Linux y otros, de esta forma reducir tiempos en los procesos de

atención y satisfacer las necesidades tanto del propietario como del personal de la

16

empresa que necesiten acceder de manera remota y satisfacer los gustos de los

clientes mediante presentaciones visuales de los productos que se ofrecen.

La capacitación al personal sobre el manejo de la información basándose en

herramientas de soporte de la empresa, favorecerá al manejo y administración de

recursos informáticos debido a que tendrán una comprensión más clara sobre las

reglas y funciones que el sistema exige, logrando de esta manera que la empresa

crezca tanto vertical como horizontalmente.

El lanzamiento publicitario del sistema en las redes sociales favorecerá al crecimiento

del mercado de “My Burguer”.

Caso de estudio

Actualmente la empresa “My Burguer” no cuenta con sistema informático que

contribuya al manejo de información y seguimiento de reservas.

Actividades previstas para los integrantes del equipo de investigación

Responsable Actividades

Director

Marcia Milenka

Andrade Llanos

Conducción del proyecto informático desde su concepción original

hasta el lanzamiento del producto final. Tareas:

 Definir el proyecto y evaluar sus necesidades.

 Redactar las especificaciones del proyecto.

 Calcular el costo del proyecto.

 Realizar un seguimiento e informes del progreso del proyecto,

en términos de calidad, costo y plazos de entrega.

Tutor

 Orientar al estudiante sobre las pautas a seguir para desarrollar

el trabajo de investigación de grado en base a los reglamentos

establecidos.

 Establecer el tema de investigación en base a las Líneas de

Investigación existentes.

 Guiar en la forma de obtención y registro de la revisión de la

información bibliográfica: texto, revistas científicas, acceso

17

electrónico a base de datos en bibliotecas virtuales, etc.

 Asesorar oportunamente las consultas.

 Velar por el cumplimiento de las actividades y cronograma

indicados en el proyecto

 Exigir la presentación del avance del proyecto.

 Revisión y visto bueno de la documentación presentada a la

universidad.

Investigador 1

Marcia Milenka

Andrade Llanos

 Recopilación de datos de la empresa “My Burguer”

Asesor

Luis Delfín

Briceño Gordy

 Facilitar la información necesaria para el análisis de

requerimientos.

 Facilitar acceso a la documentación autorizada.

 Asistencia en cuanto a las necesidades informáticas de la

Empresa.

 Revisión y visto bueno sobre el avance del proyecto.

 Asistencia en configuraciones y demás correspondientes a los

medios de almacenamiento informático de la empresa.

 Experto en el manejo de documentos y requisitos

empresariales.

 Experto en las necesidades y requerimientos de reportes.

 Orientar sobre los fallos actuales sobre el manejo de la

información.

 Experto en el manejo de la documentación interna.

Tabla 2. Actividad prevista para los integrantes

3.2 Descripción, fundamentación y justificación del proyecto (qué y porqué)

El mundo actual es sumamente complejo y exigente; por esto, enmarcadas en

los márgenes de exigencia, calidad y atención de las nuevas generaciones, las

empresas competitivas de hoy en día han comprendido y aprendido que el éxito

hay que buscarlo en el manejo de una exitosa relación con los clientes, más allá

de la rentabilidad por producto o líneas de producto. El éxito, y por ende la

18

rentabilidad empresarial, vienen del conocimiento del cliente, de reconocer su

valor actual y potencial y de saber qué productos le gustan, de escuchar sus

quejas y sugerencias y saber cómo utilizarlas en beneficio de la compañía, en

definitiva se trata de poder conocer y predecir el comportamiento actual y

futuro de los clientes para garantizar su completa y plena satisfacción para

finalmente conseguir su lealtad hacia la empresa.

En este contexto, las nuevas tecnologías son el vehículo que le permite a una

empresa competir más eficazmente. Tener la información disponible, allí en

donde se la necesite y en el momento en el que se la necesite, se ha convertido

en una variable estratégica para la competitividad. Esta variable afecta, entre

otros parámetros, a la optimización de recursos, la satisfacción de los clientes,

la optimización del tiempo, y la capacidad de adaptación al cambio, en este

sentido es que las empresas modernas adoptan nuevas tecnologías y nuevos

sistemas que les permitan mejorar sus estrategias de mercado.

Estos sistemas se explican perfectamente cuando a desempeño organizacional

se refiere, siendo el fin, cumplir los objetivos que se propone cada

organización, convirtiéndose el sistema de información, en su medio principal

para resolver tareas administrativas, funcionales y de producción, constituyendo

la información en la fuente de partida de todos los procesos dentro de las

entidades, que tienen proyecciones de crecimiento cualitativo y

cuantitativamente basándose en resultados oportunos a través de sistemas de

información.

El propósito del proyecto “Optimizar el manejo de información y tiempo de

atención al cliente mediante la gestión de reservas de pedidos en ‘My Burguer’”

tiene como finalidad contribuir al mejoramiento del mercado. Dentro la

organización se busca mejorar y/o facilitar las diversas tareas o funciones que

desempeñan el personal de la empresa como ser seguimiento de reservas de los

pedidos de clientes, armar el menú de comida, publicitar los productos que

ofrece; reportes diarios, semanales, mensuales y anuales, según sea la

19

necesidad. El proyecto persigue de manera general brindar una herramienta que

pueda optimizar los procesos mencionados anteriormente.

Los problemas por los que pasa la empresa “My Burguer” actualmente son:

 Registro inadecuado sobre la información de los productos.- Todo el

registro de los productos es de forma manual.

 Flujo inadecuado de los pedidos.- La información solicitada por los

empleados durante el proceso de atención al cliente desde la reserva,

preparación y entrega final del pedido se registra de forma manual en

hojas sueltas.

 Inadecuada organización de los pedidos realizados por los clientes.-

Los pedidos suelen incurrir en demoras de tiempo, equivocaciones en

los productos seleccionados, perdidas de las ordenes de clientes.

 Organización ineficiente en el armado del menú.- El menú es armado

en hojas manuscritas lo que provocan demoras debido a que la

información de los productos es difícilmente asequible.

 Escasa información sobre productos ofertados.- La población

desconoce las características de los productos que la empresa ofrece.

 Realizar reportes conlleva tiempo.- Dado que la generación de

reportes son estáticos e incompletos, se pierde demasiado tiempo en el

armado de algunos que son requeridos por la gerencia.

 Demoras frecuentes en atención al cliente.- Provocado por el

procesamiento lento de la información.

 Marketing insuficiente.- Imposibilidad de inserción de Tecnologías de

la Información al marketing empresarial.

20

En consecuencia a lo mencionado, los métodos tradicionales de papeleo supone

gastos importantes en horas hombre para su distribución.

Lo que se pretende es que el sistema pueda ser utilizado vía internet para

recopilar, almacenar, procesar los datos transformándolos en información

valiosa facilitando la comunicación y mejorando exponencialmente todas las

áreas afectadas en la estructura organizacional dentro del sector tomado en

cuenta en el proyecto que es el manejo de la información y gestión de reservas

en línea.

Con el objeto de solucionar los tiempos de atención al cliente y obtención de la

información, surge la necesidad de este proyecto incorporando las siguientes

soluciones para su desarrollo:

 Registro computarizado de productos en línea.- Los productos

ofertados por la empresa se registran en el sistema vía web.

 Registro de reservas de pedidos computarizado.- Las reservas de

pedidos de los clientes se registran en el sistema y están presentes para

su visualización y utilización durante el flujo de procesos de reserva,

preparación y entrega del pedido.

 Presentación y reserva de pedidos en línea.- Toda la información de

reservas puede ser accedida vía internet según corresponda a los

diferentes estados que puede tener un pedido:

 Reservado.- Es el pedido que se encuentra esperando la hora

para ser entregado, esta hora será indicada por el cliente, la cual

tendrá que cumplir un tiempo de anticipación especificado como

política de la empresa; y como forma de garantizar la

preparación del pedido el sistema tiene una opción flexible que

puede ser modificada según sean las políticas de la empresa, en

caso de no cumplir dicha política, el pedido no pasará del estado

reservado a ordenado.

21

 Ordenado.- Es el pedido que pasa a ser ordenado en cocina al

momento que el usuario encargado (recepcionista) permite éste

paso cumpliendo las políticas de efectivización de la reserva.

 Listo.- Es el pedido que está listo para ser entregado al cliente

según haya sido su solicitud de tipo de entrega: en local o para

llevar.

 Entregado.- Es el pedido que ya fue entregado al cliente.

 Anulado.- Es la reserva que fue anulada por el mismo cliente,

administrador del sistema, recepcionista o algún proceso

incompleto.

 Interfaz de interacción según el rol del empleado.- Las interfaces de

usuario varían según el rol del empleado:

 Administrador del sistema.- Posee privilegios sobre todas las

funcionalidades del sistema.

 Recepcionista.- Controla todos los estados de los pedidos.

 Chef.- Encargado de la administración de los productos y control

del estado listo de los pedidos.

 Mesero.- Encargado de la entrega de pedidos consumidos en el

local.

 Cliente.- Realiza la reserva de su pedido en línea.

 Reportes automatizados en línea.- Los reportes serán obtenidos en

línea.

 Armado de menús y organización de productos.- Todos los productos

estarán registrados en el sistema dentro un grupo específico en el cual

podrán ser intercambiados según las preferencias del cliente. En estos

grupos los usuarios con privilegios correspondientes podrán indicar que

productos pueden ser intercambiados y cuáles no. Posteriormente, el

armado de combos se realizará eficientemente con una interfaz amigable

con los grupos de productos; cada combo será compuesto por dos o más

22

productos, su precio total será calculado por la suma de los precios de

cada producto que lo compone menos su descuento asignado.

 Interfaz de presentación de productos en línea.- Todos los productos

y combos ofrecidos por la empresa estarán presentes en un portal web.

 Sistema multiplataforma para el manejo de la información en

atención al cliente y gestión de reservas en línea “My Burguer”.- Es

el componente 1 del proyecto que pretende mejorar el manejo de

información y tiempo de atención al cliente mediante la gestión de

reservas en línea.

 Programa capacitación.- Se realizará una capacitación al personal de

la empresa ya que son los usuarios finales y beneficiarios quienes van a

utilizar el sistema.

 Presentación del sistema para publicar en las redes sociales.- Se

lanzarán anuncios publicitarios del sistema en las redes sociales.

 Capacitación y sociabilización del sistema.- Es el componente 2 del

proyecto, la capacitación permitirá que el usuario final pueda utilizar de

manera óptima y correcta todas las funcionalidades del sistema. La

sociabilización ayudará a que más personas conozcan los productos que

se ofrecen y la oportunidad de realizar reservas de pedidos en línea en

“My Burguer”.

 Optimizar la atención en general de los clientes.- Con el manejo de

información adecuado los procesos involucrados en toda la atención al

cliente se realizarán de forma eficiente.

 Presentación visual de la empresa “My Burguer” y de los productos

que ofrece en la web.- Las personas podrán conocer a la empresa y sus

productos mediante el portal web del sistema.

23

3.2.1 Análisis de causas del problema

Figura 1. Árbol de problemas

24

3.2.2 Análisis de objetivos

Figura 2. Árbol de objetivos

25

3.2.3 Situación planteada con y sin proyecto

Situación sin proyecto Situación con proyecto

 Registro inadecuado sobre la

información de los productos.

 Flujo inadecuado de los pedidos.

 Inadecuada organización de los

pedidos realzados por lo clientes.

 Demoras en la obtención de

reportes.

 Organización ineficiente en el

armado del menú.

 Escasa información sobre

productos ofertados.

 Mecanismos insuficientes para el

manejo de información y atención

al cliente en “My Burguer”.

 Inadecuada formación del personal

en medios TIC.

 Procesos morosos e inadecuados

para el manejo de información y

atención al cliente en “My

Burguer”.

 Demoras frecuentes en atención al

cliente.

 Marketing insuficiente.

 Insatisfacción de las necesidades

de mercado de “My Burguer”.

 Registro computarizado de

productos en línea.

 Registro de reservas de pedidos

computarizado.

 Presentación y reserva de pedidos

en línea.

 Interfaz de interacción según el rol

del empleado.

 Reportes automatizados en línea.

 Armado de menús y organización

de productos.

 Interfaz de presentación de

productos en línea.

 Sistema multiplataforma para el

manejo de información en atención

al cliente y gestión de reservas en

línea de “My Burguer”.

 Presentación del sistema para

publicar en las redes sociales.

 Programa capacitación.

 Capacitación y sociabilización del

sistema.

 Optimizar el manejo de

información y tiempo de atención

al cliente mediante la gestión de

reservas de pedidos en “My

Burguer”.

26

 Presentación visual de la empresa

“My Burguer y de los productos

que ofrece en la web”.

 Optimizar la atención en general de

los clientes.

 Contribuir al mejoramiento del

mercado de pedidos “My Burguer”.

Tabla 3. Situación planteada con y sin proyecto

3.3 Objetivos

3.3.1 Objetivo general

Optimizar el manejo de la información y atención al cliente y mediante

gestión de reservas de pedidos en línea “My Burguer”.

3.3.2 Objetivos específicos

 Desarrollar un sistema multiplataforma para el manejo de información en

atención al cliente y gestión de reservas en línea de “My Burguer”..

 Desarrollar un programa de capacitación y sociabilización para el uso

adecuado del sistema.

27

3.4 Marco lógico del proyecto

Resumen Narrativo del

Proyecto
Indicadores Medios de Verificación Supuestos

Fin

Contribuir al mejoramiento

del mercado en “My

Burguer”.

Al final del 1° año de ejecución del proyecto, la

afluencia de clientes se incrementó en un 30%

denotando un incremento en los ingresos de la

empresa de “My Burguer”.

Categoría: Eficacia

Informe otorgado por la

gerencia del incremento

en volumen de ventas.

El funcionamiento de

la empresa es normal.

Cuentan con medios

tecnológicos

suficientes para la

implementación del

sistema.

Objetivo General

(Propósito)

Optimizar el manejo de la

información y atención al

cliente y mediante gestión

de reservas de pedidos en

línea “My Burguer”.

Al final de la ejecución del proyecto se mejoró al

menos en un 39,85% los tiempos de atención al

cliente en la empresa “My Burguer”.

Formula: 1-(Tiempo invertido en la atención al

cliente con el proyecto / Tiempo invertido en la

atención al cliente sin el proyecto) * 100

Categoría: Eficiencia

Resultado de las

estadísticas realizadas

por la Gerencia con

relación al tiempo de

respuesta en atención al

cliente.

La Gerencia de “My

Burguer” apoya el

desarrollo y ejecución

del proyecto

Mejoramiento en el

manejo de la

información y

atención al cliente

mediante la gestión

28

Al final de la ejecución del proyecto se redujo el

tiempo de acceso a las listas de productos en al

menos un 93,42%.

Formula: (1-(Tiempo invertido en el acceso a

las listas de productos con el proyecto /

Tiempo invertido en el acceso a las listas de

productos sin el proyecto)) * 100

Categoría: Eficiencia

Al final de la ejecución del proyecto se redujo el

tiempo de acceso a las listas de precios en al

menos un 78,79%.

Formula: (1-(Tiempo invertido en el acceso a

las listas de precios con el proyecto / Tiempo

invertido en el acceso a las listas de precios sin

el proyecto)) * 100

Categoría: Eficiencia

Al final de la ejecución del proyecto se redujo el

tiempo de armado de combos dentro un periodo

Resultado de las

estadísticas realizadas

por la Gerencia con

relación al tiempo

invertido en el manejo

de la información.

de reservas de

pedidos en línea en

“My Burguer”.

29

mensual en al menos un 87,50%.

Formula: (1-(Tiempo invertido en el armado

de combos mensual con el proyecto / Tiempo

invertido en el armado de combos mensual sin

el proyecto)) * 100

Categoría: Eficiencia

Al final de la ejecución del proyecto se redujo el

tiempo de asignaciones de grupos intercambiables

dentro un periodo mensual en al menos un

83,33%.

Formula: (1-(Tiempo invertido en asignaciones

de grupos intercambiables mensual con el

proyecto / Tiempo invertido en asignaciones de

grupos intercambiables mensual sin el

proyecto)) * 100

Categoría: Eficiencia

Al final de la ejecución del proyecto se redujo el

tiempo de acceso a las listas de reservas diarias

por cliente en al menos un 62,16%.

30

Formula: (1-(Tiempo invertido en el acceso a

listas de reservas diarias por cliente con el

proyecto / Tiempo invertido en el acceso a

listas de reservas diarias por cliente sin el

proyecto)) * 100

Categoría: Eficiencia

Al final de la ejecución del proyecto se redujo el

tiempo de acceso al detalle de preparación y

contenidos de productos en al menos un 60%.

Formula: (1-(Tiempo invertido en el acceso al

detalle de preparación y contenidos de

productos con el proyecto / Tiempo invertido

en el acceso al detalle de preparación y

contenidos de productos sin el proyecto)) * 100

Categoría: Eficiencia

Al finalizar el proyecto el 100% de información

de las reservas de “My Burguer” se encuentra

disponible, completa, actualizada y mejorada.

Categoría: Eficacia

31

Objetivos Específicos

(Componentes)

1. Sistema

multiplataforma para

el manejo de

información en

atención al cliente y

gestión de reservas

en línea de “My

Burguer”.

Al finalizar el proyecto se ha desarrollado en un

100% el Sistema multiplataforma para el manejo

de información en línea de “My Burguer” de

acuerdo a los requisitos establecidos bajo la

norma IEEE830.

Documentación del

sistema en base a la

especificación de

requisitos de la norma

IEEE 830 aprobada por

los docentes de Taller

III.

Carta de respaldo de la

gerencia “My Burguer”

respecto a la

conformidad y

aceptación del sistema.

Información de

requerimientos

recopilada y confiable.

Existe voluntad y

compromiso

institucional por parte

de la empresa para la

implantación del

sistema.

2. Capacitación y

sociabilización del

sistema.

Al finalizar el proyecto, se ha implementado en

un 80% el programa de capacitación sobre el

manejo del sistema informático al personal de

“My Burguer”; se realizó una presentación del

sistema para promocionar a través de las redes

sociales.

Documentación del

programa de

capacitación.

Certificados de

capacitación.

Interés y disponibilidad

de tiempo del personal

de la empresa, para la

realización de la

capacitación sobre el

sistema desarrollado.

32

Actividades

Componente I

1. Sistema

multiplataforma para

el manejo de

información en

atención al cliente y

gestión de reservas en

línea de “My Burguer”

1.1. Especificación de

requerimientos del

sistema bajo la

norma IEEE 830.

1.2. Análisis y diseño

del sistema

1.3. Programación del

sistema

1.4. Pruebas realizadas

al sistema.

En el mes de junio de 2014 se inició la

espeficicación de requerimientos del sistema bajo

la norma IEEE 830 y hasta la fecha se conluyó en

un 100%.

En el mes de agosto de 2014 se inició el análisis

y diseño del sistema, hasta la fecha se concluyó al

100%.

En el mes de octubre de 2014 se inició la

programación del sistema y hasta la fecha se

completó en un 95%.

Documentación obtenida

de todo el análisis y

diseño del sistema.

Documentos de las

pruebas realizadas al

sistema.

Disponibilidad de

brindar información

oportuna por parte del

personal y los

cooperantes del

trabajo del proyecto.

Coordinación entre el

equipo de trabajo del

proyecto y el usuario

final.

Presupuesto

económico disponible

para el desarrollo del

proyecto.

33

Tabla 4. Matriz del marco lógico

1.5. Implantación del

sistema.

Al finalizar la gestion 2015 se realizó las pruebas

al sistema en un 100%

Componente II

2. Capacitación y

sociabilización del

sistema.

2.1. Diseñar y

desarrollar el

programa de

capacitación.

2.2. Diseñar la

presentación del

sistema para su

lanzamiento

publicitario en las

redes sociales.

En diciembre de 2015 se realizó la capacitación

del sistema al personal de la empresa en un 75%

En enero de 2016 se diseñó la presentación del

sistema en un 95% para su publicación en las

redes sociales.

Costo componente I: Bs. 17700

Costo componente II: Bs. 3500

Total: Bs. 21200

Documento del plan de

Capacitación para el

usuario final.

Carta de conformidad y

respaldo con el

desarrollo de la

capacitación por parte de

la Gerencia de “My

Burguer”.

Fotografías tomadas

durante la realización de

la capacitación.

Encuestas post

capacitación.

Asistencia del personal

a la capacitación.

Durante la capacitación

el personal hace

preguntas sobre el

sistema.

Los usuarios del

sistema después de la

capacitación aportan

sugerencias en cuanto

a posibles mejoras del

sistema las cuales se

toman en cuenta para

una permisible

implementación.

34

3.5 Metodología del proyecto

Para el desarrollo del proyecto se utilizó la metodología de la Matriz de Marco

Lógico (MML).

Componente 1.

Para el desarrollo del componente sistema se hará uso de la metodología RUP en todo

el proceso de desarrollo del sistema, el cual es un enfoque iterativo que propone una

comprensión incremental del problema a través de refinamientos sucesivos e

implementación de una solución efectiva a través de varios ciclos. Como parte del

enfoque iterativo se encuentra la flexibilidad para acomodarse a nuevos

requerimientos o cambios tácticos de los objetos de negocio.

El Lenguaje Unificado de Modelado UML, el cual constituye la metodología estándar

más utilizada para el análisis, implementación y documentación de sistemas

orientados a objetos.

UML (Lenguaje de Modelado Unificado) es una metodología de Ingeniería de

Software basado en una notación gráfica la cual permite: especificar, construir,

visualizar y documentar los objetos de un sistema.

Así también se utilizará un modelo entidad-relación que es una herramienta para el

modelado de datos que permite representar las entidades relevantes del sistema así

como sus interrelaciones y propiedades.

Componente 2.

Para el desarrollo de este componente se realizará la capacitación en el puesto al

personal de la empresa, se coordinará una reunión con el gerente y los usuarios del

sistema para acordar la fecha y hora de las capacitaciones; la elaboración del material

de capacitación estará dirigida a personas con conocimientos básicos en computación;

el desarrollo de las capacitaciones se efectuará según lo acordado en las reuniones

previamente realizadas.

35

La capacitación se llevará a cabo en el ambiente de “My Burguer” y cumplirán las

siguientes metas:

 Aplicar y describir diversas Herramientas de las Tecnologías de Información

y Comunicación (TIC) complementarias para el uso del sistema.

 Se hará una descripción completa sobre el manejo óptimo del Sistema

multiplataforma para el manejo de información en línea de “My Burguer”.

 Se aplicará un permanente seguimiento a los participantes para mantener una

colaboración activa en el programa de capacitación.

 Se levantará información de Internet sobre temas relacionados con el

desarrollo del uso de las Tics en empresas.

Se desarrollarán recursos diapositivas según los contenidos usando las TIC’s para el

proceso de E-A.

Para la sociabilización del sistema se publicarán presentaciones del sistema en las

redes sociales.

3.6 Descripción y relación de las estrategias con los objetivos

Estrategias Objetivos Específicos

Desarrollo y planificación del

componente sistema utilizando la

metodología RUP.

Sistema multiplataforma para el manejo de

información en línea de “My Burguer”.

Planificación del programa de

capacitación definiendo horarios

adecuados para cada grupo de usuarios

(Personal de “My Burguer”) y

sociabilización del sistema en las redes

sociales detallando el proceso de

reservas en línea.

Programa de capacitación para el uso del

sistema, dirigido al personal involucrado.

Sociabilizar el sistema mostrando el

proceso de reservas en línea.

Tabla 5. Descripción y relación de las estrategias con los objetivos

36

3.7 Cronograma de actividades

N

º

Actividad Nº

días

M

1

M

2

M

3

M

4

M

5

M

6

M

7

M

8

1. Sistema multiplataforma para el manejo

de la información en atención al cliente y

gestión de reservas en línea de “My

Burguer”

190

 Identificación de requerimientos del

sistema bajo la norma IEEE 830
30 X

 Análisis y diseño del sistema 70 X X X

 Programación del sistema 60 X X X

 Pruebas del sistema 20 X

 Implantación del sistema 10 X

2 Capacitación y sociabilización del

sistema
15

 Diseñar y desarrollar el programa de

capacitación
11 X

 Diseñar la presentación del sistema para su

lanzamiento publicitario en las redes

sociales

4 X

Figura 3. Cronograma de actividades

37

3.8 Resultados esperados

El resultado esperado es la realización de:

 Sistema multiplataforma para el manejo de la información en atención al

cliente y gestión de reservas en línea “My Burguer”, desarrollado según los

requerimientos el cual permitirá optimizar el manejo de información y tiempo

de atención al cliente mediante la gestión de reservas de pedidos accedidos

desde internet y desde cualquier plataforma.

 Capacitación y sociabilización del sistema, mediante la capacitación se

espera formar al personal con el manejo de las funcionalidades del sistema,

con lo cual se obtiene el máximo provecho del sistema desarrollado; con la

sociabilización se espera dar a conocer el servicio de reservas de pedidos en

línea y promocionar la empresa “My Burguer”.

3.9 Transferencia de resultados

Medios y estrategias para la transferencia de resultados.

Por Convenio: Toda la información es proporcionada por la empresa “My

Burguer”, mediante un convenio firmado, mediante el cual se permite realizar

ingeniería de requerimientos de la empresa.

Grupo de beneficiarios de los resultados

Con el proyecto realizado se beneficiarán los siguientes grupos de

involucrados:

 “My Burguer”

 Clientes

 Empleados

Capítulo II

Componentes

38

4. Componente 1: Sistema multiplataforma para el manejo de la información en

 atención al cliente y gestión de reservas en línea “My Burguer”.

4.1 Marco Teórico

4.1.1 Antecedentes

Una organización es un sistema compuesto por tres elementos: personas,

materiales e información. Los sistemas de información, por su parte, surgen

como sistemas complejos y abiertos que interactúan con otros sistemas y

subsistemas como parte de su actuación. Por los años 90, una de las

concepciones más defendidas por la gestión de la información fue que las

organizaciones son sistemas de información.

El uso de ciertos conceptos tomados de la teoría de sistemas y del campo de la

informática llevó a un alto grado de desarrollo entre los sistemas de

información. Aunque existen diversas definiciones, hechas desde diferentes

enfoques, sobre los sistemas de información, en su gran mayoría tienen puntos

en común. El análisis realizado sobre las definiciones más frecuentes efectuadas

en la década de los años 90 revela que constituyen un conjunto integrado de

procesos, elementos o componentes que –según las estrategias y necesidades de

una organización– recopilan, elaboran y distribuyen la información necesaria.

Un sistema moderno de gestión de información exige la aplicación de nuevas

tecnologías de información; sin embargo, la tecnología por sí sola no es

suficiente para lograr una buena gestión de información. Son diversos los

procesos que conforman los sistemas de gestión de información; ellos generan

las entradas y salidas del sistema o de otros procesos relacionados; también

pueden identificarse, controlarse, corregirse o actualizarse en la medida en que

se producen las transformaciones del entorno y evoluciona la organización,

como vía incuestionable para garantizar su calidad, eficiencia y mejora

continua. A modo de resumen de este antecedente de marco teórico, puede

decirse que los sistemas de gestión de información, en su definición más

39

general, se refieren al conjunto de todos los componentes necesarios que se

interrelacionan, con el objetivo de tramitar y facilitar la información sobre el

tema de interés para su consumo en cualquier medio, momento y lugar.

4.1.2 Estudio de la variable independiente: Gestion de la Información

4.1.2.1 “MyBurguer”

“My Burguer” es una empresa en crecimiento dedicada a la venta de comida

rápida en la ciudad de Tarija, con el propósito de aumentar clientes

satisfaciendo sus necesidades.

4.1.3 Estudio de la variable dependiente: Sistema de Gestion de la Infomación

El manejo constante de información valiosa y cuantiosa de diversos

establecimientos académicos que procesan tal información aun basándose en

un sistema manual que muchas veces es lento, inseguro e inadecuado ha

puesto en claro la necesidad de un Sistema mucho más rápido y confiable es

por eso que se propone como solución el desarrollo de un sistema de gestión

de información de esta forma se facilita a la empresa mejorar la eficiencia en

el manejo de la información en tiempos de atención al cliente. Para esto hay

tomar en cuenta las tecnologías que se aplicarán.

4.1.4 Relación entre la variable independiente y dependiente

X (i) Desarrollo de Sistema

multiplataforma para el manejo de

información en atención al cliente y

gestión de reservas en línea.

Y (i) Control de información en

atención al cliente y gestión de

reservas en línea.

Analizar la situación actual de

“MyBurguer”.

Factibilidad de los procesos.

Determinar los requerimientos

necesarios.

Mejor control en manejo de

información y atención al cliente.

Elaborar el diseño lógico y físico del

Sistema.

Solucionar necesidades del área de

reservas.

40

4.2 Metodología para el desarrollo del sistema

4.2.1 Metodología RUP (Racional Unified Process) [15]

El Proceso Unificado Racional – RUP (Rational Unified Process) es un marco

de referencia para el desarrollo del sistema y junto con el Lenguaje Unificado

de Modelado UML, constituye la metodología estándar más utilizada para el

análisis, implementación y documentación de sistemas orientados a objetos.

Los procesos de RUP estiman tareas y horario del plan midiendo la velocidad

de iteraciones concerniente a sus estimaciones originales. Las iteraciones

tempranas de proyectos conducidos por RUP se enfocan fuertemente sobre

arquitectura del sistema; la puesta en práctica rápida de características se retrasa

hasta que se ha identificado y se ha probado una arquitectura firme.

Nos permite realizar un levantamiento exhaustivo de requerimientos.

Las actividades de RUP se centran en crear y mantener modelos, utilizando

UML, en forma efectiva.

Busca detectar defectos en las fases iníciales.

Intenta reducir al número de cambios tanto como sea posible.

Realiza el Análisis y diseño, tan completo como sea posible.

Diseño genérico, intenta anticiparse a futuras necesidades.

Las necesidades de clientes no son fáciles de discernir.

Existe un contrato prefijado con los clientes.

El cliente interactúa con el equipo de desarrollo mediante reuniones.

Características esenciales:

Los autores de RUP destacan que el proceso de software propuesto por RUP

tiene tres características esenciales: está dirigido por los Casos de Uso, está

centrado en la arquitectura, y es iterativo e incremental.

41

Está dirigido por los Casos de Uso: Los Casos de Uso son una técnica de

captura de requisitos que fuerza a pensar en términos de importancia para el

usuario y no sólo en términos de funciones que sería bueno contemplar. Se

define un Caso de Uso como un fragmento de funcionalidad del sistema que

proporciona al usuario un valor añadido. Los Casos de Uso representan los

requisitos funcionales del sistema.

Los Casos de Uso no sólo inician el proceso de desarrollo sino que

proporcionan un hilo conductor, permitiendo establecer trazabilidad entre los

artefactos que son generados en las diferentes actividades del proceso de

desarrollo.

En RUP los Casos de Uso no son sólo una herramienta para especificar los

requisitos del sistema. También guían su diseño, implementación y prueba.

Está Centrado en su Arquitectura: La arquitectura de un sistema es la

organización o estructura de sus partes más relevantes, lo que permite tener una

visión común entre todos los involucrados (desarrolladores y usuarios) y una

perspectiva clara del sistema completo, necesaria para controlar el desarrollo.

La arquitectura involucra los aspectos estáticos y dinámicos más significativos

del sistema, está relacionada con la toma de decisiones que indican cómo tiene

que ser construido el sistema y ayuda a determinar en qué orden. Además la

definición de la arquitectura debe tomar en consideración elementos de calidad

del sistema, rendimiento, reutilización y capacidad de evolución por lo que

debe ser flexible durante todo el proceso de desarrollo. La arquitectura se ve

influenciada por la plataforma software, sistema operativo, gestor de bases de

datos, protocolos, consideraciones de desarrollo como sistemas heredados.

Muchas de estas restricciones constituyen requisitos no funcionales del sistema.

En el caso de RUP además de utilizar los Casos de Uso para guiar el proceso se

presta especial atención al establecimiento temprano de una buena arquitectura

42

que no se vea fuertemente impactada ante cambios posteriores durante la

construcción y el mantenimiento.

Cada producto tiene tanto una función como una forma. La función

corresponde a la funcionalidad reflejada en los Casos de Uso y la forma la

proporciona la arquitectura. Existe una interacción entre los Casos de Uso y la

arquitectura, los Casos de Uso deben encajar en la arquitectura cuando se llevan

a cabo y la arquitectura debe permitir el desarrollo de todos los Casos de Uso

requeridos, actualmente y en el futuro. Esto provoca que tanto arquitectura

como Casos de Uso deban evolucionar en paralelo durante todo el proceso de

desarrollo de software.

Es Iterativo e Incremental: Según el equilibrio correcto entre los Casos de

Uso y la arquitectura es algo muy parecido al equilibrio de la forma y la función

en el desarrollo del producto, lo cual se consigue con el tiempo. Para esto, la

estrategia que se propone en RUP es tener un proceso iterativo e incremental en

donde el trabajo se divide en partes más pequeñas o mini proyectos.

Permitiendo que el equilibrio entre Casos de Uso y arquitectura se vaya

logrando durante cada mini proyecto, así durante todo el proceso de desarrollo.

Cada mini proyecto se puede ver como una iteración (un recorrido más o menos

completo a lo largo de todos los flujos de trabajo fundamentales) del cual se

obtiene un incremento que produce un crecimiento en el producto.

Una iteración puede realizarse por medio de una cascada. Se pasa por los flujos

fundamentales (Requisitos, Análisis, Diseño, Implementación y Pruebas),

también existe una planificación de la iteración, un análisis de la iteración y

algunas actividades específicas de la iteración. Al finalizar se realiza una

integración de los resultados con lo obtenido de las iteraciones anteriores.

Fases en el ciclo de Desarrollo

Este proceso de desarrollo considera que cualquier desarrollo de un sistema

software debe pasar por cuatro fases que se describirán a continuación, la figura

43

muestra las Fases de desarrollo y los diversos flujos de trabajo involucrados

dentro de cada fase con una representación gráfica en cuál de los flujos se hace

mayor énfasis según la fase, cabe destacar el flujo de trabajo concerniente al

negocio.

Figura 4. Fases de desarrollo de R.U.P.

Fase 1: Preparación Inicial (“Incepción”)

Su objetivo principal es establecer los objetivos para el ciclo de vida del

producto. En esta fase se establece el caso del negocio con el fin de delimitar el

alcance del sistema, saber qué se cubrirá y delimitar el alcance del proyecto.

El caso de negocio incluye criterios de éxito, la evaluación de riesgos, y la

estimación de los recursos necesarios, y un plan de la fase que muestre las

fechas previstas e hitos importantes.

Fase 2: Preparación Detallada (“Elaboración”)

Su objetivo principal es plantear la arquitectura para el ciclo de vida del

producto. En esta fase se realiza la captura de la mayor parte de los

44

requerimientos funcionales, manejando los riesgos que interfieran con los

objetivos del sistema, acumulando la información necesaria para el plan de

construcción y obteniendo suficiente información para hacer realizable el caso

del negocio.

El resultado de la fase de elaboración es:

Un modelo de caso de uso (por lo menos 80% completo) - todos los casos de

uso y actores deben haber sido identificados-, y se han desarrollado la mayoría

de las descripciones de casos de uso.

 Requerimientos suplementarios que capturan los requerimientos no funcionales

o cualquier requerimiento que no se asocie a un caso de uso específico.

Fase 3: Construcción (“Construcción”)

Su objetivo principal es alcanzar la capacidad operacional del producto. En esta

fase a través de sucesivas iteraciones e incrementos se desarrolla un producto

software, listo para operar, éste es frecuentemente llamado versión beta.

Fase 4: Transición (“Transición”)

Su objetivo principal es realizar la entrega del producto operando, una vez

realizadas las pruebas de aceptación por un grupo especial de usuarios y

habiendo efectuado los ajustes y correcciones que sean requeridos.

Éste incluye:

Operación en paralelo con un sistema anterior que el nuevo sistema esté

sustituyendo.

La conversión de las bases de datos operacionales.

Entrenamientos y capacitación de los usuarios y la gente de mantenimiento.

4.2.2 Los diagramas del lenguaje unificado de modelado [17]

UML, por sus siglas en inglés, Unified Modeling Language, es el lenguaje de

modelado de sistemas más conocido y utilizado en la actualidad. Es un lenguaje

45

gráfico para visualizar, especificar, construir y documentar un sistema. UML

ofrece un estándar para describir un "plano" del sistema (modelo), incluyendo

aspectos conceptuales tales como procesos de negocio, funciones del sistema, y

aspectos concretos como expresiones de lenguajes de programación, esquemas

de bases de datos y compuestos reciclados.

Es importante remarcar que UML es un "lenguaje de modelado" para

especificar o para describir métodos o procesos. Se utiliza para definir un

sistema, para detallar los artefactos en el sistema y para documentar y construir.

En otras palabras, es el lenguaje en el que está descrito el modelo.

Se puede aplicar en el desarrollo de software gran variedad de formas para dar

soporte a una metodología de desarrollo de software (tal como el Proceso

Unificado Racional o RUP), pero no especifica en sí mismo qué metodología o

proceso usar.

UML no puede compararse con la programación estructurada, pues UML

significa Lenguaje Unificado de Modelado, no es programación, solo se

diagrama la realidad de una utilización en un requerimiento. Mientras que,

programación estructurada, es una forma de programar como lo es la

orientación a objetos, sin embargo, la programación orientada a objetos viene

siendo un complemento perfecto de UML, pero no por eso se toma UML sólo

para lenguajes orientados a objetos.

Por otro lado, no debe olvidarse que realizar uno de estos diagramas insume

tiempo. Más allá que el o los diagramas deben realizarse correctamente, el

desarrollador debe considerar cuanto tiempo invierte en estas actividades.

Estos diagramas se pueden organizar en dos grupos:

Los que describen el comportamiento del negocio, del sistema, de un

aspecto en particular.

 Diagrama de Actividad (Activity Diagram): Representa los procesos de

negocio o la lógica de un sistema complejo. Incluye, opcionalmente, el

46

flujo de datos. el nivel de abstracción suele ser bastante alto, pero

pueden realizarse diagramas de actividad exploratorios cuando la lógica

que se trata es compleja.

 Diagrama de Casos de Uso (Use Case Diagram): Muestra casos de uso

individuales, actores y las relaciones entre ellos. El Proceso Unificado

dice está dirigido por los casos de uso, esto significa que este diagrama

(en el nivel de abstracción que sea) es la base del lenguaje de modelado

y representación.

 Diagrama de Secuencia (Sequence Diagram): Muestra la secuencia de la

lógica, el orden en que se suceden los mensajes. Importante,

especialmente cuando se trabaja en ambientes altamente compartidos.

Los que describen la estructura, la forma, la organización.

 Diagrama de Clases (Class Diagram): Muestra una colección de clases,

sus tipos, sus contenidos y sus relaciones. Importantísimo representa el

modelo de datos, y en consecuencia su persistencia en alguna forma de

almacenamiento.

 Diagrama de Componentes (Component Diagram): Describe los

elementos que componen un sistema. Debe detallar los elementos o

componentes, las interacciones y relaciones así como las interfaces

públicas.

 Diagrama de Despliegue (Deployment Diagram): Muestra la

arquitectura de ejecución de un sistema. Incluye nodos, entornos de

hardware y software.

UML se ha establecido como el estándar en la industria de desarrollo de

software. Es cierto que puede utilizarse otro tipo de lenguaje, pero eso reduce la

cantidad de personas que pueden leer (entender) el desarrollo.

47

4.2.3 Base de datos relacional

Una Base de Datos relacional es una base de datos en donde todos los datos

visibles al usuario están organizados estrictamente como tablas de valores, y en

donde todas las operaciones de la base de datos operan sobre estas tablas.

Estas bases de datos son percibidas por el usuario como una colección de

relaciones normalizadas en diversos grados que varían como el tiempo.

El modelo relación representa un sistema de base de datos en un nivel de

abstracción un tanto alejado de los detalles de la maquina subyacente, de la

misma manera como por ejemplo, un lenguaje de tipo de PL/I representa un

sistema de programación más bien abstracto, orientado de manera específica

hacia las aplicaciones de Base de Datos.

4.3 Herramientas de construcción del sistema

4.3.1 NetBeans

Para el desarrollo del presente sistema se utilizo NetBeans porque es un entorno

de desarrollo gratuito y de código abierto. Permite el uso de un amplio rango de

tecnologías de desarrollo para aplicaciones Web. Además puede instalarse en

varios sistemas operativos: Windows, Linux, Mac OS. Soporta el desarrollo de

aplicación Java EJB y la integración con el servidor WildFly los cuales serán

utilizados en el desarrollo del sistema.

4.3.2 Enterprise Architect

Enterprise Architect es una plataforma para el modelado, visualización y

diseño, basada en el estándar UML 2.1, ésta herramienta facilita el diseño de los

diagramas.

4.3.3 MySQL Workbench

Es una herramienta visual de diseño de bases de datos que integra desarrollo de

software, administración de bases de datos, diseño de bases de datos, creación y

mantenimiento para el sistema de base de datos MySQL.

48

En el desarrollo del sistema facilitará el análisis y diseño de la base de datos

relacional. Ventajas:

 Libre, distribuida bajo la licencia GPL

 Multiplataforma. disponible para Windows, GNU/Linux. Mac

 Permite crear diagramas E-R

 Importar archivos SQL

 Permite generar los scripts SQL a partir del modelo creado.

4.3.4 WildFly

Es un servidor de aplicaciones, tiene la capacidad de escalar a más de un millón

de conexiones. Cumple con toda las especificaciones que define JEE. Soporta

los últimos estándares para el desarrollo web, posee una comunicación full-

duplex. Esto es especialmente útil en la comunicación con los dispositivos

móviles.

4.4 Tecnología utilizada

4.4.1 EJB

Los Enterprise Java Beans (EJB) son componentes del lado del servidor para la

plataforma Java Enterprise Edition (Java EE), que apuntan a crear un desarrollo

rápido y simple para aplicaciones distribuidas, transaccionales, seguras y

portables.

Proporciona un modelo de componentes distribuido estándar del lado del

servidor. EJB permite abstraerse de los problemas generales como ser:

concurrencia, transacciones, persistencia, seguridad, etc. para centrarse en el

desarrollo de la lógica de negocio en sí.

Se utilizará EJB para la implementación del sistema ya que éste requiere

mayores necesidades de concurrencia o distribución.

49

4.4.2 MyBatis

MyBatis es una herramienta de software libre; es un framework de persistencia

disponible para Java que se encarga de mapear sentencias SQL y

procedimientos almacenados con objetos a partir de ficheros XML o

anotaciones. No se trata de un ORM. Simplifica la programación frente al uso

directo de JDBC. Las líneas de código necesarias para ejecutar una sentencia se

reducen casi siempre a una. Esta simplificación ahorra tiempo y evita errores.

Además previene el temido SQL Inyection.

4.4.3 Java

Es un lenguaje de programación orientado a objetos. Puede ser ejecutado en

cualquier dispoisitivo.

4.4.4 Patrón de diseño “Modelo Vista Controlador (MVC)” [12]

Es un patrón de arquitectura de software que separa los datos de una aplicación,

la interfaz de usuario, y la lógica de control en tres componentes distintos.

El patrón MVC se ve frecuentemente en aplicaciones web, su concepto se basa

en separar el modelo de datos de la aplicación de su representación de cara al

50

usuario y de la interacción de éste con la aplicación, mediante la división de la

aplicación en tres partes fundamentales:

 El modelo, que contiene la lógica de negocio de la aplicación.

 La vista, que muestra al usuario la información que éste necesita.

 El controlador, que recibe e interpreta la interacción del usuario,

actuando sobre modelo y vista de manera adecuada para provocar

cambios de estado en la representación interna de los datos, así como en

su visualización.

Esta arquitectura ha demostrado ser muy apropiada para las aplicaciones web y

especialmente adaptarse bien a las tecnologías proporcionadas por la plataforma

J2EE, de manera que:

 El modelo, conteniendo lógica de negocio, sería modelado por un

conjunto de clases Java, existiendo dos claras alternativas de

implementación, utilizando objetos java tradicionales llamados POJOs

(Plain Old Java Objects) o bien utilizando EJB (Enterprise JavaBeans)

en sistemas con unas mayores necesidades de concurrencia o

distribución.

 La vista proporcionará una serie de páginas web dinámicamente al

cliente, siendo para él simples páginas HTML. El framework que genera

estas páginas web a partir de distintos formatos es JSP (JavaServer

Pages), que mediante un conjunto de tags XML proporciona un interfaz

sencillo y adecuado a clases Java y objetos proporcionados por el

servidor de aplicaciones. Esto permite que sean sencillas de desarrollar

con la tecnología HTML. Entre estos tags tienen mención especial la

librería estándar JSTL (JavaServer Pages Standard Tag Library) que

proporciona una gran funcionalidad y versatilidad.

 El controlador en la plataforma J2EE se desarrolla mediante servlets,

que hacen de intermediarios entre la vista y el modelo, más versátiles

que los JSP para esta función al estar escritos como clases Java

51

normales, evitando mezclar código visual (HTML, XML...) con código

Java.

Con todo lo anterior, el funcionamiento de una aplicación web J2EE que utilice

el patrón arquitectural MVC se puede descomponer en una serie de pasos:

 El usuario realiza una acción en su navegador, que llega al servidor

mediante una petición HTTP y es recibida por un servlet (controlador).

Esa petición es interpretada y se transforma en la ejecución de código

java que delegará al modelo la ejecución de una acción de éste.

 El modelo recibe las peticiones del controlador, a través de un interfaz o

fachada que encapsulará y ocultará la complejidad del modelo al

controlador. El resultado de esa petición será devuelto al controlador.

 El controlador recibe del modelo el resultado, y en función de éste,

selecciona la vista que será mostrada al usuario, y le proporcionará los

datos recibidos del modelo y otros datos necesarios para su

transformación a HTML. Una vez hecho esto el control pasa a la vista

para la realización de esa transformación.

 En la vista se realiza la transformación tras recibir los datos del

controlador, elaborando la respuesta HTML adecuada para que el

usuario la visualice.

Esta arquitectura de aplicaciones otorga varias ventajas clave al desarrollo del

sistema, destacando:

 Al separar de manera clara la lógica de negocio (modelo) de la vista

permite la reusabilidad del modelo.

 Permite una sencilla división de tareas, diseñar las vistas sin necesidad

de mezclar código Java entre el código visual que se está desarrollando

(tan sólo utilizando algunos tags, no muy diferentes de los usados en el

código HTML).

52

4.4.5 Boostrap

Ya que es un requisito que el sistema funcione en equipos de escritorio y

portátiles a través de navegadores web, se utilizó Boostrap que es un framework

desarrollado por Twitter para crear interfaces y diseños web responsivos

basados en HTML5, JavaScript, JQuery y CSS3, que presentará vistas

llamativas y amigables.

Para el desarrollo de las vistas del sistema se adaptó una plantilla, con

tecnología Boostrap, llamada DevOOPS.

4.5 Base de datos

4.5.1 MySQL

Es un sistema de administración de bases de datos (Database Management

System, DBMS) para bases de datos relacionales.

Para el desarrollo del presente sistema se utilizo este gestor por ser una de base

de datos relacional, multihilo y multiusuario, es muy rápido en la lectura de

datos, ideal para aplicaciones web y además se integra en distintos sistemas

operativos el cual es un requisito importante.

4.6 Glosario

Del Negocio.

Restaurante: establecimiento comercial público donde se paga por la comida y

bebida, para ser consumidas en el mismo local.

Mesero: es la persona que tiene como oficio atender a los clientes del

restaurante, proporcionándoles alimentos, bebidas, y asistencia durante la

estancia, suele controlar un rango de varias mesas.

Chef: persona que cocina por oficio y profesión. Las funciones en la cocina

están categorizadas, en función de los conocimientos y las especialidades de

cada uno de los tipos de chef.

53

Recepcionista: Persona que actúa como un intermediario entre el cliente y

otros miembros del personal, programa las reservas de pedidos.

Reserva: Productos solicitados por el cliente.

Orden: Detalle de la socilitud de productos, en la cual el chef se basa para

prepararlos en cocina.

Del Sistema.

Administrar: Acción de agregar, modificar, eliminar y consultar la

información de un determinado objeto o persona.

Administrador del Sistema: Persona encargada de ofrecer el soporte técnico y

operativo.

Backup (copia de respaldo, copia de seguridad): Copia de ficheros o datos de

forma que estén disponibles en caso de que un fallo produzca la pérdida de los

originales. Esta sencilla acción evita numerosos, y a veces irremediables,

problemas si se realiza de forma habitual y periódica.

Solicitud: Transacción o una diligencia cuidadosa o un pedido de un usuario

del sistema hacia las funcionalidades y recursos del sistema.

Login: nombre de usuario. Es el nombre que adquiere el usuario para acceder a

un determinado servicio del sistema.

Password (palabra de paso, contraseña): Conjunto de caracteres alfanuméricos

que permite a un usuario el acceso a un determinado recurso o la utilización de

un servicio dado.

Sesión: una sesión es la duración de una conexión empleando una capa de

sesión de un protocolo de red, o la duración de una conexión entre un usuario

(el agente) y un servidor, generalmente involucrando el intercambio de

múltiples paquetes de datos entre la computadora del usuario y el servidor.

Racional Unified Process: Es un proceso de desarrollo de software y junto con

el Lenguaje Unificado de Modelado UML, constituye la metodología estándar

54

más utilizada para el análisis, implementación y documentación de sistemas

orientados a objetos.

Sistema Informático: Conjunto de partes (hardware y software) que funcionan

relacionándose entre sí con un objetivo preciso. Los usuarios son parte del

sistema informático.

Sistema Operativo: Un sistema operativo (SO) es un conjunto de programas o

software destinado a permitir la comunicación del usuario con un ordenador y

gestionar sus recursos de manera cómoda y eficiente. Comienza a trabajar

cuando se enciende el ordenador, y gestiona el hardware de la máquina desde

los niveles más básicos .Ejemplos Windows, Linux, MacOS, Solaris.

Usuarios: El usuario de un producto informático (bien sea hardware o

software), es la persona a la que va destinada dicho producto una vez que ha

superado las fases de desarrollo correspondientes. Normalmente, el sistema se

desarrolla pensando en la comodidad del usuario final, y por esto se presta

especial interés y esfuerzo en conseguir una interfaz de usuario lo más clara y

sencilla posible.

De tecnología.

Computadora (computador, ordenador): Máquina electrónica capaz de

procesar información siguiendo instrucciones almacenadas en programas. Antes

que electrónicas estas máquinas fueron mecánicas o electromecánicas.

Dominio: Nombre base que agrupa a un conjunto de equipos o dispositivos y

que permite proporcionar nombres de equipo más fácilmente recordables en

lugar de una dirección IP numérica, Ej: sislabc.com.

Servidor WEB: Es un programa que implementa el protocolo HTTP (hypertext

transfer protocol). Este protocolo está diseñado para transferir lo que llamamos

hipertextos, páginas web o páginas HTML (hypertext markup language): textos

complejos con enlaces, figuras, formularios, botones y objetos incrustados

como animaciones o reproductores de música.

55

URL: Significa Uniform Resource Locator, es decir, localizador uniforme de

recurso. Es una secuencia de caracteres, de acuerdo a un formato estándar, que

se usa para nombrar recursos, como documentos e imágenes en Internet, por su

localización.

HTTP: El protocolo de transferencia de hipertexto (HTTP, HyperText Transfer

Protocol) es el protocolo usado en cada transacción de la Web (WWW).

Enlaces: una referencia en un documento de hipertexto a otro documento o

recurso.

Sistema de gestión de Base de Datos: Son un tipo de software muy específico,

dedicado a servir de interfaz entre la base de datos, el usuario y las aplicaciones

que la utilizan.

Base de Datos: Es un conjunto de datos que pertenecen al mismo contexto

almacenados sistemáticamente para su posterior uso.

Aplicación: Es un programa informático diseñado para facilitar al usuario la

realización de un determinado tipo de trabajo.

MySQL: Sistema de gestión de base de datos relacional. Comúnmente

utilizados en aplicaciones Web.

WildFlly: Servidor de WEB de código abierto.

Dirección IP (Internet Protocol): Número que identifica de manera lógica y

jerárquica a una interfaz de un dispositivo (habitualmente una computadora)

dentro de una red que utilice el protocolo IP (Internet Protocol).

Protocolo IP: El Protocolo de Internet (IP, de sus siglas en inglés Internet

Protocol) es un protocolo no orientado a la conexión, usado tanto por el origen

como por el destino para la comunicación de estos a través de una red

(Internet).

56

Internet: Es un método de interconexión descentralizada de redes de

computadoras implementado en un conjunto de protocolos denominado

TCP/IP.

Browser o Motor de Navegación: Es una aplicación que permite al usuario

recuperar y visualizar documentos de hipertexto, comúnmente descritos en

HTML, desde servidores web de todo el mundo a través de Internet.

HTML (HyperText Markup Language): Es un lenguaje de marcación

diseñado para estructurar textos y presentarlos en forma de hipertexto, que es el

formato estándar de las páginas web.

Ajax (Asynchronous JavaScript And XML): es una técnica de desarrollo

web para crear aplicaciones interactivas.

Javascript: Es un lenguaje interpretado, es decir, que no requiere compilación,

utilizado principalmente en páginas web.

Java: es un lenguaje de programación orientado a objetos que fue diseñado

específicamente para tener tan pocas dependencias de implementación como

fuera posible.

Acrónimos.

BBDD, BD: Bases de Datos, Base de Datos.

Abreviaturas.

ERS: Especificación de Requerimientos Software.

RUP: Racional Unified Process.

TIC: Tecnologías de la Información y Comunicación.

UML: Lenguaje Unificado de Modelado.

57

4.7 Plan de desarrollo del sistema

4.7.1 Introducción

Este plan de desarrollo del sistema es una respuesta al proyecto

Mejoramiento en el manejo de la información y atención al cliente mediante

la automatización de procesos en línea de “My Burguer”, de la asignatura de

Taller III de la carrera de Ingeniería informática de la Facultad de Ciencias y

Tecnología de la Universidad Autónoma Juan Misael Saracho. Este

documento provee una visión global del enfoque de desarrollo propuesto.

El presente proyecto es propuesto por la Univ. Marcia Milenka Andrade

Llanos basado en una metodología de Racional Unified Process en la que

únicamente se procederá a cumplir con las tres primeras fases que marca la

metodología, constando únicamente en la tercera fase de dos iteraciones. Es

importante destacar esto puesto que utilizaremos la terminología RUP en

este documento. Se incluirá el detalle para las fases de Inicio y Elaboración y

adicionalmente se esbozaran las fases posteriores de Construcción y

Transición para dar una visión global de todo proceso.

El enfoque desarrollo propuesto constituye una configuración del proceso

RUP de acuerdo a las características del proyecto seleccionando los roles de

los participantes, las actividades a realizar y los artefactos (entregables) que

serán generados, éste documento es a su vez uno de los artefactos de RUP.

4.7.2 Propósito

El propósito del plan de desarrollo del sistema es proporcionar la

información necesaria para controlar el proyecto. En él se describe el

enfoque de desarrollo del sistema.

Los usuarios del Plan de Desarrollo del Sistema son:

 El director del proyecto lo utiliza para organizar la agenda y

necesidades de recursos y para realizar su seguimiento y poder

58

cumplir con todas las fechas trazadas para su posterior culminación

en el tiempo programado.

 Los miembros del equipo de desarrollo como programadores,

diseñadores gráficos, lo usan para entender lo que deben hacer,

cuando deben hacerlo y que otras actividades dependen de ello.

4.7.3 Alcance

Aplicando el plan de desarrollo del sistema se obtiene una herramienta

importante para realizar el plan de trabajo el cual coadyuvará al cumplimiento

de los objetivos en el tiempo propuesto gracias al cronograma de actividades

establecido.

4.7.4 Resumen

El presente plan de desarrollo contiene la siguiente información:

Descripción del Proyecto: ofrece una descripción del propósito del proyecto,

el alcance y los objetivos. También define los entregables que se esperan del

producto.

Organización del Proyecto: describe la estructura de organización del equipo

del proyecto.

Proceso de Gestión: explica el calendario, se determinan las fases y entregas

incrementales del proyecto, y se describe cómo será llevado a cabo el

seguimiento del proyecto.

Planes y Directrices aplicables: ofrece una visión general del proceso de

desarrollo del sistema, incluidos los métodos, herramientas y técnicas a seguir.

4.8 Vista General del proyecto

Proporciona una descripción del propósito, alcance y objetivos del proyecto,

estableciendo los artefactos que serán producidos y utilizados durante el

proyecto.

59

4.8.1 Propósito

Proporcionar una herramienta software que permita automatizar el manejo

de la información como ser las reservas en línea de los clientes, registrar y

organizar productos y combos, generación de reportes cuando se lo requiera,

además de otorgar a los usuarios un registro adecuado de la información:

teniendo toda información almacenada en una Base de Datos a la que solo

podrá acceder personal autorizado, brindando de esta manera total seguridad

a todos los datos almacenados.

4.8.2 Alcances

Analizando factores predominantes dentro de la empresa, se llega a la

conclusión de que la implementación del sistema automatizado dará

beneficios claramente perceptibles, dando soluciones a problemas que

arrastra; este sistema proyectará una solución a mediano plazo que

beneficiará a dicha empresa.

Esta propuesta del sistema contiene una serie de alternativas de

mejoramiento para las expectativas futuras de la empresa, las cuales se

detallan a continuación:

Brindar seguridad al sistema mediante una clave de ingreso, permitiendo el

acceso al mismo sólo al personal autorizado.

Opciones que permitan el registro automatizado consistente de usuarios y

clientes, consultas, seguimiento de las reservas, además de realizar reportes.

Desarrollar un manual de usuario y de instalación del sistema.

4.8.3 Objetivos

Según el estudio previamente realizado para esta empresa se plantean los

siguientes objetivos:

 Obtener un sistema que permita obtener reportes de forma rápida y

sencilla.

60

 Otorgar a los usuarios total seguridad en el resguardo de su

información, permitiendo el acceso sólo a usuarios autorizados.

 Obtener un sistema que permita generar reportes de manera rápida y

sencilla.

 Crear una base de datos de acuerdo a las necesidades de la empresa.

 Diseñar una interfaz de usuario de fácil manejo.

 Desarrollar una aplicación web escalable.

 Desarrollar casos de prueba que garanticen la calidad del sistema.

4.8.4 Suposiciones y Restricciones

 Suposiciones

 Se supone que la empresa “My Burguer” cuenta con:

 Equipo de computación. En el que incluye un computador, impresora.

 La disponibilidad de otorgar toda la información necesaria para la

creación del sistema.

 Personal con conocimientos básicos de computación.

 Cuenta con equipos para implementar el sistema

 Restricciones

Se establece las siguientes restricciones para el sistema:

 El sistema será restringido, sólo usuarios privilegiados podrán acceder al

sistema.

 Para la manipulación de la base de datos, sólo podrán acceder el

personal autorizado.

 Deberá contar como mínimo con un sistema operativo.

 El administrador deberá contar con el conocimiento necesario para el

manejo del sistema

 El sistema no soporta la emisión de facturas.

 El sistema no soporta el funcionamiento contable.

61

 El sistema no gestiona la planilla de sueldos del personal, tampoco

realiza el control de horarios de ingresos y salida del personal.

4.9 Entregables del proyecto

A continuación se indican y describen cada uno de los artefactos que serán

generados y utilizados por el proyecto y que constituyen los entregables. Esta

lista constituye la configuración de RUP desde la perspectiva de artefactos, y

que proponemos para este proyecto.

Es preciso destacar que de acuerdo a la filosofía de RUP (y de todo proceso

iterativo e incremental), todos los artefactos son objeto de modificaciones a lo

largo del proceso de desarrollo, con lo cual, sólo al término del proceso

podríamos tener una versión definitiva y completa de cada uno de ellos. Sin

embargo, el resultado de cada iteración y los hitos del proyecto están enfocados

a conseguir un cierto grado de completitud y estabilidad de los artefactos. Esto

será indicado más adelante cuando se presenten los objetivos de cada iteración.

4.9.1 Plan de desarrollo del sistema

El plan de desarrollo del sistema se describirá paso a paso en los siguientes

puntos del proyecto en base a la metodología RUP.

62

4.9.2 Modelo de Objetos del Negocio

Es un modelo que describe la realización de cada caso de uso del negocio,

estableciendo los actores internos, la información que en términos generales

manipulan y los flujos de trabajo (workflows) asociados al caso de uso del

negocio.

Figura 5. Modelo de Objetos del Negocio

63

4.9.3 Casos de uso del negocio

4.9.3.1 Introducción:

El modelo de casos de uso del negocio es un artefacto de la disciplina de

Requisitos en la metodología RUP la cual estamos implementando.

Es el modelo de las funciones de negocio vistas desde la perspectivas de

los actores externos permite situar al sistema en el contexto organizacional

haciendo énfasis en los objetivos en este ámbito. Este modelo se representa

con un Diagrama de Casos de Uso a través de estereotipos específicos para

este modelo.

4.9.3.2 Propósito:

El propósito del modelo de casos de uso del negocio es mostrar con

claridad los procesos que realizan cada actor en sus actividades diarias, en

detalle se muestra la interacción realizada por el actor con los diferentes

procesos que constituirá el proyecto.

4.9.3.3 Alcances:

 Describir el comportamiento de los procesos de negocio.

 Identificar y definir los objetos del negocio.

64

Caso de uso de negocio general

Figura 6. Caso de uso de negocio general

Presentar menú de comida

Figura 7. Caso de uso de negocio presentar menú de comida

 class General

Mesero

Cliente

Entregar Ordenes a

Cocina

Entregar Productos

Preparar Orden

Chef
Recepcionista

Presentar Menú de

Comida
Recibir Pedido

«include»

«include»

«include»«include»

 class Presentar Menu de Comida

Cliente

Seleccionar Menú

Presentar Menú de

Comida

Escribir Pedido

Recepcionista

«include»

«include»

65

Entregar órdenes a cocina

Figura 8. Caso de uso de negocio entregar órdenes a cocina

Preparar orden

Figura 9. Caso de uso de negocio preparar orden

 class Entregar Ordenes a Cocina

Recepcionista

Entregar Ordenes a

Cocina

Generar número de

pedido

Escribir detalle de

pedido

«include»

«include»

 class Preparar Orden

Preparar Orden

Chef

Procesar Orden
«include»

66

En tregar Productos

Figura 10. Modelo de Negocio Entregar Pedido

 class Entregar Productos

Chef

Entregar Productos

Entregar productos a

cliente según nro

Pedido

Preparar productos

para llev ar

Preparar productos

para serv ir en mesa

Cliente

Recepcionista

Mesero

«extend»

«extend»

«include»

«include»

67

4.9.4 Modelo de casos de uso [32]

4.9.4.1 Introducción:

El modelo de casos de uso es un modelo del sistema que contiene actores,

casos de uso y sus relaciones, describe lo que hace el sistema para cada tipo de

usuario.

Es decir cada forma en que los actores usan el sistema se representa con uno

caso de uso, los mismos son fragmentos de funcionalidad, especifican una

secuencia de acciones que el sistema puede llevar a cabo interactuando con

sus actores.

4.9.4.2 Propósito:

 Comprender la estructura y la dinámica del sistema deseado para la

organización.

 Identificar posibles mejoras.

4.9.4.3 Alcance:

 Describe los procesos de sistema

 Identificar y definir los procesos del sistema según los objetivos de la

organización

 Definir un caso de uso para cada procesos del sistema (el diagrama

de casos de uso puede mostrar el contexto y los límites de la

organización)

68

Caso de Uso General

Figura 11. Caso de Uso General

Ingresar al Sistema

Figura 12. Caso de uso Ingresar al Sistema

 uc Caso de Uso General

Administrador

Administrar

Usuarios

Portal

Reserv as

Ver Estados de

Pedidos

Establecimiento

Administrar

Productos

Administrar

Combos

Reportes

Cliente

Recepcionista

Ingresar al

sistema

Administrar

Roles

Realizar

Reserv a de

Pedido

Mesero

Chef

 uc Ingresar al sistema

Ingresar al Sistema

ClienteRecepcionista

Administrador

Chef

Mesero

Menú Principal
«include»

69

Administrar Usuarios

Figura 13. Caso de uso Administrar Usuario

Administrar Roles

Figura 14. Caso de uso Administrar Roles

 uc Administrar Usuarios

Registrar

Usuario

Acción

(Activ ar/Inactiv ar

Usuario)

Editar Rol

Administrar

Usuarios

Administrador

Registrar

Persona
Editar Persona

Ver Persona

Usuarios de

Persona

Acción

(Activ ar/Inactiv ar

Persona)
Cambiar

contraseña

Editar

Permisos

Editar

Fotografía

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

 uc Administrar Roles

Administrar

Roles

Registrar Rol

Editar Rol

Ver Rol

Administrador

«extend»

«extend»

«extend»

70

Administrar Productos

Figura 15. Caso de uso Administrar Productos

Administrar Combos

Figura 16. Caso de uso Administrar Combos

 uc Administrar Productos

Administrar

Productos

Registrar

Producto

Editar Producto

Acción

(Activ ar-Inactiv ar

Producto)

Ver Producto

Administrador

Listar

Productos

Listar Grupos

Intercambiables Registrar Grupo

Intercambiable

Asignar

Intercambio de

Productos
Ver Grupo

Intercambiable

Acción

(Activ ar-Inactiv ar

Grupo

Intercambiable)

Chef

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»«extend»

«extend»

«extend»
«extend»

 uc Administrar Combos

Administrar

Combos

Registrar

Combo

Actualizar

Combo

Accion

(Activ ar-Inactiv ar

Combo)

Ver Combo

Administrador

Chef

Editar Imagen

Combo

«extend»
«extend»

«extend»

«extend»

«extend»

71

Realizar Reserva de Pedido

Figura 17. Caso de uso Realizar Reserva de Pedido

 uc Realizar Reserv a de Pedido

Realizar

Reserv a de

Pedido

Seleccionar

Productos del

Combo

Seleccionar

Combos

Seleccionar

Productos

Administrador

Vaciar Carrito

Validar

Reserv ar

Añadir a

Carrito

Remov er o

Reducir Item

Papeleta

Reserv a

Cliente

Mesero

Recepcionista

«extend»

«extend»

«include»
«extend»

«extend»

«extend»

«include»

«include»

«include»

«include»

72

Ver Estados de Pedidos

Figura 18. Caso de uso Ver Estados de Pedidos

 uc Ver Estados de Pedidos

Ver Estados de

Pedidos

Administrador

Chef

Cliente

Mesero

Recepcionista

Mis Reserv as

de Pedidos

Cambiar a: "Ordenar",

"Listo", "Entregar"

Pedidos

Mesero

Pedidos

Pedidos

Recepcionista

Pedidos Chef

Cambiar a:

"Entregar"

Cambiar a:

"Listo"

Anular

Ver Detalle

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

73

Portal Reservas

Figura 19. Caso de uso Portal Reservas

Establecimiento

Figura 20. Caso de uso Establecimiento

Reportes

Figura 21. Caso de uso Reportes

 uc Portal Reserv as

Portal

Reserv as

Administrador

Recepcionista

 uc Establecimiento

Establecimiento

Editar

Establecimiento

Ver

Establecimiento
Administrador

«extend»

«extend»

 uc Reportes

Reportes
Ejecutar

Reporte

Imprimir

Reporte

Administrador

«extend»«extend»

74

4.9.5 Especificación de Casos de uso.

4.9.5.1 Introducción.

Las especificaciones de los casos de uso es una descripción detallada de los

casos de uso del sistema.

4.9.5.2 Propósito.

 Comprender los casos de uso del sistema

 Describir específicamente cada caso de uso

4.9.5.3 Alcance.

 Describe los procesos internos de los casos de uso

 Detalla los flujos de cada caso de uso según lo establecido por la

organización.

Caso de Uso: Ingresar al Sistema

Descripción: Permite ingresar al sistema, este caso de uso tiene como función controlar el

acceso y al mismo tiempo recuperar los permisos correspondientes al momento que la

persona introduzca su usuario y clave en el sistema.

Actores: Administrador, Recepcionista, Chef, Mesero, Cliente

Precondiciones: El actor posee un login y clave

Flujo Normal: Flujo Alternativo:

1. El actor introduce datos en el sistema.

2. El actor presiona botón ingresar.

3. El sistema valida sus datos.

4. Si los datos son correctos muestra el Menú

Principal.

5. Si el usuario y/o contraseña son

incorrectos vuelve a mostrar la pantalla

Ingresar al Sistema.

Post Condiciones: Ninguno

Tabla 6. Especificación del CU Ingresar al Sistema

75

Caso de Uso: Menú Principal

Descripción: Este caso de uso tiene como función presentar el menú del sistema según sea el

rol del usuario logueado.

Actores: Administrador, Recepcionista, Chef, Mesero, Cliente

Precondiciones: El actor debe estar logueado en el sistema.

Post Condiciones: Ninguno

Tabla 7. Especificación del CU Menú Principal

Caso de Uso: Administrar Usuarios

Descripción: Este caso de uso tiene como objetivo administrar los usuarios del sistema, el

sistema presenta una operación de búsqueda por CI, Nombres y Apellidos, un botón de

“Registrar Persona”, una lista de personas registradas en el sistema, botones “Editar”,

“Usuarios”, “Ver” y “Acción” que direccionan a sus propias pantallas.

Actores: Administrador

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Administrar

Usuarios.

Ninguno

2. El sistema muestra la lista de personas

registradas en el sistema y las operaciones

que puede realizar.

Post Condiciones: Ninguno

Tabla 8. Especificación del CU Administrar Usuarios

76

Caso de Uso: Registrar Persona

Descripción: Este caso de uso tiene como objetivo adicionar una nueva persona al sistema.

Actores: Administrador

Precondiciones: El actor debe haber presionado el botón “Registrar Persona” en la pantalla

Administrar Usuarios / Listar Personas.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario.

2. El actor introduce datos al formulario.

3. Presiona Guardar, se valida datos del

formulario.

3. Por Cancelar, se regresa a la pantalla de

Listar Personas.

4. El sistema valida los campos obligatorios

vacíos.

4. Si existen campos obligatorios vacíos se

regresa a la pantalla Registrar Persona

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Post Condiciones: Ninguno

Tabla 9. Especificación del CU Registrar Persona

Caso de Uso: Editar Persona

Descripción: Este caso de uso tiene como objetivo editar los datos de una persona con

excepción de la Cédula de Identidad que se encuentra deshabilitada.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado el botón “Editar Persona” en la pantalla

Administrar Usuarios / Listar Personas.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario con los

campos permitidos para modificar.

2. El actor introduce datos al formulario

3. Presiona Guardar, se valida datos del

formulario.

3. Por Cancelar, se regresa a la pantalla de

Listar Personas.

4. El sistema valida los campos obligatorios

vacíos.

4. Si existen campos obligatorios vacíos se

regresa a la pantalla Editar Persona

77

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Post Condiciones: Ninguno

Tabla 10. Especificación del CU Editar Persona

Caso de Uso: Acción (Activar-Inactivar Persona)

Descripción: Este caso de uso tiene como objetivo inactivar a una persona, es decir, se

cambia el estado de la persona a inactivo.

Actores: Administrador

Precondiciones: El actor debe haber presionado el botón “Acción” en la fila correspondiente

a la persona.

Flujo Normal: Flujo Alternativo:

1. Se presenta al usuario un mensaje con la

opción Aceptar o Cancelar.

2. Presiona Aceptar. 2. Por Cancelar, regresa a la pantalla Listar

Personas sin registrar cambio alguno.

3. El sistema cambia el estado de la persona

seleccionada a inactivo y regresa a la pantalla

Listar Personas.

Post Condiciones: Ninguno

Tabla 11. Especificación del CU Acción (Activar-Inactivar Persona)

Caso de Uso: Ver Persona

Descripción: Este caso de uso tiene como objetivo mostrar los datos completos de la persona

seleccionada, además de los usuarios correspondientes a esa persona.

Actores: Administrador

Precondiciones: El actor debe haber presionado el botón “Ver” en la fila correspondiente a

la persona.

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Persona Ninguno

Post Condiciones: Ninguno

Tabla 12. Especificación del CU Ver Persona

78

Caso de Uso: Usuarios de Persona

Descripción: Este caso de uso tiene como objetivo mostrar la lista de usuarios pertenecientes

a una persona.

Actores: Administrador

Precondiciones: El actor debe haber presionado el botón “Usuarios” en la fila

correspondiente a la persona.

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Usuarios de

Persona.

Ninguno

2. El sistema muestra la lista de usuarios

pertenecientes a una persona registrada en el

sistema y las opciones que puede realizar.

Post Condiciones: Ninguno

Tabla 13. Especificación del CU Usuarios de Persona

Caso de Uso: Registrar Usuario

Descripción: Este caso de uso tiene como objetivo adicionar un nuevo usuario con su login y

clave para que pasen a ser reconocidos como usuarios del sistema, además de asignar un rol

al usuario.

Actores: Administrador

Precondiciones: El actor debe haber presionado el botón “Registrar Usuario”.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario

2. El actor selecciona un rol para el usuario

asignando los permisos por defecto de dicho

rol.

3. El actor introduce datos al formulario.

4. Presiona Guardar, se valida datos del

formulario.

4. Por Cancelar, se regresa a la pantalla de

Usuarios de Persona.

79

5. El sistema valida los campos obligatorios

vacíos.

5. Si existen campos obligatorios vacíos se

regresa a la pantalla Registrar Usuario

remarcando los campos que faltan

completar.

6. El sistema guarda datos del formulario

Post Condiciones: Ninguno

Tabla 14. Especificación del CU Registrar Usuario

Caso de Uso: Editar Usuario

Descripción: Este caso de uso tiene como objetivo editar los datos de un usuario

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Editar Usuario

Flujo Normal: Flujo Alternativo:

1. El sistema muestra los campos permitidos

para modificar.

2. El actor puede cambiar o mantener el rol del

usuario.

3. El actor realiza los cambios

correspondientes.

4. Presiona Guardar. 4. Por Cancelar, se regresa a la pantalla de

Usuarios de Persona.

5. El sistema valida los campos requeridos. 5. Si existen campos requeridos vacíos se

regresa a la pantalla Editar Usuario

remarcando los campos que faltan

completar.

6. El sistema guarda los cambios.

Post Condiciones: Ninguno

Tabla 15. Especificación del CU Editar Usuario

80

Caso de Uso: Cambiar Contraseña

Descripción: Este caso de uso tiene como objetivo permitir el cambio de contraseña de un

usuario.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Cambiar Contraseña

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el login del usuario y

solicita la contraseña anterior para poder

realizar cambios.

2. El actor realiza los cambios

correspondientes.

3. Presiona Guardar 3. Por Cancelar, se regresa a la pantalla de

Usuarios de Persona.

4. El sistema valida los campos requeridos

confirmando la contraseña anterior como la

nueva.

4. Si la contraseña anterior es incorrecta o si

existen campos requeridos vacíos se regresa

a la pantalla Cambiar Contraseña.

5. El sistema guarda los cambios

Post Condiciones: Ninguno

Tabla 16. Especificación del CU Cambiar Contraseña

Caso de Uso: Permisos de Usuario

Descripción: Este caso de uso tiene como objetivo mostrar el rol al cual corresponde el

usuario más una lista de permisos sus asignables.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Permisos de Usuario en la

casilla correspondiente al usuario.

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Permisos de

Usuario.

2. El sistema muestra el rol y la lista de

permisos modificables.

81

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

Usuarios de Persona.

4. El sistema guarda los cambios.

Post Condiciones: Ninguno

Tabla 17. Especificación del CU Permisos de Usuario

Caso de Uso: Inactivar Usuario

Descripción: Este caso de uso tiene como objetivo inactivar a un usuario, es decir, se cambia

el estado del usuario a inactivo.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Inactivar Usuario en la casilla

correspondiente al usuario

Flujo Normal: Flujo Alternativo:

1. Se presenta al usuario un mensaje con la

opción Aceptar o Cancelar.

2. Presiona Aceptar. 2. Presiona Cancelar.

3. El sistema inactiva al usuario seleccionado

y regresa a la pantalla Usuarios de Persona.

3. Regresa a la pantalla Usuarios de

Persona.

Post Condiciones: Ninguno

Tabla 18. Especificación del CU Acción (Activar-Inactivar) Usuario

Caso de Uso: Administrar Roles

Descripción: Este caso de uso tiene como objetivo administrar los roles de usuarios del

sistema.

Actores: Administrador

Precondiciones: El actor debe estar logueado en el sistema.

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Administrar

Roles.

Ninguno

2. El sistema muestra la lista de roles del

sistema y las operaciones que puede realizar.

Post Condiciones: Ninguno

Tabla 19. Especificación del CU Administrar Roles

82

Caso de Uso: Registrar Rol

Descripción: Este caso de uso tiene como objetivo adicionar un nuevo rol de usuario en el

sistema.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Registrar Rol

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario.

2. El actor introduce datos al formulario.

3. El actor selecciona los permisos a los cuales

el rol tendrá acceso.

4. Presiona Guardar, se valida datos del

formulario.

4. Por Cancelar, se regresa a la pantalla de

Administrar Roles.

5. El sistema valida los campos obligatorios

vacíos.

5. Si existen campos obligatorios vacíos se

regresa a la pantalla Registrar Rol

remarcando los campos que faltan

completar.

6. El sistema guarda datos del formulario

Post Condiciones: Ninguno

Tabla 20. Especificación del CU Registrar Rol

Caso de Uso: Editar Rol

Descripción: Este caso de uso tiene como objetivo editar los datos de un rol de usuario del

sistema.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Editar Rol

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el nombre del rol con

sus respectivos permisos y la lista de permisos

modificables.

2. El actor modifica los permisos del rol.

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

Administrar Roles.

83

4. El sistema guarda datos.

Post Condiciones: Ninguno

Tabla 21. Especificación del CU Editar Rol

Caso de Uso: Ver Rol

Descripción: Este caso de uso tiene como objetivo mostrar los datos y permisos del rol

seleccionado.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Ver Rol

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Rol Ninguno

Post Condiciones: Ninguno

Tabla 22. Especificación del CU Ver Rol

Caso de Uso: Administrar Productos

Descripción: Este caso de uso tiene como objetivo administrar productos.

Actores: Administrador, Chef

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Administrar

Productos

Ninguno

2. El sistema muestra despliega un submenú

con las operaciones Listar Productos y Listar

Grupos Intercambiables.

Pos Condiciones: Ninguno

Tabla 23. Especificación del CU Administrar Productos

84

Caso de Uso: Listar Productos

Descripción: Este caso de uso tiene como objetivo listar productos registrados en el sistema.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Listar Productos

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Listar

Productos

Ninguno

2. El sistema muestra la lista de productos

registrados en el sistema y las operaciones que

puede realizar.

Pos Condiciones: Ninguno

Tabla 24. Especificación del CU Listar Productos

Caso de Uso: Registrar Producto

Descripción: Este caso de uso tiene como objetivo registrar un producto en el sistema

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Registrar Producto

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario

2. El actor introduce datos al formulario

3. Presiona Guardar, se valida datos del

formulario

3. Por Cancelar, se regresa a la pantalla de

Listar Productos

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Administrar Productos

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 25. Especificación del CU Registrar Producto

85

Caso de Uso: Modificar Producto

Descripción: Este caso de uso tiene como objetivo modificar los datos de un producto

registrado en el sistema.

Actores: Administrador, Empleado

Precondiciones: El actor debe haber seleccionado la opción Modificar Producto

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario con los

campos permitidos para modificar.

2. El actor introduce datos al formulario.

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

Listar Productos.

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Listar Productos

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 26. Especificación del CU Modificar Producto

Caso de Uso: Inactivar Producto

Descripción: Este caso de uso tiene como objetivo inactivar un producto, es decir, se cambia

el estado del producto a inactivo.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Inactivar Producto en la casilla

correspondiente al producto.

Flujo Normal: Flujo Alternativo:

1. Se presenta al usuario un mensaje con la

opción “Aceptar o Cancelar”.

2. Presiona Aceptar 3. Presiona Cancelar

3. El sistema inactiva el producto

seleccionado.

4. Regresa a la pantalla Listar Productos.

Pos Condiciones: Ninguno

Tabla 27. Especificación del CU Acción (Activar – Inactivar) Producto

86

Caso de Uso: Ver Producto

Descripción: Este caso de uso tiene como objetivo mostrar los datos del producto registrado

en el sistema

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Ver Producto

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Producto Ninguno

Pos Condiciones: Ninguno

Tabla 28. Especificación del CU Ver Producto

Caso de Uso: Listar Grupos Intercambiables

Descripción: Este caso de uso tiene como objetivo listar los grupos intercambiables

registrados en el sistema.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Listar Grupos Intercambiables

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Listar Grupos

Intercambiables.

Ninguno

2. El sistema muestra la lista de grupos

registrados en el sistema y las operaciones que

puede realizar.

Pos Condiciones: Ninguno

Tabla 29. Especificación del CU Listar Grupos Intercambiables

87

Caso de Uso: Registrar Grupo Intercambiable

Descripción: Este caso de uso tiene como objetivo registrar un grupo en el sistema

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Registrar Grupo Intercambiable

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario

2. El actor introduce datos al formulario

3. Presiona Guardar, se valida datos del

formulario

3. Por Cancelar, se regresa a la pantalla de

Listar Grupos Intercambiables.

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Listar Grupos

Intercambiables remarcando los campos que

faltan completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 30. Especificación del CU Registrar Grupo Intercambiable

Caso de Uso: Asignar Intercambio de Productos

Descripción: Este caso de uso tiene como objetivo asignar que productos podrán ser

intercambiados entre sí dentro del grupo.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Asginar Intercambiables

Flujo Normal: Flujo Alternativo:

1. El sistema muestra los productos

pertenecientes al grupo y las casillas de check

para asignar.

2. El actor asigna los productos.

3. Presiona Asignar. 3. Por Cancelar, se regresa a la pantalla de

Listar Grupos Intercambiables.

5. El sistema guarda la asignación.

Pos Condiciones: Ninguno

Tabla 31. Especificación del CU Asignar Intercambio de Productos

88

Caso de Uso: Ver Grupo

Descripción: Este caso de uso tiene como objetivo mostrar los productos del grupo indicando

cuales son intercambiables entre sí.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Ver Grupo Intercambiable

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Grupo

Intercambiable

Ninguno

Pos Condiciones: Ninguno

Tabla 32. Especificación del CU Ver Grupo Intercambiable

Caso de Uso: Administrar Combos

Descripción: Este caso de uso tiene como objetivo armar los combos con los productos

registrados en el sistema.

Actores: Administrador, Chef

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Administrar

Combos.

Ninguno

2. El sistema muestra la lista de combos y las

operaciones que puede realizar.

Pos Condiciones: Ninguno

Tabla 33. Especificación del CU Administrar Combos

89

Caso de Uso: Registrar Combo

Descripción: Este caso de uso tiene como objetivo registrar un nuevo combo en el sistema.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Registrar Combo

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario

2. El actor introduce datos al formulario.

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

Administrar Combos.

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Administrar Combos

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 34. Especificación del CU Registrar Combo

Caso de Uso: Actualizar Combo

Descripción: Este caso de uso tiene como objetivo actualizar los datos de un combo

registrado en el sistema.

Actores: Administrador, Chef

Precondiciones: El actor debe haber seleccionado la opción Actualizar Combo

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario con los

campos permitidos para modificar junto con

sus correspondientes productos.

2. El actor introduce datos al formulario y/o

modifica los productos del combo a actualizar.

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

Administrar Combos.

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Administrar Combo

90

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 35. Especificación del CU Actualizar Combo

Caso de Uso: Inactivar Combo

Descripción: Este caso de uso tiene como objetivo eliminar un menú, es decir, se cambia el

estado del combo a inactivo.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Eliminar Combo en la casilla

correspondiente al producto.

Flujo Normal: Flujo Alternativo:

1. Se presenta al usuario un mensaje con la

opción 2. Aceptar o Cancelar

3. Presiona Aceptar 3. Presiona Cancelar

4. El sistema elimina el menú seleccionado 4. Regresa a la pantalla Administrar Combo

Pos Condiciones: Ninguno

Tabla 36. Especificación del CU Inactivar Combo

Caso de Uso: Ver Combo

Descripción: Este caso de uso tiene como objetivo mostrar los datos del combo registrados

en el sistema.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Ver Combo

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Combo Ninguno

Pos Condiciones: Ninguno

Tabla 37. Especificación del CU Ver Combo

91

Caso de Uso: Realizar Reserva de Pedido

Descripción: Este caso de uso permite visualizar el carrito del usuario y las opciones de

combos y productos disponibles del restaurante.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor elige la opción Realizar Reserva de

Pedido.

Ninguno

2. El sistema muestra el monto total de la

reserva en Bs., el carrito, el menú de comida y

las operaciones que puede realizar.

Pos Condiciones: Ninguno

Tabla 38. Realizar Especificación del CU Realizar Reserva de Pedido

Caso de Uso: Seleccionar Combos

Descripción: Este caso de uso tiene como objetivo listar los combos disponibles para ser

añadidos al carrito.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción Combos.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el precio total del carrito

y la lista de combos disponibles.

2. El actor selecciona un combo. 2. El actor selecciona la opción “Realizar

Reserva de Pedido” para regresar a la

pantalla anterior.

Pos Condiciones: Ninguno

Tabla 39. Especificación del CU Seleccionar Combos

92

Caso de Uso: Seleccionar Productos de Combo

Descripción: Este caso de uso tiene como objetivo listar los productos del combo

seleccionado con las opciones de intercambio entre los productos del mismo grupo, para

luego ser añadidos al carrito.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado un Combo de la pantalla “Seleccionar

Combos”.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el descuento del combo

y la lista de productos intercambiables en sus

diferentes grupos.

2. El actor selecciona la cantidad de combos

que desea añadir y lo productos que son

intercambiables entre sí pertenecientes al

mismo grupo.

2. El actor selecciona la opción “Realizar

Reserva de Pedido” para ver el carrito.

3. Presiona “Añadir”. 3. Presiona “Cancelar”.

4. Añade el combo al carrito con sus

respectivos productos seleccionados y regresa

a la pantalla “Realizar Reserva de Pedido”.

4. Regresa a la pantalla “Combos”.

Pos Condiciones: Ninguno

Tabla 40. Especificación del CU Seleccionar Productos de Combo

Caso de Uso: Seleccionar Productos

Descripción: Este caso de uso tiene como objetivo seleccionar un producto para ser añadido

al carrito.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción Seleccionar Producto.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el precio total del carrito

y la lista de productos disponibles.

2. El actor selecciona un producto. 2. El actor selecciona la opción “Realizar

93

Reserva de Pedido” para regresar a la

pantalla ver el carrito.

3. Añade el producto al carrito y regresa a la

pantalla “Realizar Reserva de Pedido”

Pos Condiciones: Ninguno

Tabla 41. Especificación del CU Seleccionar Productos

Caso de Uso: Reservar

Descripción: Este caso de uso tiene como objetivo mostrar el detalle del carrito y permitir la

selección de las características del pedido como ser hora de entrega y si es para llevar o

servirse en el local.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Reservar”.

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el detalle del carrito y

las casillas de selección como parte de las

características del pedido.

2. El actor define la información del pedido.

3. Presiona ”Realizar Reserva”

4. El sistema registra la reserva y genera una

papeleta de reserva con los datos respectivos.

Pos Condiciones: Ninguno

Tabla 42. Especificación del CU Reservar

Caso de Uso: Vaciar Carrito

Descripción: Este caso de uso tiene como objetivo vaciar el carrito.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Vaciar Carrito”

Flujo Normal: Flujo Alternativo:

1. El sistema vacía el carrito.

Pos Condiciones: Ninguno

Tabla 43. Especificación del CU Vaciar Carrito

94

Caso de Uso: Ver Estados de Pedidos

Descripción: Este caso de uso tiene como objetivo administrar los pedidos mostrando los

estados en el que se encuentra cada uno.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción Ver Estados

de Pedidos.

Ninguno

2. El sistema muestra el listado de pedidos

realizados durante todo el día y las

operaciones que puede realizar.

Pos Condiciones: Ninguno

Tabla 44. Especificación del CU Ver Estados de Pedidos

Caso de Uso: Ver Detalle Pedido

Descripción: Este caso de uso tiene como objetivo mostrar el detalle del pedido

seleccionado.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Ver Detalle Pedido”

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el detalle del pedido con

todos sus datos más los combos y/o productos

seleccionados.

Ninguno

Pos Condiciones: Ninguno

Tabla 45. Especificación del CU Ver Detalle Pedido

95

Caso de Uso: Anular Pedido

Descripción: Este caso de uso tiene como objetivo anular un pedido seleccionado.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Anular Pedido”, es necesario

que el estado del pedido se encuentre en “Reservado” caso contrario no podrá anularse.

Flujo Normal: Flujo Alternativo:

1. Se presenta al usuario un mensaje con la

opción “¿Anular Pedido?”.

Ninguno

2. Presiona “Aceptar” 2. Presiona “Cancelar”

3. El sistema anula el pedido cambiando su

estado a “Anulado” y regresa a la pantalla

“Ver Estado Pedido”.

3. No se realiza ninguna acción y regresa a

la pantalla “Ver Estado Pedido”.

Pos Condiciones: Ninguno

Tabla 46. Especificación del CU Anular Pedido

Caso de Uso: Ordenar Pedido

Descripción: Este caso de uso tiene como objetivo ordenar un pedido seleccionado, puede

ser accionado manualmente o automáticamente por el sistema con una anticipación de 30 min

antes de la hora de entrega especificada en el pedido.

Actores: Sistema, Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Ordenar Pedido” y el estado del

pedido debe estar en “Reservado”.

Flujo Normal: Flujo Alternativo:

1. El sistema o el actor cambia el estado del

pedido a “Ordenado” y regresa a la pantalla

“Ver Estados de Pedidos”.

Ninguno

Pos Condiciones: Ninguno

Tabla 47. Especificación del CU Ordenar Pedido

96

Caso de Uso: Pedido Listo

Descripción: Este caso de uso tiene como objetivo indicar que el pedido ya está listo para ser

entregado.

Actores: Administrador, Chef, Recepcionista y Mesero.

Precondiciones: El actor debe haber seleccionado la opción “Listo” y el estado del pedido

debe estar en “Ordenado”.

Flujo Normal: Flujo Alternativo:

1. El sistema cambia el estado del pedido a

“Listo” y regresa a la pantalla “Ver Estados de

Pedidos”.

Ninguno

Pos Condiciones: Ninguno

Tabla 48. Especificación del CU Pedido Listo

Caso de Uso: Entregar Pedido

Descripción: Este caso de uso tiene como objetivo indicar que el pedido ya se entregó al

cliente.

Actores: Administrador, Chef, Recepcionista y Mesero.

Precondiciones: El actor debe haber seleccionado la opción “Entregar” y el estado del

pedido debe estar en “Listo”.

Flujo Normal: Flujo Alternativo:

1. El sistema cambia el estado del pedido a

“Entregado” y regresa a la pantalla “Ver

Estados de Pedidos”.

Ninguno

2. El sistema genera una papeleta de entrega.

Pos Condiciones: Ninguno

Tabla 49. Especificación del CU Entregar Pedido

97

Caso de Uso: Portal Reservas

Descripción: Este caso de uso tiene como objetivo actualizar el horario de atención del

restaurante, el estado del portal y un mensaje de efectivización de reserva.

Actores: Administrador, Chef, Recepcionista, Mesero y Cliente.

Precondiciones: El actor debe haber seleccionado la opción “Vaciar Carrito”

Flujo Normal: Flujo Alternativo:

1. El sistema vacía el carrito.

Pos Condiciones: Ninguno

Tabla 50. Especificación del CU Portal Reservas

Caso de Uso: Establecimiento

Descripción: Este caso de uso tiene como objetivo administrar el establecimiento.

Actores: Administrador

Precondiciones: El actor debe estar logueado en el sistema

Flujo Normal: Flujo Alternativo:

1. El actor selecciona la opción

Establecimiento.

Ninguno

2. El sistema muestra el establecimiento

registrado en el sistema y las operaciones que

puede realizar.

Pos Condiciones: Ninguno

Tabla 51. Especificación del CU Establecimiento

Caso de Uso: Modificar Establecimiento

Descripción: Este caso de uso tiene como objetivo modificar los datos del establecimiento

registrado en el sistema.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Modificar Establecimiento

Flujo Normal: Flujo Alternativo:

1. El sistema muestra el formulario con los

campos para modificar.

2. El actor introduce datos al formulario.

3. Presiona Guardar. 3. Por Cancelar, se regresa a la pantalla de

98

Establecimiento.

4. El sistema valida los campos obligatorios

vacios

4. Si existen campos obligatorios vacios se

regresa a la pantalla Establecimiento

remarcando los campos que faltan

completar.

5. El sistema guarda datos del formulario

Pos Condiciones: Ninguno

Tabla 52. Especificación del CU Modificar Establecimiento

Caso de Uso: Ver Establecimiento

Descripción: Este caso de uso tiene como objetivo mostrar los datos del establecimiento

registrado en el sistema

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Ver Establecimiento

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Ver Producto Ninguno

Pos Condiciones: Ninguno

Tabla 53. Especificación del CU Ver Establecimiento

Caso de Uso: Reportes

Descripción: Este caso de uso tiene como objetivo mostrar la información solicitada por el

usuario.

Actores: Administrador

Precondiciones: El actor debe haber seleccionado la opción Reportes

Flujo Normal: Flujo Alternativo:

1. Se presenta la pantalla Reportes Ninguno

2. El sistema muestra las opciones de

parametrización del reporte.

Pos Condiciones: Ninguno

Tabla 54. Especificación del CU Reportes

99

4.10 Modelo de análisis y diseño

4.10.1 Diagrama de secuencia

4.10.1.1 Introducción

El diagrama de Secuencia es uno de los diagramas más efectivos para

modelar interacción entre objetos de un sistema. Un diagrama de secuencia

se modela para cada caso de uso. Mientras que el diagrama de Caso de uso

permite el modelado de una vista del negocio del escenario, el diagrama de

secuencia contiene detalles de implementación del escenario, incluyendo

los objetos y clases que se usan para implementar el escenario y mensajes

pasados entre los objetos.

Un diagrama de secuencia muestra los objetos que intervienen en el

escenario con líneas discontinuas verticales, y los mensajes pasados entre

los objetos como vectores horizontales. Los mensajes se dibujan

cronológicamente desde la parte superior del diagrama a la parte superior

del diagrama a la parte inferior; la distribución horizontal de los objetos es

arbitraria.

4.10.1.2 Propósito

 Comprender la dinámica del sistema deseado para la organización.

 Identificar clases de análisis y diseño.

4.10.1.3 Alcances

 Describe la dinámica de sistema en el tiempo de vida de las clases u

objetos

 Definir un diagrama de secuencia para cada caso de uso del sistema

100

Figura 22. Diagrama de Secuencia Administrar Usuarios

 sd Administrar Usuarios

Usuario

Menu Principal Admistrar

Usuarios

Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios
Ingresar a "Adm.

Usuarios"()
Ingresar()

listarPersonas()

listarPersonas() :List

l istarPersonas()

listarPersonas()

listarPersonas() :List

l itarPersonas()

Desplegar Pantalla

Administrar Usuarios()

101

Figura 23. Diagrama de Secuencia Registrar Persona

 sd Registrar Persona

Usuario

Admistrar

Usuarios

Registrar Persona Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios

Ingresar a "Registrar

Persona"() Ingresar()

Desplegar Pantalla Registrar Persona()

Introducir Datos()

Validar longitud y

tipo de caracteres()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar Usuarios()

guardarPersona()

GuardarPersona()

insertarPersona()

insertarPersona()

insertarPersona()

insertarPersona()

GuardarPersona()

Mensaje "Persona registrada

correctamente"()

Desplegar Pantalla Administrar Usuarios()

102

Figura 24. Diagrama de Secuencia Editar Persona

 sd Editar Persona

Usuario

Admistrar

Usuarios

Editar Persona Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios

Seleccionar persona de la l ista

y presionar botón "Editar"()

Editar()

datosPersona(idPersona) :List

gatDatosPersona(idPersona) :List

getPersona(idpersona)

getPersona() :List

getDatosPersona()

datosPersona()

Desplegar Pantalla Editar Persona()

Modificar Datos()

Validar longitud y

tipo de caracteres()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar Usuarios()

Modificar()

modificarPersona()

modificarPersona()

modificarPersona()

modificarPersona()

modificarPersona()

modificarPersona()

Mensaje "Datos de persona

modificados correctamente"()

Desplegar Pantalla Administrar

Usuarios()

103

Figura 25. Diagrama de Secuencia Ver Persona

 sd Ver Persona

Usuario

Admistrar

Usuarios

Ver Persona Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios

Seleccionar persona de la

lista y presionar botón "Ver"()
Ingresar()

Datos Persona()

Datos Persona()

Datos Persona()

getDatosPersona() :List

getDatosPersona() :List

Lista Datos Persona()

Roles Usuarios()

Roles Usuarios()

Roles Usuario()

getUsuariosRolPersona() :List

getUsuariosRolPersona() :List

Lista Roles Usuarios()

Desplegar Pantalla

"Ver Persona"()

104

Figura 26. Diagrama de Secuencia Acción (Activar-Inactivar Persona)

 sd Inacticv ar y Activ ar Persona

Usuario

Admistrar

Usuarios

Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios

usuarioDAO Tabla usuario

Seleccionar persona de la

lista y presionar botón

"Inactivar" o "Activar"()

Desplegar confirmación "Activar o

Inactivar a 'persona' "()

"Si" o "No"()

No()

Desplegar Pantalla "Adm. Usuarios"()

Si()

inactivarPersona()

obtenerPersona()

getPersona()

getPersona()

obtenerPersona() :Persona

getUsuariosPersona(idpersona)

getUsuariosPersona(idPersona)

getUsuariosPersona() :List

getUsuariosPersona() :List

EliminarUsuario(usuario)

eliminarUsuarios(usuario)

eliminarUsuarios()

eliminarUsuarios()

EliminarPersona()

eliminarPersona(persona)

eliminarPersona(persona)

EliminarPersona()

inactivarPersona()

Desplegar Pantalla "Admistrar Usuarios"()

105

Figura 27. Diagrama de Secuencia Ver Persona

 sd Ver Persona

Usuario

Admistrar

Usuarios

Ver Persona Negocio

GestorUsuarios

personaDAO Tabla personaController

Usuarios

Seleccionar persona de la

lista y presionar botón "Ver"()
Ingresar()

Datos Persona()

Datos Persona()

Datos Persona()

getDatosPersona() :List

getDatosPersona() :List

Lista Datos Persona()

Roles Usuarios()

Roles Usuarios()

Roles Usuario()

getUsuariosRolPersona() :List

getUsuariosRolPersona() :List

Lista Roles Usuarios()

Desplegar Pantalla

"Ver Persona"()

106

Figura 28. Diagrama de Secuencia Usuarios de Persona

 sd Usuarios de Persona

Usuario

Usuarios de

Persona

Admistrar

Usuarios

Controller

Usuarios

usuarioDAO Tabla usuarioNegocio

GestorUsuarios

Presionar botón "Usuarios"

en la fi la de una persona()

Ingresar()

rolesUsuario(idpersona) :List

getUsuarioRolPersona(idpersona) :List

getUsuariosRolPersona2(idpersona)

getUsuariosRolPersona()

getUsuarioRolPersona()

rolesUsuario()

Desplegar Pantalla

Usuarios de Persona()

107

Figura 29. Diagrama de Secuencia Registrar Usuario

 sd Registrar Usuario

Usuario

Registrar Usuario Negocio

GestorUsuarios

Usuarios de

Persona

Controller

Usuarios

usuarioDAO Tabla usuarioclienteDAO Tabla clienteempleadoDAO Tabla empleadopermisosDAO Tabla permisos

Ingresar "Registrar

Usuario"()
Ingresar

Datos()

Validar longitud y

tipo de caracteres()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla "Usuarios de Persona"()

Registrar()

guardarUsuario()

GuardarUsuario(usuario)

insertarUsuario(usuario)

insertarUsuario()

GuardarUsuario()

GuardarCliente(cliente)

insertarCliente(cliente)

insertarCliente()

GuardarCliente()

GuardarEmpleado(empleado)

insertarEmpleado(empleado)

insertarEmpleado()

GuardarEmpleado()

AsignarPermisos(permiso)

asignarPermisos(permisos)

asignarPermisos()

AsignarPermisos()

guardarUsuario()

Mensaje "Usuario registrado correctamente"()

Desplegar Pantalla "Listar Usuarios de Persona"()

108

Figura 30. Diagrama de Secuencia Acción (Activar – Inactivar) Usuario

 sd Inacticv ar y Activ ar Usuario

Usuario

Negocio

GestorUsuarios

usuarioDAO Tabla usuarioController

Usuarios

Usuarios de

Persona

Seleccionar usuario de la l ista y

presionar botón "Inactivar" o

"Activar"()

Desplegar Confirmacion "Activar

o Inactivar 'usuario' "()

"Aceptar" o "Cancelar"()

Cancelar()

Desplegar Pantalla "Usuarios de Persona"()

Aceptar()

inactivarUsuario()

getUsuario(idusuario) :Usuario

getUsuario(idusuario) :Usuario

getUsuario() :Usuario

getUsuario() :Usuario

EliminarUsuario(usuario)

eliminarUsuario(usuario)

eliminarUsuario()

EliminarUsuario()

inactivarUsuario()

Desplegar Pantalla "Usuarios de Persona"()

109

Figura 31. Diagrama de Secuencia Cambiar Contraseña

 sd Cambiar Contraseña

Usuario

Cambiar

Contraseña

Negocio

GestorUsuarios

Controller

Usuarios

Usuarios de

Persona

usuarioDAO Tabla usuario

Seleccionar usuario de la l ista y

presionar botón "Contraseña"()

obtenerUsuario(idusuario)

getUsuario(idusuario) :Usuario

getUsuario(idusuario) :Usuario

getUsuario()

getUsuario(idusuario)

getUsuario()

getUsuario()

Desplegar Pantalla

"Cambiar Contraseña"()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Usuarios de

Persona()

Modificar()

guardarContrasenia()

CambiarContraseña(usuario)

cambiarContraseña(usuario)

cambiarContraseña()

CambiarContraseña()

guardarContrasenia()

Mensaje "Contraseña

modificada correctamente"()

Desplegar Pantalla Usuarios de Persona()

110

Figura 32. Diagrama de Secuencia Editar Fotografía

 sd Editar Fototografía

Usuario

Editar Fotografía Negocio

GestorUsuarios

Controller

Usuarios

Usuarios de

Persona

usuarioDAO Tabla usuario

Seleccionar usuario de la l ista

y presionar botón "Foto"()

Editar Foto()

obtenerUsuario(idusuario) :Usuario

getUsuario(idusuario) :Usuario

getUsuario(idusuario)

getUsuario()

getUsuario()

obtenerUsuario()

Desplegar Pantalla "Editar Fotografía"()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Lista de Usuarios()

Modificar()

modificarFoto()

ModificarUsuario(usuario)

modificarUsuario(usuario)

modificarUsuario()

ModificarUsuario()

modificarFoto()

Mensaje "Fotografía modificada

correctamente"()

Desplegar Pantalla Listar Usuarios()

111

Figura 33. Diagrama de Secuencia Editar Permisos

 sd Editar Permisos

Usuario

Editar Permisos Negocio

GestorUsuarios

Controller

Usuarios

Usuarios de

Persona

permisosDAO Tabla permisos

Seleccionar usuario de la lista y

presionar botón "Permisos"()

Editar Permisos()

getPermisosporUsuario(idUsuario)

getPermisosporUsuario(idusuario) :

List getPermisos porUsuario(iduasuario) :List

getPermisosPorUsuario()

getPermisosPorUsuario()

getPermisosUsuario()

Desplegar Pantalla "Editar Permisos"()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Lista de Usuarios()

Modificar()

guardarPermisos()

AsignarPermisos(permisos)

asignarPermisos(permisos)

asignarPermisos()

AsignarPermisos()

guardarPermisos()

Mensaje "Permisos

modificado correctamente"()

Desplegar Pantalla Usuarios de Persona()

112

Figura 34. Diagrama de Secuencia Editar Rol

 sd Editar Rol

Usuario

Editar Rol Negocio

GestorUsuarios

permisosDAO Tabla permisosController

Usuarios

Usuarios de

Persona

Presionar botón "Rol" de la lista

de usuarios()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Usuarios de

Persona()

Modificar()

modificarRol()

asignarPermisos(permisos)

asignarPermisos(permisos)

asignarPermisos()

asignarPermisos()

modificarRol()

Mensaje "Rol modificado

correctamente"()

Desplegar Pantalla Usuarios de Persona()

113

Figura 35. Diagrama de Secuencia Administrar Roles

 sd Administrar Roles

Usuario

Pantalla Principal Listar Roles Negocio

GestorRoles

rolDAO Tabla rolController Roles

Ingresar a Adm. Roles()

Ingresar()

l istarRoles()

listarRoles() :List

l istarRoles() :List

l istarRoles()

listarRoles()

listaRoles()

Desplegar Pantalla Administrar

Roles()

114

Figura 36. Diagrama de Secuencia Registrar Rol

 sd Registrar Rol

Usuario

(from Diagrama de Secuencia)

Listar Roles Registrar Rol Negocio

GestorRoles

rolDAO Tabla rolController Roles

Ingresar a Registrar Rol()

Ingresar()

Desplegar Pantalla Registrar Rol()
Introducir Datos de Rol y

seleccionar menus de sistema()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Listar Roles()

Registrar()

guardarRol()

buscarRol(nombre)

buscarRol(nombre)

buscarRol()

buscarRol()

GuardarRol(rol)

insertarRol(rol)

insertarRol(Rol)

GuardarRol()

asignarPermisosRol(permiso)

asignarPermisosRol(permiso)

asignarPermisos()

asignarPermisos()

guardarRol()

Desplegar Pantalla Administrar Roles()

115

Figura 37. Diagrama de Secuencia Editar Rol

 sd Editar Rol

Usuario

Editar Rol Negocio

GestorRoles

Listar Roles Controller Roles permisosDAO Tabla permisos

Seleccionar un rol y

presionar botón "Editar"()
Ingresar()

permisosRol() :List

getPermisosRol(idrol) :List

getPermisosRol(idrol) :List

getPermisosRol()

getPermisosRol()

permisosRol()

Desplegar Pantalla "Editar Rol"()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar Roles()

Modificar()

modificarRol()

eliminarPermiso()

eliminarPermiso(idrol)

eliminarPermiso()

eliminarPermiso()

AsignarPermisos(permiso)

asignarPermisos(permisos)

asignarPermisos()

AsignarPermisos()

modificarRol()

Desplegar Pantalla Administrar Roles()

116

Figura 38. Diagrama de Secuencia Ver Rol

 sd Ver Rol

Usuario

Listar Roles Ver Rol Negocio

GestorRoles

rolDAO Tabla rolController Roles permisosDAO Tabla permisos

Ingresar Ver

Rol() Ingresar()

obtenerRol(idRol)

getRol(idRol) :Rol

getRol(idRol) :Rol

getRol()

getRol()

obtenerRol()

permisosRol(idRol)

getPermisosRol(idRol) :List

getPermisosRol(idRol)

getPermisosRol()

getPermisosRol()

permisosRol()

Desplegar Pantalla Ver Rol()

117

Figura 39. Diagrama de Secuencia Administrar Productos

 sd Administrar Productos

Usuario

Menú Principal Listar Productos Negocio

GestorProductos

ProductoDAO Tabla productoController

Productos

Controller Grupos

Intercambiables

Listar Grupos

Intercambiables

GrupoMDAO Tabla grupomNegocio Gestor

GruposIntercambiables
Ingresar a "Adm. Productos"()

Listar Sub Menús()

Ingresar a "Listar Productos"()

Ingresar()

listarProductos()

listarProductos() :List

l istarProductos() :List

l istarProductos() :List

l istarProductos() :List

l istarProductos()

Desplegar Pantalla

"Listar Productos"()

Ingresar a "Listar Grupos

Intercambiables"()

Ingresar()

listarGruposMod()

listarGrupoMod() :List

l istarGrupoMod() :List

l istarGrupos() :List

l istarGrupos() :List

Lista de Grupos Intercambiables()

Desplegar Pantalla "Listar

Grupos Intercambiables"()

118

Figura 40. Diagrama de Secuencia Registrar Grupo Modificable

 sd Registrar Grupo Modificable

Usuario

Listar Grupos

Modificables

Registrar Grupo

Intercambiable

Negocio Gestor

GruposIntercambiables

GrupoMDAO Tabla grupomController Grupos

Intercambiables

Ingresar Registrar

Grupo Modificable()

Ingresar()

Desplegar Pantalla Registrar

Grupo Modificable()

Ingresar Datos()

Validar longitud y

tipo de caracteres()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Listar

Grupos Modificables()

Registrar()

guardarGrupoMod()

buscarGrupoM(detalle) :String

buscarGrupoM(grupo) :String

buscarGrupoM()

buscarGrupoM()

GuardarGrupoM(GrupoM)

insertarGrupoM(GrupoM)

insertarGrupoM()

GuardarGrupoM(GrupoM)

guardarGrupoMod()

Mensaje "Grupo Itercambiable

registrado correctamente"()

Desplegar Pantalla Listar Grupos Intercambiables()

119

Figura 41. Diagrama de Secuencia Asignar Grupos Intercambiables

 sd Asignar Grupos Intercambiables

Usuario

Listar Grupos

Intercambiables

Asignar

Intercambio de

Productos

Negocio Gestor

GruposIntercambiables

ProductoDAO Tabla productoController Grupos

Intercambiables

DgrupoMDAO Tabla dgrupom

Ingresar "Asignar

Intercambiables"()

Ingresar()

l istarProductosXGrupo()

listarProductosXgrupo(idgrupom) :

List

l istarProductosXgrupo(idgrupo) :List

l istarProductosXgrupo()

listarProductosXgrupo()

listarProductosXGrupo()

Desplegar Pantalla "Asignar

intercambio de Productos"()

Asignar Productos()

"Asignar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Listar

Grupos Intercambiables()

Asignar()

guardarAsignacionIntercambio()

asignarIntercambiables(DgrupoM)

asignarIntercambiables(DgrupoM)

asignarIntercambiables()

asignarIntercambiables()

guardarAsignacionIntercambio()

Mensaje "Asignacion de productos

registrados correctamente"()

Desplegar Pantalla Listar Grupos

Intercambiables()

120

Figura 42. Diagrama de Secuencia Acción (Activar-Inactivar Grupo Intercambiable)

 sd Inacticv ar y Activ ar Grupo Intercambiable

Usuario

Listar Grupos

Intercambiables

Negocio Gestor

GruposIntercambiables

GrupoMDAO Tabla grupomController Grupos

IntercambiablesPresionar botón "Activar" o

"Inactivar" de la lista de grupos()

Desplegar Msj Confirmacion()

"Si" o "No"()

No()

Desplegar Pantalla Lista

de Grupos Modificables()

Si()

inactivarGrupoMod(idgrupoM)

getEstadoGrupoM(idgrupo) :GrupoM

getEstadoGrupoM(grupo) :GrupoM

getEstadoGrupoM()

getEstadoGrupoM()

EliminarGrupoMod(GrupoM)

eliminarGrupoMod(GrupoM)

eliminarGrupoMod()

EliminarGrupoMod()

inactivarGrupoMod()

Desplegar Pantalla Listar Grupos

Intercambiables()

121

Figura 43. Diagrama de Secuencia Ver Grupo Intercambiable

 sd Ver Grupo Intercambiable

Usuario

Ver Grupo

Intercambiable

Negocio Gestor

GruposIntercambiables

GrupoMDAO Tabla grupomController Grupo

Intercambiable

Listar Grupos

Intercambiables

Ingresar Ver

Grupo

Intercambiable()

Ingresar()

listarProductosGrupo(idgrupom) :List

listarGrupoMod(idgrupom)

getEstadoGrupoM(grupo)

getEstadoGrupoM()

listarGrupoMod()

listarProductosGrupo()

Desplegar Pantalla Ver

Grupo Intercambiable()

122

Figura 44. Diagrama de Secuencia Registrar Producto

 sd Registrar Producto

Usuario

Listar Productos Registrar

Producto

Negocio

GestorProductos

ProductoDAO Tabla productoController

Productos

DgrupoMDAO Tabla dgrupom

Ingresar "Registrar

Producto"()
Ingresar()

Desplegar Pantalla "Registrar Producto"()

Ingresar Datos()
Validar longitud y

tipo de caracteres()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla "Listar Productos"()

Registrar()

guardarProducto()

buscarProducto(nombre)

buscarProducto()

buscarProducto()

buscarProducto()

GuardarProducto(Producto)

insertarProducto(producto)

insertarProducto(Producto)

GuardarProducto()

GuardarDgrupoM(DgrupoM)

insertarDGrupoM(DgrupoM)

insertarDGrupoM()

GuardarDgrupoM()

guardarProducto()

Mensaje "Producto registrado

correctamente"()

Desplegar Pantalla Listar Productos()

123

Figura 45. Diagrama de Secuencia Acción (Activar-Inactivar Producto)

 sd Inacticv ar y Activ ar Producto

Usuario

Listar Productos Negocio

GestorProductos

ProductoDAO Tabla productoController

Productos
Presionar botón "Inactivar"

o "Activar" de la lista de

productos()

Desplegar Confirmacion()

"Si" o "No"()

No()

Desplegar Pantalla

Lista de Productos()

Si()

inactivarProducto()

getEstadoProducto(idproducto) :Producto

getEstadoProducto(idproducto) :Producto

getEstadoProducto()

getEstadoProducto()

EliminarProducto(Producto)

eliminarProducto(producto)

eliminarProducto()

EliminarProducto()

inactivarProducto()

Desplegar Pantalla Listar Productos()

124

Figura 46. Diagrama de Secuencia Editar Producto

 sd Editar Producto

Usuario

Listar Productos Editar Producto Negocio

GestorProductos

ProductoDAO Tabla productoController

Productos

DgrupoMDAO Tabla dgrupom
Presionar botón "Editar" en una

fila de la lista de productos()

Ingresar()

listarDatosProducto()

getDatosProducto(idproducto) :List

getProducto(idproducto) :List

getProducto()

getDatosProducto()

listarDatosProducto()

Desplegar Pantalla

"Editar Producto"()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Lista de Productos()

Modificar()

modificarProducto()

ModificarProducto(Producto)

modificarProducto(Producto)

ModificarProducto(Producto)

ModificarProducto(Producto)

ModificarDgrupoM(DgrupoM)

modificarDgrupoM(DgrupoM)

modificarDgrupoM(dGrupoM)

ModificarDgrupoM()

modificarProducto()

Mensaje "Producto modificado correctamente"()

Desplegar Pantalla Listar Productos()

125

Figura 47. Diagrama de Secuencia Ver Producto

 sd Ver Producto

Usuario

Listar Productos Ver Producto Negocio

GestorProductos

ProductoDAO Tabla productoController

Productos

Ingresar Ver

Producto()

Ingresar()

listarDatosProducto()

getDatosProducto(idproducto) :List

getProducto(idproducto) :List

getProducto()

getDatosProducto()

listarDatosProducto()

Desplegar Pantalla Ver Producto()

126

Figura 48. Diagrama de Secuencia Administrar Combos

 sd Administrar Combos

Usuario

Menú Principal Administrar

Combos

Negocio

GestorCombos

ComboDAO Tabla comboController

Combos
Ingresar a Administrar

Combos()

Ingresar()

l istarCombos()

listarCombos() :List

l istarCombos()

listarCombos()

listarCombos()

Lista de Combos()

Desplegar Pantalla Listar Combos()

127

Figura 49. Diagrama de Secuencia Registrar Combo

 sd Registrar Combo

Usuario

Administrar

Combos

Registrar Combo Negocio

GestorCombos

ComboDAO Tabla comboController

Combos

Negocio Gestor

GruposIntercambiables

ProductoDAO Tabla productoDescuentoDAO Tabla descuentoItemDAO Tabla item
Ingresar a Registrar

Combo()

Ingresar()

l istarGruposConProductos()

l istarGruposConProductos() :l ist

l istarProductosGeneral() :List

l istarProductosGeneral() :List

l istarGruposConProductos() :List

l istarGruposConProductos()

Desplegar Pantalla Registrar Combo()

Introducir Datos y

seleccionar productos()

"Registrar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar Combos()

Registrar()

guardarCombo()

buscarCombo(descripcion) :String

buscarCombo(descripcion)

buscarCombo()

buscarCombo()

GuardarCombo(Combo) :int

insertarCombo(Combo)

insertarCombo()

GuardarCombo()

insertarDescuento(Descuento)

insertarDescuento(Descuento)

insertarDescuento()

insertarDescuento()

insertarItem(Item)

insertarItem(Item)

insertarItem()

InsertarItem()

guardarCombo()

Mensaje "Combo registrado

correctamente"()

Desplegar Pantalla Administrar Combos()

128

Figura 50. Diagrama de Secuencia Actualizar Combo

 sd Actualizar Combo

Usuario

Actualizar Combo Negocio

GestorCombos

ComboDAO Tabla comboListar Combos Controller

Combos

ProductoDAO Tabla productoDescuentoDAO Tabla descuentoItemDAO Tabla item

Seleccionar un combo y

presionar botón "Actualizar

Combo"()

Ingresar()

listaProductosCombo(idcombo) :List

l istaProductosCombo(idcombo) :List

l istaProductosCombo()

listaProductosCombo()

listaProductosCombo()

listaProductosCombo()

Desplegar Pantalla

Actualizar Combo()

Actualizar Combo()

"Actualizar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar

Combos()

Actualizar()

modificarCombo()

Actualizar Descuento()

Actualizar Descuento()

actualizarDescuento(Descuento)

actualizarDescuento(Descuento)

Eliminar Productos Combo()

Eliminar Productos Combo()

eliminarProductosCombo(idcombo)

eliminarProductosCombo(idcombo)

Insertar Item()

Insertar Item()

InsertarItem()

InsertarItem()

modificarCombo()

Mensaje "Combo modificado correctamente"()

Desplegar Pantalla Administrar Combos()

129

Figura 51. Diagrama de Secuencia Acción (Activar-Inactivar Combo)

 sd Inacticv ar y Activ ar Combo

Usuario

Administrar

Combos

Negocio

GestorCombos

ComboDAO Tabla comboController

Combos

Presionar botón "Inactivar" o

"Activar" de la lista ce combos()
Desplegar Msj

Confirmacion()

"Si" o "No"()

No()

Desplegar Pantalla

Administrar Combos()

Si()

inactivarCombo()

getEstadoCombo(idcombo) :Combo

getEstadoCombo(idcombo)

getEstadoCombo()

getEstadoCombo()

EliminarCombo(Combo)

eliminarCombo(Combo)

eliminarCombo()

EliminarCombo(Combo)

inactivarCombo()

Desplegar Pantalla Administrar Combos()

130

Figura 52. Diagrama de Secuencia Editar Imagen Combo

 sd Editar Imagen Combo

Usuario

Editar Imagen

Combo

Negocio

GestorCombos

ComboDAO Tabla comboAdministrar

Combos

Controller

Combos
Ingresar a Imagen()

Ingresar()

obtenerDatosImagenCombo(idcombo)

getDatosImagenCombo(idcombo) :List

getImagenCombo()

getImagenCombo()

getDatosImagenCombo()

obtenerDatosImagenCombo()

Desplegar Pantalla Editar Imagen

Combo()

Modificar Imagen()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla Administrar

Combos()

Modificar()

cambiarImagenCombo()

modificarImagenCombo(Combo)

modificarImagenCombo(Combo)

modificarImagenCombo()

modificarImagenCombo()

cambiarImagenCombo()

Mensaje "Imagen modificada correctamente"()

Desplegar Pantalla Administrar Combos()

131

Figura 53. Diagrama de Secuencia Ver Combo

Figura 54. Diagrama de Secuencia Realizar Reserva de Pedido

 sd Ver Combo

Usuario

Listar Combos Ver Combo Negocio

GestorCombos

ComboDAO Tabla comboController

Combos
Ingresar Ver Combo()

Ingresar()

obtenerCombo()

obtenerCombo(idcombo) :List

getCombo(idcombo)

getCombo()

obtenerCombo()

obtenerCombo()

Desplegar Pantalla Ver Combo()

 sd Realizar Reserv a de Pedido

Usuario

Menú Principal Realizar Reserv a

de Pedido

Negocio

CarritoServ ice

Controller

RealizarReserv a

Ingresar a "Realizar

Reserva de Pedido"() Ingresar()

mostrarCarrito()

mostrarCarrito()

Desplegar pantalla "Realizar

Reserva de Pedido"()

Menú de Comida "Combos"

y "Productos"()

132

Figura 55. Diagrama de Secuencia Seleccionar Combos

 sd Seleccionar Combos

Usuario

Realizar Reserv a

de Pedido

Seleccionar

Combos

Controller

Reserv aPedido

Negocio

GestorCombos

ComboDAO Tabla combo

Seleccionar

"Añadir Combo"() Ingresar()

l istarCombosDisponibles() :List

l istarCombosDisponibles() :List

l istarCombosDisponibles()

listarCombos() :List

l istarCombosDisponibles() :List

l istarCombosDisponibles()

Desplegar "Combos"()

133

Figura 56. Diagrama de Secuencia Seleccionar Productos Combos

 sd Seleccionar Productos Combo

Usuario

Negocio

GestorProductos

ProductoDAO Tabla productoSeleccionar

Productos del

Combo

Controller

RealizarReserv a

Seleccionar

Combos

Negocio

GestorCombos

ComboDAO Tabla combo

Seleccionar un

combo de la lista() Ingresar()

Datos Combo()

Datos Combo()

Datos Combo()

getDatosCombo(idcombo) :Combo

getDatosCombo(idcombo) :Combo

Datos de Combo()

Listar Productos de Combo()

Productos de Combo()

Productos de Combo()

getProductosCombo(idcombo) :List

getProductosCombo(idcombo) :List

Lista Productos de Combo()

Desplegar "Seleccionar Productos

del Combo"()

134

Figura 57. Diagrama de Secuencia Seleccionar Productos

 sd Seleccionar Productos

Usuario

Negocio

GestorProductos

ProductoDAO Tabla productoRealizar Reserv a

de Pedido

Seleccionar

Productos

Controller

RealizarReserv a

Seleccionar "Añadir

Producto"() Ingresar()

Listar Productos Disponibles()

Listar Productos Disponibles()

ListarProductos Disponibles()

listarProductos() :List

l istarProductos() :List

Lista de Productos()

Desplegar "Seleccionar

Productos"()

135

Figura 58. Diagrama de Secuencia Añadir a Carrito

 sd Añadir a Carrito

Usuario

Negocio

CarritoServ ice

ComboDAO Tabla comboRealizar Reserv a

de Pedido

Controller

RealizarReserv a

Seleccionar

Productos del

Combo

Seleccionar

Productos

ProductoDAO Tabla producto

Seleccionar productos del combo y

presionar botón "Añadir a carrito"()

Añadir Combo()

Añadir Combo()

Datos Combo()

getDatosCombo(idcombo) :Combo

getDatosCombo(idcombo) :Combo

Datos de Combo()

Añadir Datos

de Combo()

Datos de productos()

getProductoCombo(idcombo) :Producto

getProductoCombo(idcombo) :Producto

Datos de productos()

Añadir productos

seleccionados de combo()

Calcular

Precio Total()

Combo añadido()

Mensaje "Combo añadido a carrito"()

Desplegar pantalla "Realizar

Reserva de Pedido"()

Presionar botón "Añadir a carrito"()

Añadir Producto()

Añadir Producto()

Datos de Producto()

getProducto(idproducto) :Producto

getProducto(idproducto) :Producto

Datos de Producto()

Añadir producto()

Calcular Precio Total()
Producto añadido()

Desplegar Pantalla Realizar Reserva de Pedido()

136

Figura 59. Diagrama de Secuencia Remover o reducir Ítem

 sd Remov er o Reducir Item de Carrito

Usuario

Negocio

CarritoServ ice

Realizar Reserv a

de Pedido

Controller

RealizarReserv a

Seleccionar item del

carrito y presionar botón

"Remover" o "Reducir"()

Ingresar()

Remover o Reducir item(iditem)

getListaCarritoDetalle()

Identificar item en el

detalle del carrito()

Remover DetalleCarrito()

Calcular

Precio Total()

Item removido o reducido()

Desplegar pantalla "Realizar

Reserva de Pedido"()

137

Figura 60. Diagrama de Secuencia Vaciar Carrito

 sd Vaciar Carrito

Usuario

Ver Carrito Controller

RealizarReserv a

Presionar botón "Vaciar Carrito"()

Ingresar()

Remover sesión

"s_carrito"()

Desplegar pantalla "Realizar

Reserva de Pedido"()

138

Figura 61. Diagrama de Secuencia Validar Reserva

 sd Validar Reserv a

Usuario

Negocio

CarritoServ ice

ClienteDAO Tabla clienteRealizar Reserv a

de Pedido

Validar Reserv a Controller

RealizarReserv a

Negocio

GestorUsuarios

Presionar botón

"Validar Reserva"()
Ingresar()

Listar Clientes()

Listar Clientes()

listarClientes()

listarClientes()

listarClientes()

Lista de Clientes()

Recuperar sesion

"s_carrito"()

Desplegar "Validar Reserva"()

139

Figura 62. Diagrama de Secuencia Realizar Reserva

 sd Realizar Reserv a

Usuario

Negocio

GestorReserv a

PedidoDAO Tabla pedidoRealizar Reserv a

de Pedido

Validar Reserv a Papeleta Reserv a Controller

RealizarReserv a

Negocio Gestor

PortalReserv a

EstablecimientoDAO Tabla

establecimiento

Negocio

GestorUsuarios

EmpleadoDAO Tabla empleadoController

Papeletas

Llenar Datos para Entrega()

"Realizar Reserva" o "Volver"()

"Volver"()

Desplegar pantalla "Realizar

Reserva de Pedido"()

"Realizar Pedido"()

Ingresar()

getHorarios()

getHorarios()

getHorarios()

getHorarios()

getHorarios()

getHorarios()

Validar Horarios()

Obtener sesion

"s_carrito"()

InsertarPedido()

Datos empleado()

Datos empleado()

getEmpleado() :Empleado

getEmpleado() :Emplado

Datos de empleado() :Empleado

Datos de empleado() :Empleado

Insertar Pedido()

insertarPedido(Pedido) :int

insertarPedido(Pedido) :int

Pedido insertado()

Insertar Detalle Pedido()

insertarDetPedido(detPedido)

insertarDetPedido(detPedido)

Detalle Pedido insertado()

Reserva Registrada()

Obtener Pedido()

getPedido(idpedido) :List

getPedido(idpedido) :List

Datos de pedido()

getMensajeEfectivizacion()

getMensajeEfectivizacion()

getMensajeEfectivizacion()

getMensajeEfectivizacion()

getMensajeEfectivizacion()

getMensajeEfectivizacion()

Remover sesion

"s_carrito"()

Desplegar pantalla "Papeleta Reserva"()

140

Figura 63. Diagrama de Secuencia Ver Estados de Pedidos

 sd Ver Estados de Pedidos

Menú Principal Pedidos Controller

Pedidos

Negocio

GestorPedidos

PedidosDAO Tabla pedido

Administrador Chef Cliente

Pedidos Chef Pedidos Mesero

MeseroRecepcionista

Pedidos

Recepcionista

Mis Pedidos

Ingresar a "Pedidos"()

Ingresar()

l istarPedidosCaAdm()

listarPedidosCaAdm() :List

l istarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

Desplegar pantalla "Pedidos"()

Ingresar "Pedidos Recepcionista"()

Ingresar()

l istarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

listarPedidosCaAdm()

Desplegar Pantalla Pedidos Recepcionista()

Ingresar a "Pedidos Chef"()

Ingresar()

l istarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

Desplegar Pantalla Pedidos Chef()

Ingresar a "Pedido Mesero"()

Ingresar()

l istarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

listarPedidosChMe()

Desplegar Pedidos Mesero()

Ingresar a "Mis Pedidos"()

Ingresar()

l istarPedidosCliente(idcliente)

listarPedidosCliente(idcliente)

listarPedidosCliente(idcliente)

listarPedidosCliente()

l istarPedidosCliente()

l istarPedidosCliente()

Desplegar Pantalla Mis Pedidos()

141

Figura 64. Diagrama de Secuencia Cambiar a

 sd Cambiar a

Usuario

Pedidos Controller

Pedidos

Negocio

GestorPedidos

PedidoDAO Tabla pedido

Ingresar a "Ordenar",

"Listo" o "Entregar"()
Ingresar()

cambiarEstadoPedido()

cambiarEstadoPedido(Pedido)

cambiarEstadoPedido(Pedido)

cambiarEstadoPedido()

cambiarEstadoPedido()

cambiarEstadoPedido()

Desplegar pantalla

"Pedidos"()

142

Figura 65. Diagrama de Secuencia Ver Detalle Pedido

 sd Ver Detalle Pedido

Usuario

Ver Detalle Pedido Controller

Pedidos

Negocio

GestorPedidos

PedidoDAO Tabla pedidoPedidos DetPedidoDAO Tabla det_pedido

Ingresar a "Ver

Detalle Pedido"() Ingresar()

listaPedido(idpedido)

getPedido(idpedido) :List

getPedido(idpedido)

getPedido()

getPedido()

listaPedido()

verDetallePedido(idpedido)

verDetallePedido(idpedido) :List

verDetallePedido(idpedido)

verDetallePedido()

verDetallePedido()

verDetallePedido()

Desplegar pantalla "Ver

Detalle Pedido"()

143

Figura 66. Diagrama de Secuencia Anular Pedido

Figura 67. Diagrama de Secuencia Establecimiento

 sd Anular Pedido

Usuario

Pedidos Controller

Pedidos

Negocio

GestorPedidos

PedidoDAO Tabla pedido

Ingresar a "Anular"

Pedido() Ingresar()

Cambiar estado pedido()

Cambiar estado pedido()

cambiarEstadoPedido(Pedido)

cambiarEstadoPedido(Pedido)

cambiarEstadoPedido(Pedido)

Estado de pedido

modificado()

Desplegar pantalla

"Pedidos"()

 sd Establecimiento

Usuario

Menú Principal Establecimiento Negocio

GestorEstablecimiento

EstablecimientoDAO establecimientoController

Establecimiento

Ingresar a

Establecimiento() Ingresar()

Listar Establecimiento()

Listar Establecimiento()

listarEstablecimiento() :List

l istarEstablecimiento() :List

Listar Establecimiento()

Lista de Establecimiento()

Desplegar Pantalla

Establecimiento()

144

Figura 68. Diagrama de Secuencia Editar Establecimiento

 sd Editar Establecimiento

Usuario

Editar

Establecimiento

Negocio

GestorEstablecimiento

EstablecimientoDAO establecimientoEstablecimiento Controller

Establecimiento

Ingresar a Editar

Establecimiento()
Ingresar()

Datos Establecimiento()

Datos Establecimiento()

getEstablecimiento(idestablecimiento) :List

getEstablecimiento(idestablecimiento) :List

Datos de Establecimiento()

Datos de Establecimientos()

Desplegar Pantalla Editar

Establecimiento()

Modificar

Establecimiento()
Validar longitud y

tipo de caracteres()

"Modificar" o "Cancelar"()

Cancelar()

Desplegar Pantalla

Establecimiento()

Modificar()

Modificar()

Obtener Establecimiento()
getEstablecimiento(ide)

:Establecimiento

getEstablecimiento(ide)

:Establecimiento

Datos de Establecimiento()

Modificar Establecimiento()

modificarEstablecimiento(Establecimiento)

modificarEstablecimiento(Establecimiento)

Modificar Establecimiento()

Establecimiento modificado()

Mensaje "Establecimiento

modificado correctamente"()

Desplegar Pantalla Establecimiento()

145

Figura 69. Diagrama de Secuencia Ver Establecimiento

Figura 70. Diagrama de Secuencia Reportes

 sd Ver Establecimiento

Usuario

Establecimiento Ver

Establecimiento

Negocio

GestorEstablecimiento

EstablecimientoDAO establecimientoController

Establecimiento

Ingresar Ver()

Ingresar()

Datos Establecimiento()

Datos Establecimiento()

getEstablecimiento(idestablecimiento) :List

getEstablecimiento(idestablecimiento) :List

Datos de establecimiento()

Datos de establecimiento()

Desplegar Pantalla de

Ver Establecimiento()

 sd Reportes

Usuario

ReportesMenú Principal Controller

Reportes

Negocio

GestorReportes

PedidosDAO pedido

Seleccionar "Reportes"()

Ingresar()

Consultar Reporte()

Consultar Reporte()

Consultar Reporte()

ResultadoReporte()

ResultadoReporte()

ResultadoReporte()

Desplegar Pantalla Reportes()

146

4.10.2 Diagrama de actividad

4.10.2.1 Introducción

Mediante el uso de los diagramas de actividad podemos modelar el flujo de

control entre actividades del sistema. La idea es generar una especie de

diagrama Pert, en el que se puede ver el flujo de actividades que tienen lugar

a lo largo del tiempo, así como las tareas concurrentes que pueden realizarse

a la vez. Gráficamente es un conjunto de arcos y nodos. Desde un punto de

vista conceptual, El diagrama de actividad muestra como fluye el control de

unas clases a otras con la finalidad de culminar con un flujo de control total

que se corresponde con la consecución de un proceso más completo, Por este

motivo, aparecerán acciones y actividades correspondientes a distintas

clases, colaborando todas ellas para conseguir un mismo fin.

4.10.2.2 Propósito

 Comprender la estructura del sistema deseado para la organización

 Identificar posibles mejoras en el sistema

 Modelar aspectos dinámicos del sistema

 Mostrar operaciones que se pasan entre objetivos

 Mostrar flujos de actividades

4.10.2.3 Alcances

 Describe los procesos del sistema y de los clientes

147

Figura 71. Registrar Persona

Figura 72. Editar Persona

 act Registrar Persona

Inicio

Ingresar a Registrar

Persona

Llenar Datos de la

Persona

Validar Campos

Rellenar Campos

Registrar en Tabla

persona

Mostrar Pantalla

Administrar Usuarios

Fin

[Cancelar]

[Aceptar]

 act Editar Persona

Inicio

Ingresar a Editar

Persona

Modificar Datos de la

Persona

Validar Campos

Rellenar Campos

v acios

Actualizar en Tabla

persona

Mostrar Pantalla

Administrar Usuarios

Fin

[Cancelar]

[Aceptar]

148

Figura 73. Acción (Activar-

Inactivar) Persona

Figura 74. Ver Persona

 act Accion (Activ ar Inactiv ar) ...

Inicio

Presionar Activ ar o

Inactiv ar

Mostrar Mensaje de

Conformirmación

Actualizar Tabla

persona

Mostrar Pantalla

Administrar Usuarios

Fin

[No]

[Si]

 act Ver Persona

Inicio

Ingresar a Ver Persona

Mostrar Pantalla Ver

Persona

Fin

149

Figura 75 Registrar Usuario

Figura 76. Editar Rol Usuario

 act Registrar Usuario

Inicio

Ingresar a Regsitrar

Usuario

Llenar Datos

Validar Campos

Rellenar Campos

Vacios

Registrar en Tabla

usuario

Mostrar Pantalla

Usuarios de Persona

Fin

Seleccionar Rol

Registrar en Tabla

permisos

[Aceptar]

[Cancelar]

 act Editar Rol

Inicio

Ingresar a Editar Rol

Modificar Rol

Actualizar Tabla permisos

Mostrar pantalla

Usuarios de Persona

Fin

[Cancelar]

[Modificar]

150

Figura 77. Cambiar Contraseña

Figura 78. Editar Permisos

 act Cambiar Contraseña

Inicio

Ingresar a Cambiar

Contraseña

Modificar Datos

Validar Campos

Rellenar Campos

Vacios

Actualizar Tabla

usuario

Mostrar Pantalla

Usuarios de Persona

Fin

[Cancelar]

[Aceptar]

 act Editar Permisos

Inicio

Ingresar a Permisos

Modificar permisos

Actualizar Tabla

permisos

Mostrar pantalla

Usuarios de Persona

Fin

[Aceptar]

[Cancelar]

151

Figura 79. Editar Rol

Figura 80. Registrar Rol

 act Editar Rol

Inicio

Ingresar a Editar Rol

Modificar Datos

Validar Campos

Rellenar Campos

Vacios

Actualizar Tabla

permisos

Mostrar Pantalla

Lista de Rol

Fin

[Cancelar]

[Aceptar]

 act Registrar Rol

Inicio

Ingresar Registrar Rol

Llenar Datos de

Registro

Validar Campos

Rellenar los Campos

Vacios

Registrar en Tabla

rol

Mostrar Pantalla

Lista de Rol

Fin

Seleccionar

Permisos

Registrar en Tabla

permisos

[Aceptar]

[Cacelar]

152

Figura 81. Ver Rol

Figura 82. Registrar Grupo

Intercambiable

 act Ver Rol

Inicio

Ingresar Ver Rol

Mostrar pantalla Ver

Rol

Fin

 act Registrar Grupo Modificable

Inicial

Validar Campos

Llenar campos

Faltantes

Registrar en Tabla

producto

Final

Ingresar a Registrar

Grupo Modificable

Llenar los datos del

Grupo

Mostrar Pantalla

Listar Grupos

Modificables

[Registrar]

[Validar]

153

Figura 83. Inactivar y Activar

Grupo Modificable

Figura 84. Registrar Producto

 act Activ ar e Inactiv ar Grupos ...

Inicio

Presionar Activ ar o

Inactiv ar

Mostrar Mensaje de

Conformidad

Registrar en Base de

Datos

Mostrar Pantalla Lista

de Grupos

Modificables

Fin

[Cancelar]

[Aceptar]

 act Registrar Producto

Inicial

Ingresar Registrar

Producto

Llenar los datos del

Producto

Validar Campos

Llenar campos

Faltantes

Registrar en Tabla

producto

Mostrar Pantalla

Listar Productos

Final

[Cancelar]

[Registrar]

[Validar]

154

Figura 85. Acción (Activar-

Inactivar) Producto

Figura 86. Editar Producto

 act Activ ar e Inactiv ar Producto

Inicio

Presionar Activ ar o

Inactiv ar

Mostrar Mensaje de

Confirmación

Actualizar Tabla

producto

Mostrar Pantalla Listar

Productos

Fin

[Cancelar]

[Aceptar]

 act Editar Producto

Inicial

Ingresar Editar

Producto

Modificar Datos de

Producto

Validar Campos

Llenar campo

v acios

Actualizar Tabla

producto

Mostrar Pantalla Listar

Productos

Final

[Cancelar]

[Registrar]

[Validar]

155

Figura 87. Ver Producto

Figura 88. Registrar Combo

 act Ver Producto

Inicio

Ingresar Ver

Producto

Mostrar pantalla Ver

Producto

Fin

 act Registrar Combo

Inicial

Ingresar Registrar

Combo

Llenar los datos del

Combo

Validar Campos

Campos

Faltantes

Registrar en Tabla

combo

Mostrar Pantalla

Listar Combos

Final

Registrar en Tabla

item

Seleccionar Productos

[Validar]

[Registrar]

[Cancelar]

156

Figura 89. Acción (Activar-

Inactivar) Combo

Figura 90. Actualizar Combo

 act Activ ar e Inactiv ar Combo

Inicio

Presionar Activ ar o

Inactiv ar

Mostrar Mensaje de

Confirmación

Actualizar tabla combo

Mostrar Pantalla Listar

Combos

Fin

[No]

[Si]

 act Actializar Combo

Inicial

Ingresar Actualizar

Combo

Modificar Datos de

Combo

Validar Campos

Llenar campos

v acios

Actualizar tabla item

Mostrar Pantalla Listar

Combos

Final

Modificar selección de

productos

Actualizar Tabla combo

[Validar]

[Registrar]

[Cancelar]

157

Figura 91. Editar Imagen Combo

Figura 92. Ver Combo

 act Editar Imagen Combo

Inicial

Ingresar Imagen

Modificar Imagen de

Combo

Validar Campo

Llenar campo

v acios

Actualizar Tabla

imagenCombo

Mostrar Pantalla Listar

Combos

Final

[Cancelar]

[Registrar]

[Validar]

 act Ver Combo

Inicio

Ingresar Ver Combo

Mostrar pantalla Ver

Combo

Fin

158

Figura 93. Realizar Reserva de Pedido

 act Realizaar Reserv a de Pedido

Inicio

Ingresar a Realizar

Reserv a de Pedido

Seleccionar Productos Seleccionar Combos

Seleccionar Productos de

Combo

Añadir a carrito

Validar Reserv a

Realizar Reserv a

Mostrar Papeleta Reserv a

Rellenar campos

ActivityFinal

159

Figura 94. Cambiar a

Figura 95. Detalle Pedido

Figura 96. Anular

 act Cambiar a

Inicio

Ingresar "Cambiar a"

Actualizar Tabla pedido

Mostrar Pantalla Pedidos

Fin

 act Ver Detalle Pedido

Inicio

Ingresar a Ver Detalle

Pedido

Mostrar Pantalla Ver

Detalle Pedido

Fin

 act Anular

Inicio

Ingresar a Anular

Actualizar Tabla pedido

Mostrar Pantalla Pedidos

Fin

160

Figura 97. Portal Reservas

Figura 98. Editar Establecimiento

 act Portal Reserv as

Inicio

Ingresar a Actualizar

Actualizar Tabla

menu_sistema

Actualizar Tabla

establecimiento

Fin

 act Editar Establecimiento

Inicial

Ingresar Editar

Establecimiento

Modificar Datos de

Establecimiento

Validar Campo

Llenar campo

v acios

Actualizar Tabla

establecimiento

Mostrar Pantalla Lista

de Establecimientos

Final

[Cancelar]

[Registrar]

[Validar]

161

Figura 99. Ver Establecimiento

Figura 100. Reportes

 act Ver Establecimiento

Inicio

Ingresar Ver

Establecimiento

Mostrar pantalla Ver

Establecimiento

Fin

 act Reportes

Inicio

Ingresar Reportes

Consultar Reporte

Leer de Tabla Pedido

Mostrar Pantalla Reportes

Fin

162

4.10.3 Pantallas de interfaz de usuario

4.10.3.1 Introducción

Se trata de la presentación de las pantallas del sistema, que permiten al

usuario visualizar de forma precisa lo que provee el sistema.

4.10.3.2 Propósito

Presentar las principales pantallas para que el usuario tenga una idea de la

interfaz que presentará el sistema.

Pantalla presentación y acceso al sistema.

Figura 101. Pantalla Presentación y acceso al sistema

163

Pantalla menú principal del sistema

Figura 102. Pantalla Menú principal del sistema

164

Pantalla Administrar Usuarios

Figura 103. Pantalla Administrar Usuarios

165

Pantalla Registrar Persona

Figura 104. Pantalla Registrar Persona

166

Pantalla Editar Persona

Figura 105. Pantalla Editar Persona

167

Pantalla Usuarios de Persona

Figura 106. Pantalla Usuarios de Persona

168

Pantalla Registrar Usuario

Figura 107. Pantalla Registrar Usuario

Pantalla Cambiar contraseña

Figura 108. Pantalla Cambiar Contraseña

169

Pantalla Editar Fotografía

Figura 109. Pantalla Editar Fotografía

Pantalla Editar Rol

Figura 110. Pantalla Editar Rol

170

Pantalla Editar Permisos

Figura 111. Pantalla Editar Permisos

171

Pantalla Administrar Roles

Figura 112. Pantalla Administrar Roles

172

Pantalla Registrar Rol

Figura 113. Pantalla Registrar Rol

173

Pantalla Editar Rol

Figura 114. Pantalla Editar Rol

174

Pantalla Administrar Productos: Listar Productos

Figura 115. Pantalla Administrar Productos: Listar Productos

175

Pantalla Registrar Producto

Figura 116. Pantalla Registrar Producto

Pantalla Editar Producto

Figura 117. Pantalla Editar Producto

176

Listar Grupos Intercambiables

Figura 118. Pantalla Listar Grupos Intercambiables

177

Pantalla Registrar Grupo Intercambiables

Figura 119. Pantalla Listar Grupos Intercambiables

Pantalla Asignar Intercambio de Productos

Figura 120. Pantalla Asignar Intercambio de Productos

178

Pantalla Administrar Combos

Figura 121. Pantalla Administrar Combos

179

Pantalla Registrar Combo

Figura 122. Pantalla Registrar Combo

180

Pantalla Actualizar Combo

Figura 123. Pantalla Registrar Combo

181

Ver Combo

Figura 124. Pantalla Ver Combo

182

Pantalla Realizar Reserva de Pedido

(Pestaña Carrito)

(Pestaña Agregar desde Menú de Comida)

Figura 125. Pantalla Realizar Reserva de Pedido

183

Pantalla Seleccionar Combos

Figura 126. Pantalla Seleccionar Combos

184

Pantalla Seleccionar Productos de Combo

Figura 127. Pantalla Seleccionar Productos de Combo

185

Pantalla Seleccionar Productos

Figura 128. Pantalla Seleccionar Productos

186

Pantalla Validar Reserva

Figura 129. Pantalla Validar Reserva

Pantalla Papeleta Reserva

Figura 130. Pantalla Papeleta Reserva

187

Pantalla Ver Estados de Pedidos

Figura 131. Pantalla Ver Estados de Pedidos

Ver Detalle de Pedido

Figura 132. Pantalla Ver Detalle de Pedido

188

Pantalla Portal Reservas

Figura 133. Pantalla Portal Reservas

Pantalla Establecimiento

Figura 134. Pantalla Establecimiento

189

Pantalla Editar Establecimiento

Figura 135. Pantalla Editar Establecimiento

Pantalla Ver Establecimiento

Figura 136. Pantalla Ver Establecimiento

190

Pantalla Reportes

Figura 137. Pantalla Reportes Clientes Registrados

Figura 138. Pantalla Reportes Reservas Efectivas por rango de fechas

191

Figura 139. Pantalla Reportes Historial de reservas por cliente, por rango de

fechas

Pantalla Factura

192

4.11 Modelo de Datos

4.11.1 Introducción.

Un diagrama de clases [36] se utiliza para modelar la vista de diseños

estáticos de un sistema. Un diagrama de clases muestra un conjunto de

interfaces, colaboraciones y sus relaciones. Presenta las clases del sistema

con sus relaciones estructurales y de herencia. Gráficamente un diagrama es

la colección de nodos y arcos”.

Previendo que la persistencia de la información del sistema será soportada

por una base de datos relacional este modelo describe la representación

lógica de los datos persistentes, de acuerdo con el enfoque para el modelo

relacional de datos.

Para expresar este modelo se utiliza el diagrama de clases (donde se utiliza

un profile UML para el modelado de datos, para conseguir la representación

de tablas, etc).

El diagrama de clases del sistema, es un artefacto creado para modelar

conceptos de dominios como Clases de software. Normalmente tiene tres

comportamientos, el tercero representa los métodos de la clase. UML

incluye la notación de los diagramas de clases.

4.11.2 Propósito.

 Comprender la estructura y la dinámica del sistema deseado para la

institución

 Comprender la interacción de los actores del sistema

4.11.3 Alcance.

 Si se elaboran bien los sistemas tienden a ser más fáciles de entender

193

4.11.4 Diagrama de Clases.

Figura 140. Diagrama de Clases

 cl
as

s
C

la
ss

 M
od

el P
er

so
na

-
id

P
er

so
na

:
in

t

-
no

m
br

es
:

S
tri

ng

-
ap

P
at

er
no

:
S

tri
ng

-
ap

M
at

er
no

:
S

tri
ng

-
ci

:
in

t

-
te

le
fo

no
s:

 i
nt

-
fe

ch
aN

ac
im

ie
nt

o:
 D

at
e

-
em

ai
l:

 S
tri

ng

-
di

re
cc

io
n:

 S
tri

ng

-
es

ta
do

:
bo

ol
ea

n

-
lu

ga
rN

ac
im

ie
nt

o:
 S

tri
ng

-
fe

ch
aR

eg
is

tro
:

D
at

e

+
gu

ar
da

rP
er

so
na

()
: v

oi
d

+
m

od
ifi

ca
rP

er
so

na
()

: v
oi

d

+
in

ac
tiv

ar
A

ct
iv

ar
P

er
so

na
()

: v
oi

d

+
lis

ta
rP

er
so

na
s(

) :
 L

is
t

+
bu

sc
ar

C
I(S

tri
ng

) :
 S

tri
ng

+
ob

te
ne

rP
er

so
na

()
: P

er
so

na

+
da

to
sP

er
so

na
()

: L
is

t

U
su

ar
io

-
id

U
su

ar
io

-
lo

gi
n:

 S
tri

ng

-
cl

av
e:

 S
tri

ng

-
es

ta
do

:
bo

ol
ea

n

-
fe

ch
aR

eg
is

tro
:

D
at

e

-
tit

ul
oF

ot
o:

 S
tri

ng

-
im

ag
en

:
by

te
[]

+
gu

ar
da

rU
su

ar
io

()
: v

oi
d

+
m

od
ifi

ca
rR

ol
()

: v
oi

d

+
in

ac
tiv

ar
A

ct
iv

ar
U

su
ar

io
()

: v
oi

d

+
bu

sc
ar

Lo
gi

n(
) :

 S
tri

ng

+
ob

te
ne

rU
su

ar
io

()
: U

su
ar

io

+
m

od
ifi

ca
rF

ot
o(

) :
 v

oi
d

+
gu

ar
da

rC
on

tra
se

ni
a(

) :
 S

tri
ng

+
gu

ar
da

rP
er

m
is

os
()

: v
oi

d

+
ge

tE
m

pl
ea

do
U

su
ar

io
()

: E
m

pl
ea

do

+
ro

le
sU

su
ar

io
()

: L
is

t

R
ol

-
id

ro
l:

 in
t

-
no

m
br

e:
 S

tri
ng

-
es

ta
do

:
bo

ol
ea

n

+
gu

ar
da

rR
ol

()
: S

tri
ng

+
m

od
ifi

ca
rR

ol
()

: v
oi

d

+
ro

le
sA

ct
iv

os
()

: L
is

t

+
ob

te
ne

rId
R

ol
()

: i
nt

+
lis

ta
rR

ol
es

()
: L

is
t

+
lis

ta
rM

en
us

()
: L

is
t

+
ob

te
ne

rR
ol

()
: R

ol

+
pe

rm
is

os
R

ol
()

: L
is

t

P
er

m
is

os

-
as

ig
na

do
:

bo
ol

ea
n

+
ge

tP
er

m
is

os
R

ol
(in

t)
: L

is
t

+
A

si
gn

ar
P

er
m

is
os

()
: v

oi
d

+
ge

tP
er

m
is

os
P

or
U

su
ar

io
(in

t)
: L

is
t

+
P

er
m

is
os

P
or

D
ef

ec
to

()
: v

oi
d

+
m

od
ifi

ca
rP

er
m

is
os

()
: v

oi
d

+
el

im
in

ar
P

er
m

is
o(

) :
 v

oi
d

+
el

im
in

ar
P

er
m

is
oU

su
ar

io
()

: v
oi

d

P
ro

du
ct

o

-
id

_p
ro

du
ct

o:
 i

nt

-
N

om
br

e:
 S

tri
ng

-
D

es
cr

ip
ci

on
:

S
tri

ng

-
T

ip
o:

 S
tri

ng

-
P

re
ci

o:
 i

nt

-
E

st
ad

o:
 b

oo
le

an

-
E

nv
as

e:
 S

tri
ng

+
R

eg
is

tra
rP

ro
du

ct
o(

) :
 v

oi
d

+
M

od
ifi

ca
rP

ro
du

ct
o(

) :
 v

oi
d

+
E

lim
in

ar
P

ro
du

ct
o(

) :
 v

oi
d

+
R

ep
or

te
sP

ro
du

ct
o(

) :
 v

oi
d

E
st

ab
le

ci
m

ie
nt

o

-
id

es
ta

bl
ec

im
ie

nt
o:

 i
nt

-
no

m
br

e:
 S

tri
ng

-
ni

t:
 S

tri
ng

-
es

ta
do

:
bo

ol
ea

n

-
di

re
cc

io
n:

 S
tri

ng

-
te

le
fo

no
:

S
tri

ng

-
em

ai
l:

 S
tri

ng

+
gu

ar
da

rrE
st

ab
le

ci
m

ie
nt

o(
) :

 S
tri

ng

+
m

od
ifi

ca
rE

st
ab

le
ci

m
ie

nt
o(

) :
 v

oi
d

+
in

ac
tiv

ar
E

st
ab

le
ci

m
ie

nt
o(

) :
 v

oi
d

+
lis

ta
rE

st
ab

le
ci

m
ie

nt
o(

) :
 L

is
t

+
lis

ta
E

st
ab

le
ci

m
ie

nt
o(

) :
 L

is
t

E
m

pl
ea

do

-
id

em
pl

ea
do

:
in

t

-
fe

ch
aR

eg
is

tro
:

D
at

e

-
es

ta
do

:
bo

ol
ea

n

+
gu

ar
da

rE
m

pl
ea

do
()

: v
oi

d

C
lie

nt
e

-
id

cl
ie

nt
e:

 i
nt

-
no

m
br

es
:

S
tri

ng

-
ni

t:
 S

tri
ng

-
te

le
fo

no
:

S
tri

ng

-
es

ta
do

:
bo

ol
ea

n

+
gu

ar
da

rC
lie

nt
e(

) :
 v

oi
d

+
lis

ta
rC

lie
nt

es
()

: L
is

t

D
oc

um
en

to

-
id

do
cu

m
en

to
:

in
t

-
fe

ch
a:

 D
at

e

-
de

ta
lle

:
S

tri
ng

-
m

on
to

:
flo

at

-
no

m
br

e:
 S

tri
ng

-
ci

:
S

tri
ng

+
gu

ar
da

rD
oc

um
en

to
()

: S
tri

ng

+
ge

tN
om

br
eC

I()
 :

Li
st

P
ed

id
o

-
id

P
ed

id
o:

 i
nt

-
Fe

ch
a:

 D
at

e

-
N

ro
P

ed
id

o:
 S

tri
ng

-
C

od
ig

o:
 S

tri
ng

-
H

or
aR

es
er

va
da

:
T

im
e

-
Fe

ch
aV

al
id

a:
 D

at
e

-
H

or
aV

al
id

a:
 T

im
e

-
H

or
aE

nt
re

ga
:

T
im

e

-
Ll

ev
ar

:
bo

ol
ea

n

-
ho

ra
O

rd
en

ar
:

T
im

e

+
lis

ta
rP

ed
id

os
()

: L
is

t

+
ve

rD
et

al
le

P
ed

id
o(

) :
 L

is
t

+
ob

te
ne

rP
ed

id
o(

) :
 P

ed
id

o

+
in

se
rta

rP
ed

id
o(

) :
 v

oi
d

+
ge

tC
lie

nt
eP

ed
id

o(
) :

 v
oi

d

+
lis

ta
rP

ed
id

os
S

al
do

s(
) :

 L
is

t

C
ar

ri
to

-
lis

tC
ar

rit
oD

et
al

le
:

A
rra

yL
is

t<
C

ar
rit

oD
et

al
le

>

-
bt

n:
 S

tri
ng

-
pr

ec
io

T
ot

al
:

flo
at

-
va

ci
o:

 S
tri

ng

-
id

U
su

ar
io

:
S

tri
ng

+
m

os
tra

rC
ar

rit
o(

) :
 C

ar
rit

o

+
ad

dC
om

bo
()

: C
ar

rit
o

+
ad

dP
ro

du
ct

o(
) :

 C
ar

rit
o

+
re

m
ov

er
Ite

m
C

ar
rit

o(
) :

 C
ar

rit
o

+
re

m
ov

ar
C

an
tid

ad
Ite

m
C

ar
rit

o(
) :

 C
ar

rit
o

C
ar

ri
to

D
et

al
le

-
C

an
tid

ad
:

in
t

-
P

re
ci

o:
 f

lo
at

+
R

eg
D

et
al

le
R

es
er

va
()

: v
oi

d

E
st

ad
o

-
id

E
st

ad
o:

 i
nt

-
N

om
br

e:
 S

tri
ng

D
et

al
le

P
ed

id
o

-
C

an
tid

ad
:

in
t

-
E

st
ad

o:
 b

oo
le

an

-
P

re
ci

o:
 f

lo
at

-
D

es
cu

en
to

:
flo

at

-
In

de
x:

 i
nt

+
ge

tD
et

P
ed

id
o(

) :
 L

is
t

+
in

se
rta

rD
et

P
ed

id
o(

) :
 v

oi
d

D
et

D
oc

um
ue

nt
o

-
m

on
to

:
flo

at

-
su

bT
ot

al
:

flo
at

-
ca

nt
id

ad
:

in
t

-
de

sc
ue

nt
o:

 f
lo

at

-
In

de
x:

 i
nt

+
in

se
rta

rD
et

D
oc

um
en

to
()

: v
oi

d

+
ge

tD
et

D
oc

um
en

to
()

: L
is

t

C
om

bo

-
id

C
om

bo
:

in
t

-
D

es
cr

ip
ci

on
:

in
t

-
V

ig
en

te
:

bo
ol

ea
n

-
Fe

ch
a:

 D
at

e

+
gu

ar
da

rC
om

bo
()

: v
oi

d

+
m

od
ifi

ca
rC

om
bo

()
: v

oi
d

+
A

ct
iv

ar
In

ac
tiv

ar
C

om
bo

()
: v

oi
d

+
ob

te
ne

rC
om

bo
()

: v
oi

d

+
lis

ta
rC

om
bo

s(
) :

 L
is

t

+
ve

rC
om

bo
()

: L
is

t

+
ge

tD
at

os
C

om
bo

()
: C

om
bo

+
ob

te
ne

rG
ru

po
sC

om
bo

()
: L

is
t

G
ru

po
M

od
ifi

ca
bl

e

-
id

G
ru

po
:

in
t

-
D

et
al

le
:

S
tri

ng

-
E

st
ad

o:
 b

oo
le

an

+
R

eg
is

tra
rG

ru
po

M
()

: v
oi

d

+
A

ct
iv

ar
In

ac
tiv

ar
G

ru
po

M
()

: v
oi

d

Im
ag

en

-
id

Im
ag

en
:

in
t

-
T

itu
lo

:
S

tri
ng

-
E

st
ad

o:
 b

oo
le

an

-
Fo

to
:

bl
ob

-
Fe

ch
a:

 D
at

e

+
gu

ar
da

rIm
ag

en
()

: v
oi

d

+
ge

tIm
ag

en
()

: v
oi

d

+
m

od
ifi

ca
rIm

ag
en

()
: v

oi
d

M
en

uS
is

te
m

a

-
id

M
en

u:
 i

nt

-
N

om
br

e:
 S

tri
ng

-
E

st
ad

o:
 b

oo
le

an

-
Lo

go
:

S
tri

ng

-
Li

nk
:

S
tri

ng

D
es

cu
en

to

-
id

D
es

cu
en

to
:

in
t

-
de

sc
ue

nt
o:

 f
lo

at

Ti
po

D
oc

-
id

tip
od

oc
:

in
t

-
D

et
al

le
:

S
tri

ng

D
et

al
le

G
ru

po
M

-
es

ta
do

:
bo

ol
ea

n

+
gu

ar
da

rD
gr

up
oM

()
: v

oi
d

+
m

od
ifi

ca
rD

gr
up

oM
()

: v
oi

d

+
as

ig
na

rIn
te

rc
am

bi
al

es
()

: v
oi

d

Ite
m

-
id

Ite
m

:
in

t

-
Fe

ch
a:

 D
at

e

-
E

st
ad

o:
 b

oo
le

an

+
gu

ar
da

rC
om

bo
Ite

m
()

: v
oi

d

+
in

se
rta

rIt
em

G
ru

po
()

: v
oi

d

+
el

im
in

ar
P

ro
du

ct
os

C
om

bo
()

: v
oi

d

P
re

ci
o

-
id

P
re

ci
o:

 i
nt

-
M

on
to

:
flo

at

-
Fe

ch
a:

 D
at

e

-
E

st
ad

o:
 b

oo
le

an

+
gu

ar
da

rP
re

ci
o(

) :
 v

oi
d

+
m

od
ifi

ca
rP

re
ci

o(
) :

 v
oi

d

Fa
ct

ur
a

-
id

Fa
ct

ur
a:

 i
nt

-
N

ro
Fa

ct
ur

a:
 i

nt

-
A

ut
or

iz
ac

io
n:

 S
tri

ng

-
C

od
C

on
tro

l:
 S

tri
ng

-
N

it:
 S

tri
ng

-
N

om
nr

e:
 S

tri
ng

-
Fe

ch
a:

 D
at

e

-
Fe

ch
aL

im
ite

E
m

is
io

n:
 D

at
e

+
G

en
er

ar
Fa

ct
ur

a(
) :

 v
oi

d

D
os

ifi
ca

ci
on

-
A

ut
or

iz
ac

io
n:

 S
tri

ng

-
Ll

av
e:

 S
tri

ng

-
Fe

ch
aL

im
ite

:
D

at
e

-
Fe

ch
aE

m
is

io
n:

 D
at

e

+
R

eg
is

tra
rD

os
ifi

ca
ci

on
()

: v
oi

d

*

*

1
*

*

1

*
1

1

*

*

1

1
*

1

*

* 1

*

1

*

*

*
*

1
*

*
*

1

*

*

1

1
**

1

*

1

*

1

*

1

1

*

*

1

1

1

*
1

1
1

* *

194

4.11.5 Diagrama Entidad Relación

Figura 141. Diagrama Entidad Relación

195

4.11.6 Script Para la Creación de la Base de Datos.

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;

SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL,ALLOW_INVALID_DATES';

CREATE SCHEMA IF NOT EXISTS `dbmyburguer` DEFAULT CHARACTER SET utf8 ;

USE `dbmyburguer` ;

-- ---

-- Table `dbmyburguer`.`establecimiento`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`establecimiento` (

 `idEstablecimiento` INT(11) NOT NULL AUTO_INCREMENT,

 `Nit` VARCHAR(45) NOT NULL,

 `Nombre` VARCHAR(45) NOT NULL,

 `Telefono` VARCHAR(45) NULL DEFAULT NULL,

 `Direccion` VARCHAR(45) NULL DEFAULT NULL,

 `Email` VARCHAR(45) NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `HoraInicio` TIME NULL DEFAULT NULL,

 `HoraFin` TIME NULL DEFAULT NULL,

 `HoraOrdenar` VARCHAR(2) NULL DEFAULT '0',

 `MensajeEfectivizacion` VARCHAR(300) NULL DEFAULT NULL,

 PRIMARY KEY (`idEstablecimiento`),

 UNIQUE INDEX `Nit_UNIQUE` (`Nit` ASC),

 UNIQUE INDEX `Nombre_UNIQUE` (`Nombre` ASC))

ENGINE = InnoDB

AUTO_INCREMENT = 3

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`persona`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`persona` (

 `idpersona` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombres` VARCHAR(45) CHARACTER SET 'utf8' NOT NULL,

 `ApPaterno` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `ApMaterno` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `Telefonos` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `CI` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `LugarNacimiento` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `Email` VARCHAR(45) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `Direccion` VARCHAR(100) CHARACTER SET 'utf8' NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `FechaNacimiento` DATE NULL DEFAULT NULL,

 `FechaRegistro` DATE NULL DEFAULT NULL,

 PRIMARY KEY (`idpersona`))

ENGINE = InnoDB

AUTO_INCREMENT = 9

DEFAULT CHARACTER SET = latin5;

-- ---

-- Table `dbmyburguer`.`usuario`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`usuario` (

 `idUsuario` INT(11) NOT NULL AUTO_INCREMENT,

 `Login` VARCHAR(45) NOT NULL,

196

 `Clave` VARCHAR(45) NOT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `FechaRegistro` DATE NULL DEFAULT NULL,

 `TituloFoto` VARCHAR(45) NULL DEFAULT NULL,

 `Imagen` MEDIUMBLOB NULL DEFAULT NULL,

 `idpersona` INT(11) NOT NULL,

 `idEstablecimiento` INT(11) NOT NULL,

 PRIMARY KEY (`idUsuario`),

 UNIQUE INDEX `Login_UNIQUE` (`Login` ASC),

 INDEX `fk_usuario_persona1_idx` (`idpersona` ASC),

 INDEX `fk_usuario_Establecimiento1_idx` (`idEstablecimiento` ASC),

 CONSTRAINT `fk_usuario_Establecimiento1`

 FOREIGN KEY (`idEstablecimiento`)

 REFERENCES `dbmyburguer`.`establecimiento` (`idEstablecimiento`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_usuario_persona1`

 FOREIGN KEY (`idpersona`)

 REFERENCES `dbmyburguer`.`persona` (`idpersona`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 12

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`cliente`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`cliente` (

 `idCliente` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombres` VARCHAR(100) NULL DEFAULT NULL,

 `Nit` VARCHAR(45) NULL DEFAULT NULL,

 `Telefono` VARCHAR(45) NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `idUsuario` INT(11) NOT NULL,

 PRIMARY KEY (`idCliente`),

 INDEX `fk_Cliente_usuario1_idx` (`idUsuario` ASC),

 CONSTRAINT `fk_Cliente_usuario1`

 FOREIGN KEY (`idUsuario`)

 REFERENCES `dbmyburguer`.`usuario` (`idUsuario`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 5

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`combo`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`combo` (

 `idCombo` INT(11) NOT NULL AUTO_INCREMENT,

 `Descripcion` VARCHAR(200) NOT NULL,

 `Vigente` TINYINT(1) NULL DEFAULT NULL,

 `Fecha` DATE NULL DEFAULT NULL,

 PRIMARY KEY (`idCombo`),

 UNIQUE INDEX `Descripcion_UNIQUE` (`Descripcion` ASC))

ENGINE = InnoDB

AUTO_INCREMENT = 12

197

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`descuento`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`descuento` (

 `idDescuento` INT(11) NOT NULL AUTO_INCREMENT,

 `idCombo` INT(11) NOT NULL,

 `descuento` DECIMAL(14,2) NOT NULL,

 `estado` TINYINT(1) NOT NULL DEFAULT '1',

 PRIMARY KEY (`idDescuento`),

 INDEX `fk_Descuento_Combo1_idx` (`idCombo` ASC),

 CONSTRAINT `fk_Descuento_Combo1`

 FOREIGN KEY (`idCombo`)

 REFERENCES `dbmyburguer`.`combo` (`idCombo`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 24

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`empleado`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`empleado` (

 `idEmpleado` INT(11) NOT NULL AUTO_INCREMENT,

 `FechaRegistro` DATE NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `idUsuario` INT(11) NOT NULL,

 PRIMARY KEY (`idEmpleado`),

 INDEX `fk_Empleado_usuario1_idx` (`idUsuario` ASC),

 CONSTRAINT `fk_Empleado_usuario1`

 FOREIGN KEY (`idUsuario`)

 REFERENCES `dbmyburguer`.`usuario` (`idUsuario`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 13

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`estado`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`estado` (

 `idestado` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombre` VARCHAR(45) NOT NULL,

 PRIMARY KEY (`idestado`))

ENGINE = InnoDB

AUTO_INCREMENT = 7

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`pedido`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`pedido` (

 `idpedido` INT(11) NOT NULL AUTO_INCREMENT,

198

 `Codigo` VARCHAR(45) NOT NULL,

 `Fecha` DATE NOT NULL,

 `HoraReservada` TIME NULL DEFAULT NULL,

 `FechaValida` DATE NULL DEFAULT NULL,

 `HoraValida` TIME NULL DEFAULT NULL,

 `NroPedido` VARCHAR(45) NULL DEFAULT NULL,

 `HoraEntregada` TIME NULL DEFAULT NULL,

 `Llevar` TINYINT(1) NULL DEFAULT NULL,

 `idCliente` INT(11) NOT NULL,

 `idEstado` INT(11) NOT NULL,

 `idEmpleado` INT(11) NULL DEFAULT NULL,

 `hora_ordenar` TIME NULL DEFAULT NULL,

 `montoReserva` DECIMAL(14,2) NULL DEFAULT NULL,

 PRIMARY KEY (`idpedido`),

 INDEX `fk_Pedido_Cliente1_idx` (`idCliente` ASC),

 INDEX `fk_Pedido_Estado1_idx` (`idEstado` ASC),

 INDEX `fk_Pedido_empleado_idx` (`idEmpleado` ASC),

 CONSTRAINT `fk_Pedido_Cliente1`

 FOREIGN KEY (`idCliente`)

 REFERENCES `dbmyburguer`.`cliente` (`idCliente`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_Pedido_empleado1`

 FOREIGN KEY (`idEmpleado`)

 REFERENCES `dbmyburguer`.`empleado` (`idEmpleado`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_Pedido_estado1`

 FOREIGN KEY (`idEstado`)

 REFERENCES `dbmyburguer`.`estado` (`idestado`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 72

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`tipo_doc`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`tipo_doc` (

 `idtipo_doc` INT(11) NOT NULL AUTO_INCREMENT,

 `Detalle` VARCHAR(45) NULL DEFAULT NULL,

 PRIMARY KEY (`idtipo_doc`))

ENGINE = InnoDB

AUTO_INCREMENT = 2

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`documento`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`documento` (

 `idDocumento` INT(11) NOT NULL AUTO_INCREMENT,

 `Fecha` DATE NOT NULL,

 `Monto` DECIMAL(14,2) NOT NULL,

 `Detalle` VARCHAR(45) NOT NULL,

 `Nombre` VARCHAR(45) NOT NULL,

 `CI` VARCHAR(45) NOT NULL,

 `idCliente` INT(11) NOT NULL,

199

 `idtipo_doc` INT(11) NOT NULL,

 `idPedido` INT(11) NOT NULL,

 PRIMARY KEY (`idDocumento`),

 INDEX `fk_Documento_Cliente1_idx` (`idCliente` ASC),

 INDEX `fk_Documento_tipo_doc1_idx` (`idtipo_doc` ASC),

 INDEX `fk_Documento_pedido1_idx` (`idPedido` ASC),

 CONSTRAINT `fk_Documento_Cliente1`

 FOREIGN KEY (`idCliente`)

 REFERENCES `dbmyburguer`.`cliente` (`idCliente`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_Documento_pedido1`

 FOREIGN KEY (`idPedido`)

 REFERENCES `dbmyburguer`.`pedido` (`idpedido`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_Documento_tipo_doc1`

 FOREIGN KEY (`idtipo_doc`)

 REFERENCES `dbmyburguer`.`tipo_doc` (`idtipo_doc`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 43

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`producto`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`producto` (

 `idProducto` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombre` VARCHAR(45) NOT NULL,

 `Descripcion` VARCHAR(250) NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `Envase` VARCHAR(45) NOT NULL,

 PRIMARY KEY (`idProducto`),

 UNIQUE INDEX `Nombre_UNIQUE` (`Nombre` ASC))

ENGINE = InnoDB

AUTO_INCREMENT = 32

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`item`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`item` (

 `idItem` INT(11) NOT NULL AUTO_INCREMENT,

 `Fecha` DATE NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT NULL,

 `idProducto` INT(11) NOT NULL,

 `idCombo` INT(11) NULL DEFAULT NULL,

 PRIMARY KEY (`idItem`),

 INDEX `fk_item_Producto1_idx` (`idProducto` ASC),

 INDEX `fk_item_Combo1_idx` (`idCombo` ASC),

 CONSTRAINT `fk_item_Combo1`

 FOREIGN KEY (`idCombo`)

 REFERENCES `dbmyburguer`.`combo` (`idCombo`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_item_Producto1`

200

 FOREIGN KEY (`idProducto`)

 REFERENCES `dbmyburguer`.`producto` (`idProducto`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 195

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`det_documento`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`det_documento` (

 `monto` DECIMAL(14,2) NOT NULL,

 `descuento` DECIMAL(14,2) NULL DEFAULT NULL,

 `cantidad` INT(10) NOT NULL,

 `subTotal` DECIMAL(14,2) NOT NULL,

 `idDocumento` INT(11) NOT NULL,

 `idItem` INT(11) NOT NULL,

 `idx` INT(11) NULL DEFAULT NULL,

 INDEX `fk_det_Documento_documento1_idx` (`idDocumento` ASC),

 INDEX `fk_det_Documento_item1_idx` (`idItem` ASC),

 CONSTRAINT `fk_det_Documento_documento1`

 FOREIGN KEY (`idDocumento`)

 REFERENCES `dbmyburguer`.`documento` (`idDocumento`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_det_Documento_item1`

 FOREIGN KEY (`idItem`)

 REFERENCES `dbmyburguer`.`item` (`idItem`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`det_pedido`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`det_pedido` (

 `idPedido` INT(11) NOT NULL,

 `iditem` INT(11) NOT NULL,

 `Cantidad` INT(10) NOT NULL,

 `Precio` DECIMAL(14,2) NOT NULL,

 `Estado` TINYINT(1) NOT NULL DEFAULT '1',

 `Descuento` VARCHAR(45) NOT NULL,

 `Idx` INT(11) NOT NULL,

 INDEX `fk_det_pedido_pedido1_idx` (`idPedido` ASC),

 INDEX `fk_det_pedido_item1_idx` (`iditem` ASC),

 CONSTRAINT `fk_det_pedido_item1`

 FOREIGN KEY (`iditem`)

 REFERENCES `dbmyburguer`.`item` (`idItem`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_det_pedido_Pedido1`

 FOREIGN KEY (`idPedido`)

 REFERENCES `dbmyburguer`.`pedido` (`idpedido`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

201

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`grupom`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`grupom` (

 `idGrupoM` INT(11) NOT NULL AUTO_INCREMENT,

 `Detalle` VARCHAR(45) NOT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 PRIMARY KEY (`idGrupoM`),

 UNIQUE INDEX `Detalle_UNIQUE` (`Detalle` ASC))

ENGINE = InnoDB

AUTO_INCREMENT = 14

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`dgrupom`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`dgrupom` (

 `estado` TINYINT(1) NULL DEFAULT NULL,

 `idGrupoM` INT(11) NOT NULL,

 `idProducto` INT(11) NOT NULL,

 INDEX `fk_DGrupoM_GrupoM1_idx` (`idGrupoM` ASC),

 INDEX `fk_DGrupoM_Producto1_idx` (`idProducto` ASC),

 CONSTRAINT `fk_DGrupoM_GrupoM1`

 FOREIGN KEY (`idGrupoM`)

 REFERENCES `dbmyburguer`.`grupom` (`idGrupoM`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_DGrupoM_Producto1`

 FOREIGN KEY (`idProducto`)

 REFERENCES `dbmyburguer`.`producto` (`idProducto`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`imagen`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`imagen` (

 `idimagen` INT(11) NOT NULL AUTO_INCREMENT,

 `Titulo` VARCHAR(45) NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT NULL,

 `Foto` MEDIUMBLOB NULL DEFAULT NULL,

 `Fecha` DATE NULL DEFAULT NULL,

 PRIMARY KEY (`idimagen`))

ENGINE = InnoDB

AUTO_INCREMENT = 61

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`imagencombo`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`imagencombo` (

 `Fecha` DATE NULL DEFAULT NULL,

202

 `Estado` TINYINT(1) NULL DEFAULT NULL,

 `idimagen` INT(11) NOT NULL,

 `idCombo` INT(11) NOT NULL,

 INDEX `fk_imagenItem_imagen1_idx` (`idimagen` ASC),

 INDEX `fk_imagenItem_Combo1_idx` (`idCombo` ASC),

 CONSTRAINT `fk_imagenItem_Combo1`

 FOREIGN KEY (`idCombo`)

 REFERENCES `dbmyburguer`.`combo` (`idCombo`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_imagenItem_imagen1`

 FOREIGN KEY (`idimagen`)

 REFERENCES `dbmyburguer`.`imagen` (`idimagen`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`imagenproducto`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`imagenproducto` (

 `Fecha` DATE NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT NULL,

 `idimagen` INT(11) NOT NULL,

 `idProducto` INT(11) NOT NULL,

 INDEX `fk_imagenProducto_imagen1_idx` (`idimagen` ASC),

 INDEX `fk_imagenProducto_Producto1_idx` (`idProducto` ASC),

 CONSTRAINT `fk_imagenProducto_imagen1`

 FOREIGN KEY (`idimagen`)

 REFERENCES `dbmyburguer`.`imagen` (`idimagen`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_imagenProducto_Producto1`

 FOREIGN KEY (`idProducto`)

 REFERENCES `dbmyburguer`.`producto` (`idProducto`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`logoestablecimiento`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`logoestablecimiento` (

 `Fecha` DATE NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT NULL,

 `idimagen` INT(11) NOT NULL,

 `idEstablecimiento` INT(11) NOT NULL,

 INDEX `fk_logoEstablecimiento_imagen1_idx` (`idimagen` ASC),

 INDEX `fk_logoEstablecimiento_Establecimiento1_idx` (`idEstablecimiento`

ASC),

 CONSTRAINT `fk_logoEstablecimiento_Establecimiento1`

 FOREIGN KEY (`idEstablecimiento`)

 REFERENCES `dbmyburguer`.`establecimiento` (`idEstablecimiento`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_logoEstablecimiento_imagen1`

203

 FOREIGN KEY (`idimagen`)

 REFERENCES `dbmyburguer`.`imagen` (`idimagen`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`menu_sistema`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`menu_sistema` (

 `idmenu` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombre` VARCHAR(45) NOT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `Logo` VARCHAR(45) NULL DEFAULT NULL,

 `Link` VARCHAR(100) NULL DEFAULT NULL,

 `MenuPadre` INT(11) NULL DEFAULT NULL,

 PRIMARY KEY (`idmenu`),

 INDEX `fk_menu_sistema_menu_sistema1_idx` (`MenuPadre` ASC),

 CONSTRAINT `fk_menu_sistema_menu_sistema1`

 FOREIGN KEY (`MenuPadre`)

 REFERENCES `dbmyburguer`.`menu_sistema` (`idmenu`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 19

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`rol`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`rol` (

 `idRol` INT(11) NOT NULL AUTO_INCREMENT,

 `Nombre` VARCHAR(45) NOT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 PRIMARY KEY (`idRol`),

 UNIQUE INDEX `Nombre_UNIQUE` (`Nombre` ASC))

ENGINE = InnoDB

AUTO_INCREMENT = 6

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`permisos`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`permisos` (

 `asignado` TINYINT(1) NULL DEFAULT NULL,

 `idRol` INT(11) NOT NULL,

 `idUsuario` INT(11) NOT NULL,

 `idmenu` INT(11) NOT NULL,

 INDEX `fk_permisos_rol1_idx` (`idRol` ASC),

 INDEX `fk_permisos_usuario1_idx` (`idUsuario` ASC),

 INDEX `fk_permisos_menu_sistema1_idx` (`idmenu` ASC),

 CONSTRAINT `fk_permisos_menu_sistema1`

 FOREIGN KEY (`idmenu`)

 REFERENCES `dbmyburguer`.`menu_sistema` (`idmenu`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

204

 CONSTRAINT `fk_permisos_rol1`

 FOREIGN KEY (`idRol`)

 REFERENCES `dbmyburguer`.`rol` (`idRol`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `fk_permisos_usuario1`

 FOREIGN KEY (`idUsuario`)

 REFERENCES `dbmyburguer`.`usuario` (`idUsuario`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8;

-- ---

-- Table `dbmyburguer`.`precio`

-- ---

CREATE TABLE IF NOT EXISTS `dbmyburguer`.`precio` (

 `idPrecio` INT(11) NOT NULL AUTO_INCREMENT,

 `Monto` DECIMAL(14,2) NULL DEFAULT NULL,

 `Fecha` DATE NULL DEFAULT NULL,

 `Estado` TINYINT(1) NULL DEFAULT '1',

 `idProducto` INT(11) NOT NULL,

 PRIMARY KEY (`idPrecio`),

 INDEX `fk_Precio_Producto1_idx` (`idProducto` ASC),

 CONSTRAINT `fk_Precio_Producto1`

 FOREIGN KEY (`idProducto`)

 REFERENCES `dbmyburguer`.`producto` (`idProducto`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB

AUTO_INCREMENT = 38

DEFAULT CHARACTER SET = utf8;

USE `dbmyburguer` ;

-- ---

-- procedure DesActivarEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `DesActivarEstablecimiento`(in

est boolean, in ide int(11))

BEGIN

 update Establecimiento set Estado=est where idestablecimiento = ide;

END$$

DELIMITER ;

-- ---

-- procedure actualizarDescuento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `actualizarDescuento`(in idc

int(11), in des decimal(14,2))

BEGIN

 update descuento set estado=false

205

 where idcombo=idc;

 insert into descuento(idCombo, descuento)

 values (idc, des);

END$$

DELIMITER ;

-- ---

-- procedure actualizarPortalReservas

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `actualizarPortalReservas`(in

est boolean, in horaI time, in horaF time, in horaO varchar(2), in mensaje

varchar(300))

BEGIN

 UPDATE menu_sistema

 SET

 Estado = est

 WHERE idMenu = 5;

 UPDATE establecimiento

 SET HoraInicio = horaI, HoraFin = horaF, HoraOrdenar = horaO,

MensajeEfectivizacion = mensaje

 WHERE idEstablecimiento = 2;

END$$

DELIMITER ;

-- ---

-- procedure asignarIntercambiables

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `asignarIntercambiables`(in idg

int(11), in idp int(11))

BEGIN

 update dgrupom set estado=true where idgrupom=idg and idproducto=idp;

END$$

DELIMITER ;

-- ---

-- procedure asignarIntercambiablesFalse

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `asignarIntercambiablesFalse`(in

idg int(11))

BEGIN

 update dgrupom set estado=false where idgrupom=idg;

END$$

DELIMITER ;

206

-- ---

-- procedure asignarPermisos

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `asignarPermisos`(in idm

int(11), in idr int(11), in idu int(11), in asg boolean)

BEGIN

 insert into permisos (idmenu, idRol, idUsuario, asignado) values(idm,

idr, idu, asg);

END$$

DELIMITER ;

-- ---

-- procedure borratemporal

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `borratemporal`()

BEGIN

 drop temporary table tablatemporal;

END$$

DELIMITER ;

-- ---

-- procedure buscarCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarCombo`(in des

varchar(200))

BEGIN

 select Descripcion from combo where Descripcion=des;

END$$

DELIMITER ;

-- ---

-- procedure buscarGrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarGrupoM`(in det

varchar(45))

BEGIN

 select detalle from grupom where detalle=det;

END$$

DELIMITER ;

-- ---

-- procedure buscarNitEstablecimiento

-- ---

207

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarNitEstablecimiento`(in ni

varchar(45))

BEGIN

 SELECT Nit FROM Establecimiento WHERE Nit = ni;

END$$

DELIMITER ;

-- ---

-- procedure buscarNombreEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarNombreEstablecimiento`(in

nom varchar(45))

BEGIN

 SELECT Nombre FROM Establecimiento WHERE Nombre = nom;

END$$

DELIMITER ;

-- ---

-- procedure buscarPersonaCI

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarPersonaCI`(in c

varchar(15))

BEGIN

 SELECT ci FROM persona WHERE ci = c;

END$$

DELIMITER ;

-- ---

-- procedure buscarProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarProducto`(in nom

varchar(45))

BEGIN

 select Nombre from producto where Nombre=nom;

END$$

DELIMITER ;

-- ---

-- procedure buscarRol

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarRol`(in nom varchar(45))

BEGIN

208

 select * from rol where Nombre = nom;

END$$

DELIMITER ;

-- ---

-- procedure buscarUsuarioLogin

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `buscarUsuarioLogin`(in log

varchar(45))

BEGIN

 SELECT Login FROM usuario WHERE Login = log;

END$$

DELIMITER ;

-- ---

-- procedure cambiarContraseña

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `cambiarContraseña`(in cl

varchar(45), in idu int(11))

BEGIN

 update usuario set Clave=cl WHERE idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure cambiarEstadoPedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `cambiarEstadoPedido`(in idp

int(11), in ide int(11))

BEGIN

 UPDATE pedido

 SET

 idEstado = ide

 WHERE idpedido = idp;

END$$

DELIMITER ;

-- ---

-- procedure cantidadProductosRangoFechaAnio

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE

`cantidadProductosRangoFechaAnio`(in FechaInicio varchar(45), in FechaFinal

varchar(45), in nombreEstado varchar(45))

BEGIN

209

select year(p.fecha)as 'Año',pr.idproducto,pr.Nombre,sum(dp.Cantidad) as

'Cantidad'

from pedido p

left join det_pedido dp on dp.idPedido=p.idpedido and estado=1

left join item i on i.idItem=dp.iditem

left join producto pr on pr.idProducto=i.idProducto

where p.idestado=(select idestado from estado where Nombre=nombreEstado)

and (convert(p.Fecha,date) between convert(FechaInicio,date) AND

convert(FechaFinal,date))

and not isnull(pr.idProducto)

group by year(p.fecha),pr.idProducto;

END$$

DELIMITER ;

-- ---

-- procedure cantidadProductosRangoFechaMes

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE

`cantidadProductosRangoFechaMes`(in FechaInicio varchar(45), in FechaFinal

varchar(45), in nombreEstado varchar(45))

BEGIN

select year(p.fecha)as 'Año',monthname(p.fecha) as 'mes'

,pr.idproducto,pr.Nombre,sum(dp.Cantidad) as 'Cantidad'

from pedido p

left join det_pedido dp on dp.idPedido=p.idpedido and estado=1

left join item i on i.idItem=dp.iditem

left join producto pr on pr.idProducto=i.idProducto

where p.idestado=(select idestado from estado where Nombre=nombreEstado)

and (convert(p.Fecha,date) between convert(FechaInicio,date) AND

convert(FechaFinal,date))

and not isnull(pr.idProducto)

group by monthname(p.fecha),pr.idProducto;

END$$

DELIMITER ;

-- ---

-- procedure cantidadProductosRangoFechaSemana

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE

`cantidadProductosRangoFechaSemana`(in FechaInicio varchar(45), in

FechaFinal varchar(45), in nombreEstado varchar(45))

BEGIN

select year(p.fecha)as 'Año',monthname(p.fecha) as 'mes' ,week(p.fecha) as

'Semana',pr.idproducto,pr.Nombre,sum(dp.Cantidad) as 'Cantidad'

from pedido p

left join det_pedido dp on dp.idPedido=p.idpedido and estado=1

left join item i on i.idItem=dp.iditem

left join producto pr on pr.idProducto=i.idProducto

where p.idestado=(select idestado from estado where Nombre=nombreEstado)

and (convert(p.Fecha,date) between convert(FechaInicio,date) AND

convert(FechaFinal,date))

210

and not isnull(pr.idProducto)

group by week(p.fecha),pr.idProducto;

END$$

DELIMITER ;

-- ---

-- procedure createmporal

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `createmporal`()

BEGIN

 create temporary table tablatemporal

 (`idproducto` INT NOT NULL,

 `descripcion` VARCHAR(200) NULL,

 `precio` DECIMAL(14,4) NULL,

 PRIMARY KEY (`idproducto`));

END$$

DELIMITER ;

-- ---

-- procedure eliminarCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarCombo`(in vig boolean,

in idc int(11))

BEGIN

 update combo set Vigente=vig WHERE idCombo=idc;

 SET @fecha = Date(NOW());

 select max(Fecha) into @fecha from item where idCombo=idc;

 update item set Estado=vig WHERE idCombo=idc and Fecha=@fecha;

END$$

DELIMITER ;

-- ---

-- procedure eliminarGrupoMod

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarGrupoMod`(in est

boolean,in idg int(11))

BEGIN

 update grupom set Estado=est WHERE idgrupom=idg;

END$$

DELIMITER ;

-- ---

-- procedure eliminarPermiso

-- ---

DELIMITER $$

211

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarPermiso`(in idr

int(11))

BEGIN

 DELETE FROM permisos WHERE idRol = idr and idUsuario =-1;

END$$

DELIMITER ;

-- ---

-- procedure eliminarPermisoUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarPermisoUsuario`(in idu

int(11))

BEGIN

 DELETE FROM permisos where idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure eliminarPersona

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarPersona`(in est

boolean, in idp int(11))

BEGIN

 update persona set Estado=est WHERE idPersona=idp;

END$$

DELIMITER ;

-- ---

-- procedure eliminarProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarProducto`(in est

boolean, in idp int(11))

BEGIN

 update producto set Estado=est WHERE idProducto=idp;

 update item set Estado=est WHERE idProducto=idp;

END$$

DELIMITER ;

-- ---

-- procedure eliminarProductosCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarProductosCombo`(in idc

int(11))

212

BEGIN

 SET @fecha = Date(NOW());

 select distinct Fecha into @fecha from item where idCombo=idc and

Estado=true;

 update item set Estado=false where idCombo=idc and Fecha=@fecha;

END$$

DELIMITER ;

-- ---

-- procedure eliminarUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `eliminarUsuario`(in est

boolean, in idu int(11))

BEGIN

 update usuario set Estado=est WHERE idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure estadoEntregarPedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `estadoEntregarPedido`(in idp

int(11))

BEGIN

 UPDATE pedido

 SET idEstado = 5, HoraEntregada = curtime()

 WHERE idpedido = idp;

END$$

DELIMITER ;

-- ---

-- procedure getClientePedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getClientePedido`(in idp

int(11))

BEGIN

 select c.nombres as cliente, c.nit

 from pedido p

 left join cliente c on c.idCliente=p.idCliente

 where p.idpedido = idp;

END$$

DELIMITER ;

-- ---

-- procedure getClienteUsuario

-- ---

213

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getClienteUsuario`(in idu

int(11))

BEGIN

 select idCliente

 from cliente

 where idUsuario=idu and estado=true;

END$$

DELIMITER ;

-- ---

-- procedure getCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getCombo`(in idc int(11))

BEGIN

 SELECT c.idCombo, c.Descripcion, c.Vigente, c.Fecha, img.Titulo,

img.Foto, d.descuento

 from combo c

 left join imagencombo imc on c.idCombo = imc.idCombo and imc.estado =

true

 left join imagen img on imc.idimagen = img.idimagen

 left join descuento d on c.idcombo=d.idcombo and d.estado=true

 where c.idCombo=idc;

END$$

DELIMITER ;

-- ---

-- procedure getDatosPersonaUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDatosPersonaUsuario`(in

idusuario int(11))

BEGIN

 select p.idPersona, p.Nombres, p.ApPaterno, p.ApMaterno, p.Telefonos,

p.CI, p.LugarNacimiento, p.Email, p.Direccion, p.Estado, p.FechaRegistro,

p.FechaNacimiento from persona p inner join usuario u on u.idPersona =

p.idPersona where u.idUsuario = idusuario;

END$$

DELIMITER ;

-- ---

-- procedure getDescuentoCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDescuentoCombo`(in idc

int(11))

BEGIN

 SELECT c.idCombo, d.descuento

214

 from combo c

 left join descuento d on c.idcombo=d.idcombo and d.estado=true

 where c.idCombo=idc;

END$$

DELIMITER ;

-- ---

-- procedure getDetDocumento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDetDocumento`(in idd

int(11))

BEGIN

 select

 dpd.iditem,

 dpd.idx,

 ifnull(concat('',cmb.Descripcion,''),concat('',pr.Descripcio

n,'')) as 'Combo',

 -- '' as 'Detalle',

 max(dpd.Cantidad) as 'Cantidad' ,

 sum(dpd.monto) as 'monto',

 max(dpd.Descuento) as 'descuento',

 max(dpd.subTotal) as 'subTotal'

 from documento p

 left join det_documento dpd on dpd.idDocumento=p.idDocumento

 left join item i on i.idItem=dpd.iditem

 left join combo cmb on cmb.idCombo=i.idCombo

 left join producto pr on pr.idProducto=i.idProducto

 where p.idDocumento=idd

 group by dpd.Idx

 union

 select

 dpd.iditem,

 dpd.idx,

 -- '',

 concat(' * ',pr.Descripcion),

 0,

 0,

 0,

 0

 from documento p

 left join det_documento dpd on dpd.idDocumento=p.idDocumento

 left join item i on i.idItem=dpd.iditem

 left join combo cmb on cmb.idCombo=i.idCombo

 left join producto pr on pr.idProducto=i.idProducto

 where p.idDocumento=idd and not isnull(cmb.Descripcion)

 order by idx,Combo desc;

END$$

DELIMITER ;

-- ---

-- procedure getDetPedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

215

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDetPedido`(in idp int(11))

BEGIN

 select i.iditem, p.Nombre, c.Descripcion, dp.Cantidad, dp.Descuento,

dp.Precio, dp.idx

 from det_pedido dp

 left join item i on i.idItem = dp.iditem

 left join producto p on i.idProducto = p.idProducto

 left join combo c on c.idCombo = i.idCombo

 where dp.idPedido = idp and dp.Estado = true;

END$$

DELIMITER ;

-- ---

-- procedure getDetallePedidoCompleto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDetallePedidoCompleto`(in

idp int(11))

BEGIN

select

 dpd.iditem,

 dpd.idx,

 ifnull(concat('',cmb.Descripcion,''),concat('',pr.Descripcio

n,'')) as 'Combo',

 -- '' as 'Detalle',

 max(dpd.Cantidad) as 'Cantidad' ,

 sum(dpd.Precio) as 'precio',

 max(dpd.Descuento) as 'descuento',

 (sum(Precio)*max(Cantidad))-(max(Descuento)*max(Cantidad)) as

'precioSubTotal'

from pedido p

left join det_pedido dpd on dpd.idPedido=p.idpedido

left join item i on i.idItem=dpd.iditem

left join combo cmb on cmb.idCombo=i.idCombo

left join producto pr on pr.idProducto=i.idProducto

where p.idpedido=idp

group by dpd.Idx

union

select

 dpd.iditem,

 dpd.idx,

 -- '',

 concat(' * ',pr.Descripcion),

 0,

 dpd.precio,

 0,

 0

from pedido p

left join det_pedido dpd on dpd.idPedido=p.idpedido

left join item i on i.idItem=dpd.iditem

left join combo cmb on cmb.idCombo=i.idCombo

left join producto pr on pr.idProducto=i.idProducto

where p.idpedido=idp and not isnull(cmb.Descripcion)

order by idx,Combo desc;

END$$

DELIMITER ;

216

-- ---

-- procedure getDgrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getDgrupoM`(in idp int(11))

BEGIN

 select estado, idGrupom, idProducto from dgrupom where idProducto =

idp;

END$$

DELIMITER ;

-- ---

-- procedure getEmpleadoUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEmpleadoUsuario`(in idu

int(11))

BEGIN

 select idEmpleado

 from empleado

 where idUsuario=idu and estado=true;

END$$

DELIMITER ;

-- ---

-- procedure getEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstablecimiento`(in ide

int(11))

BEGIN

 Select e.idEstablecimiento, e.Nit, e.Nombre, e.Telefono, e.Direccion,

e.Email, e.Estado, im.titulo, im.foto

 from establecimiento e

 left join logoEstablecimiento le on e.idEstablecimiento =

le.idEstablecimiento

 left join imagen im on le.idimagen = im.idimagen

 where le.estado=true and e.idEstablecimiento=ide;

END$$

DELIMITER ;

-- ---

-- procedure getEstablecimientos

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstablecimientos`()

BEGIN

217

 Select e.idEstablecimiento, e.Nit, e.Nombre, e.Telefono, e.Email,

e.Estado, im.titulo, im.foto

 from establecimiento e

 left join logoEstablecimiento le on e.idEstablecimiento =

le.idEstablecimiento

 left join imagen im on le.idimagen = im.idimagen

 where le.estado=true;

END$$

DELIMITER ;

-- ---

-- procedure getEstadoCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstadoCombo`(in idc int(11))

BEGIN

 select idCombo, Vigente

 from combo

 where idCombo = idc;

END$$

DELIMITER ;

-- ---

-- procedure getEstadoEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstadoEstablecimiento`(in

ide int(11))

BEGIN

 select estado

 from establecimiento

 where idEstablecimiento=ide;

END$$

DELIMITER ;

-- ---

-- procedure getEstadoGrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstadoGrupoM`(in idg

int(11))

BEGIN

 select idGrupoM, Detalle, Estado

 from grupoM

 where idGrupoM = idg;

END$$

DELIMITER ;

-- ---

-- procedure getEstadoPortalPedidos

218

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstadoPortalPedidos`()

BEGIN

 select idMenu, estado

 from menu_sistema

 where idMenu=5;

END$$

DELIMITER ;

-- ---

-- procedure getEstadoProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getEstadoProducto`(in idp

int(11))

BEGIN

 select idProducto, Estado

 from producto

 where idProducto = idp;

END$$

DELIMITER ;

-- ---

-- procedure getGrupoMdeCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getGrupoMdeCombo`(in idc

int(11))

BEGIN

 Select max(gm.Detalle) as 'Detalle', dg.idGrupoM

 from item it

 left join Producto p on it.idProducto=p.idProducto

 left join dgrupom dg on p.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 where it.idCombo=idc and it.Estado=true and dg.estado=true

 group by Detalle;

END$$

DELIMITER ;

-- ---

-- procedure getGruposProdCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getGruposProdCombo`()

BEGIN

 select distinct gm.Detalle as descripcion, i.idCombo

 from item i

 left join producto p on p.idProducto=i.idProducto

219

 left join dgrupom dg on p.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 where i.idCombo is not null and i.Estado=true;

END$$

DELIMITER ;

-- ---

-- procedure getHorarios

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getHorarios`()

BEGIN

 select idEstablecimiento, horaInicio, horaFin, horaOrdenar,

mensajeEfectivizacion

 from establecimiento

 where idestablecimiento = 2;

END$$

DELIMITER ;

-- ---

-- procedure getIdProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getIdProducto`(in nom

varchar(45))

BEGIN

 select idProducto from producto where Nombre = nom;

END$$

DELIMITER ;

-- ---

-- procedure getIdRol

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getIdRol`(in nom varchar(45))

BEGIN

 SELECT idRol from rol where nombre=nom;

END$$

DELIMITER ;

-- ---

-- procedure getIdUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getIdUsuario`(in log

varchar(45))

BEGIN

 select idUsuario from usuario where Login=log;

220

END$$

DELIMITER ;

-- ---

-- procedure getImagenCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getImagenCombo`(in idc int(11))

BEGIN

 SELECT c.idCombo, c.Descripcion, img.Titulo, img.Foto, d.descuento

 from combo c

 left join imagencombo imc on c.idCombo = imc.idCombo and imc.estado =

true

 left join imagen img on imc.idimagen = img.idimagen

 left join descuento d on c.idcombo=d.idcombo and d.estado=true

 where c.idCombo=idc;

END$$

DELIMITER ;

-- ---

-- procedure getMenuHijosPermisos2

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getMenuHijosPermisos2`(in

pidusuario int(11))

BEGIN

 Set @P=3;

 select distinct ifnull(idrol,3) into @P from permisos where

idusuario=pidusuario;

 if @P=3 then

 begin

 Select ms.* from menu_sistema ms inner join permisos pr

on pr.idUsuario = -1 and pr.idrol=@P and pr.asignado=true where

ms.idmenu=pr.idmenu and not MenuPadre is null;

 end;

 else

 begin

 Select ms.* from menu_sistema ms inner join permisos pr

on pr.idUsuario = pidusuario and pr.asignado=true where ms.idmenu=pr.idmenu

and not MenuPadre is null;

 end;

 end if;

END$$

DELIMITER ;

-- ---

-- procedure getMenuPermisos2

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getMenuPermisos2`(in pidusuario

int(11))

221

begin

 Set @P=3;

 select distinct ifnull(idrol,3) into @P from permisos where

idusuario=pidusuario;

 Set @usuario= if(@P=3,-1,pidusuario);

-- Consulta para obtener el menu padre para un Usuario específico

 select ms.*

 from rol rl

 left join permisos pr on pr.idUsuario=@usuario and

pr.idRol=rl.idRol

 left join menu_sistema ms on ms.idmenu=pr.idmenu and

isnull(ms.MenuPadre) and ms.Estado=true

 where rl.idRol=@P and not isnull(ms.idmenu);

END$$

DELIMITER ;

-- ---

-- procedure getNombreNitDoc

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getNombreNitDoc`(in iddoc

int(11))

BEGIN

 select nombre, ci, fecha, monto

 from documento

 where iddocumento = iddoc;

END$$

DELIMITER ;

-- ---

-- procedure getPedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPedido`(in idp int(11))

BEGIN

 select p.idPedido,p.Codigo, p.montoReserva,

p.Fecha,p.HoraReservada,p.FechaValida, p.HoraValida,

p.NroPedido,p.HoraEntregada, if(p.Llevar,'Si','Mesa') as Llevar,

c.idcliente, c.nombres as cliente, c.nit, c.telefono, e.idestado, e.nombre

as estado, concat(per.nombres,' ',per.appaterno) as empleado

 from pedido p

 left join cliente c on c.idCliente=p.idCliente

 left join estado e on e.idestado=p.idEstado

 left join empleado em on p.idempleado=em.idempleado

 left join usuario u on em.idusuario=u.idusuario

 left join persona per on per.idpersona=u.idpersona

 where p.idpedido = idp;

END$$

DELIMITER ;

-- ---

222

-- procedure getPedidoMontoReserva

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPedidoMontoReserva`(in idp

int(11))

BEGIN

 select p.idPedido, p.NroPedido, p.montoReserva

 from pedido p

 where p.idpedido=idp;

END$$

DELIMITER ;

-- ---

-- procedure getPermisosDeRol

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPermisosDeRol`(in idr

int(11))

BEGIN

 select idmenu, idRol, idUsuario, asignado from permisos where

idRol=idr and idUsuario = -1 and asignado=true;

END$$

DELIMITER ;

-- ---

-- procedure getPermisosPorUsuario2

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPermisosPorUsuario2`(in idu

int(11))

BEGIN

 set @pp=3;

 select distinct ifnull(idRol,3) into @pp from permisos where idUsuario

= idu;

 set @idUs=idu;

 if @pp=3 then

 begin

 set @idUs=-1;

 end;

 end if;

 Select m.idmenu, m.nombre,

 @pp as idRol,

 @idUs as idusuario,

 ifnull(p.asignado,false) as asignado

 from menu_sistema m

 left join permisos p on p.idmenu=m.idmenu and p.idUsuario=@idUs

and idRol=@pp

 order by m.idmenu;

END$$

DELIMITER ;

223

-- ---

-- procedure getPermisosRol2

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPermisosRol2`(in idr

int(11))

BEGIN

 set @idRs=idr;

 Select distinct m.idmenu,

concat(if(isnull(m.MenuPadre),'',concat((select mm.nombre from menu_sistema

mm where mm.idmenu=m.MenuPadre),' -->')),m.nombre) as nombre,

 @idRs as idRol,

 -1 as idUsuario,

 ifnull(p.asignado,false) as asignado

 from menu_sistema m

 left join permisos p on p.idmenu=m.idmenu and p.idRol=@idRs and

p.idUsuario=-1

 order by m.idmenu;

END$$

DELIMITER ;

-- ---

-- procedure getPersona

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPersona`(in id int(11))

BEGIN

 Select idPersona, Nombres, ApPaterno, ApMaterno, Telefonos, CI,

LugarNacimiento, Email, Direccion, Estado, FechaRegistro, FechaNacimiento

from persona where idPersona = id;

END$$

DELIMITER ;

-- ---

-- procedure getPrecioCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPrecioCombo`(in idc int(11))

BEGIN

 select sum(p.monto) as monto

 from item i

 left join precio p on p.iditem=i.idItem

 where i.estado is true and i.idCombo = idc;

END$$

DELIMITER ;

-- ---

-- procedure getPrecioProducto

-- ---

DELIMITER $$

224

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getPrecioProducto`(in idp

int(11))

BEGIN

 select distinct pr.Monto

 from producto p

 left join precio pr on p.idProducto = pr.idProducto and pr.estado =

true

 where p.idProducto = idp;

END$$

DELIMITER ;

-- ---

-- procedure getProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProducto`(in idp int(11))

BEGIN

 select distinct gm.Detalle, gm.idGrupoM, it.iditem, p.idProducto,

p.Nombre, p.Descripcion, p.Estado, p.Envase, pr.Monto, im.titulo, im.foto

 from producto p

 left join item it on it.idProducto = p.idProducto and it.idCombo is

null

 left join precio pr on p.idProducto = pr.idProducto and pr.estado =

true

 left join imagenproducto imp on p.idProducto = imp.idProducto and

imp.estado = true

 left join imagen im on imp.idimagen = im.idimagen

 left join dgrupom dgm on dgm.idProducto = p.idProducto

 left join grupom gm on gm.idGrupoM = dgm.idGrupoM

 where p.idProducto = idp;

END$$

DELIMITER ;

-- ---

-- procedure getProductoCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProductoCombo`(in idp

int(11), in idc int(11))

BEGIN

 select distinct it.iditem, p.idProducto, p.Nombre, p.Descripcion,

p.Estado, p.Envase, pr.Monto

 from producto p

 left join item it on it.idProducto = p.idProducto

 left join precio pr on p.idProducto = pr.idProducto and pr.estado =

true

 where it.idProducto = idp and it.idcombo = idc and it.estado = true;

END$$

DELIMITER ;

-- ---

-- procedure getProductosCombo

225

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProductosCombo`(in idc

int(11))

BEGIN

 Select p.Nombre, p.Descripcion, pr.Monto, gm.Detalle, dg.estado as

asignado, it.Estado, it.Fecha, im.Foto, im.Titulo

 from item it

 left join Producto p on it.idProducto=p.idProducto

 left join dgrupom dg on p.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on p.idProducto=imp.idProducto and

imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 left join precio pr on p.idProducto=pr.idProducto and pr.Estado=true

 where it.idCombo=idc and it.Estado=true;

END$$

DELIMITER ;

-- ---

-- procedure getProductosFalseCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProductosFalseCombo`(in idc

int(11))

BEGIN

 select distinct PR.IDPRODUCTO, Pr.Nombre, pr.descripcion, pr.envase,

pre.Monto,gm.idGrupoM, gm.Detalle, im.Foto, im.Titulo

 from producto PR

 left join item it on PR.idproducto=it.idproducto

 left join precio pre on pre.idProducto = PR.idproducto and

pre.estado=true

 left join dgrupom dg on pr.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on pr.idProducto=imp.idProducto

and imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 where it.idcombo=idc and pr.Estado=true and dg.estado=false

 order by 3 desc, 6 asc;

END$$

DELIMITER ;

-- ---

-- procedure getProductosGrupo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProductosGrupo`(in idg

int(11))

BEGIN

 select idProducto

 from dgrupom

 where idgrupom = idg;

226

END$$

DELIMITER ;

-- ---

-- procedure getProductosTrueCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getProductosTrueCombo`(in idc

int(11))

BEGIN

 select distinct PR.IDPRODUCTO, Pr.Nombre, pr.descripcion, pr.envase,

pre.Monto,gm.idGrupoM, gm.Detalle, im.Foto, im.Titulo

 from producto PR

 left join item it on PR.idproducto=it.idproducto

 left join precio pre on pre.idProducto = PR.idproducto and

pre.estado=true

 left join dgrupom dg on pr.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on pr.idProducto=imp.idProducto

and imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 where it.idcombo=idc and pr.Estado=true and dg.estado=true

 order by 3 desc, 6 asc;

END$$

DELIMITER ;

-- ---

-- procedure getRol

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getRol`(in idr int(11))

BEGIN

 SELECT * from rol where idRol = idr;

END$$

DELIMITER ;

-- ---

-- procedure getUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getUsuario`(in id int(11))

BEGIN

 Select idUsuario, Login, Clave, idPersona,

 Estado, FechaRegistro, TituloFoto, Imagen,

idEstablecimiento

 from usuario

 where idUsuario = id;

END$$

DELIMITER ;

227

-- ---

-- procedure getUsuariosPersona

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getUsuariosPersona`(in idp

int(11))

BEGIN

 select idUsuario, Estado from usuario where idPersona=idp;

END$$

DELIMITER ;

-- ---

-- procedure getUsuariosRolPersona2

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `getUsuariosRolPersona2`(in idp

int(11))

BEGIN

 select distinct ifnull(r.Nombre,"Cliente") as Nombre,

 u.idUsuario, u.Login, u.Clave, u.idPersona,

 u.Estado, u.FechaRegistro, u.TituloFoto, u.Imagen,

e.Nombre as Establecimiento

 from usuario u

 left join permisos p ON p.idUsuario=u.idUsuario

 left join Rol r on r.idRol = p.idRol

 left join Establecimiento e on u.idEstablecimiento =

e.idEstablecimiento

 where u.idpersona=idp

 order by idUsuario;

END$$

DELIMITER ;

-- ---

-- procedure inactivarCliente

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `inactivarCliente`(in idu

int(11))

BEGIN

 update cliente set Estado=false WHERE idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure inactivarEmpleado

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `inactivarEmpleado`(in idu

int(11))

228

BEGIN

 update empleado set Estado=false WHERE idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure ingresoTotalRango

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `ingresoTotalRango`(in FInicio

Date, in FFinal Date)

BEGIN

select sum(Monto) as 'Ingresos' from documento where Fecha Between FInicio

and FFinal;

END$$

DELIMITER ;

-- ---

-- function insertarCarrito

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` FUNCTION `insertarCarrito`(fecha

date,horaReservada time,fechaValida date,horaValida time,idCliente

int(11),idestado int(11)) RETURNS int(11)

BEGIN

 Set @idc=0;

 SET @fecha = Date(NOW());

 INSERT INTO `dbmyburguer`.`carrito`

 (`Fecha`,`HoraReservada`,`FechaValida`,`HoraValida`,`idCliente`,`idest

ado`)

 VALUES

 (fecha,horaReservada,fechaValida,horaValida,idCliente,idestado);

 Select max(idreserva) into @idc from carrito;

RETURN @idc;

END$$

DELIMITER ;

-- ---

-- procedure insertarCliente

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarCliente`(in nom

varchar(100), in ni varchar(45), in tel varchar(45), in est boolean, in idu

int(11))

BEGIN

 insert into cliente (Nombres, Nit, Telefono, Estado, idUsuario) values

(nom , ni, tel, est, idu);

229

END$$

DELIMITER ;

-- ---

-- function insertarCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` FUNCTION `insertarCombo`(vDescripcion

Varchar(200), vFoto mediumblob, vtitulo varchar(45)) RETURNS int(11)

BEGIN

 Set @idc=0;

 SET @fecha = Date(NOW());

 INSERT INTO combo (Descripcion, Vigente, Fecha)

 VALUES (vDescripcion, true, @fecha);

 Select max(idCombo) into @idc from combo;

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (vtitulo, true, vFoto, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO imagencombo (Fecha, Estado, idcombo, idimagen)

 VALUES(@fecha,true,@idc,@idImagen);

RETURN @idc;

END$$

DELIMITER ;

-- ---

-- procedure insertarComboItem

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarComboItem`(in idp

int(11), in idc int(11))

BEGIN

SET @fecha = Date(NOW());

 INSERT INTO item (Fecha, Estado, idProducto, idCombo)

 VALUES (@fecha, true, idp, idc);

END$$

DELIMITER ;

-- ---

-- procedure insertarDescuento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarDescuento`(in idc

int(11), in des decimal(14,2))

230

BEGIN

 insert into descuento(idCombo, descuento)

 values (idc, des);

END$$

DELIMITER ;

-- ---

-- procedure insertarDetDocumento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarDetDocumento`(in monto

decimal(14,2),in descuento decimal(14,2),in cantidad int(10),in subTotal

decimal(14,2),in iddoc int(11),in idi int(11), in ix int(11))

BEGIN

 INSERT INTO

det_documento(monto,descuento,cantidad,subTotal,idDocumento,idItem,idx)

 VALUES(monto,descuento,cantidad,subTotal,iddoc,idi,ix);

END$$

DELIMITER ;

-- ---

-- procedure insertarDet_Pedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarDet_Pedido`(in idp

int(11), in cant int(2), in idi int(11), in precio decimal(14,2), in des

decimal(14,2), in ix int(11))

BEGIN

 INSERT INTO

det_pedido(idpedido,Cantidad,Precio,Estado,iditem,descuento,idx)

 VALUES(idp,cant,precio,true,idi,des,ix);

END$$

DELIMITER ;

-- ---

-- procedure insertarDgrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarDgrupoM`(in est

boolean, in idgm int(11), in idp int(11))

BEGIN

 insert into dgrupom (estado, idGrupoM, idProducto) values (est, idgm,

idp);

END$$

DELIMITER ;

-- ---

-- function insertarDocumento

-- ---

231

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` FUNCTION `insertarDocumento`(monto

decimal(14,2),det varchar(45),nombre varchar(45),ci varchar(45),idcli

int(11),idtd int(11),idp int(11)) RETURNS int(11)

BEGIN

 Set @iddoc=0;

 INSERT INTO

documento(Fecha,Monto,Detalle,Nombre,CI,idCliente,idtipo_doc,idPedido)

 VALUES(curdate(),monto,det,nombre,ci,idcli,idtd,idp);

 Select max(idDocumento) into @iddoc from documento;

RETURN @iddoc;

END$$

DELIMITER ;

-- ---

-- procedure insertarEmpleado

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarEmpleado`(in fechaR

date, in est boolean, in idu int(11))

BEGIN

 insert into empleado (FechaRegistro, Estado, idUsuario) values

(fechaR, est, idu);

END$$

DELIMITER ;

-- ---

-- procedure insertarEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarEstablecimiento`(in ni

varchar(10), nom varchar(45), dir varchar(45), tel varchar(45), emai

varchar(45), in vFoto mediumblob, in vtitulo varchar(45))

BEGIN

 SET @ide = 0;

 SET @fecha = Date(NOW());

 insert into Establecimiento (Nit, Nombre, Direccion, Telefono, Email,

Estado)

 values (ni, nom, dir, tel, emai, true);

 Select max(idEstablecimiento) into @ide from Establecimiento;

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (vtitulo, true, vFoto, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO logoEstablecimiento (Fecha, Estado, idEstablecimiento,

idimagen)

 VALUES(@fecha,true,@ide,@idImagen);

232

END$$

DELIMITER ;

-- ---

-- procedure insertarGrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarGrupoM`(in det

varchar(45), est boolean)

BEGIN

 insert into grupom (detalle, estado) values(det, est);

END$$

DELIMITER ;

-- ---

-- procedure insertarItemXGrupoCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarItemXGrupoCombo`(in idg

int(11), in idc int(11))

BEGIN

SET @fecha = Date(NOW());

 Insert into Item (Fecha, Estado, idProducto, idCombo)

 select @fecha,true, p.idProducto, idc

 from producto p

 left join dgrupom dg on p.idProducto=dg.idProducto and

dg.estado=true

 where dg.idGrupoM=idg;

END$$

-- ---

-- function insertarPedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` FUNCTION `insertarPedido`(hv time, lle

boolean, idcli int(11), ides int(11), idem int(11), montoRe float, tprepara

time) RETURNS int(11)

BEGIN

 set @idp=0;

 set @nropedido =0;

 select count(nropedido)+1 into @nropedido from pedido where

Fecha=curdate();

 set @cod=concat(idcli,'-',hv,'-',@nropedido);

 INSERT INTO pedido(Codigo, Fecha, HoraReservada, FechaValida,

HoraValida,NroPedido,

HoraEntregada,Llevar,idcliente,idEmpleado,idestado,hora_ordenar,montoReserva

)

 VALUES(@cod,curdate(),curtime(),curdate(),hv,@nropedido,null,lle,idcli

,idem,ides,tprepara,montoRe);

233

 Select max(idpedido) into @idp from pedido;

RETURN @idp;

END$$

DELIMITER ;

-- ---

-- procedure insertarPersona

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarPersona`(in nombre

varchar(25), paterno varchar(25), materno varchar(25), telefono

varchar(100), ci varchar(15), lugar varchar(45), email varchar(45),

direccion varchar(100), estado boolean, nac date, reg date)

BEGIN

 insert into persona (Nombres, ApPaterno, ApMaterno, Telefonos, CI,

LugarNacimiento, Email, Direccion, Estado, FechaNacimiento, FechaRegistro)

values(nombre, paterno, materno, telefono, ci, lugar, email, direccion,

estado, nac, reg);

END$$

DELIMITER ;

-- ---

-- procedure insertarProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarProducto`(in vnombre

varchar(45), in vDescripcion Varchar(250), in vEnvase Varchar(45), in vMonto

decimal(14,2), in vFoto mediumblob, in vtitulo varchar(45))

BEGIN

 SET @idp = 0;

 SET @fecha = Date(NOW());

 INSERT INTO producto (Nombre, Descripcion, Estado, Envase)

 VALUES (vNombre, vDescripcion, true, vEnvase);

 Select max(idProducto) into @idp from producto;

 INSERT INTO item (Fecha, Estado, idProducto, idCombo)

 VALUES (@fecha, true, @idp, null);

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (vtitulo, true, vFoto, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO imagenproducto (Fecha, Estado, idproducto, idimagen)

 VALUES(@fecha, true, @idp, @idImagen);

 INSERT INTO precio (Monto, Fecha, Estado, idProducto)

 VALUES(vMonto, @fecha, true, @idp);

END$$

DELIMITER ;

234

-- ---

-- procedure insertarRol

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarRol`(in nom

varchar(45), in est boolean)

BEGIN

 insert into rol (Nombre, Estado) values (nom, est);

END$$

DELIMITER ;

-- ---

-- procedure insertarUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertarUsuario`(in log

varchar(45), cl varchar(45), in idp int(11), in est boolean, in reg

varchar(45), in tfo varchar(45), in img mediumblob, in ide int(11))

BEGIN

 insert into usuario (Login, Clave, idPersona, Estado, FechaRegistro,

TituloFoto, Imagen, idEstablecimiento) values (log, cl, idp, est, reg, tfo,

img, ide);

END$$

DELIMITER ;

-- ---

-- procedure insertatemporal

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `insertatemporal`(in idp int, in

descrip varchar(200), in prec decimal(14,4))

BEGIN

 insert into tablatemporal(idproducto,descripcion,precio) values

(idp,descrip,prec);

END$$

DELIMITER ;

-- ---

-- procedure listaProductosComboFalse

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listaProductosComboFalse`(in

idc int(11))

BEGIN

 select distinct PR.IDPRODUCTO, Pr.Nombre,

if(isnull(it.idProducto),false,true) as Asignado,

 pre.Monto,gm.idGrupoM, max(gm.Detalle) as 'Detalle', im.Foto,

im.Titulo, dg.estado

235

 from producto PR

 left join item it on PR.idproducto=it.idproducto and

it.idcombo=idc

 left join precio pre on pre.idProducto = PR.idproducto and

pre.estado=true

 left join dgrupom dg on pr.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on pr.idProducto=imp.idProducto

and imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 where pr.Estado=true and dg.estado=false

 Group by Detalle

 order by 3, 6 asc;

END$$

DELIMITER ;

-- ---

-- procedure listaProductosComboTrue

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listaProductosComboTrue`(in idc

int(11))

begin

 select distinct PR.IDPRODUCTO, Pr.Nombre,

if(isnull(it.idProducto),false,true) as Asignado,

 pre.Monto,gm.idGrupoM,gm.Detalle, im.Foto, im.Titulo, dg.estado

 from producto PR

 left join item it on PR.idproducto=it.idproducto and

it.idcombo=idc and it.Estado=true

 left join precio pre on pre.idProducto = PR.idproducto and

pre.estado=true

 left join dgrupom dg on pr.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on pr.idProducto=imp.idProducto

and imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 where pr.Estado=true and dg.estado=true

 order by 6;

end$$

DELIMITER ;

-- ---

-- procedure listarClientes

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarClientes`()

BEGIN

 select idCliente, nombres, nit, telefono, estado, idusuario

 from cliente

 where estado=true;

END$$

DELIMITER ;

236

-- ---

-- procedure listarCombos

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarCombos`()

BEGIN

 select c.idCombo, c.Descripcion, c.Vigente, c.Fecha, im.Foto,

im.Titulo

 from combo c

 left join imagencombo imc on c.idCombo = imc.idCombo and imc.Estado =

true

 left join imagen im on imc.idimagen = im.idimagen;

END$$

DELIMITER ;

-- ---

-- procedure listarCombosDisponibles

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarCombosDisponibles`()

BEGIN

 select c.idCombo, c.Descripcion, c.Vigente, c.Fecha, im.Foto,

im.Titulo

 from combo c

 left join imagencombo imc on c.idCombo = imc.idCombo and imc.Estado =

true

 left join imagen im on imc.idimagen = im.idimagen

 where c.vigente=true;

END$$

DELIMITER ;

-- ---

-- procedure listarGrupoMdeProductosTrue

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarGrupoMdeProductosTrue`()

BEGIN

 select distinct g.idGrupoM, g.Detalle

 from grupom g

 left join dgrupom dg on g.idGrupoM=dg.idGrupoM

 where dg.estado=true

 order by detalle;

END$$

DELIMITER ;

-- ---

-- procedure listarGrupoMod

-- ---

DELIMITER $$

USE `dbmyburguer`$$

237

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarGrupoMod`()

BEGIN

 select idGrupoM, Detalle, Estado

 from grupom

 order by detalle;

END$$

DELIMITER ;

-- ---

-- procedure listarGruposDisponibles

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarGruposDisponibles`()

BEGIN

 select idGrupoM, Detalle, Estado

 from grupom

 where estado = true

 order by detalle;

END$$

DELIMITER ;

-- ---

-- procedure listarMenuSistema

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarMenuSistema`()

BEGIN

 select * from menu_sistema;

END$$

DELIMITER ;

-- ---

-- procedure listarPedidosCaAdm

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarPedidosCaAdm`()

BEGIN

 select distinct p.idPedido, p.montoReserva,p.Codigo,

p.Fecha,p.HoraReservada,p.FechaValida, p.HoraValida,

p.NroPedido,p.HoraEntregada, p.Llevar, c.idcliente, c.nombres as cliente,

c.telefono, e.idestado, e.nombre as estado, concat(per.nombres,'

',per.appaterno) as empleado

 from pedido p

 left join cliente c on c.idCliente=p.idCliente

 left join estado e on e.idestado=p.idEstado

 left join empleado em on p.idempleado=em.idempleado

 left join usuario u on em.idusuario=u.idusuario

 left join permisos pe on pe.idUsuario=u.idUsuario

 left join Rol r on r.idRol = pe.idRol

 left join persona per on per.idpersona=u.idpersona

 where p.FechaValida = curdate() and e.idestado not like 6

238

 order by 14 asc, 7 asc, 8 asc;

END$$

DELIMITER ;

-- ---

-- procedure listarPedidosChMe

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarPedidosChMe`(in ides

int(11))

BEGIN

 select p.idPedido,p.Codigo, p.Fecha,p.HoraReservada,p.FechaValida,

p.HoraValida, p.NroPedido,p.HoraEntregada, p.Llevar, c.idcliente, c.nombres

as cliente, e.idestado, e.nombre as estado, concat(per.nombres,'

',per.appaterno) as empleado

 from pedido p

 left join cliente c on c.idCliente=p.idCliente

 left join estado e on e.idestado=p.idEstado

 left join empleado em on p.idempleado=em.idempleado

 left join usuario u on em.idusuario=u.idusuario

 left join persona per on per.idpersona=u.idpersona

 where p.FechaValida = curdate() and p.idestado=ides

 order by 7 asc, 12 asc;

END$$

DELIMITER ;

-- ---

-- procedure listarPedidosCliente

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarPedidosCliente`(in idcli

int(11))

BEGIN

 select p.idPedido, p.montoReserva,p.Codigo,

p.Fecha,p.HoraReservada,p.FechaValida, p.HoraValida, p.Llevar, e.idestado,

e.nombre as estado

 from pedido p

 left join cliente c on c.idCliente=p.idCliente

 left join estado e on e.idestado=p.idEstado

 left join usuario u on c.idusuario=u.idusuario

 where p.FechaValida = curdate() and p.idestado=1 and c.idCliente=idcli

 order by 7 asc, 9 asc;

END$$

-- ---

-- procedure listarPersonas

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarPersonas`()

BEGIN

 Select * from persona where not idPersona = 0 order by idpersona desc;

239

END$$

DELIMITER ;

-- ---

-- procedure listarProductos

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarProductos`()

BEGIN

 select p.idProducto, p.Nombre, p.Descripcion, p.Estado, p.Envase,

im.titulo, im.foto

 from producto p

 left join imagenproducto imp on p.idProducto = imp.idProducto

 left join imagen im on imp.idimagen = im.idimagen

 where imp.estado=true

 order by p.idProducto desc;

END$$

DELIMITER ;

-- ---

-- procedure listarProductosDisponibles

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarProductosDisponibles`()

BEGIN

 select p.idProducto, p.Nombre, p.Descripcion, p.Envase, pr.Monto,

gm.Detalle, im.titulo, im.foto

 from producto p

 left join precio pr on p.idProducto=pr.idProducto and pr.Estado=true

 left join dgrupom dg on pr.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on p.idProducto = imp.idProducto

 left join imagen im on imp.idimagen = im.idimagen

 where p.estado=true and imp.estado=true

 order by 6,2;

END$$

DELIMITER ;

-- ---

-- procedure listarProductosGeneralFalse

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarProductosGeneralFalse`()

BEGIN

 Select p.idProducto, p.Nombre, pr.Monto, gm.Detalle, im.Foto,

im.Titulo, dg.estado

 from producto p

 left join dgrupom dg on p.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on p.idProducto=imp.idProducto and

imp.Estado=true

240

 left join imagen im on imp.idimagen=im.idimagen

 left join precio pr on p.idProducto=pr.idProducto and

pr.Estado=true

 where p.Estado=true and dg.estado=false

 order by Detalle;

END$$

DELIMITER ;

-- ---

-- procedure listarProductosGeneralTrue

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarProductosGeneralTrue`()

begin

 Select p.idProducto, p.Nombre, pr.Monto, gm.Detalle, im.Foto,

im.Titulo, dg.estado

 from producto p

 left join dgrupom dg on p.idProducto=dg.idProducto

 left join grupom gm on dg.idGrupoM=gm.idGrupoM

 left join imagenproducto imp on p.idProducto=imp.idProducto and

imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 left join precio pr on p.idProducto=pr.idProducto and

pr.Estado=true

 where p.Estado=true and dg.estado=true

 order by Detalle;

END$$

DELIMITER ;

-- ---

-- procedure listarProductosXgrupo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarProductosXgrupo`(in idg

int(11))

BEGIN

 select p.idProducto,p.Nombre,dg.Estado, im.Foto, im.Titulo, pr.monto

 from producto p

 left join dgrupom dg on dg.idProducto=p.idProducto

 left join imagenproducto imp on p.idProducto=imp.idProducto and

imp.Estado=true

 left join imagen im on imp.idimagen=im.idimagen

 left join precio pr on p.idProducto=pr.idProducto and

pr.Estado=true

 where dg.idGrupoM=idg;

END$$

DELIMITER ;

-- ---

-- procedure listarRoles

-- ---

DELIMITER $$

241

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarRoles`()

BEGIN

 Select idRol, Nombre, Estado from rol;

END$$

DELIMITER ;

-- ---

-- procedure listarRolesActivos

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarRolesActivos`()

BEGIN

 Select * from rol where Estado=true;

END$$

DELIMITER ;

-- ---

-- procedure listarTipoDoc

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `listarTipoDoc`()

BEGIN

 select idtipo_doc, detalle from tipo_doc;

END$$

-- ---

-- procedure logueo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `logueo`(in log varchar(45),in

cl varchar(45))

begin

 SELECT idUsuario, Login, Clave, idPersona, Estado, FechaRegistro,

TituloFoto, Imagen, idEstablecimiento FROM usuario where Login = log and

Clave = cl and Estado = true;

END$$

DELIMITER ;

-- ---

-- procedure modificarDgrupoM

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarDgrupoM`(in idp

int(11), in idgm int(11))

BEGIN

 update dgrupom set idGrupoM = idgm where idProducto = idp;

END$$

242

DELIMITER ;

-- ---

-- procedure modificarEstablecimiento

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarEstablecimiento`(in

ide int(11), nom varchar(45), dir varchar(45), tel varchar(45), emai

varchar(45), in vFoto mediumblob, in vtitulo varchar(45))

BEGIN

 update Establecimiento set Nombre=nom, Direccion=dir, Telefono=tel,

Email=emai

 where idestablecimiento=ide;

 update logoEstablecimiento set Estado = false

 where idestablecimiento = ide;

 SET @fecha = Date(NOW());

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (vtitulo, true, vFoto, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO logoEstablecimiento (Fecha, Estado, idestablecimiento,

idimagen)

 VALUES(@fecha,true,ide,@idImagen);

END$$

DELIMITER ;

-- ---

-- procedure modificarImagenCombo

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarImagenCombo`(in idc

int(11), in tit varchar(45), img mediumblob)

BEGIN

 SET @fecha = Date(NOW());

 update imagencombo set Estado = false

 where idCombo = idc;

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (tit, true, img, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO imagencombo (Fecha, Estado, idCombo, idimagen)

 VALUES(@fecha,true,idc,@idImagen);

END$$

DELIMITER ;

243

-- ---

-- procedure modificarPersona

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarPersona`(in nom

varchar(25), pat varchar(25), mat varchar(25), telefono varchar(100), ema

varchar(45), dir varchar(100), in idp int(11))

BEGIN

 update persona set Nombres=nom, ApPaterno=pat, ApMaterno=mat,

Telefonos=telefono, Email=ema, Direccion=dir WHERE idPersona=idp;

END$$

DELIMITER ;

-- ---

-- procedure modificarProducto

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarProducto`(in idp

int(11), in dsc varchar(250), in env varchar(45), in mon decimal(14,2), in

tit varchar(45), img mediumblob)

BEGIN

 update producto set Descripcion = dsc, Envase = env

 where idProducto = idp;

 update precio set Estado = false

 where idProducto = idp;

 SET @fecha = Date(NOW());

 INSERT INTO precio (Monto, Fecha, Estado, idProducto)

 VALUES(mon, @fecha, true, idp);

 update imagenproducto set Estado = false

 where idProducto = idp;

 INSERT INTO imagen (Titulo, Estado, Foto, Fecha)

 VALUES (tit, true, img, @fecha);

 SET @idImagen=0;

 Select max(idimagen) into @idImagen from imagen;

 INSERT INTO imagenproducto (Fecha, Estado, idproducto, idimagen)

 VALUES(@fecha,true,idp,@idImagen);

END$$

DELIMITER ;

-- ---

-- procedure modificarUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

244

CREATE DEFINER=`root`@`localhost` PROCEDURE `modificarUsuario`(in fo

varchar(45), img mediumblob, in idu int(11))

BEGIN

 update usuario set TituloFoto=fo, Imagen=img WHERE idUsuario=idu;

END$$

DELIMITER ;

-- ---

-- procedure obtenerUsuario

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `obtenerUsuario`(in idu int(11))

BEGIN

 select distinct ifnull(r.Nombre,"Cliente") as Nombre,

 u.idUsuario, u.Login, u.Clave, u.idPersona,

 u.Estado, u.FechaRegistro, u.TituloFoto, u.Imagen,

e.Nombre as Establecimiento

 from usuario u

 left join permisos p ON p.idUsuario=u.idUsuario

 left join Rol r on r.idRol = p.idRol

 left join Establecimiento e on u.idEstablecimiento =

e.idEstablecimiento

 where u.idUsuario=idu

 order by idUsuario;

END$$

DELIMITER ;

-- ---

-- procedure verDetallePedido

-- ---

DELIMITER $$

USE `dbmyburguer`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `verDetallePedido`(in idp

int(11))

BEGIN

 select detpe.idpedido, detpe.idItem, p.nombre, detpe.Cantidad,

detpe.precio, detpe.estado, im.Titulo, im.Foto

 from det_pedido detpe

 left join item i on i.idItem=detpe.iditem

 left join producto p on i.idProducto=p.idProducto

 left join imagenproducto imp on p.idProducto =

imp.idProducto

 left join imagen im on imp.idimagen = im.idimagen

 where imp.estado=true and detpe.idpedido=idp;

END$$

DELIMITER ;

-- ---

-- procedure verificarMenuPermiso

-- ---

DELIMITER $$

USE `dbmyburguer`$$

245

CREATE DEFINER=`root`@`localhost` PROCEDURE `verificarMenuPermiso`(in idm

int(11), in idu int(11))

BEGIN

 Set @P=3;

 select distinct ifnull(idrol,3) into @P from permisos where

idusuario=idu;

 if @P=3 then

 begin

 select p.*

 from permisos p

 left join menu_sistema ms on p.idmenu = ms.idmenu

 where p.idmenu=idm and p.idUsuario=0 and p.asignado=true

and ms.Estado = true;

 end;

 else

 begin

 select p.*

 from permisos p

 left join menu_sistema ms on p.idmenu = ms.idmenu

 where p.idmenu=idm and p.idUsuario=idu and

p.asignado=true and ms.Estado = true;

 end;

 end if;

END$$

DELIMITER ;

SET SQL_MODE=@OLD_SQL_MODE;

SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;

SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

246

4.11.7 Diccionario de Datos

Tabla: persona

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idPersona Entero 11 si ID de persona

Nombres Texto 45 Nombres de la persona.

ApPaterno Texto 45 Apellido paterno de la

persona

ApMaterno Texto 45 Apellido materno de la

persona

FechaNacimient

o

Date Fecha de nacimiento de la

persona

Telefonos Texto 45 Teléfonos de la persona

Email Texto 45 Correo electrónico de la

persona

Estado Boolean

o

1 Estado de la persona en el

sistema

CI Texto 45 Cedula de Identidad de la

persona

Direccion Texto 100 Dirección de residencia de la

persona

LugarNacimient

o

Texto 45 Lugar de Nacimiento de la

persona

FechaRegistro Date Fecha de Registro de la

persona en el sistema

Tabla 55. persona

247

Tabla: establecimiento

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idEstablecimient

o

Entero 11 si ID de Establecimiento

Nombre Texto 45 Nombre del establecimiento.

Telefono Texto 45 Teléfono del establecimiento

Email Texto 45 Correo electrónico del

establecimiento

Estado Boolean

o

1 Estado del establecimiento

en el sistema

Nit Texto 45 Nit del establecimiento

Direccion Texto 100 Dirección del

establecimiento

Tabla 56. establecimiento

Tabla: usuario

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idUsuario Entero 11 si ID de usuario

Login Texto 45
Login o usuario de la persona

para acceder al sistema

Clave Texto 45
Contraseña del usuario para

acceder al sistema

Estado
Boolean

o
1

Estado del usuario en el

sistema

TituloFoto Texto 45
Nombre de la fotografía del

usuario

Imagen Blob
Imagen almacenada en byte[]

del usuario

idPersona Entero 11 Si ID de Persona

idEstablecimient

o
Entero 11 Si ID de Establecimiento

248

FechaRegistro Date
Fecha de Registro del usuario

en el sistema

Tabla 57. usuario

Tabla: rol

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idRol Entero 11 si ID del rol

Nombre Texto 45 Nombre del rol

Estado
Boolean

o
1 Estado del rol en el sistema

Tabla 58. rol

Tabla: menú_sistema

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idmenu Entero 11 si ID del menú del sistema

Nombre Texto 45
Nombre del menú del

sistema

Estado
Boolean

o
1

Estado del usuario en el

sistema

Logo Texto 45 Nombre del icono del menú

Link Texto 45 Link del menú

MenuPadre Entero 11 Si
ID padre del menú del

sistema

Tabla 59. menu_sistema

Tabla: permisos

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idmenu Entero 11 si ID del menú del sistema

idUsuario Entero 11 si ID del usuario

asignado
Boolean

o
1

Permiso asignado o

denegado al usuario

idRol Entero 11 si ID del rol

Tabla 60. permisos

249

Tabla: producto

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idProducto Entero 11 si ID del producto

Nombre Texto 45 Nombre del producto

Estado
Boolean

o
1

Estado del producto en el

sistema

Descripcion Texto 250
Descripción de las

características del producto.

Envase Texto 45 Envase

Tabla 61. producto

Tabla: grupom

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idGrupoM Entero 11 si ID del grupo intercambiable

Estado
Boolean

o
1

Estado del grupo en el

sistema

Detalle Texto 45
Detalle del grupo

intercambiable.

Tabla 62. grupom

Tabla: dgrupom

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idGrupoM Entero 11 si
ID del detalle del grupo

intercambiable.

Estado
Boolean

o
1

Estado del detalle del grupo

en el sistema

idProducto Entero 11 si
ID del detalle del grupo

intercambiable.

Tabla 63. grupom

250

Tabla: precio

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idPrecio Entero 11 si ID del precio

Monto Decimal 14,2 Valor del precio del producto

Estado Booleano 1
Estado de la imagen en el

sistema

idProducto Entero 11 ID del Producto

Fecha Date Fecha de registro del precio

Tabla 64. precio

Tabla: imagen

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idimagen Entero 11 si ID de la imagen

Titulo Texto 45 Titulo o nombre de la imagen

Estado
Boolean

o
1

Estado de la imagen en el

sistema

Foto Blob Imagen almacenada en byte[]

Fecha Date
Fecha de registro de la

imagen

Tabla 65. imagen

Tabla: imagenProducto

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idimagen Entero 11 si ID de la imagen del producto

Estado
Boolean

o
1

Estado de la imagen del

producto en el sistema

idProducto Entero 11 si ID del producto.

Fecha Date
Fecha de registro de la

imagen del producto

Tabla 66. imagenProducto

251

Tabla: logoEstablecimiento

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idimagen Entero 11 si
ID de la imagen del

establecimiento

Estado
Boolean

o
1

Estado de la imagen del

establecimiento en el sistema

idEstablecimient

o
Entero 11 si ID del establecimiento.

Fecha Date
Fecha de registro de la

imagen del establecimiento

Tabla 67. logoEstablecimiento

Tabla: combo

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idCombo Entero 11 si ID del combo

Fecha Date
Fecha de registro del combo

en el sistema

Vigente Boolean

o

1 Estado del combo en el

sistema

Descripcion Texto 200
Descripción o nombre del

combo

Tabla 68. combo

Tabla: imagenCombo

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idimagen Entero 11 si ID de la imagen del combo

Estado
Boolean

o
1

Estado de la imagen del

combo en el sistema

idCombo Entero 11 si ID del combo.

Fecha Date
Fecha de registro de la

imagen del combo

Tabla 69. logoCombo

252

Tabla: descuento

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idDescuento Entero 11 si ID del descuento

descuento Decimal 14,2
Valor del precio del

descuento

idCombo Entero 11 ID del Combo

Tabla 70. descuento

Tabla: item

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idItem Entero 11 si ID del ítem

Estado
Boolean

o
1 Estado del ítem en el sistema

idCombo Entero 11 si ID del combo.

Fecha Date Fecha de registro del ítem

idProducto Entero 11 si ID del producto

Tabla 71. item

Tabla: empleado

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idEmpleado Entero 11 si ID del empleado

FechaRegistro Date
Fecha de Registro del

empleado en el sistema

Estado Boolean

o

1 Estado del empleado en el

sistema

idUsuario Entero 11 si ID del usuario

Tabla 72. empleado

253

Tabla: cliente

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idCliente Entero 11 si ID del Cliente

Nombres Texto 100 Nombre del cliente.

Telefono Texto 45 Teléfono del cliente

Estado Boolean

o

1 Estado del cliente en el

sistema

Nit Texto 45 Nit del cliente

idUsuario Entero 11 si ID del usuario

Tabla 73. cliente

Tabla: estado

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idestado Entero 11 si ID del Estado del pedido

Nombre Texto 45 Nombre del estado.

Tabla 74. estado

Tabla: pedido

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idPedido Entero 11 si ID del pedido

Codigo Texto 45 Código del pedido.

HoraReservada Time Hora de reserva del pedido

FechaValida Date Fecha de entrega del pedido

HoraValida Time Hora de entrega del pedido

NroPedido Texto 45
 Nro de pedido que inicia en 1

cada día

Llevar Booleano 1

 Valor que indica si el pedido

es para llevar o consumir en

local.

idCliente Entero 11 ID del cliente

idEstado Entero 11 ID del estado del pedido

254

idEmpleado Entero 11 ID del empleado

Fecha Date
 Fecha de Registro del pedido

en el sistema

HoraEntregada Time Hora entregada del pedido

horaOrdenar Time

 Tiempo de anticipación para

cambiar el estado del pedido

de reservado a ordenado.

montoReserva Float Monto total de la reserva

Tabla 75. pedido

Tabla: det_pedido

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idPedido Entero 11 si ID del pedido

Estado Booleano 1
Estado del ítem en el pedido

registrado en el sistema

idItem Entero 11 si ID del ítem.

Cantidad Entero Cantidad de ítems.

Precio Decimal 14,2 Valor del precio del ítem.

Descuento Decimal 14,2
Valor del descuento del

combo

Tabla 76. det_pedido

Tabla: tipo_doc

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

Idtipo_doc Entero 11 si ID del tipo de documento

Detalle Texto 45 Detalle o nombre del tipo de

documento.

Tabla 77. tipo_doc

255

Tabla: documento

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idDocumento Entero 11 si ID del documento.

Codigo Texto 45 Código del pedido.

Detalle Texto 100
 Detalle o glosa del

documento.

Monto Decimal 14,2
 Valor del precio total del

pedido entregado.

Nombre Texto 100
 Nombre para el cual será

emitido el documento.

CI Texto 45

 Cedula de identidad o nit

para el cual será emitido el

documento.

idCliente Entero 11 ID del cliente

idPedido Entero 11 ID del pedido

idtipo_doc Entero 11 ID del tipo de documento

Fecha Date
 Fecha de registro del

documento

Tabla 78. documento

Tabla: det_documento

NOMBRE TIPO TAMAÑO PK FK DESCRIPCION

idDocumento Entero 11 si ID del documento

subTotal Decimal 14,2 Subtotal del ítem.

idItem Entero 11 si ID del ítem.

cantidad Entero Cantidad de ítems.

monto Decimal 14,2 Valor del precio del ítem.

descuento Decimal 14,2
Valor del descuento del

combo

Tabla 79. det_documento

256

4.12 Modelo de Despliegue

4.12.1 Diagrama de Desplazamiento

Introducción

El diagrama de despliegue es el que representa o muestra la parte física de la

arquitectura del sistema que se está modelando.

Propósito

Modelar la arquitectura del sistema.

Figura 142. Diagrama de Despliegue

 deployment Diagrama de Despliegue

Nav egador

Cliente

Serv idor MySQL

Serv idor WildFly

257

4.13 Casos de prueba del sistema

La prueba del sistema es un elemento crítico para la garantía de calidad del

sistema y representa una revisión final de las especificaciones del diseño y

codificación.

Definición:

La prueba es un proceso de ejecución de un programa con la intensión de

descubrir error.

Un buen caso de prueba es aquel que tiene una alta probabilidad de mostrar un

error no descubierto hasta entonces. Todos los productos del sistema probados

de dos formas (1) conociendo la función específica para la que fue diseñado el

producto, se puede llevar a cabo pruebas que demuestren que cada función es

completamente operativa denominada Prueba de caja negra y (2) conociendo el

funcionamiento del producto se puede realizar pruebas que todas las piezas

encajen, o sea que la especificación interna se ajuste a las especificaciones y

que todos los componentes internos se han comprobado de forma adecuada,

esta prueba se denomina a Prueba de caja Blanca.

Las pruebas de caja negra permiten descubrir de forma inmediata una clase de

errores (por ejemplo, procedimiento incorrecto de todos los datos de caracteres)

que de otro modo. La partición equivalente se dirige a la definición de casos de

prueba que descubran clases de errores, reduciendo el número total de casos de

prueba que hay que desarrollar.

4.13.1 Pruebas de caja negra:

La prueba de caja negra permite derivar conjuntos de condiciones de entrada

que ejerciten completamente todos los requerimientos funcionales de un

programa. Los errores que se pretenden detectar mediante las pruebas de caja

negra son:

 Funciones incorrecta o ausente

258

 Errores de interfaz.

 Errores en la estructura de datos

 Error de Rendimiento y error de inicialización o terminación.

Ingresar al sistema
Condiciones de

entrada

Clases válidas Entradas inválidas

Usuario 1. Cualquier caracter 2.

Longitud de Usuario 3. 7 < valor < 45 4. Valor < 7

5. Valor > 10

Contraseña 6. Cualquier caracter 7.

Longitud de Contraseña 8. 1 < valor < 45 9. En blanco

10. Valor > 45

Casos de prueba: Clase válida

Caso Login Contraseña Clases

CP1 trico*154 761sarcor. 1,3,6,8

Casos de prueba: Clases inválidas

Caso Login Contraseña Clases

CP1 9

Registrar Persona
Condiciones de

entrada

Clases válidas Entradas inválidas

Nombres 1. Letras 2. Cualquier carácter

Longitud de Nombres 3. 1 < valor < 45 4. En blanco

5. Valor > 45

Apellido Paterno 6. Letras 7. Cualquier carácter

Longitud de Paterno 8. 1 < valor < 45 9. En blanco

10. Valor > 45

Apellido Materno 11. Letras 12. En blanco

13. Valor > 45

Longitud de Materno 14. 1 < valor < 45 15. En blanco

259

16. Valor > 45

Cedula de Identidad 17. Numero 18. Cualquier caracter

Longitud de CI 19. 8 <= valor < 13 20. Valor < 8

21. Valor > 13

Telefono 22. Numero 23. Cualquier caracter

Longitud Telefono 24. 6 < valor < 9 25. En blanco

26. Valor < 7

27. Valor > 8

Barrio 28. Alfanumérico 29.

Longitud Barrio 30. 0 < valor < 45 31. En blanco

32. Valor > 45

Calle 33. Alfanumérico 34.

Longitud Calle 35. 0 < valor < 45 36. En blanco

37. Valor > 45

Número de Casa 38. Número 39. Cualquier caracter

Longitud N° Casa 40. 0 < valor < 6 41. En blanco

42. Valor > 5

eMail 43. Alfanumérico . _ - @ 44. Simbolos

Longitud eMail 45. 0 < valor < 45 46. En blanco

47. Valor > 45

Casos de prueba: Clases válidas

Caso Nombre

s

Ap.

Pater

no

Ap.

mater

no

CI Telef

ono

Barr

io

Cal

le

N° Email Clases

CP1 Marcia

Milenka

Andra

de

Llanos 7177

285

7925

4690

Avar

oa

Lit

oral

258 marcia.an

drade.llan

os@gmail

.com

1, 3, 6, 8, 11, 14,

17, 19, 22, 24, 28,

30, 33, 35, 38, 40,

43, 45

Casos de prueba: Clases inválidas

Caso Nombre

s

Ap.

Pater

no

Ap.

mater

no

CI Telefono Barrio Calle N° Email Clases

CP1 123 fasd717

7285

79fsd254

690fb*

 25<gr8- 2

260

Modificar Persona
Condiciones de

entrada

Clases válidas Entradas inválidas

Nombres 1. Letras 2. Cualquier carácter

Longitud de Nombres 3. 1 < valor < 45 4. En blanco

5. Valor > 45

Apellido Paterno 6. Letras 7. Cualquier carácter

Longitud de Paterno 8. 1 < valor < 45 9. En blanco

10. Valor > 45

Apellido Materno 11. Letras 12. En blanco

13. Valor > 45

Longitud de Materno 14. 1 < valor < 45 15. En blanco

16. Valor > 45

Telefono 17. Numero 18. Cualquier caracter

Longitud Telefono 19. 6 < valor < 9 20. En blanco

21. Valor < 7

22. Valor > 8

Dirección 23. Alfanumérico # , 24.

Longitud Dirección 25. 0 < valor < 100 26. En blanco

27. Valor > 45

eMail 28. Alfanumérico . _ - @ 29. Simbolos

Longitud eMail 30. 0 < valor < 45 31. En blanco

32. Valor > 45

Casos de prueba: Clases válidas

Caso Nombres Ap.

Pater

no

Ap.

matern

o

Telefono Barrio Email Clases

CP1 Marcia

Milenka

Andra

de

Llanos 79254690 Avaroa marcia.andra

de.llanos@g

mail.com

1, 3, 6, 8, 11, 14, 17,

19, 22, 24, 28, 30,

33, 35, 38, 40, 43, 45

Casos de prueba: Clases inválidas

Caso Nombres Ap. Paterno Ap. materno Telefono Barrio Email Clases

CP1 123 79fsd254

690fb*

 2

261

Registrar Usuario
Condiciones de

entrada

Clases válidas Entradas inválidas

Usuario 1. Cualquier caracter 2.

Longitud de Usuario 3. 7 < valor < 45 4. Valor < 7

5. Valor > 10

Contraseña 6. Cualquier carácter, tiene

que ser igual a Confirmar

Contraseña

7.

Longitud de Contraseña 8. 1 < valor < 45 9. En blanco

10. Valor > 45

Confirmar Contraseña 11. Cualquier caracter, tiene

que ser igual a Contraseña

12.

Longitud de Confirmar

Contraseña

13. 1 < valor < 45 14. En blanco

15. Valor > 45

Casos de prueba: Clase válida

Caso Login Clave Confirmar

Contraseña

Clases

CP1 trico*154 761sarcor. 761sarcor. 1,3,6,8,11,13

Casos de prueba: Clases inválidas

Caso Login Clave Confirmar

Contraseña

Clases

CP1 9

Cambiar Contraseña
Condiciones de

entrada

Clases válidas Entradas inválidas

Contraseña 1. Cualquier carácter

2. Igual a Confirmar

Contraseña

3.

4. Diferente a Confirmar

Contraseña

Longitud de Contraseña 5. 1 < valor < 45 6. En blanco

7. Valor > 45

Confirmar Contraseña 8. Cualquier carácter

9. Igual a Contraseña

10.

11. Diferente a Contraseña

262

Longitud de Confirmar

Contraseña

12. 1 < valor < 45 13. En blanco

14. Valor > 45

Casos de prueba: Clase válida

Caso Login Clave Confirmar

Contraseña

Clases

CP1 trico*154 761sarcor. 761sarcor. 1,3,6,8

Casos de prueba: Clases inválidas

Caso Login Clave Confirmar

Contraseña

Clases

CP1 9

CP2

Registrar Rol
Condiciones de

entrada

Clases válidas Entradas inválidas

Nombre 1. Letras 2. Cualquier carácter

Longitud de Nombre 3. 1 < valor < 45 4. En blanco

5. Valor > 45

Casos de prueba: Clases válidas

Caso Nombre Clases

CP1 Rol 1, 3

Casos de prueba: Clases inválidas

Caso Nombre Clases

CP1 123rol 2

CP2 4

263

Registrar Producto
Condiciones de

entrada

Clases válidas Entradas inválidas

Nombre 1. Letras 2. Cualquier carácter

Longitud de Nombres 3. 1 < valor < 45 4. En blanco

5. Valor > 45

Descripción 6. Cualquier caracter 7.

Longitud de

Descripcion

8. 0 =< valor =< 250 9. Valor > 250

Envase 10. Letras 11. Cualquier caracter

12. Valor > 45

Longitud de Envase 13. 1 < valor < 45 14. En blanco

15. Valor > 45

Precio 16. Numero decimal 17. Cualquier caracter

Longitud Precio 18. 14,2 19. En blanco

20. Valor > 14,2

Casos de prueba: Clases válidas

Caso Nombre Descripcion Envase Precio Clases

CP1 Manzana Manzana roja 1° calidad Ninguno 2.50 1, 3, 6, 8, 10, 13, 16,

18

Casos de prueba: Clases inválidas

Caso Nombre Descripcion Envase Precio Clases

CP1 6776#$%” 87652:_$;# 79fsd254690fb* 2,11,17

CP2 4,14,19

Editar Producto
Condiciones de

entrada

Clases válidas Entradas inválidas

Descripción 1. Cualquier caracter 2.

Longitud de

Descripcion

3. 0 =< valor =< 250 4. Valor > 250

264

Envase 5. Letras 6. Cualquier caracter

7. Valor > 45

Longitud de Envase 8. 1 < valor < 45 9. En blanco

10. Valor > 45

Precio 11. Numero decimal 12. Cualquier caracter

Longitud Precio 13. 14,2 14. En blanco

15. Valor > 14,2

Casos de prueba: Clases válidas

Caso Descripcion Envase Precio Clases

CP1 Manzana roja 1° calidad Ninguno 2.50 1, 3, 5, 8, 11, 13

Casos de prueba: Clases inválidas

Caso Descripcion Envase Precio Clases

CP1 87652:_$;# 79fsd254690fb* 6,12

CP2 9,15

Registrar Grupo Intercambiable
Condiciones de

entrada

Clases válidas Entradas inválidas

Detalle 1. Letras 2. Cualquier carácter

Longitud de Detalle 3. 1 < valor < 45 4. En blanco

5. Valor > 45

Casos de prueba: Clases válidas

Caso Detalle Clases

CP1 Grupo 1, 3

Casos de prueba: Clases inválidas

Caso Detalle Clases

CP1 $&”$#Grupo 2

CP2 4

265

Registrar Combo
Condiciones de

entrada

Clases válidas Entradas inválidas

Titulo 1. Cualquier caracter 2. En blanco

Longitud de Titulo 3. 0 =< valor =< 200 4. Valor > 200

Descuento 5. Numero decimal 6. Cualquier caracter

Longitud Descuento 7. 14,2 8. En blanco

9. Valor > 14,2

Casos de prueba: Clases válidas

Caso Titulo Descuento Clases

CP1 Combo 2342 =&$ 2.50 1, 3, 5, 7

Casos de prueba: Clases inválidas

Caso Titulo Descuento Clases

CP1 79fsd254690fb* 2,6

CP2 2,8

Actualizar Combo
Condiciones de

entrada

Clases válidas Entradas inválidas

Titulo 1. Cualquier caracter 2. En blanco

Longitud de Titulo 3. 0 =< valor =< 200 4. Valor > 200

Descuento 5. Numero decimal 6. Cualquier caracter

Longitud Descuento 7. 14,2 8. En blanco

9. Valor > 14,2

Casos de prueba: Clases válidas

Caso Titulo Descuento Clases

CP1 Combo 2342 =&$ 2.50 1, 3, 5, 7

Casos de prueba: Clases inválidas

266

Caso Titulo Descuento Clases

CP1 79fsd254690fb* 2,6

CP2 2,8

Conclusión de las Pruebas

Una vez realizados los casos de prueba pudimos comprobar que el sistema tenía

algunos errores como ser los datos de entrada, gracias a las pruebas pudimos eliminar

estos errores y así garantizar de calidad del sistema.

Glosario

Introducción

Este documento recoge todos y cada uno de los términos manejados a lo largo de todo

el proyecto de desarrollo de un sistema de gestión. Se trata de un diccionario informal

de datos y definiciones de la nomenclatura que se maneja, de tal modo que se crea un

estándar para todo el proyecto.

Propósito

El propósito de este glosario es definir con exactitud y sin ambigüedad la tecnología

manejada en el proyecto de desarrollo de un sistema de gestión. También sirve como

guía de consulta para la clarificación de los puntos conflictivos o poco esclarecedores

del proyecto.

Alcance

El alcance del presente documento se extiende a todos los subsistemas definidos para

la empresa.

Términos

Glosario de términos

Acceso

Ingreso al sistema por medio de un nombre de una cuenta y contraseña

267

Desconectar

 Cierra la sesión iniciada por el usuario.

Iniciar sesión

Habilitar al usuario para trabajar en Sistema, de acuerdo a los roles que

le corresponden.

Proceso

Un proceso es un orden específico de actividades de trabajo, que se

realizan en el tiempo, en lugares específicos con un principio, un fin y

entradas y salidas claramente definidas. Es decir, una estructura

cohesionada y coordinada adecuadamente para la acción

Proyecto

Un proyecto es un esfuerzo temporal comprometido para crear un

producto o servicio único. Temporal significa que tiene un inicio y fin,

y único que el servicio o producto es diferente e identificable de otros

similares.

Seguridad

Es una característica de cualquier sistema (informático o no) que nos

indica que ese sistema está libre de todo peligro, daño o riesgo, y que

es, en cierta manera, infalible.

Usabilidad

La usabilidad es el rango en el cual un producto puede ser usado por unos

usuarios específicos para alcanzar ciertas metas especificadas con efectividad,

eficiencia y satisfacción en un contexto de uso especificado.

268

4.14 Medios de Verificación del Componente I

Anexo 1

Carta de respaldo de la gerencia “My Burguer” respecto a la conformidad y

aceptación del sistema.

269

4.15 Componente II

4.15.1 Marco Teórico

4.15.2 Antecedentes

De acuerdo a la vida actual del mundo empresarial el termino capacitación y

sistemas de información están cambiando la forma de trabajo de las empresas,

los sistemas de información ayudan a acelerar procesos por lo tanto; las

organizaciones que los implantan logran ventajas competitivas al adoptarlos en

sus funciones. La capacitación se refiere a los métodos que se usan para

proporcionar a las personas dentro de la empresa las habilidades que necesitan

para realizar su trabajo, esta abarca desde pequeños cursos sobre terminología

hasta cursos que le permitan al usuario entender el funcionamiento del sistema

nuevo, ya sea teórico o a base de prácticas o mejor aún, combinando los dos.

Este es un proceso que lleva a la mejora continua y con esto a implantar nuevas

formas de trabajo, como en este caso un sistema que será automatizado viene a

agilizar los procesos y llevar a la empresa que lo adopte a generar un valor

agregado y contribuir a la mejora continua por medio de la implantación de

sistemas y capacitación a los usuarios.

El desarrollo de los cursos de capacitación es de vital importancia para dar

respuestas a las necesidades que se perciben dentro de la empresa y así

actualizar el conocimiento de las personas involucradas en la capacitación de tal

forma que se tenga un personal productivo y eficiente que responda a los

nuevos métodos de trabajo.

La capacitación en los distintos niveles constituye un beneficio en las mejores

inversiones en cuanto a los recursos humanos y será un beneficio que conduzca

a dar mayor facilidad para el usuario en tener automatizado la mayor parte de

los registros; crea una mejor organización al tener un sistema que ayudara el

trabajo que se desempeña, dándose respuestas positivas y rápidas para cualquier

petición de la empresa.

270

Puede afirmarse que la capacitación forma parte del poder aprender nuevos

conocimientos acerca de algún tema, en relación constituye y se considera

como una parte importante del desarrollo del individuo, porque permite su

inserción en la sociedad de manera más participativa mediante el conocimiento

de herramientas o medios para informarse.

La capacitación beneficiara al personal de la empresa de forma eficiente en la

toma de decisiones contribuyendo positivamente en el mejoramiento de las

aptitudes comunitarias, permitir el logro de las metas individuales progresando

en distintos campos tanto como en lo laboral como en la personal. Hoy en día

para toda empresa los recursos humanos son una parte esencial para su buen

funcionamiento ya que el personal de una organización es uno de los recursos

más importantes, que por medio de ellos se puede alcanzar los objetivos

establecidos como también se puede llegar a un mejor desarrollo de la empresa

para alcanzar un alto nivel de competitividad.

La capacitación es una herramienta fundamental en los recursos humanos que

ofrece la posibilidad de mejorar la eficiencia del trabajo dentro de la empresa,

permitiendo a su vez que la misma se adapte a las nuevas circunstancias que se

presentan tanto dentro como fuera de la empresa. Proporcionando a los

empleados la oportunidad de adquirir mayores conocimientos, de esta manera

también resulta siendo una herramienta motivadora.

La capacitación implica la aprobación de los nuevos conocimientos, carece de

profundidad desde las perspectivas del análisis de contenido y el pensamiento

crítico, porque el foco de la atención se ubica en la adquisición de habilidades y

conocimientos prácticamente mecánicos.

Todo aprendizaje requiere de estrategias que definen como un proceso de toma

de decisiones conscientes e intencionales en los cuales los capacitados eligen,

recuperar de una manera coordinada, los conocimientos que necesita para

271

completar una demanda u objetivo, dependiendo de las características de la

situación que forman parte del proceso de aprendizaje.

El auto aprendizaje es la forma de aprender principalmente por uno mismo,

buscando información, haciendo prácticas o experimentos. En cuanto al

aprendizaje colaborativo se puede decir que es un conjunto de métodos de

instrucción o entrenamiento para uso en grupos, así como de estrategias para

propiciar el desarrollo de habilidades mixtas, aprendizaje y desarrollo personal

y social. Cada miembro del grupo es responsabilidad de su propio aprendizaje,

así como el de los restantes miembros del grupo.

Con la sociabilización se pretende generar flujos de comunicación y

participación de la sociedad en el Proyecto.

De esta forma el Proyecto se fortalece y se garantiza un tiempo de vida

prolongado.

4.15.3 Introducción

Para la capacitación del personal se realizó una explicación detallada del

funcionamiento del sistema, esta se realiza junto al manual que tiene el sistema,

el manual de usuario, con lo que se resolvió las dudas en cuanto al

funcionamiento del sistema.

Con la sociabilización se llega a más clientes gracias a las publicaciones de la

presentación del sistema.

4.15.4 Objetivo General

 Dar a conocer el manejo del sistema, e incrementar conocimientos y

habilidades de las personas acerca de los conocimientos en la

actualización y conocimiento en nuestra sociedad en general.

El plan de capacitación que se presento es una estrategia efectiva basada en el

programa que se tendrá para poder realizar el proceso de aprendizaje.

272

4.15.5 Objetivos Específicos

 Lograr que en la capacitación se aprenda a trabajar con el sistema

desarrollado y de esta manera mejorar el proceso enseñanza

aprendizaje.

 Lograr que se perfeccionen el personal en el desempeño de sus

puestos tanto actuales como futuros.

 Mantener al personal permanentemente actualizados frente a los

cambios científicos y tecnológicos que se generen proporcionándoles

información sobre la aplicación de nueva tecnología.

 Lograr cambios en su comportamiento con el propósito de mejorar

las relaciones interpersonales entre todos los miembros de la

empresa.

 Hacer conocer a la Población sobre la existencia del proyecto.

 Fomentar la utilización y participación de la sociedad en el Sitio Web

diseñado.

4.15.6 Misión

El programa de capacitación tiene la misión de apoyar y dar a conocer el

funcionamiento del sistema que se desarrolló para la empresa “MyBurguer”

y la utilización efectiva en conocimiento como elemento clave del

desarrollo.

4.15.7 Metas

La meta del programa es integrar efectivamente el uso y el manejo del

sistema dentro de la empresa para que los encargados sean capaces de poder

adaptarse al manejo de toda la información procesada en el sistema.

4.15.8 Alcances

 El listado de personas participantes de la capacitación.

 Certificados otorgados al personal participante de dicha capacitación.

 Enseñarles el manejo del sistema.

273

4.15.9 Justificación de la capacitación

La capacitación se justifica plenamente por la falta de conocimiento y

experiencia en el manejo de algún sistema informático, para el proceso de

información que se manipula para la obtención de datos que se necesitan

saber, también para dar a conocer los beneficios que nos brindan los sistemas

de gestión computarizados.

4.15.10 Medios a Utilizar

Materiales de capacitación:

 Materiales impresos: guías del curso, manuales de usuario

 Diapositivas de presentación hechas en PowerPoint, televisor de la

empresa cliente.

 Otros materiales: marcadores, cuaderno, lápiz

274

4.15.11 Estructura del curso de capacitación

Fecha a

Realizar

Módulos de Aprendizaje del

Curso

Horas

C/Módulo

Nº de

Sesiones
Dirigido a

11/01/16

Módulo 1. Introducción a los

Conceptos de Sistemas Web

20 min.

1

Gerente

Módulo 2. Presentación del

Sistema multiplataforma para

el manejo de información en

atención al cliente y gestión de

reservas en línea

50 min.

1

Totales

1 Hora,

10 min
2 Sesiones

Fecha a

Realizar

Módulos de Aprendizaje del

Curso

Horas

C/Modulo

Nº de

Sesiones
Dirigido A

12/01/16

Módulo 1. Introducción a los

Conceptos de Sistemas Web
20 min. 1

Recepcionista

Módulo 2. Presentación del

Sistema multiplataforma para

el manejo de información en

atención al cliente y gestión de

reservas en línea.

40 min. 1

Totales 1 Hora

2

Sesiones

275

Fecha a

Realizar

Módulos de Aprendizaje del

Curso

Horas

C/Modulo

Nº de

Sesiones
Dirigido A

13/01/16

Módulo 1. Introducción a los

Conceptos de Sistemas Web.
20 min. 1

Personal de

My Burguer

Módulo 2. Presentación del

Sistema multiplataforma para

el manejo de información en

atención al cliente y gestión de

reservas en línea

40 min. 1

 Totales 1 Hora 2 Sesiones

4.15.11.1 Contenido del curso de Capacitación

Nº Actividad Responsable
Hora

inicio

Hora

fin
Duración

Medios a

utilizar

1 Presentación y

Bienvenida al

Curso de

Capacitación.

Gerente de

“MyBurguer”

06:00

pm

06:10

pm
10 min.

2 Explicación de

la Importancia

de la

Capacitación.

Jefe del

Proyecto

06:10

pm

06:15

pm
5 min.

Diapositivas

Televisor

Computador

3 Introducción a

los Conceptos

de Sistemas

Web

Jefe del

Proyecto

06:15

pm

06:40

pm
25 min.

Diapositivas

Televisor

Computador

4 Explicación de

la Importancia

del Sistema

Desarrollado

Jefe del

Proyecto

06:50

pm

07:00

pm
10 min.

Diapositivas

Televisor

Computador

276

5 Presentación

del Sistema Jefe del

Proyecto

07:00

pm

07:40

pm

40 min.

Sistema

Desarrollado.

Televisor

Computador

6

Consultas

Gerente,

Personal de la

empresa

07:40

pm

08:00

pm
20 min.

Sistema

Desarrollado.

Televisor

Computador

7 Entrega de

Encuestas Post

Capacitación

Jefe del

Proyecto

08:00

pm

08:02

pm
2 min. Encuestas

9
Llenado de las

encuestas

Gerente,

Personal de la

empresa

08:02

pm

08:12

pm
10 min. Encuestas

10 Recogida de

las escuestas

Jefe del

Proyecto

08:12

pm

08:15

pm
3 min. Encuestas

11

Consultas

Finales

Gerente,

Personal de la

empresa

08:15

pm

08:25

pm
10 min.

Sistema

Desarrollado.

Televisor

Computador

Diapositivas

12
Clausura del

Curso de

Capacitación

Gerente de

“MyBurguer”

y Jefe del

Proyecto

08:25

pm

08:30

pm
5 min.

277

4.16 Medios de verificación del componente II

Anexo 1: Carta de conformidad y respaldo con el desarrollo de la capacitación

por parte de la Gerencia de “My Burguer”.

278

Anexo 2: Fotografías de la capacitación

279

Anexo 3: Certificados de Capacitación

280

281

Anexo 4: Encuestas post capacitación

Las presentes encuestas y evaluaciones fueron entregadas a las personas que

asistieron a la capacitación.

El resultado de la capacitación muestra buena aceptación por parte de la gerencia y

personal de la empresa.

Capítulo III

Conclusiones y Recomendaciones

282

5. Conclusiones y Recomendaciones

5.1 Conclusiones

5.1.1 Componente I

 Se cumplió el objetivo principal del presente trabajo al desarrollar una

herramienta que coadyuvará al área manejo de la información en atención

al cliente mediante la gestión de reservas y en la realización de sus

actividades.

 Se utilizó la metodología RUP para el desarrollo del sistema, permitió

realizar mejoras al software, puesto que el proceso de ésta permite iterar y

realizar las modificaciones necesarias para alcanzar una mayor calidad del

software.

 Se cumplió el propósito principal donde se pueda contribuir al fin de

dicha empresa.

 Se desarrolló satisfactoriamente la parte de reportes en el sistema.

 Se efectuó el registro de reservas de clientes de manera sistematizada y

así optimizar los tiempos de atención al cliente y a la vez contribuir al fin.

 Se desarrolló un sistema que permite administrar los datos de combos y

productos el cual contempla las siguientes funciones; registro de grupos

intercambiables, registro de productos, asignación de productos que se

van a intercambiar, registro de combos.

5.1.2 Componente II

 Se desarrolló la capacitacioin satisfactoriamente en la empresa “My

Burguer”, la cual permitirá el uso adecuado del sistema para incrementar

la productividad y competitividad de la misma.

283

5.2 Recomendaciones

 Poner en ejecución el sistema lo antes posible para que de esta manera puedan

observarse los beneficios que ofrece el sistema en cuanto a seguridad y acceso

de la información.

 Se debe contratar un profesional en el área de informática para una mejor

administración y automatización de la información.

 Así mismo, se cuenta con un manual de sistema, que es de gran ayuda para la

utilización del sistema, si en algún momento se tiene alguna duda en el

manejo.

 Se recomienda que en un futuro cercano se implemente la parte de control de

inventarios y contabilidad para la empresa “MyBurguer” y así mejorar la

calidad de servicios en dicha empresa.

