DEDICATORIA

AGRADECIMIENTO

INDICE

1. ANTECEDENTE	1
1.1. El problema:	1
1.1.1. Planteamiento:	1
1.1.2. Formulación:	1
1.1.3. Sistematización:	2
1.2. Objetivos:	2
1.2.1. General:	2
1.2.2. Específico:	2
1.3. Justificación:	3
1.3.1. Social:	3
1.3.2. Técnico:	
1.3.3. Académica.	
1.4. Marco referencial:	3
1.4.1. Conceptual:	
1.4.1.1. Puente Grúa:	
1.4.1.2. Clasificación de los puentes grúa	
1.4.1.3. Dependiendo del número de vigas principales:	
1.4.1.4. En función de su movimiento:	
1.4.1.5. Clasificación de grúas según su servicio:	
1.4.1.6. Componentes del grúa semi-pórtico:	9
1.4.2. Espacial:	
1.4.3. Temporal:	15
1.5. Alcance del proyecto:	15
2. MARCO TEÓRICO:	17
2.1. Relevamiento:	17
2.2. Materiales:	18
2.2.1. Selección de perfiles estructurales:	
2.2.1.1. Perfiles para viga principal y testera:	
2.2.2. Placa de acero estructural:	
2.3. Cargas de diseño:	20
2.3.1 Cargas permanentes o muertas:	

2.3.2.	Carga izada:	. 21
2.3.3.	Cargas de impacto:	.21
	Cargas laterales:	
	. Fuerza por acción del viento:	
	. Fuerza sísmica	
2.3.5.	Acciones térmicas:	. 23
2.4.	Limitaciones de diseño:	. 24
2.5.	Diseño a flexión de viga metálica	. 25
2.5.1.	Clasificación de las secciones transversales metálicas	. 25
2.5.2.	Análisis plástico:	. 26
2.5.3.	Análisis elástico:	. 28
2.6.	Diseño al corte:	.32
2.7.	Deflexiones:	. 34
2.8.	Compresión:	.36
2.8.1.	Longitud efectiva y limitaciones de esbeltez	. 37
2.8.2.	Resistencia de diseño en compresión para pandeo por flexión	.38
2.9.	Diseño de placa base:	.39
2.10.	Rieles:	.41
2.11.	Ruedas	.42
2.12.	Fexión simple o compuesta en vigas de hormigon	.44
2.12.1.	Canto mínimo	
2.12.2.	Esfuerzo cortante reducido:	. 45
2.13.	Soldaduras:	. 47
2.13.1.	Soldaduras de ranura:	
	Resistencia de la soldadura:	
	Cortante y torsión:	
3. IN	GENIERIA DEL PROYECTO	. 58
3.1.	Relevamiento del lugar de emplazamiento	.58
3.2.	Parámetros de diseño:	. 58
3.3.	Elementos de carga a levantar:	. 59
3.4.	Verificación a dilatación:	.61
3.5.	Diseño de la viga principal (sección cajón):	
3.6.	Diseño de la viga principal (Sección en I):	. 76

3.7.	Diseño de la viga testera:	89
3.8.	Selección del tipo de rodamiento:	95
3.9. 3.9.1. 3.9.2.	Cálculo del pórtico: Alternativa 1 Alternativa 2	101
3.10.	Diseño de placa base:	139
3.11.	Diseño de Soldadura (Filete)	141
3.12.	Diseño de la viga de hormigón armado:	144
3.13.	Análisis de la ménsula:	153
3.14.	Diseño de la viga dentro del canal (base elástica):	159
3.15.	Especificaciones técnicas:	167
3.16.	Procedimiento de montaje:	189
3.17.	Aspectos de seguridad	191
3.18.	Mantenimiento:	192
3.19.	Precio unitario:	196
3.20.	Computo métricos de las vigas de hormigón:	198
RECO	Presupuesto total:	201
Índice	de Figuras:	
Figura Figura Figura Figura Figura Figura Figura Figura	1.1 Grúa puente Monorriel 1. 2 Grúa Puente Birriel 1.3 Grúa brazo giratorio 1.4 Grúa Torre 1.5 Puente Grúa 1.6 Grúa Pórtico 1.7 Grúa Semi- Pórtico 1.8 Estructura de un Puente Grúa 1.9 Polipasto Eléctrico 1.10 Viga Testera 1.11 Viga Carrilera	
_	1.12 Unión Viga-Testera	

ANTECEDENTE

El laboratorio de resistencia de materiales de la U.A.J.M.S, no cuenta con el diseño de un puente grúa, siendo el mismo un equipo indispensable para la manipulación de diferentes condiciones de cargas en ensayos de estructura sobre la losa de carga.

El puente grúa es una solución eficiente para el transporte de cargas pesadas, gracias a su alta rentabilidad y bajo costo de mantenimiento. La confiabilidad y versatilidad de estas máquinas de elevación permite que sean adaptadas a cualquier aplicación y cualquier espacio, desde la industria del acero hasta pequeños talleres para el transporte de materiales de forma rápida y segura.

1.1. El problema:

El problema que permite realizar el diseño de un Puente grúa tipo birriel, es la inaplicabilidad de diferentes condiciones de carga en ensayes de estructuras sobre la losa de carga del laboratorio de Resistencia de materiales de la UAJMS.

1.1.1. Planteamiento:

En el diseño y construcción de la losa de carga no se tomó la previsión necesaria para el manipuleo de estructuras a ensayar bajo diferentes condiciones de carga.

1.1.2. Formulación:

El presente proyecto de ingeniería civil plantea el diseño estructural tomando en cuenta lo siguiente:

- El puente grúa será un elemento que debe ser concordante con las instalaciones de laboratorio de resistencia de materiales.
- La estructura es metálica con elementos que están bajo la normativa utilizada.
- El puente grúa está compuesto por dos vigas principales.
- La estructura está sometida a diferentes condiciones de carga, tanto en usos académicos como trabajos de investigación.
- El dimensionamiento del puente grúa debe ser un elemento cuya durabilidad sea para la vida útil del laboratorio, con condiciones de uso normales y con mantenimiento continuo.

 Se plantea un diseño estructural del puente grúa con el cómputo métrico y costo final de la estructura a diseñar.

1.1.3. Sistematización:

- El proyecto del diseño estructural del puente grúa considera lo siguiente para el dimensionamiento:
- Determinar los parámetros de diseño de acuerdo a normas.
- Los materiales constituyentes del puente grúa son de acero.
- Los perfiles de cada elemento son diseñados en función a los diferentes tipos de carga a los que están sometidos.
- Establecer las diferentes condiciones de carga a la que estará sometida la estructura.
- La carga que se someterá a la estructura será de 5 toneladas.
- Las ménsulas de hormigón armado que ya están construidas se verificaron con la misma normativa de Hormigón Armado (EH-91) que fueron diseñadas.

1.2. Objetivos:

1.2.1. General:

• Diseñar un puente grúa (semi-pórtico) tipo birriel para el laboratorio resistencia de materiales de la carrera de ingeniería civil UAJMS.

1.2.2. Específico:

- Diseñar cada elemento del puente grúa utilizando el método AISC LRFD
 (American Institute of Steel Construction Load and Resistance Factor Design).
- Plantear y elegir la mejor alternativa de diseño para la viga principal con sección tipo cajón y sección en I.
- Diseñar las vigas carrileras de hormigón armado mediante la normativa CBH-87.
- Verificar las ménsulas de hormigón armado que ya están construidas.

- Realizar las especificaciones técnicas de los elementos que componen la estructura.
- Plantear un procedimiento de montaje para la implementación de la estructura.
- Determinar un presupuesto general de la estructura diseñada.

1.3. Justificación:

1.3.1. Social:

El proyecto contará con un diseño opcional de un puente grúa, que ayudará en la utilización de la losa de carga para ensayes de investigación y extensión.

1.3.2. Técnico:

El puente grúa (semi- pórtico) ayudará en la manipulación de cargas para una buena utilización de la losa de carga.

1.3.3. Académica.

Desde el punto de vista académico, este diseño se llevará a cabo con el único propósito de aportar a la Universidad Juan Misael Saracho con una estructura que será utilizada para el manipuleo de cargas dando utilidad a la losa de carga.

1.4. Marco referencial:

1.4.1. Conceptual:

1.4.1.1. Puente Grúa:

El puente grúa ha sido por mucho tiempo una solución eficiente para el transporte de cargas pesadas, gracias a su alta rentabilidad y bajo costo de mantenimiento. La confiabilidad y versatilidad de estas máquinas de elevación permite que sean adaptadas a cualquier aplicación y cualquier espacio, desde la industria del acero hasta pequeños talleres para el transporte de materiales de forma rápida y segura.

El movimiento de los puentes grúa suele realizarse a lo largo de una edificación, y sus movimientos deben están claramente identificados. El puente grúa semi-pórtico realizan movimientos de desplazamiento, ya sea sobre rieles u otros medios.

1.4.1.2. Clasificación de los puentes grúa

Un puente grúa se define como una máquina constituida por diferentes elementos y mecanismos, que tiene como función movilizar cargas dentro del espacio de su rango de acción. Su uso se encuentra limitado a su lugar de montaje siendo por tanto una grúa de tipo móvil.

El movimiento de los puentes grúa suele realizarse a lo largo de una edificación, generalmente una nave industrial, y sus movimientos deben están claramente identificados.

1.4.1.3. Dependiendo del número de vigas principales:

Monorriel

Figura 1.1 Grúa puente Monorriel

Se trata de la versión más económica y óptima para pequeñas cargas o grandes cargas y pequeñas luces, ver figura 1.1.

Birriel

Los modelos que disponen de dos vigas principales se utilizan mayoritariamente en estructuras que deben cubrir grandes luces, donde una única viga es insuficiente debido a los grandes esfuerzos que deben soportar, o para grandes cargas en las que es necesario dividir los esfuerzos en más de una viga y el carro debe desplazarse por encima de la estructura, ver figura 1.2.

Figura 1. 2 Grúa Puente Birriel

1.4.1.4. En función de su movimiento:

Fijas

Aquellas que se instalan en un lugar en el que desarrollan su trabajo, sin poder desplazarse. Es el claro ejemplo de una grúa de brazo giratorio ver figura 1.3.

Figura 1.3 Grúa brazo giratorio

Portátiles

Son equipos que pueden ser desensamblados y trasladados hasta otro lugar. Un ejemplo sería una grúa torre ver figura 1.4.

Figura 1.4 Grúa Torre

Móviles

Son las que tienen posibilidad de realizar movimientos de desplazamiento, ya sea sobre rieles, ruedas neumáticas, oruga, u otros medios. Por ejemplo, una grúa puente ver figurar 1.5, 1.6, 1.7.

Figura 1.5 Puente Grúa

Figura 1.6 Grúa Pórtico

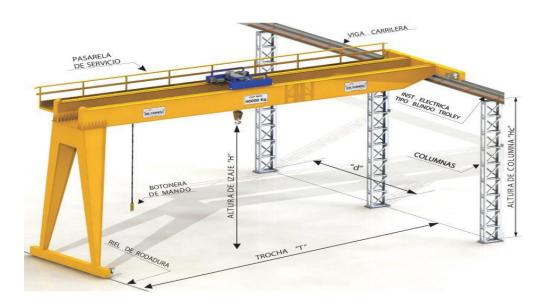


Figura 1.7 Grúa Semi- Pórtico

1.4.1.5. Clasificación de grúas según su servicio:

CLASE A (servicio poco frecuente):

Esta clase de servicio cubre las grúas que se pueden utilizar en instalaciones tales como las casas de alimentación, servicios públicos, de la turbina, habitaciones, salas de motores y centros de transformación, donde el manejo preciso de los equipos a baja velocidad con tiempo, ocioso se requiere períodos entre ascensos. Cargas de

capacidad pueden ser manejadas para la instalación inicial de los equipos y de mantenimiento poco frecuente.

CLASE B (servicio ligero):

Este servicio cubre las grúas que se pueden utilizar en los talleres de reparaciones, operaciones de montaje de luz, edificios de servicios, luz, almacenamiento, etc. Donde los requerimientos de servicio son la velocidad lenta. Las cargas pueden variar desde "sin carga" a cargas ocasionales a todo régimen con dos a cinco izados por hora, promediando 3,3 metros (10 pies) por izado.

CLASE C (servicio de moderado):

Este servicio cubre las grúas que se pueden utilizar en los talleres de máquinas o salas de máquinas de fábricas de papel, etc. Donde requisitos de servicio son moderados. En este tipo de servicio de la grúa se encargará de cargas que en promedio el 50 por ciento de la capacidad nominal de 5 a 10 elevaciones por hora, con un promedio de 15 pies, y no más del 50 por ciento de la elevación a la capacidad de régimen.

CLASE D (servicio pesado):

Este servicio cubre las grúas que pueden utilizarse en grandes talleres mecánicos, fundiciones, fabricación de plantas de acero almacenes, patios de contenedores, aserraderos, etc. Y las operaciones de servicio normal con baldes e imanes, donde se requiere una producción de servicio pesado. En este tipo de servicio, las cargas cercanas a 50 por ciento de la capacidad de régimen serán manejados constantemente durante el período de trabajo. Las altas velocidades son deseables para este tipo de servicio con 10 a 20 izados por hora promediando los cinco metros (15 pies), no más del 65 por ciento de los izados a la capacidad de régimen.

CLASE E (servicio severo):

Este tipo de servicio requiere una grúa capaz de manejar cargas se acercan a una capacidad de régimen durante toda su vida.

Las aplicaciones pueden incluir grúas de imán, balde o combinación balde/imán para patio de chatarra, fábrica de cemento, aserraderos, plantas de fertilizante, manejos de contenedores, etc., con veinte o más izados por hora á o cerca de la capacidad de régimen.

CLASE F (servicio severo continuo):

Este tipo de servicio requiere una grúa capaz de manejar cargas que se aproximen continuamente bajo condiciones severas de servicio en toda su vida. Las aplicaciones incluyen grúas especiales diseñadas a medida esencial para la realización de las tareas de trabajo críticos que afectan a la producción total de la instalación fabril. Estas grúas deben proporcionar la más alta fiabilidad con una especial atención a la facilidad de las características de mantenimiento.

1.4.1.6. Componentes del grúa semi-pórtico:

Estructura:

La estructura principal del puente grúa es, por normal general, bastante genérica para todos los tipos de puente grúa. Se caracteriza porque en la gran mayoría de los casos contiene los siguientes elementos ver figura 1.8:

- 1) Polipasto o carro móvil principal
- 2) Viga principal de la grúa
- 3) Chapas de unión
- 4) Vigas testeras o testeros
- 5) Motor de traslación del puente
- 6) Mando de control cableado o radio control
- 7) Equipamiento eléctrico de la grúa
- 8) Equipamiento eléctrico del carro principal
- 9) Con interruptor de límite de izado
- 10) Con detector de carga
- 11) Gancho de amortiguación
- 12) Montaje del raíl C
- 13) Fuente de alimentación eléctrica
- 14) Cable alimentación eléctrica

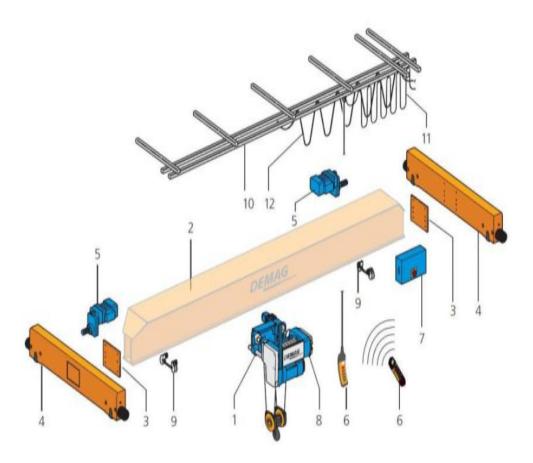


Figura 1.8 Estructura de un Puente Grúa

Viga principal:

Es la parte principal de la estructura. Su función es la de soportar el carro móvil y la carga de servicio siendo por tanto la parte crítica de la estructura.

Polipasto:

Un aparejo o polipasto es una máquina compuesta por dos o más poleas y una cuerda, cable o cadena que alternativamente va pasando por las diversas gargantas de cada una de aquellas.

Se utiliza para levantar o mover una carga con una gran ventaja mecánica, porque se necesita aplicar una fuerza mucho menor que el peso que hay que mover.

Tipos de polipastos: Existen diferentes tipos de polipastos, los cuales por su forma de operación se clasifican de la siguiente manera:

11

a) Manuales: Se clasifican en dos tipos:

Cadena:

Son aparatos manuales ligeros y concebidos para todo uso, en especial para trabajos

pesados. Están construidos en acero (con lo cual es idóneo para su utilización en el

exterior). Están concebidos de tal manera que permite regular la velocidad de

descenso con un mínimo esfuerzo sobre la cadena de mando.

Al tener los engranajes y los piñones endurecidos (tratamiento especial) aseguran una

mayor duración y fiabilidad. Están equipados con una serie de dos rodillos y un

separador de cadena que aseguran la alineación exacta de la cadena de carga sobre la

polea. Todos están sometidos a pruebas dinámicas del 150% de la carga máxima de

utilización.

Son de dimensiones reducidas y ligeras de peso, facilitando su manejo.

Palanca:

Polipasto diseñado para manipular cargas en elevación y arrastre, realizando poco

esfuerzo sobre la palanca. Compacto, robusto (especial para trabajos en espacios

reducidos). Fabricado en acero de alta calidad, dando como resultado un aparato

ligero, fiable y seguro. Dispositivo mediante un freno mecánico que lo retiene en

cualquier punto y a su vez lo libera cuando es necesario.

Palanca de mano recubierta con empuñadura de goma. Ganchos fabricados en acero

forjado, resistencia tanto al calor como al desgaste, incorporan lengüeta de seguridad,

giratorios 360° aún en la peor de las posiciones.

b) Eléctricos:

Los polipastos eléctricos (Figura 1.9) realizan la misma función que los manuales,

con la única diferencia que cuentan con un motor y transmisión reversible para la

carga y descarga; realizándolo mediante una botonera que sirve como control

eléctrico. Estos pueden utilizar cadena o cable de acero.

Figura 1.9 Polipasto Eléctrico

c) Neumáticos:

Los polipastos neumáticos de cadena (Figura 10) se caracterizan por su alta durabilidad y resistencia en un gran número de aplicaciones industriales. Su robusta pero ligera carcasa permite que su transporte sea sencillo. Diseñado para presiones de funcionamiento de 5 a 7 bares. Tiene un motor de pistón giratorio con un factor de servicio del 100% y un número ilimitado de arranques para un funcionamiento continuo. Interruptores limitadores de carrera superior e inferior integrados como estándar. Disco de freno de ajuste automático, libre de mantenimiento.

Control extremadamente sensible con parada de emergencia para un posicionamiento preciso de la carga. Válvula de escape para el freno. Para asegurar un funcionamiento sin fallos el aire comprimido debe estar filtrado y engrasado.

Vigas testeras:

Las vigas testeras o simplemente testeros son las vigas laterales sobre las que descansa la viga principal. Deslizan sobre una superficie o ruedan sobre un carril y su función es la de derivar los esfuerzos provenientes de la viga principal a los apoyos. Dentro de ellas se alojan las ruedas que sirve de apoyo a la estructura.

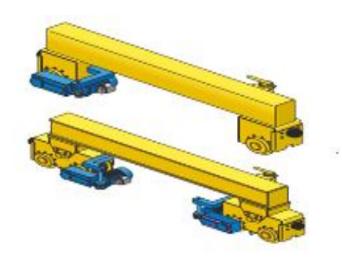


Figura 1.10 Viga Testera

Viga carrilera:

Parte del puente grúa en el cual se desliza el carro testero, este se apoya sobre unas guías transportando así la carga a lo largo de la fábrica o almacén.

Figura 1.11 Viga Carrilera

Línea de alimentación:

Constituyen todos los cables que energizan los motores de movimientos de los carros y el motor de elevación de carga.

Unión Viga – Testeros:

La unión viga – testero es la encargada de transferir los esfuerzos desde la viga principal a las vigas testeras laterales. Debe transferir y soportar todos los esfuerzos y por ello debe de ser excepcionalmente rígida. Para ello se realiza mediante distintos elementos y procedimientos que aseguren su rigidez. Se pueden diferenciar dos procedimientos de unión:

Figura 1.12 Unión Viga-Testera

Mecanismos:

Los Puente grúa poseen como mínimo tres tipos de movimientos operativos independientes, si no se especifica lo contrario o se limita por disposiciones constructivas. Estos tres movimientos son los mínimos que posibilitan un rango volumétrico, es decir, capaces de mantener una carga dentro de su espacio de operación.

De ahora en adelante se utilizará la notación longitudinal para hacer referencia a la dirección paralela a la longitud de la nave, y transversal para el movimiento en sentido perpendicular.

Estos tres movimientos principales son:

Un movimiento de elevación/descenso de carga:

Este movimiento se realiza en dirección vertical perpendicular al plano del suelo.

El movimiento del puente a lo largo de los carriles:

El citado movimiento se realiza en la dirección horizontal longitudinal de la estructura donde se halla.

El movimiento del carro principal:

Se realiza en dirección horizontal y transversal a la estructura. Por motivos de seguridad las combinaciones de movimientos se encuentran bloqueadas electrónicamente por el micro controlador del aparato. Esto significa que en cada ciclo de manutención, cada movimiento debe realizarse en etapas diferenciadas, exclusivamente se permite la activación de un único mecanismo por etapa.

Los puentes grúa pueden ser clasificados a partir de numerosas y diversas características tales como: carga nominal, tipo de perfil, número de ruedas, tipo de polipasto, colocación del polipasto, etc.

1.4.2. Espacial:

El proyecto será emplazado en el laboratorio de resistencia de materiales de nuestra universidad.

La infraestructura estará ubicada en el interior del laboratorio de resistencia de materiales, el mismo se encuentra dentro de la Universidad Autónoma Juan Misael Saracho (Facultad de Ciencias y Tecnología)

1.4.3. Temporal:

El proyecto del grúa semi-pórtico será diseñado para un tiempo de duración de 35 años.

1.5. Alcance del proyecto:

El presente proyecto tendrá el siguiente alcance:

 Se diseñará un semi-pórtico que contendrá una viga principal y una viga testera, una viga carrilera en donde la viga principal del puente grúa estará sujeta por la misma, y por último se diseñó un pórtico testero en donde la viga principal también será apoyada.

- Se hará un relevamiento de información del lugar de emplazamiento del puente grúa para determinar con exactitud las dimensiones y las alturas de cada elemento.
- Se determinará las cargas de servicio.
- El puente grúa está compuesto por dos vigas, la misma tendrá una luz de 11m con dos apoyos.
- La sección de la viga principal tendrá dos alternativas; sección en I e sección tipo cajón.
- La viga carrilera en donde se desplazará el puente grúa será de hormigón armado de sección rectangular, con una luz de 11,10 m con 4 apoyos fijos.
- El pórtico testero en donde estará apoyada la viga principal es diseñado con una sección rectangular.
- Se diseñará los apoyos (ruedas) correspondientes del pórtico testero y viga testera.
- Se verificará las ménsulas de hormigón armado que ya están construidas con la normativa vigente de Hormigón Armado (EH-91).
- Se determinará un presupuesto general de la estructura a diseñar.

2. MARCO TEÓRICO:

2.1. Relevamiento:

Es el registro de la información donde se obtiene los datos más importantes para iniciar con un diseño estructural.

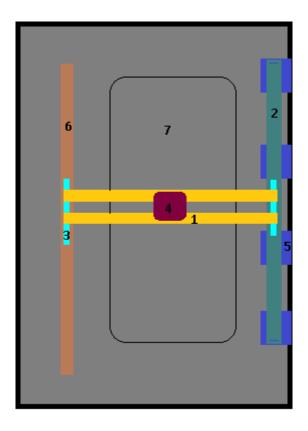


Figura 2.1 Croquis de la Estructura

- 1.-Vigas principales
- 2.-viga carrilera
- 3.- viga testera
- 4.- polipasto
- 5.-columnas de HºAº
- 6.- canal para el riel
- 7.- losa de carga

2.2. Materiales:

Todo el acero estructural usado debe cumplir con las especificaciones ASTM-A36 o debe ser de un tipo aceptado para el propósito para el que se va usar el acero y para las operaciones a ser realizadas con él. Pueden usarse otros materiales adecuados siempre que las partes estén proporcionadas a factores de diseño comparable.

Ф	Carbono (c)	0,26% máx.					
n de	Manganeso (Mn)	No hay requisito					
Sor	Fosforo (P)	0,04% máx.					
pociso	Azufre (S)	Azufre (S) 0,05% máx.					
Compocison	Silicio (Si)	% máx.	máx.				
ပိ	Cobre (Cu)	0,20% máx.					
	Densidad	7850 A	(g/m³	0,28 lb/in ³			
des	Límite de fluencia mínimo	250	MPa	36000 Psi			
Propiedades mecanica	Resistencia a la tracción	Mínimo	Máximo	Mínimo	Máximo		
ropiedade	Resistencia a la tracción	400 MPa	550 MPa	58000 Psi	80000 Psi		
Pro B	Módulo de cortante (G)	77 (GP a	12200 Ksi			
	Módulo de Elásticidad (E)	200	GPa	29000 Ksi			

Figura 2.2 Composición de la colada y propiedades mecánicas del acero A36

2.2.1. Selección de perfiles estructurales:

2.2.1.1. Perfiles para viga principal y testera:

Para el diseño del puente grúa tipo birriel, las vigas más adecuadas para la construcción de la estructura que soportará la capacidad de carga son los perfiles de acero que por su forma facilita la colocación de trole. Para el diseño se seleccionará la sección de acuerdo a la norma especificada.

Las vigas del puente grúa deberán ser de secciones en caja de acero estructural soldado, vigas de ala ancha, vigas I normalizadas, vigas reforzadas o secciones construidas con chapas y formas estructurales. El constructor deberá especificar el tipo y la construcción a proveer.

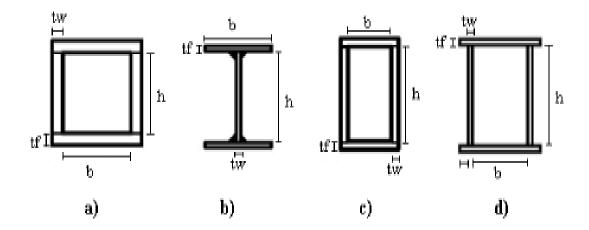


Figura 2.3 Perfiles de Acero

- a) Seccion cuadrada armada cuatro placas soldadas.
- b) Seccion I armada tres placas soldadas.
- c) Seccion rectangular armada cuatro placas soldadas.
- d) Seccion rectangulr con alas armada cuatro placas soldadas.

2.2.2. Placa de acero estructural:

Son productos planos rectangulares que se obtienen por la laminación en caliente de planchones. Se comercializan con bordes de laminación en calidades ASTM A-36 y ASTM A-131.

Se utilizan en la fabricación de calderas, recipientes de presión, tanques para almacenamiento, tubos soldados, industria naval y en la industria metalmecánica en general.

ESP	ESOR	PE	S0	PESOS POR PLACA EN KILOS										
Pulgada	mm.	Kg/m2	Kg/pie2	3' X 6'	3' X 8'	3' X 10'	4' X 8'	4' X 10'	5' X 10'	5' X 20'	6' X 20'	6' X 40'	8' X 20'	8' X 40'
3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8 1 1/8 1 1/4 1 3/8 1 1/2 1 5/8 1 3/4 2 2 1/4 2 1/2 2 3/4 3 3 1/2	4.8 6.3 7.9 9.5 11.1 12.7 14.3 15.9 19.0 22.2 25.4 28.6 31.7 34.9 38.1 41.3 44.4 50.8 57.1 63.5 69.8 76.2 88.9	37.78 50.38 62.97 75.56 88.05 100.75 113.24 125.94 151.12 176.31 201.50 226.69 251.88 277.06 302.25 327.44 352.62 403.00 453.38 503.75 554.12 604.50 705.25	4 5 6 7 8 9 11 12 14 16 19 21 23 26 28 30 33 37 42 47 51 56 66	211 253 337 	*84 *112 *140 *168 *225 281 337 449 674 899 	105 140 176 211 246 281 *316 351 421 *491 562 632 702 842 983 1,123 1,264 1,404 1,685	*112 *150 *187 *225 *300 374 449 599 899 1,198	140 187 234 281 374 468 562 749 1,123 1,498 1,685 1,872 2,246	176 234 293 351 468 585 702 936 1,170 1,404 1,872 1,872	351 468 585 702 936 1,170 1,404 2,340 2,808 3,744 6,552	421 562 702 842 983 1,123 1,264 1,404 1,685 1,966 2,246 2,527 2,808 3,370 3,931 4,493 5,054 5,616 6,739 7,935	1,685 2,246 2,808 3,370 4,493 5,616	562 749 936 1,123 1,498 1,872 2,246 2,621 2,995 3,370 3,744 4,149 4,493 4,867 5,242 5,990 6,739 7,488 8,237 8,986 10,483	1,123 2246 2,995 3,744 4,493 7,488 8,986 11,981
4 4 1/2 5 5 1/2	101.6 114.3 127.0 139.7	806.00 906.75 1,007.50 1,108.25	75 84 94 103	 	 	 	 	 	 	7,448 	9,069 	 	11,981 13,478 14,976 16,474	

Figura 2.4 Placas de Acero ASTM A-36 (Catálogo Fortacero)

2.3. Cargas de diseño:

Las cargas estructurales del puente grúa están sometidas en servicio a la aplicación repetidas de cargas variables con el tiempo, que inducen tensiones variables en miembros y conexiones a través de la interacción del sistema estructural y de las formas de los cortes transversales. Las cargas que actúan sobre la estructura se dividen en tres categorías sobre el análisis de ingeniería de la resistencia, son considerables como cargas principales, también llamadas cargas muertas, que están siempre presentes; como la carga del aparejo que actúa durante cada ciclo y las fuerzas de inercia que actúan durante el movimiento de las grúas, sus componentes y las cargas del aparejo. Las cagas de efectos, como las de viento durante la operación, fuerzas de oblicuidad, cargas de nieve, temperaturas, cargas sobre pasarelas, escaleras, plataformas y barandillas son clasificadas como cargas adicionales y

solamente son consideradas para el análisis general de la resistencia y para el análisis de la estabilidad.

Las cargas como la colisión, cargas de viento fuera de servicio y cargas de ensayo aplicadas durante el ensayo de cargas, son consideradas como cargas extraordinarias, excepto para las cargas de colisión y vientos fuera de servicio, no son parte de las especificaciones. En esta especificación de diseño no se consideran las fuerzas sísmicas. Sin embargo, si se lo requiere, deberán especificarse aceleraciones por el propietario o especificador, en la elevación de los rieles de la grúa. Los niveles admisibles de tensión bajo esta condición de aplicación de cargas deben ser acordadas con el constructor del puente grúa.

2.3.1. Cargas permanentes o muertas:

Son aquellas cargas que tiene pequeñas variaciones durante el periodo de vida útil de la estructura, se consideran: el peso propio de la estructura más las carga por concepto de elementos de unión.

Las cargas muertas son cargas de magnitud constante que permanecen fijas en un mismo lugar. Para diseñar una estructura y pesos exactos de las partes no se conocen, hasta que se hace el análisis estructural y se selecciona los miembros de la estructura. Los pesos, determinados de acuerdo con el diseño, deben compararse con los pesos estimados. Si se tiene grandes discrepancias, será necesario repetir el análisis y efectuar el diseño con una estimación más precisa de las cargas.

2.3.2. Carga izada:

La carga izada consiste en la carga de trabajo y el peso de los dispositivos de izado empleado para el manejo y sostén de la carga de trabajo, como el cuadernal de carga, viga de izado, balde, imán, quijadas y otros dispositivos suplementarios.

2.3.3. Cargas de impacto:

Las cargas de impacto las causan las vibraciones de las cargas móviles. Estas cargas son iguales a la diferencia entre la magnitud de las cargas realmente generadas y la magnitud de las cargas consideradas como muertas.

Las estructuras que van a soportar cargas vivas con tendencia a causar impacto, se diseñan con sus cargas nominales supuestas incrementadas con los siguientes porcentajes mínimos:

Tabla 2.1 Cargas de impacto.

Descripción del trabajo	Porcentajes mínimos
Para soportes de elevadores.	100%
Para trabes de soporte de grúas viajeras operadas desde el piso y sus conexiones.	25%
Para trabes de soporte de grúas viajeras con cabina de operación y sus conexiones.	10%
Para soportes de maquinaria ligera con árbol de transmisión o motor.	20%
Para soportes de maquinaria con movimiento alternativo o unidades impulsadoras.	50%
Para tirantes que soporten pisos o balcones.	33%

2.3.4. Cargas laterales:

Las cargas laterales son de dos tipos principales: de viento, sismo, otros.

2.3.4.1. Fuerza por acción del viento:

Se considera primordialmente la acción del viento sobre las áreas más amplias y expuestas, además se tomará en cuenta fuerzas producidas por la incidencia sobre los perfiles del puente. La velocidad del viento, se la ha considerado contante sobre toda la estructura, a pesar de ser esta una suposición que sobrevalora las cargas, puesto que la realidad corresponde a un perfil de velocidades que tiene un mínimo en los niveles cercanos al suelo y va aumentando a medida que aumenta la altura desde el suelo.

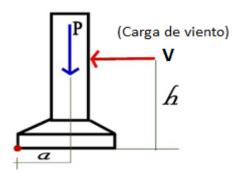


Figura 13 Fuerza por acción del viento

Las fuerzas de viento actúan como presiones sobre las superficies verticales o barlovento, como presiones o succiones sobres superficies inclinadas o barlovento y como succiones sobre superficies planas y superficies verticales o inclinadas a sotavento debido a la creación de presiones negativas o vacíos.

2.3.4.2. Fuerza sísmica.

Las estructuras destinadas a las edificaciones, incluyendo las estructuras auto soportadas que no son edificios, las cuales soportan cargas verticales y deben de resistir los efectos sísmicos, como puentes grúa deben de cumplir con ciertos requerimientos mínimos del código Ecuatoriano de la construcción.

Prevenir daños en elementos no estructurales y estructurales, ante terremotos pequeños y frecuentes, que pueden ocurrir durante la vida útil de la estructura.

Prevenir daños estructurales graves y prevenir daños no estructurales, ante terremotos moderados y poco frecuentes, que pueden ocurrir durante la vida útil de la estructura.

Evitar el colapso ante terremotos severos que pueden ocurrir rara vez la vida útil de la estructura, procurando salvaguardar la vida de los ocupantes.

2.3.5. Acciones térmicas:

Estructuras afectadas: Las acciones producidas por las deformaciones debidas a las variaciones de temperatura y por las que experimentan los materiales en el transcurso del tiempo, por otras causas, deben tenerse en cuenta en las estructuras hiperestáticas, muy especialmente en arcos, bóvedas estructuras semejantes, salvo en los casos que se detallan, a continuación.

Pueden no considerarse acciones térmicas y reológicas en las estructuras formadas por pilares y vigas cuando se disponen juntas de dilatación a distancias adecuadas.

La distancia estimada entre juntas de dilatación en estructuras ordinarias de edificación de acero laminado, o de hormigón armado no debe sobrepasar 40 m. Esta distancia suele aumentarse a 50 m si los pilares son de rigidez pequeña, y reducirse a 30 m si los pilares son de rigidez grande.

Variación de temperatura

Los valores de variación de temperatura que deben adoptarse en el cálculo, a menos que se hayan realizado determinaciones directas en la localidad, son los siguientes:

- a) Estructuras de acero a la intemperie y expuestas a la radiación solar directa +- 30°.
- b) Estructuras a la intemperie en los demás casos +-20°.

En las estructuras con revestimiento que aseguren una variación de temperatura no superior a $\pm 10^{\circ}$ puede prescindirse, en general, de considerar las acciones térmicas.

Variaciones diferenciales de temperatura:

Deben considerarse las acciones producidas por deformaciones debidas a temperaturas diferentes en zonas distintas de la estructura, en el caso de que puedan presentarse.

Coeficiente de dilatación

En el cálculo de las deformaciones, se adoptarán los siguientes valores para el coeficiente de dilatación térmica:

- Acero laminado 0,000012 m/m °C
- Hormigón armado 0,000011 m/m °C

2.4. Limitaciones de diseño:

Según la norma CMAA propone limitaciones para la obtención de las dimensiones de vigas en caja soldadas.

Proporciones:

L/h no debe exceder de 25

L/b no debe exceder de 65

b/t_f y h/t_w deben ser respaldados por el análisis de pandeo

Dónde:

L= trocha.

b= distancia entre almas de viga.

h= profundidad de la viga.

t= espesor de la placa.

2.5. Diseño a flexión de viga metálica

2.5.1. Clasificación de las secciones transversales metálicas

En función de la sensibilidad de su respuesta resistente a los fenómenos de inestabilidad de chapas se definen cuatro clases de secciones transversales metálicas:

Secciones de Clase 1 (plásticas) son aquéllas que alcanzan, sin verse afectadas por fenómenos de abolladura en sus zonas comprimidas, su capacidad resistente plástica, y permiten desarrollar, sin reducción de la misma, la capacidad de rotación exigible a una rótula en un análisis global plástico.

Secciones de Clase 2 (compactas) son aquéllas que pueden alcanzar su momento resistente plástico, pero en las que los fenómenos de abolladura limitan su capacidad de rotación por debajo de las exigencias de aplicabilidad del análisis global plástico.

Secciones de Clase 3 (semicompactas) son aquéllas en las que la tensión en la fibra metálica más comprimida, estimada a partir de una distribución elástica de tensiones, puede alcanzar el límite de elasticidad del acero, pero en las que los fenómenos de abolladura impiden garantizar el desarrollo de la deformación necesaria para alcanzar el momento resistente plástico de la sección.

Secciones de Clase 4 (esbeltas) son aquéllas en las que los fenómenos de inestabilidad de chapas comprimidas limitan incluso el desarrollo de su capacidad

resistente elástica, no llegando a alcanzarse el límite elástico del acero en la fibra metálica más comprimida.

2.5.2. Análisis plástico:

La resistencia a flexión de perfiles compactos es una función de la longitud no soportada conocida como L_b . Si ésta es menor que el parámetro L_p , se considera que la viga cuenta con un soporte lateral total y por lo tanto su capacidad resistente a flexión es el momento plástico M_p . Cuando la longitud del elemento es mayor a L_p la resistencia en flexión disminuye por efecto de pandeo lateral inelástico o pandeo lateral elástico. Si L_b es mayor que L_p pero menor o igual al parámetro L_r , se trata de un pandeo lateral torsional (PLT) inelástico. Cuando L_b es mayor que L_r la resistencia del perfil se basa en el pandeo lateral torsional elástico. La Figura 2.9 muestra la relación entre la longitud soportada L_b y el momento resistente M_n .

La resistencia de diseño de perfiles de acería a flexión para análisis plástico es:

$$\phi_b * M_n = \phi_b * M_p$$

Dónde:

 $\Phi_{b=}0.9$

M_n= Resistencia nominal

$$M_p = Z_x * F_y \le 1.5 M_y$$

M_y=Momento correspondiente a la aparición del esfuerzo de fluencia en la fibra extrema de la sección trasversal con una distribución elástica de esfuerzos:

$$M_y\,=S*F_y$$

S=Modulo elástico de la sección

Z=Modulo plástico de la sección.

La resistencia ala fluencia del material que puede usarse cuando se diseña con análisis plástico será como máximo igual a 45.7kg/mm². el análisis plástico se limita a secciones compactas.

$$\lambda_p = \frac{h_c}{t_w} < \frac{537}{\sqrt{F_y}} \qquad \quad \text{Para almas de vigas en compresión por flexión}.$$

Dónde:

 $\pmb{\lambda}_p \!\!=\! Par\'ametro$ de esbeltez limito para elementos compactos.

b_f= Ancho de la sección, mm.

t_f= Espesor de la aleta, mm.

 h_c = Distancia entre las caras inferiores de las aletas menos el filete o el radio de la esquina, mm.

t_w= espesor del alma de la viga, mm.

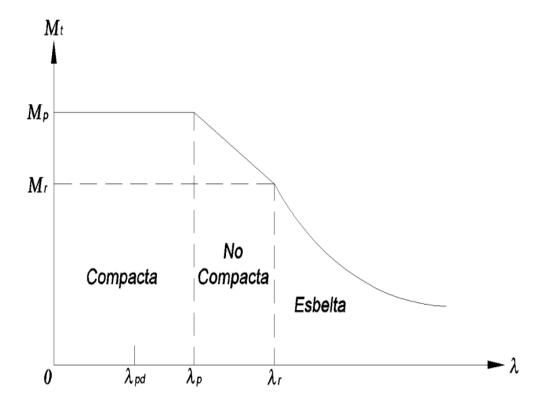


Figura 2.6 Momento resistente nominal en función de la longitud sin arriostramiento.

Se estable para una sección flexionada con respecto al eje mayor, que la longitud sin arriostramiento lateral en los sitios donde se presentan las articulaciones plásticas asociadas con el mecanismo no debe exceder el valor L_{pd} dado por la siguiente ecuación:

$$L_{pd} = \frac{^{2530+1550}^{M_1}/_{M_2}}{F_v} * r_y$$
 Para perfil en I.

$$L_{pd} = \frac{^{3500+2100}^{M_1}\!/_{M_2}}{^{F_y}} * r_y \geq 2100 \frac{r_y}{^{F_y}} \quad \text{Para perfil tipo cajón}.$$

Dónde:

 F_y = El esfuerzo de flexión especificado de la aleta en compresión, kg/mm^2

 M_1 = El menor de los momentos en los extremos del tramo sin soporte lateral, kg/mm²

 M_2 = El mayor de los momentos en los extremos del tramo sin soporte lateral, kg/mm²

 M_1 / M_2 es positivo cuando los momentos causan doble curvatura, y negativo, para curvatura simple.

r_v= Radio de giro con respecto al eje débil.

2.5.3. Análisis elástico:

La resistencia de diseño a la flexión de perfiles cuando se usan análisis elásticos es:

$$\varphi_b * M_n$$

Dónde:

$$\Phi_{b} = 0.9$$

M_n= momento Resistente nominal determinado por uno de los estados límites: pandeo lateral-torsional o pandeo local.

Dependiendo si la sección es compacta o no, y la magnitud de la longitud entre arriostramiento $L_{b,}$ la resistencia de diseño varia a continuación se presenta el procedimiento para seguir en cada caso.

Tabla 2.2 Análisis Elástico

Cb	Longitud Lb	Pandeo local tipo de sección
	Pequeña, $L_b \leq L_p$	Compacta
1		No compacta
	Intermedia, $L_b \leq L_p \leq L_r$	Compacta
		No Compacta
	Larga, L _b >L _r	Compacta
		No Compacta
	Pequena, $L_b \leq L_m$	Compacta
>1		No compacta
	Intermedia, $L_m \le L_b \le L_r$	Compacta
		No Compacta
	Larga, L _b >L _r	Compacta
		No Compacta

Los parámetros indicados en la figura 2.6 se obtienen con las siguientes ecuaciones: Las longitudes L_p y L_r vienen dadas por:

$$L_P = \frac{250}{\sqrt{F_Y}} r_y$$

En flexión con respecto al eje menor, esta aplicación es aplicable para cualquier distancia entre arrostramiento lateral; para flexión con respecto al eje mayor, la distancia L_b entre puntos de la aleta en compresión soportados lateralmente, o entre puntos para prevenir torsión de la sección transversal, no debe exceder el valor L_p .

$$L_{r} = \frac{r_{y} * x_{1}}{(F_{y} - F_{r})} * \sqrt{1 + \sqrt{1 + x_{2}(F_{y} - F_{r})^{2}}}$$

Y los términos X_1 y X_2 son:

$$X_1 = \frac{\pi}{S_x} \sqrt{\frac{EGJA}{2}}$$

$$X_2 = \frac{4C_w}{I_y} \left(\frac{S_x}{GJ}\right)^2$$

Dónde:

 r_y = radio de giro mínimo

A= área de la sección

 C_w = constante de alabeo

 F_y = esfuerzo de fluencia

 $F_r = 7 \text{ kg/mm}^2 \text{ para perfiles laminados}$

 $F_r = 11,6 \text{ kg/mm}^2 \text{ para perfiles soldados}$

Z = módulo de sección plástico

 S_x = módulo de sección elástico

 L_b = longitud no soportada

E = módulo de elasticidad

G = módulo de cortante

 I_y = momento de inercia menor

J = momento polar de inercia

 C_w = constante de alabeo

El factor de gradiente de momentos C_b , que toma en cuenta la variación del momento flexionaste a lo largo del elemento se determina con la expresión:

$$C_b = \frac{12,50M_{max}}{2,5M_{max} + 3M_A + 4M_B + 3M_C}$$

 $M_{max} \ M_A \ M_B \ M_C$, son los momentos máximos, al cuarto, al centro, y a los tres cuartos del tramo $L_{b.}$

La capacidad resistente de un perfil para cada una de las tres zonas representadas en la Figura 2.6 (pandeo plástico, PLT inelástico, PLT elástico) se determina de la siguiente forma:

Pandeo plástico

Si:

$$L_b \le L_p$$
 $M_n = M_p$

PLT inelástico

Si:

$$L_p < L_b \le L_r$$

Entonces:

$$M_{n} = C_{b} \left(M_{p} - \left(M_{p} - M_{r} \right) * \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right) \le M_{p}$$

PLT elástico

Si:

$$L_{\rm b} > L_{\rm r}$$

Entonces:

$$M_n = C_b \left(\frac{\pi}{L_b} \sqrt{EI_YGJ + (\frac{\pi E}{L_b})^2 I_y C_w} \right) \leq \boldsymbol{M_p}$$

Los perfiles no compactos, debido a su geometría, se encuentran expuestos a sufrir una falla debida a pandeo lateral torsionante (PLT) y pandeo local del patín (PLP).

La capacidad resistente varía linealmente entre M_p y M_r en función de la esbeltez λ de alma o patín. Entonces, si el perfil es no compacto se deberá revisar adicionalmente, si el momento nominal obtenido con la siguiente expresión rige con respecto a los valores determinados con las ecuaciones (15) o (16) según sea el caso.

$$M_{n} = M_{p} - (M_{p} - M_{r})(\frac{\lambda - \lambda_{p}}{\lambda_{r} - \lambda_{p}})$$

Los parámetros $\pmb{\lambda},\,\pmb{\lambda}_p$ y $\pmb{\lambda}_r,$ a considerar para el patín y alma se indican en la Tabla 2.3

 $\begin{array}{|c|c|c|c|c|}\hline \text{Elemento} & \pmb{\lambda} & & \lambda_p & \lambda_r \\ \hline \text{Patin} & & \frac{b_f}{2t_f} & & \frac{55}{\sqrt{F_y}} & & \frac{118}{\sqrt{F_y-7}} \\ \hline \\ \text{Alma} & & \frac{h_c}{t_w} & & \frac{537}{\sqrt{F_y}} & & \frac{813}{\sqrt{F_y}} \\ \hline \end{array}$

Tabla 2.3 Limitaciones De Pandeo Local

2.6. Diseño al corte:

Se aplica esta sección al alma o almas sin atiesar de vigas con simetría sencilla o doble, incluso vigas hibridas (vigas armadas con planchas de diferente Resistencia), solicitadas por corte en el plano de simetría, y a perfiles solicitados por corte en el alma. Para la evaluación del área que resiste el corte se toma el peralte total del perfil.

$$\mathbf{A}_{\mathbf{w}} = \mathbf{d} * \mathbf{t}_{\mathbf{w}}$$

La Resistencia al corte de almas de vigas con $\frac{h}{t_w} \le 260$ es $\phi * V_n$ donde ϕ es igual a 0.9 y la resistencia nominal al corte, V_n se determina de la siguiente manera:

Para:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$V_n = 0.6 * F_y * A_w$$

Para:

$$\frac{350}{\sqrt{F_y}} \le \frac{h}{t_w} \le \frac{439}{\sqrt{F_y}}$$

$$V_{n} = 0.6 * F_{y} * A_{w} \frac{\frac{439}{\sqrt{F_{y}}}}{\frac{h}{t_{w}}}$$

Para:

$$\frac{439}{\sqrt{F_v}} \le \frac{h}{t_w}$$

$$V_{\rm n} = 92.700 * F_{\rm y} * \frac{A_{\rm w}}{\frac{h}{t_{\rm w}}}$$

$$V_d = \phi_b * V_n$$

 $V_u < V_d$ Si: $\frac{h}{t_w} \le 260$

no se requieren atiesadores transversales

 $V_{\rm u} > V_{\rm d}$

Se requieren atiesadores transversales

Dónde:

h= distancia libre entre las aletas, menos el filete o el radio de la esquina para perfiles de acería; para perfiles armados con platinas (vigas ensambladas), es la distancia entre líneas adyacentes de sujetadores (pernos o remaches) o la distancia libre entre aletas cuando se usa soldaduras, mm.

 t_w = espesor del alma, mm.

V_n= resistencia al corte nominal kg.

 $F_y = esfuerzo$ de fluencia especificado del alma, kg/mm^2 .

A_w= área del alma= d* t_w, mm²

V_u = resistencia al corte último, kg.

V_d= resistencia al corte obtenido del análisis de carga.

2.7. Deflexiones:

La deflexión máxima vertical de la viga, producida por el peso del trole y la carga de régimen no debe exceder de 0.001125 pulgadas por pulgada de trocha. Las fuerzas (verticales de inercia) no deberán considerarse para determinar la flexión.

Las vigas en caja convendrán que esté combada en una cantidad igual a la deflexión de la carga muerta más la mitad de la deflexión de la carga viva.

Las deflexiones de la viga de acero se limitan generalmente a ciertos valores máximos. Algunas de las buenas razones para limitar las deflexiones son las siguientes:

Las deflexiones excesivas pueden dañar los materiales unidos o soportar por las vigas consideras. Las grietas en los plafones ocasionadas por grandes deflexiones en los largueros que soportan son un ejemplo.

La apariencia de las estructuras se ve afectada por deflexiones excesivas.

Las deformaciones excesivas no inspiran confianza en las personas que utilizan una estructura, aunque existe una completa seguridad desde el punto de vista de la resistencia.

Puede ser necesario que diferentes vigas que soportan la misma carga, tengan las mismas deflexiones.

Las especificaciones LRFD no se especifican exactamente deflexiones máximas permisibles. Existen tantos materiales diferentes, tipos de estructuras y cargas que no es aceptable un solo grupo de deflexiones máximas para todos los casos. Por ello los valores máximos debe establecerlos el proyectista basándose en su experiencia y buen juicio.

Antes de sustituir a ciegas la fórmula que da la flecha de una viga para determinada condición de carga, el lector deberá saber los métodos teóricos para calcular deflexiones; entre estos métodos se incluyen los de área de momentos, los de la viga conjugada y el trabajo virtual. Con estos métodos puede obtenerse varias expresiones como la del final del párrafo para la deflexión en el centro del claro de una viga

simple con carga uniformemente repartida, para vigas simples con una carga puntual en el centro del claro y para una viga simple con dos cargas puntuales, respectivamente:

$$\Delta L = \frac{5wL^4}{384 E I}$$

$$\Delta L = \frac{PL^3}{48 E I}$$

$$\Delta L = \frac{P b}{24 E I} (3L^2 - 4b^2)$$

ΔL =Deflexión de la viga, cm.

W= Carga distribuida en la viga, kg/cm².

P= Carga puntual, kg.

E= Modulo de elasticidad, kg/cm².

I= Inercia respecto al eje x, cm⁴.

b= Distancia entre cargas puntuales. cm.

L= Longitud de la viga. cm.

En las expresiones para deflexiones como esta, el lector debe ser muy cuidadoso para usar unidades consistentes.

El combeo es un requisito muy común en vigas largas de acero. De hecho, un porcentaje bastante grande de vigas usadas actualmente en construcción compuesta son combadas. Sin embargo, en muchas ocasiones es más económico seleccionar vigas más pesadas con mayores momentos de inercia para reducir las deflexiones y evitar así los costos de mano de obra implícitos en combar las vigas. Una regla empírica comúnmente usada es que toma aproximadamente una hora-hombre de trabajo extra combar cada viga.

El combeo es una molestia para muchos fabricantes y puede introducir algunos problemas adicionales. Por ejemplo, como las vigas se comban puede ser necesario alterar los detalles de las conexiones para lograr un ajuste apropiado de los miembros. El extremo de una viga combada girara y puede entonces ser necesario girar los detalles de la conexión el mismo ángulo para garantizar un ajuste apropiado.

Si podemos escoger el perfil superior en peso, reduciendo así las deflexiones de manera que no sea necesario el combeo, tendremos una solución muy deseable. Similarmente, si se está usando un acero de resistencia superior, puede ser conveniente cambiar las vigas que necesitan combeo por un acero de fluencia de esfuerzo menor. Se tendrán entonces vigas mayores, pero menos deflexiones y tal vez ahorro si el combeo pueda eliminarse.

Las deflexiones puedan determinar el tamaño de la viga para claros grandes o para pequeños, en los que las limitaciones a la deflexión son muy severas. Para ayudar al proyectista a seleccionar secciones en la que puede regir la deflexión.

La deflexión máxima vertical de la viga, producida por el peso del polipasto y la carga de régimen no debe exceder de 0.001125 pulgadas por pulgada de trocha. Las fuerzas (verticales de inercia) no deberán considerarse para determinar la flexión.

La deflexión máxima dada para puentes grúas según la norma CMAA es:

$$\Delta L = \frac{L}{888}$$

La Deflexión máxima para las vigas testeras es:

$$\Delta L = \frac{L}{600}$$

Las vigas en caja convendrán que esté combada en una cantidad igual a la deflexión de la carga muerta más la mitad de la deflexión de la carga viva.

2.8. Compresión:

Se entiende por elemento solicitado por compresión axial aquel que trasmite una fuerza de compresión cuyas resultantes en cada extremo coinciden aproximadamente con el eje centroidal del elemento. Sin embargo, aun cuando no haya cargas que produzcan flexión, pueden presentarse momentos como resultados de imperfecciones iniciales, curvatura accidental o excentricidades no intencionales en los extremos. Tales momentos reducen la resistencia del miembro.

La falla de una columna incluye el fenómeno de inestabilidad conocido como pandeo, por cuyo resultado el elemento experimenta deflexiones de un carácter totalmente diferente al de aquellos que están asociados con la carga inicial. el caso es que cuando una columna es cargada axialmente en un comienzo se acorta, eso es, sufre deformaciones en la misma dirección de la carga, sin embargo, cuando se alcanza una determinada carga, conocida como carga critica o de pandeo, comienzan a presentarse deformaciones laterales o torsionales.

La resistencia de una barra en tensión es independiente de la longitud de la misma, mientras que es una columna tanto la resistencia como el modo de la falla dependen de su longitud. Una columna muy corta puede desarrollar una resistencia prácticamente igual a la que se determinaría si estuviese en tensión si es larga, fallara con una carga menor que la anterior, que es proporcional a la rigidez a la flexión de la barra, EI, y a su longitud, e independiente de la resistencia del material; finalmente si es de longitud intermedia, deberán considerarse otros factores en la determinación de su resistencia.

2.8.1. Longitud efectiva y limitaciones de esbeltez

Longitud Efectiva

El factor de longitud efectiva K deberá determinarse de acuerdo a la siguiente gráfica:

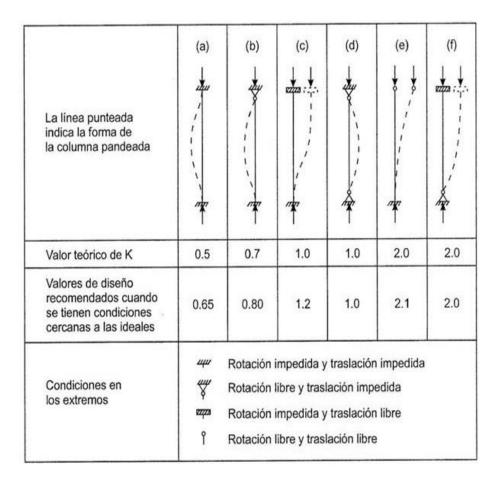


Figura 2.7 Factores de longitud efectiva para columnas

2.8.2. Resistencia de diseño en compresión para pandeo por flexión.

La resistencia de diseño para pandeo por flexión en miembros comprimidos en los que sus elementos tienen una relación ancho - espesor menor a λ

$$P_n = \emptyset_c A_g F_{cr}$$

$$\emptyset_{\rm c}=0.85$$

Factor de resistencia

En el rango inelástico, para λ≤1,5

$$F_{\rm cr} = (0.658^{\lambda_c^2}) F_{\rm y}$$

En el rango elástico, para $\lambda > 1,5$

$$F_{\rm cr} = \frac{0.877}{\lambda_c^2} F_{\rm y}$$

Dónde:

$$\lambda_{c} = \frac{KL}{r\pi} \sqrt{\frac{F_{y}}{E}}$$

A_g = área total del miembro

 F_y = esfuerzo de fluencia especificada.

E = módulo de Elasticidad.

K =factor de longitud efectiva

L =longitud lateralmente no arriostrada.

R =radio de giro respecto del eje de pandeo.

2.9. Diseño de placa base:

La columna está sometida a cargas axiales, su placa base debe ser lo suficientemente grande y gruesa para resistir las presiones ejercidas por la columna.

Existen tres casos generales de diseño para placas base sujeta solo a cargas axiales:

Caso I: A2 = A1

Caso II: A2 > 4A1

Caso III: A1 < A2 < 4A1

La aproximación más directa es tomar, conservadoramente, "A2" igual a "A1" (Caso I); no obstante, esto generalmente arroja las dimensiones más grandes de una placa base. Las dimensiones más pequeñas se obtienen cuando la relación, entre el área de concreto y el área de la placa, es mayor o igual a cuatro, esto es A2 > 4A1 (Caso II). Usualmente el área de concreto "A2" es mayor que el área de la placa base "A1", pero menor que 4A1, lo que conduce al Caso III.

A continuación se presentan los pasos a seguir para el cálculo de las dimensiones de placas base sometidas a cargas axiales.

Caso I: No se utiliza confinamiento de concreto (A2 = A1).

Calcular la carga axial última Pu.

Calcular el área mínima requerida para la placa base.

$$A_{1 \text{ req}} = \frac{P_{\text{u}}}{\emptyset_{\text{c}} 0.85 \, f_{\text{c}}}$$

Optimizar las dimensiones N y B de la placa base.

$$N = \sqrt{A_{1\text{req}}} + \Delta$$

Dónde:

$$\Delta = \frac{0.95 \text{ d} - 0.8 \text{ b}_{\text{f}}}{2}$$

Calcular:

$$B = \frac{A_{1req}}{N}$$

Determinar el espesor mínimo requerido para la placa base.

$$m = \frac{N - 0.95 d}{2}$$

$$n = \frac{B - 0.8 b_f}{2}$$

$$\lambda n' = \lambda \; \frac{\sqrt{d \; b_f}}{4}$$

Dónde:

$$\lambda = \frac{2\sqrt{X}}{1 + \sqrt{1 - X}} \le 1$$

$$X = \frac{4 d b_f}{(d + b_f)^2} * \frac{P_u}{\emptyset_c P_p}$$

$$P_{p} = 0.85 F_{c} A$$

 $l = max(m, n, \lambda n')$

Espesor de la placa:

$$t_{\min} = l \sqrt{\frac{2 P_u}{\emptyset_f F_y B N}}$$

Dónde:

Pu = La carga axial última

N = Largo de la placa base

B = Ancho de la placa base

bf = Ancho del patín de la columna

d = Peralte de la columna

 Φf = Factor de reducción de Resistencia a la flexión, igual a 0.90

Fy = Esfuerzo de fluencia especificado para la placa base

 Φ_{C} = Factor de reducción de Resistencia al aplastamiento, igual a

0.65 f'c = Resistencia a la compresión del concreto

 $A_1 =$ Área de la placa base

A2 = Área de soporte máxima, que es geométricamente similar y concéntrica con el área cargada.

2.10. Rieles:

Todos los rieles del puente serán de primera calidad y cumplirán con todos los requerimientos establecidos en las especificaciones de la ASCE, ARA-A, BETH y cualesquiera otras secciones laminadas comerciales con especificaciones equivalentes.

Los rieles del puente estarán unidos por barras de unión normalizadas o soldados. Los extremos de las secciones sin soldar estarán a escuadra, uniéndose las secciones sin abertura entre los extremos, se tomarán previsiones para prevenir el deslizamiento de

los rieles del puente, estarán firmemente asegurados en su lugar para mantener su distancia entre centros, el trole deberá estar de acuerdo con la norma CMAA (Asociación Americana Manufacturera de Grúas 70) Tabla 4.13.3-4 y consistentes en el diámetro de las ruedas y la carga máxima sobre las ruedas.

2.11. Ruedas

Las ruedas metálicas son elementos de apoyo que facilitan el desplazamiento en los aparatos de elevación.

Las ruedas unidas directamente al elemento motriz son denominadas tractoras, el resto son libres.

Los perfiles de rodadura pueden constar de uno o dos salientes laterales o pestañas, con objeto de direccionar el movimiento de la rueda a lo largo de los raíles. Las ruedas sin pestañas pueden utilizarse solamente en presencia de rodillos guía complementario con el eje vertical de rotación.

La superficie de rodadura puede ser cilíndrica o cónica. La conicidad habitualmente alcanza el valor 1:20 (1:16 en ruedas americanas) con los vértices del cono hacia el exterior.

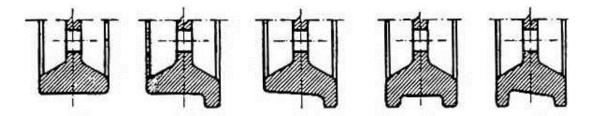


Figura 2.8 Tipos de Perfiles de Rodadura

Llanta cilíndrica: grúas con accionamiento independiente, grúas que tiene un número de ruedas mayor que cuatro y ruedas libres

Llanta cónica: grúas con mecanismo de avance con accionamiento central y con dos ruedas impulsoras.

Las llantas suelen ser de 30 a 40 mm más anchas que el carril, tal que exista el juego necesario para el guiado.

Pestaña única. se utiliza:

Cuando la distancia entre carriles no sobrepasa los cuatro metros y ambos caminos se encuentran en la misma cota vertical. La disposición de las pestañas de las ruedas en un rail es opuesta a la disposición de las pestañas de las ruedas del otro rail.

En los carros de apoyo y suspendidos de los puentes grúa.

En los carros suspendidos que se desplazan por un monorail.

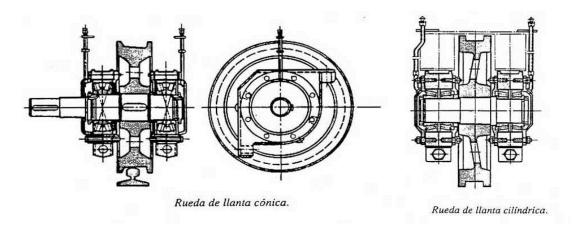


Figura 2.9 Tipo de Ruedas

Las pestañas deben ser ampliamente dimensionadas, son solicitadas por las fueras de guiado frecuentemente muy importantes y están expuestas a un gran desgaste.

Esto es igualmente válido para la llanta de la rueda, solicitada localmente por las grandes reacciones normalmente admitidas en los aparatos de elevación y por el desgaste acelerado del servicio duro.

En el caso de rueda libre sobre eje fijo, la unión entre rueda y eje se lleva a cabo mediante casquillos de bronce y rodamientos.

En las ruedas motoras es útil transmitir el esfuerzo tangencial mediante casquillos y rodamientos que absorben los esfuerzos de cortadura.

La facilidad de montaje y desmontaje es un factor influyente en el diseño de la instalación, el cambio de ruedas y rodamientos es una operación relativamente frecuente.

2.12. Fexión simple o compuesta en vigas de hormigon

En secciones rectangulares de hormigón armado sometidas a flexión simple, siempre se conocen, tanto el momento de cálculo M_d como las Resistencia de cálculo de los materiales. El momento reducido de cálculo es:

$$\mu_{\rm d} = \frac{M_{\rm d}}{b \, d^2 \, f_{\rm cd}}$$

Desde el punto de vista económico conviene disponer armadura de compresión para valores de μ_d mayors que el momento limite μ_{lim} , ya que de esta forma se aprovecha integramente la armadura de tracción. Recuérdese que los valores mínimos, para ceros deformados en frio son:

$$\epsilon_{lim} = 0,4696 \qquad \quad \mu_{lim} = 0,260 \qquad \quad w_{lim} = 0,325$$

2.12.1. Canto mínimo

Generalmente se fija el ancho b de la sección y, por tanto, las únicas incógnitas son el canto útil d y la armadura de tracción. Por definición el canto mínimo corresponde a una profundidad del eje neutro igual al valor límite, por lo que se obtiene haciendo x=0.4696*d y A`=0, obtenemos:

$$\frac{M_{\rm d}}{{\rm b}\,{\rm d}^2\,{\rm f}_{\rm cd}} = 0.260$$

$$\frac{A * f_{yd}}{b d^2 f_{cd}} = 0.325$$

En donde se tiene:

$$d_{\min} = 1.96 * \sqrt{\frac{M_d}{b * f_{yd}}}$$

$$A_s = w_s * b_w * d * \frac{f_{cd}}{f_{yd}}$$

2.12.2. Esfuerzo cortante reducido:

Las comprobaciones relativas al estado límite de agotamiento por esfuerzo cortante pueden llevarse a cabo a partir del esfuerzo cortante reducido, V_d , dado por la siguiente

Expresión:

$$\mathbf{V_d} = \mathbf{V_d} + \mathbf{V_{cd}}$$

Dónde:

 V_d = Valor de cálculo del esfuerzo cortante, producido por las acciones exteriores.

 V_{cd} = Valor de cálculo de la componente paralela a la sección, de la resultante de tensiones normales, tanto de compresión como de tracción, sobre las fibras longitudinales de hormigón, en piezas de sección variable.

Comprobaciones a realizar

El estado límite de agotamiento por esfuerzo cortante puede alcanzarse ya sea por agotarse la resistencia a compresión del alma o por agotarse su resistencia a tracción. En consecuencia, es necesario comprobar que se cumple simultáneamente:

 $V_d \le V_{cu}$

 $V_d \le V_{ou}$

Dónde:

V_d = Esfuerzo cortante reducido de cálculo

V_{ou} = Esfuerzo cortante de agotamiento por compresión oblicua en el alma.

V_{cu} = Esfuerzo cortante de agotamiento por tracción en el alma.

Obtención del esfuerzo cortante de agotamiento por compresión

El esfuerzo cortante de agotamiento por compresión oblicua del hormigón del alma se deduce de la siguiente expresión:

 $V_{ou} = 0.30 \text{ fcd } (1 + \text{cotg a}) \text{ b} \cdot \text{d} /> 0.45 \text{ fcd} \cdot \text{b} \cdot \text{d}$ En el caso de armadura transversal formada por barras levantadas y estribos normales al eje de la pieza.

$$V_{ou} = 0.30 \text{ fcd} \cdot b \cdot d$$

Esta comprobación no se exige en el eje del apoyo, sino en su borde.

Obtención del esfuerzo cortante de agotamiento por tracción

El esfuerzo cortante de agotamiento por tracción en el

$$V_{su} \equiv V_d + V_{cu} \label{eq:vsu}$$

Donde:

 $V_{su}=$ contribución de la armadura transversal de alma a la resistencia a esfuerzo cortante.

 $V_{cu} = contribución del hormigón a la resistencia a esfuerzo cortante.$

Cálculo de V_{su}

$$V_{su} = S As \cdot f_{yd} 0,9 \cdot d$$

fyd = resistencia de cálculo de las armaduras transversales.

Cálculo de V_{cu}

En general, el término V_{cu} de cálculo se tomará igual a:

$$V_{cu} = f_{vd} \cdot bw \cdot d$$

Siendo:

d = canto útil de la sección;

 b_w = anchura del alma de la viga;

 f_{vd} = resistencia virtual de cálculo del hormigón a esfuerzo cortante, dada en kp/cm2 por la expresión:

$$f_{vd} = 0.50\sqrt{f_{cd}}$$

Dónde:

 f_{cd} = resistencia de cálculo del hormigón, expresada en kilopondios por centímetro cuadrado.

Armadura mínima

$$A_{min} = \frac{0.002 f_{cd} b_w s}{f_{yd}}$$

2.13. Soldaduras:

La soldadura es un proceso en el que se unen partes metálicas mediante el calentamiento de sus superficies a un estado plástico, permitiendo que las partes fluyan y se unan con o sin la adición de otro metal fundido.

Los tipos de soldaduras son las soldaduras de filete y de ranura. Existen además las soldaduras de tapón y de muesca que no son comunes en el trabajo estructural. Estos tipos de soldadura se muestran en la figura (2.10).

Las soldaduras de filete han demostrado ser más débiles que las soldaduras de ranura; sin embargo, la mayoría de las conexiones estructurales se realizan con soldaduras de filete.

Las soldaduras de ranuras se usan cuando los miembros que se conectan están alineados en el mismo plano. Usarlas en cualquier situación implicaría un ensamble perfecto de los miembros por conectar.

Las soldaduras de ranura son bastante comunes en muchas conexiones tales como los empalmes en columnas y las conexiones de patines de vigas a columnas, etc. las soldaduras de ranura comprenden:

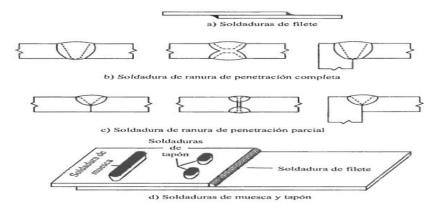


Figura 2.10 Tipos de soldaduras estructurales

2.13.1. Soldaduras de ranura:

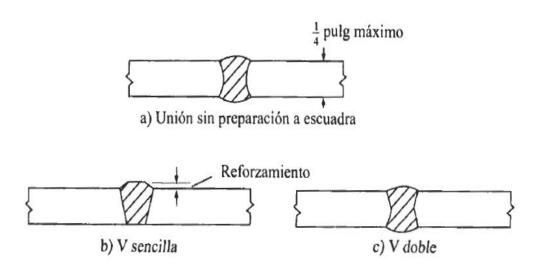


Figura 2.11 soldaduras de ranura

La penetración es completa y las soldaduras de ranura están sujetas a tensión o compresión axial, el esfuerzo en la soldadura se supone igual a la carga, dividida entre el área transversal neta de la soldadura. En la figura (2.11) se muestran tres tipos de soldaduras de ranura. La unión sin penetración, mostrada en la parte a) de la figura, se utiliza para unir material relativamente delgado, de hasta aproximadamente 5/16 pulgadas (7,90mm) de espesor. A medida que el material es más grueso, es necesario usar soldaduras de ranura en V, y de soldaduras de ranura doble V como las ilustradas en las partes b) y c) de la figura (2.11) respectivamente, para permitir la penetración total de la soldadura. Se dice que las soldaduras de ranura mostradas en la figura (2.11) tienen refuerzo. El refuerzo es metal de aportación que hace mayor la dimensión de la garganta que la del espesor del material soldado. En función del refuerzo, las soldaduras de ranuras se llaman soldaduras de 100%,125%,150%, etc según sea el espesor extra en la soldadura, es indudable que el refuerzo origina soldaduras de ranura más fuertes.

En la figura (2.12) se muestran algunas de las preparaciones en los bordes, para las soldaduras de ranura. En la parte a) se muestra un borde biselado. Cuando se usan

estos bordes existe siempre el problema de la socavación; esta se puede reducir dándole al bisel una porción recta b) o usando una solera de respaldo como se muestra en c).

La placa de respaldo puede ser de cobre de ¼ pulgada de espesor o mayor. El metal de aportación no se adhiere al cobre y este tiene una muy alta conductividad que resulta útil para remover el exceso de calor y reducir la distorsión. En ocasiones se usan respaldos de acero, los que generalmente se dejan para que formen parte de la conexión. Las porciones rectas en los biseles no deben usarse con bisel d) a veces se introducen separadores para prevenir la socavación; estos se remueven después de soldar por un lado de la junta.

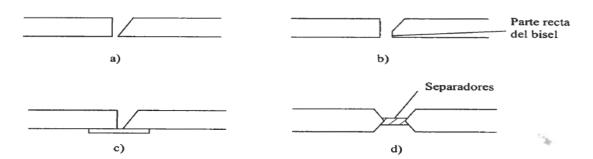


Figura 2.12 Preparación de los bordes para soldaduras de ranura a) canto biselado b) bisel con parte recta c) bisel con placa de respaldo d) bisel doble con separador

Soldaduras de filete:

Mediante pruebas se ha demostrado que la soldadura de filete es más resistente a la tensión y a la compresión que al corte, de modo que los esfuerzos a determinar en soldadura de filete son los esfuerzos de corte. Para ello cuando se utiliza soldadura de filete es conveniente arreglar las conexiones de tal forma que solo se encuentren sujetas a esfuerzos cortantes, y no a esfuerzos combinados de cortante - tensión o cortante – compresión.

Generalmente este tipo de soldadura cuando se le somete a pruebas de ruptura suele fallar por cortante en ángulos aproximados a 45°, en la parte de la garganta la

resistencia para este tipo de soldadura se supone igual al esfuerzo de corte permisible por el área teórica de la garganta (área de la garganta igual al grueso teórico de la garganta por la longitud de la soldadura). Se debe considerar que para filetes de 45° o de lados iguales el grueso de la garganta es 0.707 veces el tamaño de la soldadura.

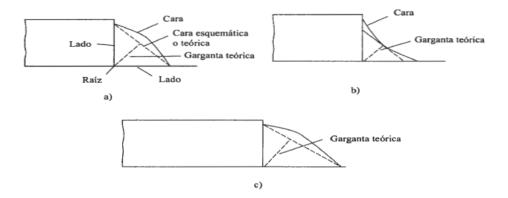


Figura 2.13 a) superficie convexa b) superficie cóncava c) soldadura de filetes de lados desiguales

La soldadura de filete de preferencia debe tener una superficie plana o ligeramente convexa, ver la figura 2.14, puesto que un filete cóncavo de contraer y su superficie tiene lugar una tensión, lo que tiende a agrietar, pero se está es convexa la contracción no provocara tensión en la superficie sino lo contrario como la cara se acorta, se produce compresión.

También se debe considerar que el ángulo más conveniente para este tipo de soldadura esta en los 45° y las dimensiones de sus lados deben ser iguales.

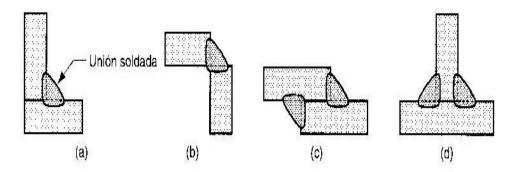
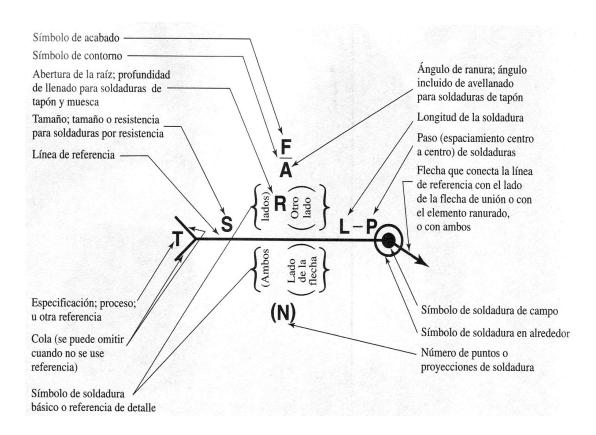



Figura 2.14 soldadura de filete

Sibologia basica para soldaduras:

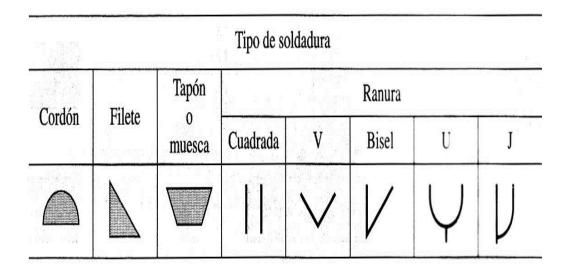


Figura 2.15 simbología para soldaduras (AISC)

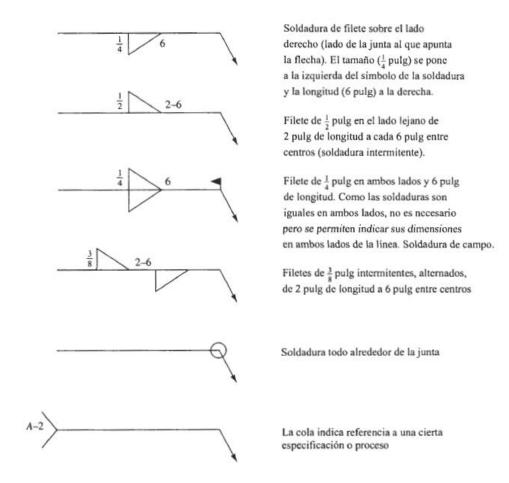
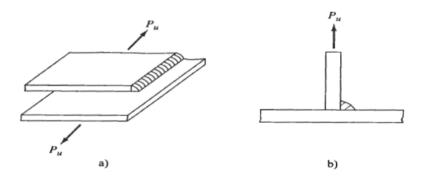



Figura 2.16 ejemplos de símbolos de soldadura

2.13.2. Resistencia de la soldadura:

Figura 2.17 a) soldadura de filete longitudinal b) soldadura de filete transversal Las soldaduras de filete transversales son más fuertes por dos razones. Ellas quedan sometidas a esfuerzos más uniformes sobre su longitud, mientras que las soldaduras

53

de filete longitudinales quedan sometidas a esfuerzos no uniformes debido a

deformaciones que varían a lo largo de su longitud. Además, las pruebas muestran

que la falla ocurre según ángulos diferentes a 45°, por lo que las soldaduras tienen

entonces áreas efectivas más grandes en la garganta.

El método de determinar la resistencia de los filetes a lo largo de sus ejes

longitudinales independientemente de la dirección de la carga tiene por objeto

simplificar los cálculos.

En las soldaduras el material del electrodo deberá tener propiedades del metal base

(es decir sus resistencias nominales son similares).

En la figura 2.18 (tabla 2.5 de las especificaciones LRFD) proporciona las

resistencias nominales de varios tipos de soldadura incluyendo las de filete, de tapón,

de muesca y las de ranura con penetración completa y parcial.

La resistencia de diseño de una soldadura especifica se toma como el menor de los

valores ØF_w, (F_w es la resistencia nominal de la soldadura) y ØF_{BM}, (F_{BM} es la

resistencia nominal del metal base).

Para las soldaduras de filete la resistencia nominal por esfuerzos en eel área efectiva

de la soldadura es 0,60 F_{XX} (F_{XX} es la resistencia por clasificación del metal base) yφ

es igual a 0,75. Si se tiene tensión o compresión paralela al eje de la soldadura, la

resistencia nominal del metal base F_{BM}esF_v y φ es igual a 0,90. La resistencia de

diseño por cortante de los miembros conectados es Φf_nA_{ns} en donde:

 $\Phi = 0.75$

 $f_n = 0.60 F_u$

A_{ns}= área neta sujeta a cortante

TABLA 14.1 RESISTENCIA DE DISEÑO DE SOLDADURAS

Tipos de soldadura y esfuerzo [a]	Material	Factor ϕ de resistencia	Resistencia nominal F _{BM} o F _w	Nivel de resistencia requerido [b,c]
	Soldadura de ran	nura con penetrac	ión completa	
Tensión normal al área efectiva	Base	0.90	F_{y}	Debe usarse soldadura "compatible".
Compresión normal al área efectiva	Base	0.90	F,	Puede usarse un metal de aportación (electrodo) con un nivel de resistencia igual o menor que el "compatible".
Tensión o compresión paralela al eje de la soldadura				
Cortante en el área efectiva	Base; electrodo de soldadura	0.9 0.80	0.60F _{ex} 0.60F _{ex}	
	Soldaduras de r	anura con penetr	ación parcial	le le
Compresión normal al área efectiva	Base	0.90	F_{j}	Puede usarse un metal de aportación (electrodo) con un nivel de resistencia igual o menor que el "compatible".
Tensión o compresión paralela al eje de la soldadura [d]				
Cortante paralelo al eje de la soldadura	Base, electrodo de soldadura	0.75	[e] 0.60 F _{EXX}	
Tensión normal al área efectiva	Base, electrodo de soldadura	0.90 0.80	F _y 0.60F _{EXX}	
	Sol	daduras de filete		
Cortante en el área efectiva	Base; electrodo de soldadura	0.75	[e] 0.60F _{EXX}	Puede usarse un metal de aportación (electrodo) con un nivel de resistencia igual o menor que el "compatible".
Tensión o compresión paralela al eje de la soldadura [d]	Base	0.90	F,	
	Soldadu	ras de tapón o mu	iesca	448
Cortante paralelo a las superficies de contacto (sobre el área efectiva)	Base, electrodo de soldadura	0.75	[e] 0.60 F _{EXX}	Puede usarse un metal de aportación (electrodo) con un nível de resistencia igual o menor que el "compatible".

Fuente: American Institute of Steel Construction, Manual of Steel Construction, Load & Resistance Factor Design, 2a. ed. Chicago, AISC, 1994, tabla J2.25, pág. 6-78. Recimpreso con autorización del AISC.

Figura 2.18 resistencia de diseño de soldaduras

Tamaños mínimos para soldaduras:

Estos tamaños mínimos no se desarrollaron con base en consideraciones de resistencia sino debido al hecho de que los materiales gruesos tienen un efecto de

enfriamiento rápido en las soldaduras pequeñas; cuando esto sucede, en las soldaduras se manifiesta perdidas de ductilidad.

Espesor del material de la parte unida con mayor espesor (pulg)	Tamaño mínimo de la soldadura de filete ^a (pulg)	
Hasta ¹ / ₄ inclusive	1/8	
Mayor de $\frac{1}{4}$, hasta $\frac{1}{2}$ inclusive	3	
Mayor de $\frac{1}{2}$, hasta $\frac{3}{4}$ inclusive	1/4	
Mayor de $\frac{3}{4}$	<u>5</u> 16	

Figura 2.19 tamaños mínimos para soldaduras de filete

2.13.3. Cortante y torsión:

A menudo en las soldaduras de filete están sometidas a cargas aplicadas excéntricamente, por lo que las soldaduras quedan expuestas a cortantes y torsión, o bien a cortante y flexión.

Método Elástico

En este método la fricción a resistencia al deslizamiento entre las partes conectadas se ignora ya que estas se suponen totalmente rígidas.

Se considera que toda la deformación ocurre en la soldadura; el esfuerzo ocasionado por la torsión se puede calcular con la siguiente expresión.

$$f = \frac{Td}{I}$$

Dónde:

T=par de torsión.

d=distancia del c.g de la soldadura al punto que se considera.

J=momento polar de inercia de la soldadura.

Se puede descomponer la fuerza en sus componentes horizontales y verticales (h y v) que corresponden a las componentes de la distancia.

$$f_h = \frac{Tv}{I} \qquad \qquad f_v = \frac{Th}{I}$$

Para diseñar una soldadura sujeta a corte y torsión es conveniente considerar una soldadura de una pulgada, y calcular los esfuerzos en una soldadura de estas dimensiones. Si la soldadura considerada estuviera sobre esforzada, se necesitaría una soldadura más grande; si estuviera sub esforzada es conveniente una soldadura menos. Dentro de todas las posibilidades mostrar que una soldadura este sobre esforzado o sub esforzada no se tiene que estar repitiendo el proceso matemático para encontrar la dimensión de la soldadura.

Soldaduras de ranura de penetración completa y de penetración parcial:

Cuando se unen placas de diferentes espesores, la resistencia de una soldadura de penetración completa se basa en la resistencia de la placa más delgada. En forma similar, si se unen placas de diferentes resistencias, la resistencia de una soldadura de penetración completa se basa en la resistencia de la placa más débil.

Las soldaduras de penetración completa son el mejor tipo de soldadura para resistir fallas de fatiga. De hecho, en algunas especificaciones ellas son las únicas soldaduras de ranura permitidas si la fatiga es posible.

Soldaduras de ranura de penetración parcial:

Estas Soldaduras no se extienden completamente sobre todo el espesor de la parte conectada. Tales soldaduras pueden hacerse desde uno o ambos lados con o sin preparación de los bordes (biseles).

Las soldaduras de ranura de penetración parcial suelen ser económicas cunado no se requiere que desarrollen grandes fuerzas en los materiales conectados como en los empalmes de columnas y en las conexiones de las diversas partes de miembros compuestos.

Cálculos necesarios para determinar la resistencia de las soldaduras de ranura de penetración completa y parcial:

La resistencia de diseño por cortante del miembro es la menor de los tres valores siguientes:

Fractura por cortante del material base = $\phi F_n A_{ns}$

$$\phi = 0.75$$

$$F_n = 0.60F_u$$

 $A_{ns} = area$ neta sometida a cortante

Fluencia por cortante de los elementos conectados

$$\phi R_n = \phi (0.60 A_{vg}) * F_y$$

$$\phi = 0.90$$

 $A_{ns}=$ area total sometida a corte

Fluencia por cortante de soldadura = $\phi F_w = \phi(0.60F_{XX}) * A_w$

$$\phi = 0.75$$

 A_w = area de la soldadura

3. INGENIERIA DEL PROYECTO

3.1. Relevamiento del lugar de emplazamiento

Se obtuvo los siguientes datos:

Longitud de la viga principal: 11 metros

Longitud de translación del grúa semi- pórtico: 11.5 metros

Altura desde el piso hasta la ménsula: 5.3 metros

3.2. Parámetros de diseño:

Capacidad de carga de servicio	5000 kg
Claro (L)	11 m
tipo de servicio	clase "C"
Altura de Izaje	5 m

Velocidades de operación media:		
Aparejo (gancho)	14 pies/min	
Trole	50pies/min	
Puente	50 pies/min	

Polipasto DRH:DST/N		
Distancia entre ruedas	89cm	
Luz del carro	100cm	
Número por ramales	2	
Tambor	С	
Peso	716 kg	

Cargas verticales:		
Carga máxima a levantar (Cl)	5000 kg	
Peso del polipasto (Pp)	716kg	
Margen de impacto (Mi)	0,3*5000 kg= 1500 kg	

Material ASTM A-36		
Esfuerzo de fluencia(Fy)	2530 kg/cm2	
Módulo de elasticidad	2100000 kg/cm2	

3.3. Elementos de carga a levantar:

Se realiza tres análisis de los elementos tipos a levantar que son:

Elemento 1: viga de hormigón armado:

L=5,00 m

 $b_{w} = 0.3 \text{ m}$

h=1,20 m

Cálculo del volumen

$$V = b_w * h * L$$

$$V = 0.3m * 1.20m * 5m$$

 $V = 1.80 \text{ m}^3$

Peso de la viga

$$P = V * \gamma_H * P = 1,80 \text{ m}^3 * 2500 \text{ kg/m}^3$$

$$P = 4500 \text{ kg}$$

Elemento 2: losa de hormigón armado:

$$L = 5,00 \text{ m}$$

$$b_w = 1.2 \text{ m}$$

Cálculo del volumen

$$V = b_w * b * L$$

$$V = 1.2 \text{ m} * 0.20 \text{ m} * 5 \text{ m}$$

$$V = 1.2 \text{ m}^3$$

Peso de la viga

$$P = V \ast \gamma_H$$

$$P = 1,20 \text{ m}^3 * 2500 \text{ kg/}_{\text{m}^3}$$

$P=3000\;kg$

Elemento 3: viga de hormigón pretensado

$$L=5,00 \text{ m}$$

$$b_w = 1.2 \text{ m}$$

$$h = 0.20 \text{ cm}$$

Cálculo del volumen

$$V = A * L$$

$$V = 0.12 \text{ m}^2 * 16 \text{ m}$$

$$V = 1,92 \text{ m}^3$$

Peso de la viga

$$P = V * \gamma_H$$

$$P = 1.92 \text{ m}^3 * 2500 \text{ kg/m}^3$$

$$P = 4800 \text{ kg}$$

Se elige la máxima carga de los elementos a levantar para el diseño del grúa semipórtico que es de 5 toneladas.

3.4. Verificación a dilatación:

En el cálculo de las deformaciones, se adoptarán los siguientes valores para el coeficiente de dilatación térmica:

• Acero laminado 0,000012 m/m °C

$$\Delta_L \! = L * \Delta_T * \alpha$$

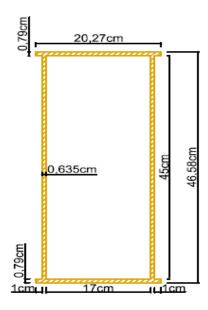
 $\alpha = Acero laminado 0,000012 m/m °C$

$$L = 11 \text{ m}$$

$$\Delta_L = 11 \text{ m} * (40 * 0.000012 \text{ m/m} ^{\circ}\text{C})$$

$$\Delta_L = 0.00264m = 0.3cm = 3mm$$

$$L_f = L + \Delta_L$$


$$L_f = 11 \text{ m} + 0.00264 \text{ m}$$

$$L_f = 11.00264 \text{ m}$$

ALTERNATIVA N°1

Diseño de la viga principal (sección cajón):

Sección cajón corte (A-A):

Limitaciones para el diseño según CMAA#70 (3.5)

$$\frac{L}{L} \leq 25$$

$$h \ge \frac{L}{25}$$

$$\frac{L}{h} \leq 25 \hspace{1cm} h \geq \frac{L}{25} \hspace{1cm} h \geq \frac{1100 \text{ cm}}{25} \hspace{1cm} h \geq 44 \text{ cm}$$

$$\frac{L}{b} \leq 65$$

$$b \ge \frac{L}{65}$$

$$b \ge \frac{1100 \text{ cm}}{65}$$

$$\frac{L}{b} \le 65$$
 $b \ge \frac{L}{65}$ $b \ge \frac{1100 \text{ cm}}{65}$ $b \ge 16.92 \text{ cm}$

$$\frac{h}{t_{m}} \le 240$$

$$t_w \ge \frac{h}{240}$$

$$\frac{h}{t_w} \le 240$$
 $t_w \ge \frac{h}{240}$ $t_w \ge \frac{44 \text{ cm}}{240}$ $t_w \ge 0.18 \text{ cm}$

$$t_w \ge 0.18 \text{ cm}$$

$$\frac{b}{t_f} \le 60$$

$$t_f \ge \frac{b}{60}$$

$$\frac{b}{t_f} \le 60$$
 $t_f \ge \frac{b}{60}$ $t_f \ge \frac{16.92 \text{ cm}}{60}$ $t_f \ge 0.28 \text{ cm}$

$$t_f \ge 0.28 \text{ cm}$$

Dimensiones adoptadas de la sección tipo cajón:

$$h = 45 \text{ cm}$$

$$b = 17 \text{ cm}$$

$$t_w = 0.635$$
 cm

$$t_f = 0.79 \text{ cm}$$

$$e = 1 cm$$

Además, según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \leq \frac{55}{\sqrt{F_y}}$$

$$\frac{17\text{cm}}{2*0.79\text{ cm}} \le \frac{55}{\sqrt{25,30\text{ kg/mm}^2}}$$

$$10.76 \le 10,93$$
 Cumple

$$\frac{h}{t_w} \le \frac{537}{\sqrt{F_y}}$$

$$\frac{45 \text{ cm}}{0.635 \text{ cm}} \le \frac{537}{\sqrt{25,30 \text{ kg/mm}^2}}$$

$$70.87 \le 106,76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(20.27 * 0.79) + 2(45 * 0.635) = 89.177 \text{ cm}^2$$

Centroide de la sección

$$X_{C}=10.135 \text{ cm}$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 20.27 * 0.79^3 + (20.27 * 0.79) \left(23.29 - \frac{0.79}{2}\right)^2 = 8394.7 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.635 * 45^3 = 4822.03 \text{ cm}^4$$

$$I_X = 2(8394.7) + 2(4822.03) = 26433.46 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 45 * 0.635^3 + (45 * 0.635)(10.135 - 1.318)^2 = 2222.366 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.79 * 20.27^3 = 548.286 \text{ cm}^4$$

$$I_Y = 2(2222.366) + 2(548.286) = 5541.304 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_{y} = \sqrt{\frac{I_{Y}}{A}}$$

$$r_y = \sqrt{\frac{5541.304 \text{ cm}^4}{89.177 \text{ cm}^2}} = 8 \text{ cm}$$

Análisis de carga:

Peso propio de la viga:

$$w_p = A * ?$$

$$w_p = \frac{89.177 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 70 \frac{\text{kg}}{\text{m}}$$

La carga a izar es de 5000kg, como es un diseño de una puente grúa birriel (dos vigas), la carga se reparte en dos y por lo dicho solo se ara el diseño de una sola viga con una carga de 2500kg.

Carga por rueda:

$$\begin{aligned} & \text{Cr}_1 = \left(\text{Cl} * \text{Fi} + \frac{\text{Pp}}{2}\right) * 0.68 = \left(2500 \text{ kg} * 1.3 + \frac{716 \text{ kg}}{2}\right) * 0.68 = 2453.44 \text{ kg} \\ & \text{Cr}_2 = \left(\text{Cl} * \text{Fi} + \frac{\text{Pp}}{2}\right) * 0.32 = \left(2500 \text{ kg} * 1.3 + \frac{716 \text{ kg}}{2}\right) * 0.32 = 1154.5 \text{ kg} \end{aligned}$$

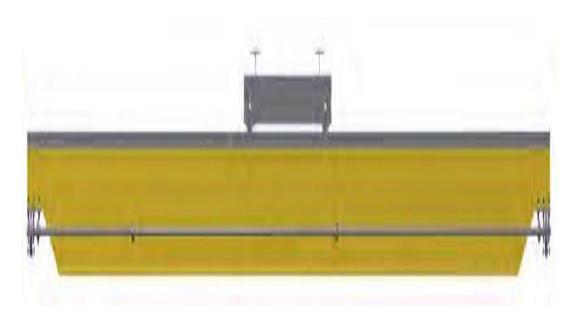
Análisis de carga producidos por la ruedas del polipasto:

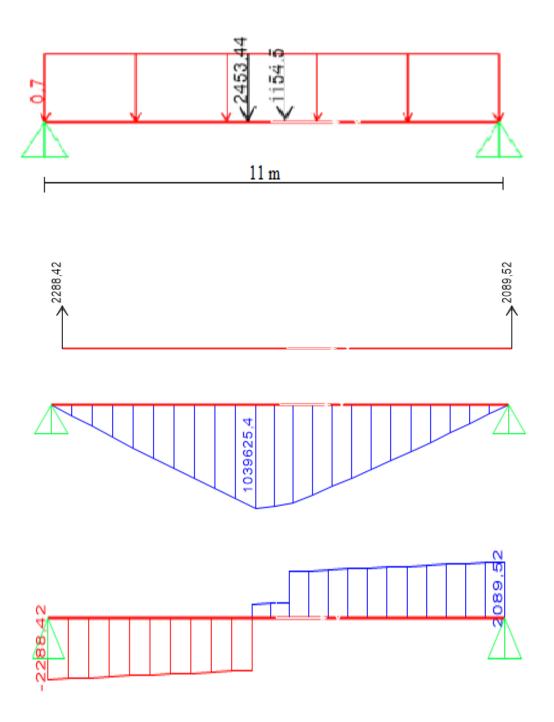
Teorema de barré:

$$R = Cr_1 + Cr_2$$

$$\sum M_{Cr1} = 0$$

$$R*m = Cr_2*a$$


$$m = \frac{Cr_2 * a}{R} = \frac{1154.5 \text{ kg} * 0.89\text{m}}{3607.94 \text{ kg}} = 0.285\text{m}$$


$$\frac{m}{2} = 0.143m$$

$$X = \frac{L}{2} - \frac{m}{2} = 5.357 \text{ m}$$

$$L_1 = 4.912 \text{ m}$$

Diagrama de momentos y cortantes:

$$M_{MAX} = 10396.25 kg. \, m$$

$$V_{MAX}=2288.42~\mathrm{kg}$$

Diseño a flexión:

Análisis plástico:

Longitud máxima:

$$L_{\rm pd} = \frac{3500 + 2100^{\ M_1} / _{M_2}}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 0}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 80 \text{mm} = 11067.194 \text{mm}$$

$$L_b \leq L_{pd}$$

Donde L_b=11000mm=luz de la viga

 $11000 \text{mm} \le 11067.194 \text{mm}$

Diseño plástico

Cálculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_{X} = 2\left((20.27 * 0.79) * \left(23.29 - \frac{0.79}{2}\right) + 2(22.5 * 0.635) * 11.25\right)$$

$$Z_X = 1391.74 \text{cm}^3$$

$$M_p = Z_x * F_y$$

$$M_p = 1391.74 * 2530 = 3521102.2 \text{ kg. cm}$$

$$M_n = \emptyset M_p$$

$$M_{\rm n} = 0.9 * 3521102.2 = 3168991.98 \, {\rm kg. \, cm} = 31689.92 {\rm kg. \, m}$$

$$M_n > M_u$$

$$31689.92 \text{ kg. m} > 10396.254 \text{kg. m}$$

Cumple

Diseño a Corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$\frac{45\text{cm}}{0.635\text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

 $70.87 \le 69.58$ no cumple

$$\frac{350}{\sqrt{F_y}} \leq \frac{h}{t_w} \leq \frac{439}{\sqrt{F_y}}$$

$$\frac{350}{\sqrt{25.3 \text{ kg/mm}^2}} \le \frac{45}{0.635} \le \frac{439}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$69.59 \le 70.87 \le 87.28$$

$$V_{n} = 0.6 * F_{y} * A_{w} \frac{\frac{439}{\sqrt{F_{y}}}}{\frac{h}{t_{w}}}$$

$$V_{n} = 0.6 * 25.3 \text{kg/mm}^{2} * (488.1 \text{mm} * 6.35 \text{mm}) \frac{\frac{439}{\sqrt{25.3 \text{kg/mm}^{2}}}}{\frac{450 \text{mm}}{6.350 \text{mm}}} = 57945.51 \text{ kg}$$

$$V_d = \phi_b * V_n$$

$$V_d = 0.9 * 57945.51 = 52151.013$$
kg

$$V_{\rm d} > V_{\rm u}$$

$$52151.013 \text{ kg} > 2288.42 \text{kg}$$

$$\frac{h}{t_w} \le 260$$

$$\frac{45\text{cm}}{0.635\text{cm}} \le 260$$

$$70.87 \le 260$$

no necesita atiesadores

Deflexión:

$$\Delta L = \frac{5wL^4}{384 \text{ E I}} + \frac{P \text{ b}}{24 \text{ E I}} (3L^2 - 4b^2)$$

$$\Delta L = \frac{5*0.7*1100^4}{384*2100000*26433.46} + \frac{2453.44*89}{24*2100000*26433.46} (3*1100^2 - 4*89^2)$$

$$\Delta L = 0.83$$
cm

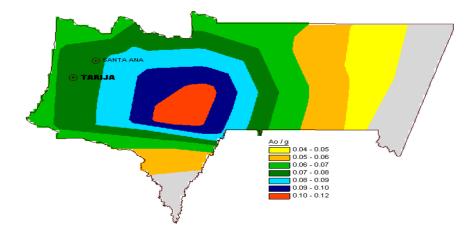
$$\Delta L_{max} = \frac{1100}{888} = 1.238 cm$$

$$\Delta L_{max} > \Delta L$$
 cumple

Cargas horizontales:

Margen de impacto supuesto M_i=10%

$$C_{rh1} = C_{r1} * 0.10$$

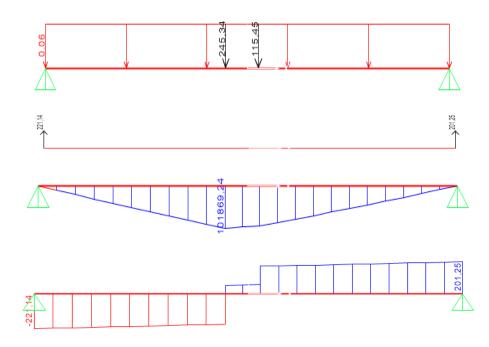

$$C_{rh1} = 2453.44 \ kg * 0.10 = 245.344 kg$$

$$C_{rh2} = 1154.5 \text{ kg} * 0.10 = 115.45 \text{kg}$$

Carga sísmica

CIUDAD CAPITAL	DEPARTAMENTO	Ao/g	ESPECTRO
TRINIDAD	BENI	0.05	TIPO 1
COCHABAMBA	COCHABAMBA	0.10	TIPO 6
SUCRE	CHUQUISACA	0.10	TIPO 6
LA PAZ	LA PAZ	Según zonas	TIPOS A, B, C y E
ORURO	ORURO	0.06	TIPO 2
POTOSI	POTOSÍ	0.07	TIPO 3
COBIJA	PANDO	0.06	TIPO 2
SANTA CRUZ	SANTA CRUZ	0.08	TIPO 4
TARIJA	TARIJA	0.08	TIPO 4

Tabla TC3-1. Aceleraciones esperadas en suelo firme para ciudades capitales.


$$C_S = A * W_p$$

$$C_S = 0.08 * 70 \frac{kg}{m} = 5.6 \frac{kg}{m}$$

Fs=61.6 kg

Carga horizontal total:

$$C_{T=}61.6 \text{ kg} + 360.79 = 422.4 \text{ kg}$$

$$M_{MAX} = 1018.70 \text{ kg. m}$$

$$V_{MAX}=221.14\ \mathrm{kg}$$

Momento de torsión:

$$M_T = C_h * \frac{d}{2}$$

$$M_T = 422.4 \text{kg} * \frac{46.58 \text{cm}}{2} = 9884.276 \text{ kg. cm}$$

Rigidez torsional:

$$K_{T} = \frac{4A_{i}^{2}}{\int \frac{ds}{t}}$$

$$K_{T} = \frac{4((17.635 - 0.635)(45.79 - .79))^{2}}{2\left(\frac{(17.635 - 0.635)}{0.635} + \frac{(45.79 - 0.79)}{0.79}\right)} = 13978.246 \text{ cm}^{4}$$

$$G = \frac{E}{2(1+\mu)}$$

Donde μ es coeficiente de poisson=0.3

$$G = \frac{2100000 \frac{\text{kg}}{\text{cm}^2}}{2(1+0.3)} = 807692.308 \frac{\text{kg}}{\text{cm}^2}$$

$$\theta = \frac{M_{\rm T}}{G \, K_{\rm T}}$$

$$\theta = \frac{9884.276 \text{ kg. cm}}{807692.308 \frac{\text{kg}}{\text{cm}^2} * 13978.246 \text{cm}^4} = 0.000000875 \frac{\text{rad}}{\text{cm}}$$

Esfuerzo torsional máximo:

$$F_{vmax} = \frac{M_T}{2A_i t_{min}}$$

$$F_{\text{vmax}} = \frac{9884.276 \text{kg. cm}}{2 * 807.507 \text{ cm}^2 * 0.635 \text{cm}} = 9.638 \frac{\text{kg}}{\text{cm}^2}$$

Revisión al empuje longitudinal:

$$\lambda_c = \frac{KL}{r\pi} \sqrt{\frac{F_y}{E}}$$

$$\lambda_c = \frac{1*1100 cm}{8 cm*\pi} \sqrt{\frac{2530 \frac{kg}{cm^2}}{2100000 \frac{kg}{cm^2}}} = 1.52$$

$$1.52 \le 1.5$$

$$F_{cr} = (0.658^{\lambda_c^2})F_y$$

$$F_{cr} = (0.658^{1.52^2}) * 25.3 \frac{kg}{mm^2} = 9.62 \frac{kg}{mm^2} = 961.94 \frac{kg}{cm^2}$$

Momento resistente en el eje Y:

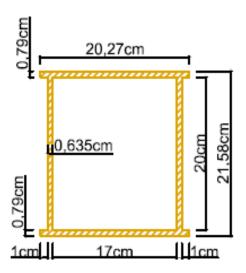
Cálculo del módulo plástico de la sección:

$$Z_Y = \int_{AC}^{\cdot} Y \, dA + \int_{AC}^{\cdot} Y \, dA$$

$$Z_Y = 2((45*0.635)*8.817 + 2(10.135*0.79)*5.067) = 666.17cm^3$$

$$M_{pv} = Z_v * F_v$$

$$M_{py} = 666.17 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 1685410.94 \text{ kg. cm} = 16854.109 \text{ kg. m}$$


$$M_n = \emptyset M_{py}$$

$$M_n = 0.9 * 16854.109 = 15168.7 \text{ kg. m}$$

$$M_n > M_u$$

$$15168.7 \text{ kg. m} > 1018.69 \text{kg. m}$$
 Cumple

Sección tipo cajón (corte B-B):

h = 20 cm

b = 17 cm

 $t_{\rm w} = 0,635 \ {\rm cm}$

 $t_f = 0.79$ cm

e=1 cm

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \leq \frac{55}{\sqrt{F_y}}$$

$$\frac{17 \text{ cm}}{2 * 0.79 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $10.759 \le 10,93$ Cumple

$$\frac{h}{t_w} \leq \frac{537}{\sqrt{F_y}}$$

$$\frac{20 \text{ cm}}{0.635 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$31.5 \le 106,76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(20.27 * 0.79) + 2(20 * 0.635) = 57.427 \text{ cm}^2$$

Centroide de la sección

$$Y_c = 10.79$$
cm

$$X_{C}=10.135cm$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 20.27 * 0.79^3 + (20.27 * 0.79) \left(10.79 - \frac{0.79}{2}\right)^2 = 1731.166 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.635 * 20^3 = 423.33 \text{ cm}^4$$

$$I_X = 2(1731.166) + 2(423.33) = 4308.993 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 20 * 0.635^3 + (20 * 0.635)(10.135 - 1.3175)^2 = 987.830 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.79 * 20.27^3 = 548.286 \text{ cm}^4$$

$$I_Y = 2(987.830) + 2(548.286) = 3072.232 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{3072.232 \text{ cm}^4}{57.427 \text{ cm}^2}} = 7.314 \text{cm}$$

Diseño a Flexión

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{M_1}/M_2}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 0}{25.3 \frac{kg}{mm^2}} * 73.14mm = 10118.18mm$$

$$L_b \leq L_{pd}$$

 $500 \text{mm} \le 8300.04 \text{ mm}$ Cumple

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((20.27*0.79)*\left(10.79 - \frac{0.79}{2}\right) + 2(10.79*0.635)*5.4\right) = 480.91$$
cm³

$$M_p = Z_x * F_y$$

$$M_p = 480.91 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 1216702.3 \text{kg. cm}$$

$$M_n = \emptyset M_p$$

$$\rm M_n = 0.9*1216702.3cm = 1095032.07~kg.~cm = 10950.321kg.~m$$

$$M_n > M_u$$

$$10950.32$$
kg. m > 10396.254 kg. m

Cumple

Diseño a Corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

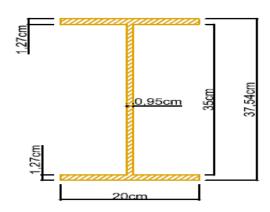
$$\frac{20 \text{cm}}{0.635 \text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$31.5 \le 69.58$$
 cumple

$$V_n = 0.6 * F_y * A_w$$

$$V_n = 0.6 * \frac{25.3 \text{kg}}{\text{mm}^2} * 6.35 \text{mm} * 238.1 \text{mm} = 22951.17 \text{ kg}$$

$$V_d = \phi_b * V_n$$


$$V_d = 0.9 * 22951.17 = 20656.06$$
kg

$$V_d > V_u$$

20656.06 kg > 2288.42 kg

ALTERNATIVA N°2

3.6. Diseño de la viga principal (Sección en I):

Dimensiones adoptadas de la sección en I:

$$h = 35 \text{ cm}$$

$$b = 20cm$$

$$t_w = 0.95 cm \\$$

$$t_f = 1.27cm$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \le \frac{55}{\sqrt{F_y}}$$

$$\frac{20\text{cm}}{2*1.27\text{ cm}} \le \frac{55}{\sqrt{25,30\text{ kg/mm}^2}}$$

 $7.87 \le 10.93$ Cumple

$$\frac{h}{t_w} \leq \frac{537}{\sqrt{F_y}}$$

$$\frac{35 \text{ cm}}{0.95 \text{ cm}} \le \frac{537}{\sqrt{25,30 \text{ kg/mm}^2}}$$

$$36.84 \le 106.76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + (h * t_w)$$

$$A_T = 2(20 * 1.27) + (35 * 0.95) = 84.05 \text{ cm}^2$$

Centroide de la sección

$$Y_c = 18.45 cm$$

$$X_C=10cm$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 20 * 1.27^3 + (20 * 1.27) \left(18.45 - \frac{1.27}{2}\right)^2 = 8064.72 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X2} = \frac{1}{12} * 0.95 * 35^3 = 3394.27 \text{ cm}^4$$

$$I_X = 2(8064.72) + (3394.27) = 19523.71 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 35 * 0.95^3 = 2.5 \text{cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 1.27 * 20^3 = 846.67 \text{cm}^4$$

$$I_Y = (2.5) + 2(846.67) = 1695.83 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{1695.83 \text{cm}^4}{84.05 \text{ cm}^2}} = 4.49 \text{cm}$$

Análisis de carga:

Peso propio de la viga:

$$w_p = A \ast \gamma$$

$$w_p = \frac{84.05 \text{cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 65.98 \frac{\text{kg}}{\text{m}^2}$$

La carga a izar es de 5000kg, como es un diseño de una puente grúa birriel (dos vigas), la carga se reparte en dos y por lo dicho solo se ara el diseño de una sola viga con una carga de 2500kg.

Carga por rueda:

$$Cr_1 = \left(Cl * Fi + \frac{Pp}{2}\right) * 0.68 = \left(2500 \text{ kg} * 1.3 + \frac{716 \text{ kg}}{2}\right) * 0.68 = 2453.44 \text{ kg}$$

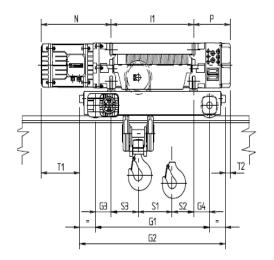
$$Cr_2 = \left(Cl * Fi + \frac{Pp}{2}\right) * 0.32 = \left(2500 \text{ kg} * 1.3 + \frac{716 \text{ kg}}{2}\right) * 0.32 = 1154.5 \text{ kg}$$

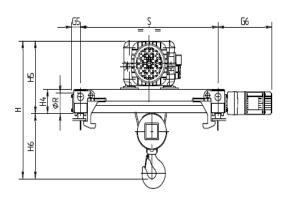
Teorema de barré:

$$R = Cr_1 + Cr_2$$

$$\sum M_{Cr1} = 0$$

$$R * m = Cr_2 * a$$

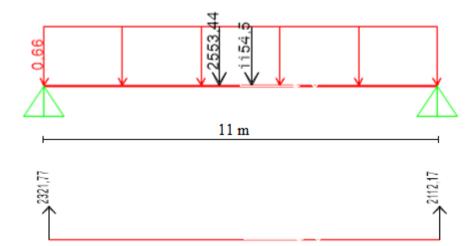

$$m = \frac{Cr_2 * a}{R} = \frac{1154.5 \text{ kg} * 0.89m}{3607.94 \text{ kg}} = 0.285m$$

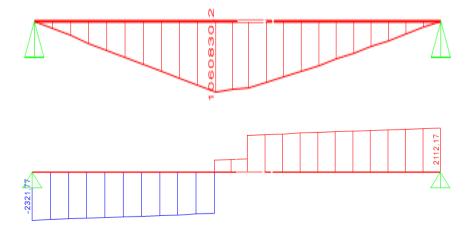

$$\frac{m}{2} = 0.143m$$

$$X = \frac{L}{2} - \frac{m}{2} = 5.357 \text{ m}$$

$$L_1 = 4.912 \text{ m}$$

Es necesario conocer las dimensiones del polipasto (carro) para saber a qué distancia de la viga actuaran cargas puntuales que son producidas por las reacciones del polipasto, (Catalogo TEREX DONATI).




Ramales	Tipo	Carro	Luz Carro	Tipo de	Peso					Dimens	iones total	es (mm)				
de cable N.	DRH	DRT	S (mm)	Tambor DRH	DRH + DRT (kg)	G1	G2	G 3	G4	G5	G6	T1	T2	0 R	H 4	H 5
				C	236	710	940	155	155	66	392	210	-15	125	145	391
				N	250	830	1060	157,5	157,5	66	392	207,5	-17,5	125	145	391
	1	1	1000	L	280	1230	1460	170	170	66	392	195	-30	125	145	391
				X1	306	1500	1730	150	150	66	392	215	-10	125	145	391
				X2	336	1770	2000	120	120	66	392	245	20	125	145	39
				C	296	710	940	115	115	66	392	295	40	125	145	433
				N	306	830	1060	115	115	66	392	295	40	125	145	433
	2	1	1000	L	350	1230	1460	115	115	66	392	295	40	125	145	433
				X1	376	1500	1730	120	120	66	392	290	35	125	145	433
				Х2	406	1770	2000	120	120	66	392	290	35	125	145	433
				C	716	890	1202	145	145	80	461	404	-96	160	190	598
0/4			1000	N	750	1030	1342	145	145	80	461	404	-96	160	190	598
2/1 4/1 3	3	2		L	860	1550	1862	145	145	80	461	404	-96	160	190	598
				X1	946	1840	2152	145	145	80	461	404	-96	160	190	598
				X2	1000	2230	2542	145	145	80	461	404	-96	160	190	598

Ramales	Tipo					Dime	nsiones totales	(mm)				
de cable N.	DRH	H	H1	H2	H3	1	L	L1	N	P	Q	S4
	1	690	460	230	390	250	320	210	480	255	225	28
	2	820	550	270	445	290	370	235	525	270	260	30
2/1	3	1090	710	380	595	370	480	290	705	205	300	40
	4	1390	920	470	750	460	600	360	855	220	340	45
	©4	1390	920	470	750	460	600	360	1015	220	340	45
	1	650	420	230	345	250	320	210	480	255	225	15
	2	750	480	270	390	290	370	235	525	270	260	19
4/1	3	1020	640	380	540	370	480	290	705	205	300	23
	4	1320	850	470	700	460	600	360	855	220	340	25
	©4	1320	850	470	700	460	600	360	1015	220	340	25

Ramales de	Tipo	Tambor C		Tambor N			Tambor L			Tambor X1			Tambor X2				Pesos (kg) con tambor tipo				tipo					
cable N.	DRH	11	R	\$1	S 3	11	R	\$1	S 3	11	R	\$1	S 3	11	R	S1	S 3	11	R	\$1	S 3	C	N	L	X1	X2
	1	400	1135	125	95	515	1250	185	95	890	1625	365	95	1200	1935	515	95	1530	2265	680	95	132	141	160	180	200
	2	480	1275	160	100	600	1395	220	100	1000	1795	410	100	1260	2055	530	100	1530	2325	670	100	180	195	215	260	280
2/1	3	600	1510	195	130	740	1650	265	130	1260	2170	515	130	1550	2460	680	130	1940	2850	860	130	460	490	565	590	62
	4	722	1797	220	170	862	1937	290	170	1422	2497	570	170	1852	2927	800	170	2352	3427	1030	170	855	890	1010	1200	1250
	©4	722	1957	220	170	862	2097	290	170	1422	2657	570	170	1852	3087	800	170	2352	3587	1030	170	910	945	1065	1255	1305

Diagrama de momentos y cortantes:

$$M_{MAX} = 10608.3 \text{kg. m}$$

$$V_{MAX}=2321.77\ \mathrm{kg}$$

Diseño a flexión:

Análisis plástico:

Longitud máxima:

$$L_{pd} = \frac{2530 + 1550 \frac{M_1}{M_2}}{F_y} * r_y$$

$$L_{pd} = \frac{2530 + 0}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 44.9 \text{mm} = 4490 \text{mm}$$

$$L_{b} \leq L_{pd}$$

Donde L_b=11000mm=luz de la viga

11000mm ≤ 4490mm

NO es Diseño plástico

$$M_{max} = 1035812.6 \text{ kg. cm}$$

$$M_A = 599749.91 \text{ kg. cm}$$

$$M_B = 1004491.89 \text{ kg. cm}$$

$$M_C = 545144.88 \text{ kg. cm}$$

$$C_{b} = \frac{12,50M_{\text{max}}}{2,5M_{\text{max}} + 3M_{\text{A}} + 4M_{\text{B}} + 3M_{\text{c}}}$$

$$C_b = \frac{12,50*1035812.6}{2.5*1035812.6+3*1035812.6+4*1004491.89+3*545144.88}$$

$$C_{\rm b} = 1.14$$

$$G = \frac{E}{2(1+\mu)}$$

Donde μ es coeficiente de poisson=0.3

$$G = \frac{2100000 \frac{\text{kg}}{\text{cm}^2}}{2(1+0.3)} = 807692.31 \frac{\text{kg}}{\text{cm}^2}$$

Constante de torsión:

$$J = \frac{2bt_f^3 + ht_w^3}{3}$$

$$J = \frac{2 * 20 * 1.27 + 35 * 0.95^{3}}{3} = 26.94 \text{cm}^{4}$$

Modulo elástico:

$$S_x = \frac{I_x}{d/2}$$

$$S_x = \frac{19523.71 \text{ cm}^4}{37.54 \text{ cm}/2} = 1040.16 \text{cm}^3$$

Constante de alabeo:

$$C_{w} = I_{y} \frac{h^{2}}{4}$$

$$C_w = 1695.83 \text{cm}^4 * \frac{(35 \text{ cm})^2}{4} = 519347.94 \text{ cm}^6$$

$$X_1 = \frac{\pi}{S_x} \sqrt{\frac{EGJA}{2}}$$

$$X_1 = \frac{\pi}{1040.16} \sqrt{\frac{2100000 * 807692.31 * 26.94 * 84.05}{2}}$$

$$X_1 = 132353.37 \frac{\text{kg}}{\text{cm}^2}$$

$$X_2 = \frac{4C_w}{I_v} \left(\frac{S_x}{GJ}\right)^2$$

$$X_2 = \frac{4 * 519347.94}{1695.83} \left(\frac{1040.16}{807692.31 * 26.94} \right)^2$$

$$X_2 = 0.0000028 \, \text{cm}^4 / \text{kg}$$

$$L_{r} = \frac{r_{y} * x_{1}}{(F_{y} - F_{r})} * \sqrt{1 + \sqrt{1 + x_{2}(F_{y} - F_{r})^{2}}}$$

$$L_{r} = \frac{4.49*\ 132353.37}{(2530-1160)}*\sqrt{1+\sqrt{1+0.0000028(2530-1160)^2}}$$

$$L_r = 811.64 \text{ cm}$$

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((20*1.27)*\left(18.45 - \frac{1.27}{2}\right) + (17.5*0.95)*8.75\right)$$

$$Z_X = 1195.94$$
cm³

$$M_p = Z_x * F_y$$

$$M_a = M_p = 1195.94 * 2530 = 3025726.94$$
kg. cm

$$M_r = (F_y - F_r)S_x$$

$$M_r = (2530 - 1160) * 1040.16 = 1425019.2 \text{ kg. cm}$$

$$L_{m} = L_{p} + \frac{\{(C_{b}M_{a} - M_{a})(L_{r} - L_{p})}{C_{b}(M_{p} - M_{r})}$$

$$L_m = 1100 + \frac{(1.14*3025726.94 - 3025726.94)(\,811.64 - 1100)}{1.14(3025726.94 - 1425019.2)} = 1033.06 \, \text{cm}$$

 $L_m > L_r$

1033.06 cm > 811.64cm

$$L_{m} = \frac{r_{y} x_{1} C_{b} S_{x}}{M_{p}} * \sqrt{1 + \sqrt{1 + x_{2} (\frac{M_{p}}{C_{b} S_{x}})^{2}}}$$

$$L_{m} = \frac{4.49*132353.37*1.14*1040.16}{3025726.94} \sqrt{1 + \sqrt{1 + 0.0000028(\frac{3025726.94}{1.14*1040.16})^{2}}}$$

 $L_{\rm m} = 540.45 \, {\rm cm}$

 $L_b \leq L_m$

 $1100 \text{ cm} \le 540.45 \text{cm} \text{ No}$

 $L_b \leq L_r$

 $1100 \text{ cm} \le 811.64 \text{ cm} \text{ NO}$

$$L_{m} = \frac{r_{y} * x_{1}\sqrt{2}C_{b}}{L_{b}/r_{y}} * \sqrt{1 + \frac{{X_{1}}^{2}X_{2}}{2(L_{b}/r_{y})^{2}}} < C_{b}M_{r}$$

$$L_{m} = \frac{4.49*132353.37*\sqrt{2}*1.14}{1100/_{4.49}}*\sqrt{1+\frac{132353.37^{2}*0.0000028}{2{(1100/_{4.49})}^{2}}}$$

 $L_{\rm m} = 4641.41 \, {\rm cm}$

$$M_n = M_a \leq M_p$$

$$M_d = \emptyset M_p$$

$$M_d = 0.9 * 3025726.94$$
kg. cm = 2723154.25 kg. cm = 27231.54kg. m

$$M_n > M_u$$

27231.54kg. m > 10358.126kg. m

Diseño a Corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$\frac{35\text{cm}}{0.95\text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$36.84 \le 69.58$$
 cumple

$$V_n = 0.6 * F_v * A_w$$

$$V_n = 0.6 * \frac{25.3 \text{kg}}{\text{mm}^2} * 9.5 \text{mm} * 375.4 \text{mm} = 54136.43 \text{kg}$$

$$V_d = \phi_b * V_n$$

$$V_d = 0.9 * 54136.43 = 48722.79 kg$$

$$V_d > V_u$$

$$48722.79 \text{ kg} > 2274.4 \text{ kg}$$

$$\frac{h}{t_w} \le 260$$

$$\frac{35\text{cm}}{0.95\text{cm}} \le 260$$

$$36.84 \le 260$$

no necesita atiesadores

Deflexión:

$$\Delta L = \frac{5wL^4}{384 E I} + \frac{P b}{24 E I} (3L^2 - 4b^2)$$

$$\Delta L = \frac{5*0.66*1100^4}{384*2100000*19523.71} + \frac{2453.44*89}{24*2100000*19523.71} (3*1100^2 - 4*89^2)$$

$$\Delta L = 1.11$$
cm

$$\Delta L_{max} = \frac{1100}{888} = 1.238$$
cm

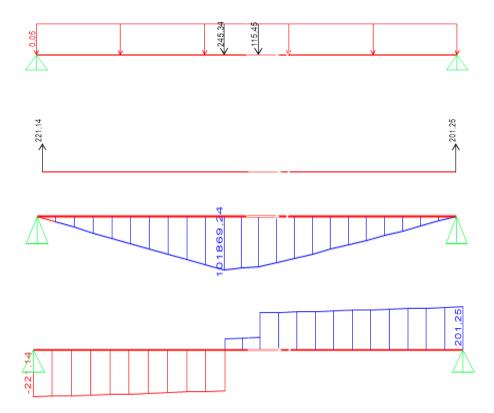
$$\Delta L_{max} > \Delta L \qquad cumple$$

Cargas horizontales:

Margen de impacto supuesto M_i=10%

$$C_{rh1} = C_{r1} * 0.10$$

$$C_{rh1} = 2453.44 \ kg * 0.10 = 245.344 kg$$


$$C_{rh2} = 1154.5 \; kg * 0.10 = 115.45 kg$$

$$C_S = A * W_p$$

$$C_S = 0.08 * 65.98 \frac{kg}{m} = 5.28 \frac{kg}{m}$$

Carga horizontal total:

$$C_{T=}58.06 \text{kg} + 360.79 = 418.85 \text{ kg}$$

Momento de torsión:

$$M_T = C_T * \frac{d}{2}$$

$$M_T = 418.85 \text{kg} * \frac{37.54 \text{cm}}{2} = 7861.81 \text{ kg. cm}$$

Rigidez torsional:

$$K_T = \frac{2bt_f^3 + ht_w^3}{3}$$

$$K_T = \frac{2 * 20 * 1.27 + 35 * 0.95^3}{3} = 26.94 \text{cm}^4$$

$$G = \frac{E}{2(1+\mu)}$$

Donde μ es coeficiente de poisson=0.3

$$G = \frac{2100000 \frac{\text{kg}}{\text{cm}^2}}{2(1+0.3)} = 807692.308 \frac{\text{kg}}{\text{cm}^2}$$

$$\theta = \frac{M_T}{G K_T}$$

$$\theta = \frac{7861.81 \text{ kg. cm}}{807692.308 \frac{\text{kg}}{\text{cm}^2} * 26.94 \text{cm}^4} = 0.00036 \frac{\text{rad}}{\text{cm}}$$

Esfuerzo torsional máximo:

$$F_{vmax} = \frac{M_T}{K_T} t_f$$

$$F_{\text{vmax}} = \frac{7861.8 \text{kg. cm}}{26.94 \text{cm}^4} * 1.27 \text{cm} = 370 \frac{\text{kg}}{\text{cm}^2}$$

Revisión al empuje longitudinal:

$$\lambda_{c} = \frac{KL}{r\pi} \sqrt{\frac{F_{y}}{E}}$$

$$\lambda_{c} = \frac{1 * 1100 \text{cm}}{4.49 \text{cm} * \pi} \sqrt{\frac{2530 \frac{\text{kg}}{\text{cm}^{2}}}{2100000 \frac{\text{kg}}{\text{cm}^{2}}}} = 1.71$$

$$1.71 \le 1.5$$
 No

$$F_{\rm cr} = \frac{0.877}{{\lambda_c}^2} F_{\rm y}$$

$$F_{\rm cr} = \frac{0.877}{1.71^2} * 2530 = 785.80 \text{ kg}$$

Momento resistente en el eje Y:

Cálculo del módulo plástico de la sección:

$$Z_{Y} = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_Y = 2((35 * 0.475) * 10 + 2(10 * 1.27) * 5) = 586.5 \text{cm}^3$$

$$M_{py} = Z_y * F_y$$

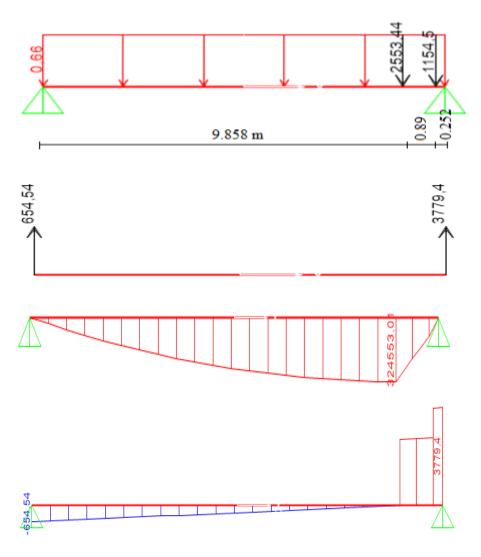
$$M_{py} = 586.5 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 1483845 \text{ kg. cm} = 14838.45 \text{ kg. m}$$

$$M_n = \emptyset M_{py}$$

$$M_n = 0.9 * 14838.45 = 13354.61 \text{ kg. m}$$

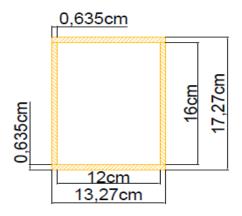
$$M_n > M_u$$

$$13354.61 \text{ kg. m} > 1018.69 \text{kg. m}$$


3.7. Diseño de la viga testera:

Para obtener las reacciones máximas se hace un análisis de carga cuando estas se encuentran aproximadamente en el apoyo de la viga principal.

Cumple


longitud de testera =
$$\frac{\text{luz de la viga principal}}{7} \ge 6 \text{pies} = 183 \text{cm}$$

longitud de testera =
$$\frac{11 \text{ m}}{7} \ge 6 \text{pies} \approx 185 \text{cm}$$

 $M_{MAX} = 3245.53 \text{ kg. m}$

$$V_{MAX}=3779.4\ \mathrm{kg}$$

$$h = 16 \text{ cm}$$

$$b = 12 \text{ cm}$$

$$t_{\rm w} = 0,635 \text{ cm}$$

$$t_f = 0.635 \text{ cm}$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \le \frac{55}{\sqrt{F_y}}$$

$$\frac{12 \text{ cm}}{2 * 0.635 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $9.45 \le 10,93$ Cumple

$$\frac{h}{t_w} \leq \frac{537}{\sqrt{F_y}}$$

$$\frac{16 \text{ cm}}{0.635 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$25.2 \le 106,76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(16 * 0.635) + 2(13.27 * 0.635) = 37.1729 \text{ cm}^2$$

Centroide de la sección

$$Y_c = 8.635 cm$$

$$X_{C} = 6.635 cm$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 13.27 * 0.635^3 + (13.27 * 0.635) \left(8.635 - \frac{0.635}{2}\right)^2 = 583.65 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.635 * 16^3 = 216.75 \text{ cm}^4$$

$$I_X = 2(583.65) + 2(216.75) = 1600.8 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 16 * 0.635^3 + (16 * 0.635) \left(6.635 - \frac{0.635}{2}\right)^2 = 405.835 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

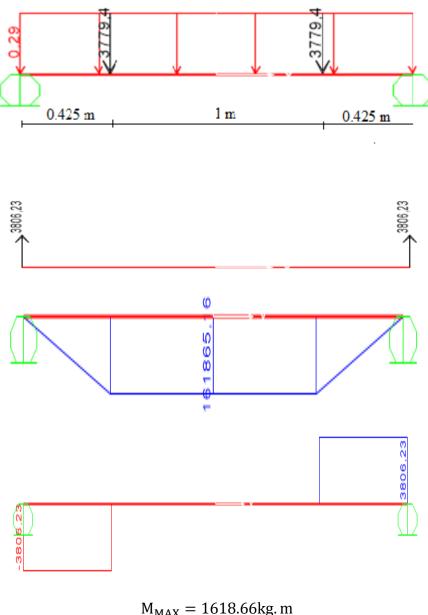
$$I_{Y1} = \frac{1}{12} * 0.635 * 13.27^3 = 123.65 \text{ cm}^4$$

$$I_Y = 2(405.835) + 2(123.65) = 1058.97 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{1058.97 \text{ cm}^4}{37.1729 \text{ cm}^2}} = 5.337 \text{cm}$$


Análisis de carga:

Peso propio de la viga:

$$w_p = A * \gamma$$

$$w_p = \frac{37.1729 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 29.18 \frac{\text{kg}}{\text{m}^3}$$

Las cargas puntuales que están actuando en esta viga son debido a las reacciones máximas de las vigas principales del puente grúa, que tienen una separación de un metro de centro a centro de cada viga principal.

$$\mathrm{M}_{\mathrm{MAX}} = 1618.66\mathrm{kg.}\,\mathrm{m}$$

$$V_{MAX} = 3806.23 \text{ kg}$$

Diseño a flexión:

Análisis plástico:

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{M_1}/M_2}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 0}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 53.27 \text{mm} = 7383.20 \text{mm}$$

$$L_b \leq L_{pd}$$

Donde L_b=1850mm=luz de la viga

1850mm ≤ 7383.20mm Diseño plástico

Cálculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((13.27 * 0.635) * \left(6.635 - \frac{0.635}{2}\right) + 2(8 * 0.635) * 4\right) = 187.748 \text{cm}^3$$

$$M_p\,=Z_x*F_y$$

$$M_p = 187.748 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 475002.44 \text{kg. cm}$$

$$M_n = \emptyset M_p$$

$$\rm M_n = 0.9*475002.44 kg.\,cm = 427502.20\;kg.\,cm = 4275.02 kg.\,m$$

$$M_n > M_u$$

Diseño a corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$\frac{16\text{cm}}{0.635\text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$25.2 \le 69.58$$
 cumple

$$V_n = 0.6 * F_v * A_w$$

$$V_n = 0.6 * \frac{25.3 \text{kg}}{\text{mm}^2} * 6.35 \text{mm} * 172.7 \text{mm} = 16647.07 \text{ kg}$$

$$V_d = \phi_b * V_n$$

$$V_d = 0.9 * 16647.07 = 14982.36$$
kg

$$V_{\rm d} > V_{\rm u}$$

$$14982.36$$
kg > 3806.23 kg

Deflexión:

$$\Delta L = \frac{5wL^4}{384 E I} + \frac{P b}{24 E I} (3L^2 - 4b^2)$$

$$\Delta L = \frac{5*0.29*185^4}{384*2100000*1600.8} + \frac{3806.23*100}{24*2100000*1600.8} (3*185^2 - 4*100^2)$$

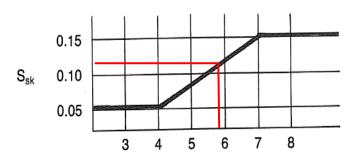
$$\Delta L = 0.29$$
cm

$$\Delta L_{max} = \frac{185}{600} = 0.308 cm$$

$$\Delta L_{max} > \Delta L$$
 cumple

3.8. Selección del tipo de rodamiento:

$$R_{max} = 3806.23 \text{ kg}$$


$$F_{skt} = R_{max}S_{sk}$$

F_{skt}=fuerza por descarrilamiento o sesgado.

 S_{sk} =Fuerza debida ala oblicuidad.

$$relación = \frac{luz de la viga principal}{distancia entre ruedas}$$

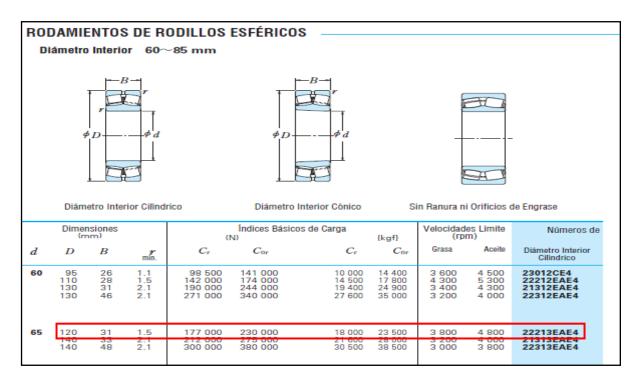
$$relación = \frac{11 \text{ m}}{1.85 \text{ m}} = 5.95$$

Fuente: norma CMAA 70

$$S_{sk} = 0.12$$

$$F_{skt} = R_{max}S_{sk}$$

$$F_{skt} = 3806.23 \text{kg} * 0.12 = 456.75 \text{ kg}$$


F_r=fuerza radial

$$F_r = \frac{R_{max}}{2}$$

$$F_r = \frac{3806.23 \text{ kg}}{2} = 1903.12 \text{ kg}$$

$$\frac{F_{Skt}}{F_r} = \frac{456.75 \text{ kg}}{1903.12 \text{ kg}} = 0.24$$

Con este valor se busca en el catálogo un rodamiento con un valor mayor o igual a 0.24

Fuente: catálogo de rodamiento NSK

Datos obtenidos del catálogo.

Diámetro interior del cilíndrico (d)=65 mm

Capacidad de carga dinámica (C_r)=18000kg.

Capacidad de carga estática (C_{or})=23500 kg.

Factor de carga axial $(Y_3)=2.8$

$$X=1$$

$$P_r = XF_R + Y_3F_{SKT}$$

$$P_r = 1 * 1903.12 \text{ kg} + 2.8 * 456.75 \text{ kg} = 3182.02 \text{ kg}.$$

Factor de seguridad:

$$S_{o} = \frac{C_{or}}{P_{r}}$$

$$S_o = \frac{23500 \text{ kg}}{3182.02 \text{ kg}} = 7.39$$

Se puede observar que el factor de seguridad es mayor a uno por lo tanto el rodamiento seleccionado no fallara.

Selección de la rueda:

 R_{max} =3806.23kg

TABLE 4.13.3-1

TYPICAL BRIDGE LOAD FACTORS Kbw

В	RIDGE			CAPA	CITY IN TO	ONS		
	PAN FT.	3	5	71/2	10	15	20	25
	20	.812	.782	.762	.747	.732	.722	.716
	30	.817	.785	.767	.750	.736	.725	.718
	40	.827	.794	.777	.760	.744	.732	.723
	50	.842	.809	.791	.771	.758	.740	.738
	60	.861	.830	.807	.790	.773	.754	.747
	70	.877	.844	.825	.807	.789	.768	.760
	80	.888	.857	.835	.818	.802	.779	.770
	90	.898	.869	.850	.832	.815	.792	.782
	100	.912	.883	.867	.848	.826	.806	.796
	110	.926	.890	.882	.863	.844	.823	.812
	120	.934	.909	.894	.879	.860	.834	.827

Fuente: Norma CMAA 70

Kbw=0.794 Factor típico de la carga de puente.

SPEED FACTOR Cs

WHEEL DIA.		SPEED IN FEET PER MINUTE													
IN INCHES	30	50	75	100	125	150	175	200	250	300	350	400			
8	.907	.958	1.013	1.049	1.086	1.122	1.158	1.195	1.267	1.340	1.413	1.485			
9	.898	.944	1.001	1.033	1.066	1.098	1.130	1.163	1.227	1.292	1.356	1.421			
10	.892	.932	.984	1.020	1.049	1.079	1.108	1.137	1.195	1.253	1.311	1.369			
12	.882	.915	.958	1.001	1.025	1.049	1.074	1.098	1.146	1.195	1.243	1.292			
15	.872	.898	.932	.967	1.001	1.020	1.040	1.059	1.098	1.137	1.175	1.214			
18	.865	.887	.915	.944	.973	1.001	1.017	1.033	1.066	1.098	1.130	1.163			
21	.860	.879	.903	.927	.952	.977	1.001	1.015	1.043	1.070	1.098	1.126			
24	.857	.873	.894	.915	.937	.958	.980	1.001	1.025	1.049	1.074	1.098			
27	.854	.869	.887	.906	.925	.944	.963	.982	1.012	1.033	1.055	1.076			
30	.852	.865	.882	.898	.915	.932	.949	.967	1.001	1.020	1.040	1.059			
36	.849	.860	.873	.887	.901	.915	.929	.944	.973	1.001	1.017	1.033			

Fuente: Norma CMAA 70

Se adopta diámetro de la rueda de 8 pulg.

Cs=0.958 Factor de velocidad

Coeficiente de servicio (Kw1)

$$K_{W1} = K_{bw}C_S S_m$$

TABLE 4.13.3-3

WHEEL SERVICE FACTOR Sm AND MINIMUM LOAD SERVICE FACTOR KWI MINIMUM

CLASS OF CRANE SERVICE	А	В	С	D	E	F
Kwl MIN.	.75	.75	.8	.85	.9	.95
Sm	.8	.9	1.	1.12	1.25	1.45

Fuente: Norma CMAA 70

Sm=1 Factor de servicio de rueda.

Kwlmin= 0.8 Factor de servicio de carga mínima.

$$K_{W1} = K_{bw}C_S S_m$$

$$K_{W1} = 0.794 * 0.958 * 1 = 0.76$$

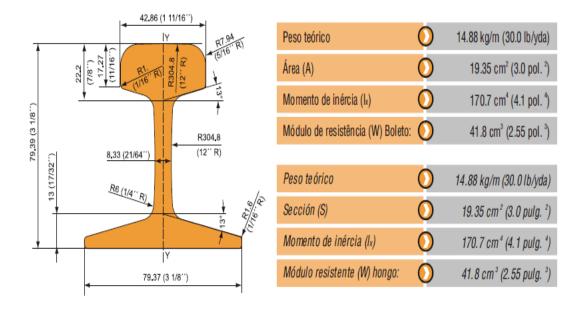
Peso efectivo (Pe):

$$P_{e} = \frac{R_{max}}{K_{wlmin}}$$

$$P_e = \frac{3806.23 \text{ kg}}{0.8} = 4757.79 \text{ kg} = 10489.13 \text{ lb.}$$

TABLE 4.13.3-4

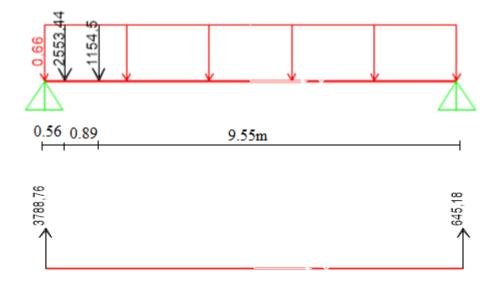
GUIDE FOR BASIC BRIDGE AND TROLLEY WHEEL LOADINGS, POUNDS. (P) (KDW)

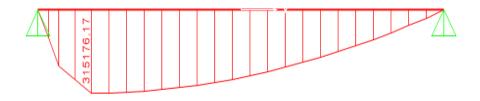

Wheel BHN	Wheel dia. (D) Inches	ASCE 20#	ASCE 25#	ASCE 30#	ASCE 40#	ARA-A 90#	ASCE 60 & 70# ARA-B 100#	ASCE 80 & 85# ARA-A 100# BETH 104 USS 105#	ASCE 100#	BETH & USS 135#	BETH & USS 175#	BETH 171#
200	8 9 10 12 15 18 21 24 27 30 36	6750 7600 8450	8000 9000 10000 12000	8500 9500 10600 12750 15950 19150	10000 11250 12500 15000 18750 22500 26250	14900 16550 19850 24850 29800 34800 39750	15750 17500 21000 25250 31500 35750 42000	22500 28150 33750 39400 45000 50650 56250	25500 31900 38250 44650 51000 57400 63750 76500	40500 47250 54000 60750 67500 81000	65650 75000 84400 93750 112500	73500 84000 94500 105000 126000
260	8 9 10 12 15 18 21 24 27 30 36	8800 9900 11000	10400 11700 13000 15600	11100 12400 13800 16600 20700 24900	13000 14600 16250 19500 24400 29250 34100	19400 21500 25800 32300 38750 45200 51700	20500 22750 27300 34100 41000 47800 54600	29250 36600 43900 51200 58500 65800 73100	33200 41400 49700 58000 66300 74600 82900 99500	52650 61400 70200 79000 87750 105300	85300 97500 109700 121900 146250	95600 109200 122900 136500 163800
320	8 9 10 12 15 18 21 24 27 30 36	9400 10600 11800	11200 12500 13900 16700	11800 13300 14800 17800 22200 26700	13900 15700 17400 20900 26100 31300 36600	20800 23100 27700 34600 41500 48400 55400	21900 24400 29300 36600 43900 51200 58500	31300 39200 47000 54900 62700 70500 78400	35500 44400 53300 62200 71100 79900 88800 106600	56400 65800 75200 84600 94000 112800	91400 104500 117500 130600 156700	102400 117000 131700 146300 175500
Rail He Inc (Top of h	e Width of ead (W) ches ead minus er radii)	.844	1.000	1.063	1.250	1.656	1.750	1.875	2.125	2.250	3.125	3.500

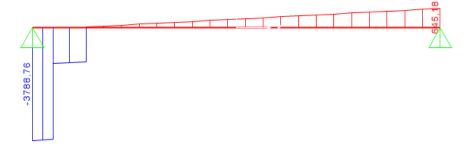
Fuente: Norma CMAA 70

 $P_R > P_e$

11100lb > 10489.13 lb. Cumple


Tipo de riel ASCE 30#




3.9. Cálculo del pórtico:

3.9.1. Alternativa 1

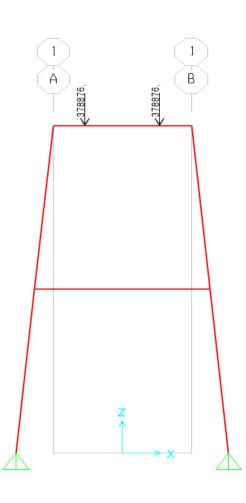
Las cargas puntuales que están actuando en el pórtico son debido a las reacciones máximas de las vigas principales del puente grúa, que tienen una separación de un metro de centro a centro de cada viga principal.

 $M_{MAX} = 3151.76 \text{ kg. m}$

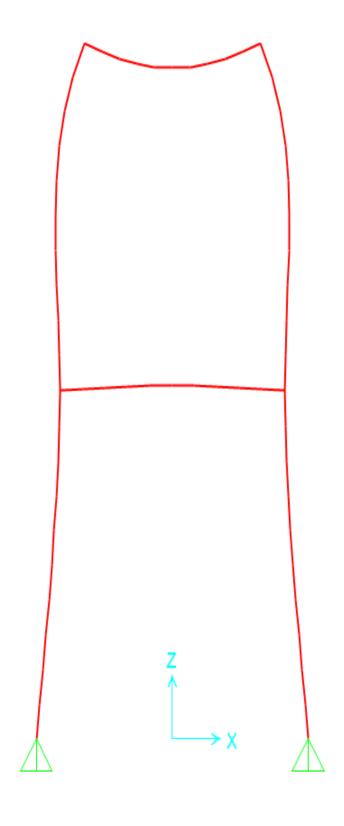
 $V_{\text{MAX}} = 3788.76 \text{kg}$

Revisión al vuelco:

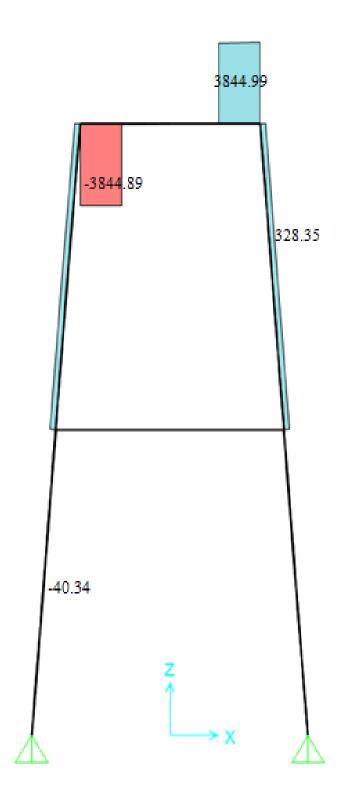
$$F = \frac{R}{2}$$

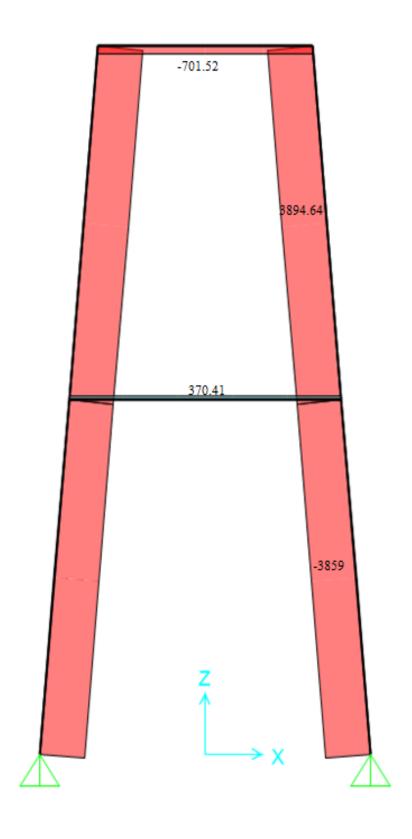

$$\eta = \frac{(R_1 * l_b) + (R_2 * l_a)}{F * h}$$

$$3 = \frac{(R_1 * l_b) + (R_2 * l_a)}{F * h}$$


$$l_a = 0.29 \text{ m}$$

Asumimos:


$$l_a = 0.50$$


Deflexión del pórtico:

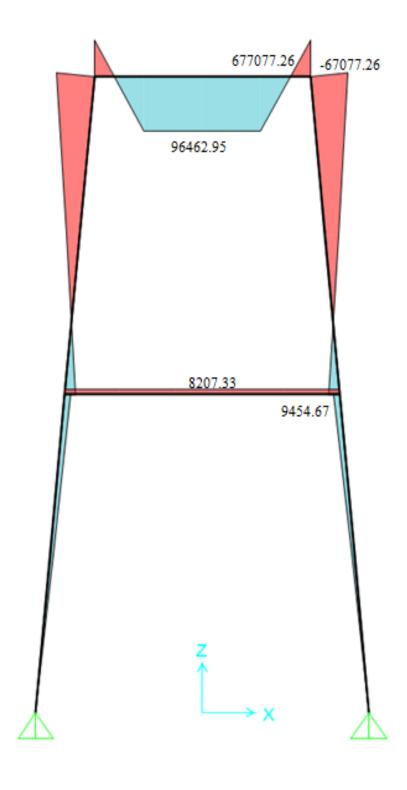
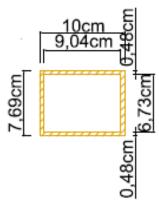

Diagrama de cortantes:

Diagrama de fuerzas axiales:

Diagrama de momentos



Columna 1

Longitud (L)=294 cm

Carga axial (P_U)=3894.64 kg

Esfuerzo de fluencia para perfiles soldados (f_r)=11.6 $\frac{kg}{mm^2}$

h = 9 cm

b = 6.73 cm

 $t_w = 0.48cm$

 $t_f = 0.48cm$

Calculo de momentos de inercia:

 $A_T = 2(b_f * t_f) + 2(h * t_w)$

$$A_T = 2(10 * 0.48) + 2(6.73 * 0.48) = 16.06 \text{ cm}^2$$

Centroide de la sección

 $Y_c=5$ cm

 $X_C=4$ cm

Momento de inercia en el eje ${\bf X}$

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 6.73 * 0.48^3 + (6.73 * 0.48) \left(5 - \frac{0.48}{2}\right)^2 = 73.26 \text{cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.48 * 10^3 = 40 \text{ cm}^4$$

$$I_X = 2(73.26) + 2(40) = 226.52 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 10 * 0.48^3 + (10 * 0.48) \left(4 - \frac{0.48}{2}\right)^2 = 67.95 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.48 * 6.73^3 = 12.19 \text{ cm}^4$$

$$I_Y = 2(67.95) + 2(12.19) = 160.29 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{160.29 \text{ cm}^4}{16.06 \text{ cm}^2}} = 3.16 \text{ cm}$$

Resistencia a diseño a compresión para pandeo por flexión:

$$\frac{b}{t} \le \lambda_p$$

$$\frac{b}{t} \le \frac{200}{\sqrt{F_Y - F_r}}$$

$$\frac{6.73}{0.48} \le \frac{200}{\sqrt{25.3 \frac{\text{kg}}{\text{mm}^2} - 11.6 \frac{\text{kg}}{\text{mm}^2}}}$$

 $8.63 \le 54.03$

No hay pandeo local

$$\lambda = \frac{KL}{r_y}$$

K=0.65

$$\lambda = \frac{0.65 * 294 \text{ cm}}{3.16 \text{ cm}} = 59.65$$

$$\lambda \le 200$$

$$59.65 \le 200$$

$$\lambda_c = \frac{\lambda}{\pi} \sqrt{\frac{F_y}{E}}$$

$$\lambda_c = \frac{59.65}{\pi} \sqrt{\frac{25.3 \frac{kg}{mm^2}}{21000 \frac{kg}{mm^2}}} = 0.66$$

$$0.67 \le 1.5$$

$$F_{cr} = (0.658^{\lambda_c^2})F_y$$

$$F_{cr} = (0.658^{0.66^2})25.3 \frac{kg}{mm^2} = 21.20 \frac{kg}{mm^2}$$

$$P_n = \emptyset_c A_g F_{cr}$$

$$P_n = 0.85 * 1606 mm^2 * 21.20 \frac{kg}{mm^2} = 28940.12 kg$$

$$P_{n} \leq P_{u}$$

 $28940.13 \text{ kg} \le 3894.64 \text{kg}$

Columna 2

Longitud (L)=294cm

Carga axial (P_U)=3859kg

Esfuerzo de fluencia para perfiles soldados $(F_r)=11.6 \frac{kg}{mm^2}$

h = 9cm

b = 6.73 cm

 $t_{\rm w} = 0.48 cm$

 $t_f = 0.48cm$

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(10 * 0.48) + 2(6.73 * 0.48) = 16.06 \text{ cm}^2$$

Centroide de la sección

 $Y_c=5$ cm

 $X_C=4$ cm

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 6.73 * 0.48^3 + (6.73 * 0.48) \left(5 - \frac{0.48}{2}\right)^2 = 73.26 \text{cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.48 * 10^3 = 40 \text{ cm}^4$$

$$I_X = 2(73.26) + 2(40) = 226.52 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{y} = 2I_{y_1} + 2I_{y_2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 10 * 0.48^3 + (10 * 0.48) \left(4 - \frac{0.48}{2}\right)^2 = 67.95 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.48 * 6.73^3 = 12.19 \text{ cm}^4$$

$$I_Y = 2(67.95) + 2(12.19) = 160.29 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{160.29 \text{ cm}^4}{16.06 \text{ cm}^2}} = 3.16 \text{ cm}$$

Resistencia a diseño a compresión para pandeo por flexión:

$$\frac{b}{t} \le \lambda_p$$

$$\frac{b}{t} \le \frac{200}{\sqrt{F_Y - F_r}}$$

$$\frac{6.73}{0.48} \le \frac{200}{\sqrt{25.3 \frac{\text{kg}}{\text{mm}^2} - 11.6 \frac{\text{kg}}{\text{mm}^2}}}$$

$$8.63 \le 54.03$$
 No hay pandeo local

$$\lambda = \frac{KL}{r_v}$$

$$K = 0.8$$

$$\lambda = \frac{0.8 * 294 \text{ cm}}{3.16 \text{ cm}} = 73.42$$

$$\lambda \le 200$$

$$73.42 \le 200$$

$$\lambda_c = \frac{\lambda}{\pi} \sqrt{\frac{F_y}{E}}$$

$$\lambda_{c} = \frac{73.42}{\pi} \sqrt{\frac{25.3 \frac{\text{kg}}{\text{mm}^{2}}}{21000 \frac{\text{kg}}{\text{mm}^{2}}}} = 0.81$$

$$0.81 \le 1.5$$

$$F_{cr} = (0.658^{\lambda_c^2})F_y$$

$$F_{cr} = (0.658^{0.81^2})25.3 \frac{kg}{mm^2} = 19.35 \frac{kg}{mm^2}$$

$$P_n = \emptyset_c A_g F_{cr}$$

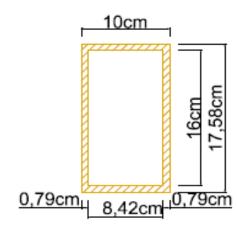
$$P_n = 0.85 * 1606 \text{ mm}^2 * 19.35 \frac{\text{kg}}{\text{mm}^2} = 26414.69 \text{ kg}$$

$$P_n \le P_u$$

$$26414.69 \text{ kg} \le 3859 \text{ kg}$$

Diseño de la viga superior

M_{max}=96462.95 kg.cm


$$V_{max} = 3844.99 \text{ kg}$$

$$h = 16 \text{ cm}$$

$$b = 8.42cm$$

$$t_{\rm w} = 0.79 cm$$

$$t_f = 0.79 \text{ cm}$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \le \frac{55}{\sqrt{F_y}}$$

$$\frac{8.42 \text{ cm}}{2 * 0.79 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $5.34 \le 10.93$ Cumple

$$\frac{h}{t_w} \le \frac{537}{\sqrt{F_y}}$$

$$\frac{16 \text{ cm}}{0.79 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $20.25 \le 106.76$ Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(d * t_w)$$

$$A_T = 2(10 * 0.79) + 2(16 * 0.79) = 41.08 \text{ cm}^2$$

Peso propio de la viga:

$$w_p = A * \gamma$$

$$w_p = \frac{41.08 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 32.25 \frac{\text{kg}}{\text{m}^3}$$

Centroide de la sección

$$Y_c=8.8cm$$

$$X_C=5$$
 cm

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 10 * 0.79^3 + (10 * 0.79) \left(8.8 - \frac{0.79}{2}\right)^2 = 558.5 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.79 * 16^3 = 271.02 \text{ cm}^4$$

$$I_X = 2(558.5) + 2(271.02) = 1659.04 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 16 * 0.79^3 + (16 * 0.79) \left(5 - \frac{0.79}{2}\right)^2 = 268.70 \text{cm}^4$$

$$I_{Y2} = \frac{1}{12}bh^3$$

$$I_{Y2} = \frac{1}{12} * 0.794 * 10^3 = 66.17 \text{ cm}^4$$

$$I_Y = 2(268.70) + 2(66.17) = 669.74$$
cm⁴

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{669.74 \text{ cm}^4}{41.08 \text{ cm}^2}} = 4.04 \text{cm}$$

Diseño a Flexión

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{M_1}/M_2}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 2100(1)}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 40.4 \text{mm} = 9709.87 \text{mm}$$

$$L_b \leq L_{pd}$$

Donde L_b=1850mm=luz de la viga

 $1850 \text{mm} \le 9709.87 \text{ mm}$

Diseño plástico

Cálculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((10*0.79)*\left(8.8 - \frac{0.79}{2}\right) + 2(8*0.79)*4\right) = 233.92cm^3$$

$$M_p = Z_x * F_y$$

$$M_p = 233.92 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 591815.07 \text{kg. cm}$$

$$M_n = \emptyset M_p$$

$$M_n = 0.9 * 591815.07 kg. cm = 532633.56 kg. cm$$

$$M_n > M_u$$

$$532633.56 \text{ kg. cm} > 96462.95 \text{kg. cm}$$

Cumple

Diseño a corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$\frac{16\text{cm}}{0.79\text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$20.25 \le 69.58$$
 cumple

$$V_n = 0.6 * F_v * A_w$$

$$V_n = 0.6 * \frac{25.3 \text{kg}}{\text{mm}^2} * 7.9 \text{mm} * 175.59 \text{mm} = 21057.1 \text{ kg}$$

$$V_d = \phi_b * V_n$$

$$V_d = 0.9 * 21057.1 = 18951.4 kg$$

$$V_d > V_u$$

$$18951.4$$
kg > 3844.99 kg

Deflexión:

$$\Delta L = \frac{5wL^4}{384 E I} + \frac{P b}{24 E I} (3L^2 - 4b^2)$$

$$\Delta L = \frac{5*0.35*185^4}{384*2100000*2337.12} + \frac{3788.76*100}{24*2100000*2337.12} (3*185^2 - 4*100^2)$$

$$\Delta L = 0.29$$
cm

$$\Delta L_{max} = \frac{185}{600} = 0.308$$
cm

$$\Delta L_{max} > \Delta L$$

$$0.306 > 0.29$$
 cumple

Diseño de la viga intermedia

$$V_{max}=0$$

$$h = 6 \text{ cm}$$

$$b = 8.42 \text{ cm}$$

$$t_{\rm w} = 0.79 \ cm$$

$$t_f = 0.79 \text{ cm}$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \leq \frac{55}{\sqrt{F_y}}$$

$$\frac{8.42 \text{ cm}}{2 * 0.79 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $5.33 \le 10.93$ Cumple

$$\frac{h}{t_w} \le \frac{537}{\sqrt{F_y}}$$

$$\frac{6 \text{ cm}}{0.79 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

 $7.6 \le 106.76$ Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(d * t_w)$$

$$A_T = 2(10 * 0.79) + 2(6 * 0.79) = 25.28 \text{ cm}^2$$

Peso propio de la viga:

$$w_p = A * \gamma$$

$$w_p = \frac{25.28 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 19.84 \frac{\text{kg}}{\text{m}^3}$$

Centroide de la sección

$$Y_c=3.79cm$$

$$X_C=5cm$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 10 * 0.79^3 + (10 * 0.79) \left(3.79 - \frac{0.79}{2}\right)^2 = 91.47 \text{ cm}^4$$

$$I_{X2} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.79 * 6^3 = 14.22 \text{ cm}^4$$

$$I_X = 2(91.47) + 2(14.22) = 211.37 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 6 * 0.79^3 + (6 * 0.79) \left(5 - \frac{0.79}{2}\right)^2 = 100.76 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.79 * 10^3 = 65.83 \text{ cm}^4$$

$$I_Y = 2(100.76) + 2(65.83) = 333.19$$
cm⁴

Radio de giro del eje más débil de la sección.

$$r_x = \sqrt{\frac{I_x}{A}}$$

$$r_x = \sqrt{\frac{333.19 \text{ cm}^4}{25.28 \text{ cm}^2}} = 3.63 \text{cm}$$

Diseño a flexión:

Análisis plástico

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{M_1}/M_2}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 2100(-1)}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 36.3 \text{ mm} = 2008.7 \text{mm}$$

$$L_b \leq L_{pd}$$

Donde L_b=2190mm=luz de la viga

2190mm ≤ 2008.69 mm No cumple

$$d'' = h + t_f$$

$$d'' = 6 + 0.79 = 6.79$$
cm

$$b'' = 8.42 + 0.79 = 9.21$$
cm

Constante de torsión:

$$J = \frac{2 d^{"^2} b^{"^2}}{\frac{b^{"}}{t_f} + \frac{d^{"}}{t_w}}$$

$$J = \frac{2 * 6.79^2 * 9.21^2}{\frac{9.21}{0.79} + \frac{6.79}{0.79}} = 386.19 \text{ cm}^4$$

Calculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((10*0.79)*\left(3.79 - \frac{0.79}{2}\right) + 2(3*0.79)*1.5\right) = 67.86\text{cm}^3$$

$$M_p \, = Z_x * F_y$$

$$M_p = 67.86 \text{ cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 171688.33 \text{kg. cm}$$

$$L_{\rm p} = \frac{2640 \; r_{\rm x}}{M_{\rm P}} \sqrt{J \; A}$$

$$L_p = \frac{2640*36.3mm}{171688.33kg.\,mm} \sqrt{3861400\;mm^4*2528\;mm^2} = 55148.12mm$$

$$L_b \leq L_p$$

2190mm ≤ 55148.12mm Diseño plástico

$$M_n = \emptyset M_p$$

$$M_n = 0.9 * 171688.33$$
kg. cm = 154519.5 kg. cm

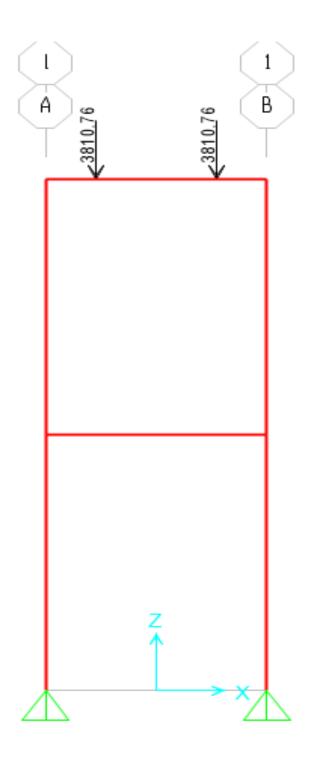
$$M_n > M_u$$

$$154519.5 \text{ kg. cm} > 8207.33 \text{ kg. cm}$$

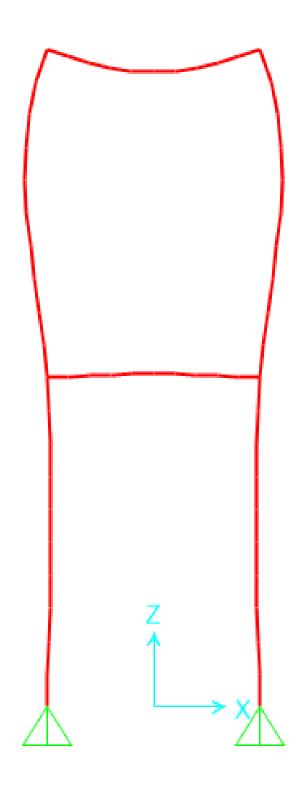
Cumple

Deflexión:

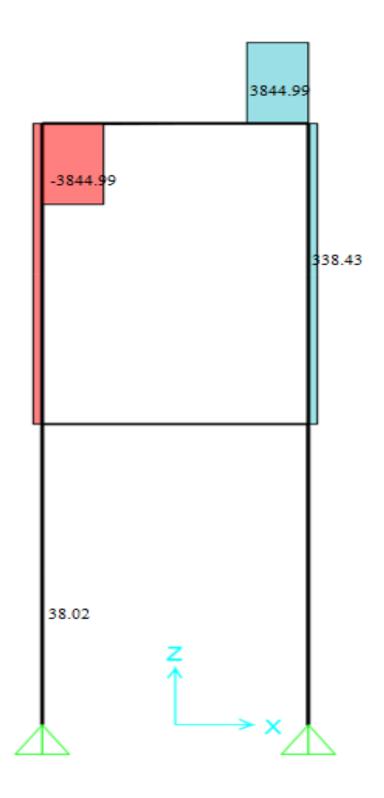
$$\Delta L = \frac{5wL^4}{384 \; E \; I}$$

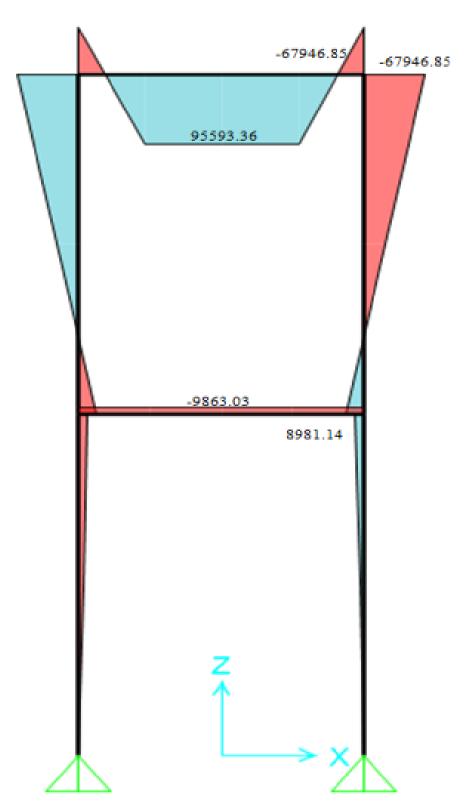

$$\Delta L = \frac{5*0.2*219^4}{384*2100000*211.37} = 0.006 cm$$

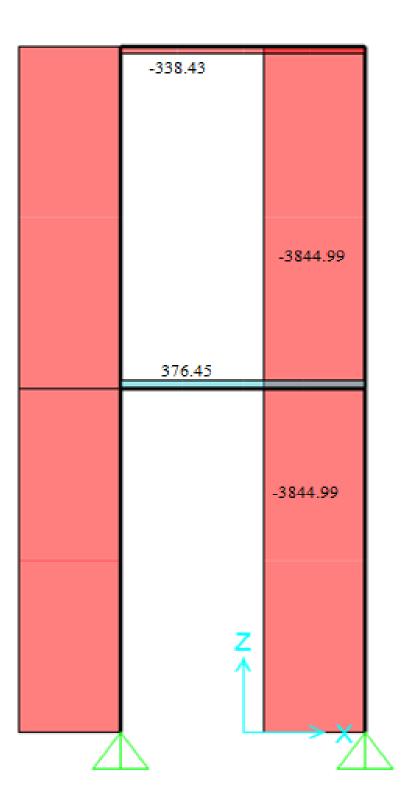
$$\Delta L_{max} = \frac{219}{600} = 0.365 cm$$


$$\Delta L_{max} > \Delta L$$

$$0.306 > 0.006$$
 cumple


3.9.2. Alternativa 2


Deflexión del pórtico:


Diagrama de cortantes

Digrama de momentos:

Diagrama de fuerzas axiales:

Columna 1

Longitud (L)=294 cm

Carga axial (P_U)=3844.99kg

Esfuerzo de fluencia para perfiles soldados $(f_r)=11.6 \frac{kg}{mm^2}$

$$h = 9 \text{ cm}$$

$$b = 6.73 \text{ cm}$$

$$t_{\rm w} = 0.48 cm$$

$$t_f = 0.48 cm \\$$

Calculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(10 * 0.48) + 2(6.73 * 0.48) = 16.06 cm^2$$

Centroide de la sección

$$Y_c=5$$
 cm

$$X_C=4$$
 cm

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 6.73 * 0.48^3 + (6.73 * 0.48) \left(5 - \frac{0.48}{2}\right)^2 = 73.26 \text{cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.48 * 10^3 = 40 \text{ cm}^4$$

$$I_X = 2(73.26) + 2(40) = 226.52 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 10 * 0.48^3 + (10 * 0.48) \left(4 - \frac{0.48}{2}\right)^2 = 67.95 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.48 * 6.73^3 = 12.19 \text{ cm}^4$$

$$I_Y = 2(67.95) + 2(12.19) = 160.29 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{160.29 \text{ cm}^4}{16.06 \text{ cm}^2}} = 3.16 \text{ cm}$$

Resistencia a diseño a compresión para pandeo por flexión:

$$\frac{b}{t} \le \lambda_p$$

$$\frac{b}{t} \le \frac{200}{\sqrt{F_Y - F_r}}$$

$$\frac{6.73}{0.48} \le \frac{200}{\sqrt{25.3 \frac{\text{kg}}{\text{mm}^2} - 11.6 \frac{\text{kg}}{\text{mm}^2}}}$$

$$8.63 \le 54.03$$
 No hay pandeo local

$$\lambda = \frac{KL}{r_v}$$

$$K=0.65$$

$$\lambda = \frac{0.65 * 294 \text{ cm}}{3.16 \text{ cm}} = 58.75$$

$$\lambda \le 200$$

$$58.75 \le 200$$

$$\lambda_c = \frac{\lambda}{\pi} \sqrt{\frac{F_y}{E}}$$

$$\lambda_{c} = \frac{58.75}{\pi} \sqrt{\frac{25.3 \frac{kg}{mm^{2}}}{21000 \frac{kg}{mm^{2}}}} = 0.65$$

$$0.67 \le 1.5$$

$$F_{cr} = (0.658^{\lambda_c^2})F_y$$

$$F_{cr} = (0.658^{0.65^2})25.3 \frac{kg}{mm^2} = 21.20 \frac{kg}{mm^2}$$

$$P_n = \emptyset_c A_g F_{cr}$$

$$P_n = 0.85 * 1606 \text{mm}^2 * 21.20 \frac{\text{kg}}{\text{mm}^2} = 28940.12 \text{kg}$$

$$P_n \leq P_u$$

 $28940.13 \text{ kg} \le 3844.99 \text{kg}$

Columna 2

Longitud (L)=294cm

Carga axial (P_U)=3844.99kg

Esfuerzo de fluencia para perfiles soldados (F_r)=11.6 $\frac{kg}{mm^2}$

$$h = 9 \text{ cm}$$

$$b = 6.73 \text{ cm}$$

$$t_w = 0.48cm$$

$$t_f = 0.48cm$$

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(h * t_w)$$

$$A_T = 2(10 * 0.48) + 2(6.73 * 0.48) = 16.06 \text{ cm}^2$$

Centroide de la sección

$$Y_c=5$$
 cm

$$X_C=4$$
 cm

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 6.73 * 0.48^3 + (6.73 * 0.48) \left(5 - \frac{0.48}{2}\right)^2 = 73.26 \text{cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.48 * 10^3 = 40 \text{ cm}^4$$

$$I_X = 2(73.26) + 2(40) = 226.52 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_{Y} = 2I_{Y1} + 2I_{Y2}$$

$$I_{Y1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{Y1} = \frac{1}{12} * 10 * 0.48^3 + (10 * 0.48) \left(4 - \frac{0.48}{2}\right)^2 = 67.95 \text{ cm}^4$$

$$I_{Y1} = \frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.48 * 6.73^3 = 12.19 \text{ cm}^4$$

$$I_Y = 2(67.95) + 2(12.19) = 160.29 \text{ cm}^4$$

Radio de giro del eje más débil de la sección.

$$r_y = \sqrt{\frac{I_Y}{A}}$$

$$r_y = \sqrt{\frac{160.29 \text{ cm}^4}{16.06 \text{ cm}^2}} = 3.16 \text{ cm}$$

Resistencia a diseño a compresión para pandeo por flexión:

$$\frac{b}{t} \le \lambda_p$$

$$\frac{b}{t} \le \frac{200}{\sqrt{F_Y - F_r}}$$

$$\frac{6.73}{0.48} \le \frac{200}{\sqrt{25.3 \frac{\text{kg}}{\text{mm}^2} - 11.6 \frac{\text{kg}}{\text{mm}^2}}}$$

$$8.63 \le 54.03$$

No hay pandeo local

$$\lambda = \frac{KL}{r_y}$$

$$K = 0.8$$

$$\lambda = \frac{0.8 * 294 cm}{3.16 cm} = 72.3$$

$$\lambda \leq 200$$

$$72.3 \le 200$$

$$\lambda_c = \frac{\lambda}{\pi} \sqrt{\frac{F_y}{E}}$$

$$\lambda_c = \frac{72.3}{\pi} \sqrt{\frac{25.3 \frac{kg}{mm^2}}{21000 \frac{kg}{mm^2}}} = 0.8$$

$$0.81 \le 1.5$$

$$F_{\rm cr} = (0.658^{\lambda_c^2})F_{\rm y}$$

$$F_{cr} = (0.658^{0.8^2})25.3 \frac{kg}{mm^2} = 19.35 \frac{kg}{mm^2}$$

$$P_n = \emptyset_c A_g F_{cr}$$

$$P_n = 0.85 * 1606 \text{ mm}^2 * 19.35 \frac{\text{kg}}{\text{mm}^2} = 26414.69 \text{ kg}$$

$$P_n \le P_u$$

$$26414.69 \text{ kg} \le 3844.99 \text{kg}$$

Diseño de la viga superior

M_{max}=95593.36 kg.cm

$$V_{max} = 3844.99 \text{ kg}$$

$$h = 16 \text{ cm}$$

$$b = 8.42cm$$

$$t_w = 0.79cm$$

$$t_f = 0.79 \text{ cm}$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \le \frac{55}{\sqrt{F_y}}$$

$$\frac{8.42 \text{ cm}}{2 * 0.79 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$5.34 \le 10.93$$
 Cumple

$$\frac{h}{t_w} \le \frac{537}{\sqrt{F_y}}$$

$$\frac{16 \text{ cm}}{0.79 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$20.25 \le 106.76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(d * t_w)$$

$$A_T = 2(10 * 0.79) + 2(16 * 0.79) = 41.08 \text{ cm}^2$$

Peso propio de la viga:

$$w_p = A * \gamma$$

$$w_p = \frac{41.08 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 32.25 \frac{\text{kg}}{\text{m}^3}$$

Centroide de la sección

$$Y_c=8.8cm$$

$$X_C=5$$
 cm

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 10 * 0.79^3 + (10 * 0.79) \left(8.8 - \frac{0.79}{2}\right)^2 = 558.5 \text{ cm}^4$$

$$I_{X1} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.79 * 16^3 = 271.02 \text{ cm}^4$$

$$I_X = 2(558.5) + 2(271.02) = 1659.04 \text{ cm}^4$$

Momento de inercia en el eje Y

$$\begin{split} I_Y &= 2I_{Y1} + 2I_{Y2} \\ I_{Y1} &= \frac{1}{12} bh^3 + Ad^2 \\ I_{Y1} &= \frac{1}{12} * 16 * 0.79^3 + (16 * 0.79) \left(5 - \frac{0.79}{2}\right)^2 = 268.70 cm^4 \\ I_{Y2} &= \frac{1}{12} bh^3 \\ I_{Y2} &= \frac{1}{12} * 0.794 * 10^3 = 66.17 cm^4 \end{split}$$

 $I_Y=2(268.70)+2(66.17)=669.74 {
m cm}^4$ Radio de giro del eje más débil de la sección.

$$r_{y} = \sqrt{\frac{I_{Y}}{A}}$$

$$r_{y} = \sqrt{\frac{669.74 \text{ cm}^{4}}{41.08 \text{ cm}^{2}}} = 4.04 \text{cm}$$

Diseño a Flexión

Análisis plástico:

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{M_1}/M_2}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 2100(1)}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 40.4 \text{mm} = 9709.87 \text{mm}$$

$$L_{b} \leq L_{pd}$$

Donde L_b=1850mm=luz de la viga

1850mm ≤ 9709.87 mm Diseño plástico

Cálculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((10*0.79)*\left(8.8 - \frac{0.79}{2}\right) + 2(8*0.79)*4\right) = 233.92cm^3$$

$$M_p = Z_x * F_v$$

$$M_p = 233.92 \text{cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 591815.07 \text{kg. cm}$$

$$M_n = \emptyset M_p$$

$$M_n = 0.9 * 591815.07 kg. cm = 532633.56 kg. cm$$

$$M_n > M_u$$

$$532633.56 \text{ kg. cm} > 95593.36 \text{kg. cm}$$

Cumple

Diseño a corte:

$$\frac{h}{t_w} \leq \frac{350}{\sqrt{F_y}}$$

$$\frac{16\text{cm}}{0.79\text{cm}} \le \frac{350}{\sqrt{25.3 \text{ kg/mm}^2}}$$

$$20.25 \le 69.58$$
 cumple

$$V_n = 0.6 * F_y * A_w$$

$$V_n = 0.6 * \frac{25.3 \text{kg}}{\text{mm}^2} * 7.9 \text{mm} * 175.59 \text{mm} = 21057.1 \text{ kg}$$

$$V_d = \phi_b * V_n$$

$$V_d = 0.9 * 21057.1 = 18951.4$$
kg

$$V_{\rm d} > V_{\rm u}$$

Deflexión:

$$\Delta L = \frac{5wL^4}{384 E I} + \frac{P b}{24 E I} (3L^2 - 4b^2)$$

$$\Delta L = \frac{5*0.35*185^4}{384*2100000*2337.12} + \frac{3788.76*100}{24*2100000*2337.12} (3*185^2 - 4*100^2)$$

$$\Delta L = 0.29$$
cm

$$\Delta L_{max} = \frac{185}{600} = 0.308 cm$$

$$\Delta L_{max} > \Delta L$$

$$0.306 > 0.29$$
 cumple

Diseño de la viga intermedia

$$V_{max}=0$$

$$h = 6 \text{ cm}$$

$$b = 8.42 \text{ cm}$$

$$t_w = 0.79 \text{ cm}$$

$$t_f = 0.79 \text{ cm}$$

Según especificaciones LRFD-AISC debe cumplir:

$$\frac{b}{2t_f} \le \frac{55}{\sqrt{F_v}}$$

$$\frac{8.42 \text{ cm}}{2 * 0.79 \text{ cm}} \le \frac{55}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$5.33 \le 10.93$$
 Cumple

$$\frac{h}{t_w} \le \frac{537}{\sqrt{F_y}}$$

$$\frac{6 \text{ cm}}{0.79 \text{ cm}} \le \frac{537}{\sqrt{25,30 \frac{\text{kg}}{\text{mm}^2}}}$$

$$7.6 \le 106.76$$
 Cumple

La sección es compacta.

Cálculo de momentos de inercia:

$$A_T = 2(b_f * t_f) + 2(d * t_w)$$

$$A_T = 2(10 * 0.79) + 2(6 * 0.79) = 25.28 \text{ cm}^2$$

Peso propio de la viga:

$$w_p = A * 2$$

$$w_p = \frac{25.28 \text{ cm}^2}{100^2} * 7850 \frac{\text{kg}}{\text{m}^3} = 19.84 \frac{\text{kg}}{\text{m}^3}$$

Centroide de la sección

$$Y_c=3.79cm$$

$$X_C=5cm$$

Momento de inercia en el eje X

$$I_X = 2I_{X1} + 2I_{X2}$$

$$I_{X1} = \frac{1}{12}bh^3 + Ad^2$$

$$I_{X1} = \frac{1}{12} * 10 * 0.79^3 + (10 * 0.79) \left(3.79 - \frac{0.79}{2}\right)^2 = 91.47 \text{ cm}^4$$

$$I_{X2} = \frac{1}{12}bh^3$$

$$I_{X1} = \frac{1}{12} * 0.79 * 6^3 = 14.22 \text{ cm}^4$$

$$I_X = 2(91.47) + 2(14.22) = 211.37 \text{ cm}^4$$

Momento de inercia en el eje Y

$$I_Y = 2I_{Y1} + 2I_{Y2}$$

 $I_{Y1} = \frac{1}{12}bh^3 + Ad^2$

$$I_{Y1} = \frac{1}{12} * 6 * 0.79^3 + (6 * 0.79) \left(5 - \frac{0.79}{2}\right)^2 = 100.76 \text{ cm}^4$$

$$I_{Y1}=\frac{1}{12}bh^3$$

$$I_{Y1} = \frac{1}{12} * 0.79 * 10^3 = 65.83 \text{ cm}^4$$

$$I_Y = 2(100.76) + 2(65.83) = 333.19$$
cm⁴

Radio de giro del eje más débil de la sección.

$$r_x = \sqrt{\frac{I_x}{A}}$$

$$r_x = \sqrt{\frac{333.19 \text{ cm}^4}{25.28 \text{ cm}^2}} = 3.63 \text{cm}$$

Diseño a flexión:

Análisis plástico

Longitud máxima:

$$L_{pd} = \frac{3500 + 2100^{\ M_1} / _{M_2}}{F_y} * r_y$$

$$L_{pd} = \frac{3500 + 2100(-1)}{25.3 \frac{\text{kg}}{\text{mm}^2}} * 36.3 \text{ mm} = 2008.7 \text{mm}$$

$$L_b \leq L_{pd}$$

Donde L_b=1850mm=luz de la viga

1850mm ≤ 2008.69 mm No cumple

$$d^{"} = h + t_f$$

$$d'' = 6 + 0.79 = 6.79$$
cm

$$b'' = 8.42 + 0.79 = 9.21$$

Constante de torsión:

$$J = \frac{2 d^{"2} b^{"2}}{\frac{b^{"}}{t_{f}} + \frac{d^{"}}{t_{w}}}$$

$$J = \frac{2 * 6.79^2 * 9.21^2}{\frac{9.21}{0.79} + \frac{6.79}{0.79}} = 386.19 \text{ cm}^4$$

Cálculo del módulo plástico de la sección:

$$Z_X = \int_{Ac}^{\cdot} Y \, dA + \int_{At}^{\cdot} Y \, dA$$

$$Z_X = 2\left((10*0.79)*\left(3.79 - \frac{0.79}{2}\right) + 2(3*0.79)*1.5\right) = 67.86\text{cm}^3$$

$$M_p = Z_x * F_y$$

$$M_p = 67.86 \text{ cm}^3 * 2530 \frac{\text{kg}}{\text{cm}^2} = 171688.33 \text{kg. cm}$$

$$L_{\rm p} = \frac{2640~r_{_X}}{M_{\rm P}} \sqrt{J~A}$$

$$L_p = \frac{2640*36.3mm}{171688.33 kg.\,mm} \sqrt{3861400\;mm^4*2528\;mm^2} = 55148.12mm$$

$$L_b \le L_p$$

1850mm ≤ 55148.12mm Diseño plástico

$$M_n = \emptyset M_p$$

$$M_n = 0.9 * 171688.33$$
kg. cm = 154519.5 kg. cm

$$M_{\rm n} > M_{\rm u}$$

154519.5 kg. m > 8207.33 kg. m

Cumple

Deflexión:

$$\Delta L = \frac{5wL^4}{384 \; E \; I}$$

$$\Delta L = \frac{5 * 0.2 * 185^4}{384 * 2100000 * 211.37} = 0.006 cm$$

$$\Delta L_{max}=\frac{185}{600}=0.306cm$$

$$\Delta L_{max} > \Delta L$$

cumple

3.10. Diseño de placa base:

$$P_u = 3844.99 \text{kg}$$

$$d=10 \text{ cm}$$

$$b=8$$
 cm

$$f_c = 250 \text{ kg/cm}^2$$

Asumiendo:

$$A_o = B N = 10 * 12 = 120 cm^2$$

$$A_{1 \text{ req}} = \frac{P_{\text{u}}}{\emptyset_{\text{c}} \ 0.85 \ f_{\text{c}}}$$

$$A_{1 \text{ req}} = \frac{3844.99 \text{ kg}}{0.65 * 0.85 * 250 \frac{\text{kg}}{\text{cm}^2}} = 27.84 \text{cm}^2$$

Se asume la mayor área

$$\Delta = \frac{0.95 \text{ d} - 0.8 \text{ b}_{\text{f}}}{2}$$

$$\Delta = \frac{0.95 * 12 - 0.8 * 10}{2} = 1.7$$

$$N = \sqrt{A_{1req}} + \Delta$$

$$N = \sqrt{120 \text{cm}^2 + 1.7} = 12.65 \text{cm}$$

$$B = \frac{A}{N}$$

$$B = \frac{120 \text{cm}^2}{12.65 \text{cm}} = 9.5$$

$$m = \frac{N - 0.95 d}{2}$$

$$m = \frac{12,65cm - 0,95 * 12}{2} = 0,65 \approx 2cm$$

$$n = \frac{B - 0.8 b_f}{2}$$

$$n = \frac{9,5 - 0,8 * 8}{2} = 1,55 \approx 2cm$$

$$P_p = 0.85 F_c * A$$

$$P_p = 0.85 * 250 * 120 = 25500 \text{ kg}$$

$$X = \frac{4 \ d \ b_f}{(d + b_f)^2} * \frac{P_u}{\emptyset_c \ P_p}$$

$$X = \frac{4 * 10 * 8}{(10 + 8)^2} * \frac{3844.99}{0.65 * 25500} = 0.22$$

$$\lambda = \frac{2\sqrt{X}}{1 + \sqrt{1 - X}} \le 1$$

$$\lambda = \frac{2\sqrt{0.22}}{1+\sqrt{1-0.2}} = 0.5 \le 1$$

$$\lambda n' = \lambda \frac{\sqrt{d b_f}}{4}$$

$$\lambda n' = 0.5 \frac{\sqrt{10 * 8}}{4} = 1,12cm$$

$$l = max(m, n, \lambda n')$$

$$l = max(2, 2, 1.12)$$

$$t_{\min} = l \sqrt{\frac{2 P_u}{\emptyset_f F_y B N}}$$

$$t_{min} = 2 * \sqrt{\frac{2 * 3844.99}{0.9 * 2530 * 9.5 * 12.5}} = 0.307 cm \approx 0.635 cm$$

3.11. Diseño de Soldadura (Filete)

Viga principal:

$$F_v = 2530 \text{ kg/cm}^2$$

$$F_{EXX} = E60_{XX} = 3518.02 \text{ kg/cm}^2$$

Aw= área efectiva de soldadura

L_e=longitud efectiva=11 m

t_e= espesor efectivo de la garganta =0.707 W

W=tamaño de la soldadura =0.48cm

$$t_e = 0.707 \, w$$

$$t_e = 0.707 * 0.48 = 0.33 \text{ cm}$$

$$V_{\rm U} = 0.6(F_{\rm EXX})t_{\rm e}L_{\rm W}$$

$$V_U = 0.6 \left(3518.02 \frac{\text{kg}}{\text{cm}^2} \right) * 0.33 \text{ cm} * 1100 \text{ cm} = 766224.76 \text{kg}$$

$$V_U = 766224.76 \text{kg} > 2321.77 \text{ kg}$$

Viga testera:

Soldadura de penetración total

$$F_v=2530 \text{ kg/cm}^2$$

$$F_{EXX} = E60_{XX} = 3518.02 \text{ kg/cm}^2$$

A_w= área efectiva de soldadura

L_e=longitud efectiva=1.85 m

t_e= espesor efectivo de la garganta =0.32 cm

$$A_w = L_e \,.\, t_e$$

$$A_w = 185 \text{ cm} * 0.32 \text{ cm} = 58.88 \text{cm}^2$$

a):
$$V_U = 0.9(0.6 F_y)A_w$$

$$V_U = 0.9 \left(0.6 * 2530 \frac{\text{kg}}{\text{cm}^2} \right) * 58.88 \text{cm}^2 = 80441.86 \text{ kg}$$

b):
$$V_U = 0.8(0.6 F_{EXX})A_W$$

$$V_U = 0.8 \left(0.6 * 3518.02 \frac{\text{kg}}{\text{cm}^2}\right) * 58.88 \text{cm}^2 = 99427.69 \text{ kg}$$

Se elige la menor valor $V_U = 99427.69 \text{ kg} > 3806.23 \text{ kg}$ verifica

Pórtico:

Soldadura de penetración total

Columna

$$F_v=2530 \text{ kg/cm}^2$$

$$F_{EXX} = E60_{XX} = 3518.02 \text{ kg/cm}^2$$

Aw= área efectiva de soldadura

L_e=longitud efectiva=285.65cm

t_e= espesor efectivo de la garganta =0. 32 cm

$$A_w = L_e \cdot t_e$$

$$A_w = 285.65 \text{ cm} * 0.32 \text{ cm} = 91.41 \text{cm}^2$$

a):
$$V_U = 0.9(0.6 F_v)A_w$$

$$V_U = 0.9 \left(0.6 * 2530 \frac{\text{kg}}{\text{cm}^2}\right) * 91.41 \text{cm}^2 = 124884.34 \text{ kg}$$

b):
$$V_U = 0.8(0.6 F_{EXX})A_w$$

$$V_U = 0.8 \left(0.6 * 3518.02 \frac{\text{kg}}{\text{cm}^2}\right) * 91.41 \text{cm}^2 = 96474.66 \text{ kg}$$

Se elige la menor valor $V_U = 96474.66 \text{ kg} > 3894.64 \text{ kg}$ verifica

Vigas del pórtico:

$$F_y=2530 \text{ kg/cm}^2$$

$$F_{EXX} = E60_{XX} = 3518.02 \text{ kg/cm}^2$$

Aw= área efectiva de soldadura

L_e=longitud efectiva=1.85m

t_e= espesor efectivo de la garganta =0.32 cm

$$A_w = L_e \cdot t_e$$

$$A_w = 185 \text{cm} * 0.32 \text{ cm} = 59.2 \text{cm}^2$$

a):
$$V_U = 0.9(0.6 F_y)A_w$$

$$V_U = 0.9 \left(0.6 * 2530 \frac{\text{kg}}{\text{cm}^2}\right) * 59.2 \text{cm}^2 = 80879.04 \text{ kg}$$

b):
$$V_U = 0.8(0.6 F_{EXX})A_w$$

$$V_U = 0.8 \left(0.6 * 3518.02 \frac{\text{kg}}{\text{cm}^2}\right) * 59.2 \text{cm}^2 = 99968.06 \text{ kg}$$

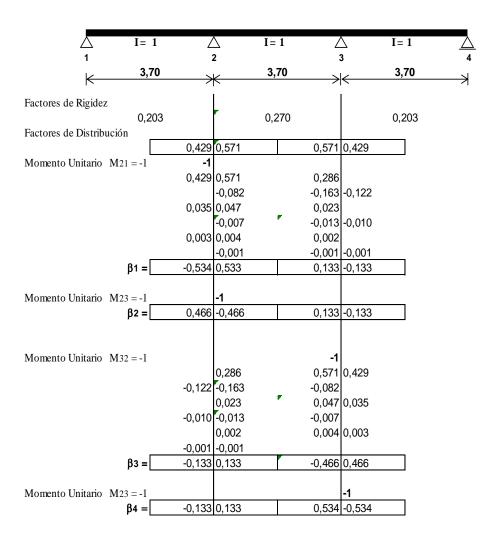
Se elige la menor valor $V_U = 99968.06 \, \mathrm{kg} > 3844.99 \, \mathrm{kg}$ verifica

Soldadura de filete:

En los extremos de la viga principal

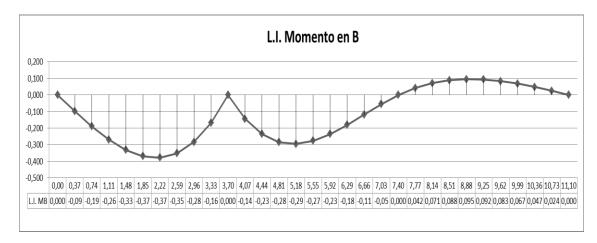
$$F_{EXX} = E60_{XX} = 3518.02 \text{ kg/cm}^2$$

L_W=longitud efectiva=77.08 cm


 $t_e \!\!=\! espesor$ efectivo de la garganta $=\!\!0.707~W$

W=tamaño de la soldadura (espesor de la chapa)

$$\begin{split} t_e &= 0.707 \text{ w} \\ t_e &= 0.707*0.32 = 0.23 \text{ cm} \\ V_U &= 0.6 (\text{ F}_{\text{EXX}}) t_e \text{ L}_W \\ V_U &= 0.6 \left(3518.02 \frac{\text{kg}}{\text{cm}^2}\right) * 0.23 \text{ cm} * 77.08 \text{ cm} = 37421.32 \text{ kg} \\ V_U &= 37421.32 \text{ kg} > 3810.76 \text{ kg} \end{split}$$


3.12. Diseño de la viga de hormigón armado:

Líneas de influencia - método de los momentos unitarios

β1	β2	β3	β4
-0,534	0,466	-0,133	-0,133

α	SECCION	MFba	MFbc	MFcb	MFcd	β1.MFba	β2.MFbc	β3.MFcb	β4.MFcd	Мв
0,00	0,00	0,000				0,000				0,000
0,10	0,37	0,183				-0,098				-0,098
0,20	0,74	0,355				-0,190				-0,190
0,30	1,11	0,505				-0,269				-0,269
0,40	1,48	0,622				-0,332				-0,332
0,50	1,85	0,694				-0,370				-0,370
0,60	2,22	0,710				-0,379				-0,379
0,70	2,59	0,660				-0,352				-0,352
0,80	2,96	0,533				-0,284				-0,284
0,90	3,33	0,316				-0,169				-0,169
1,00	3,70	0,000				0,000				0,000
0,10	4,07		-0,300	0,033			-0,140	-0,004		-0,144
0,20	4,44		-0,474	0,118			-0,221	-0,016		-0,237
0,30	4,81		-0,544	0,233			-0,254	-0,031		-0,285
0,40	5,18		-0,533	0,355			-0,249	-0,047		-0,296
0,50	5,55		-0,463	0,463			-0,216	-0,062		-0,277
0,60	5,92		-0,355	0,533			-0,166	-0,071		-0,237
0,70	6,29		-0,233	0,544			-0,109	-0,072		-0,181
0,80	6,66		-0,118	0,474			-0,055	-0,063		-0,118
0,90	7,03		-0,033	0,300			-0,016	-0,040		-0,055
1,00	7,40		0,000	0,000			0,000	0,000		0,000
0,10	7,77				-0,316				0,042	0,042
0,20	8,14				-0,533				0,071	0,071
0,30	8,51				-0,660				0,088	0,088
0,40	8,88				-0,710				0,095	0,095
0,50	9,25				-0,694				0,092	0,092
0,60	9,62				-0,622				0,083	0,083
0,70	9,99				-0,505				0,067	0,067
0,80	10,36				-0,355				0,047	0,047
0,90	10,73				-0,183				0,024	0,024
1,00	11,10				0,000				0,000	0,000

Análisis de carga:

$$R1_{max} = 3806.23 kg$$

$$R2_{max} = 3806.23 kg$$

Margen de impacto M_i=1.3

$$P_1 = R_{max} * M_i$$

$$P_1 = 3806.23 * 1.3 = 4948.1 \text{kg}$$

$$P_2 = 3806.23 * 1.3 = 4948.1$$
kg

Peso de la riel (W_r)=14.88 kg/m

Peso propio de la viga de hormigón:

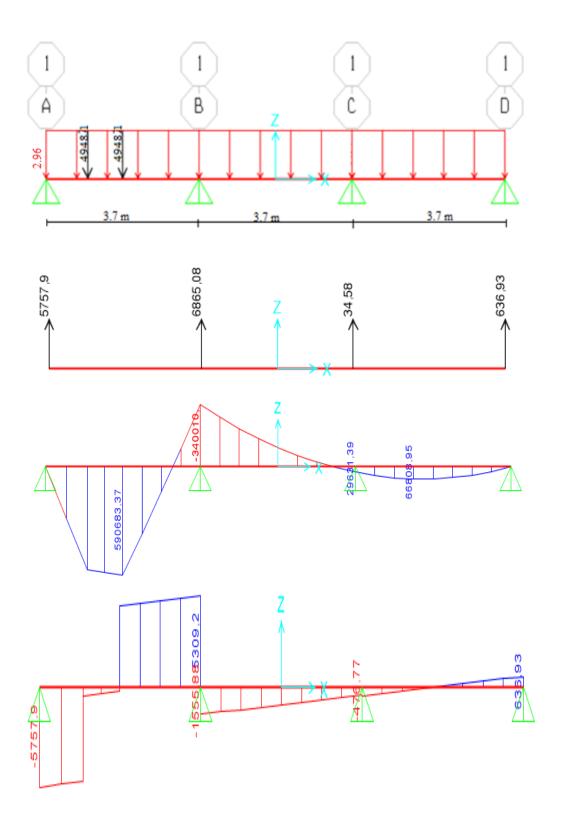
Peso especifico de hormigon (Υ_H)=2500 kg/cm²

$$W_H = A \, \Upsilon_H$$

$$W_H = 0.1125 \text{ m}^2 * 2500 \text{ kg/}_{\text{m}^3} = 281.25 \text{ kg/}_{\text{m}}$$

Peso total muerto:

$$W_T = W_H + W_r$$


$$W_T = 281.25 + 14.88 = 296.13 \frac{\text{kg}}{\text{m}^2}$$

Cargas horizontales:

Margen de impacto supuesto M_i=10%

$$N = C_h = (2.P + W_T * L) * 0.10$$

$$N = C_h = \left(2 * 3806.23 \text{ kg} + 296.13 \frac{\text{kg}}{\text{m}} 2 * 11 \text{m}\right) * 0.10 = 1086.99 \text{ kg}$$

 $f_{yk} = resistencia \ caracteristica \ del \ hormigon$

 $f_{ck} = resistencia caracteristica del acero \,$

$$f_{yk} = 4200 \, \text{kg/cm}^2$$

$$f_{ck} = 250 \text{ kg/cm}^2$$

Coeficientes de minoración de la resistencia de los materiales

Material	Coeficiente básico	peficiente básico Nivel de control	
Acero	$\gamma_s = 1.15$	Reducido Norma intenso	+0.05 0 -0.05
Hormigón	$\gamma_c = 1.50$	Reducido Norma intenso	+0.20 0 -0.10

Minoración de resistencias:

Resistencia de minoración del hormigón:

$$f_{cd} = \frac{f_{ck}}{\gamma_c}$$

$$f_{cd} = \frac{250 \text{ kg/}_{cm^2}}{1.50}$$

$$f_{cd} = 166.67 \frac{kg}{cm^2}$$

Resistencia de minoración del acero

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$

$$f_{yd} = \frac{4200 \, ^{\text{kg}} / _{\text{cm}^2}}{1.15}$$

$$f_{yd} = 3652.17 \frac{kg}{cm^2}$$

Cálculo de la armadura:

Dimensiones de la viga

 $d_1 = 3 \text{ cm}$

b = 25,00 cm

h = 45,00 cm

d = 42 cm

 $M_{max} = 590683.37 \text{ kg. cm}$

 $V_{\text{max}} = 5309.2 \text{ kg}$

 $d_1 = recubrimiento$

b = base de la viga

h = altura total de la viga

d = canto total de la viga

 $f_{cd}=$ resistencia minorada del hormigón

 $f_{yd} = resistencia minorada del acero$

 $Y_s = 19.5 \text{ cm}$

Momento máximo mayorado: Md

$$\mathrm{M_{d}}=1{,}60~\mathrm{M_{max}}$$

$$M_d = 1,60 * 590683.37$$
kg. cm

$$M_d = 945093.4 \text{ kg. cm}$$

$$N_d = 1.6 N$$

$$N_d = 1.6 * 1086.99 kg = 1739.18 kg$$

$$M'_d = M_d - (\mp N_d)Y_s$$

$$M_d^{'} = 945093.4 \text{ kg. cm} - (-1739.18 \text{kg}) * 19.5 \text{ cm} = 979007.41 \text{kg. cm}$$

Dimensionamiento de las secciones:

$$d_{min} = k*\sqrt{\frac{M^{'}_{d}}{b_{w}*~f_{cd}}}$$

$$2,2 \le k \le 3,3$$

$$d_{min} = 2.50 * \sqrt{\frac{979007.41 \text{ kg. cm}}{25 \text{ cm} * 166.67 \text{ kg/cm}^2}}$$

$$d_{min} = 38.32cm$$

$$h = 45cm$$

$$d = canto util = h - d_1 = 45 cm - 3 cm = 42 cm$$

Determinación del momento reducido:

$$\mu_d = \frac{M^{'}_{\ d}}{b_w d^2 f_{cd}}$$

$$\mu_{d} = \frac{979007.41 \text{kg. cm}}{25 \text{ cm} * (42 \text{ cm})^{2} * 166.67 \frac{\text{kg}}{\text{cm}^{2}}} = 0.13$$

$$\mu_{\rm d} \leq \mu_{\rm lim}$$

$$0.13 \le 0.332$$

Se obtiene la cuantía mecánica mediante tabla 13.3 (P. JIMENEZ MONTOYA)

$$w_s = 0.1426$$

Armadura necesaria:

$$A_{s1} = w_s * b_w * d * \frac{f_{cd}}{f_{yd}}$$

$$A_{s1} = 0.1426 * 25 \text{ cm} * 42 \text{ cm} * \frac{166.6 \text{ kg}/cm^2}{3652.17 \text{ kg}/cm^2} = 6.83 \text{ cm}^2$$

Armadura mínima:

Cuantía mínima obtenida de la tabla 10.8 (P. JIMENEZ MONTOYA)

$$w_{min} = 0.0033$$

$$A_{min} = w_{min} * b_w * d$$

$$A_{min} = 0.0033 * 25 cm * 42 cm = 3.465 cm^{2}$$

Área adoptada:

$$A = 6.83 \text{cm}^2$$

Φ (mm)	Área A _S (cm ²)	Nº barras	Área neta (cm ²⁾
10	0,785	9	7.07
12	1,130	7	7.91
16	2,01	4	8.04

Separación en entre barras:

$$S = \frac{b-2\;d_1-n\;\;\Phi-2\Phi_{estr}}{n-1}$$

$$S = \frac{25 - 2 * 3 - 4 * 1.6 - 2 * 0.6}{4 - 1} = 3.8 \text{ cm}$$

Cálculo de la armadura transversal

Datos:

$$f_{cd} = 166.67 \frac{kg}{cm^2}$$

$$f_{yd} = 3652.17 \frac{kg}{cm^2}$$

$$V_{max} = 5309.2 \text{ kg}$$

Cortante mayorada:

$$V_d = 1,60 V_{max}$$

$$V_d = 1.6 * 5309.2 \text{ kg} = 8494.72 \text{ kg}$$

$$d = 42 \text{ cm}$$

$$b_w = 25 \text{ cm}$$

$$S = 100 \text{ cm}$$

$$L=11.2 \text{ m}$$

$$f_{\rm vd} = 0.50 * \sqrt{f_{\rm cd}}$$

$$f_{vd} = 0.50 * \sqrt{166.67 {}^{kg}/_{cm^2}} = 6.46 {}^{kg}/_{cm^2}$$

$$V_{cu} = f_{vd} * b_w * d$$

$$V_{cu} = 6.46 \frac{\text{kg}}{\text{cm}^2} * 25 \text{ cm} * 42 \text{ cm} = 6783 \text{ kg}$$

$$V_{ou} = 0.3 f_{cd} * b_w * d$$

$$V_{ou} = 0.3 * 166.67 \text{ kg/cm}^2 * 25 \text{ cm} * 42 \text{ cm} = 52501.05 \text{ kg}$$

$$V_d \leq V_{cu}$$

$$8494.72 \text{ kg} \le 6783 \text{kg}$$
 No cumple

$$V_{cu} \le V_d \le V_{ou}$$

$$6783 \text{ kg} \le 8494.72 \text{ kg} \le 52501.05 \text{ kg}$$

Entonces:

$$V_{su} = V_d - V_{cu}$$

$$V_{su} = 8494.72 \; kg - 6783 \; kg = 1711.72 \; kg$$

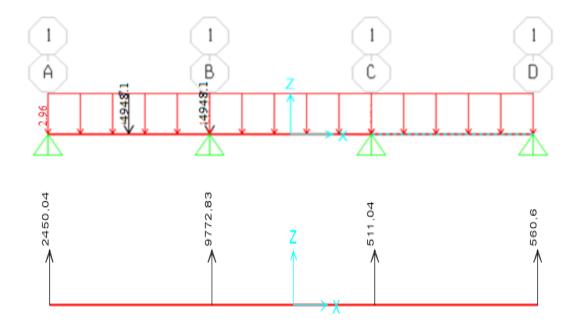
Cálculo de armaduras:

$$A_{s} = \frac{V_{su} * S}{0.90 * d * f_{yd}}$$

$$A_{s} = \frac{1711.72 \text{ kg} * 100 \text{ cm}}{0.90 * 42 \text{ cm} * 3652.17 \text{ kg/cm}^{2}} = 1.24 \text{cm}^{2}$$

Armadura mínima para dos piernas:

$$A_{smin_{90}} = \frac{A_s}{2}$$


$$A_{smin_{90}} = \frac{1.24cm^2}{2} = 0.62cm^2$$

Cálculo de armaduras:

Φ (mm)	Área A _S (cm ²)	Nº barras	C(cm)	C practico(cm)
6	0.283	3	33	20

3.13. Análisis de la ménsula:

Cuando las Cargas móviles se encuentran ubicadas en el tramo 1 respectivamente (185cm-370 cm), las reacciones máximas son las siguientes:

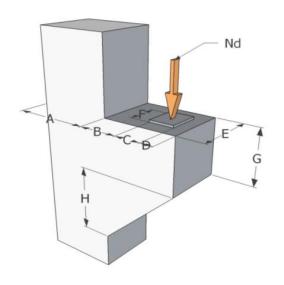
Minoración de resistencias:

Resistencia de minoración del hormigón:

$$f_{cd} = \frac{f_{ck}}{\gamma_c}$$

$$f_{cd} = \frac{250 \text{ kg/cm}^2}{1.50}$$

$$f_{cd} = 166.67 \text{ kg/cm}^2$$


Resistencia de minoración del acero

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$

$$f_{yd} = \frac{4000 \frac{\text{kg}}{\text{cm}^2}}{1.15}$$

$$f_{yd} = 3478.26 \frac{\text{kg}}{\text{cm}^2}$$

Verificación de armaduras

Datos:

A=80 cm

B = 12.5 cm

C = 25.0 cm

D=12.5 cm

E=40 cm

G=30 cm

H=20cm

$$h=H+G = 50 \text{ cm}$$

$$a = B + (C/2) = 25 \text{ cm}$$

$$d = h - r = 47.5 \text{ cm}$$

r= recubrimiento= 2.5cm

 $f_{vd} = R_{max} =$ fuerza máxima actuante en la ménsula

 $f_{hd} = R_{max} * 0.2 = fuerzas horizontales debido a la fuerza de impacto$

$$f_{vd} = 9772.83 \text{ kg}$$

$$f_{hd} = 0.2*9772.83 \; kg = 1954.57 \; kg$$

Momento flector:

$$M_d = f_{vd} a + f_{hd}(h - d)$$

$$M_d = 9772.83 \text{ kg} * 25 \text{ cm} + 1954.57 \text{kg} * (50 - 47.5) = 249207.175 \text{ kg. cm}$$

Cálculo de armadura según la EH-91

Armadura principal:

Se tomará como valor del área de la armadura principal As, el mayor de los valores

Siguientes:

Siendo:

Asf = Armadura necesaria para resistir el momento flector.

Asn = Armadura necesaria para resistir la tracción horizontal.

Asv = Armadura necesaria para resistir el esfuerzo cortante.

b = Anchura de la ménsula en la cara del pilar.

$$A_{s} = A_{sf} + A_{sn}$$

$$A_{s} = \frac{2}{3}A_{sv} + A_{sn}$$

$$A_{s} = 0.04 * \frac{f_{cd}}{f_{yd}} * b * d$$

$$1. A_s = A_{sf} + A_{sn}$$

Cálculo de Asf

El cálculo de la armadura de flexión Asf, necesaria para resistir el momento flector Md.

$$A_{sf} = \frac{M_d}{f_{vd} * 0.90 * d}$$

$$A_{sf} = \frac{249207.175 \text{ kg. cm}}{3478.26 \text{ kg/cm}^2 * 0.90 * 47.5 \text{ cm}} = 1.68 \text{ cm}^2$$

Cálculo de Asn

La armadura necesaria para resistir la tracción horizontal Nd, se tomará igual a:

$$A_{\rm sn} = \frac{f_{\rm hd}}{f_{\rm yd}}$$

$$A_{\rm sn} = \frac{1954.57 \text{ kg}}{3478.26 \text{ kg/cm}^2} = 0.56 \text{ cm}^2$$

$$A_s = 1.68 \text{ cm}^2 + 0.56 \text{ cm}^2 = 2.24 \text{ cm}^2$$

2.
$$A_s = \frac{2}{3}A_{sv} + A_{sn}$$

Cálculo de Asv

La armadura de cortante Asv viene dada por la expresión:

$$A_{sv} = \frac{f_{vd}}{f_{yd} * \cot \theta}$$

Dónde:

θ es el ángulo de inclinación sobre el plano P de las

Compresiones oblicuas. El valor de este ángulo se deducirá de las expresiones siguientes:

cotg θ = 1,4 si se hormigona la ménsula monolíticamente con el pilar.

cotg θ = 1,0 si se hormigona la ménsula sobre el hormigón del pilar endurecido.

 $\cot g\theta = 0.7$ para el caso anterior, pero con rugosidad débil de la superficie del hormigón endurecido.

$$A_{sv} = \frac{9772.83 \text{ kg}}{3478.26 \text{ kg/cm}^2 * 1.4} = 2 \text{ cm}^2$$

$$A_s = \frac{2}{3} * 2 \text{ cm}^2 + 0.56 \text{ cm}^2 = 1.89 \text{ cm}^2$$

Debiéndose verificar además que:

$$\tau_d = \frac{f_{vd}}{b*d} \le 50 \text{ kg/cm}^2$$

$$\tau_{\rm d} = \frac{9772.83 \text{ kg}}{40 \text{ cm} * 47.5 \text{ cm}} \le 50 \text{ kg/cm}^2$$

$$\tau_d = 5.14 \frac{\text{kg}}{\text{cm}^2} \le 50 \frac{\text{kg}}{\text{cm}^2}$$

3.
$$A_s = 0.04 * \frac{f_{cd}}{f_{yd}} b d$$

$$A_s = 0.04 * \frac{150 \text{ kg/}_{\text{cm}^2}}{3478.26 \text{ kg/}_{\text{cm}^2}} * 40 * 47.5 = 3.27 \text{cm}^2$$

Se elige el área mayor $A_s=3.27 cm^2$

Φ (mm)	Área A_S (cm ²)	Nº barras	Área neta (cm ²⁾
10	0,785	5	3.925
12	1,130	3	3.39
16	2,01	2	4.02

Armadura secundaria:

Calculada el área total Asv necesaria para resistir el esfuerzo cortante de cálculo f_{vd}

—si Asf \leq 2/3 Asv, se dispondrá un área de estribos horizontales Ase = 0,5 Asf

—si Asf > 2/3 Asv, se dispondrá un área de estribos horizontales Ase = 1/3 Asv

La armadura así obtenida, se, se deberá distribuir uniformemente en los 2/3 superiores del canto útil, contados a partir de la armadura As.

$$A_{sf} \le \frac{2}{3} A_{sv}$$

$$1.68 \text{ cm}^2 \le \frac{2}{3} * 2 \text{ cm}^2$$

 $1.68 \text{ cm}^2 \le 1.33 \text{ cm}^2 \text{ no cumple}$

Entonces:

$$A_{se} = \frac{1}{3} \; A_{sv}$$

$$A_{se} = \frac{1}{3} * 2 \text{ cm}^2 = 0.67 \text{ cm}^2$$

Φ (mm)	Área A _S (cm ²)	Nº barras	Área neta (cm²)
6	0.283	3	0.849
8	0,503	2	1.006

Con los cálculos obtenidos, verificamos que si cumplirá la armadura de la ménsula ya construida mediante la norma EH-91.

Tabla obtenida de los planos de la ménsula

N°	Diámetro	N° de barras	Long.	Total (cm)	AEH-400CN (kg)
1	12 mm	3	241	723	6.4
2	6 mm	3	Var.	987	2.2

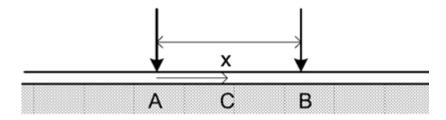
3.14. Diseño de la viga dentro del canal (base elástica):

Datos:

Dimensiones de la viga

P=3844.99 kg

Mi=30%


 $P_T = P * Mi = 3844.99 * 1.3 = 4998.5 \text{ kg}$

 $d_1 = 3 \text{ cm}$

b = 30 cm

h = 44 cm

d = 41 cm

Coeficiente de balasto del suelo: $K_t=6 \frac{\text{kg}}{\text{cm}^3}$

Módulo de elasticidad E =
$$15000\sqrt{F_C}$$
 = $220000 \frac{\text{kg}}{\text{cm}^2}$

Clases de suelo	(K/cm³)		
Suelo ligero de turba y cenagoso	0,5 - 1,0	Clases de suelo	(K/cm³)
Suelo pesado de turba y cenagoso	1,0 - 1,5		
		Humus firmemente estratificado con	
Arena fina de ribera o playa	1,0 - 1,5	arena y pocas piedras	8,0 - 10,0
Arena floja seca	1,0 - 1,3	Humus firmemente estratificado	
Arena floja húmeda	0,8 - 1,0	con arena y muchas piedras	10,0 - 12,0
Arena media seca	3,0 - 9,0		
Arena media húmeda	2,0 - 6,0	Gravilla arenosa floja	4,0 - 8,0
Arena compacta seca	9,0 - 20,0	Gravilla arenosa compacta	9,0 - 25,0
Arena compacta húmeda	7.0 - 13.0	Grava fina con mucha arena fina	8.0 - 10.0
•	, ,	Grava media con arena fina	10,0 - 12,0
Capa de humus, arena y grava	1,0 - 2,0	Grava media con arena gruesa	12,0 - 15,0
, , , , ,	, ,	Grava gruesa con arena gruesa	15,0 - 20,0
Arcilla mojada	2,0 - 3.0	Grava gruesa con poca arena	15,0 - 20,0
Arcilla húmeda	4.0 - 5.0	g p	,,-
Arcilla seca	6.0 - 9.0	Rocas blandas o algo alteradas	>30,0
Arcilla seca dura	> 10,0	Rocas sanas	>500.0
Margas arcillosas	20.0 - 40.0	1100db barrab	000,0
margae aremocae	20,0 .0,0		

Área de la sección:

$$A = b * h = 30 * 44 = 1200 \text{ cm}^2$$

$$q = A * \gamma = 1200 * 2500 = 300 \text{kg/m}$$

Inercia:

$$I_X = \frac{b h^3}{12} = \frac{30 * 44^3}{12} = 212960 \text{ cm}^4$$

Coeficiente de balasto de la viga:

$$K = K_t b = 6 \frac{\text{kg}}{\text{cm}^3} * 30 \text{ cm} = 180 \frac{\text{kg}}{\text{cm}^2}$$

Rigidez relativa viga-terreno:

$$\beta = \left(\frac{K}{4 E I}\right)^{1/4}$$

$$\beta = \left(\frac{180 \text{ kg/cm}^2}{4 * 220000 \text{ kg/cm}^2 * 212960 \text{ cm}^4}\right)^{1/4} = 0.0056 \text{ cm}^{-1}$$

$$y_A = -\frac{P \beta}{2 K} - \frac{P \beta}{2 K} e^{-X\beta} (\cos x \beta + \sin x \beta)$$

$$y_A = -\frac{4998.5 \text{ kg} * 0.0056 \text{ cm}^{-1}}{2 * 180 \text{ kg/cm}^2}$$

$$-\frac{4998.5 \text{ kg} * 0.0056 \text{ cm}^{-1}}{2*180 \text{ kg/cm}^2} e^{-285*0.0056} (\cos 285*0.0056 + \sin 285*0.0056)$$

$$y_A = -0.25 \text{ cm}$$

$$P_A = K_t y_A$$

$$P_A = 6 \frac{\text{kg}}{\text{cm}^3} * 0.25 \text{ cm} = 1.5 \frac{\text{kg}}{\text{cm}^2}$$

$$y_{c} = -\frac{P \beta}{2 K} e^{-X/2\beta} (\cos \frac{x}{2} \beta + \sin \frac{x}{2} \beta)$$

$$y_c = -\frac{4998.5 \text{ kg} * 0.0056 \text{ cm}^{-1}}{2*180 \text{ kg/cm}^2} e^{-142.5*0.0056} (\cos 142.5*0.0056 + \sin 142.5*0.0056)$$

$$y_c = -0.05 \text{ cm}$$

$$P_C = K_t y_C$$

$$P_C = 6 \frac{\text{kg}}{\text{cm}^3} * 0.05 \text{ cm} = 0.3$$

$$M_A = \frac{P}{4 \beta} + \frac{P}{4 \beta} e^{-X\beta} (\cos 750 \beta - \sin 750 \beta)$$

$$M_{A} = \frac{4998.5 \text{ kg}}{4 * 0.0056 \text{ cm}^{-1}}$$

$$+\frac{4998.5 \text{ kg}}{4*0.0056 \text{ cm}^{-1}} e^{-285*0.0056} (\cos 285*0.0056 - \sin 285*0.0056)$$

$$M_A = 275744.24 \text{ kg. cm}$$

$$M_c = \frac{P}{2 \beta} e^{-X/2\beta} (\cos X/2 \beta - \sin 375 \beta)$$

$$M_{c} = \frac{4998.5 \text{ kg}}{2 * 0.0056 \text{ cm}^{-1}} e^{-142.5*0.0056} (\cos 142.5*0.0056 - \sin 142.5*0.0056)$$

$$M_c = 2009015.76 \text{ kg. cm}$$

$$Q_p = \frac{P}{2} + \frac{P}{2}e^{-X\beta}(\cos x \,\beta)$$

$$Q_p = \frac{4998.5 \text{ kg}}{2} + \frac{4998.5 \text{ kg}}{2} e^{-285*0.0056} (\cos 285 * 0.0056)$$

$$Q_p = 3005.67 \text{ kg}$$

Carga distribuida:

$$y_{d} = -\frac{q}{k} \left(1 - \frac{e^{-\beta x} \cos \beta x}{2} \right)$$

$$y_d = -\frac{3}{180} \bigg(1 - \frac{e^{-0.0056*1450} cos(0.0056*14500)}{2} \bigg)$$

$$y_d = -0.017 \text{ cm}$$

$$M_q = \frac{q}{4\beta^2} e^{-\beta x} sin\beta x$$

$$M_{q} = \frac{3}{4 * 0.0056^{2}} e^{-0.0056*1450} \sin(0.0056 * 1450)$$

$$M_q = 1 \text{ kg.cm}$$

$$Q_q = \frac{q}{4\beta}$$

$$Q_q = \frac{3}{4 * 0.0056}$$

$$Q_q = 133.9 \text{ kg}$$

$$M_T = M_A + M_q$$

$$M_T = 275744.24 \text{ kg. cm} + 1 \text{ kg. cm}$$

$$M_T = 275745.24 \text{ kg. cm}$$

$$Q_T = Q_p + Q_q$$

$$Q_T = 3005.67 \text{ kg} + 133.9 \text{ kg}$$

$$Q_T = 3139.57 \text{ kg}$$

$$y_T = -0.25 cm - 0.017 cm$$

$$y_T = -0.27 \text{ cm}$$

Minoración de resistencias:

Resistencia de minoración del hormigón:

$$f_{cd} = \frac{f_{ck}}{\gamma_c}$$

$$f_{cd} = \frac{250 \text{ kg}/cm^2}{1.50}$$

$$f_{cd} = 166.67 \frac{kg}{cm^2}$$

Resistencia de minoración del acero

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$

$$f_{yd} = \frac{4200 \, \text{kg}/\text{cm}^2}{1.15}$$

$$f_{yd} = 3652.17 \frac{\text{kg}}{\text{cm}^2}$$

$$M_{max} = 275745.24 \text{ kg. cm}$$

$$M_d = 1.60 M_{max}$$

$$M_d = 1.60 * 275745.24 \text{ kg. cm}$$

$$M_d = 441192.38 \text{ kg. cm}$$

Dimensionamiento de las secciones:

$$d_{\min} = k * \sqrt{\frac{M_d}{b_w * f_{cd}}}$$

$$2,2 \le k \le 3,3$$

$$d_{min} = 2.50 * \sqrt{\frac{441192.38 \text{ kg. cm}}{30 \text{cm} * 166.67 \text{ kg/cm}^2}}$$

$$d_{min} = 23.5 \text{ cm}$$

$$h = 44 \text{ cm}$$

$$d=canto\ util=h-d_1=44\ cm-3\ cm=41\ cm$$

Determinación del momento reducido:

$$\mu_d = \frac{M_d}{b_w d^2 f_{cd}}$$

$$\mu_{d} = \frac{441192.38 \text{ kg. cm}}{30 \text{ cm} * (41 \text{ cm})^{2} * 166.67 \frac{\text{kg}}{\text{cm}^{2}}} = 0.05$$

$$\mu_d \le \mu_{lim}$$

$$0.05 \le 0.332$$

Se obtiene la cuantía mecánica mediante tabla 13.3 (P. JIMENEZ MONTOYA)

$$w_s = 0.0522$$

Armadura necesaria

$$A_{s1} = w_s * b_w * d * \frac{f_{cd}}{f_{vd}}$$

$$A_{s1} = 0.0522 * 30 \text{ cm} * 41 \text{ cm} * \frac{166.67 \text{ kg}/cm^2}{3652.17 \text{ kg}/cm^2} = 2.93 \text{ cm}^2$$

Armadura mínima:

Cuantía mínima obtenida de la tabla 10.8 (P. JIMENEZ MONTOYA)

$$w_{min} = 0.0033\,$$

$$A_{min} = w_{min} * b_w * d$$

$$A_{min} = 0.0033 * 30 cm * 41 cm = 4.06 cm^{2}$$

Área adoptada:

$$A = 4.06 \text{cm}^2$$

Φ (mm)	Área A _S (cm ²)	Nº barras	Área neta (cm ²⁾
10	0,785	6	4.71
12	1,130	4	4.52

Separación en entre barras:

$$S = \frac{b-2\;d_1-n\;\;\Phi-2\Phi_{estr}}{n-1}$$

$$S = \frac{30 - 2 * 3 - 4 * 1.2 - 2 * 0.6}{4 - 1} = 6.3 \text{ cm}$$

Cálculo de la armadura transversal

Datos:

$$f_{cd} = 166.67 \frac{\text{kg}}{\text{cm}^2}$$

$$f_{yd} = 3652.17 \frac{kg}{cm^2}$$

$$V_{max} = 3139.57 \text{ kg}$$

Cortante mayorada:

$$V_d = 1.60 V_{max}$$

$$V_d = 1.6*3139.57~\mathrm{kg} = 5023.31~\mathrm{kg}$$

$$d = 41 \text{ cm}$$

$$b_w = 30 \text{ cm}$$

$$S = 100 \text{ cm}$$

$$L = 14.5 \text{ m}$$

$$f_{vd} = 0.50 * \sqrt{f_{cd}}$$

$$f_{vd} = 0.50 * \sqrt{166.67 \frac{kg}{cm^2}} = 6.46 \frac{kg}{cm^2}$$

$$V_{cu} = f_{vd} * b_w * d$$

$$V_{cu} = 6.46 \frac{\text{kg}}{\text{cm}^2} * 30 \text{ cm} * 41 \text{ cm} = 7945.8 \text{ kg}$$

$$V_d \leq V_{cu}$$

$$5023.31$$
kg ≤ 7945.8 kg Cumple

Calculo de armaduras:

$$A_{min} = 0.02 \ b \ S \ \frac{f_{cd}}{f_{yd}} \label{eq:amin}$$

$$A_{min} = 0.02 * 30 * 100 * \frac{166.67 \text{ kg/cm}^2}{3652.17 \text{ kg/cm}^2} = 2.74 \text{ cm}^2$$

Armadura mínima para dos piernas:

$$A_{smin_{90}} = \frac{A_s}{2}$$

$$A_{smin_{90}} = \frac{2.74 cm^2}{2} = 1.37 cm^2$$

Cálculo de armaduras:

Φ (mm)	Área A _S (cm ²)	Nº barras	C(cm)	C practico(cm)
6	0.283	5	20	15
8	0.503	3	33.3	20

3.15. Especificaciones técnicas:

Nº	actividades
1	Replanteo o trazado del lugar
2	Viga de hormigón armado
3	Colocado de riel
4	Viga testera
5	pórtico testero
6	Viga principal
7	Colocado de polipasto
8	Limpieza general

Actividad 1 (Replanteo y trazado de lugar):

Descripción:

Este ítem comprende todos los trabajos necesarios para la ubicación de las áreas destinadas a albergar las construcciones y los de replanteo y trazado de los ejes para localizar los elementos de acuerdo a los planos de construcción.

Materiales, herramientas y equipo:

El contratista suministrará todos los materiales, herramientas y equipo necesarios para ejecutar el replanteo y trazado de los elementos.

Procedimiento para la ejecución:

Se realiza el trazado necesario en las ménsulas para la elaboración de las vigas y para la colocación del grúa.

Medición:

El replanteo de las obras será medido en metros cuadrados, tomando en cuenta únicamente la superficie total neta de la construcción.

Forma de pago:

Este ítem ejecutado de acuerdo con las presentes especificaciones, medido de acuerdo a lo señalado y aprobado por el supervisor de obra, será pagado de acuerdo al precio unitario de la propuesta aceptada.

Dicho precio será compensación total por todos los materiales, mano de obra, herramientas, equipo y otros gastos que sean necesarios para la adecuada y correcta ejecución de los trabajos.

Actividad 2 (Viga de hormigón armado)

Descripción:

Todas las estructuras de hormigón armado, deberán ser ejecutadas de acuerdo con las dosificaciones y resistencias establecidas en los planos, formulario de presentación de propuestas y en estricta sujeción con las exigencias y requisitos establecidos en la Norma Boliviana del Hormigón Armado CBH – 87.

Materiales, herramientas y equipo:

Todos los materiales, herramientas y equipo a emplearse en la preparación y vaciado del hormigón serán proporcionados por el Contratista y utilizados por éste, previa aprobación del Supervisor de Obras y deberán cumplir con los requisitos establecidos en la Norma Boliviana de Hormigón CBH – 87.

Cemento:

Se deberá emplear Cemento Portland del tipo normal, fresco y de calidad probada.

El cemento deberá ser almacenado en condiciones que lo mantengan fuera de la intemperie y la humedad. El almacenamiento deberá organizarse en forma sistemática, de manera de evitar que ciertas bolsas se utilicen con mucho retraso y sufran un envejecimiento excesivo. En general no se deberán almacenar más de 10 bolsas una encima de otra.

Un cemento que por alguna razón haya fraguado parcialmente o contenga terrones, grumos, costras, etc., será rechazado automáticamente y retirado del lugar de la obra.

Agregados:

Los áridos a emplearse en la fabricación de hormigones serán aquéllas arenas y gravas obtenidas de yacimientos naturales, rocas trituradas y otros que resulte aconsejable, como consecuencia de estudios realizados en laboratorio.

La arena o árido será aquél que pase el tamiz de 5 mm de malla y grava o árido el que resulte retenido por dicho tamiz.

Agua:

El agua a emplearse para la mezcla, curación u otras aplicaciones, será razonablemente limpia y libre de aceite, sales, ácidos, álcalis, azúcar, material vegetal o cualquier otra sustancia perjudicial para la obra.

No se permitirá el empleo de aguas estancadas.

La temperatura del agua para la preparación del hormigón deberá ser superior a 5°C.

Fierro:

Los aceros de distintos diámetros y características se almacenarán separadamente, a fin de evitar la posibilidad de intercambio de barras.

El tipo de acero y su fatiga de fluencia será aquel que esté especificado en los planos estructurales.

Queda terminantemente prohibido el empleo de aceros de diferentes tipos en una misma sección.

Aditivos:

Se empleará aditivo para la unión de la ménsula (hormigón viejo) y la viga de hormigón armado (hormigón nuevo)

Procedimiento para la ejecución:

Dosificación de materiales

Para la fabricación del hormigón, se recomienda que la dosificación de los materiales se efectúe en peso de acuerdo al siguiente detalle.

Dosificación 1:2:3;

Para los áridos se aceptará una dosificación en volumen, es decir transformándose los pesos en volumen aparente de materiales sueltos. En obra se realizarán determinaciones frecuentes del peso específico aparente del árido suelto y del contenido de humedad del mismo.

Cuando se emplee cemento envasado, la dosificación se realizará por número de bolsas de cemento, quedando prohibido el uso de fracciones de bolsas.

Mezclado:

La mezcla de hormigón se hará de tal forma que pueda ser bien acomodada, según la forma de colocación y objeto de empleo.

El cemento, agregados, agua deberán dosificarse para la fabricación del hormigón, quedando obligados el Contratista a suministrar y poner a disposición los aparatos correspondientes a satisfacción del Supervisor de Obra para la composición de la mezcla de hormigón. Se facilitará debidamente y en todo momento la comprobación de la dosificación. El mezclado manual queda expresamente prohibido.

Tiempos de mezclado:

La mezcladora ha de estar equipada con un dispositivo automático para registrar el número de mezclas ejecutadas, y con un mando automático para interrumpir el proceso de mezclado una vez transcurrido el tiempo fijado.

El período de mezclado comienza después de haber introducido en la mezcladora todos los componentes sólidos (por ejemplo, cemento y agregados). El tiempo de mezclado, después de que todos los componentes hayan ingresado en la mezcladora, no deberá ser inferior a 2 minutos, para mezcladoras de hasta 2 m³ de capacidad; 2.5 minutos hasta 3 m³ de capacidad y 3 minutos hasta 5 m³ de capacidad.

Consistencia del Hormigón

La consistencia del hormigón será de tal manera que permita un buen manejo de la mezcla durante el tiempo que dure el colocado de la misma, de acuerdo con los ensayos de consistencia que efectuará el Contratista según lo indicado

Colocación de Hormigón:

Antes de comenzar los trabajos deberán quedar cumplidos todos los requisitos que, a juicio del Supervisor de Obra, sean necesarios para garantizar una colocación perfecta del hormigón y una ejecución adecuada de los trabajos.

Antes de colocar el hormigón armado es necesaria la colocación de un aditivo para poder unir el hormigón viejo (ménsula) con el hormigón nuevo.

El vaciado del hormigón no comenzará antes que el Supervisor de Obra haya dado su conformidad.

El Contratista propondrá los equipos y sistemas de colocación y el Supervisor de Obra dará su conformidad, o en su defecto, dispondrá la modificación de ellos.

Vibrado:

El hormigón será debidamente vibrado.

Las vibradoras serán del tipo de inmersión de alta frecuencia y deberán ser manejadas por obreros especializados.

Las vibradoras se introducirán lentamente y en posición vertical o ligeramente inclinada. El tiempo de vibración dependerá del tipo de hormigón y de la potencia del vibrador.

Protección y curado:

Tan pronto el hormigón haya sido colocado se lo protegerá de efectos perjudiciales.

El tiempo de curado será durante siete días consecutivos, a partir del momento en que se inició el endurecimiento, salvo indicación del Supervisor de Obra.

El curado se realizará por humedecimiento con agua, mediante riego aplicado directamente sobre las superficies o sobre arpilleras.

Armaduras:

Las barras se cortarán y doblarán ajustándose estrictamente a las dimensiones y formas indicadas en los planos y las planillas de fierros, las mismas que deberán ser verificadas por el Supervisor de Obra.

El doblado de las barras se realizará en frío mediante equipo adecuado, sin golpes ni choques, queda prohibido el corte y doblado en caliente. Antes de proceder al colocado de las armaduras en los encofrados, se limpiarán adecuadamente, librándolas de polvo, barro, pinturas y todo aquello capaz de disminuir la adherencia.

Las barras de la armadura principal se vincularán firmemente a los estribos. Para sostener y para que las armaduras tengan el recubrimiento respectivo se emplearán soportes de mortero de cemento con ataduras metálicas (galletas) que se fabricarán con la debida anticipación, quedando terminantemente prohibido el empleo de piedras como separadores. Se cuidará especialmente que todas las armaduras queden protegidas mediante recubrimientos mínimos especificados en los planos.

Si fuera absolutamente necesario efectuar empalmes, éstos se ubicarán en aquellos lugares donde las barras tengan menores solicitaciones (puntos de momentos nulos).

Medición y forma de pago:

Serán medidas en **metros cúbicos**.

Los trabajos ejecutados en un todo de acuerdo con los planos y las presentes especificaciones, medidos según lo señalado y aprobados por el Supervisor de Obra, serán cancelados a los precios unitarios de la propuesta aceptada.

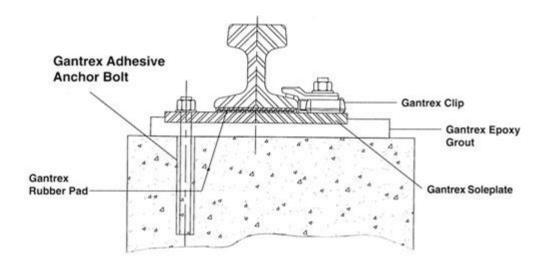
Dichos precios serán compensación total por los materiales empleados en la fabricación, mezcla, transporte, colocación, construcción de encofrados, armadura de fierro, mano de obra, herramientas, equipo y otros gastos que sean necesarios para la adecuada y correcta ejecución de los trabajos.

Actividad 3 (Colocado de riel en viga de hormigón y viga de acero):

Descripción:

El riel será colocado sobre la viga de hormigón armado, y sobre la viga principal del puente grúa.

Materiales, herramientas y equipo: La amplia gama de clips se adapta a prácticamente cualquier perfil producido en el mundo, entre los que se incluyen secciones de raíl DIN, MRS, ASCE o en "T" y secciones de raíles estadounidenses, con o sin intercaladores para raíles de grúa. Hay disponibles dos tipos principales, de acuerdo al soporte de fijación: clips soldables o atornillables. Clips para uso con piezas en unidades imperiales y métricas, tanto en configuraciones de un solo perno como doble perno. Los clips para raíles mantienen la posición lateral del raíl, pero permiten el movimiento longitudinal necesario mediante el uso de un taco de goma vulcanizado. El taco ayuda a absorber la energía de deflexión vertical ocasionada por el paso de la rueda. Los clips para raíles se fabrican en todo el mundo.



Clips para raíles atornillables

Procedimiento para la ejecución:

La superficie debe estar limpia y sana, seca o húmeda, pero libre de agua estancada. Remover de la superficie polvo, lechada, grasa, curadores, impregnaciones, ceras, partículas extrañas, materiales en proceso de desintegración y cualquier material que pueda inhibir la adherencia.

El dispositivo de anclaje o conjunto de perno de anclaje adhesivo se utiliza para fijar soportes y placas de raíles a soportes o cimientos de hormigón. El conjunto de perno de fijación estándar está formado por un perno, una arandela, una tuerca y adhesivo. Para instalar los pernos de anclaje se taladran agujeros en la base de hormigón, se mezcla la resina y se rellena con ella el agujero, y se introduce el perno de anclaje. La mezcla de resina funciona como un adhesivo, sujetando el perno en su sitio hasta que se cura para completar el proceso. Los pernos que utilizan resina de poliéster se pueden instalar a temperaturas tan bajas como -12 °C (10 °F).

Los anclajes están disponibles en acero A36, material de alta resistencia B7, o bien DIN 976, 529B o 529C. Los anclajes también están disponibles con forma de gancho y de cola de pez, y en dimensiones en unidades métricas o imperiales. Los pernos de anclaje pueden ser cincados o galvanizados, al igual que la arandela y la tuerca que se incluyen en cada conjunto. Los conjuntos de perno de anclaje se pueden pintar o metalizar después de la instalación. También está disponible la resina de poliéster que

se puede adquirir en latas, para ser mezclada en un recipiente y verter directamente en el agujero. También hay disponibles cápsulas y cartuchos de resina de poliéster o epoxi, cómodos y de alta capacidad, para mezclar e inyectar con pistola. El adhesivo ha sido diseñado para crear una unión tan fuerte con el hormigón que, en las pruebas de extracción, los pernos de anclaje cedieron antes de que se rompiera la unión.

Actividad 4 (Viga testera):

Descripción:

Las vigas serán armadas con cuatro placas de acero laminadas en frio, se colocarán dos ruedas en los extremos de la viga testera, una de ellas motorizada con el fin de que la viga pueda desplazarse a lo largo de la viga carrilera.

La viga testera se colocará después de haber colocado el riel sobre la viga de hormigón armado.

Materiales:

Todo el material requerido para la fabricación de los miembros de acero estructural deberá cumplir las especificaciones para "Acero Estructural", ASTM A-36, con límite aparente de elasticidad de 2530 kg/cm2 (36000 lbs/pulg2).

Los materiales cumplirán con las siguientes:

Acero laminado:

Todos los elementos de acero estructural que se indican en los planos, estarán fabricados a base de placas de acero estructural, y deberán ser nuevos y encontrarse en buen estado antes de su uso, y llenarlos requisitos mínimos de la designación ASTM A-36.

Electrodos:

Fabricado bajo la norma LRFD, Serán del tipo E6010 para penetración completa, se utilizarán las que se adapten a las condiciones de trabajo, o según se especifica en los planos.

Pintura:

Todos los elementos de estructura metálica serán pintados de acuerdo al siguiente proceso: Utilizar un desoxidante, dos (2) manos de pintura anticorrosiva y dos (2) manos de esmalte. Antes de proceder con la pintura de la estructura metálica se deberá someter el tipo y el color de pintura a la aprobación del Supervisor asignado.

Procedimiento:

Se deberá fabricar cada elemento constituyendo una sola pieza de acuerdo a lo que se indica en las plantas y detalles estructurales.

Las piezas fabricadas en el taller deben estar libres de torceduras y dobleces locales, las juntas deben quedar acabadas correctamente.

Las piezas que se vayan a soldar se colocarán correctamente en su posición y se sujetarán por medio de abrazaderas, cuñas tirantes, puntales y otros dispositivos apropiados o por medio de puntos de soldadura hasta que la soldadura definitiva sea concluida.

Las superficies a soldar deberán limpiarse completamente, liberándolas de escamas, óxidos, escorias, polvo, grasa o cualquier materia extraña que impida una soldadura apropiada.

En la colocación de las ruedas en la viga, deben estar bien alineadas sobre el riel para su buen funcionamiento

En el ensamble o unión de partes de una estructura mediante soldadura, deberá seguirse una secuencia para soldar, que evite deformaciones perjudiciales y origine esfuerzos secundarios.

La soldadura deberá ser compacta en su totalidad y habrá de fusionarse completamente con el metal base.

Procedimiento de montaje:

El montaje se hará a plomo, escuadra y nivel conforme los planos; y se arriostrarán provisionalmente, hasta donde fuese necesario, para mantenerlas en su posición correcta.

No se permitirán uniones permanentes en la obra, entre estructuras en fase de montaje, hasta que se haya comprobado la correcta ubicación, plomo y nivel de las mismas. Si en cualquier momento de la construcción, se comprobara que algún elemento de la estructura tuviese dimensiones (como espesor, diámetro, etc.) inferiores a las admitidas por las tolerancias establecidas por las normas indicadas, dicho elemento podrá ser retirado para ser reemplazado por otro conforme a las normas mismas.

Inmediatamente de haber sido inspeccionada y aprobada la estructura, se le aplicará pintura anticorrosiva de la manera siguiente:

Una mano de pintura anticorrosiva inmediatamente después de su fabricación y otra después de su montaje.

Para las actividades del Montaje de las estructuras, deberán

Utilizarse los equipos adecuados considerando cumplir con requerimientos de protección ambiental como las vibraciones y el ruido.

Actividad 5 (Pórtico testero):

Descripción:

El pórtico testero estará conformado por dos columnas y dos vigas una en la parte superior y una viga intermedia.

Materiales:

Todo el material requerido para la fabricación de los miembros de acero estructural deberá cumplir las especificaciones para "Acero Estructural", ASTM A-36, con límite aparente de elasticidad de 2,530 kg/cm2 (36000 lbs/pulg2).

Los materiales cumplirán con las siguientes condiciones generales:

Acero laminado:

Todos los elementos de acero estructural que se indican en los planos, estarán fabricados a base de placas de acero estructural, y deberán ser nuevos y encontrarse

en buen estado antes de su uso, y llenarlos requisitos mínimos de la designación ASTM A-36.

Electrodos:

Fabricado bajo la norma LRFD, Serán del tipo E6010 para penetración completa, se utilizarán las que se adapten a las condiciones de trabajo, o según se especifica en los planos.

Pintura:

Todos los elementos de estructura metálica serán pintados de acuerdo al siguiente proceso: Utilizar un desoxidante, dos (2) manos de pintura anticorrosiva y dos (2) manos de esmalte. Antes de proceder con la pintura de la estructura metálica se deberá someter el tipo y el color de pintura a la aprobación del Supervisor asignado.

Procedimiento:

Se deberá fabricar cada elemento constituyendo una sola pieza de acuerdo a lo que se indica en las plantas y detalles estructurales.

Las piezas fabricadas en el taller deben estar libres de torceduras y dobleces locales, las juntas deben quedar acabadas correctamente.

Las piezas que se vayan a soldar se colocarán correctamente en su posición y se sujetarán por medio de abrazaderas, cuñas tirantes, puntales y otros dispositivos apropiados o por medio de puntos de soldadura hasta que la soldadura definitiva sea concluida.

Las superficies a soldar deberán limpiarse completamente, liberándolas de escamas, óxidos, escorias, polvo, grasa o cualquier materia extraña que impida una soldadura apropiada.

En la colocación de las ruedas en la viga, deben estar bien alineadas sobre el riel para su buen funcionamiento en el ensamble o unión de partes de una estructura mediante soldadura, deberá seguirse una secuencia para soldar, que evite deformaciones perjudiciales y origine esfuerzos secundarios.

La soldadura deberá ser compacta en su totalidad y habrá de fusionarse completamente con el metal base.

Procedimiento de montaje:

El montaje se hará a plomo, escuadra y nivel conforme los planos; y se arriostrarán provisionalmente, hasta donde fuese necesario, para mantenerlas en su posición correcta.

No se permitirán uniones permanentes en la obra, entre estructuras en fase de montaje, hasta que se haya comprobado la correcta ubicación, plomo y nivel de las mismas. Si en cualquier momento de la construcción, se comprobara que algún elemento de la estructura tuviese dimensiones (como espesor, diámetro, etc.) inferiores a las admitidas por las tolerancias establecidas por las normas indicadas, dicho elemento podrá ser retirado para ser reemplazado por otro conforme a las normas mismas.

Inmediatamente de haber sido inspeccionada y aprobada la estructura, se le aplicará pintura anticorrosiva de la manera siguiente:

Una mano de pintura anticorrosiva inmediatamente después de su fabricación y otra después de su montaje.

Para las actividades del Montaje de las estructuras, deberán utilizarse los equipos adecuados considerando cumplir con requerimientos de protección ambiental como las vibraciones y el ruido.

Actividad 6 (Viga principal):

Descripción:

El puente estará formado por dos vigas soportadas en las vigas testeras, unidas a ellas mediante soldaduras.

Las vigas serán armadas con secciones de placa de acero laminadas en frio.

Se fijarán rieles normales para grúa con topes en los extremos en las caras superiores de las vigas del puente, para servir de carril al carro o polipasto.

El tramo central de cada viga debe ser construido sin empalmes o juntas. Se debe prever que el puente no se salga del riel en caso de fuerzas sísmicas, mediante topes o guías colocados en los extremos inferiores del puente.

La máxima deformación permisible producida en el puente por el peso muerto, el peso del polipasto y el 130% de la carga nominal estática, no deberá de exceder de 1/888 del claro. La carga de impacto deberá considerarse en esta deflexión.

Se deberán tener en cuenta las limitaciones de diseño indicadas en la CMAA-70 inciso 3.5.

Materiales:

Todo el material requerido para la fabricación de los miembros de acero estructural deberá cumplir las especificaciones para "Acero Estructural", ASTM A-36, con límite aparente de elasticidad de 2,530 kg/cm2 (36000 lbs/pulg2).

Los materiales cumplirán con las siguientes condiciones generales:

Acero laminado:

Todos los elementos de acero estructural que se indican en los planos, estarán fabricados a base de placas de acero estructural, y deberán ser nuevos y encontrarse en buen estado antes de su uso, y llenarlos requisitos mínimos de la designación ASTM A-36.

Electrodos:

Fabricado bajo la norma LRFD, Serán del tipo E6010 para penetración completa, se utilizarán las que se adapten a las condiciones de trabajo, o según se especifica en los planos.

Pintura:

Todos los elementos de estructura metálica serán pintados de acuerdo al siguiente proceso: Utilizar un desoxidante, dos (2) manos de pintura anticorrosiva y dos (2) manos de esmalte. Antes de proceder con la pintura de la estructura metálica se deberá someter el tipo y el color de pintura a la aprobación del Supervisor asignado.

Procedimiento:

Se deberá fabricar cada elemento constituyendo una sola pieza de acuerdo a lo que se indica en las plantas y detalles estructurales.

Las piezas fabricadas en el taller deben estar libres de torceduras y dobleces locales, las juntas deben quedar acabadas correctamente.

Las piezas que se vayan a soldar se colocarán correctamente en su posición y se sujetarán por medio de abrazaderas, cuñas tirantes, puntales y otros dispositivos apropiados o por medio de puntos de soldadura hasta que la soldadura definitiva sea concluida.

Las superficies a soldar deberán limpiarse completamente, liberándolas de escamas, óxidos, escorias, polvo, grasa o cualquier materia extraña que impida una soldadura apropiada.

En el ensamble o unión de partes de una estructura mediante soldadura, deberá seguirse una secuencia para soldar, que evite deformaciones perjudiciales y origine esfuerzos secundarios.

La soldadura deberá ser compacta en su totalidad y habrá de fusionarse completamente con el metal base.

Procedimiento de montaje:

El montaje se hará a plomo, escuadra y nivel conforme los planos; y se arriostrarán provisionalmente, hasta donde fuese necesario, para mantenerlas en su posición correcta.

No se permitirán uniones permanentes en la obra, entre estructuras en fase de montaje, hasta que se haya comprobado la correcta ubicación, plomo y nivel de las mismas. Si en cualquier momento de la construcción, se comprobara que algún elemento de la estructura tuviese dimensiones (como espesor, diámetro, etc.) inferiores a las admitidas por las tolerancias establecidas por las normas indicadas, dicho elemento podrá ser retirado para ser reemplazado por otro conforme a las normas mismas.

Inmediatamente de haber sido inspeccionada y aprobada la estructura, se le aplicará pintura anticorrosiva de la manera siguiente:

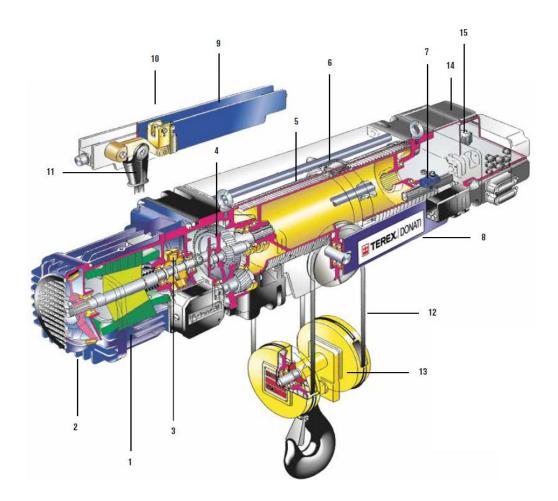
Una mano de pintura anticorrosiva inmediatamente después de su fabricación y otra después de su montaje.

Para las actividades del Montaje de las estructuras, deberán utilizarse los equipos adecuados considerando cumplir con requerimientos de protección ambiental como las vibraciones y el ruido.

Actividad 7 (Colocado de polipasto):

Descripción:

Está compuesto por un grupo loco y uno motriz, equipados cada uno con dos ruedas de acero estampado mecanizadas y montadas sobre cojinetes de bolas de lubricación de por vida. Las ruedas del grupo motriz están contrapuestas, equipadas con corona dentada y conectada entre ellas, cada uno de los cuales proporciona directamente el movimiento a la rueda. Las placas portantes son de acero y están equipadas con sistemas anti descarrilamiento y antivuelco.


el polipasto cuenta con un bastidor del carro, cuenta con 4 ruedas de pestaña con rodamientos y engrasados de por vida

Alimentación eléctrica:

Los polipastos eléctricos de cable están provistos, de serie, para ser alimentados con corriente eléctrica alterna con tensión trifásica de: 400 y 50 HZ

Condiciones nominales de funcionamiento:

- Temperatura de ejercicio mínima: -10°c; máxima 40°c
- Humedad relativa máxima 80%
- La máquina debe colocarse en ambiente bien ventilado libre de vapores corrosivos (vapores ácidos, nieblas salinas, etc.)

1.- Motor eléctrico de elevación:

Trifásico asíncrono, autofrenante de rotor cónico. Protección mínima IP55-aislamiento clase F. está equipado con sondas térmicas de serie para la protección contra las sobrecargas.

2.- Freno de elevación:

El freno cónico está equipado con guarniciones de fricción libres de asbesto. La zapata de freno, constituido por un ventilador que asegura el enfriamiento del propio freno y del motor, se mueve axialmente con el eje motor y la función de frenado se activa automáticamente en caso de falta de suministro de energía.

3.- Junta: Realiza la conexión entre el motor autofrenante y el reductor permitiendo el deslizamiento axial perfecto del eje motor.

4.- Reductor:

Coaxial, de 3 etapas de reducción, echo con engranajes cilíndricos de acero de alta resistencia, con dientes helicoidales y tratados térmicamente. Dimensionado para resistir de por vida a los fenómenos de fatiga y desgaste en relación con el grupo de servicio FEM previsto.

5.- Envoltura del tambor:

El tambor, de tubo de acero ranurado mecánicamente, está sometido por la brida del reductor y por la brida del lado del equipo, a través de cubos con agujeros brochados giratorios sobre cojinetes con lubricación de por vida.

6.- Guía aprieta cables:

Constituido por una virola roscada de hierro fundido esferoidal permite un devanado óptimo del cable en el tambor.

La guía aprieta cable, está equipado con brazos de reacción de patín de latón que, actuando en los tirantes de la envoltura, hacen de accionadores de los finales de carrera de subida y bajada.

7.- Final de carrera de elevación:

Es un componente con funciones de seguridad que, en caso de emergencia, limita la carrera del gancho en la subida y bajada.

8.- Travesaño polea:

Se utiliza en las versiones de 4 ramales y es soportado por dos pernos que le permite orientarse de acuerdo con el eje vertical del cable.

- **9.-Travesaño terminal fijo:** Se utiliza en las versiones de 2 y 4 ramales y es soportado por dos pernos que le permiten orientarse de acuerdo con el eje vertical del cable. Entre las placas de travesaño está ubicado en el limitador de carga.
- **10.-** Limitador de carga: Todos los polipastos eléctricos de cable están equipados con limitador de carga, con micro interruptor de un umbral de intervención. El

limitador, de tipo electromecánico, mide y controla constantemente el valor de la carga y los efectos dinámicos e inerciales debido a la manipulación. Cuando se superar lo valores de calibrado programados, el micro interruptor de limitador interviene abriendo el circuito de control del dispositivo del mando de elevación.

11.- Terminal fijo de cuña:

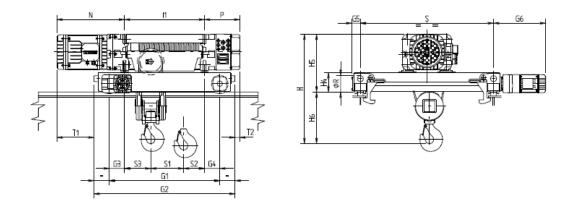
El terminal fijo de cuña este hecho de hierro fundido esferoidal y el coeficiente mínimo de utilización es conforme a la regla FEM. La fijación del cable se realiza mediante cuñas que evita la extracción.

12.- Cable:

De acero flexible de alta resistencia a la fatiga y al desgaste.

13.-Bloque y gancho:

Está equipado con poleas de transmisión de acero al carbono con garganta acanalada mecánicamente y giratoria sobre cojinetes con lubricación de por vida. El gancho de carga está hecho de acero estampado de alta resistencia y está montado en travesaño oscilante. Es giratorio sobre cojinete de empuje y está equipado con un dispositivo de seguridad anti- desenganche.


14.- Marco para conexiones eléctricas:

Se suministra bajo pedido y está equipado con sujeta-cable, permite el cableado de toda la conexión de los equipos eléctricos del polipasto y del carro eléctrico de traslación, si lo hay. El compartimiento que contiene las conexiones eléctricas y/o el posible equipo de mando en baja tensión, tiene una tapa de material termoplástico resistente a los golpes.

- **15.- Mando en baja tensión:** Cuando el polipasto se suministra equipado con mandos eléctricos, las funciones de subidas y bajadas y/o de derecha a izquierda del carro, si lo hay, se activa con equipo eléctrico que incluye:
 - El transformador para alimentación en baja tensión de los circuitos de mandos.

- El contactor general de línea y los contactores /inversores para el mando de los motores.
- Los fusibles de protección de los motores y del trasformador.
- El bloque de terminales para las conexiones de los circuitos auxiliares y de potencia.
- Los componentes están montados en un panel de abisagro y fijado dentro del comportamiento ubicado en el lado opuesto al motor. Los mandos se activan con la caja de pulsadores colgada alimentada en baja tensión.

Ramales	Tipo	Carro	Luz Carro	Tipo de	Peso					Dimens	iones totale	es (mm)													
de cable N.	DRH	DRT	S (mm)	Tambor DRH	DRH + DRT (kg)	61	62	63	64	G 5	66	T1	T2	0 R	H4	H 5									
				C	236	710	940	155	155	66	392	210	-15	125	145	391									
				N	250	830	1060	157,5	157,5	66	392	207,5	-17,5	125	145	391									
	1	1	1000	L	280	1230	1460	170	170	66	392	195	-30	125	145	391									
				Х1	306	1500	1730	150	150	66	392	215	-10	125	145	391									
				X2	336	1770	2000	120	120	66	392	245	20	125	145	39									
				C	296	710	940	115	115	66	392	295	40	125	145	433									
				N	306	830	1060	115	115	66	392	295	40	125	145	433									
	2	1	1000	L	350	1230	1460	115	115	66	392	295	40	125	145	433									
				Х1	376	1500	1730	120	120	66	392	290	35	125	145	433									
				X2	406	1770	2000	120	120	66	392	290	35	125	145	433									
				C	716	890	1202	145	145	80	461	404	-96	160	190	598									
2/1			! 1000	N	750	1030	1342	145	145	80	461	404	-96	160	190	598									
4/1	3	2		L	860	1550	1862	145	145	80	461	404	-96	160	190	598									
7/1				Х1	946	1840	2152	145	145	80	461	404	-96	160	190	598									
	<u> </u>			X2	1000	2230	2542	145	145	80	461	404	-96	160	190	598									
													C	1252	1060	1446	170	170	90	520	492	-143	200	228	698
				N	1298	1200	1586	170	170	90	520	492	-143	200	228	698									
	4	3	1000	L	1492	1760	2146	170	170	90	520	492	-143	200	228	698									
				Х1	1675	2210	2596	180	180	90	520	482	-153	200	228	698									
				X2	1865	2710	3096	180	180	90	520	482	-153	200	228	698									
				C	1307	1060	1446	170	170	90	520	652	-143	200	228	698									
				N	1353	1200	1586	170	170	90	520	652	-143	200	228	698									
	©4	3	1000	L	1547	1760	2146	170	170	90	520	652	-143	200	228	698									
				Х1	1730	2210	2596	180	180	90	520	642	-153	200	228	698									
				X2	1920	2710	3096	180	180	90	520	642	-153	200	228	698									

Funcionamiento:

El polipasto combinado con un carro de traslación que se desliza suspendidos sobre una o dos vigas, también permite el desplazamiento horizontal.

Todos los movimientos de elevación (subida y bajada) y de traslación de (derecha a izquierda), se puede accionar a través de una caja de pulsadores o un sistema de radio mando.

El polipasto eléctrico de cable y los relativos carros de traslación, suspendidos, pueden equipar monorraíles o construir la unidad de elevación de otras máquinas como: grúa (puente grúa, de pórtico, de bandera, etc.) de una o dos vigas.

Actividad 9 (Colocación de cable de alimentación)

Descripción:

Constituyen todos los cables que energizan los motores de movimientos de los carros y el motor de elevación de carga.

Materiales:

Se utilizarán los siguientes:

Carril en c

Los perfiles son galvanizados de la canaleta que forma el carril para trabajos pesados.

Cajas de conexiones en los extremos fijos

Son tapas de cierre son de plástico negro cortan los extremos de los perfiles que sirven como carriles en c, se requieren dos por carrera.

Botonera

La botonera de mando estará sujeta al carro porta unidad de control, contiene un botón de alivio de tensión para evitar daños en los cables.

Grapa de fin de carril

Se requiere una grapa de fin de carril en el extremo fijo de sistema. Incluye grapa y accesorio de fijación con laminado de zinc para asegurar el cable. La grapa de fin de carril o de acero inoxidable tiene silla y accesorios de fijación de acero inoxidable.

Canaletas de soporte transversal

Se montan en forma perpendicular a la viga principal cada 1,5 m para soportar la canaleta del carril en c principal.

Canaleta para el carril en C

Los carros para carril en c corren dentro de estos perfiles formados de acero para carril en c.

Cable plano de PVC

Estos cables son apropiados para ser utilizadas en grúas.

Procedimiento:

Se colocará 2 carriles en c cada una estará colocada paralelamente a la viga principal, se colocarán canaletas de soporte transversal éstas se montan en forma perpendicular a la viga principal cada 1,5 m, unidas entre sí con un sujetador de carril.

El carro porta cable se colocará para cada lazo de cable plano entre la grapa en el extremo y el carro de arrastre.

El carro porta unidad de control con caja de conexiones estará sujeta al carril en c, en donde el cable de la botonera estará en la caja de control.

La botonera será usada como el mando para realizar los movimientos de desplazamiento del polipasto.

Actividad 9 (Limpieza general):

Descripción: La obra será entregada completamente libre de materiales excedentes y de residuos. La limpieza se la deberá hacer permanentemente con la finalidad de mantener la obra limpia y transitable.

Una vez terminada la obra de acuerdo con el contrato y previamente a la recepción provisional de la misma, el contratista estará obligado a ejecutar, además de la limpieza periódica, la limpieza general del lugar.

Materiales, herramientas y equipo:

El Contratista proporcionará todos los materiales, herramientas y equipo necesarios para la ejecución de los trabajos, los mismos deberán ser aprobados por el Supervisor de Obra.

Procedimiento para la ejecución:

Se transportarán fuera de la obra y del área de trabajo todos los excedentes de materiales, escombros, basuras, etc. a entera satisfacción del Supervisor de Obra.

Medición:

La limpieza general será medida en global o en unidad que se encuentre señalada en el formulario de presentación de propuestas.

Forma de pago:

Este ítem ejecutado en un todo de acuerdo con las presentes especificaciones, medido según lo señalado y aprobado por el Supervisor de Obra, será pagado al precio unitario de la propuesta aceptada.

Dicho precio será compensación total por los materiales, mano de obra, herramientas, equipo y otros que sean necesarios para la adecuada y correcta ejecución del trabajo.

3.16. Procedimiento de montaje:

- Revisar las especificaciones y planos relacionados con la actividad, además de las especificaciones del equipo.
- Verificar las condiciones del sitio de ubicación del equipo a instalar.
- En base a la programación de la obra, coordinar con el Supervisor el inicio de los trabajos.

- Demarcar y acordonar las áreas necesarias para el adecuado desarrollo de la actividad.
- El personal a realizar la instalación debe ser calificado y con experiencia en el montaje de puente grúa ó equipos.
- Descargar los materiales con la ayuda de una grúa.
- Inspeccionar los materiales, equipos y herramientas necesarias, adecuadas para la actividad, verificar que estén en buenas condiciones cumpliendo con los requerimientos de las especificaciones, planos del proyecto y del equipo.
- Armar y verificar el andamio necesario para realizar la actividad.
- Colocar los ejes, coordenadas y niveles necesarios para la correcta instalación del equipo en la viga de hormigón armado (carrilera), que está sobre las ménsulas.
- Colocar las vigas carrileras sobre las ménsulas según los ejes demarcados, dejando las uniones de las secciones sobre las planchas embutidas en el concreto.
- Verificar longitud de las vigas carrileras según planos.
- Unir la viga carrilera a las ménsulas con aditivos.
- Izar, colocar y unir el riel a la viga carrilera según plano.
- Izar los materiales, equipos y herramientas necesarias para la instalación.
- Inspeccionar continuamente la actividad.
- Montar el equipo sobre el riel.
- Verificar topes de seguridad de los equipos fijos y móviles.
- Instalar el equipo tal como se indica en los planos, revisando los elementos mecánicos y eléctricos.
- Verificar cualquier ajuste y/o modificación necesaria.

- Realizar las instalaciones eléctricas correspondientes, verificando los niveles de tensión, controles, indicadores y cableado.
- Verificar la acometida eléctrica a utilizar que brinde los niveles de seguridad y con el voltaje requerido por fabricante.
- Realizar las pruebas de funcionamiento mecánicas y eléctricas pertinentes del equipo según especificaciones, con la finalidad de que el equipo se desplace con los sentidos correctos utilizando los controles del mismo.
- Verificar que el equipo este en buenas condiciones de pintura en la parte externa e interna.
- Pintura final de las vigas carrileras.
- Realizar la limpieza general de la estructura.
- Verificar que el equipo cumpla con todos los requerimientos del cliente, que la instalación este completa, que los accesorios, sus componentes instrumentos estén instalados correctamente según planos y especificaciones.
- Realizar pruebas de carga.

3.17. Aspectos de seguridad

A continuación, se listan una serie de precauciones que se deben considerar para la ejecución de las actividades contempladas en el presente procedimiento:

- Los supervisores con apoyo del personal deben dictar una charla de seguridad a todo el personal involucrado en el trabajo para reforzar el conocimiento y la práctica segura de ejecución.
- El uso del EPP (elementos de protección personal) básico, lentes, cascos, botas con puntas de acero).
- Se debe disponer de equipo contra incendio para enfrentar posibles incendios.
- Se debe utilizar el equipo de protección personal adecuado.
- Los equipos a utilizar deberán estar en buenas condiciones.

- Mantener las Maquinas de Soldar aterradas correctamente.
- Debe evitarse realizar cualquier acción con le soplete prendido, a menos que sea soldar o cortar.
- El soplete no se debe prender hasta tanto no se tenga todo listo para usarlo debe ser apagado inmediatamente después de haber terminado el trabajo.
- Cuando se esté cortando una pieza en soplete se debe siempre terminar de cortarla con dicho soplete y nunca forzarla para hacerla cede.
- Las mangueras de las unidades de soldadura con oxígeno-acetileno u oxigenopropano deben colocarlas apropiadamente en un soporte cuando no estén en uso.
- Pruebe antes de iniciar un trabajo que no existan fuga por conexiones, utilice un exposímetro solamente. Nunca permita escape de oxígeno, acetileno o propano en espacio confinado.
- Si ocurre un retroceso de llama, cierre las válvulas del soplete, primero él
 oxígeno y luego el acetileno o propano. Determine la causa del retroceso antes
 de intentar encender el soplete otra vez.

3.18. Mantenimiento:

Lubricación:

- Todos los elementos que están sometidos a desgaste están provistos con graseras individuales.
- Los rodamientos y descansos pueden alcanzar temperaturas de hasta 60°C durante una operación prolongada. Si se detectan temperaturas superiores se deberá detener la grúa e inspeccionar el mecanismo.
- La lubricación del cable se hará cuando se observe resecamiento o disminución del lubricante que posee. Previa aplicación de un nuevo lubricante se debe efectuar una limpieza eliminando el lubricante reseco y la suciedad. Esta operación debe realizarse con el cable instalado. Y subiendo y

bajando el gancho. No se recomienda el uso de solventes porque ellos eliminan el lubricante del alma del cable.

- Las cantidades indicadas de lubricantes para los reductores corresponden a las necesarias para un cambio completo. Este se hará para el reductor de izamiento cada 1500 horas de uso o máximo 2 años. Para los motor reductores de traslación o giro se hará cada 10000 horas de uso o cada 3 años.
- Se deberá realizar el primer cambio de lubricantes a las 300 horas de uso o en
 2 meses de servicio.
- Los rodamientos y descansos se deberán llenar con lubricante hasta el 50 a 75% de su espacio interior libre para no producir sobrecalentamientos excesivos. Este procedimiento se realizará a lo menos cada tres meses dependiendo del uso de la grúa.

Cables:

Mensualmente se observará si existen alambres rotos, la distorsión de los tirones, el estado de desgaste. Debe tenerse presente que el desgaste de los cables se produce gradualmente y se manifiesta a través de espiras cortadas y disminución en el diámetro. Se debe cortar con tijera las puntas de los alambres rotos que estén sobresalientes.

El cable se deberá mantener en perfecto estado de limpieza y con suficiente cantidad de lubricante para evitar la corrosión y disminuir el desgaste. Como control del estado general del cable se recomienda medir su diámetro y compararlo con el diámetro nominal. Los cables deberán ser substituidos cuando presenten algunas de las siguientes anomalías:

- Falla típica producida por abuso llamada caja de pájaro
- Falla por rotación excesiva por mal montaje o torsión
- Desgaste localizado producido por la polea ecualizadora
- Mala manipulación del cable.

Excesiva corrosión

Mantención del cable:

El engrase aumenta considerablemente la duración del cable de acero. La lubricación se realizará de acuerdo a lo indicado en el programa y también cuando se observe resecamiento del lubricante que posee. En condiciones normales el cable debe ser lubricado cada seis meses, si el tiempo de operación diaria es prolongado debe acortarse el periodo de lubricación.

Mantenimiento de testera

Las grúas esta equipadas con una viga testera y un pórtico testero, cada una de ellas con dos ruedas una de las cuales es motorizada.

Mantención trimestral.

Mientras la grúa se desplaza, escuchar los ruidos que se produzcan en la transmisión y el funcionamiento de los motores.

Cada tres meses. Mantener siempre bien lubricados los rodamientos de las ruedas de acuerdo con el cuadro de lubricantes. Mantener regulado los frenos de modo que su funcionamiento sea suave. Comprobar con regularidad el aspecto de las partes en contacto con los rieles, caras de los cubos y cojinetes de anillos de ajuste.

Cada cinco años.

Controlar el diámetro de las ruedas, rectificándolas si fueran diferentes en más de tres mm, verificar el estado de desgaste de los piñones y coronas del reductor reemplazándolos si fuera necesario. Desarmar una rueda motriz y una conducida del mismo lado verificando el estado de ejes, camisas, rodamientos, etc. En caso de que se detecten picaduras o desgaste excesivo deberá revisarse el resto de las ruedas.

Mantenimiento del polipasto:

El carro está equipado con un motor reductor que le permiten un desplazamiento sobre el puente.

Trimestralmente:

Mientras el carro se desplaza se deberá escuchar los ruidos que se produzcan en la transmisión y el funcionamiento del motor. Mantener siempre bien lubricados los rodamientos de las ruedas de acuerdo con el cuadro de lubricaciones.

Mantener regulado el freno de modo que su funcionamiento sea suave.

Comprobar con regularidad el aspecto de las partes en contacto con los rieles, como de los cubos y cojinetes de los anillos de ajuste.

Cada 5 años

Controlar el diámetro de las ruedas, rectificándolas si fueran diferentes en más de tres mm. Verificar el estado de desgaste de los piñones y coronas del reductor reemplazándolos si fuera necesario. Desarmar una rueda motriz y una conducida del mismo lado verificando el estado de ejes, camisas, rodamientos, etc., en caso de que se detecten picaduras o desgaste excesivo deberá revisarse el resto de las ruedas.

Estructura metálica:

Mantención anual.

Se inspeccionarán dentro del mismo periodo anterior las soldaduras principales de la estructura. Las reparaciones que afecten a estas soldaduras deberán ser autorizadas por el Jefe de mantenimiento.

Se verificará el estado de la pintura, rincones y soldaduras. El retoque oportuno prolonga la vida útil de la pintura general del equipo.

3.19. Precio unitario:

ANAI	LISIS DE PREC	IOS UN	ITARIOS	T	T
_				Actividad	
Proyec			T	Nº	1
	•	1 de H°			
Activi			Cantidad:		
Unida	d: m3	1	Moneda	Bs	T
Descri	pción	Unidad	Cantidad o Rendimiento	Precio Unitario	Costo Total
1 Mat	eriales	•			•
	Cemento				
1	Portland	Kg	325	1,11	360,8
2	Hierro	Kg	73,53	8,07	593,4
3	Arena Común	m3	0,5	120,75	60,4
4	Grava Común	m3	0,7	120,75	84,5
5	Madera de construcción	pie2	65,00	8	520,0
6	Clavos	Kg	2	13	26,0
7	Alambre	Kg	2	13	26,0
8		J			0
Total	Materiales	l.		· I	1671,04
	o de Obra				,
1	Encofrador	Hr	18	18,75	337,50
2	Armador	Hr	10	18,75	187,50
3	Albañil	Hr	10	18,75	187,50
4	Ayudante	Hr	20	12,5	250,00
	,		l sub total M. O.	1	529,38
			14,94% (del Sub Total de M.	O. +	
	Cargas Sociales		, (673,17
Total	Mano de Obra	,			2165,05
3 Equ	iipo, Maquinaria	a v Herr	amientas		
1,00	Hormigonera	Hr	1,00	20,00	20,00
2,00	Vibradora	Hr	0,80	15,00	12,00
			5 % de la mano de obra		108,25
Total	Eq, Maq. y Heri				140,25
	tos Generales y A		trativos		
Gastos Generales 10% (1+2+3)					
5 Utili		(,		397,63
Utilidad 10% (1+2+3+4) 43					
6 Imn	uestos		,		1,
r	Impuestos I. T.	3,09% (1+2+3+4+5)		148,67
	*		otal Item Precio Unitario		4960,04

ANAI	LISIS DE PRECIOS	UNITARIO	OS				
			~	Actividad			
Proyec				Nº	2		
Activi		de H° A°	Cantidad:				
Unida	d: m3		Moneda.	Bs			
Descri	inción	Unidad	Cantidad o	Precio	Costo		
Descri	ipcion	Officiaci	Rendimiento	Unitario	Total		
1 Mat	eriales						
1	Cemento Portland	Kg	325	1,11	360,8		
2	Hierro	Kg	65.5	8,07	341,7		
3	Arena Común	m3	0,5	120,75	60,4		
4	Grava Común	m3	0,7	120,75	84,5		
5	Madera de construcción	pie2	70,00	8	560,0		
6	Clavos	Kg	2	13	26,0		
7	Alambre	Kg	2	13	26,0		
8					0		
Total	Materiales			•	1459,33		
2 Mar	no de Obra				•		
1	Encofrador	Hr	18	18,75	337,50		
2	Armador	Hr	10	18,75	187,50		
3	Albañil	Hr	10	18,75	187,50		
4	Ayudante	Hr	20	12,5	250,00		
	Cargas Sociales 55	% del sub to	otal M. O.		529,38		
	Impuestos IVA M	O. = 14,94	% (del Sub Total de M. C). + Cargas			
	Sociales)			_	673,17		
Total	Mano de Obra				2165,05		
3 Equ	iipo, Maquinaria y H	lerramienta	S				
1,00	Hormigonera	Hr	1,00	20,00	20,00		
2,00	Vibradora	Hr	0,80	15,00	12,00		
3,00							
	Herramientas Men	ores 5 % de	la mano de obra		108,25		
Total	Eq, Maq. y Herr.				140,25		
4 Gas	tos Generales y Admi	inistrativos					
Gastos Generales 10% (1+2+3)							
		· · · · · · · · · · · · · · · · · · ·			•		
5 Utili	5 Utilidad						
Utilidad 10% (1+2+3+4)							
6 Imp	uestos						
Impuestos I. T. 3,09% (1+2+3+4+5)					140,76		
Total Item Precio Unitario					4695,95		

3.20. Computo métricos de las vigas de hormigón:

NTO	VIGA	Dimen	siones					T (1(2)
N°	H°A°	Unid.	b(m)	h(m)	L(m)	vol(m3)	Cant.	Total(m3)
1	viga1	m3	0,25	0,45	11,5	1,29375	1	1,29375
2	viga 2	m3	0,3	0,44	14,5	1,914	1	1,914

Presupuesto parciales:

Viga con sección I									
Descripción	material	Unid.	Cant.	Precio unitario	Precio parcial				
placa(3/8))(patines vigas principales)	acero A-36	m2	8,8	467,5	4114				
placa(5/16) (almas vigas principales)	acero A-36	m2	7,7	392,5	3022,25				
placa(1/4) (viga testera)	acero A-36	m2	1,1	295	324,5				
placa(3/16)(columna del pórtico testero)	acero A-36	m2	3,88	275	1067				
placa(5/16) (vigas de pórtico testero)	acero A-36	m2	1,5	392,5	588,75				
Sub	total(bs)			Subtotal(bs)					

Viga con sección cajón						
Descripción	material	Unid.	Cant.	Precio unitario	precio parcial	
Placa (5/16)(patines viga principal)	acero A-36	m2	8,92	392.5	3501.1	
Placa (1/4)(almas viga principal)	acero A-36	m2	19,8	295	5841	
Placa(1/4) (viga testera)	acero A-36	m2	1,1	295	324,5	
Placa(3/16)(columna del pórtico testero)	acero A-36	m2	3,88	275	1067	
Placa (5/16)(vigas de pórtico testero)	acero A-36	m2	1,5	392,5	588,8	
Subtotal(bs)						

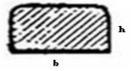
Descripción	unidad	Cantidad	Precio unitario	Precio parcial	
Polipasto TEREX DONATI(2 ramales)	pieza	1	42000	42000	
Ruedas ASCE #30 D=8 pulg.	pieza	4	450	1800	
Riel ASCE # 30	ml	26	300	7800	
Riel de tipo llantón	ml	22	218	4796	
Subtotal(bs)					

Costo de Fabricación y Montaje	unidad	Cantidad	Precio unitario	Precio parcial	
Soldadura(electrodo E6010)	Kg.	100	30	3000	
cortado de placas	Pza.	1	4000	4000	
Botellón oxigeno	Lts.	165	150	24750	
Pintura anticorrosiva	m2.	21,9	115,2	2525,2	
Mano de obra del armado de la estructura	Pza.	1	90000	90000	
Montaje de la estructura	Global.	1	21000	21000	
Subtotal(bs)					

Viga de hormigón armado	unidad	Cantidad	Precio unitario	Precio parcial		
viga 1	m3	1,20	4960,04	5952		
viga 2	m3	1,90	4695,95	8922,3		
Subtotal(bs)						

3.21. Presupuesto total:

ACTIVIDADES	PRECIO PARCIAL
Precio materia prima	11321.5
Equipos	56396
Fabricación y montaje	145275
Vigas de H° A°	14874,4
COSTO TOTAL(bs)	227866.9
COSTO TOTAL(\$)	32552.41


CONCLUSIONES:

- Se tomó la decisión de diseñar un modelo de una grúa semi-pórtico ya que la estructura consta de un canal de desplazamiento y ménsulas de apoyo para el grúa.
- Se realizó el relevamiento del lugar de emplazamiento (laboratorio de resistencia de materiales), obteniendo como datos iniciales la luz de la grúa semi-pórtico (11m), la longitud de traslación del mismo (11,5 m) y la altura de las ménsulas donde estará apoyada la viga carrilera (5,3 m).
- Se realizó un análisis de carga a levantar con el puente grúa, tomando en cuenta el uso que se le dará a la losa de carga, en consecuencia se realizó el análisis de elementos tipos de ensayos : viga de hormigón armado, losa de hormigón armado y viga pretensada, donde se obtuvo una carga máxima de 5 toneladas.
- El puente grúa birriel consta de dos vigas principales, por esto la carga a levantar se divide en dos, de la misma manera el peso propio del polipasto.
- El polipasto que se eligió fue de acuerdo a la carga máxima a elevar, basándose en el catálogo TEREX DONATI, este aparejo es una parte fundamental para el diseño ya que las ruedas transmitirán las cargas (carga a levantar y peso propio del polipasto) a la viga, también se tomó en cuenta el margen de impacto por frenado del 30% de estas cargas.

Las ruedas del polipasto estarán apoyadas sobre un riel especial, con las dimensiones siguientes:

b=5,0cm

h=3.0cm

- Para el diseño de cada elemento que conforma el grúa semi-pórtico, se basó en la normativa CMAA#70 y el método AISC-LRFD.
- Se realizó el diseño de dos alternativas para la viga principal con sección tipo cajón y sección en I.

❖ Las limitaciones para adoptar el dimensionamiento de la sección se basa a la norma CMAA#70, debido a esto, están sobre dimensionas, donde claramente se nota que las vigas pueden resistir cargas mayores a 5 toneladas.

❖ Alternativa 1 (sección cajón)

En los apoyos de la viga (apoyada en la viga testera)

Dimensiones	cm
base	17
altura	20
Espesor t _w	0.635
Espesor t _f	0.79
aletas	1

En el centro luz de la viga

Dimensiones	cm
base	17
altura	45
Espesor t _w	0.635
Espesor t _f	0.79
aletas	1

❖ Alternativa 2 (sección en I)

En los apoyos de la viga (apoyada en la viga testera)

Dimensiones	cm
base	20
altura	20
Espesor t _w	0.95
Espesor t _f	1.27

En el centro luz de la viga

Dimensiones	cm
base	17
altura	35
Espesor t _w	0.95
Espesor t _f	1.27

Se muestra la siguiente tabla comparativa de las dos secciones diseñadas para la viga principal.

Tipo de sección	Peso propio	Momento máximo	Cortante máxima	Deflexión	Costo(bs)
Sección Cajón	70 kg/m	10396.25kg.m	2288.42 kg	0.83cm	227866.9
Sección en I	66 kg/m	10608.3kg.m	2321.77 kg	1.11cm	225661.9

Se elegió para el diseño la alternativa de la sección tipo cajón, debido que la misma es más resiste a la torsion, es mas rígida y con menor deflexión, la variación del peso propio es mínima, ya que la viga cajón presenta un peso propio de 70 kg/m y la viga con sección I tiene un peso de 66 kg/m).

 La viga testera es la que se encargará de la traslación del grúa semi-pórtico, esta tiene una sección rectangular y una longitud de 185 cm, esta longitud no puede ser menor a 6 pies según la norma CMAA #70.

Dimensiones	cm
base	16
altura	12
Espesor t _w	0.635
Espesor t _f	0.635

El diámetro de la rueda elegida es de 8 pulgada con una durabilidad Brinell (BHN), de acuerdo a la norma CMAA#70.

El riel es del tipo ASCE 30, fue elegido en función a la carga producida por la rueda y la durabilidad de la misma.

La rueda y el riel tienen las mismas dimensiones para el pórtico testero.

• Se diseñó el pórtico testero con dos alternativas:

Alternativa 1 (Tipo A):

 El pórtico testero está compuesto por dos vigas y dos columnas inclinadas, tiene una altura de 5,87 m, una sección constante, con una inclinación de 5º y separación entre apoyos de 2.94cm.

Columna:

Dimensiones	cm
base	6.73
altura	9
Espesor t _w	0.48
Espesor t _f	0.48

Viga superior:

Dimensiones	cm
base	8.42
altura	16
Espesor t _w	0.79
Espesor t _f	0.79

Viga intermedia:

Dimensiones	cm
base	8.42
altura	6
Espesor t _w	0.79
Espesor t _f	0.79

Alternativa2 (Tipo H)

L=5.87 m

Columna:

Dimensiones	cm
base	6.73
altura	9
Espesor t _w	0.48
Espesor t _f	0.48

Viga superior

Dimensiones	cm
base	8.42
altura	16
Espesor t _w	0.79
Espesor t _f	0.79

Viga intermedia

Dimensiones	cm
base	8.42
altura	6
Espesor t _w	0.79
Espesor t _f	0.79

Se eligió la alternativa de un pórtico tipo A, teniendo en cuenta que la carga al levantar puede producir un momento que genere el vuelco de la estructura, debido al frenado del grúa semi-pórtico cuando se desplace longitudinalmente sobre las vigas carrileras.

- La viga de hormigón armado estará apoyada en las ménsulas, esta tiene una longitud de 11, 50m.Se diseñó según la norma CBH -87
- Para la viga de hormigón con base elástica se asumió un coeficiente de balasto del suelo de 6 kg/cm³, este valor se adoptó según el tipo de suelo en el lugar de la estructura (arcilla). Se diseñó como viga con base elástica por que el canal en donde se emplazará ésta viga fue construido con base de concreto aproximadamente 3 cm de espesor.

- Las ménsulas fueron verificadas mediante la norma EH-91, debido a que éstas fueron diseñadas y construidas por la misma. Estas ménsulas no podrán exceder una carga puntual de 10 toneladas y una carga máxima a levantar de 5 toneladas.
- El diseño de soldaduras se basó en el método LRFD, los tipos de soldadura a emplearse son:
 - Soldadura de penetración total para las secciones tipo cajón (viga principal, testeras y pórtico).
 - Soldadura de filete para la unión viga puente –testera y para la unión de la placa base.

El tipo de electrodo a utilizarse será de 60000lb/pulg² (resistencia mínima a la tensión).

• El presupuesto total de la estructura es de 227866.9 bolivianos, el costo de la construcción del grúa semi-pórtico se obtuvo mediante un metalúrgicos de nuestra ciudad, al proporcionarle los planos de la estructura, también se cotizó el costo de planchas de acero y todos los equipos necesarios para esta estructura.

RECOMENDACIONES

- Se deberá asegurar que las ruedas del polipasto se encuentre completamente alineadas, para que las cargas estén uniformemente distribuida y no exista una desviación el mismo.
- Se recomienda no utilizar el puente grúa para otros trabajos que excedan la capacidad de diseño.
- El manejo y operación del Puente Grúa, debe ser realizada por personal capacitado.
- Al ser un proyecto de diseño sencillo se debe tomar en cuenta que se debe revisar sus partes móviles como eléctrica cada cierto tiempo, por lo cual se

recomienda tener un plan preventivo dependiendo de las especificaciones del fabricante, y si no se tuviera que recomendar realizarlo después de terminado el mantenimiento de una máquina para que comience en otra con buen estado.

• En puentes grúas tipo birriel se necesita una inspección cada 30 y 90 días, que se realiza para asegurar que los componentes estén lubricados en todo momento. Aparte una revisión del departamento eléctrico cada 30 días por tener el tecle eléctrico en la mejor condición.

BIBLIOGRAFIA:

- CMAA#70 (Asociación Manufacturera de Puentes Grúa)
- MANUAL AISC (American Institute of Steel Construction)
- MANUAL LRFD (Loand and Resistance Factor Design)
- NORMA BOLIVIANA "Hormigón Armado" CBH 87 (Editorial Neografitis, S. L.)
- NORMA ESPAÑOLA "Instrucción para el Proyecto y la Ejecución de Obras de Hormigón en Masa o Armado (EH-91)"
- JIMÉNEZ MONTOYA Pedro, Álvaro García Meseguer y Francisco Morán Cabré "Hormigón Armado" (13º Edición, Editorial Gustavo Gili, S. A., Barcelona,2000)
- GABRIEL VALENCIA CLEMENT "Estructuras De Acero, Diseño con Factores de Carga y de Resistencia" (2º edición, Editorial Escuela Colombiana De Ingeniería)
- JACK C. MCCORMAC "Diseño de Estructuras de Acero, Método LRFD" (2da edición, Editorial Alfaomega, S.A. de C. V., México,2002)
- JAMES M. GERE, Stephen P. Timoshenko "mecánica de materiales"
 (2º edición, Iberoamérica S. A. de C.V., California 1986)