UNIVERSIDAD AUTONOMA "JUAN MISAEL SARACHO"

FACULTAD DE CIENCIAS Y ECNOLOGIA

CARRERA DE INGENIERIA CIVIL

DETERMINACIÓN DEL PORCENTAJE DE VACÍOS ÓPTIMO EN UNA MEZCLA ASFÁLTICA DRENANTE

Por:

SERGIO CASTELLANOS LEMA

Tesis de Grado presentada a consideración de la "UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO" como requisito para obtener el grado académico de licenciatura en Ingeniería Civil.

JULIO DE 2014

TARIJA – BOLIVIA

DEDICATORIA:

A mi querido tío Nano, por demostrarme que aunque la adversidad sea muy grande, con fe, esperanza y amor, uno puede lograr grandes cosas.

INDICE DE CONTENIDO

<u>CAPÍTULO I</u>

INTRODUCCIÓN

1.1INTRODUCCIÓN1
1.2 FUNDAMENTACIÓN TEORICA
1.3 SITUACIÓN PROBLÉMICA
1.4 PROBLEMA
1.5 OBJETIVOS9
1.5.1 GENERAL10
1.5.2 ESPECÍFICOS10
1.6 HIPOTESIS10
1.7 DISEÑO METODOLOGICO11
1.7.1 UNIDAD DE ESTUDIO U OBSERVACIÓN11
1.7.2 VARIABLES1
1.7.3 POBLACIÓN11
1.7.4 MUESTRA11
1.7.5 MUESTREO12
1.7.6 MÉTODOS, TÉCNICAS Y PROCEDIMIENTOS12
1.7.6.1 METODOLOGÍA12
1.7.7 TRATAMIENTO ESTADÍSTICO15
1.7.8 APLICACIÓN DE INSTRUMENTOS Y EQUIPOS16
<u>CAPÍTULO II</u>
GENERALIDADES DEL PAVIMENTO ASFÁLTICO TRADICIONAL PARA TRÁNSITO VEHICULAR
2.1 DESARROLLO DE CONCEPTOS BÁSICOS DE PAVIMENTOS FLEXIBLES16
2.1.1 DEFINICIÓN DE PAVIMENTO16

2.1.2 TIPOS DE PAVIMENTOS17	
2.1.2.1 PAVIMENTO RÍGIDO17	
2.1.2.2 PAVIMENTO FLEXIBLE18	
2.2 CONCEPTOS BÁSICOS DE ASFALTO18	
2.2.1 DEFINICIÓN DE ASFALTO18	
2.2.2 PROPIEDADES FÍSICAS DEL ASFALTO19	
2.2.2.1 ADHESIÓN Y COHESIÓN19	
2.2.2.2 SUSCEPTIBILIDAD TÉRMICA20	
2.2.2.3 DURABILIDAD21	
2.2.3 PROPIEDADES QUÍMICAS DEL ASFALTO21	
2.3 SISTEMAS DE CLASIFICACIÓN DEL CEMENTO ASFÁLTICO24	
2.3.1 SISTEMA DE CLASIFICACIÓN POR PENETRACIÓN24	
2.3.2 SISTEMA DE CLASIFICACIÓN POR VISCOSIDAD25	
2.4 CONCEPTOS BÁSICOS DE MEZCLAS ASFÁLTICAS27	
2.4.1 DEFINICIÓN DE MEZCLA ASFÁLTICA27	
2.4.2 CLASIFICACIÓN DE LAS MEZCLAS ASFÁLTICAS28	
2.4.2.1 POR FRACCIONES DE AGREGADO PÉTREO EMPLEADO28	
2.4.2.2 POR LA TEMPERATURA DE PUESTA EN OBRA28	
2.4.2.3 POR LA PROPORCIÓN DE VACÍOS EN LA MEZCLA ASFÁLTICA28	
2.4.2.4 POR EL TAMAÑO MÁXIMO DEL AGREGADO PÉTREO29	
2.4.2.5 POR LA ESTRUCTURA DEL AGREGADO PÉTREO29	
2.4.2.6 POR LA GRANULOMETRÍA29	
2.4.3 TIPOLOGÍA DE LAS MEZCLAS ASFÁLTICAS30	
2.4.3.1 MEZCLA ASFÁLTICA EN CALIENTE30	
2.4.3.2 MEZCLA ASFÁLTICA EN FRÍO31	
2.4.3.3 MEZCLA POROSA O DRENANTE32	

2.4.3.4 MICROAGLOMERADOS	32
2.4.4 CARACTERÍSTICAS Y PROPIEDADES DE LAS MEZCLAS ASFÁLTICAS	32
2.4.4.1 PESO ESPECÍFICO DE LOS AGREGADOS	32
2.4.4.2 CONTENIDO DE ASFALTO (%)	33
2.4.4.3 DENSIDAD MÁXIMA REAL DE LA MEZCLA (gr/cm3)	35
2.4.4.4 DENSIDAD MÁXIMA TEÓRICA (gr/cm3)	36
2.4.4.5 VACÍOS DE LA MEZCLA (%)	37
2.4.4.6 VACÍOS DEL AGREGADO MINERAL V.A.M. (%)	39
2.4.4.7 RELACIÓN BETUMEN VACÍOS (%)	43
2.4.4.8 ESTABILIDAD DE LA MEZCLA (Lb)	44
2.4.4.9 FLUENCIA DE LA MEZCLA (1/100")	45
2.4.4.10 RELACIÓN ESTABILIDAD – FLUENCIA	46
2.4.4.11 ADHERENCIA AGREGADOS – CEMENTO ASFÁLTICO	47
2.4.5 MÉTODOS DE MEZCLADO	50
2.4.5.1 MEZCLA EN PLANTA	50
2.4.5.2 MEZCLA EN SITIO	55
2.4.6 TIPOLOGÍAS DE DETERIORO DE LOS PAVIMENTOS ASFÁLTICOS	58
2.4.6.1 FALLOS EN LA CONSTRUCCIÓN	59
2.4.6.2 EXUDACIONES	60
2.4.6.3 SEGREGACIONES	61
2.4.6.4 DESPLAZAMIENTO DE LOS AGREGADOS PÉTREOS	63
2.4.6.5 TEXTURA SUPERFICIAL INADECUADA	64
2.4.6.6 AGRIETAMIENTOS Y FISURAS	65
2.4.6.7 BOMBEO DE FINOS	67
2.4.6.8 DEFORMACIONES PLÁSTICAS	67
2.5 MEZCLAS ASFALTICAS DRENANTES	70

2.5.1 INTRODUCCIÓN	70
2.6 DEFINICIÓN	70
2.6.1 VENTAJAS Y DESVENTAJAS DE LAS MEZCLAS DRENANTES	72
2.6.1.1 VENTAJAS	72
2.6.1.2 DESVENTAJAS	73
2.7. ASFALTOS MODIFICADOS CON POLÍMERO	74
2.7.1 DEFINICIÓN DE POLÍMERO	74
2.7.2 ¿QUÉ ES UN ASFALTO MODIFICADO?	75
2.7.3 PRINCIPALES MODIFICADORES UTILIZADOS EN EL ASFALTO	75
2.7.4 ¿POR QUÉ SE MODIFICAN LOS ASFALTOS?	77
2.7.5 MODIFICACIÓN DEL ASFALTO	78
2.7.6 ESTRUCTURA DE LOS ASFALTOS MODIFICADOS	78
2.7.7 COMPATIBILIDAD DE LOS POLÍMEROS	79
2.7.8 TECNICAS PARA MODIFICAR ASFALTOS	81
2.7.9 CAMBIO DE PROPIEDADES EN EL LIGANTE ASFÁLTICO	82
2.7.10 APLICACIONES DEL ASFALTO MODIFICADO	84
2.7.11 ESPECIFICACIONES TÉCNICAS PARA EL LIGANTE DE UNA MEZCLA DRENANTE	
2.8. MÉTODOS EMPLEADOS EN EL DISEÑO DE MEZCLAS ASFÁLTICAS DRENAN	_
2.9. METODOLOGÍA PARA LA CARACTERIZACIÓN DE ASFALTOS MEDIANTE EL EMPLEO DEL ENSAYO CANTABRO	88
2.9.1. METODOLOGÍA	90
<u>CAPÍTULO III</u>	
CARACTERÍSTICAS DE LOS AGREGADOS Y ASFALTO PARA LAS MEZCLAS <u>DRENANTES</u>	
3.1 INTRODUCCIÓN	96

3.2 ESPECIFICACIONES TÉCNICAS DE LOS AGREGADOS DE MEZCLAS DRENANTES	96
3.2.1 AGREGADO GRUESO	97
3.2.2 AGREGADO FINO	98
3.2.3 RELLENO MINERAL (FILLER)	98
3.3 ENSAYOS REALIZADOS EN LOS AGREGADOS	99
3.3.1 ENSAYO DE GRANULOMETRIA	100
3.3.2 CONTENIDO DE HÚMEDAD EN ESTADO NATURAL PARA LA GRA AGREGADO FINO	
3.3.3 PESO ESPECÍFICO DE LOS AGREGADOS	100
3.3.4 CARAS FRACTURADAS	100
3.3.5 RESISTENCIA AL DESGASTE DEL AGREGADO GRUESO EN LA MÁC DE LOS ÁNGELES	
3.3.6 EQUIVALENTE DE ARENA	102
3.4 ESPECIFICACIONES PARA EL ASFALTO DE MEZCLAS DRENANTES	103
3.5 ENSAYOS DEL ASFALTO	105
3.5.1 PUNTO DE LLAMA POR LA COPA ABIERTA DE CLEVELAND	106
3.5.2 PENETRACIÓN DE MATERIALES BITUMINOSOS	107
3.5.3 VISCOSIDAD CINEMÁTICA SAYBOLT FUROL	108
3.5.4 PESO ESPECÍFICO DEL ASFALTO	109
3.5.5 PUNTO DE ABLANDAMIENTO	109
3.5.6 TABLA RESUMEN DE LA CARACTERIZACIÓN DEL ASFALTO A UTILIZARCE	110
<u>CAPÍTULO IV</u>	
DISEÑO DE LA MEZCLA ASFÁLTICA	
4.1 INTRODUCCIÓN	111
4.2 DOSIFICACIÓN DE LOS AGREGADOS	111

4.2.1 PLANILLA GRANULOMÉTRICA PROYECTADA115
4.2.2 GRÁFICA DE LA GRANULOMETRÍA Y DOSIFICACIÓN REALIZADAS116
4.3 DISEÑO DE LA MEZCLA ASFÁLTICA DRENANTE120
4.3.1. ELABORACIÓN DE BRIQUETAS122
4.3.2. VACÍOS126
4.3.2.1. DENSIDAD BULK126
4.3.2.2 DENSIDAD ESPECÍFICA MÁXIMA TEÓRICA135
4.3.2.3 CÁLCULO DE VACÍOS138
4.3.3 ENSAYO DE PERMEABILIDAD139
4.3.4 CÁNTABRO SECO (MÁQUINA DE LOS ÁNGELES)141
4.3.5 CANTABRO HÚMEDO (MÁQUINA DE LOS ÁNGELES)144
4.4 RESUMEN Y ANÁLISIS DE LOS RESULTADOS DE LABORATORIOS146
4.4.1 ANÁLISIS No. 1148
4.4.2 ANÁLISIS No. 2150
4.5 ANÁLISIS DE LOS RESULTADOS OBTENIDOS MEDIANTE EL MÉTODO CÁNTABRO154
4.6 DISEÑO MEDIANTE EL MÉTODO MARSHALL154
4.6.1 ANÁLISIS DE RESULTADOS DEL MÉTODO MARSHALL159
<u>CAPÍTULO V</u>
CONCLUSIONES Y RECOMENDACIONES
5.1 CONCLUISIONES160
5.2. RECOMENDACIONES
5.3 BIBLIOGRAFIA164
<u>ANEXOS</u>
6.1 ANEXO 1: RESUMENTE GRANULOMÉTRICO DE LOS AGREGADOS168
6.2 ANEXO 2: CONTENIDO DE HÚMEDAD EN ESTADO NATURAL PARA LA GRAVA Y AGREGADO FINO171

6.3 ANEXO 3: PESO ESPECÍFICO DE LOS AGREGADOS	174
6.4 ANEXO 4: ENSAYO DE CARAS FRACTURADAS	178
6.5 ANEXO 5: COEFICIENTE DE DESGASTE DE LOS ANGELES	179
6.6 ANEXO 6: EQUIVALENTE DE ARENA	182
6.7 ANEXO 7: PUNTO DE LLAMA POR LA COPA ABIERTRA DE CLEVELAND	184
6.8 ANEXO 8: PENETRACION DE MATERIALES BITUMINOSOS	185
6.9 ANEXO 9: VISCOSIDAD CINEMATICA SAYBOLT FUROL	186
6.10 ANEXO 10: PESO ESPECÍFICO DEL ASFALTO	187
6.11 ANEXO 11: DETERMINACION DEL PUNTO DE ABLANDAMIENTO	188